最新分式测试题
分式通分测试题及答案
分式通分测试题及答案一、选择题1. 下列哪个选项是正确的通分结果?A. \(\frac{1}{2} = \frac{3}{6}\)B. \(\frac{1}{3} = \frac{2}{6}\)C. \(\frac{1}{4} = \frac{3}{12}\)D. \(\frac{1}{5} = \frac{2}{10})2. 如果要将 \(\frac{2}{5}\) 和 \(\frac{3}{7}\) 通分,正确的通分母应该是多少?A. 35B. 15C. 70D. 10二、填空题1. 将 \(\frac{1}{6}\) 和 \(\frac{2}{9}\) 通分后,它们的通分母是 ________。
2. 通分后,\(\frac{1}{3}\) 和 \(\frac{1}{4}\) 的分子分别是________ 和 ________。
三、计算题1. 计算并简化以下表达式:\(\frac{2}{3} + \frac{1}{6}\)2. 将 \(\frac{5}{8}\) 和 \(\frac{7}{12}\) 通分后,求它们的和。
四、解答题1. 解释什么是通分,并给出一个例子。
2. 如果你有两个分数,它们的分母是互质的,通分时需要注意什么?答案:一、选择题1. C2. A二、填空题1. 182. 4, 3三、计算题1. \(\frac{2}{3} + \frac{1}{6} = \frac{4}{6} + \frac{1}{6} = \frac{5}{6}\)2. \(\frac{5}{8} = \frac{15}{24}\), \(\frac{7}{12} =\frac{14}{24}\), 通分后和为 \(\frac{15}{24} + \frac{14}{24} = \frac{29}{24}\)四、解答题1. 通分是将两个或多个分数转换为具有相同分母的过程,这样便于进行加减运算。
例如,\(\frac{1}{2}\) 和 \(\frac{1}{3}\) 通分后可以变为 \(\frac{3}{6}\) 和 \(\frac{2}{6}\)。
分式测试题
分式测试题班级:__________姓名:__________座号:__________一、单选题(共10题;共20分)1、下列各式:(1﹣x),,,,,其中分式共有()A、5个B、4个C、3个D、2个2、若分式有意义,则()A、B、C、≥ D、3、若分式的值为零,则x的值为()A、0B、1C、﹣1D、±14、分式,,的最简公分母为()A、(a2﹣b2)(a+b)(b﹣a)B、(a2﹣b2)(a+b)C、(a2﹣b2)(b﹣a)D、a2﹣b25、(2017•天门)下列运算正确的是()A、(π﹣3)0=1B、=±3C、2﹣1=﹣2D、(﹣a2)3=a66、分式,,的公分母可能是()A、aB、12aC、8a2D、12a27、下列约分正确的是()A、B、C、D、8、下列各式中,变形不正确的是( )A、B、C、D、9、下列式子是分式方程的是( )A、B、C、D、10、将分式方程去分母,得到正确的整式方程是( )A、B、C、D、二、填空题(共5题;共5分)11、计算的结果为________.12、(2017•湖州)要使分式有意义,的取值应满足________.13、(2017•黄冈)化简:(+ )• =________.14、(2017•怀化)计算:=________.15、计算:________.三、计算题(共5题;共25分)16、(2017•济宁)解方程:=1﹣.17、(2015•呼伦贝尔)解方程:+=1.18、解方程:.19、(2017•连云港)化简• .20、先化简,(﹣)÷,再选一个合适的数作为a的值计算.四、解答题(共2题;共10分)21、(2017•大连)某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?22、甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?答案解析部分一、单选题1、【答案】D【考点】分式的定义【解析】【解答】解:,是分式,故选:D.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.2、【答案】B【考点】分式有意义的条件【解析】【解答】解:由题意得2x-1≠0,解得x≠ ;故选B.3、【答案】 B【考点】分式的值为零的条件【解析】【解答】解:∵分式的值为零,∴x﹣1=0,解得:x=1.故选:B.【分析】直接利用分式的值为零即分子为零,注意分母不为零,进而得出答案.4、【答案】D【考点】最简公分母【解析】【解答】解:分式,,的分母分别是a+b、a2﹣b2=(a+b)(a﹣b),b﹣a=﹣(a﹣b),故最简公分母是a2﹣b2;故选D.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.5、【答案】A【考点】算术平方根,幂的乘方与积的乘方,零指数幂,负整数指数幂【解析】【解答】解:解:A、(π﹣3)0=1,故A正确;B、=3,故B错误;C、2﹣1= ,故C错误;D、(﹣a2)3=-a6,故D错误.故选:A.【分析】根据零指数幂、算术平方根、负整数指数幂、积的乘方的计算法则计算,对各选项分析判断后利用排除法求解.6、【答案】D【考点】最简公分母【解析】【解答】解:如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.所以所求分式的最简公分母为12a2,故选D.【分析】最简公分母,通常取各分母系数的最小公倍数与字母因式的最高次幂的积.7、【答案】D【考点】同底数幂的除法,约分【解析】【解答】解:A. ,故A错误;B. 不能约分,故B错误;C. ,故C错误;D. ,故D正确;故选D.8、【答案】B【考点】约分【解析】【解答】解:A. ∵,故A正确;B. ∵,故B不正确;C. ∵,故C正确;D. ∵,故D正确;故选B.9、【答案】C【考点】分式方程的定义【解析】【解答】解:A. 是一元二次方程,故A不正确;B. 不是任何方程,故B不正确;C. 是分式方程,故C正确;D. 是一元一次方程,故D不正确;故选C.10、【答案】A【考点】解分式方程【解析】【解答】解:将分式方程去分母得,故选A.二、填空题11、【答案】【考点】分式的乘除法【解析】【解答】解:原式=(﹣)÷ = × = .故答案为.【分析】首先把括号里式子进行通分,然后把除法运算转化成乘法运算,再进行约分.12、【答案】x≠2【考点】分式有意义的条件【解析】【解答】解:依题可得:∴x-2≠0.∴x≠2.故答案为x≠2.【分析】根据分式有意义的条件分母不为0即可得出答案.13、【答案】1【考点】分式的混合运算【解析】【解答】解:原式=(﹣)• = •=1.故答案为1.【分析】首先计算括号內的加法,然后计算乘法即可化简.14、【答案】x+1【考点】分式的加减法【解析】【解答】解:原式= .故答案为x+1.【分析】本题考查了分式的加减运算.解决本题主要是因式分解,然后化简.15、【答案】【考点】零指数幂,负整数指数幂【解析】【解答】解:原式= ×1= .三、计算题16、【答案】解:去分母得:2x=x﹣2+1,移项合并得:x=﹣1,经检验x=﹣1是分式方程的解.【考点】解分式方程【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.17、【答案】解:方程两边乘以(x+1)(x﹣1)得:(x+1)2+4=(x+1)(x﹣1),解这个方程得:x=﹣3,检验:当x=﹣3时,(x+1)(x﹣1)≠0,x=﹣3是原方程的解;∴原方程的解是:x=﹣3.【考点】解分式方程【解析】【分析】首先方程两边乘以最简公分母,把分式方程化成整式方程,求出整式方程的解,再代入最简公分母检验即可.18、【答案】解:设3x﹣1=y则原方程可化为:3y﹣2=5,解得y= ,∴有3x﹣1= ,解得x= ,将x= 代入最简公分母进行检验,6x﹣2≠0,∴x= 是原分式的解.【考点】换元法解分式方程【解析】【分析】此题应先设3x﹣1为y,然后将原方程化为3y﹣2=5解得y= ,最后求出x的值.19、【答案】解:原式= • = .【考点】分式的乘除法【解析】【分析】根据分式的乘法,可得答案.20、【答案】解:原式=(﹣)•(a+1)(a﹣1) =2a(a+1)﹣a(a﹣1)=2a2+2a﹣a2+a=a2+3a.当a=0时,原式=0【考点】分式的化简求值【解析】【分析】首先把除法转化为乘法,利用分配律计算,然后合并同类项即可化简,然后代入使分式有意义的a的值求解.四、解答题21、【答案】解:设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据题意得:= ,解得:x=75,经检验,x=75是原方程的解.答:原计划平均每天生产75个零件【考点】分式方程的应用【解析】【分析】设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.22、【答案】解:设甲公司人均捐款x元,则乙公司人均捐款x+20元,× =解得:x=80,经检验,x=80为原方程的根,80+20=100(元)答:甲、乙两公司人均捐款分别为80元、100元.【考点】分式方程的应用【解析】【分析】首先根据题意,设甲公司人均捐款x元,则乙公司人均捐款x+20元,然后根据:甲公司的人数× =乙公司的人数,列出方程,求出x的值,即可求出甲、乙两公司人均捐款各多少元.。
分式测试题及答案
