高频开关电源主要磁性元件的设计

合集下载

开关电源中磁性元件的设计

开关电源中磁性元件的设计

7 6
常熟理工学院学报 ( 自然科学 ) 开 关 电源 中磁 性元 件 的 设计 , 通
20 钲 08
常是根据铁芯的工作状态, 合理选用 l U 铁芯材料. 正确设 计磁必 须要选
择 的参 数包 括铁 芯 材料 、 芯形 状 尺 铁 寸和线 圈的匝数和线径 等.
路拓 扑采用反激模 式 ; 开关频 率 f10 H ; =0 k z效率 '=0 ; 1 8% 变压器 传输功 率 P2/0 2W. 求重量轻 、 : 8%= 5 要 0 稳定 性
好、 可靠性高 .
根据设计要求 , 因单端反激式开关电源具有线路简单, 所需要的元器件少 , 能够提供多路隔离输出等优点,
第 2 卷第 1 期 2 0
20 0 8年 1 0月
常熟理工学院学报( 自然科 学)
Jun l f h n suIs tt T c n lg ( a rl c n e) o ra o a gh ntue eh o y N t a S i c s C i o u e
— — — — —
究 了开 关电源 qz , a性元件 的 工作特 点和设计 方 法 , 为磁性 元件 的设计提 供 了参 考.
关键词 : 关 电源; 性 元件 ; 激 变压 器 开 磁 反
中图分类号 :M2 T 7
文献标 识码 : A
文章编号 : 0 — 7 4 2 0 )0 0 7 — 4 1 8 2 9 ( 0 8 1— 0 5 0 0
开关 电源是为微 电子产 品中各种 电路及元 器件供 电的电路…现在 , . 开关 电源的体积小 、 重量轻、 损耗小 、 效 率高 , 在雷达 、 电子计算机 、 信设备 、 通 电子仪器 、 家用 电器 巾得到广 泛的应 用. 随着集成 电路技术 由大规模 集成

新型高频开关电源磁元件及变压器设计

新型高频开关电源磁元件及变压器设计

新型高频开关电源磁元件及变压器设计新型高频开关电源磁元件及变压器设计与应用第一部分: 基本磁路理论1、麦克斯韦电磁场基础理论2、磁心材料的组成及基本参数3、磁路的计算4、磁元件的串联磁路计算,等效带气隙扼流圈的设计原理5、磁元件的并联磁路计算,双绕组耦合磁元件的设计原理第二部分:开关电源中电感扼流圈的设计方法1、开关电源基本拓扑的磁元件设计与计算2、铁氧体材料的磁元件设计与计算1)、铁氧体材料的性能和选择方法2)、磁元件绕组的设计方法和计算3、带气隙的电感元件设计1)、气隙大小的计算2)、气隙对磁元件的影响4、铁粉心材料的磁元件设计1)、铁粉心材料的性能和组成2)、铁粉心磁元件的性能和设计要点5、铁硅铝材料的磁元件设计1)、铁硅铝材料的性能和组成2)、铁硅铝元件的设计方法和要点6、扼流圈的设计,带有大直流偏置的电感器的饱和原因。

各种磁心材料设计电感扼流圈的设计方法第三部分:开关电源中变压器的设计方法1、高频变压器的原理与模型2、实际变压器中的分布寄生参数对开关电源的影响3、实际变压器中的分布寄生参数4、实际变压器的分布寄生参数对开关电源EMI的影响5、开关变压器的漏感评估6、开关电源变压器的磁心材料的选择方法7、开关变压器的导线选择1)、开关变压器绕组的高频效应2)、开关变压器绕组高频交流电阻的计算模型3)、开关变压器绕组高频交流电阻的计算方法8、开关变压器的设计实例9、开关变压器中屏蔽层的加载方法10、反激开关变压器的设计与计算1)、反激开关变压器磁心的选择2)、反激开关变压器绕组特性的分析和设计方法3)、反激开关变压器工作模式的分析与变压器设计的关系4)、反激开关变压器与开关变压器的异同11、高频变压器的数学模型,寄生参数。

了解高频变压器的磁路计算。

12、高频变压器的参数设计,计算,磁心尺寸的选择,磁心材料的性能,及磁场参数对高频变压器的影响。

13、高频变压器绕组的设计计算,绕组结构对变压器参数的影响。

开关电源中磁性元器件概要

开关电源中磁性元器件概要

开关电源中磁性元器件几乎所有电源电路中,都离不开磁性元器件 电感器或变压器。

例如在输入和输出端采用电感滤除开关波形的谐波;在谐振变换器中用电感与电容产生谐振以获得正弦波电压和电流;在缓冲电路中,用电感限制功率器件电流变化率;在升压式变换器中,储能和传输能量;有时还用电感限制电路的瞬态电流等。

