2011届高三数学下册单元测验试题7
高2011级下期半期考试数学参考答案
成都七中2008-2009学年下期 高2011级期中考试数学试卷参考答案及评分标准命题人:邱旭 审题人:魏华一、选择题(本大题共12小题,每小题5分,共60分)二、填空题(本大题共4小题,每小题4分,共16分)13.{x|2k π+2π<x<2k π+23π,其中k ∈Z}; 14.2; 15.[-23,3]; 16.①③④.三、解答题(本大题共6小题,共74分)17.解:(1)由已知,得311=+-tan αtan α,…………………………………………(2分)解得tan α=-2; …………………………………………………(4分)(2)原式=)(22cos αsin αsin ααcos αsin --…………………………………………(6分)=sin αcos αsin α+ ………………………………………………(8分)=1+tan α1……………………………………………………(10分)=21.…………………………………………………………(12分) 18.解:(1)由已知,得cosA(cosAcosB+sinAsinB)=cosB, …………………(1分)即(1-cos 2A)cosB=sinAcosAsinB, ………………………………(2分) 亦即sin 2AcosB=sinAcosAsinB.…………………………………(3分) 因为sinA>0,所以sinAcosB=cosAsinB, ………………………(4分) 于是sin(A-B)=0.…………………………………………………(5分) 又-π<A-B<π,从而A=B.故ΔABC 是等腰三角形.………………(6分) (2)在ΔABC 中,有C=π-(A+B)=π-2A,………………………………(7分) 所以tanC=tan(π-2A)=-tan2A.…………………………………(9分)由tanA=2得tan2A=Atan tanA 212-=-34.……………………………(11分)所以tanC 的值为34. ……………………………………………(12分)19.解:(1)由tan α=21,且0<α<π得:0<α<2π, …………………………(1分) 且sin α=55,cos α=552. ……………………………………(2分) 又0<β<π,所以0<α+β<23π. …………………………………(3分) 又由sin(α+β)=102-<0得: π<α+β<23π,且cos(α+β)=1027-.…………………………(4分) 故cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=1027-•552102-•55=10103-.…………………………(6分) (2)由cos β=10103-<0且0<β<π得,2π<β<π,且sin β=1010. (8分)所以cos(α-β)=cos αcos β+sin αsin β=552•(10103-)+55•1010=22-.…………(10分)又由0<α<2π,2π<β<π,得-π<α-β<0.…………………………(11分) 所以α-β=43π-.……………………………………………………(12分)20.解:连结BD,由已知得AD=2cos θ,BD=2sin θ(其中4π<θ<2π).………(2分)在ΔBCD 中,由弦切角定理得∠BDC=θ,又DC=AB=2,∴ΔBCD 面积为2sin 2θ; ……………………………………………(4分) 又Rt ΔABD 的面积为2sin θ•cos θ. ………………………………(5分) ∴四边形ABCD 的面积为S=2sin θ•cos θ+2sin 2θ. ………………(6分) 因为S=sin2θ+(1-cos2θ) …………………………………………(8分)=2sin(2θ-4π)+1 …………………………………………(10分)所以当θ=83π时,四边形ABCD 面积取得最大值2+1. …………(12分)21.解:(1)由已知得g(α)=cos α•sin αsin α+-11+sin α•cos αcos α+-11…………(1分)=cos α•αcos sin α22)1(-+sin α•αsin cos α22)1(- …(2分) =cos α•cos αsin α-1+sin α•sin αcos α-1 ……………(3分) 由α为第二象限角,得sin α>0,cos α<0.…………………………(4分)所以g(α)=-(1-sin α)+(1-cos α) ………………………………(5分)=sin α-cos α……………………………………………(6分)(2)由已知,得g(α)=sin α-cos α=57. ……………………………(7分)平方,得sin α•cos α=-2512.① …………………………………(8分) 又由α∈(43π,π),得sin α+cos α<0.…………………………(9分)所以sin α+cos α=-cos αsin α⋅+21=-51.② ………………(10分)又sin 3α+cos 3α=(sin α+cos α)(sin 2α-sin αcos α+cos 3α)=(sin α+cos α)(1-sin αcos α) …………(11分)结合①②,得sin 3α+cos 3α=-12537.……………………………(12分) 22.解:(1)由f(x)=cos(ωx+φ)是R 上的奇函数,得f(0)=cos φ=0.又-π≤φ≤0,所以φ=-2π.………………………………………(1分)所以f(x)=cos(ωx-2π)=sin ωx. ………………………………(2分)由y=f(x)的图象关于直线x=4π对称,且ω>0,得ω•4π=k π+2π(k ∈N),解得ω=4k+2(k ∈N). ① ………………(3分)又f(x)在区间⎥⎦⎤⎢⎣⎡6,0π上是单调函数,所以0≤ω•x ≤ω•6π≤2π,解得ω≤3.② ……………………………………………………(4分)由①②,得ω=2.所以f(x)=sin2x. ………………………………(5分)(2)g(x)=f(x-4π)=sin(2x-2π)=-cos2x.……………………………(6分) ①原式=2044040140401sin cos sin cos sin +++-+ =204)2020(202)2020202sin cos sin cos sin (cos sin +++ =2042020sin cos sin + …………………………………………(7分) =20202042020cos cos sin cos sin ⋅+=2040sin 220cos sin + …………………………………………(8分) =20)2060(220cos sin sin -+ …………………………………(9分)=202020320cos sin cos sin -+ =3. ………………………………………………………(10分) ②m=f(x)-g(x)=sin2x+cos2x=2sin(2x+4π).…………………(11分) 易知函数y=2sin(2x+4π)在区间⎥⎦⎤⎢⎣⎡8,0π上单调递增,在区间⎥⎦⎤⎢⎣⎡6,8ππ上单调递减.…………………………………………………………………(12分)又当x=0时,f(x)-g(x)=1; 当x=8π时,f(x)-g(x)=2;当x=6π时,f(x)-g(x)=213+. ………………………………(13分) 故所求实数m 的取值范围是m=2或1≤m<213+.……………(14分)。
2011高三7模数学试题
2011届高三第七次模拟考试数学试题卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合{12}{}aA B a b ==,,,,若1{}2A B ⋂=,则A B ⋃=( )A .1{,1,}2b B .1{1,}2- C .1{1,}2D .1{1,,1}2-2、i 是虚数单位,即21i =-,则1+16C i +226C i +336C i +446C i +556C i +666C i =( )A .8iB .8i -C .8D .1616i -+3、定义行列式运算:12142334.a a a a a a a a =-若将函数3sin ()1cos xf x x=的图象向左平移(0)m m >个单位后,所得图象对应的函数为偶函数,则m 的最小值是( ) A .8πB .3π C .56π D .23π 4、一质点受到平面上的三个力123,,F F F (单位:牛顿)的作用而处于平衡状态.已知12,F F成120 角,且12,F F 的大小分别为1和2,则有 ( )A .13,F F 成90角B .13,F F 成150角C .23,F F 成90角D .23,F F 成60角 5、已知函数32122331()lg(1),0,0,0f x x x x x x x x x x =++++>+>+>且,则123()()()f x f x f x ++的值( ) A .小于0B .大于0C .等于0D .以上都有可能6、一个几何体的三视图如图所示,则该几何体的体积为( )A .33π+B .323π+C .23π+D .3π+7、已知命题:p :函数()sin cos f x x x =的最小正周期为π;q :函数()sin()2g x x π=+ 的图象关于原点对称,则下列命题中为真命题的是( ) A .p q ∧B .p q ∨C .p ⌝D .()p q ⌝∨8、已知三条直线,,a b c 和平面β,则下列推论中正确的是( )A .若ββ//,,//a b b a 则⊂B .若a ,b 与β所成角相等,则//a bC .若,//,//a b a b a b ββ⊂,共面,则D .若b a c b c a //,,则⊥⊥9、设实数,x y 满足条件4100280,(0,0)0,0x y x y z ax by a b x y --≤⎧⎪-+≥=+>>⎨⎪≥≥⎩若目标函数的最大值为12,则23a b+的最小值为 ( ) A .4B .83C .113D .25610、已知函数()2sin(2)f x x ϕ=+,若()2f α=,则()12f πα+的值为( )A .3B .3±C .1D .与ϕ和α有关11、用数字2,3,5,6,7组成没有重复数字的五位数,使得每个五位数中的相邻的两个数都互质,则得到这样的五位数的概率为( ) A .25 B .720 C .310 D .1412、已知双曲线)0(222>=-a a y x 的左、右顶点分别为A 、B ,双曲线在第一象限的 图象上有一点P ,γβα=∠=∠=∠APB PBA PAB ,,,则( )A .tan tan 10αβ⋅+=B .tan tan 10βγ⋅+=C .tan tan 10αγ⋅+=D .tan tan 10αβ⋅-= 二、填空题:本大题共4小题,每小题5分。