分式测试题及答案一、选择题1. 下列哪个选项不是分式?A. \( \frac{1}{x} \)B. \( 3x + 2 \)C. \( \frac{x}{y} \)D. \( \frac{3}{2x} \)答案:B2. 分式 \( \frac{x^2 - 1}{x - 1} \) 可以化简为:A. \( x \)B. \( x + 1 \)C. \( x - 1 \)D. \( 1 \)答案:B3. 如果 \( \frac{a}{b} \) 是一个分式,且 \( a \) 和 \( b \) 都是正整数,那么 \( \frac{a}{b} \) 的值:A. 总是大于1B. 总是小于1C. 可以是任何实数D. 总是等于1答案:C二、填空题4. 分式 \( \frac{2x^2 - 3x}{x - 3} \) 的值为0的条件是_______ 。
答案:\( x = \frac{3}{2} \)5. 如果 \( \frac{1}{x} + \frac{2}{y} = 1 \),那么\( \frac{x}{y} + \frac{y}{x} \) 的值为 _______ 。
答案:3三、解答题6. 化简分式 \( \frac{3x^2 - 12x + 12}{x^2 - 4} \) 。
答案:首先分解分子和分母的因式,得到 \( \frac{3(x -2)^2}{(x - 2)(x + 2)} \),然后约去公共因子 \( (x - 2) \),得到 \( \frac{3(x - 2)}{x + 2} \)。
7. 解分式方程 \( \frac{1}{x} - \frac{1}{x + 1} = \frac{2}{x(x + 1)} \)。
答案:首先找到分母的最小公倍数,即 \( x(x + 1) \),然后将方程两边同乘以 \( x(x + 1) \) 以消除分母,得到 \( x + 1 - x = 2 \),解得 \( x = 3 \)。
分式单元测试题(含答案)
分式测试题一、选择题(共8题,每题有四个选项,其中只有一项符合题意。
每题3分,共24分):1.下列运算正确的是( )A.x10÷x5=x2B.x-4·x=x-3C.x3·x2=x6D.(2x-2)-3=-8x62. 一件工作,甲独做a小时完成,乙独做b小时完成,则甲、乙两人合作完成需要( )小时.A.11a b+ B.1abC.1a b+D.aba b+3.化简a ba b a b--+等于( )A.2222a ba b+-B.222()a ba b+-C.2222a ba b-+D.222()a ba b+-4.若分式2242xx x---的值为零,则x的值是( )A.2或-2B.2C.-2D.45.不改变分式52223x yx y-+的值,把分子、分母中各项系数化为整数,结果是( )A.2154x yx y-+B.4523x yx y-+C.61542x yx y-+D.121546x yx y-+6.分式:①22 3a a ++,②22a ba b--,③412()aa b-,④12x-中,最简分式有( )A.1个B.2个C.3个D.4个7.计算4222x x xx x x⎛⎫-÷⎪-+-⎝⎭的结果是( )A. -12x+B.12x+C.-1D.18.若关于x的方程x a cb x d-=-有解,则必须满足条件( )A. a≠b ,c≠dB. a≠b ,c≠-dC.a≠-b , c≠d C.a≠-b , c≠-d9.若关于x的方程ax=3x-5有负数解,则a的取值范围是( )A.a<3B.a>3C.a≥3D.a≤310.解分式方程2236111x x x+=+--,分以下四步,其中,错误的一步是( )A.方程两边分式的最简公分母是(x-1)(x+1)B.方程两边都乘以(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=1二、填空题:(每小题4分,共20分)11.把下列有理式中是分式的代号填在横线上.(1)-3x;(2)yx;(3)22732xyyx-;(4)-x81;(5)35+y; (6)112--xx;(7)-π-12m;(8)5.023+m.12.当a时,分式321+-aa有意义.13.若x=-1,则x+x-1=__________.14.某农场原计划用m天完成A公顷的播种任务,如果要提前a天结束,那么平均每天比原计划要多播种_________公顷.15.计算1201(1)5(2004)2π-⎛⎫-+-÷-⎪⎝⎭的结果是_________.16.已知u=121s st--(u≠0),则t=___________.17.当m=______时,方程233x mx x=---会产生增根. 18.用科学记数法表示:12.5毫克=________吨.19.当x 时,分式x x--23的值为负数. 20.计算(x+y)·2222x y x y y x+--=____________.三、计算题:(每小题6分,共12分)2123651x x x x x+----; 22.2424422x y x y x x y x y x y x y ⋅-÷-+-+.四、解方程:(6分) 23.21212339x x x -=+--。
分式单元测试题 (含答案)
一、选择题1. 下列各式:()2221451, , , 532x x y x x xπ---其中分式共有( )A .1个B .2个C .3个D .4个2.下列计算正确的是( )A.m m m x x x 2=+B.22=-n n x xC.3332x x x =⋅D.264x x x -÷= 3. 下列约分正确的是( ) A .313m m m +=+ B .212y x y x -=-+ C .123369+=+a ba b D .()()y x a b y b a x =-- 4.若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A.y x 23B.223y xC.y x 232D.2323y x5.计算xx -++1111的正确结果是( ) A.0 B.212x x - C.212x - D.122-x6. 在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千米,则他在这段路上、下坡的平均速度是每小时( )A .221v v +千米 B .2121v v v v +千米 C .21212v v v v +千米 D .无法确定7. 某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件,则x 应满足的方程为( )A .x +48720─548720= B .x +=+48720548720C .572048720=-xD .-48720x +48720=58. 若0≠-=y x xy ,则分式=-xy 11( ) A .xy 1B .x y -C .1D .-1 9. 已知xy x y +=1,yz y z +=2,zxz x+=3,则x 的值是( )A .1 B.125 C.512D.-110.小明骑自行车沿公路以akm/h 的速度行走全程的一半,又以bkm/h 的速度行走余下的一半路程;小明骑自行车以akm/h 的速度走全程时间的一半,又以bkm/h 的速度行走另一半时间(a b ≠),则谁走完全程所用的时间较少?( )A .小明 B.小刚 C.时间相同 D.无法确定 二、填空题 11. 分式12x ,212y ,15xy-的最简公分母为 . 12. 约分:(1)=ba ab2205__________,(2)=+--96922x x x __________. 13. 方程x x 527=-的解是 .14. 使分式2341xx -+的值是负数x 的取值范围是 .15. 一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这项工程需要__________小时.16. 一个两位数的十位数字是6,如果把十位数字与个位数字对调,那么所得的两位数与原来的两位数之比是74,原来得两位数是______________. 17. 若13x x+=,则4221x x x ++__________. 18. 对于正数x ,规定f (x )= x 1x +,例如f (3)=33134=+,f (13)=1131413=+,计算f (12006)+ f (12005)+ f (12004)+ …f (13)+ f (12x )+ f (1)+ f (1)+ f (2)+ f (3)+ … + f (2004)+ f (2005)+ f (2006)= . 三、解答题 19.计算:(1) 333x x x --- (2) 222246⎪⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛x y x y20.计算: (1) bc c b ab b a +-+ (2)÷+--4412a a a 214a a --21.计算:⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛----42318521q p q p22.计算:2222221m n mn n mnm mn n m n n ⎡⎤-+-⋅⎢⎥-+--⎣⎦23.解分式方程: (1)3215122=-+-x x x (2)1637222-=-++x x x x x24.先化简,再求值:已知12+=x ,求xx x x x x x 112122÷⎪⎭⎫ ⎝⎛+---+的值25.一根约为1m 长、直径为80mm 的圆柱形的光纤预制棒,可拉成至少400km 长的光纤.试问:光纤预制棒被拉成400km 时,12cm 是这种光纤此时的横截面积的多少倍?(结果保留两位有效数字,要用到的公式:圆柱体体积=底面圆面积×圆柱的高)26.从甲地到乙地有两条公路,一条是全长600km 的普通公路,另一条是全长480km 的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km /h ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.27. 问题探索:(1)已知一个正分数mn(m >n >0),如果分子、分母同时增加1,分数的值是增大还是减小?