而变压器用来将两个系统之间电气隔离,电压或阻抗变换,或产生相位移(3 相 Δ—Y 变换),存储和传输能量(反激变压器),以及电压和电流检测(电压和电流互感器)。

可以说磁性元件是电力电子技术最重要的组成部分之一。

磁性元器件—电感器和变压器与其他电气元件不同,使用者很难采购到符合自己要求的电感和变压器。

对于工业产品,应当有一个在规定范围内通用的规范化的参数,这对磁性元件来说是非常困难的。

而表征磁性元件的大多数参数(电感量,电压,电流,处理能量,频率,匝比,漏感,损耗)对制造商是无所适从的。

相反,具体设计一个磁性元件在满足电气性能条件下,可综合考虑成本,体积,重量和制造的困难程度,在一定的条件下可获得较满意的结果。

由于很难从市场上购得标准的磁性元器件,开关电源设计工作的大部分就是磁性元件的设计。

有经验的开关电源设计者深知,开关电源设计的成败在很大程度上取决于磁性元件的正确设计和制作。

高频变压器和电感固有的寄生参数,引起电路中各色各样的问题,例如高损耗、必须用缓冲或箝位电路处理的高电压尖峰、多路输出之间交叉调节性能差、输出或输入噪声耦合和占空度范围限制等等,对初步进入开关电源领域的工程师往往感到手足无措。

磁性元件的分析和设计比电路设计复杂得多,要直接得到唯一的答案是困难的。

因为要涉及到许多因素,因此设计结果绝不是唯一合理的。

例如,不允许超过某一定体积,有几个用不同材料的设计可以满足要求,但如果进一步要求成本最低,则限制了设计的选择范围。

因此最优问题是多目标的,相对的。

或许是最小的体积,最低成本,或是最高效率等等。

最终的解决方案与主观因素、设计者经验和市场供应情况有关。

开关电源磁性元件理论及设计

开关电源磁性元件理论及设计

目录分析
该部分简要介绍了开关电源磁性元件的基本概念、发展历程以及研究意义。 通过对开关电源市场的概述,突出了磁性元件在其中的重要地位,为后续章节的 学习奠定了基础。
目录分析
这部分详细介绍了与磁性元件相关的基本概念和理论。首先对磁性材料的特 性进行了概述,包括磁导率、磁饱和等概念。随后深入阐述了磁场、电感等基本 物理量,为后续章节的理论分析提供了支撑。
阅读感受
我要感谢这本书的作者以及商,为我们带来了这样一本宝贵的书籍。这本书 不仅是一本理论和实践相结合的教材,更是一部深入浅出、系统全面的参考书。 我坚信,无论是初学者还是专业人士,都能从中受益匪浅。
目录分析
目录分析
在现代电力电子技术中,开关电源以其高效、节能的特点被广泛应用。而作 为开关电源核心部件的磁性元件,其理论及设计的重要性不言而喻。本书将对 《开关电源磁性元件理论及设计》这本书的目录进行深入分析,以揭示其知识体 系和结构。
开关电源磁性元件理论及设计
读书笔记
01 思维导图
03 精彩摘录 05 目录分析
目录
02 内容摘要 04 阅读感受 06 作者简介
思维导图
本书关键字分析思维导图
元件
深入
电源
电源
这些
设计
可以
论及
开关
磁性 开关
实践
设计
理解
探讨
读者
理论
提供
指导
内容摘要
内容摘要
《开关电源磁性元件理论及设计》是一本深入探讨开关电源磁性元件理论和实践的书籍。这本书 为读者提供了关于磁性元件在开关电源中应用的全面的理解和指导,无论是在理论上还是在设计 实践上。 这本书详细介绍了磁性元件的基本理论,包括电磁学的基本原理,磁性材料的性质,以及磁性元 件在开关电源中的工作原理。通过这些基本概念的阐述,读者可以建立起对磁性元件的深入理解, 从而更好地理解其在开关电源中的作用。 这本书深入探讨了磁性元件的设计和优化。这部分内容涵盖了从磁性元件的参数选择,到设计过 程的每一步,再到最后的优化过程。无论是选择合适的磁性材料,还是确定元件的尺寸和形状, 都有详尽的解释和指导。书中还提供了多种设计实例,让读者可以更直观地理解这些理论和方法 的应用。

