极点分布与系统稳定性研究

合集下载

极点及系统稳定性

极点及系统稳定性

极点对系统性能影响一.控制系统与极点自动控制系统根据控制作用可分为:连续控制系统和采样控制系统,采样系统又叫离散控制系统。

通常把系统中的离散信号是脉冲序列形成的离散系统,称为采样控制系统。

连续控制系统即指控制量为连续的模拟量如时变系统。

系统的数学模型一般由系统传递函数表达。

传递函数为零初始条件下线性系统响应(即输出)量的拉普拉斯变换(或z 变换)与激励(即输入)量的拉普拉斯变换之比。

记作Φ(s )=Xo (s )/Xi (s ),其中Xo (s )、Xi (s )分别为输出量和输入量的拉普拉斯变换。

特征方程的根称为极点。

如试Φ﹙S ﹚= C [∏(S-Pi )/∏(S-Qi) ]中Q1 Q2 Q3 …… Qi ……即为系统的极点。

二.极点对系统的影响极点--确定了系统的运动模态;决定了系统的稳定性。

下面对连续系统与离散系统分别进行分析:⑴连续系统理论分析:连续系统的零极点分布有如下几种形式设系统函数为:将H(S)进行部分分式展开:1n a s -+++系统冲激响应H(S)的时域特性h(t)随时间衰减的信号分量完全由系统函数H(S)的极点位置决定。

每一个极点将决定h(t)的一项时间函数。

稳定性:由上述得知Y(S)= C [∏(S-Pi )/(S-Qi) ]可分解为Y(S)=C1/(S-τ1)+ C2/(S-τ2)+ C3/(S-τ3)+……+ Ci/(S-τi)+…… 则时间响应为……由于特征方程的根不止一个,这时,应把系统的运动看成是多个运动分量的合成。

只要有一个运动分量是发散的,则系统是不稳定的。

因此,特征方程所有根的实部都必须是负数,亦即所有的根都在复平面的左半平面。

通过复变函数幅角定理将S 由G 平面映射到GH 平面。

如果封闭曲线 F 内有Z 个F(s)的零点,有P 个F(s)的极点,则s 沿 F 顺时针转一圈时,在F(s)平面上,F(s)曲线绕原点顺时针转的圈数R 为z 和p 之差,即R =z -p 。

判断系统稳定性

判断系统稳定性

摘要现今数字信号处理理论与应用已成为一门很重要的高新科学技术学科,通过功能强大的MATLAB软件与数字信号处理理论知识相互融合在一起,既使我们对数字信号处理的理论知识能够有更加深厚的解也提高了动手能力,实践并初步掌握了MATLAB 的使用。

根据本次课题要求,通过使用MATLAB,方便了对系统函数的繁琐的计算,并且直观形象的用计算机进行模拟仿真,通过观察图,由图像的特征从而进一步的对系统进行形象的分析。

本课题中给出了系统函数,对其稳定性进行分析我们可以通过MATLAB画零极图观察极点的分布,另外还可以通过MATLAB分析系统的单位阶跃响应、单位脉冲响应、幅频相频特性的图形更加具体的对系统进行分析。

关键字:离散系统函数、MATLAB、零极点分布、系统稳定性。

一、设计原理1.设计要求(1):根据系统函数求出系统的零极点分布图并且判断系统的稳定性。

(2):求解系统的单位阶跃响应,并判断系统的稳定性。

(3):求系统的单位脉冲响应,并判断系统的稳定性(4):求出各系统频率响应,画出幅频特性和相频特性图(zp2tf,zplane,impz等)2、系统稳定性、特性分析进行系统分析时我主要利用MATLAB软件绘制出系统零极点的分布图、单位脉冲响应图、单位阶跃响应图等。

采用MATLAB 软件进行设计时我调用了软件本身的一些函数来对课题进行绘图和分析。

诸如zplane、impz、stepz、freqz等。

对系统函数的零极图而言:极点在单位圆内,则该系统稳定,极点在单位圆外,则该系统为非稳定系统。

当极点处于单位圆内,系统的冲激响应曲线随着频率的增大而收敛;当极点处于单位圆上,系统的冲激响应曲线为等幅振荡;当极点处于单位圆外,系统的冲激响应曲线随着频率的增大而发散。