请证明你的结论.(2)若正分数mn(m >n >0)中分子和分母同时增加2,3…k (整数k >0),情况如何?(3)请你用上面的结论解释下面的问题:建筑学规定:民用住宅窗户面积必须小于地板面积,但按采光标准,窗户面积与地板面积的比应不小于10%,并且这个比值越大,住宅的采光条件越好,问同时增加相等的窗户面积和地板面积,住宅的采光条件是变好还是变坏?请说明理由.一、选择题1.A 2.D 3.C 4.A 5.C 6.C 7.D 8.C 9.A 10.B(提示:设全程为1,小明所用时间是1122a b+=1()2a b ab +,小刚所用时间是1a b+,小明所用时间减去小刚所用时间得1()2a b ab +-1a b+=21()2()a b ab ab a b +-+=221()2()a b ab a b ++>0,显然小明所用时间较多) 二、填空题11.210xy 12.(1)14a (2)33x x +- 13.x =-5 14.x >3415.xyx y+ 16.63 17.18(提示:由13x x +=得21()9x x+=,2217x x+=,∴4221x x x++=22118x x++=) 18.2007(提示:原式=12007+12006+ (13)12+12+23+…12006+20062007=(12007+20062007)+(12006+12006)+…+(12+12)=2007三、解答题 19.(1)原式=3(3)33x x x x ---=--=-1 (2)原式=24423616y y x x ÷=22441636y x x y =2249x y20.(1)原式=()()c a b a b c abc abc ++-=()()c a b a b c abc abc ++-=ac bc ab acabc+-- bc ab abc -=()b c a abc -=c aac-(2)原式=211(2)(2)(2)a a a a a --÷-+-=21(2)(2)(2)1a a a a a -+---=2a + 21.原式=1(2)3(4)15()28p q ------÷-=45pq -22.原式=2()()()()1m n n m n mn m n m n m n n ⎡⎤-+-⎢⎥-+--⎣⎦=1()1n mnm n m n n ---- 11n mn m n n ---=mnm n-- 23.(1)原方程变形为252121x x x ---=3,方程两边同乘以(21)x -,得253(21)x x -=-, 解得x =12-,检验:把12x =-代入(21)x -,(21)x -≠0,∴12x =-是原方程的解,∴原方程的解是12x =-.(2)原方程变形为736(1)(1)(1)(1)x x x x x x +=+-+-,方程两边同乘以最简公分母(1)(1)x x x +-,得7(1)3(1)6x x x -++=,解得x =1,检验:把1=x 代入最简公分母(1)(1)x x x +-,(1)(1)x x x +-=0,∴1=x 不是原方程的解,应舍去,∴原方程无解.24.原式=211(1)(1)x x x x x x ⎛⎫+-÷ ⎪--⎝⎭=222(1)(1)1(1)(1)x x x x x x x x ⎛⎫+--÷ ⎪--⎝⎭ =22211(1)x x x x x --÷-=21(1)x x x --=21(1)x --,当12+=x 时,原式=21-=12-25.光纤的横截面积为:1×π)10400()21080(323⨯÷⨯⨯-=4π910-⨯(平方米), ∴()9410410--⨯÷π≈8.0310⨯.答:平方厘米是这种光纤的横截面积8.0310⨯倍.26.设客车由高速公路从甲地到乙地需x 小时,则走普通公路需2x 小时,根据题意得:6004804.52x x-=,解得x =8,经检验,x =8是原方程的根,答:客车由高速公路从甲地到乙地需8小时.27.(1)m n <11++m n (m >n >0) 证明:∵m n-11++m n =()1+-m m m n ,又∵m >n >0,∴()1+-m m m n <0,∴m n <11++m n(2)m n <km k n ++(m >n >0,k >0)(3)设原来的地板面积和窗户面积分别为x 、y ,增加面积为a ,则由(2)知:a x a y ++>xy ,所以住宅的采光条件变好了。
(完整版)分式章节测试(附答案)
分式章节测试
一、选择题(每题3分, 共30分)
1.若分式/的值为零, 则/的值为()
A. /
B. /
C. /
D. /
2.要使分式/有意义, 则x的取/值范围是()
A. x≠1
B.x>1
C. x<1
D.x≠-1
3.已知//, 则//的值为()
A. //
B. //
C. //
D. //
4、若分式/的值为0, 则/等于()
A.-1
B.1
C.-1或1
D.1或2
5.分式/可变形为()
A. /
B. /
C. /
D. /
二、填空题(每空5分, 共30分)
6.下列各式: /其中分式共有_______ 个。
7、若分式/的值为0, 则x的值为 .
8、当分式/的值为零时, x的值为 .
9、若分式/的值为负数, 则x的取值范围是__________。
10、如果分式/的值为零, 则a的值为____________
三、计算题(17题、18题各8分, 19题、20题各10分, 21题、22题各12分, 共计60分)
11.约分: /.
12.先化简, 再求值: /, 其中/.
13.先化简, 再求值;
14.请你先将分式/化简, 再求出当a=9999时, 该代数式的值.。
分式测试题及答案
分式测试题及答案第三章分式综合测试题一、选择题(每题3分,共30分)1.代数式4-x是( C )。
A。
单项式 B。
多项式 C。
分式 D。
不能确定2.有理式x/3(x+y)。
π-3/(a-x)。
4/2(a+b)。
a+b中分式有( B )个。
A。
1 B。
2 C。
3 D。
43.若分式(x+x-2)/x的值为0,则x的值是( A )。
A。
1或-1 B。
1 C。
-1 D。
-24.下列分式12a/(b-a)。
(y-x)^2/xy。
2(a+b)。
b-a中最简分式的个数是( C )。
A。
1 B。
2 C。
3 D。
45.如果x=a-b,y=a+b,计算-2b/(a-b)的值为(B)。
A。
(a-b)/2b B。
-2/a-b C。
-2a+b/4b^2 D。
|a-b|6.将(a-b)约分,正确的结果是( A )。
A。
1 B。
2 C。
±1 D。
无法确定7.下列运算正确的个数是( B )。
1.m÷n·n=m÷1=m2.x·y÷x·y=xy÷xy=13.(2x+y)/(x+y) ÷ (4x+2y)/(2a) = (2x+y)/(x+y) * (2a)/(4x+2y)4.|2-3x|/2 = (2-3x)/2 或 -(2-3x)/2A。
2 B。
1 C。
3 D。
48.如果x<3,那么3x-2的值是( A )。
A。
-1 B。
0 C。
1 D。
29.若a-b=2ab,则ab的值为( B )。
A。
2 B。
-2 C。
-1/2 D。
1/210.若a+a=4,则(a-a)的值是( C )。
A。
16 B。
9 C。
15 D。
12二、填空题(每题3分,共30分)1.已知代数式:3,x,3+x,x^2+1,1/(x+y),y/(z+x),x+1.2x,x+2x+3.整式有:3,x,3+x,x^2+1,x+1.2x,x+2x+3.分式有:1/(x+y),y/(z+x)。
《分式》综合测试题(含答案)
《分式》综合测试题答案二、 填空题:每题3分11、 1.05×10-312、x ≠-5 13、336278cb a - 14、 2y 15 、 9116、a 2+a 17 、 2121R R R R + 18、 6 19、 2-=+ab b aa b ,a+b=ab 20、111+-+n n三、解答题 21、每题6分(1)-3 (2)10000 (3)2y-x (4) –4a22 (8分)解方程:14212=++-x x x 解:两边同乘以2(x-2)(x+2)得 (1分) 2x(x+2)+x-2=2(x+2)(x-2) (3分)X=-56 (6分)检验:当X=-56时,2(x+2)(x-2)≠0 (7分)∴X=56是原分式方程的解 (8分)23、(8分) 解:原式=()21)1)(1(-+-x x x x ·xx 1- (2分)=x+1 (6分)当x=3时,原式=x+1=4 (8分)(注: x 不能取0和1)24、解:设小月每分钟跳绳 x 个,由题意得,(1分)20100-x =x110(5分)解得x=220 (7分)经检验,x=220是分式方程的解 (9分)答:小月每分钟跳绳220个。
(10分) 25、(1);,21c mx c x == (2分)(2)结论:方程的左边是未知数与其倒数的倍数的和,方程的右边与左边形式完全相同,只是其中的未知数换成了某个常数,这样左边的未知数就等于右边的常数和倒数. (4分)1212-+=-+a a y y 可变形为121121-+-=-+-a a y y , (6分)∴121,11-=--=-a y a y 或,即1121-+==a a y a y 或, (8分) 经检验:11,21-+==a a y a y 都是原方程的解, (9分)∴原方程的解为11,21-+==a a y a y (10分)。
分式全章综合测试题1