开关电源中的磁性元

开关电源中的磁性元
变压器设计
根据电源转换需求,设计变压器 的线圈匝数、绕组方式、铁芯尺 寸等参数,以实现电压和电流的
转换。
电感器设计
根据滤波和储能需求,设计电感器 的线圈匝数、绕组方式、磁芯尺寸 等参数,以实现电流的滤波和储能。
互感器设计
根据信号传输需求,设计互感器的 线圈匝数、绕组方式、磁芯尺寸等 参数,以实现电压和电流的测量和 传输。
磁性元件面临的挑战
高温环境
随着开关电源工作温度的升高,磁性元件需要具备更高的耐热性能 和稳定性,防止高温下性能下降或失效。
电磁干扰
开关电源中的磁性元件会产生电磁干扰,对周围电路和设备产生影 响,需要采取有效的电磁屏蔽和噪声抑制措施。
可靠性问题
在高频、高温和复杂环境下,磁性元件的可靠性面临挑战,需要加 强元件的材料、结构和工艺等方面的研究。
感谢您的观看
未来磁性元件的研究方向
新材料研究
探索新型的磁性材料,如纳米材料、高磁导率材 料等,以提高磁性元件的性能和适应性。
集成化研究
研究磁性元件的集成化技术,实现多功能的集成 和优化,提高开关电源的整体性能。
智能化研究
研究磁性元件的智能化技术,实现自适应调节和 控制,提高开关电源的智能化水平。
THANKS FOR WATCHING
在开关电源中,磁性元件通常用于实现电压和电流的转换、储能和控制等功能,是开关电源的重要组成部分。
磁性元件的种类
变压器
用于实现电压和电流的转换,通常由两个或多个线圈 绕在磁芯上组成。
电感器
用于实现储能和控制,通常由线圈绕在磁芯上组成。
磁性材料
用于制造磁芯,常用的磁性材料有铁氧体、钕铁硼等。
磁性元件在开关电源中的作用
磁性元件的热设计

开关式电源中的磁性元件

开关式电源中的磁性元件
100.00% 80.00% 60.00% 40.00% 20.00% 0.00%
1
2>
1>
3
5
Harmonic Number 谐波次数
7
9
11 13 15 17 19 21
1) CH1: 2) CH2:
2 00 V 5 ms 2 A 5 ms
In this case the harmonics are huge, because much of the power is concentrated in a short period of time in each cycle. 在这种情况下,谐波次数很大, 因为大部分的能量集中在每个周期一段很短 的时间内。
Preal 有功 (v ⋅ i )averaged over one cycle (一周期内的平均) PF = = Papparent 视在 Vrms ⋅ Irms
Where v and i are instantaneous values of voltage and current, and rms indicates the root-mean-squared value of the voltage or current. The apparent power (Vrms x Irms), in effect, limits the available output power. 其中v和i是电压和电流的瞬时值,rms代表电压或电流的均方根值 。视在功率( Vrms x Irms )实际上限制了可能的输出功率。
100,000
0.55
90
Mag. Am ps 磁 放大器
Note the wide range of permeability and power loss. 注意宽范围的磁导率和功耗。

高频开关电源主要磁性元件的设计

高频开关电源主要磁性元件的设计


hi g h — re f q ue n c y s wi t c hi ng p o we r s up pl y d es i n g i n he t c ou r s e
o f he t n e e d t o a dd r e s s a k e y i s s ue i s t h e h ot i s s u e; i s he t ma i n s ou r c e of h e a t a nd ma g ne t i c c o mpon e nt s ,a nd h ow t o s ol ve t he ma n e g t i c c o mp one nt s a n d we a r a nd t e a r He a t
题。


较 复 杂 。 若 散 热 处 理 不 当 ,铁 氧 体 磁 材 高



, Βιβλιοθήκη 卜 1 i l I
高 频 开 关 电源 中 大 量 使 用 各 种 各 样 的 磁 性 元件 ,如 输 入 / 输 出共 模 电感 ,功 率 变压 器 ,饱 和 电感 以及 各种 差 模 电感 。 各种 磁 性元 器 件对 磁 性材 料 的要 求各 不相 同, 如差模 电感 希望 u值 适 中 ,但线 性度 好 , 不 易 饱 和 ; 共 模 电感 则 希 望 u值 要 高,频 带 宽 ,功 率变 压器 则希 望 u值 要适 中,温度 稳 定好 ,剩磁 小 ,损 耗低 等 。在 非 晶材 料 出现 以前 ,共模 电感 主 要采 用高 u值 ( 6 K ~l O K ) M n — z n 合金 ,差 模 电感 多采 用铁 粉 芯 或开 气 隙铁氧 体 材料 ,变 压 器则 采用 铁氧 体材 料等 。 这 些 材料 应 用技 术成 熟 ,种 类也 很丰 富, 并有 各种 各样 的产 品形状 供 选择 。随 着 非 晶材 料 的出现 和 技术 不 断成 熟 ,在开 关 电源 设 计 中 ,非 晶材料 表 现 出许 多其 它 材 料 无法 比拟 的 优点 。几 种 常用 磁性 材料 基 本性 能 比较如表 1 。