系统的单位阶跃响应若为有界的则系统为稳定系统。

由以上的判据配合图形对系统的稳定性进行分析,达到我们的课程要求。

系统函数H(z)的零极点分布完全决定了系统的特性,若某系统函数的零极点已知,则系统函数便可确定下来。

信号与系统讲义第四章5系统频率特性及稳定性汇总

信号与系统讲义第四章5系统频率特性及稳定性汇总
非最小相移函数=最小相移函数×全通函数
(系统的串联)
2020/3/10
信号与系统
2020/3/10
信号与系统
4.11 线性系统的稳定性
1、稳定系统
有限(界)激励,产生有限(界)输出,稳定系统 有限(界)激励,产生无限(界)输出,为不稳定系统

r(t) h(t)*e(t) h( )e(t )d
4.8由系统函数零、极点分布分析频响特性
一、系统的频响特性
1、频响特性
在正弦信号激励下稳态响应随频率的变化
H( j) H( j) e j()
幅频特性 相频特性
2020/3/10
信号与系统
分析正弦信号e(t) Em sin 0t u(t)激励下系统的响应?
H (s)为稳定系统,极点在左半开平面,自由响应为暂态响应
➢ 系统的极零点图 ➢ 确定系统的时域响应特性、系统稳定性分析 ➢ 绘制系统的幅频响应和相频响应特性曲线,通频特性分析
2020/3/10
信号与系统
作业
4-39(a)(e) 4-42 (b) 4-45
自读4.9节内容 预习 4.12 4.13章节内容
2020/3/10
信号与系统
H ( j)
K

0
系统的零、极点分布→系统的频率响应特性 零、极点分布特点??
2020/3/10
信号与系统
全通系统的零、极点分布
•极点在S左半平面,零点在右半平面 •极点数=零点数,且与虚轴成镜像对称
2020/3/10
信号与系统
幅频特性: 相频特性:
2020/3/10
信号与系统
二、最小相移系统
e(t) Me

实验二:系统稳定性和稳态性能分析

实验二:系统稳定性和稳态性能分析

实验二:系统稳定性和稳态性能分析主要内容:自动控制系统稳定性和稳态性能分析上机实验目的与要求:熟悉 MATLAB 软件对系统稳定性分析的基本命令语句 熟悉 MATLAB 软件对系统误差分析的 Simuink 仿真 通过编程或 Simuink 仿真完成系统稳定性和稳态性能分析一 实验目的1、研究高阶系统的稳定性,验证稳定判据的正确性;2、了解系统增益变化对系统稳定性的影响;3、观察系统结构和稳态误差之间的关系。

二 实验任务1、稳定性分析欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB 中的tf2zp 函数求出系统的零极点,或者利用root 函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。

(1)已知单位负反馈控制系统的开环传递函数为0.2( 2.5)()(0.5)(0.7)(3)s G s s s s s +=+++,用 MA TLAB 编写程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。

(2)已知单位负反馈控制系统的开环传递函数为( 2.5)()(0.5)(0.7)(3)k s G s s s s s +=+++,当取k =1,10,100用MA TLAB 编写程序来判断闭环系统的稳定性。

只要将(1)代码中的k 值变为1,10,100,即可得到系统的闭环极点,从而判断系统的稳定性,并讨论系统增益k 变化对系统稳定性的影响。

2、稳态误差分析(1)已知如图所示的控制系统。

其中2(5)()(10)s G s s s +=+,试计算当输入为单位阶跃信号、单位斜坡信号和单位加速度信号时的稳态误差。

从 Simulink 图形库浏览器中拖曳Sum (求和模块)、Pole-Zero (零极点)模块、Scope (示波器)模块到仿真操作画面,连接成仿真框图如右上图所示:(2)若将系统变为I 型系统,5()(10)G s s s =+,在阶跃输入、斜坡输入和加速度信号输入作用下,通过仿真来分析系统的稳态误差。