安徽省省级示范高中2011届高三数学下学期联考 理
安徽省2011年省级示范高中名校高三联考数 学 试 题(理)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
全卷满分150分,考试时间120分钟。
注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两闰。
2.答第I 卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答第II 卷时,必须使用0.5毫米黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,..............在试题卷、草稿纸上答题无效。
..............4.考试结束,务必将试题卷和答题卡一并上交。
参考公式:球的半径为R ,它的体积343V R π=,表面积24S R π=第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数32ii -+=的实部为( )A .iB .-iC .1D .-12.设集合{|2011},{|01}M x x N x x =<=<<,则下列关系中正确的是 ( ) A .MN R =B .{|01}M N x x =<<C .N N ∈D .MN φ=3.已知平面向量a ,b 满足||1,||2,a b ==a 与b 的夹角为60︒,则“m=1”是“()a mb a -⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知抛物线22y px =上一点M (1,m )到其焦点的距离为5,则该抛物线的准线方程为( ) A .x=8B .x=-8C .x=4D .x=-45.若a 为实数,且9()ax x +的展开式中3x 的系数为94,则a=( )A .14 B .12C .2D .46.已知曲线C 的极坐标方程是1ρ=,以极点为平面直角坐标系的原点,极轴为x 的轴的正半轴,建立平面直角坐标系,直线l 的参数方程是143x ty t=-+⎧⎨=⎩(t 为参数),则直线l 与曲线C 相交所截的弦长为( )A .45B .85C .2D .37.某几何体的三视图如右图所示,则该几何体的外接球的表面积 为 ( ) A .4π B .5πC .8πD .10π 8.函数2log ||x y x=的图象大致是 ( )9.从221x y m n-=(其中,{1,2,3}m n ∈-)所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在x 轴上的双曲线方程的概率为 ( )A .12B .47C .23D .3410.2010年,我国南方省市遭遇旱灾以及洪水灾害,为防洪抗旱,某地区大面积种植树造林,如图,在区域{(,)|0,0}x y x y ≥≥ 内植树,第一棵树在1(0,1)A 点,第二棵树在1(1,1)B 点,第三棵 树在C 1(1,0)点,第四棵树2(2,0)C 点,接着按图中箭头方向每隔一个单位种一棵树,那么第2011棵树所在的点的坐标是( ) A .(13,44) B .(12,44) C .(13,43) D .(14,43)第II 卷(非选择题,共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效。
北京市十一学校2011届高三数学周练七(理)
北京市十一学校2011届高三数学周练七(理)2010-11-9一、选填题(6954''⨯=)1.函数()sin()(0)f x x ωϕω=+>的一段图象如图所示,则ω =( D ) A. 41 B.21 C.4πD.2π2.已知160sin ,3log ,222===c b a ,则a ,A .c b a <<B .b c a <<C . b a c <<D . a b c <<3. 已知321,,a a a 为一等差数列,321,,b b b 为一等比数列,且这6个数都为实数,则下面四个结论中正确的是( B )①21a a <与32a a >可能同时成立; ②21b b <与32b b >可能同时成立; ③若021<+a a ,则032<+a a ; ④若021<⋅b b ,则032<⋅b b A .①③ B .②④ C .①④ D .②③ 5.若存在负实数使得方程 112-=-x a x成立,则实数a 的取值范围是( C )A .),2(+∞ B. ),0(+∞ C. )2,0( D. )1,0(6.已知角α的终边经过点)1,1(-, 则αsin 的值是____________.227. 在锐角ABC ∆中,角C B A ,,的对边分别为c b a ,,,已知,47sin ,6,5===A c b 则==a A ______,cos __________.34,48.已知直线ex y =与函数x e x f =)(的图象相切,则切点坐标为 . ),1(e9.在矩形A B C D 中,,12== 且点F E ,分别是边CD BC ,的中点,则=⋅+AC AF AE )(_________.215二、解答题10.(15分)已知在等比数列}{n a 中,11=a ,且2a 是1a 和13-a 的等差中项. (I )求数列}{n a 的通项公式;(II )若数列}{n b 满足)(12*N n a n b n n ∈+-=,求}{n b 的前n 项和n S .解:(I )设等比数列}{n a 的公比为 q2a 是1a 和13-a 的等差中项 3312)1(2a a a a =-+=∴ 223==∴a a q )(2*111N n qa a n n n ∈==∴--(II )n n a n b +-=12)212()25()23()11(12-+-+++++++=∴n n n S)2221()]12(531[12-+++++-+++=n n21212)12(1--+⋅-+=nn n 122-+=nn11. (15分)已知函数x x x f 2cos )62sin()(+-=π.(I )若1)(=θf ,求θθcos sin ⋅的值; (II )求函数)(x f 的单调增区间. 解:(I )22cos 16sin2cos 6cos2sin )(xx x x f ++-=ππ212sin 23+=x由1)(=θf ,可得332sin =θ所以θθθ2sin 21cos sin =⋅63=(Ⅱ)当Z k k x k ∈+≤≤+-,22222ππππ,即Z k k k x ∈++-∈],4,4[ππππ时,)(x f 单调递增.所以,函数)(x f 的单调增区间是Z k k k ∈++-],4,4[ππππ12.(16分)已知函数)(x f 是定义在R 上的偶函数,且0≥x 时,x x f )21()(=.(I )求)1(-f 的值; (II )求函数)(x f 的值域A ; (III )设a x a x x g +-+-=)1()(2的定义域为集合B ,若B A ⊆,求实数a 的取值范围.解:(I ) 函数)(x f 是定义在R 上的偶函数)1()1(f f =-∴又 0≥x 时,xx f )21()(=21)1(=∴f ,21)1(=-f(II )由函数)(x f 是定义在R 上的偶函数,可得函数)(x f 的值域A 即为0≥x 时,)(x f 的取值范围.当0≥x 时,1)21(0≤<x故函数)(x f 的值域A =]1,0((III )a x a x x g +-+-=)1()(2 ∴定义域}0)1({2≥+-+-=a x a x x B方法一 :由0)1(2≥+-+-a x a x 得0)1(2≤---a x a x , 即 0)1)((≤+-x a x B A ⊆ ],,1[a B -=∴且1≥a ∴实数a 的取值范围是}1{≥a a 方法二:设a x a x x h ---=)1()(2B A ⊆当且仅当⎩⎨⎧≤≤0)1(0)0(h h 即⎩⎨⎧≤---≤-0)1(10a a a∴实数a 的取值范围是}1{≥a a。
2011年高考数学模拟试题及答案(七)
2011年高三备考数学“好题速递”系列一、选择题:1.设集合21{|2},{1}2A x xB x x =-<<=≤,则A B = ( )A .{12}x x -≤<B .1{|1}2x x -<≤C .{|2}x x <D .{|12}x x ≤<2.若nx x ⎪⎪⎭⎫ ⎝⎛-13的展开式中各项系数之和为64,则展开式的常数项为( )A .-540B .-162C .162D .5403.已知函数[]2,1,log 2)(2∈+=x x x f ,则函数)()(2x f x f y +=的值域为 ( )A .[]5,4B .⎥⎦⎤⎢⎣⎡211,4 C .⎥⎦⎤⎢⎣⎡213,4 D .[]7,4 4.将1,2,…,9这9个数平均分成三组,则每组的三个数都成等差数列的概率为 ( )A .561B .701C .3361D .4201 5.双曲线12222=-by a x (a >0,b >0)的两个焦点为F 1.F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线的离心率的取值范围为 (A .(1,3)B .(1,3]C .(3,+∞)D .[3,+∞)6.在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M .N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值为(A .23B .1010C .53D .52二.填空题:7.求值=++++)240(cos )120(cos cos 222a a a 。