常用磁性器件中磁芯的选用及设计

常用磁性器件中磁芯的选用及设计

常用磁性器件中磁芯的选用及设计开关电源中使用的磁性器件较多,其中常用的软磁器件有:作为开关电源核心器件的主变压器(高频功率变压器)、共模扼流圈、高频磁放大器、滤波阻流圈、尖峰信号抑制器等。

不同的器件对材料的性能要求各不相同,如表所示为各种不同器件对磁性材料的性能要求。

(一)、高频功率变压器变压器铁芯的大小取决于输出功率和温升等。

变压器的设计公式如下:P=KfNBSI×10-6T=hcPc+hWPW其中,P为电功率;K为与波形有关的系数;f为频率;N为匝数;S为铁芯面积;B为工作磁感;I为电流;T为温升;Pc为铁损;PW为铜损;hc和hW为由实验确定的系数。

由以上公式可以看出:高的工作磁感B可以得到大的输出功率或减少体积重量。

但B值的增加受到材料的Bs值的限制。

而频率f可以提高几个数量级,从而有可能使体积重量显著减小。

而低的铁芯损耗可以降低温升,温升反过来又影响使用频率和工作磁感的选取。

一般来说,开关电源对材料的主要要求是:尽量低的高频损耗、足够高的饱和磁感、高的磁导率、足够高的居里温度和好的温度稳定性,有些用途要求较高的矩形比,对应力等不敏感、稳定性好,价格低。

单端式变压器因为铁芯工作在磁滞回线的第一象限,对材料磁性的要求有别于前述主变压器。

它实际上是一只单端脉冲变压器,因而要求具有大的B=Bm-Br,即磁感Bm和剩磁Br之差要大;同时要求高的脉冲磁导率。

特别是对于单端反激式开关主变压器,或称储能变压器,要考虑储能要求。

线圈储能的多少取决于两个因素:一个是材料的工作磁感Bm值或电感量L,另一个是工作磁场Hm或工作电流I,储能W=1/2LI2。

这就要求材料有足够高的Bs值和合适的磁导率,常为宽恒导磁材料。

对于工作在±Bm之间的变压器来说,要求其磁滞回线的面积,特别是在高频下的回线面积要小,同时为降低空载损耗、减小励磁电流,应有高磁导率,最合适的为封闭式环形铁芯,其磁滞回线见图所示,这种铁芯用于双端或全桥式工作状态的器件中。

高频开关变换器中的磁性元件设计

高频开关变换器中的磁性元件设计

高频开关变换器中的磁性元件设计摘要:鉴于常规的磁性元件设计方法存在局限性,不能全面反映其实际工作情况。

本文针对600W双管正激变换器中的高频变压器采用“Magnetics Designer”软件进行自行设计,给出了具体的设计方法和设计过程,并通过Pspice仿真验证其设计效果。

1、引言在高频开关变换器中磁性元件的应用非常广泛,主要有变压器和电感器两大类:当变压器用时,可起电气隔离、升降压及磁耦合传递能量等作用;当电感器用时,起到储存能量、平波与滤波等功能。

并且其性能的好坏对变换器的性能产生重要影响,特别对整个装置的效率、体积及重量起举足轻重的作用。

因此,磁性元件的设计是高频开关变换器设计中的重要环节。

高频开关变换器中的磁性元件设计,通常是根据铁芯的工作状态,合理选用铁芯材料,正确设计计算磁性元件的铁芯及绕组参数。

但由于磁性元件所涉及的参数太多,其工作状态不易透彻掌握,因此常规的设计方法不能全面反映其实际工作情况和考虑其它因素的影响,也就很难达到所需的性能指标和满足设计要求。

针对高频开关变换器中的磁性元件设计的重要性、必要性及其复杂性,笔者采用Intusoft公司的“Magnetics Designer”软件根据磁性元件的实际工作情况进行计算设计,获得较理想的效果。

本文首先介绍了磁性元件设计中应考虑、注意的一些问题,并针对600W 双管正激变换器中的高频变压器给出了具体的设计方法和设计过程,最后通过仿真加以验证。

2、磁性元件设计中应考虑的一些问题2.1 铁芯瞬态饱和在高频开关变换器启动瞬间,由于双倍磁通效应,其磁性元件的铁芯可能瞬态达到饱和,从而产生很大的浪涌电流,导致与磁性元件相连的开关器件损坏。

因此,为防止铁芯瞬态饱和,可采用的方法:一是把工作磁感应强度值减小,但这样会降低铁芯的利用率;二是增加软启动环节,启动时减小功率管的导通脉冲宽度,然后逐渐增大磁感应强度到稳态值。