系统函数零极点时域特性和稳定性

系统函数零极点时域特性和稳定性

若 pi为k阶极点,则 pi Ki1tk1 Ki2tk2
Ki(k1)t Kik e pit
②典型情况
ⅰ) pi =0(一阶)
j
h(t)
0
0t
1 h(t) u(t) s
pi =0 (二阶)
j
h(t)
0
0t
1 s2
h(t)
tu(t)
ⅱ) pi<0(实一阶)
j
a
0
h(t)
0t
1 eatu(t) sa
自由响应 齐次解
零输入响应 齐次解的一部分
强迫响应 特解
零状态响应 齐次解的一部分+特解
2.Ki , Kk 均由 pi , pk共同作用,即 自由响应:形式只由H(s)决定,幅度相位由H(s), E(s)共同决定 强迫响应:形式只由E(s)决定,幅度相位由H(s), E(s)共同决定
3.固有频率(自由频率):系统行列式(系统特征方程)的根, 反映全部自由响应的形式
④∞处: 分母次数 > 分子次数则为零点,阶次为分母次数减分子次数 分母次数 < 分子次数则为极点,阶次为分子次数减分母次数
注意:零、极点个数相同
⑤零极点图中:×表示极点;○表示零点
[例1]: ①
H
(s)
s[(s 1)2 (s 1)2 (s2
1] 4)
解:
极点:s = -1 (二阶) s = j2 (一阶) s = -j2(一阶)
pi<0(实二阶)
j
a
0
h(t)
0t
(s
1 a)2
teatu(t)
起始增加,最终收敛
ⅲ) pi>0(实一阶)
j
h(t)

Matlab中的稳定性分析与控制设计方法

Matlab中的稳定性分析与控制设计方法

Matlab中的稳定性分析与控制设计方法简介:Matlab是一种功能强大的数值计算和科学编程平台,被广泛应用于控制系统设计和分析领域。

本文将介绍Matlab中的稳定性分析和控制设计方法,探讨如何利用Matlab进行系统稳定性分析、控制器设计和性能优化。

一、系统稳定性分析1. 稳定性概念稳定性是控制系统设计中一个重要的指标,指系统在一定输入下是否趋向于稳定的状态。

在Matlab中,我们可以使用稳定性分析工具箱来分析系统的稳定性。

该工具箱提供了多种稳定性判据和计算方法,如时间响应法、频率响应法和根轨迹法等。

2. 时间响应法时间响应法是一种使用系统的输入信号与输出响应之间的时域关系来分析系统稳定性的方法。

在Matlab中,我们可以使用step()函数来绘制系统的阶跃响应图,并通过观察图形来判断系统是否稳定。

此外,还可以使用impulse()函数来绘制系统的冲击响应图,以进一步验证系统的稳定性。

3. 频率响应法频率响应法是一种使用系统的输入信号与输出响应之间的频域关系来分析系统稳定性的方法。

在Matlab中,我们可以使用bode()函数来绘制系统的频率响应图,该图显示了系统在不同频率下的增益和相位特性。

通过分析频率响应图,我们可以判断系统是否存在频率特性上的不稳定性。

4. 根轨迹法根轨迹法是一种使用系统的传递函数的零点和极点分布来分析系统稳定性的方法。

在Matlab中,我们可以使用rlocus()函数来绘制系统的根轨迹图,该图显示了系统的极点随控制参数变化时的轨迹。

通过分析根轨迹图,我们可以确定系统的稳定边界和稳定性。

二、控制器设计方法1. PID控制器PID控制器是一种常用的控制器设计方法,可以实现对系统的稳定性和性能进行调节。

在Matlab中,我们可以使用pidtool()函数来设计PID控制器。

该工具提供了可视化界面,可以通过调整参数来优化控制器的性能。

同时,Matlab还提供了pid()函数和tf()函数等用于创建PID控制器和传递函数模型的函数。

系统函数零极点时域特性和稳定性

系统函数零极点时域特性和稳定性

1 h(t) 0 设:e(t) sgn[h(t)] 0 h(t) 0
1 h(t) 0
则 e(t) 1有界,e(t)h(t) h(t)
r(t) e(t) h(t) h( )e(t )d
r(0) h( )e( )d h( ) d
若 h(t) dt无界,则r(0)也无界 对某种有界e(t )
6.
因果稳定系统充要条件:
h(t) h(t)u(t)
0
h(t)
dt
M
7.BIBO稳定性把H(s)稳定性中的临界稳定性判为不稳定
h(t)=A或等幅振荡代表不满足绝对可积条件
[例3]:
H (s)
sin(0t )u (t )
s
s2 2
R(s)
s2
s
02
0 s2 02
r (t )
1 2
t
sin(0t )u (t )
n i 1
ki s pi
h(t)
n
hi (t)
i 1
n
ki e Pi t
i 1
故: pi e pit
若 pi为k阶极点,则 pi Ki1tk1 Ki2tk2
Ki(k1)t Kik e pit
②典型情况
ⅰ) pi =0(一阶)
j
h(t)
0
0t
1 h(t) u(t) s
pi =0 (二阶)
r (t )
[例4]:K 取何值时系统稳定、临界稳定?
+
V1 ( s) -
G(s)
1
(s 2)(s 1)
V2 (s)
K
解:V2 (s) [V1(s) KV2 (s)]G(s) 1
V2 (s) G(s) (s 1)( s 2)