8.已知实如图,点P 在正方形ABCD 所在的平面外,PD ⊥ABCD ,PD=AD ,则PA 与BD所成角的度数为 .三、解答题:9.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且3π,sin 4C A ==. (1)求sin B 的值;(2)若5c a -=ABC ∆的面积.10.设S n 为数列{a n }的前n 项和,S n =kn 2+n ,n ∈N *,其中k 是常数.(1)求a 1及a n ;(2)若对于任意的m ∈N *,a m ,a 2m ,a 4m 成等比数列,求k 的值.11.在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==,2AB =.以AC 的中点O 为球心.AC 为直径的球面交PD 于点M ,交PC 于点N . (1)求直线CD 与平面ACM 所成的角的正弦值; (2)求点N 到平面ACM 的距离.参考答案一、选择题 1.【答案】A【解析】本题主要考查集合的基本运算以及简单的不等式的解法. 属于基础知识.基本运算的考查. ∵1{|2},2A x x =-<<{}2{1}|11B x x x x =≤=-≤≤,∴ {12}A B x x =-≤< ,故选A .2.解:若nx x ⎪⎪⎭⎫ ⎝⎛-13的展开式中各项系数之和为2n =64,6n =,则展开式的常数项为3336(C ⋅=-540,选 A .3.B 由x x x x f x f y 22222log 34log 2log 2)()(+=+++=+=,注意到为使得)()(2x f x f y +=有意义必有212≤≤x 得21≤≤x ,从而2114≤≤y . 4.解析:9个数分成三组,共有33333639A C C C 组,其中每组的三个数均成等差数列,有{(1,2,3),(4,5,6),(7,8,9)}.{(1,2,3),(4,6,8),(5,7,9)}.{(1,3,5),(2,4,6),(7,8,9)}.{(1,4,7),(2,5,8),(3,6,9)}.{(1,5,9),(2,3,4),(6,7,8)},共5组. ∴所求概率为5615785=⨯⨯.答案:A5.解析:如图,设|PF 2|=m,∠F 1PF 2=θ(0<θ≤π),当P 在右顶点处,θ=π,ac e 22==m m m m θcos 4)2(222-+=θcos 45-.∵-1<cosθ≤1,∴e ∈(1,3]. 答案:B6.解析:如图建立空间直角坐标系,把D 点视作原点O ,分别沿DA .DC .1DD 方向为x 轴.y 轴.z 轴的正方向,则A (1,0,0),M (1,21,1),C (0,1,0),N (1,1,21),∴AM=(1,21,1)-(1,0,0)=(0,21,1),CN=(1,1,21)-(0,1,0)=(1,0,21).故AM ·CN =0×1+21×0+1×21=21.又||=251)21(0222=++,|CN|=25)21(01222=++, 设α为直线AM 与CN 所成的角,∴cosα=52252521||||=∙=∙CN AM . 答案:D二、填空题7.分析:题目中“求值”二字提供了这样信息:答案为一定值,于是不妨令0=a ,得结果为23。
2011届高三数学《排列与组合》单元检测题
2010届高三数学单元检测:统计一、选择题1.从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[)85.4,8.4( g )范围内的概率是( )A .0.62B .0.38C .0.02D .0.682.某产品分为甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为03.0,出现丙级品的概率为01.0,则对产品抽查一次抽得正品的概率是( ) A .09.0 B .98.0 C .97.0 D .96.03.某企业有职工150人,其中高级职称15人,中级职称45人,一般职员90人,现抽取30人进行分层抽样,则各职称人数分别为( )A .5,10,15B .3,9,18C .3,10,17D .5,9,16 4.在画两个变量的散点图时,下面哪个叙述是正确的( ) (A)预报变量在x 轴上,解释变量在y 轴上 (B)解释变量在x 轴上,预报变量在y 轴上 (C)可以选择两个变量中任意一个变量在x 轴上 (D)可以选择两个变量中任意一个变量在y 轴上5.一个容量为40的样本数据分组后组数与频数如下:[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;[25.9,26.2),8;[26.2,26.5),8;[26.5,26.8),4;则样本在[25,25.9)上的频率为( )A .203B .101C .21D .416.A .14和0.14B .0.14和14C .141和0.14 D . 31和141 7.对于两个变量之间的相关系数,下列说法中正确的是( ) A .r 越大,相关程度越大B .()0,r ∈+∞,r 越大,相关程度越小,r 越小,相关程度越大C .1r ≤且r 越接近于1,相关程度越大;r 越接近于0,相关程度越小D .以上说法都不对8.三维柱形图中柱的高度表示的是( )A .各分类变量的频数B .分类变量的百分比C .分类变量的样本数D .分类变量的具体值 9.下列关于三维柱形图和二维条形图的叙述正确的是: ( ) A .从三维柱形图可以精确地看出两个分类变量是否有关系B .从二维条形图中可以看出两个变量频数的相对大小,从三维柱形图中无法看出相对频数的大小C .从三维柱形图和二维条形图可以粗略地看出两个分类变量是否有关系D .以上说法都不对10.设随机变量ξ服从标准正态分布(01)N ,,已知( 1.96)0.025Φ-=,则(|| 1.96)P ξ<=A .0.025B .0.050C .0.950D .0.975二、填空题( 5 小题,每小题 5 分)11.实施简单抽样的方法有________、____________12.采用简单随机抽样从含10个个体的总体中抽取一个容量为4的样本,个体 a 前两次未被抽到,第三次被抽到的概率为____________________13.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样考虑用系统抽样,则分段的间隔k 为_______________ 14.若一组观测值(x 1,y 1)(x 2,y 2)…(x n ,y n )之间满足y i =bx i +a+e i (i=1、2. …n)若e i 恒为0,则R 2为_____15.统计推断,当______时,有95 %的把握说事件A 与B 有关;当______时,认为没有充分的证据显示事件A 与B 是有关的. 三、解答题( 6 小题,共 75 分)16.(12分)一个总体中含有4个个体,从中抽取一个容量为2的样本,说明为什么在抽取过程中每个个体被抽取的概率都相等.17.(12分)在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。
湖南省长沙市一中2011届高三月考(七)数学文
湖南省长沙市一中2011届高三月考(七)2011 届 高 三 月 考(七)数 学 试 题(文)(考试范围:高考文科内容(不含优选法应用))本试题卷包括选择题、填空题和解答题三部分,共6页。
时量120分钟。
满分150分。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数z =11+2i (i 为虚数单位)所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤12,m =sin20°,则下列关系中正确的是( )A .m ⊆AB .m ∉AC .{}m ∈AD . {}A m ⊂≠3.设命题p :∀x ∈R ,|x |≥x ;q :∃x ∈R ,1x=0.则下列判断正确的是( )A .p 假q 真B .p 真q 假C .p 真q 真D .p 假q 假4.下列函数中,既是周期为π的周期函数又是偶函数的是 ( ) A .y =10x B .y =tan x C .y =sin2x D .y =|cosx|5.某公司2005~2010年的年利润x (单位:百万元)与年广告支出y (单位:百万元)的统计资料如下表所示:( )A .利润中位数是16,x 与y 有正线性相关关系B .利润中位数是18,x 与y 有负线性相关关系C .利润中位数是17,x 与y 有正线性相关关系D .利润中位数是17,x 与y 有负线性相关关系6.双曲线x 2a 2-y 2b 2=1(a ,b>0)的渐近线与圆(x -3)2+y 2=3相切,则双曲线的离心率为( )A .62B . 3C .2 3D .67.设函数()221log ()x f x a x+=-在区间()0,+∞内有零点,则实数a 的取值范围是( )A .(0,+∞)B .(-∞,1]C .[1,+∞)D .[2,+∞)8.定义{},,min ,,.b a b a b a a b ≥⎧=⎨<⎩设实数x ,y 满足约束条件2211x y ⎧≤⎪⎨≤⎪⎩,则{}min 2,-z x y x y =+的取值范围为( )A .[-2,12]B .[-52,-12]C .[-2,3]D .[-3,32]二、填空题:本大题共7小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上. 9.在极坐标系中,A (1,π6)、B (2,π2)两点的距离为 .10.设平面向量a =(1,2),b =(-2,y ),若a ∥b ,则||3a +b 等于 .11.一空间几何体的三视图(单位:cm )如图所示,则此几何体的体积是cm 3.12.若{a n }为等差数列,S n 是其前n 项和.且S 11=22π3,则tan a 6的值为 .13.直线l :x -y =0与椭圆x 22+y 2=1相交A 、B 两点,点C 是椭圆上的动点,则△ABC 面积最大值为 .14.直线l :x -3y =0与曲线⎪⎩⎪⎨⎧ϕ=ϕ+=sin 2cos 2:y a x C (φ为参数,a >0)有两个公共点A ,B ,且||AB =2,则实数a 的值为 ;在此条件下,以直角坐标系的原点为极点,x轴正方向为极轴建立极坐标系,则曲线C 的极坐标方程为 .15.对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),定义:设f ″(x )是函数y =f (x )的导数y =f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点()x 0,f (x 0)为函数y =f (x )的“拐点”.有同学发现“任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心;且“拐点”就是对称中心.”请你根据这一发现,求: (1)函数f (x )=x 3-3x 2+3x 对称中心为 ;(2)若函数g (x )=13x 3-12x 2+3x -512+1x -12,则g (12011)+g (22011)+g (32011)+g (42011)+…+g (20102011)= .三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)已知函数f (x )=a sin x +b cos (x -π3)的图象经过点(π3,12),(7π6,0).