2.2 绕组的漏感绕组的漏感对高频开关变换器产生很大的负面效应,影响其正常运行。

开关电源各磁性元器件的分布参数

开关电源各磁性元器件的分布参数

开关电源各磁性元器件的分布参数开关电源是一种将输入电压转换为所需要的输出电压和电流的电源电路,其核心是磁性元器件。

磁性元器件主要包括变压器、电感和电感转变器等。

这些磁性元器件的分布参数对开关电源的性能起着重要的影响。

本文将详细介绍开关电源各磁性元器件的分布参数。

一、变压器的分布参数:1. 漏感Llk:变压器的漏感是指在变压器的两个绕组间存在一定的自感现象,即绕组之间产生的磁通量不能完全经过另一个绕组。

漏感的大小与绕组的结构和绕组之间的磁场环境有关。

漏感的存在使得变压器的输出电压受到负载电流的影响。

2. 漏感阻抗Zlk:漏感阻抗是指变压器的漏感对交流电的阻抗性质。

漏感阻抗的大小与漏感Llk和频率有关。

漏感阻抗越大,对电流的阻抗性能越好,输出电压的稳定性越高。

3.互感Lm:互感是指变压器的两个绕组之间通过磁场而相互感应的现象。

互感的存在使得变压器实现电压转换,并将输入电压与输出电压隔离。

4.耦合系数k:耦合系数是指变压器的两个绕组之间的磁耦合程度。

耦合系数越大,两个绕组之间的互感越强,输出电压的稳定性越好。

二、电感的分布参数:1. 漏感Llk:电感的漏感是指在电感线圈中存在一定的自感现象。

漏感的大小与线圈的结构和线圈之间的磁场环境有关。

漏感的存在使得电感对交流电的阻抗性能增加。

2. 漏感阻抗Zlk:漏感阻抗是指电感的漏感对交流电的阻抗性质。

漏感阻抗的大小与漏感Llk和频率有关。

漏感阻抗越大,对电流的阻抗性能越好。

3.互感Lm:互感是指两个电感线圈之间通过磁场而相互感应的现象。

互感的存在使得电感实现电压转换,并将输入电压与输出电压隔离。

4.耦合系数k:耦合系数是指电感的两个线圈之间的磁耦合程度。

耦合系数越大,两个线圈之间的互感越强,输出电压的稳定性越好。

三、电感转变器的分布参数:1. 输入电感Lint:输入电感是指电感转变器的输入端的电感。

输入电感的大小与电感转变器的结构和输入端的磁场环境有关。

2. 输出电感Lout:输出电感是指电感转变器的输出端的电感。

开关电源中的高频磁元件设计

开关电源中的高频磁元件设计

开关电源中的高频磁元件设计高频磁元件是开关电源中的重要组成部分,能够将输入的电能转化为高频电能,并进行功率变换。

它们在保证开关电源正常工作、提高效率和减小尺寸方面起到关键作用。

因此,在设计高频磁元件时,需要考虑多种因素,包括输入输出电压、频率、功率、效率等。

下面,将详细介绍高频磁元件的设计。

1.开关频率和功率密度:在设计高频磁元件时,首先需要考虑开关频率和功率密度。

开关频率越高,磁元件所承受的磁通变化速度越快,对磁性材料的要求也越高。

此外,功率密度的大小也会影响磁元件的尺寸和重量。

2.磁芯材料选择:选择合适的磁芯材料对于高频磁元件的设计至关重要。

常用的磁芯材料包括铁氧体、磁性粉末材料和软磁材料等。

铁氧体具有较高的磁导率和饱和磁感应强度,并且价格相对较低,适用于大功率开关电源。

磁性粉末材料具有优良的高频特性,适用于高频开关电源。

软磁材料具有低矫顽力和低剩磁,适用于高频大电流的开关电源。

3.磁芯形状设计:磁芯的形状对于高频磁元件的性能也有很大的影响。

通常,矩形和环形磁芯是常见的设计形式。

矩形磁芯适用于大功率开关电源,而环形磁芯适用于高频开关电源。

此外,还可以采用线圈分层和空气隙设计来减小电流的涡流损耗和铜损耗。

4.初级和次级绕组设计:绕组是高频磁元件中的重要组成部分,它将输入的电流变压为合适的电压,并传递给次级侧。

在设计绕组时,需要考虑绕组的匝数、尺寸、电阻和电感等参数,以及绕组之间的绝缘和屏蔽。

5.整体设计和电磁兼容性:在设计高频磁元件时,还需要考虑整体的设计和电磁兼容性。

合理的布局和隔离可以减小互感和干扰,提高系统的性能稳定性和抗干扰能力。

此外,还需要进行电磁兼容性测试,以确保高频磁元件符合相关标准和规范。

综上所述,高频磁元件的设计是开关电源设计中的重要环节。

在设计过程中,需要考虑开关频率、功率密度、磁芯材料选择、磁芯形状设计、绕组设计以及整体设计和电磁兼容性等因素,以确保高频磁元件的性能稳定和高效工作。

开关电源中的高频磁元件的设计

开关电源中的高频磁元件的设计