浅谈线性系统稳定性的判断

浅谈线性系统稳定性的判断

IT 大视野Digital Space P .45浅谈线性系统稳定性的判断张涛 贵阳学院电子与通信工程学院摘要:系统的稳定性是我们设计系统时必学考虑的一项重要技术指标,在绝大多数情况下,我们都希望我们设计的系统是稳定的,线性系统又是最简单也是最重要的系统,我们学习系统分析和设计都是从线性系统开始的,所以学会和掌握判断线性系统的稳定性尤为重要,本文探讨如何判断一个系统是否为稳定,并结合MATLAB 软件仿真来使读者对稳定性判断依据有一个直观认识。

关键词:线性系统 稳定性 判断系统稳定性是我们分析和设计系统时必须考虑的问题,可以说我们设计的所有的系统都离不开稳定性这一技术。

那么怎么判断一个系统是否稳定呢,下面我们来看看稳定性的判断依据,通过举例探讨如何利用这些依据来判断系统是否稳定。

1系统稳定性的判断依据连续时间系统稳定性的充要条件是①离散时间系统稳定性的充要条件是②其中:,分别代表连续时间系统和离散时间系统的冲激响应。

上面两个判断公式要做积分或求和,比较麻烦。

对于线性时不变因果系统还可根据系统函数的极点分布情况进行判断,这样避免了复杂的计算。

对于连续时间系统的系统函数 的极点都在s 平面的左半平面,则系统稳定。

离散时间系统 的全部极点在单位圆内时,系统稳定。

2 举例说明如何判断一个系统是稳定系统下面结合一些具体例子来探讨如何判断一个系统是稳定系统。

例1已知一因果的线性时不变系统的冲激响应为,判断系统是否稳定? 由于,当时,系统稳定;当时,系统不稳定。

例2已知平均滑动系统的冲激响应为判断该系统是否稳定?,所以系统稳定。

这两个例子都是利用时域范围内的判断方法,下面我们结合MATLAB 运用变换域的方法,即通过系统函数极点所处的位置来判断系统的稳定性。

例2已知系统函数为,判断该系统是否稳定?利用MATLAB 计算出系统函数的极点为poles = -1 -0.5 + 0.86603i -0.5 - 0.86603i 三个极点均在s 平面的左半平面,说明系统稳定。

离散系统稳定性分析

离散系统稳定性分析

实验一 离散系统稳定性分析实验学时:2 实验类型:常规 实验要求:必作一、实验目的:(1)掌握利用MATLAB 绘制系统零极点图的方法; (2)掌握离散时间系统的零极点分析方法;(3)掌握用MATALB 实现离散系统频率特性分析的方法; (4)掌握逆Z 变换概念及MATLAB 实现方法; (5)掌握用MATLAB 分析离散系统稳定性。

二、实验原理:1、离散系统零极点图及零极点分析;线性时不变离散系统可用线性常系数差分方程描述,即()()NMiji j a y n i b x n j ==-=-∑∑ (8-1)其中()y k 为系统的输出序列,()x k 为输入序列。

将式(8-1)两边进行Z 变换的00()()()()()Mjjj Nii i b zY z B z H z X z A z a z-=-====∑∑ (8-2) 将式(8-2)因式分解后有:11()()()Mjj Nii z q H z Cz p ==-=-∏∏ (8-3)其中C 为常数,(1,2,,)j q j M =为()H z 的M 个零点,(1,2,,)i p i N =为()H z 的N个极点。