第十六章 分式全章标准检测卷一、选择题:(每小题3分,共30分)1.下列运算正确的是( ) A.x 10÷x 5=x 2; B.x -4·x=x -3; C.x 3·x 2=x 6; D.(2x -2)-3=-8x62.如果m 个人完成一项工作需要d 天,则(m+n)个人完成这项工作需要的天数为 ( ) A.d+n B.d-n C.md m n + D.dm n+3.化简a ba b a b--+等于( )A.2222a b a b +-;B.222()a b a b +-; C.2222a b a b -+; D.222()a b a b +- 4.若分式2242x x x ---的值为零,则x 的值是( )A.2或-2B.2C.-2D.45.不改变分式52223x yx y -+的值,把分子、分母中各项系数化为整数,结果是( ) A.2154x y x y -+ B.4523x y x y-+ C.61542x y x y -+ D.121546x y x y -+6.分式:①223a a ++,②22a ba b --,③412()aa b -,④12x -中,最简分式有 ( )A.1个B.2个C.3个D.4个 7.计算4222xx x x x x⎛⎫-÷⎪-+-⎝⎭的结果是( ) A.12x + B.-12x + C.-1 D.18.若关于x 的方程x a cb x d-=- 有解,则必须满足条件 ( ) A.c ≠d B.c ≠-d C.bc ≠-ad C.a ≠b 9. 已知两个分式:244A x =-,11,22B x x=++-其中2x ≠±。
下面有三个结论: (1)A=B (2)A 、B 互为相反数 (3) A 、B 互为倒数。
正确的个数 ( ) A 、0, B 、1, C 、2, D 、310.一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲、乙两人合作完成需要 ( ) A.(11a b +) 小时; B.1ab 小时; C.1a b + 小时; D.aba b + 小时 二、填空题:(每小题3分,共18分) 11.当2x≠时,分式bx ax +-有意义,则b=______________;12. 函数y=2(3)12x x-+--中,自变量x 的取值范围是___________.13. 计算121(1)5(2004)2π-⎛⎫-+-÷- ⎪⎝⎭的结果是_________.14. 已知u=121s s t -- (u ≠0),则t=___________.15. 当m=______时,方程233x m x x =---会产生增根. 16. 用科学记数法表示:12.5毫克=________吨. 三、计算题:17.(1)35(2)482y y y y -÷+--- ( 6分); (2)2244)2)(1(22-÷⎥⎦⎤⎢⎣⎡--+--+a a a a a a a a a ( 6分).学校家18、先将代数式21111x x x x ⎛⎫⎛⎫-÷+ ⎪ ⎪+-⎝⎭⎝⎭化简,再从33x -<<的范围内选取一个合适的整数x 代入求值.(8分);19、a 为何值时,分式1a a21a 222---+的值为零?(8分) 20、若0)4y 1y 3(3x 21x 2=+++--,求代数式1y 321x 23--+的值;( 8分)四、解方程:(6分) 21. (1)11322xx x--=---。
分式单元测试题(附参考答案)
分式测试题一、选择题(共8题,每题有四个选项,其中只有一项符合题意。
每题3分,共24分):1.下列运算正确的是( )A.x10÷x5=x2B.x-4·x=x-3C.x3·x2=x6D.(2x-2)-3=-8x62. 一件工作,甲独做a小时完成,乙独做b小时完成,则甲、乙两人合作完成需要( )小时.A.11a b+ B.1abC.1a b+D.aba b+3.化简a ba b a b--+等于( )A.2222a ba b+-B.222()a ba b+-C.2222a ba b-+D.222()a ba b+-4.若分式2242xx x---的值为零,则x的值是( )A.2或-2B.2C.-2D.45.不改变分式52223x yx y-+的值,把分子、分母中各项系数化为整数,结果是( )A.2154x yx y-+B.4523x yx y-+C.61542x yx y-+D.121546x yx y-+6.分式:①22 3a a ++,②22a ba b--,③412()aa b-,④12x-中,最简分式有( )A.1个B.2个C.3个D.4个7.计算4222x x xx x x⎛⎫-÷⎪-+-⎝⎭的结果是( )A. -12x+B.12x+C.-1D.18.若关于x的方程x a cb x d-=-有解,则必须满足条件( )A. a≠b ,c≠dB. a≠b ,c≠-dC.a≠-b , c≠d C.a≠-b , c≠-d9.若关于x的方程ax=3x-5有负数解,则a的取值范围是( )A.a<3B.a>3C.a≥3D.a≤3 10.解分式方程2236111x x x+=+--,分以下四步,其中,错误的一步是( )A.方程两边分式的最简公分母是(x-1)(x+1)B.方程两边都乘以(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=1二、填空题:(每小题4分,共20分)11.把下列有理式中是分式的代号填在横线上.(1)-3x;(2)yx;(3)22732xyyx-;(4)-x81;(5)35+y;(6)112--xx;(7)-π-12m;(8)5.023+m.12.当a时,分式321+-aa有意义. 13.若则x+x-1=__________.14.某农场原计划用m天完成A公顷的播种任务,如果要提前a天结束,那么平均每天比原计划要多播种_________公顷.15.计算1201(1)5(2004)2π-⎛⎫-+-÷-⎪⎝⎭的结果是_________.16.已知u=121s st--(u≠0),则t=___________.17.当m=______时,方程233x mx x=---会产生增根. 18.用科学记数法表示:12.5毫克=________吨.19.当x时,分式xx--23的值为负数. 20.计算(x+y)·2222x yx y y x+--=____________.三、计算题:(每小题6分,共12分)21.23651xx x x x+----; 22.2424422x y x y xx y x y x y x y⋅-÷-+-+.四、解方程:(6分)23.21212339x x x-=+--。
不等式-因式分解-分式测试题
学试卷一、选择题:1•下列从左边到右边的变形,是因式分解的是A. (3-x)(3 +x)=9-x2B. m2-n2= (m - n)(m +n )C. (y+1)(y-3) 一(3-y)(y+1)D.24yz-2y z + z = 2y(2z - yz)2.已知点A(2- a,a+1) 在第一象限,则a的取值范围是A. a >2 B.-1<a<2C. a <-1D. a<13 . 使分式X -1(X—1)(x-2)有意义的x的值为C.4•下列各题中,运算正确的是A .単)2屮a+b a2+b2 C. 1 1a =b- abD. sq=0X -1 1 -x5.在-、xA.2个B.36.把分式2aa +bA.4倍B.27..把分式方程(A) 1-(C) 1-8、不等式9、若方程3xyJIC.4a +丄中分式的个数有 (mD.5a、b都变成原来的倍C. 不变2倍,D.则分式的值变为原分式值的1 — x =1的两边同时乘以x-2 2-x(1- x) =1 (1-x) = x- 2 1-(x -m ):>2 -m的解集为3 (B) 1 + (D) 1 +B. 2 (x- 2),去分母,得((1- x) =1(1- x) = x-2m的值为(3m(x +1 )+1 =m(3 —X )—5x 的解是负数,则m的取值范围是>-5 4 B. m<-54D. m<m4tx + 2y =1 + m10、若方程组r 2y ' m中,若未知数x、y满足x+y>0,则m的取值范围是() gx + y =3A.m > -4B.m 3—4C.m < -4D.m < —4「x c 211、关于x 的不等式组J x >—1无解,则a 的取值范围是()I X > aa >2 C 、 一1cav2 D 、a < —1 或 a a 2 8 —g —1无解,那么m 的取值范围是(X > m2.若分式方程丄+7 X-3 =口有增根,则增根为3-XA. m >3B. m >3 D. m <3二、填空题:(本大题共 5小题,请将答案填写在第II 卷上指定的位置。
《分式》综合题
《分式》综合测试题一一、选择题:(本大题共有8小题,每小题3分,共24分.每小题只有一个正确选项,请把正确选项的字母代号填在下面的表格中.) 1. 下列各组代数式都不是分式的是( )A .3(1)(2)x x x +-,3x π+B .3x π+,13(x+y )C .753ab x y-,2(3)4xy x +D .-26()2x y x y ++,25()3()a b a b ++2.若分式2362x xx--的值为0,则x 的值为() A.0B.2C.2-D.0或23. 如果把分式2xx y+中的x 和y 都扩大2倍,那么分式的值()A.不变 B.扩大2倍 C.扩大4倍 D.缩小2倍 4.若22237y y ++的值为14,则21461y y +-的值为( ) (A )1 (B )-1 (C )-17(D )155.计算2a b a -+a ba b +-的结果是( ) (A )3a b b a +- (B )3a b a b+- (C )1 (D )-16.已知两个分式:244A x =-,1122B x x =++-,其中2x ≠±,则A 与B 的关系是( )A 、相等B 、互为倒数C 、互为相反数D 、A 大于B 7.已知114a b -=,则2227a ab b a b ab---+的值等于( )(A )6 (B )-6 (C )215 (D ) 27-8. A、B两地相距m 千米,某人从A地到B地,以每小时x 千米的速度步行前往,返回时改乘汽车,每小时比步行多行80千米,结果所用的时间是去时的17,则可列方程为( )A.1807m m x x -=+ B.1807m m x x -=+C.780m m x x =+ D.780m m x x =- 二、填空题:本大题共有9小题,每小题3分,共27分.