(1)求实数a ,b 的值;(2)求函数f (x )在[0,π]上的单调递增区间.17.(本小题满分12分)如图:在矩形ABCD 中,AB =5,BC =3,沿对角线BD 把△ABD 折起,使A 移到A1点,过点A 1作A 1O ⊥平面BCD ,垂足O 恰好落在CD 上. (1)求证:BC ⊥A 1D ;(2)求直线A 1B 与平面BCD 所成角的正弦值. 18.(本小题满分12分)某校高一某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求分数在[50,60)的频率及全班人数;(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高; (3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率. 19.(本小题满分13分)工厂生产某种产品,次品率p 与日产量x (万件)间的关系为⎪⎪⎩⎪⎪⎨⎧>≤<-=c x c x x p ,320,61,(c 为常数,且0<c <6).已知每生产1件合格产品盈利3元,每出现1件次品亏损1.5元.(1)将日盈利额y (万元)表示为日产量(万件)的函数;(2)为使日盈利额最大,日产量应为多少万件?(注:次品率=次品数产品总数×100%)20.(本小题满分13分)已知f (x )=m x (m 为常数,m >0且m ≠1). 设f (a 1),f (a 2),…,f (a n )…(n ∈N )是首项为m 2,公比为m 的等比数列. (1)求证:数列{a n }是等差数列; (2)若b n =a n ·f (a n ),且数列{b n }的前n 项和为S n ,当m =2时,求S n ; (3)若c n =f (a n )lg f (a n ),问是否存在m ,使得数列{c n }中每一项恒小于它后面的项?若存在,求出m 的范围;若不存在,请说明理由.21.(本小题满分13分)已知动圆G 过点F (32,0),且与直线l :x =-32相切,动圆圆心G 的轨迹为曲线E .曲线E 上的两个动点A (x 1,y 1)和B (x 2,y 2).(1)求曲线E 的方程;(2)已知OA ·OB =-9(O 为坐标原点),探究直线AB 是否恒过定点,若过定点,求出定点坐标;若不过,请说明理由.(3)已知线段AB 的垂直平分线交x 轴于点C ,其中x 1≠x 2且x 1+x 2=4.求△ABC 面积的最大值.参考答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1—5 DDBDC 6—8 ACD二、填空题:本大题共7小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上. 9.在极坐标系中,A (1,π6)、B (2,π2)两点的距离为.10.设平面向量a =(1,2),b =(-2,y ),若a ∥b ,则||3a +b 等于5. 11.一空间几何体的三视图(单位:cm )如图所示,则此几何体的体积是4πcm 3. 12.若{a n }为等差数列,S n 是其前n 项和.且S 11=22π3,则tan a 6的值为13.直线l :x -y =0与椭圆x 22+y 2=1相交A 、B 两点,点C 是椭圆上的动点,则△ABC 面14.直线l :x -3y =0与曲线⎪⎩⎪⎨⎧ϕ=ϕ+=sin 2cos 2:y a x C (φ为参数,a >0)有两个公共点A ,B ,且||AB =2,则实数a 的值为 2 ;在此条件下,以直角坐标系的原点为极点,x 轴正方向为极轴建立极坐标系,则曲线C 的极坐标方程为 ρ2-4ρcos θ+2=0 . 15.(1)函数f (x )=x 3-3x 2+3x 对称中心为 (1,1) ;(2)若函数g (x )=13x 3-12x 2+3x -512+1x -12,则g (12011)+g (22011)+g (32011)+g (42011)+…+g (20102011)= 2010 .三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.解:(1)∵函数f (x )=a sin x +b cos (x -π3)的图象经过点(π3,12),(7π6,0).∴12102b a +=⎨⎪-=⎪⎩,(4分) 解得:a =3,b =-1.(5分)(2)由(1)知:f (x )=3sin x -cos (x -π3)=32sin x -12cos x =sin (x -π6).(9分)由2k π-π2≤x -π6≤2k π+π2,解得2k π-π3≤x ≤2k π+2π3k ∈Z .∵x ∈[0,π],∴x ∈[0,2π3],∴函数f (x )在[0,π]上的单调递增区间为[0,2π3].(12分)17.解:(1)因为A 1O ⊥平面BCD ,BC ⊂平面BCD ,∴BC ⊥A 1O ,因为BC ⊥CD ,A 1O ∩CD =O ,∴BC ⊥面A 1C D . 因为A 1D ⊂面A 1CD ,∴BC ⊥A 1 D .(6分)(2)连结BO ,则∠A 1BO 是直线A 1B 与平面BCD 所成的角. 因为A 1D ⊥BC ,A 1D ⊥A 1B ,A 1B ∩BC =B ,∴A 1D ⊥面A 1B C .A 1C ⊂面A 1BC ,∴A 1D ⊥A 1 C .在Rt △DA 1C 中,A 1D =3,CD =5,∴A 1C =4.根据S △A 1CD =12A 1D ·A 1C =12A 1O ·CD ,得到A 1O =125,在Rt △A 1OB 中,sin ∠A 1BO =A 1O A 1B =1255=1225.所以直线A 1B 与平面BCD 所成角的正弦值为1225.(12分)18.解:(1)分数在[50,60)的频率为0.008×10=0.08,(2分)由茎叶图知:分数在[50,60)之间的频数为2,所以全班人数为20.08=25,(4分) (2)分数在[80,90)之间的频数为25-2-7-10-2=4;(6分) 频率分布直方图中[80,90)间的矩形的高为425÷10=0.016.(8分)(3)将[80,90)之间的4个分数编号为1,2,3,4,[90,100]之间的2个分数编号为5,6, 在[80,100]之间的试卷中任取两份的基本事件为: (1,2),(1,3),(1,4),(1,5),(1,6), (2,3),(2,4),(2,5),(2,6), (3,4),(3,5),(3,6), (4,5),(4,6), (5,6)共15个,(10分)其中,至少有一个在[90,100]之间的基本事件有9个, 故至少有一份分数在[90,100]之间的概率是915=0.6.(12分)19.解:(1)当x >c 时,p =23,y =13·x ·3-23·x ·32=0;(2分)当0<x ≤c 时,p =16-x,∴y =(1-16-x )·x ·3-16-x ·x ·32=32·9x -2x26-x .(4分)∴日盈利额y (万元)与日产量x (万件)的函数关系为23(92)02(6)0 x x x c y x x c ⎧-<≤⎪=-⎨⎪>⎩.(5分)(2)由(1)知,当x >c 时,日盈利额为0. 当0<x ≤c 时,∵y =3(9x -2x 2)2(6-x ),∴y ′=32·(9-4x )(6-x )+(9x -2x 2)(6-x )2=3(x -3)(x -9)(6-x )2,令y ′=0,得x =3或x =9(舍去).∴①当0<c <3时,∵y ′>0,∴y 在区间(0,c ]上单调递增, ∴y 最大值=f (c )=3(9c -2c 2)2(6-c ),此时x =c ;②当3≤c <6时,在(0,3)上,y ′>0,在(3,c )上y ′<0, ∴y 在(0,3)上单调递增,在(3,c )上单调递减. ∴y 最大值=f (3)=92.综上,若0<c <3,则当日产量为c 万件时,日盈利额最大; 若3≤c <6,则当日产量为3万件时,日盈利额最大.(13分)20.解:(1)由题意f (a n )=m 2·m n +1,即ma n ,=m n +1.∴a n =n +1,(2分) ∴a n +1-a n =1,∴数列{a n }是以2为首项,1为公差的等差数列.(4分)(2)由题意b n =a n f (a n )=(n +1)·m n +1,当m =2时,b n =(n +1)·2n +1∴S n =2·22+3·23+4·24+…+(n +1)·2n +1 ①(6分) ①式两端同乘以2,得2S n =2·23+3·24+4·25+…+n ·2n +1+(n +1)·2n +2 ② ②-①并整理,得S n =-2·22-23-24-25-…-2n +1+(n +1)·2n +2=-22-(22+23+24+…+2n +1)+(n +1)·2n +2=-22-22(1-2n )1-2+(n +1)·2n +2=-22+22(1-2n )+(n +1)·2n +2=2n +2·n .(9分)(3)由题意c n =f (a n )·lg f (a n )=m n +1·lg m n +1=(n +1)·m n +1·lg m ,要使c n <c n +1对一切n ∈N *成立,即(n +1)·m n +1·lg m <(n +2)·m n +2·lg m ,对一切n ∈N *成立, ①当m >1时,lg m >0,所以n +1<m (n +2)对一切n ∈N *恒成立;(11分) ②当0<m <1时,lg m <0,所以等价使得n +1n +2>m 对一切n ∈N *成立,因为n +1n +2=1-1n +2的最小值为23,所以0<m <23.综上,当0<m <23或m >1时,数列{c n }中每一项恒小于它后面的项.(13分)21.解:(1)依题意,圆心G 到定点F (32,0)的距离与到直线l :x =-32的距离相等,∴曲线E 是以F (32,0)为焦点,直线l :x =-32为准线的抛物线.∴曲线E 的方程为y 2=6x .(3分)(2)当直线AB 不垂直x 轴时,设直线AB 方程为y =kx +b (k ≠0). 由26y kx b y x=+⎧⎨=⎩消去x 得ky 2-6y +6b =0,Δ=36-24kb >0. y 1y 2=6b k ,x 1x 2=y 216·y 226=(y 1y 2)236=b 2k2.OA ·OB =x 1x 2+y 1y 2=b 2k 2+6bk=-9,∴b 2+6kb +9k 2=0,(b +3k )2=0,b =-3k ,满足Δ>0.∴直线AB 方程为y =kx -3k ,即y =k (x -3), ∴直线AB 恒过定点(3,0).