系统函数()H z 的零极点分布完全决定了系统的特性,若某系统函数的零极点已知,则系统函数便可确定下来。

因此,系统函数的零极点分布对离散系统特性的分析具有非常重要意义。

通过对系统函数零极点的分析,可以分析离散系统以下几个方面的特性:● 系统单位样值响应()h n 的时域特性; ● 离散系统的稳定性;离散系统的频率特性; 1.1、零极点图的绘制设离散系统的系统函数为则系统的零极点可用MA TLAB 的多项式求根函数roots()来实现,调用格式为:p=roots(A)其中A 为待根求多项式的系数构成的行矩阵,返回向量p 则是包含多项式所有根的列向量。

如多项式为231()48B z z z =++,则求该多项式根的MA TLAB 命令为为: A=[1 3/4 1/8];P=roots(A) 运行结果为: P =-0.5000 -0.2500需注意的是,在求系统函数零极点时,系统函数可能有两种形式:一种是分子、分母多项式均按z 的降幂次序排列;另一种是分子、分母多项式均按1z -的升幂次序排列。

【实验】连续时间系统S域零极点分析

【实验】连续时间系统S域零极点分析

【关键字】实验实验七连续时间系统S域零极点分析一、目的(1)掌握连续系统零极点分布与系统稳定性关系(2)掌握零极点分布与系统冲激响应时域特性之间的关系(3)掌握利用MATLAB进行S域分析的方法二、零极点分布与系统稳定性根据系统函数的零极点分布来分析连续系统的稳定性是零极点分析的重要应用之一。

稳定性是系统固有的性质,与激励信号无关,由于系统函数包含了系统的所有固有特性,显然它也能反映出系统是否稳定。

对任意有界信号,若系统产生的零状态响应也是有界的,则称该系统为稳定系统,否则,则称为不稳定系统。

上述稳定性的定义可以等效为下列条件:●时域条件:连续系统稳定充要条件为,即冲激响应绝对可积;●复频域条件:连续系统稳定的充要条件为系统函数的所有极点位于S平面的左半平面。

系统稳定的时域条件和频域条件是等价的。

因此,只要考察系统函数的极点分布,就可判断系统的稳定性。

对于三阶以下的低阶系统,可以利用求根公式方便地求出极点位置,从而判断系统稳定性,但对于告阶系统,手工求解极点位置则显得非常困难。

这时可利用MATLAB来实现这一过程。

例7-1:已知某连续系统的系统函数为:试用MATLAB求出该系统的零极点,画出零极点图,并判断系统是否稳定。

解:调用实验六介绍的绘制连续系统零极点图函数sjdt即可解决此问题,对应的MATLAB命令为:a=[8 2 3 1 5];b=[1 3 2];[p,q]=sjdt(a,b)运行结果为:p =-0.6155 - 0.6674i -0.6155 + 0.6674i 0.4905 - 0.7196i 0.4905 + 0.7196iq =-2 -1绘制的零极点图如图7-1所示。

由程序运行结果可以看出,该系统在S平面的右半平面有一对共轭极点,故该系统是一个不稳定系统。

三、零极点分布与系统冲激响应时域特性设连续系统的系统函数为,冲激响应为,则显然,必然包含了的本质特性。

对于集中参数的LTI连续系统,其系统函数可表示为关于s的两个多项式之比,即(7-1)其中为的M个零点,为的N个极点。

信号与系统的实验报告(2)

信号与系统的实验报告(2)

信号与系统实验报告——连续时间系统的复频域分析班级:05911101学号:**********姓名:***实验五连续时间系统的复频域分析——1120111487 信息工程(实验班)蒋志科一、实验目的①掌握拉普拉斯变换及其反变换的定义,并掌握MA TLAB 实现方法 ②学习和掌握连续时间系统系统函数的定义及其复频域分析方法③掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。

二、实验原理与方法 1、拉普拉斯变换连续时间信号x(t)的拉普拉斯变换定义为:X s =x (t )e −st dt +∞−∞拉普拉斯反变换为:x t =12πj X (s )e st ds σ+j ∞σ−j ∞在MA TLAB 中可以采用符号数学工具箱中的laplace 函数和ilaplace 函数进行拉氏变换和拉氏反变换。