请把答案填在题中的横线上.9.若代数式(x -2)(x -1)|x |-1 的值为零,则x 的取值应为_____________.10.不改变分式的值,使它的分子、分母的最高次项的系数都是正数,则2311a a a a --=+-__________. 11.如果226()(1)x x A y =+,那么A =_________.12.已知:15a a+=,则4221a a a++=_____________.13.已知01a a b x ≠≠=,,是方程2100ax bx +-=的一个解,则2222a b a b--的值是 .14..对于公式12111f f f =+(f 2≠f ),若已知f ,f 2,则f 1=________.15. 观察下列各等式:1111212=-⨯,1112323=-⨯,1113434=-⨯,…根据你发现的规律,计算:2222122334(1)n n ++++=⨯⨯⨯⨯+… (n 为正整数).16. 有一个分式,三位同学分别说出了它的一些特点,甲:分式的值不可能为0;乙:分式有意义时x 的取值范围是x≠±1;丙:当x=-2时,分式的值为1,•请你写出满足上述全部特点的一个分式___________.17. 如果记y=221x x +=f (x ),并且f (1)表示当x=1时y 的值,即f(1)=22111+=12;f (12)表示当x=12时y 的值,即f (12)=221()12151()2=+,那么f (1)+f (2)+f (12)+f (3)+f (13)+……+f (n )+f (1n)=_______(结果用含n 的代数式表示,n 为正整数).三、解答题:本大题共有3小题,每题12分,共36分.解答时要求写出必要的文字说明、计算过程或推理过程. 18.计算:(1) ⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛----42318521q p q p(2) 2222221m n mn n mn m mn n m n n ⎡⎤-+-⋅⎢⎥-+--⎣⎦19.解分式方程: (1)3215122=-+-xx x (2)1637222-=-++x x x x x20.先化简,再求值:已知12+=x ,求xx x x xx x 112122÷⎪⎭⎫ ⎝⎛+---+的值。
分式方程测试题含答案
分式方程测试题:一、选择题:1.以下是方程211x x x-=-去分母的结果,其中正确的是 . A .2(1)1x x --= B .2221x x --= C .2222x x x x --=- D .2222x x x x -+=-2.在下列方程中,关于x 的分式方程的个数有 . ①0432212=+-x x ②.4=a x ③;4=x a ④.;1392=+-x x ⑤;621=+x ⑥211=-+-a x a x . A.2个 B.3个 C.4个 D.5个 3.分式25m +的值为1时,m 的值是 . A .2 B .-2 C .-3 D .34.不解下列方程,判断下列哪个数是方程21311323x x x x =+++--的解 . A .x=1 B .x=-1 C .x=3 D .x=-35.若关于x 的方程122x m x x +=++有增根,则m 的值为 . A .1 B .-1 C .-2 D .26.若分式x 2-12(x+1)的值等于0,则x 的值为 . A 、1 B 、±1 C 、12D 、-17.赵强同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页才能在借期内读完.他读了前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下列方程中,正确的是 .A 、1421140140=-+x x B 、1421280280=++x x B 、1211010=++x x D 、1421140140=++x x8.关于x 的方程2354ax a x +=-的根为x =2,则a 应取值 . A.1B.3C.-2D.-39.在正数范围内定义一种运算☆,其规则为a ☆b =b a 11+,根据这个规则x ☆23)1(=+x 的解为 .A .32=x B .1=x C .32-=x 或1 D .32=x 或1- 10.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x 人,则所列方程为 .A .32180180=+-x x B .31802180=-+x x C .32180180=--x x D .31802180=--x x 11.李老师在黑板上出示了如下题目:“已知方程012=++kx x ,试添加一个条件,使方程的解是x=-1”后,小颖的回答是:“添加k=0的条件”;小亮的回答是:“添加k=2的条件”,则你认为 .A 、只有小颖的回答正确B 、小亮、小颖的回答都正确C 、只有小亮的回答正确D 、小亮、小颖的回答都不正确12.某工地调来72人挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调配劳动力才使挖掘出来的土能及时运走,且不窝工,解决此问题,可设派x 人挖土,其它人运土,列方程:①723x x -=②723x x -=③372x x +=④372x x=-上述所列方程,正确的有 .A .1个B .2个C .3个D .4个二、填空题:13.若分式11--x x 的值为0,则x 的值等于14.若分式方程xm x x -=--2524无解,那么m 的值应为 15.某项工程限期完成,甲单独做提前1天完成,乙单独做延期2天完工,现两人合作1天后,余下的工程由乙队单独做,恰好按期完工,求该工程限期 天.16.阅读材料: 方程1111123x xx x -=-+--的解为1x =, 方程1111134x x x x -=----的解为x=2,方程11111245x x x x -=-----的解为3x =,… 请写出能反映上述方程一般规律的方程,并直 接写出这个方程的解是 .三、解答题:17.解方程)2)(1(311+-=--x x x x 18.先化简代数式1121112-÷⎪⎭⎫⎝⎛+-+-+x x x x x x ,然后选取一个使你喜欢的x 的值代入求值.19.若方程122-=-+x a x 的解是正数,求a 的取值范围。
分式与分式方程单元测试题(带答案)
分式与分式方程单元测试题 (满分 150分 时间 120分钟)一、选择题(每小题3分,满分30分) 1.若分式x-32有意义,则x 的取值范围是………………………………………( )A .x ≠3B .x =3C .x <3D .x >32.当a 为任何实数时,下列分式中一定有意义的一个是………………………( )A .21aa +B .11+aC .112++a aD .112++a a 3.下列各分式中,最简分式是……………………………………………………( )A .()()y x y x +-8534B .y x x y +-22 C .2222xy y x y x ++ D .()222y x y x +- 4.若把分式2x y x y+-中的x 和y 都扩大3倍,那么分式的值……………………( )A .扩大3倍B .不变C .缩小3倍D .缩小6倍 5.分式方程313-=+-x mx x 有增根,则m 为……………………………………( )A .0B .1C .3D .66.若xy y x =+,则yx11+的值为…………………………………………………( )A .0B .1C .-1D .27.某农场开挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么求x 时所列方程正确的是………( ) A .448020480=--xx B .204480480=+-x xC .420480480=+-x xD .204804480=--xx8.下列各式:π8,11,5,21,7,322x x y x b a a -++中,分式有……………()A .1个B .2个C .3个D .4个9.下列各式的约分运算中,正确的是…………………………………………( )A .326x xx = B .b ac b c a =++ C .0=++b a b a D .1=++b a b a10.把分式2222-+-+-x x x x 化简的正确结果为……………………………………( )A .482--x xB .482+-x xC .482-x xD .48222-+x x二、填空题(每小题3分,满分24分) 1.当x = 3± 时,分式35-x 没有意义. 2.已知432z y x ==,则=+--+z y x z y x 232 43. 3.xyzx y xy 61,4,13-的最简公分母是 yz x 312 .4.分式392--x x 当x 3-= 时分式的值为零.5.若关于x 的分式方程3232-=--x m x x 有增根,则m 为 3± .6.已知2+x a 与2-x b 的和等于442-x x,则a = 2 ,b = 2 .7.要使15-x 与24-x 的值相等,则x = 6 .8.化简=-+-a b bb a a 1 . 三、解答题:(每题8分,共48分)1.22221106532xy x y y x ÷⋅ 2.mn nn m m m n n m -+-+--23.