(7分)当直线AB 垂直x 轴时,可推得直线AB 方程为x =3,也过点(3,0). 综上,直线AB 恒过定点(3,0).(8分) (3)设线段AB 的中点为M (x 0,y 0),则 x 0=x 1+x 22=2,y 0=y 1+y 22,k AB =y 1-y 2x 1-x 2=y 1-y 2y 216-y 226=6y 1+y 2=3y 0. ∴线段AB 的垂直平分线的方程为y -y 0=-y 03(x -2).令y =0,得x =5,故C (5,0)为定点.又直线AB 的方程为y -y 0=3y 0(x -2),与y 2=6x 联立,消去x 得y 2-2y 0y +2y 20-12=0. 由韦达定理得y 1+y 2=2y 0,y 1y 2=2y 20-12. ∴|AB |=1+1k 2AB ·|y 1-y 2|=(1+y 209)[(y 1+y 2)2-4y 1y 2]=(1+y 209)[4y 20-4(2y 20-12)]=23(9+y 20)(12-y 20). 又点C 到直线AB 的距离为h =|CM |=9+y 20,∴S △ABC =12|AB |·h =13(9+y 20)2(12-y 20) 令t =9+y 20(t >9),则12-y 20=21-t .设f (t )=(9+y 20)2(12-y 20)=t 2(21-t )=-t 3+21t 2, 则f ′(t )=-3t 2+42t =-3t (t -14).当9<t <14时,f ′(t )>0;当t >14时,f ′(t )<0.∴f (t )在(9,14)上单调递增,在(14,+∞)上单调递减.∴当t =14时,[f (t )]max =142×7.故△ABC 面积的最大值为1437.(13分)注:第(3)问也可由AB 直线方程y =kx +b 及x 1+x 2=4,推出b =3k -2k ,然后转化为求关于k 的函数的最值问题.。
江苏省常州市四星级重点高中2011届高考冲刺数学复习单元卷:三角与解几 (详细解答)
江苏省常州市中学2011高考冲刺复习单元卷—三角与解几一、填空题:(本题共10个小题,每题4分,共40分)1、已知向量a 与b 的夹角为120°,且5||,2||==,则=⋅-)2( 。
2、函数1312sin)(+-=x x x f π的零点个数为 个。
3、已知函数1()11x f x x -⎧=⎨≥⎩, , <1, 则不等式(1)(1)3x f x x +⋅+≤-的解集为 。
4、设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线sin 0x A ay c ⋅++= 与sin sin 0bx y B C -⋅+=的位置关系是 。
50y +-=截圆224x y +=得的劣弧所对的圆心角是 。
6、若把函数cos y x x =+的图象向右平移(0)m m >个单位后所得图象关于y 轴对称,则m 的最小值为 。
7、已知直线(14)(23)(312)0()k x k y k k R +---+=∈所经过的定点F 恰好是椭圆C 的一个焦点,且椭圆C 上的点到点F 的最大距离为8.则椭圆C 的标准方程为 。
8、已知方程abx x x x b a x a x 则且的两根为,10,,01)2(21212<<<=+++++的取值范围 。
9、设曲线()1x y ax e =-在点()01,A x y 处的切线为1l ,曲线()1xy x e -=-在点()02,B x y 处的切线为2l ,若存在0302x ≤≤,使得12l l ⊥,则实数a 的取值范围是 。
10、已知函数())2f x x π=≤≤,则()f x 的值域为 。
二、解答题:(本题共4大题,共60分)11、在平面直角坐标系中,点21(,cos )2P θ在角α的终边上,点2(sin ,1)Q θ-在角β的终边上,且12OP OQ ⋅=- . (1)求cos 2θ; (2)求sin()αβ+的值.12、设()f x 是定义在[]1,1-上的偶函数, ()()f x g x 与图像关于直线1x =对称,且当[]2,3x ∈时,3()3(2)4(2)g x x x =---。
2011年高考数学试题及答案
2011年高考数学试题及答案(以下为2011年高考数学试题及答案,仅供参考)第一部分:选择题1. 已知函数 f(x) = 2x^2 + 3x - 2,那么 f(-1) 的值为多少?A. -2B. 0C. 2D. 4答案:A2. 已知等差数列 {an} 的公差 d = 4,a1 = 3,a3 = 9,那么 a10 的值为多少?A. 20B. 21C. 22D. 23答案:D3. 若sinθ = 3/5,那么cosθ 的值为多少?A. -4/5C. 3/4D. 4/5答案:A4. 已知ΔABC 中,∠B = 90°,AB = 3,BC = 4,那么 AC 的值为多少?A. 5B. 7C. 9D. 12答案:A5. 设函数 f(x) = x^3 - 2x^2 + 5x - 6,那么 f '(x) 的导数为多少?A. 3x^2 - 4x + 5B. 3x^2 - 4x - 5C. x^3 - x^2 + 5D. x^3 - x^2 - 5答案:A第二部分:填空题1. 随机抽取一个数,该数为整数的概率是 _______。
2. 在仅含正整数的数列 {an} 中,已知 a1 = 1,a2 = 2,a(n+1) = an + a(n-1),则 a5 的值为 _______。
答案:73. 下列四个数中,最小的数是 _______。
A. 0.3^0.4B. 0.4^0.3C. 0.2^0.5D. 0.5^0.2答案:C第三部分:解答题1. 解方程 2^x - 4 * 2^(x-1) + 8 * 2^(x-2) = 0。
解答:设 t = 2^x,则原方程可化简为 t - 4t + 8t = 0,即 5t = 0。
因此,t = 0。
代回原方程中,得 2^x = 0。
由指数函数图像可知,2^x 恒大于 0,所以无实数解。
2. 计算以下定积分:∫(0, π/2) sin(x) dx。
解答:∫(0, π/2) sin(x) dx = [-cos(x)](0, π/2)= -cos(π/2) + cos(0)= -0 + 1= 13. 已知等差数列 {an} 的首项 a1 = 2,公差 d = 3,若 a5 和 a9 分别为首次出现的素数,求 a5 的值。
2011届高三数学综合检测卷及答案
Read xIf x >0 Then1y x ←+Else1y x ←-End If Print y (第7题)2011届高三数学综合检测卷一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上.) 1.复数ii4321+-在复平面上对应的点位于第 ▲ 象限. 2.设全集{1,3,5,7}U =,集合{1,5}M a =-,M U ⊆,{}5,7U M =ð,则实数a 的值为 ▲ .3.过点()1,0且倾斜角是直线210x y --=的倾斜角的两倍的直线方程是 ▲ . 4.若连续投掷两枚骰子分别得到的点数m 、n 作为点P 的坐标()n m 、,求点P 落在圆1622=+y x 内的概率为 ▲ .5.若双曲线2221613x y p-=的左焦点在抛物线22y px =的准线上,则p 的值为 ▲ .6.如图所示,设P 、Q 为△ABC 内的两点,且2155AP AB AC =+ , AQ =23AB+14AC ,则△ABP 的面积与△ABQ 的面积之比为 ▲ .7.下图是根据所输入的x 值计算y 值的一个算法程序,若x 依次取数1100n ⎧⎫-⎨⎬⎩⎭()n N +∈ 中的前200项,则所得y 值中的最小值为 ▲ .8.在ABC ∆中,若,,AB AC AC b BC a ⊥==,则ABC ∆的外接圆半径r ,将此结论拓展到空间,可得出的正确结论是:在四面体S ABC -中,若SA SB SC 、、两两垂直,,,SA a SB b SC c ===,则四面体S ABC -的外接球半径R = ▲ .9.若a 是12b +与12b -的等比中项,则22aba b+的最大值为 ▲ .10.空间直角坐标系中,点,3sin ),(0,3cos ,4cos )A B αββα-,则A 、B 两点间距离的最大值为 ▲ .(第6题)11请将错误的一个改正为lg ▲ = ▲ .12.如图,l 1、l 2、l 3是同一平面内的三条平行直线,l 1与l 2间的距离是1,l 2与l 3间的距离是2,正三角形ABC 的三顶点分别在l 1、l 2、l 3上,则△ABC 的边长是 ▲ .13.已知数列{}n a 、{}n b 都是等差数列,n n T S ,分别是它们的前n 项和,并且317++=n n T S n n ,则1612108221752b b b b a a a a ++++++= ▲ .14.已知函数)(x f 的值域为[][]0,4(2,2)x ∈-,函数()1,[2,2g x a x x =-∈-,1[2,2]x ∀∈-,总0[2,2]x ∃∈-,使得01()()g x f x =成立,则实数a 的取值范围是▲ .二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.)15.(本小题满分14分)在ABC ∆中,a 、b 、c 分别是三内角A 、B 、C 的对应的三边,已知222b c a bc +=+。
2011学年第二学期高三数学区期末统测试卷理科答案
即 AB 2 OM 成立 ②当切线 l 的斜率不存在时, A( 2, 2), B ( 2, 2)或A( 2, 2), B ( 2, 2) 此时 AB 2 2, OM
2 ,即 AB 2 OM 成立-------------------10 分
(3)由条件可知:两条渐近线分别为 l1 : 2 x y 0; l2 : 2 x y 0 -------------------11 分 设双曲线 C 上的点 P ( x0 , y0 ) ,
因为平面 CDE 平面 CD1O ,所以 m n 0 ,得 2 -------------------14 分
5 17 16 5 17 x 8 1 5 17 x 21.解: (1) x 2 2 x 2 --------2 分 2 2 0 x 2 0 x 2 4 x 1 2 x 3 -------------4 分 2 x 4
若 b1 b2 b3 bn0 ,则 a b1 a b2 a b3 a bn0 即对数列 bn 中的任意一项 bi (1 i n0 )
a bi b1 (n0 i )d bn0 1i bn -------------------6 分
12. 9 15.A
13.