开关电源中的高频磁元件的设计开关电源是一种常见的电力转换装置,其中高频磁元件起到了至关重要的作用。

高频磁元件设计的目标是实现高效的电力转换和最小的能量损耗。

下面将详细介绍高频磁元件的设计过程。

首先,高频磁元件的设计需要确定电源的输入和输出参数。

输入参数包括输入电压和输入电流的范围,输出参数包括输出电压和输出电流的需求。

此外,还需要考虑开关频率、转换效率和工作温度等因素。

接下来,根据输入和输出参数确定高频磁元件的类型。

常见的高频磁元件包括变压器、电感器和变压电感器等。

不同的应用场景需要选择适合的磁元件类型。

然后,根据设计需求计算磁元件的参数。

首先,选择合适的磁芯材料和磁芯形状。

磁芯材料的选择应考虑磁导率、饱和磁通密度和磁损耗等特性。

磁芯形状的选择应根据电磁场分布和损耗的要求。

其次,计算磁元件的线圈参数。

线圈参数包括匝数、导线直径、线圈材料和线圈形状等。

匝数的选择要实现所需的电压变换比和电流承载能力。

导线直径的选择要考虑电流承载能力和电阻损耗。

线圈材料的选择要考虑导电性能和热稳定性。

接下来,通过磁路分析计算磁元件的磁路参数。

磁路参数包括磁感应强度、磁路长度和磁场强度等。

通过磁路参数的计算可以确定磁芯的尺寸和磁场的分布。

然后,进行磁元件的电磁场分析。

电磁场分析是计算磁元件中电磁场分布和损耗的过程。

通过电磁场分析可以确定磁元件的损耗和电磁兼容性。

最后,根据设计结果选择合适的高频磁元件。

选择合适的高频磁元件需要综合考虑电路参数、成本和制造工艺等因素。

总结来说,高频磁元件的设计涉及电路参数的确定、磁芯材料和形状的选择、线圈参数的计算、磁路参数的计算和磁场分析等步骤。

通过科学的设计方法和精确的计算可以实现高效的电力转换和最小的能量损耗。

同时,还需要考虑制造工艺和成本等因素,选择合适的高频磁元件。

开关电源各磁性元器件的分布参数

开关电源各磁性元器件的分布参数

开关电源各磁性元器件的分布参数开关电源是一种能够将电源输入的直流电转换为经过开关管开关调制后的高频方波电流输出的电源。

开关电源中常使用到的磁性元器件包括变压器、电感器、磁环和补偿电感等。

本文将分别介绍这些磁性元器件的分布参数,包括互感系数、漏感系数、品质因数和饱和电感等。

1.变压器:变压器是开关电源中最常见的磁性元器件之一,其主要用于实现电压变换、隔离和电流控制等功能。

变压器的互感系数(k)是衡量一组线圈中能够转移能量的比例,k的范围通常在0.8到1之间。

当变压器的一端开路时,另一端的电流不能完全传导到另一线圈,形成了漏感。

漏感系数(k_m)是分析变压器性能的重要参数,其数值范围一般在0.03到0.3之间。

同时,变压器的品质因数(Q)是描述其在工作频率下的能量传输效率的指标,其数值越大,表示能量传输越高效。

2.电感器:电感器是通过感应磁场来储存和释放电能的元件。

开关电源中使用到的电感器主要包括电感线圈、磁环和电感峰值等。

电感线圈的主要参数是饱和电感(L_s)和功率损耗(R_s)。

饱和电感是在给定电流下,电感线圈中储存的能量的最大值。

功率损耗是电感器在工作时由于电阻而产生的能量损耗。

磁环是一种通过改变线圈的电流来调整电感器参数的设备。

3.磁环:磁环是用于储存和调整磁场能量的一种磁性材料。

在开关电源中,磁环主要用于调整电感器的感应能量。

磁环的厚度、面积和抗磁饱和能力等是影响其性能的重要参数。

4.补偿电感:开关电源中的补偿电感用于实现对电源端电感的变化进行补偿,从而提高系统的稳定性和效率。

补偿电感的主要参数是补偿比(R_c),它是补偿电感的导磁性能与电源端电感的比值。

当补偿比为1时,表示补偿电感和电源端电感的导磁性能相等。

综上所述,开关电源中的磁性元器件包括变压器、电感器、磁环和补偿电感等,它们都具有不同的分布参数。

了解和掌握这些分布参数有助于正确选择磁性元器件,优化开关电源的性能和效率。

高频开关电源主要磁性元件的设计

高频开关电源主要磁性元件的设计

高频开关电源主要磁性元件的设计作者:刘明轩来源:《电子世界》2013年第17期【摘要】本文重点研究高频开关电源的磁性元件的设计,在高频开关电源设计过程中需要解决的一个关键问题,就是热的问题;而热主要来源是磁性元件,如何解决磁性元件的损耗及发热问题,减小磁性元件的尺寸也成为该课题的一个关键问题。