(22+--x x x x )24-÷x x 4.2232342⎪⎪⎭⎫ ⎝⎛÷⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-a b a b a b5.231341651222+-++--+-x x x x x x6.xx x x x x +-÷-+-2221112四、解方程:(每题8分,共32分)1.141-22-=x x2.13132=-+--xx x3.5221332-=-x xx4.71618151+++=+++x x x x五、应用题(每题8分,共16分)1.八年级(11)班的学生周末乘汽车到游览区游览,游览区距学校120km,一部分学生乘慢车先行,出发1h后,另一部分学生乘快车前往,结果他们同时到达游览区.已知快车的速度是慢车速度的1.5倍,求慢车的速度.2.某商店销售一种衬衫,4月份的营业额为5000元,为了扩大销售,在5月份将每件衬衫按原价的8折销售,销量比4月份增加了40件,营业额比4月份增加了600元,求4月份每件衬衫的售价.分式与分式方程单元测试题参考答案一、选择题(每小题3分,满分30分) 1-5 ADCBC 6-10 BCBDA二、填空题(每小题3分,满分24分)1.3±; 2.43; 3.yz x 312; 4.3-=; 5.3±. 6.2,2 . 7.6 8.1三、解答题:(每题8分,共48分)1..67102165323222yx y x x y y x =⋅⋅=解:原式2..22m n m m n n m n m m n n m n m m n n m -=-+--=-+----=解:原式 3..2142)2)(2(442)2)(2()2()2(+=-⋅-+=-⋅-+--+=x x x x x x x x x x x x x x 解:原式 4..4164642233ab b a a b a b =⋅⋅-=解:原式.)3)(1(1)3)(2)(1(2)3)(2)(1()3()2()1()2)(1(1)3)(1(1)3)(2(1--=----=----+---=--+-----=x x x x x x x x x x x x x x x x x x 解:原式5.6..1)1()1)(1()1(2x x x x x x x =-+⋅-+-=解:原式 四、解方程:(每题8分,共32分)1.解:方程两边同时乘以最简公分母12-x 得4)1(2=+x①解①得1=x经检验:1=x 为原分式方程的增根. 2.解:方程两边同乘以3-x 得312-=--x x①解①得2=x经检验:2=x 为原分式方程的解.3.解:原方程可化为整式方程)13(2)52(32-=-x x x解之得215=x 经检验:215=x 为原分式方程的解. 4.解:原方程可化为51617181+-+=+-+x x x x 整理后得)5)(6()6(5)7)(8()8(7+++-+=+++-+x x x x x x x x 即)5)(6(1)7)(8(1++-=++-x x x x 即)5)(6()7)(8(++=++x x x x即 3011561522++=++x x x x解之得213-=x经检验:213-=x 为原分式方程的解.五、应用题(每题8分,共16分)1.解:设慢车的速度为x km/h ,则快车的速度为x 5.1km/h.依题意可得分式方程 x x 5.11201120=-解之得40=x 经检验:40=x 为所列分式方程的解. 答:慢车的速度为40km/h 。
分式测试题及答案
分式测试题及答案一、选择题1. 请选出下列分数中,最简分数是:A. 3/5B. 4/9C. 5/8D. 6/10答案:A. 3/52. 下列分数中,与1/3相等的是:A. 2/6B. 4/10C. 3/9D. 5/15答案:C. 3/93. 将5/6化为百分数是:A. 83.33%B. 50%C. 66.67%答案:A. 83.33%4. 请将两个分数相加:2/3 + 1/4,得到的结果是:A. 2/7B. 5/12C. 11/12D. 7/12答案:B. 5/125. 将小数0.625化为分数是:A. 5/8B. 3/5C. 2/3D. 1/4答案:A. 5/8二、填空题1. 将2/5写成百分数是______%。
答案:40%2. 将0.75写成分数是______。
3. 将1/2和1/3相加,得到的结果是______。
答案:5/64. 将3/4化为小数,得到的结果是______。
答案:0.755. 将0.3化为分数,得到的结果是______。
答案:3/10三、解答题1. 简化分数4/6至最简形式,并写出化简的步骤。
答案:4/6 = (2×2)/(2×3) = 2/32. 将7/8和5/6相加,并将结果化为最简分数形式。
答案:7/8 + 5/6 = (7×3)/(8×3) + (5×4)/(6×4) = 21/24 + 20/24 = 41/24 = 1 17/243. 将一个分数3/5转化为百分数,并写出转化的步骤。
答案:3/5 = 3/5 × 100% = (3×20)% = 60%4. 将0.625化为最简分数,并写出化简的步骤。
答案:0.625 = 625/1000 = 5/85. 将小数0.4和分数1/2相加,并将结果转化为百分数形式。
答案:0.4 + 1/2 = 2/5 + 1/2 = (2×2)/(5×2) + 5/10 = 4/10 + 5/10 = 9/10 = 90%总结:通过此次分式测试题的练习,我们可以更深入地理解分数的概念和运算法则。
分式全章测试题含答案
第十六章 分 式测试1 分 式课堂学习检测一、选择题1.在代数式32,252,43,32,1,32222-++x x x x xy x x 中,分式共有( ). (A)2个 (B)3个(C)4个(D)5个2.下列变形从左到右一定正确的是( ).(A)22--=b a b a(B)bc ac b a =(C)ba bx ax =(D)22ba b a =3.把分式yx x+2中的x 、y 都扩大3倍,则分式的值( ). (A)扩大3倍(B)扩大6倍 (C)缩小为原来的31(D)不变4.下列各式中,正确的是( ). (A)y x yx y x y x +-=--+-(B)y x yx y x y x ---=--+-(C)yx yx y x y x -+=--+-(D)yx yx y x y x ++-=--+-5.若分式222---x x x 的值为零,则x 的值为( ).(A)-1 (B)1(C)2(D)2或-1二、填空题6.当x ______时,分式121-+x x 有意义. 7.当x ______时,分式122+-x 的值为正.8.若分式1||2--x xx 的值为0,则x 的值为______.9.分式22112mm m -+-约分的结果是______. 10.若x 2-12y 2=xy ,且xy >0,则分式yx yx -+23的值为______.11.填上适当的代数式,使等式成立:(1)ba b a b ab a +=--+)(22222;(2)xxx x 2122)(2--=-;(3)a b b a b a-=-+)(11; (4))(22xy xy =.综合、运用、诊断三、解答题12.把下列各组分式通分:(1);65,31,22abca b a - (2)222,b a aab a b --.13.把分子、分母的各项系数化为整数:(1);04.03.05.02.0+-x x(2)b a ba -+32232.14.不改变分式的值,使分式的分子与分式本身不含负号:(1)yx yx ---22;(2)ba b a +-+-2)(.15.有这样一道题,计算))(1()12)((2222x x x x x x x --+-+,其中x =2080.某同学把x =2080错抄成x =2008,但他的计算结果是正确的.你能解释其中的原因吗?拓展、探究、思考16.已知311=-y x ,求分式yxy x y xy x ---+2232的值.17.当x 为何整数时,分式2)1(4-x 的值为正整数.18.已知3x -4y -z =0,2x +y -8z =0,求yz xy z y x +-+222的值.测试2 分式的运算课堂学习检测一、选择题1.下列各式计算结果是分式的是( ).(A)b a m n ÷(B)n m m n 23.(C)xx 53÷(D)3223473y x y x ÷2.下列计算中正确的是( ).(A)(-1)0=-1 (B)(-1)-1=1 (C)33212aa=-(D)4731)()(aa a =-÷- 3.下列各式计算正确的是( ). (A)m ÷n ·m =m(B)m nn m =⋅÷1(C)11=⋅÷m m m(D)n ÷m ·m =n4.计算54)()(ab a a b a -⋅-的结果是( ). (A)-1(B)1(C)a1(D)ba a--5.下列分式中,最简分式是( ).(A)21521y xy(B)y x y x +-22(C)yx y xy x -+-.222(D)y x y x -+226.下列运算中,计算正确的是( ). (A))(212121b a b a +=+ (B)acbc b a b 2=+ (C)aa c a c 11=+-(D)011=-+-ab b α 7.ab a b a -++2的结果是( ).(A)a2-(B)a4(C)ba b --2(D)ab- 8.化简22)11(yx xy y x-⋅-的结果是( ). (A)y x +1(B)yx +-1(C)x -y (D)y -x二、填空题9.2232)()(yx y x -÷=______.10.232])[(x y -=______.11.a 、b 为实数,且ab =1,设1111,11+++=+++=b a Q b b a a P ,则P ______Q (填“>”、“<”或“=”). 12.aa a -+-21422=______. 13.若x <0,则|3|1||31---x x =______.14.若ab =2,a +b =3,则ba 11+=______. 综合、运用、诊断三、解答题15.计算:)()()(432b a ba ba -÷-⋅-.16.计算:⋅-+-++222244242x y yx y x y y x17.