81 2
17.C
14. 0, a b 18.D
2
2
16.B
19.解: (1)由正弦定理
c a sin C a 2a 2 5 -------------------4 分 ,得 c sin C sin A sin A
(2)由余弦定理,得 cos A
2011届高考数学复习资料汇编第7单元立体几何(真题解析+最新模拟)
2011年最新高考+最新模拟——立体几何1.【2010·浙江理数】设,是两条不同的直线,是一个平面,则下列命题正确的是()A.若,,则B.若,,则C.若,,则D.若,,则【答案】B【解析】可对选项进行逐个检查.本题主要考察了立体几何中线面之间的位置关系及其中的公理和判定定理,也蕴含了对定理公理综合运用能力的考察,属中档题.2.【2010·全国卷2理数】与正方体的三条棱、、所在直线的距离相等的点()A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个【答案】D【解析】直线上取一点,分别作垂直于于则分别作,垂足分别为M,N,Q,连PM,PN,PQ,由三垂线定理可得,PN⊥PM⊥;PQ⊥AB,由于正方体中各个表面、对等角全等,所以,∴PM=PN=PQ,即P到三条棱AB、CC1、A1D1.所在直线的距离相等所以有无穷多点满足条件,故选D.3.【2010·全国卷2理数】已知正四棱锥中,,那么当该棱锥的体积最大时,它的高为()A.1B.C.2D.3【答案】C【解析】本试题主要考察椎体的体积,考察告辞函数的最值问题.设底面边长为a,则高所以体积,设,则,当y取最值时,,解得a=0或a=4时,体积最大,此时,故选C.4.【2010·陕西文数】若某空间几何体的三视图如图所示,则该几何体的体积是()A.2B.1C.D.【答案】B【解析】本题考查立体图形三视图及体积公式如图,该立体图形为直三棱柱,所以其体积为.5.【2010·辽宁文数】已知是球表面上的点,,,,,则球的表面积等于()A.4B.3C.2D.【答案】A【解析】由已知,球的直径为,表面积为6.【2010·辽宁理数】有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a的取值范围是()A.(0,)B.(1,)C.(,)D.(0,)【答案】A【解析】本题考查了学生的空间想象能力以及灵活运用知识解决数学问题的能力.根据条件,四根长为2的直铁条与两根长为a的直铁条要组成三棱镜形的铁架,有以下两种情况:(1)地面是边长为2的正三角形,三条侧棱长为2,a,a,如图,此时a可以取最大值,可知AD=,SD=,则有<2+,即,即有a<(2)构成三棱锥的两条对角线长为a,其他各边长为2,如图所示,此时a>0;综上分析可知a∈(0,)7.【2010·全国卷2文数】与正方体ABCD—A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点()A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个【答案】D【解析】本题考查了空间想象能力.∵到三条两垂直的直线距离相等的点在以三条直线为轴,以正方体边长为半径的圆柱面上,∴三个圆柱面有无数个交点.8.【2010·全国卷2文数】已知三棱锥中,底面为边长等于2的等边三角形,垂直于底面,=3,那么直线与平面所成角的正弦值为()A. B. C.D.【答案】D【解析】本题考查了立体几何的线与面、面与面位置关系及直线与平面所成角.过A作AE垂直于BC交BC于E,连结SE,过A作AF垂直于SE交SE于F,连BF,∵正三角形ABC,∴ E为BC中点,∵ BC⊥AE,SA⊥BC,∴ BC⊥面SAE,∴ BC⊥AF,AF⊥SE,∴ AF⊥面SBC,∵∠ABF为直线AB与面SBC所成角,由正三角形边长3,∴,AS=3,∴ SE=,AF=,∴.9.【2010·江西理数】过正方体的顶点A作直线L,使L与棱,,所成的角都相等,这样的直线L可以作()A.1条B.2条C.3条D.4条【答案】D【解析】考查空间感和线线夹角的计算和判断,重点考查学生分类、划归转第二类:化的能力.第一类:通过点A位于三条棱之间的直线有一条体对角线AC1,在图形外部和每条棱的外角和另2条棱夹角相等,有3条,合计4条.10.【2010·安徽文数】一个几何体的三视图如图,该几何体的表面积是()A.372B.360C.292D.280【答案】B【解析】该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和. 把三视图转化为直观图是解决问题的关键.又三视图很容易知道是两个长方体的组合体,画出直观图,得出各个棱的长度.把几何体的表面积转化为下面长方体的全面积加上面长方体的4个侧面积之和..11.【2010·重庆文数】到两互相垂直的异面直线的距离相等的点()A.只有1个B.恰有3个C.恰有4个D.有无穷多个【答案】D【解析】放在正方体中研究,显然,线段、EF、FG、GH、HE的中点到两垂直异面直线AB、CD的距离都相等,所以排除A、B、C,选D.亦可在四条侧棱上找到四个点到两垂直异面直线AB、CD的距离相等.12.【2010·浙江文数】若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()A.cm3B.cm3C.cm3D.cm3【答案】B【解析】本题主要考察了对三视图所表达示的空间几何体的识别以及几何体体积的计算,属容易题.13.【2010·山东文数】在空间,下列命题正确的是()A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行【答案】D14.【2010·北京文数】如图,正方体的棱长为2,动点E、F 在棱上.点Q是CD的中点,动点P在棱AD上,若EF=1,DP=x,E=y(x,y 大于零),则三棱锥P-EFQ的体积()A.与x,y都有关;B.与x,y都无关;C.与x有关,与y无关;D.与y有关,与x无关;【答案】C15.【2010·北京文数】一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该集合体的俯视图为:()【答案】C16.【2010·北京理数】如图,正方体ABCD-的棱长为2,动点E、F在棱上,动点P,Q分别在棱AD,CD上,若EF=1,E=x,DQ=y,DP=z(x,y,z大于零),则四面体PEFQ的体积()A.与x,y,z都有关B.与x有关,与y,z无关C.与y有关,与x,z无关D.与z有关,与x,y无关【答案】D17.【2010·四川理数】半径为的球的直径垂直于平面,垂足为,是平面内边长为的正三角形,线段、分别与球面交于点M,N,那么M、N两点间的球面距离是()A. B.C. D.【答案】A【解析】由已知,AB=2R,BC=R,故tan∠BAC=,cos∠BAC=,连结OM,则△OAM为等腰三角形,AM=2AOcos∠BAC=,同理AN=,且MN∥CD ,而AC=R,CD=R,故MN:CD=AN:AC MN=,连结OM、ON,有OM=ON=R,于是cos∠MON=,所以M、N两点间的球面距离是 .18.【2010·广东理数】如图1,△ ABC为三角形,////,⊥平面ABC 且3== =AB,则多面体△ABC -的正视图(也称主视图)是【答案】D19.【2010·广东文数】20.【2010·福建文数】若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于 ( )A. B.2C. D.6【答案】D【解析】本题考查立体几何中的三视图,考查同学们识图的能力、空间想象能力等基本能力.由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,所以底面积为,侧面积为,选D.21.【2010·全国卷1文数】已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为()A. B. C. D.【答案】B【解析】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.过CD作平面PCD,使AB⊥平面PCD,交AB与P,设点P到CD的距离为,则有,当直径通过AB与CD的中点时,,故.22.【2010·全国卷1文数】正方体-中,与平面所成角的余弦值为()A. B. C. D.【答案】D【解析】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D到平面AC的距离是解决本题的关键所在,这也是转化思想的具体体现.方法一:因为BB1//DD1,所以B与平面AC所成角和DD1与平面AC所成角相等,设DO⊥平面AC,由等体积法得,即.设DD1=a,则,.所以,记DD与平面AC所成角为,则1,所以.方法二:设上下底面的中心分别为;与平面AC所成角就是B与平面AC所成角,.23.【2010·全国卷1文数】直三棱柱中,若,,则异面直线与所成的角等于()A.30°B.45°C.60°D.90°【答案】C【解析】本小题主要考查直三棱柱的性质、异面直线所成的角、异面直线所成的角的求法.