所以磁性元器件的设计自然成为整个设计关节中相当重要的一环。

【关键词】变压器;电抗器;磁芯1.概述在电力系统中的直流系统,由于普遍采用高频模块,而对于高频模块的设计也是功率越来越大,而体积却是越来越小,这就对其设计提出了一个关键的问题,那就是如何解决磁性元件的损耗及发热问题。

高频开关电源中大量使用各种各样的磁性元件,如输入/输出共模电感,功率变压器,饱和电感以及各种差模电感。

各种磁性元器件对磁性材料的要求各不相同,如差模电感希望μ值适中,但线性度好,不易饱和;共模电感则希望μ值要高,频带宽,功率变压器则希望μ值要适中,温度稳定好,剩磁小,损耗低等。

在非晶材料出现以前,共模电感主要采用高μ值(6K~10K)Mn-Zn合金,差模电感多采用铁粉芯或开气隙铁氧体材料,变压器则采用铁氧体材料等。

这些材料应用技术成熟,种类也很丰富,并有各种各样的产品形状供选择。

随着非晶材料的出现和技术不断成熟,在开关电源设计中,非晶材料表现出许多其它材料无法比拟的优点。

几种常用磁性材料基本性能比较如表1。

2.主变压器的设计对于高频开关电源的主要发热元件,主变压器的设计尤其重要,其尺寸的大小和材料的选择更是重要。

2.1 主变压器的磁芯必须具备的几个特点①低损耗②高的饱和磁感应强度且温度系数小③宽工作温度范围④μ值随B值变化小⑤与所选用功率器件开关速度相应的频响早前高频变压器一般选用铁氧体磁芯,下面对VITROPERM500F铁基超微晶磁芯与德国西门子公司生产的N67系列铁氧体磁芯的性能进行较:从以上图表可以看出两者有以下区别:(1)相同工作频率(200KHZ以下),非晶材料损耗明显低于铁氧体,工作频率越低,工作B值越高,非晶材料优势越明显。

开关电源中的高频磁元件的设计共58页PPT

开关电源中的高频磁元件的设计共58页PPT
响,法律无声。——英国 2、任何法律的根本;不,不成文法本 身就是 讲道理 ……法 律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不能使人人平等,但是在法律 面前人 人是平 等的。 ——波 洛克
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚

开关电源设计教程-第三章开关电源中磁性器件设计

开关电源设计教程-第三章开关电源中磁性器件设计
第三章 开关电源中磁性器件设计
§3.1 磁性器件设计基础 一 磁性能参数 1 磁感应强度 B
* 表征磁场中某一点的磁性强弱和方向的矢量
B F IL
* 方向:右手定则 * 单位:特斯拉( T)、精选高课件斯(GS),1 GS =10-4 T
2 磁场强度 H
* 单位:安培/米 ( A/m)、奥斯特 ( Oe) * 1 Oe =103/4π( A/m)
② 首先被制成非晶带材,然后经过适当退火,形 成微晶和非晶的混合组织;
③ 这种材料便宜,但磁性能极好,几乎能够和钴 基非晶合金相媲美;
④ 是工业和民用中高频变压器、互感器、电感的 理想材料,也是坡莫合金和铁氧体的换代产品。
(3)非晶合金和微晶合金的特点 * 电阻率可达120~150μΩ,为冷轧硅钢片的3倍,但远不如
* 如铝镍钴,钐钴,钕铁硼合金等永久磁铁,常用于电机激 磁和仪表产生恒定磁场。这类材料磁化曲线宽,矫顽磁力高。
精选课件
* 另一类材料在较弱外磁场作用下,磁感应强度达到很 高的数值,同时很低的矫顽磁力,即既容易磁化,又很容易 退磁,这类材料为软磁材料。
* 开关电源主要应用软磁材料。属于这类材料的有电工 纯铁、电工硅钢、铁镍软磁合金、铁钴钒软磁合金和软磁铁氧 体、非晶态合金等。
* 单位
ALL/N2 1 09H精/选N 课件2
* 对于一定规格的磁芯,有效磁导率与自感系数有如下 关系,即:
eCAL /0.4
* C是与磁芯尺寸有关的常数
二 磁芯损耗
* 指磁芯在最大磁感应强度时的单位体 积损耗,主要包括磁滞损耗(Ph)、涡流损耗 (Pe)和剩余损耗(Pc) ,即:
1 磁滞损耗(Ph)
* 铁氧体除了一般磁材料的参数外,还有有效磁芯尺寸、电 感系数等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高频开关电源主要磁性元件的设计
电力电子是基于大功率高频开关器件的一门应用技术,在电路中的电压电流频率很高,而磁性元件对频率非常敏感,这就导致在电力电子电路中所用的磁性元件不同于工作工频状态下的磁元件。