计算:⋅-÷+--+11)1211(22x x x x18.已知2222222y x y x N yx xy M -+=-=、,用“+”或“-”连结M 、N ,有三种不同的形式:M +N 、M -N 、N -M ,请你任选其中一种进行计算,并化简求值,其中x ∶y =5∶2.19.先化简,再求值:1112+---x xx x ,其中x =2. 20.已知x 2-2=0,求代数式11)1(222++--x x x x 的值.拓展、探究、思考21.等式⋅-++=-++236982x Bx A x x x 对于任何使分母不为0的x 均成立,求A 、B 的值.22.A 玉米试验田是边长为a m 的正方形减去边长为1m 的蓄水池后余下部分,B 玉米试验田是边长为(a -1)m 的正方形,两块试验田的玉米都收获了500kg . (1)哪种玉米田的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?测试3 分式方程课堂学习检测一、选择题 1.方程132+=x x 的解为( ).(A)2 (B)1 (C)-2 (D)-12.解分式方程12112-=-x x ,可得结果( ). (A)x =1 (B)x =-1(C)x =3(D)无解3.要使54--x x 的值和xx--424的值互为倒数,则x 的值为( ). (A)0 (B)-1 (C)21(D)14.已知4321--=+-y y x x ,若用含x 的代数式表示y ,则以下结果正确的是( ). (A)310+=x y (B)y =x +2(C)310xy -=(D)y =-7x -25.若关于x 的方程xkx --=-1113有增根,则k 的值为( ). (A)3(B)1(C)0(D)-16.若关于x 的方程323-=--x mx x 有正数解,则( ). (A)m >0且m ≠3 (B)m <6且m ≠3(C)m <0 (D)m >67.完成某项工作,甲独做需a 小时,乙独做需b 小时,则两人合作完成这项工作的80%,所需要的时间是( ). (A))(54b a +小时 (B))11(54ba +小时 (C))(54b a ab+小时(D)ba ab+小时 8.a 个人b 天可做c 个零件(设每人速度一样),则b 个人用同样速度做a 个零件所需天数是( ).(A)c a 2(B)2ac(C)a c 2(D)2c a 二、填空题9.x =______时,两分式44-x 与13-x 的值相等. 10.关于x 的方程324+=-b xa 的解为______. 11.当a =______时,关于x 的方程4532=-+x a ax 的根是1. 12.若方程114112=---+x x x 有增根,则增根是______. 13.关于x 的方程11=+x a的解是负数,则a 的取值范围为____________. 14.一艘轮船在静水中的最大航速为20千米/时,它在江水中航行时,江水的流速为v 千米/时,则它以最大航速顺流航行s 千米所需的时间是______.综合、运用、诊断三、解方程15..32121=-+--xx x16.⋅+=+--1211422x xx x x 17.⋅-+=+-xx x x x 25316四、列方程解应用题18.甲工人工作效率是乙工人工作效率的212倍,他们同时加工1500个零件,甲比乙提前18个小时完工,问他们每人每小时各加工多少个零件?19.甲、乙两地相距50km ,A 骑自行车,B 乘汽车,同时从甲城出发去乙城.已知汽车的速度是自行车速度的2.5倍,B 中途休息了0.5小时还比A 早到2小时,求自行车和汽车的速度.拓展、探究、思考20.面对全球金融危机的挑战,我国政府毅然启动内需,改善民生.国务院决定从2009年2月1日起,在全国范围内实施“家电下乡”,农民购买入选产品,政府按原价购买总..额的..13..%.给予补贴返还.某村委会组织部分农民到商场购买入选的同一型号的冰箱、电视机两种家电,已知购买冰箱的数量是电视机的2倍,且按原价购买冰箱总额为40000元、电视机总额为15000元.根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元,求冰箱、电视机各购买多少台?(2)列出方程(组)并解答.参考答案第十六章 分式测试1 分 式1.B . 2.C . 3.D . 4.A . 5.A . 6.21≠. 7.21-<. 8.0. 9.⋅+--11m m 10.1.11.(1)a +2b ; (2)2x 2; (3)b +a ; (4)x 2y 2.12.(1);65,62,632223bca abc a bc bc a c a - (2)⋅-+-++))((,))(()(2b a b a a a b a b a a b a b 13.(1);2152510+-x x (2)⋅-+ba ba 6491214.(1);22x y y x -- (2)⋅-+ba ba 215.化简原式后为1,结果与x 的取值无关. 16.⋅53 17.x =0或2或3或-1. 18.⋅23 测试2 分式的运算1.A . 2.D . 3.D . 4.D . 5.D . 6.D . 7.C . 8.B .9.x 4y . 10.⋅612x y11.=. 12.⋅+21a 13.⋅-922x x 14.⋅2315.⋅6ba 16.⋅+y x x 22提示:分步通分.17.2x .18.选择一:y x y x N M -+=+,当x ∶y =5∶2时,原式37= 选择二:y x x y N M +-=-,当x ∶y =5∶2时,原式⋅-=73选择三:y x yx M N +-=-,当x ∶y =5∶2时,原式73=. 注:只写一种即可. 19.化简得1)1(+--x x ,把x =2代入得31-.20.原式112+-+=x x x∵x 2-2=0,∴x 2=2,∴原式112+-+=x x ,∴原式=121.A =3,B =5.22.(1)A 面积(a 2-1)米2,单位产量15002-a 千克/米;B 玉米田面积(a -1)2米2,单位产量是2)1(500-a 千克/米2,22)1(5001500-<-a a ,B 玉米的单位面积产量高; (2)11-+a a 倍. 测试3 分式方程1.A . 2.D . 3.B . 4.C . 5.A. 6.B . 7.C . 8.A .9.x =-8. 10.⋅--=462b a x 11.⋅-=317a12.x =1. 13.a <1且a ≠0. 14.20+v s小时.15.无解. 16.⋅-=21x 17.无解.18.设乙的工作效率为x 个/时,甲的工作效率为x 25个/时.182515001500+=x x .50=x .经检验,x =50是原方程的根. 答:甲每小时加工125个,乙每小时加工50个.19.设自行车速度为x 千米/时,汽车速度为2.5x 千米/时.xx 502215.250=++.x =12.经检验x =12是原方程的根. 答:自行车的速度为12km/时,汽车的速度为30km/时. 20.(1)2x ,40000×13%,x2%1340000⨯,15000×13%,x %1315000⨯;(2)冰箱、电视机分别购买20台、10台.第十六章 分式全章测试一、填空题1.在代数式222232,3221,12,1,2,3,1,43abx x x b a a y x x b a --+++-中,分式有_________. 2.当x ______时,分式2+x x 没有意义;当x ______时,分式112+x 有意义;当x ______时,分式113-+x x 的值是零.3.不改变分式的值,把分式的分子和分母各项系数都化成整数:b a ba 3.051214.0+-=______.4.计算:--32m m m -3=______.5.若x =-4是方程311+=-x x a 的解,则a =______. 6.若332-+x x 与35+x 的值互为相反数,则满足条件的x 的值是______. 7.当x ______时,等式512)5(2222+-=+-x x x x x x 成立.8.加工一批产品m 件,原计划a 天完成,今需要提前b 天完成,则每天应生产______件产品.9.已知空气的单位体积质量为0.001239g/cm 3,那么100单位体积的空气质量为______g/cm 3.(用科学记数法表示) 10.设a >b >0,a 2+b 2-6ab =0,则ab ba -+的值等于______. 二、选择题11.下列分式为最简分式的是( ).(A)ab 1533(B)a b b a --22(C)xx 32(D)y x y x ++2212.下列分式的约分运算中,正确的是( ).(A)339x xx =(B)bac b c a =++ (C)0=++ba ba (D)1=++ba ba 13.分式11,121,1122-+-+x x x x 的最简公分母是( ). (A)(x 2+1)(x -1) (B)(x 2-1)(x 2+1) (C)(x -1)2(x 2+1)(D)(x -1)214.下列各式中,正确的个数有( ).①2-2=-4; ②(32)3=35; ③2241)2(xx -=--; ④(-1)-1=1. (A)0个 (B)1个(C)2个(D)3个15.使分式x326--的值为负数的条件是( ).(A)32<x (B)x >0 (C)32>x(D)x <016.使分式1||-x x有意义的条件是( ).(A)x ≠1(B)x ≠-1 (C)x ≠1且x ≠-1(D)x ≠017.学完分式运算后,老师出了一道题“化简42232--+++x xx x ”.小明的做法是:原式=424)2)(3(22-----+x x x x x ; 小亮的做法是:原式=(x +3)(x -2)+(2-x )=x 2+x -6+2-x =x 2-4; 小芳的做法是:原式=.12132123)2)(2(223=+-+=+-++=-+---+x x x x x x x x x x 其中正确的是( ). (A)小明 (B)小亮(C)小芳(D)没有正确的 18.