延长CA到D,使得,则为平行四边形,就是异面直线与所成的角,又三角形为等边三角形,.24.【2010·湖北文数】用、、表示三条不同的直线,表示平面,给出下列命题:①若∥,∥,则∥;②若⊥,⊥,则⊥;③若∥,∥,则∥;④若⊥,⊥,则∥.A. ①②B. ②③C. ①④ D.③④25.【2010·山东理数】在空间,下列命题正确的是()A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行【答案】D【解析】考查空间直线与平面的位置关系及线面垂直与平行的判定与性质,属基础题.由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可以得出答案.26.【2010·福建理数】所以∥,故∥∥,所以选项A、C正确;因为平面,∥,所以平面,又平面,故,所以选项B也正确,故选D.【命题意图】本题考查空间中直线与平面平行、垂直的判定与性质,考查同学们的空间想象能力和逻辑推理能力.27.【2010·湖北省武汉市四月调研】若a、b是异面直线,、是两个不同平面,,则()A.l与a、b分别相交 B.l与a、b都不相交C.l至多与a、b中一条相交 D.l至少与a、b中的一条相交【答案】B【解析】假设l与a、b均不相交,则l∥a,l∥b,从而a∥b与a、b是异面直线矛盾.故l至少与a、b中的一条相交选D.28.【2010·北京西城一模】如图,平面平面,=直线,是内不同的两点,是内不同的两点,且直线,分别是线段的中点.下列判断正确的是()A.当时,两点不可能重合B.两点可能重合,但此时直线与不可能相交C.当与相交,直线平行于时,直线可以与相交D.当是异面直线时,直线可能与平行【答案】B【解析】若两点重合,由知,从而平面,故有,故B正确.29.【2010·宁波市二模】已知表示两个互相垂直的平面,表示一对异面直线,则的一个充分条件是()A. B. C. D.【答案】D选择【解析】依题意,a⊥α ,则a平行β或在β内,由于b⊥β,则,D.30.【2010·上海市浦东新区4月二模】“直线与平面没有公共点”是“直线与平面平行”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】C【解析】由直线与平面平行的定义知,选C.31.【2010··北京崇文一模】已知是两条不同直线,是三个不同平面,下列命题中正确的为 ( )A.若则 B.若则C.若,则 D.若则【答案】B【解析】A中可以是任意关系;B正确;C中平行于同一平面,其位置关系可以为任意.D中平行于同一直线的平面可以相交或者平行.32.【2010·甘肃省部分普通高中第二次联合考试】已知直线,平面,且,给出下列命题:①若∥,则m⊥;②若⊥,则m∥;③若m⊥,则∥;④若m∥,则⊥其中正确命题的个数是()A.1 B.2 C.3D.4【答案】B①正确;对【解析】对于①∵,若∥,∴m⊥β,所以m⊥,于②,若⊥,则m∥β或m在β内,m与l可以平行可以异面还可以相交,所以②错;对于③∵,若m⊥,则与β可以相交,③错;对于④若m ∥,则l⊥,∴⊥,④正确,选择B.33.【2010·湖北六市四月联考】给出互不相同的直线、、和平面、,下列四个命题:①若,,,则与不共面;②若、是异面直线,,,且,,则;③若,,,,,则;④若,,,则其中真命题有()A.4个B.3个C.2个 D.1个【答案】B【解析】由异面直线的判定定理,易知①是真命题;由线面平行的性质,存在直线,,使得,,∵、是异面直线,∴与是相交直线,又,,∴,,故,②是真命题;由线面平行的性质和判定,知③是真命题;满足条件,,的直线、或相交或平行或异面,故④是假命题,于是选B.34.【2010•河南省郑州市第二次质检】已知α,β,γ是三个不同的平面,命题“α∥β,且α⊥γβ⊥γ”是真命题.如果把α,β,γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有()A.0个 B.1个 C.2个 D.3个【答案】C【解析】依题意,α与β换成直线后是真命题,γ与β换成直线后是真命题,γ与α换成直线后是假命题,选择C.35.【2010•宁波二模】已知表示两个互相垂直的平面,表示一对异面直线,则的一个充分条件是()A. B. C. D.【答案】D选择【解析】依题意,a⊥α ,则a平行β或在β内,由于b⊥β,则,D.36.【2010•绵阳三诊】已知,表示两个不同的平面,是一条直线且,则:“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】若,因是一条直线且,由面面垂直的判定定理,知,反之,若是一条直线且,当时,与平面的位置关系可以为:相交或平行或,故“”是“”的必要不充分条件,选B.37.【2010·吉林市下学期期末质量检测】已知a,b表示两条不同的直线,α、β表示两个不同的平面,则下列命题中正确的是()A.若B.若所成角等于b与β所成角,则a//b.C.若D.若【答案】D【解析】对于选项A:直线a,b可能平行或异面;对于选项B:只有当平面α与β平行时,才有a//b,故B不对;对于选项C,有可能直线b在平面β内,故C错;故选D.38.【2010·山东德州五月质检】在空间中,给出下面四个命题:(1)过一点有且只有一个平面与已知直线垂直;(2)若平面外两点到平面的距离相等,则过两点的直线必平行于该平面;(3)两条相交直线在同一平面的射影必为相交直线;(4)两个相互垂直的平面,一个平面内的任意一直线必垂直于另一平面内的无数条直线.其中正确的是( )A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【答案】D【解析】对于(2)可能该直线与平面相交;对于(3)可能两相交直线的射影为一条直线或一点与过该点的一条直线,故选D.39.【2010·江西省重点中学第二次联考】已知一个确定的二面角,和是空间的两条异面直线,在下面给出的四个条件中,能使和所成的角也确定的是()A.∥且∥ B.∥且C.且 D.且【答案】D【解析】因为二面角的大小是确定的,所以当且时,和所成的角与二面角的大小相等或互补,故而和所成的角也确定,选D.40.【2010·崇文一模】已知是两条不同直线,是三个不同平面,下列命题中正确的为 ( )A.若则 B.若则C.若,则 D.若则【答案】D【解析】A中,垂直于同一平面的平面可能平行或者相交;B中,平行于同一直线的平面可能平行或者相交;C中,平行于同一平面的直线可能是任意关系;D中,垂直于同一平面的直线平行,正确.41.【2010·上海市长宁区二次模】已知α,β表示两个不同的平面,m为平面α内的一条直线,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】根据是平面与平面垂直的判定定理知:由m⊥βα⊥β,反之不成立.故选B.42.【2010·河北省衡水中学一模】正四棱锥P—ABCD的底面积为3,体积为E为侧棱PC的中点,则PA与BE所成的角为( )A.B. C.D.【答案】B【解析】由V==×3×h,所以h=,从而侧棱长PA=,取AC中点O,连OE,则OE∥PA,且OE=,于是∠OEB为异面直线PA与BE所成的角或其补角.在直角三角形BOE中,BO=,所以tan∠OEB=,所以∠OEB=.43.【2010·湖北省襄樊五中5月调研测试】如图,正三棱锥A-BCD中,E在棱AB上,F在棱CD上.并且==λ(0<λ<+∞),设α为异面直线EF与AC所成的角,β为异面直线EF与BD所成的角,则α+β的值是()A. B. C.D.与λ的值有关【答案】C【解析】利用特殊化思想,当λ=1,即E、F分别为AB、CD中点时,取BC中点M,则EM∥AC,FM∥BD,又AC⊥BD,所以三角形EMF为直角三角形,所以α+β=.44.【2010·甘肃省兰州市五月实战模拟】二面角,A,B是棱l 上的两点,AC,BD分别在平面内,AC⊥l,BD⊥l,且AC=AB=1,BD=2,则CD 的长等于()A.2 B.C. D.【答案】A【解析】过B作BE∥AC,且BE=1,则∠DBE=60°,从而DE==,在三角形CDE 中,CD==2.45.【2010·泸州二诊】如图,在正三棱柱中,.若二面角的大小为,则点到平面的距离为()A. B. C. D.【答案】A【解析】取中点,连结,,则是二面角的平面角. ∵,∴,∴在中,,,设点到平面的距离为,则由得,,解得,选A.46.【2010·湖北省年普通高等学校招生全国统一考试模拟训练(二)】如图,在直三棱柱ABC-A1B1C1中,AB=1,AC=2,BC=,D,E分别是AC1和BB1的中点,则直线DE与平面BB1C1C所成的角为()A. B. C. D.【答案】A【解析】取AC中点F,连DF,BF,则易知BF∥DE,过F作FH⊥BC于H,则FH⊥平面BCC1B1,则角∠FBH为所求,在直角三角形FHB中,FH=,BF=AC=1,所以∠FBH=30°.47.