L=laplace(F)符号表达式F 的拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。

L=laplace(F,t)用t 替换结果中的变量s 。

F=ilaplace(L)以s 为变量的符号表达式L 的拉氏反变换,返回时间变量t 的结果表达式。

F=ilaplace(L,x)用x 替换结果中的变量t 。

2、连续时间系统的系统函数连续时间系统的系统函数是系统单位冲激响应的拉氏变换H s =ℎ(t )e −st dt +∞−∞此外,连续时间系统的系统函数还可以由系统输入和输出信号的拉氏变换之比得到H s =Y(s)/X(s) 单位冲激响应h(t)反映了系统的固有性质,而H(s)从复频域反映了系统的固有性质。

对于H(s)描述的连续时间系统,其系统函数s 的有理函数H s =b M s M +b M−1s M−1+⋯+b 0a n s n +a n −1s M−1+⋯+a 03、连续时间系统的零极点分析系统的零点指使式H s 的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统函数的值无穷大。

线性定常系统稳定性分析

线性定常系统稳定性分析
如:大小相等,符号相反的一对实根,或一对共轭虚根,或对 称于虚轴的两对共轭复根。 例 1 (s2 4)(s2 25)(s 2) s5 2s4 24s3 48s2 25s 50 如: 2 (s2 4)
5/15/2020
21
[处理办法]:可将不为零的最后一行的 系数组成辅助方程,对此辅助方程式对s 求导所得方程的系数代替全零的行。大 小相等,位置径向相反的根可以通过求 解辅助方程得到。辅助方程应为偶次数 的。
[解]:劳斯阵如下
s5 1 24 23 s4 2 48 46 s3 0 0 0
s3 行全为零。由前一行系数构成辅助方程得: Q(s) 2s4 48s2 46或Q(s) s4 24s2 23
其导数为:Q(s) 4s3 48s将4,48或1,12代 替 s3 行,可继续排列劳斯阵如下:
s5 1 24 23 s4 1 24 23 s3 1 12 0
特征方程为:s3 3s2 2s k 0
5/15/2020
26
劳斯阵: s3 1 2 s2 3 k 6k s1 3 0 s0 k
要使系统稳定,必须
①系数皆大于0,k 0
②劳斯阵第一列皆大于0
有2
k 3
0
k
6
0
k
6
k 0
所以,临界放大系数 Kp 6
5/15/2020
27
确定系统的相对稳定性(稳定裕度)
10
充要条件说明
对于一阶系统,a1s
系统是稳定的。
a0
0, s
a0 a1
,
只要a0 , a1都大于零,
对于二阶系统,a2s2 a1s a0 0, s1,2 a1
a12 4a2a0 2a2
只有 a0 , a1, a2 都大于零,系统才稳定。(负实根或实部为负)

三阶系统的分析与校正

三阶系统的分析与校正

三阶系统的分析与校正引言三阶系统是一种常见的动态系统模型,广泛应用于控制系统、电路和信号处理等领域。

在三阶系统的分析和校正过程中,我们需要了解系统的特性、稳定性和动态响应,并结合校正方法进行系统优化。

一、三阶系统特性分析三阶系统由三个一阶子系统相连而成,其传递函数一般表示为:G(s)=(K*(s+z1)*(s+z2))/((s+p1)*(s+p2)*(s+p3))1. 特性根(Characteristic Roots):三阶系统共有三个特性根,分别对应传递函数中的(s + p1)、(s + p2)和(s + p3)项。

特性根的位置和实部决定了系统的稳定性和动态响应,虚部决定了系统的振荡频率。

2. 分布根(Distribution Roots):分布根是系统传递函数分子项(s + z1)和(s + z2)的根,它们决定了系统的增益和阻尼比。

增益越大,系统对输入的变化越敏感;阻尼比越小,系统越容易产生振荡。

3. 极点(Poles)和零点(Zeros):系统传递函数的极点和零点是系统特性的重要指标,极点的位置和数量决定了系统的阻尼性能和稳定性,零点的位置和数量决定了系统的频率响应和相位特性。