如果分式)(3)(b a b a a ++的值是零,那么a ,b 满足的条件是( ). (A)a =-b(B)a ≠-b (C)a =0(D)a =0且a ≠-b 19.若关于x 的分式方程11+=+x m x x 无解,则m 的值为( ). (A)1 (B)0 (C)-1 (D)-220.有一项工程需在规定日期内完成,如果甲队去做,恰能如期完成;如果乙队去做,要超过规定日期3天.现由甲、乙两队合作2天后,余下的工程由乙队单独去做,恰好在规定日期内完成.如果设规定日期为x 天,下列关于x 的方程中错误的是( ). (A)132=++x x x (B)332+=x x (C)1)2(312)311(=-++⨯++x x x x (D)1311=++x x 三、化简下列各题 21.⋅+----112223x x xx x x 22.⋅-÷+--24)22(x x x x x x23.⋅--÷-++--+)64121()622322(222x x x x x x x x四、解方程24.⋅++=+-312132x x x 25.⋅--+=--2163524245m m m m .五、列方程解应用题26.A ,B 两地相距80千米,一辆大汽车从A 地开出2小时后,又从A 地开出另一辆小汽车,已知小汽车的速度是大汽车速度的3倍,结果小汽车比大汽车早40分钟到达B 地,求两辆汽车每小时各走多少千米.参考答案第十六章 分式全章测试1.⋅-++2232,12,1,1ab x x b a x 2.=-2,取任意实数,⋅-=31. 3.⋅+-b a b a 3254 4.⋅-39m 5.5. 6.-4. 7.≠0. 8.⋅-ba m 9.1.239×10-1. 10..2- 11.D . 12.D . 13.C .14.A . 15.A . 16.C . 17.C . 18.D . 19.C . 20.D . 21.2x -1. 22.⋅+21x 23.⋅+-x x 1 24.⋅-=31x 25.m =2是增根,无解.26.小汽车每小时60千米,大汽车每小时20千米.。
分式测试题
分式测试题一、精心选一选(本大题10小题,每小题目2分,共20分)1.下列各选项中,所求的最简公分母错误的是()A. 与的最简公分母是6x2B. 与最简公分母是3a2b3cC. 与的最简公分母是abD.与的最简公分母是m2-n22.分式中的x、y同时扩大2倍,则分式值()A. 不变B. 是原来的2倍C. 是原来的4倍D. 是原来的3.如果=0,则x等于() A. ±2 B. -2 C. 2 D. 34.化简(-)2·()4的结果为() A. B. - C. D.5.化简:(-)·结果是() A. 2x B. 2x+4 C. 4 D. -46.下列各式计算正确的是()A. 30=0B. 3-1=C. (2x)-2=D. (x-2)0=17.用科学记数法表示-0.0000064为()A. -64×10-7B. -0.64×10-4C. -6.4×10-6D. -640×10-88.轮船顺流航行80km后返回,共用6h20min,已知水流速度是3km/h,如果设静水中轮船的速度为xkm/h,则所列方程正确的是()A. 80(x+3)+80(x-3)=60B.-=6C. +=6D. +=69.若a2m=25,则a-m=() A. B. -5 C.或- D.10.若a=-0.32,b=-2-2,c=(-)-2,d=(π-3.14)0,则a、b、c、d的大小顺序是()A. a<b<c<dB. a<d<c<bC. c<a<d<bD. b<a<d<c二、细心填一填(本大题共8小题,每小题3分,满分24分)11.下列各代数式:,,,(a+b),,,,-3,中,整式有,分式有 .12.若分式有意义,则x的取值范围是 . 13.计算:(xy-x2)÷= .14.当x=6时,代数式(1+)÷的值是 .15.老河口市大力加强城镇绿化建设,自2008年以来,绿化面积逐年增长。
《分式》能力测试题
二 、 择 题 ( 题 3分 , 3 选 每 共 O分 )
1 . 知 m, 为 相 反 数 , , 为 倒 数 , l , 已 1 n互 。 b互 l =2 则 ± + 一n 6的 值 为 (
B. > 1 m C. ≤ 1 m
) .
D. < l m
1 . 列分 式是最 简单 分式 的是 ( 6下
A.
‘
) .
c 旦
.
、 B.
_
V 一
D
.
0+ D
一 V
1. 下列 分式 与 7
+ y
相等 的是 (
) .
B.
+ v +
2X + v
V c 一 0
1. 4 下列 式子 正确 的有 (
;3 ()
0 一 D
=一 ;4 二 上 =生 1()
一 一 V
.
+ f y
A 1 . 个
B 2个 .
一十 戈 十 ,
C 3个 .
D. 4个
1 . 分式 — 一 5若
A. ≥ l m
不论 m 取何 实数 总有意 义 , m的取 值 范 围是 ( 则
7 若 分 式 方 — . =1 一丁 一 无 解 , m = 一 则
一
8 要使方 程 .
9。 ( “ —
1
=
有 正数解 , 。的取 值范 围是 则
1
.
— —
2 。 +。
+…+
1
0 ) 一 ——’ 9
.
1 . 队伍 长 6千米 , 0 以每 ̄ m 下米 的速度行 进 , 信 员骑 马从 队头 到 队尾送 信 , 队尾 后 返 Jj , 5 通 到
分式及分式方程测试题
分式及分式方程 单元检测一、填空:1、当x 时,分式31-+x x 有意义;当x 时,分式32-x x 无意义。
2、分式392--x x :当x ______时分式的值为零。
3、xyzx y xy 61,4,13-的最简公分母是 _________ 。
4、=∙c b a a bc 222 ;=÷23342yx y x ; 5、=-b a a b 32 ;=--+yx y x 12 。
6、已知432z y x ==,则=+--+z y x z y x 232 。
7、一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲乙合作 小时完成。
8、若分式方程21=++ax x 的一个解是1=x ,则=a 。
9、当1984=x ,1916=y 时,计算=+-∙+--2222442yx x y y xy x y x 。
10、不改变分式的值,把下列各式的分子、分母中的各项系数都化为整数:①23 x-32 y 56 x+y = ; ② 0.3a-2b -a+0.7b = 。
11、已知x=1是方程111x k x x x x +=--+的一个增根,则k=_______。
12、若分式231-+x x 的值为负数,则x 的取值范围是_ _。
13、约分:①=b a ab 2205_______,②=+--96922x x x ______。
14、一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这项工程需要______________小时。
15、若关于x 的分式方程3232-=--x m x x 无解,则m 的值为___。
16、①())0(,10 53≠=a axy xy a ;②()1422=-+a a 。
17、如果b a =2,则2222b a b ab a ++-=____________。
18、已知a+b=5, ab=3,则=+ba 11_______。
19、某工厂库存原材料x 吨,原计划每天用a 吨,若现在每天少用b 吨,则可以多用 天。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时训练(四) 分式(限时:20分钟)
|夯实基础|
1.[2018·门头沟期末]如果代数式有意义,则实数x的取值范围是()
A.x≥-3
B.x≠0
C.x≥-3且x≠0
D.x≥3
2.[2018·门头沟期末]如果将分式中的字母x与y的值分别扩大为原来的10倍,那么这个分式的值()
A.扩大为原来的10倍
B.扩大为原来的20倍
C.缩小为原来的
D.不改变
3.[2018·石景山期末]当分式
-
的值为正整数时,整数x的取值可能有()
A.4个
B.3个
C.2个
D.1个
4.[2018·台州]计算-,结果正确的是()
A.1
B.x
C.
D.
5.[2018·丰台期末]一项工作,甲单独完成需要a天,乙单独完成需要b天,如果甲、乙二人合作,那么每天的工作效率是
()
A.a+b
B.+
C.
D.
6.[2018·丰台二模]已知-=1,则代数式--
-
的值为()
A.3
B.1
C.-1
D.-3
7.[2018·房山一模]如果a-3b=0,那么代数式a--÷-的值是()
A.B.-C.D.1
8.[2018·海淀期末]已知分式满足条件“只含有字母x,且当x=1时无意义”,请写出一个这样的分式:.
9.[2018·乐山]化简
-+
-
的结果是.
10.[2018·包头]化简:-÷-1=.
11.[2018·南京]计算m+2-
-÷-
-
.
|拓展提升|
12.[2018·平谷期末]已知:a2+3a-2=0,求代数式-
-÷a+2-
-
的值.
参考答案
1.C
2.D
3.C
4.A
5.B
6.D
7.A
8.
-
(答案不唯一)
9.-1[解析] 本题考查了分式的加减法,掌握分式加减法的法则是解题的关键.
原式=-
-+
-
=-
-
=-1,故答案为-1.
10.-[解析] -÷-1=-·
-
=-.
11.解:m+2-
-÷-
-
=--
-·-
-
=-
-·-
-
=-
-·-
-
=2m+6.
12.解:原式=-
-÷-
-
-
-
=-
-÷--
-
=-
-·-
-
=.
∵a2+3a-2=0, ∴a2+3a=2,
∴原式==.。