例如,在高频开关电源中大量使用了各种各样的磁性元件,如输入/输出共模电感,功率变压器,饱和电感以及各种差模电感。

为了适应高频的工作环境,这些设备需要不同的设计方法。

1 主变压器的设计
A.设计原则
对于高频开关电源的主要磁元件,主变压器的设计尤其重要,其尺寸的大小和材料的选择更是重要。

主变压器的磁芯必须具备以下几个特点:
(1)低损耗;
(2)高的饱和磁感应强度且温度系数小;
(3)宽工作温度范围;
(4)μ值随B 值变化小;
(5)与所选用功率器件开关速度相应的频响。

变压器设计过程中,最困难的是热设计。

变压器的产热与多方面的因素有关,如磁芯损耗,铜损等。

开关频率增加,变压器的发热呈指数增加。

若采用铁氧体磁芯,由于铁氧体的居里点较低,需对变压器磁芯作散热处理,工艺制作比较复杂。

若散热处理不当,铁氧体磁材高温下易失磁,导致电路工作异常。

若采用非晶做变压器,将工作ΔB 由4000高斯提高到100007葛斯,开关器件的工作频率则可以降到100kHz 以下。

非晶材料在16~100kHz 频率范围内,损耗/Bs 值最低,相应的变压器匝数及体积最小,发热量也较小,对提高整机效率,减小模块电源的体积有巨大帮助。

在采用软开关控制技术的前提下,可以充分发挥IGBT 的低导通压降,大电流,高耐压的优点,大幅度地提高电源的可靠性。

B. 磁芯的选择
因为全桥变换器中的变压器工作在双端,对Br 的要求不是很严格,它需要的是2Bm 。

但若选用高Br 的磁芯,当电源功率较大时,容易产生饱和现象。

为此,对于中、大功率的开关电源,主变压器选用饱和磁感应强度Bs 高、剩余磁感应强度Bs 低的磁芯。

虽然铁基非晶材料的饱和磁感应强度Bs 高,但是由于铁基非晶材料的工作频率较低(<15kHz),频率高时,损耗增加,故决定使用铁基超微晶中低剩磁的磁芯。

(1)副边匝数的计算
c
S BA T U N ∆=202 (1)
(2)原副边匝比的选取
2
121N N U U = (2) (3)窗口利用率的计算
窗口利用率:
w
r r w A A N A N K 2211+= (3) 由于开关频率不算太高,变压器的绕制采用多股漆包线并绕,外包抗电强度高、介质损耗低的复合纤维绝缘纸的方式,保证绝缘等级。

2输出电感的设计
A.设计原则
对输出滤波电感的磁芯主要要求有以下几点:
(1)温度系数小,滤波电感的电感量随时间的变化率应保持最小;
(2)线性度好,在不同的工作电流下电感量的变化小;
(3)滤波电感的电损耗和磁损耗低。

B.磁芯的选择
(1)匝数、气隙的计算
电感定义式
551010--⨯=⨯Φ=I
A N
B I N L
C m (4) 上式中,Ac 是铁芯的有效截面积。

磁路欧姆定律
B l B l A l A l NI C
C C C C μμμμ+=Φ+Φ=00000 (5) 上式中,l 0、l C 是空气隙和铁芯的长度,μ0、μ。

是空气和铁芯的磁导率。

由(5)式可得:
C C
C C m l l NI l l NI B μμμμμ00000//+=+= (6) (2)窗口利用率的计算
窗口利用率:
w
r w A NA K = (7) 在电力电子电路中所用的磁元件不同于工频环境下的磁元件,对其要进行特殊设计,否
则会严重影响设备的正常工作。

通过对高频电源模块的主要磁性元件的优化设计,并应用在高频电源的生产中,很好的解决了磁性元件的损耗和发热的问题,对高频电源的稳定性有了进一步的提高。

相关文档
最新文档