二、三阶系统的稳定性分析判断三阶系统的稳定性可以通过判别系统的特性根的实部是否小于零,即特性根是否在左半平面。

1.极点分布:特性根的位置通过求解传递函数分母的特征方程来确定。

将特征方程中的系数代入矩阵当中,可以使用特征值计算软件来求解特征方程,得到特性根的位置和数量。

如果所有特性根的实部小于零,则系统是稳定的。

2.极点分布与稳定性的关系:三阶系统特性根的位置与稳定性之间存在一一对应的关系,通过特性根的位置可以判断系统的稳定性。

具体关系如下:-全部特性根的实部小于零:系统是稳定的。

-有一个特性根的实部大于零:系统是不稳定的。

-有两个特性根的实部大于零:系统是振荡的。

-有两个特性根的实部小于零,另一个特性根的实部等于零:系统是边界稳定的。

傅里叶变换的零极点

傅里叶变换的零极点

傅里叶变换的零极点傅里叶变换的零极点【前言】在信号处理和数学领域,傅里叶变换是一种重要的工具。

通过傅里叶变换,我们可以将一个时域信号转换为频域信号,从而更好地理解信号的特性和频谱分布。

然而,在深入研究傅里叶变换过程中,我们会遇到一个重要的概念——零极点。

零极点在傅里叶变换中起着关键作用,帮助我们理解信号的频率响应以及系统的稳定性。

本文将从简单到复杂的角度,探讨傅里叶变换的零极点,以帮助读者更深入地理解这一概念。

【一、什么是零极点】在傅里叶变换中,我们经常会遇到有理多项式的形式,例如:H(z) = (z - z1)(z - z2)...(z - zn)/(p1 - z)(p2 - z)...(pm - z)其中,z1, z2,..., zn为多项式的零点,p1, p2,..., pm为多项式的极点。

在复平面上,零点表示系统的频率响应为零的位置,而极点表示系统的频率响应无穷大的位置。

【二、零极点与频率响应】通过傅里叶变换的零极点分析,我们可以了解信号或系统的频率响应特性。

具体来说,零点和极点决定了系统的频域特性和稳定性,从而决定了信号在不同频率下的衰减或增强程度。

1. 零点与频率响应当系统的传递函数H(z)中存在一个零点z0时,系统的频率响应在该频率附近会拥有一个极大值。

也就是说,在这个频率下,信号会被增强。

相反地,如果零点为负数,系统的频率响应将在该频率下降到零。

零点可以决定信号的频域特性,进而影响信号的传输和处理。

2. 极点与系统稳定性极点的位置对于系统的稳定性至关重要。

如果极点位于单位圆内,系统将是稳定的。

这意味着,系统对于输入信号的响应将是有界且有限的,不会出现不稳定行为。

相反地,如果极点位于单位圆外,系统将是不稳定的,可能会出现振荡或发散行为。

通过观察极点的位置,我们可以判断系统的稳定性,从而提前预测系统的行为。

【三、零极点分布与系统特性】在实际情况下,零极点的分布对于系统的特性以及频率响应有着重要的影响。

第七章--线性离散系统的稳定性分析

第七章--线性离散系统的稳定性分析

取反变换,得 g (k ) b0δ (t ) b1δ (t T ) bnδ (t nT )
• 上式表明,一个n阶稳定系统的脉冲响应序列共有n个脉冲, 如果在典型信号输入作用下,系统脉冲响应过程将在n个 采样周期内结束(对连续系统而言,理论上动态过程在 t→∞时才结束),由于这种系统瞬态响应时间最短,故称
0.11K 0 1.1 0.095 K 0 2.9 0.015 K 0
因此,使系统稳定K值范围为
0 K 11.58
• 采样器和保持器对离散系统的动态性能有如下影响: 1)采样器可使系统的峰值时间和调节时间略有减小,但使超调量增大, 故采样造成的信息损失会降低系统的稳定程度。 2)零阶保持器使系统的峰值时间和调节时间都加长,超调量和振荡次数 也增加。这是因为除了采样造成的不稳定因素外,零阶保持器的相角滞后降
y* t
5
4
3
2 1
0
T
2T
3T
4T
5T
t
单位斜坡响应 暂态过程只要两个采样周期即可结束!
将上述系统的输入信号改为单位阶跃信号 r (t ) 1(t )
则系统的输出信号的z变换为
1 Y ( z ) GB ( z ) R( z ) (2 z 1 z 2 ) 1 z 1 2 z 1 z 2 z 3 L z n L 此时动态过程也可在两个采样周期内结束,但在t=T时超 调量为100%。
映射稳定区域左半s平面不稳定区域右半s平面临界稳定区域虚轴上单位圆内部单位圆外部单位圆上线性离散系统稳定的充分必要条件离散系统极点分布与稳定性的关系由由s平面与z平面的映射关系及连续系统的稳定性理论可知离散系统极点分布与其稳定性的关系如下极点分布稳定情况z单位圆内稳定z单位圆外不稳定z单位圆上临界稳定线性离散系统的稳定判据由前面的分析可知只要知道系统的极点分布即可判断系统的稳定与否但这里要解决的问题是如何知道闭环系统的极点分布

《控制工程基础》极点与稳定性

《控制工程基础》极点与稳定性
讲义07:极点与稳定性
讲义07要点 了解系统稳态特性,掌握用终值定理求解稳态值的方法 检查极点与瞬态特性的关系,理解系统稳定性含义 掌握劳斯稳定判据的使用方法
讲义07内容
1.稳态特性 2.瞬态特性和稳定性
1.什么是稳定性? 2.确定系统稳定性 3.瞬态特性与极点的关系 4.劳斯稳定判别法
控制工程基础 讲义07
极点所有实部均为非负数 三次方程的根...
7
7.2瞬态特性和稳定性
7.2.1什么是稳定性? 系统稳定性
对于有界(信号大小限值)输入,系统响应不发 散(响应有界),称为稳定(stable),否则称为 不稳定(unstable)。
“有界信号”:信号的大小始终小于某个有限值。
例子7.4
稳定,如例7.5所示
1
7.1稳态特性
控制目的 最终将系统输出(被控量)达到所期望的数值
趋于常值的响应值:稳态值
系统稳态值是多少?
从系统的传递函数计算稳态值
稳态值的数学表示
系统响应

极限值:
范例7.1 一阶延迟系统单位阶跃响应的稳态值:
控制工程基础 讲义07
2
7.1稳态特性
稳态值计算 通过响应公式直接计算 系统极点的实部都为负时 根据拉普拉斯变换性质,也可获得稳态值
条件1
系数
都为正值
控制工程基础 讲义07
17
7.2瞬态特性和稳定性
劳斯稳定性判别法的判断程序 条件2 步骤1 如下作成一大表
控制工程基础 讲义07
18
7.2瞬态特性和稳定性
劳斯稳定性判别法的判断程序 条件2
步骤2
劳斯表三行以后元素
例如...
如此类推计算三行以后元素来填充表格,直到该列数值为0

系统稳定性判别方法

系统稳定性判别方法

q 1,a 180

j2
K1=6
-1 60 -0.423
× °×
-
σ
60°
K1=6
j 2
25
李雅普诺夫第一法 李雅普诺夫稳定性方法
李雅普诺夫第二法 李雅普诺夫第一法是通过求解系统微分方程,然后根据解的性 质来判定系统的稳定性,其基本思路与经典控制理论一致。 对于线性定常系统来说 x Axbu
19
绘制根轨迹的基本规则
绘制根轨迹的基本规则实际上是系统根轨迹的一 些基本性质,掌握了这些基本规则,将能帮助我们 更准确、更迅速的绘制根轨迹。
一.根轨迹的对称性
实际系统的特征方程的系数是实数,其特征根为 实数或共轭复数,因此,根轨迹对称于实轴。
二.根轨迹的起点和终点
根轨迹的起点对应于 K1 0 时特征根在S平面上 的分布位置,而根轨迹的终点则对应于 K1 时, 特征根在S平面上的分布位置。
伯德图是系统频率响应的一种图示方法,由幅值图和相角图组 成,两者都按频率的对数分度绘制
判断方法:在开环状态下,特征方程有P个根在右半平面内。 此时,在L(ω)≥0的范围内,相频特性曲线ɸ(ω)在-π线上正、 负穿越次数只差为P/2次,则闭环系统是稳定的。
分别用N+和N-表示正穿越次数和负穿越次数,则N=N+-N-。判据 的结论是Z=P-2N,且Z=0时闭环系统稳定,Z≠0时闭环系统不 稳定。由于频率响应的幅值对数图和相角图易于绘制,因此对数 频率响应稳定判据应用更广。
s2 u1 u2
b1
a1a2a0a3 a1
b2a1a4a0a5 a1
b3a1a6a0a7 a1
c1
b1a3a1b2 b1
b1a5a1b3 c2 b1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档