【2010·湖南师大附中第二次月考试卷】如图,在正三棱柱ABC-A1B 1 C1中,点M为侧棱AA1上一动点,已知△BCM面积的最大值是,二面角M―BC―A 的最大值是,则该三棱柱的体积等于()A. B. C.D.【答案】A【解析】当点M与点A1重合时,△BCM的面积为最大值,此时二面角M―BC―A也为最大.由已知可得,,所以底面正三角形ABC 的边长为2,高为,从而正三棱柱的高AA1=.所以正三棱柱的体积,故选A.48.【2010·曲靖一中高考冲刺卷数学(八)】如图,正方体中,M,N分别为AB,DC中点,则直线MC与所成角的余弦值为()A. B. C. D.【答案】B【解析】连NA,D1A,则∠D1NA为所求,在三角形D1NA中由余弦定理可求得cos∠D1NA=.49.【2010·曲靖一中高考冲刺卷数学(四)】一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是那么这个三棱柱的体积是()A. B. C. D.【答案】D【解析】因为球的体积为π,柱体的高为2r=4,又正三棱柱的底面三角形内=×(4)2×4=.切圆半径与球半径相等,r=2,所以底面边长a=4,所以V柱50.【2010·内蒙古赤峰市四月统一考试】已知正三棱锥的侧棱长是底面边长的2倍,则侧棱与底面所成角的余弦值等于()A. B. C. D .【答案】A【解析】设底面边长AB=1,则侧棱长SA=2,过顶点S作底面的垂线,垂足O 为底面中心,连结AO,则∠SAO为所求,因为AO=,所以cos∠SAO==.51.【2010·上海市奉贤区4月调研】已知一球半径为2,球面上A、B两点的球面距离为,则线段AB的长度为()A.1B.C.2D. 2【答案】C【解析】由l=αR=α×2=得,α=,从而知∠AOB=,即△AOB为正三角形,所以AB=OA=R=2.52.【2010·石家庄市教学质量检测(二)】如图,在正三棱锥A-BCD中,E、F分别是AB、BC的中点,EF⊥DE,且BC=1,则正三棱锥A-BCD的体积是()A. B. C. D.【答案】B【解析】EF∥AC,所以AC⊥DE,又AC⊥BD,所以AC⊥平面ABD,所以侧面三角形为等腰直角三角形,AB=AC=AD=,V=×()3=.53.【2010·甘肃省部分普通高中高三第二次联合考试】如图,在半径为3的球面上有三点,,球心到平面的距离是,则两点的球面距离是()A.B.C. D.【答案】B【解析】取AC中点H,连OH,则OH垂直于平面ABC,又OA=3,所以AC=2AH=CH=2×=3,又,BC=3,从而三角形OBC为正三角形,∠BOC=60°,所以球面距离为l=×3=.54.【2010·成都石室中学高三“三诊”模拟考试】如图所示,在正三棱锥S—ABC中,M、N分别是SC、BC的中点,且,若侧棱则正三棱锥S—ABC外接球的表面积是()A.12π B.32π C.36π D.48π【答案】C【解析】因为MN⊥AM,所以SB⊥AM,又SB⊥AC,所以侧面三角形为等腰直角三角形,所以SA=SB=SC=2,所以2R=×(2)=6,所以S=π(2R)2=36π.55.【河南省郑州市2010年高中毕业班第二次质量预测】过球的一条半径的中点作垂直于这条半径的球的截面,则此截面面积是球表面积的()A. B. C.D.【答案】B【解析】易求得截面圆半径为球半径的倍,所以==.56.【2010·唐山三模】一个与球心距离为1的平面截球所得的圆面面积为4π,则球的表面积为( )A.5πB.17πC.20π D.68π【答案】C【解析】截面圆的半径为2,所以球半径R==,所以S=20π.57.【2010·成都市第37中学五月考前模拟】如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A. B. C. D.【答案】A【解析】过A、B两点分别作AM、BN垂直于EF,垂足分别为M、N,连结DM、CN,可证得DM⊥EF、CN⊥EF,多面体ABCDEF分为三部分,多面体的体积V为,∵,,∴,作NH垂直于点H,则H为BC的中点,则,∴,∴,, ,∴,故选A .58.【2010·内蒙古赤峰市一模】四面体ABCD 的外接球球心在CD 上,且CD=2,.在外接球球面上A 、B 两点间的球面距离是( )A .B .C .D .【答案】C【解析】由题意知半径R=1,所以∠AOB=,从而球面距离为l=×1=.59.【2010·江西赣州十一县(市)第二学期期中联考】棱长为1的正方体的8个顶点都在球O 的表面上,E 、F 分别是棱AB 、的中点,则经过E 、F 的球截面的面积最小值是( ) A . B . C . D .【答案】C【解析】当截面圆的圆心在直线EF上时,其面积最小.因为EF=,可求得球心O到直线EF的距离为,所以截面圆的半径r===,所以S=.60.【2010·上海文数】已知四棱椎的底面是边长为6 的正方形,侧棱底面,且,则该四棱椎的体积是.【答案】96【解析】考查棱锥体积公式.61.【2010·湖南文数】图2中的三个直角三角形是一个体积为20cm2的几何体的三视图,则h= cm.【答案】462.【2010·浙江理数】若某几何体的三视图(单位:cm)如上图(右)所示,则此几何体的体积是___________.【答案】144【解析】图为一四棱台和长方体的组合体的三视图,由卷中所给公式计算得体积为144,本题主要考察了对三视图所表达示的空间几何体的识别以及几何体体积的计算,属容易题.63.【2010·辽宁理数】如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为___ ___.【答案】【解析】本题考查了三视图视角下多面体棱长的最值问题,考查了同学们的识图能力以及由三视图还原物体的能力.由三视图可知,此多面体是一个底面边长为2的正方形且有一条长为2的侧棱垂直于底面的四棱锥,所以最长棱长为.64.【2010·江西理数】如图,在三棱锥中,三条棱,,两两垂直,且>>,分别经过三条棱,,作一个截面平分三棱锥的体积,截面面积依次为,,,则,,的大小关系为 .【答案】【解析】考查立体图形的空间感和数学知识的运用能力,通过补形,借助长方体验证结论,特殊化,令边长为1,2,3得.65.【2010·北京文数】如图放置的边长为1的正方形PABC沿x轴滚动.设顶点p(x,y)的纵坐标与横坐标的函数关系是,则的最小正周期为;在其两个相邻零点间的图像与x轴所围区域的面积为 .【答案】4【解析】“正方形PABC沿x轴滚动”包含沿x轴正方向和沿x轴负方向滚动.沿x轴正方向滚动是指以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续,类似地,正方形PABC可以沿着x轴负方向滚动.66.【2010`四川理数】如图,二面角的大小是60°,线段.,与所成的角为30°.则与平面所成的角的正弦值是 .【答案】【解析】过点A作平面β的垂线,垂足为C,在β内过C作l的垂线.垂足为D,连结AD,由三垂线定理可知AD⊥l,故∠ADC为二面角的平面角,为60°,又由已知,∠ABD=30°,连结CB,则∠ABC为与平面所成的角,设AD=2,则AC=,CD=1,AB==4,∴sin∠ABC=.67.【2010·天津文数】一个几何体的三视图如图所示,则这个几何体的体积为 .【答案】3【解析】本题主要考查三视图的基础知识,和主题体积的计算,属于容易题. 正视图和侧视图的高是几何体的高,由俯视图可以确定几何体底面的形状,本题也可以将几何体看作是底面是长为3,宽为2,高为1的长方体的一半.由俯视图可知该几何体的底面为直角梯形,则正视图和俯视图可知该几何体的高为1,结合三个试图可知该几何体是底面为直角梯形的直四棱柱,所以该几何题的体积为.68.【2010·天津理数】一个几何体的三视图如图所示,则这个几何体的体积为 .【答案】【解析】本题主要考查三视图的概念与柱体、椎体体积的计算,属于容易题.利用俯视图可以看出几何体底面的形状,结合正视图与侧视图便可得到几何体的形状,求锥体体积时不要丢掉哦.由三视图可知,该几何体为一个底面边长为1,高为2的正四棱柱与一个底面边长为2,高为1的正四棱锥组成的组合体,因为正巳灵珠的体积为2,正四棱锥的体积为,所以该几何体的体积V=2+= .69.【2010·湖北文数】圆柱形容器内盛有高度为3cm的水,若放入三个相同的珠(球的半么与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是__ __cm.【答案】4【解析】设球半径为r,则由可得,解得r=4.70.【2010·湖南理数】图3中的三个直角三角形是一个体积为20的几何体的三视图,则.71.【2010·福建理数】若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积等于.【答案】【解析】本题考查立体几何中的三视图,考查同学们识图的能力、空间想象能力等基本能力.由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,所以底面积为,侧面积为,所以其表面积为.72.【2010·甘肃省兰州市五月实战模拟】已知S—ABC是正四面体,M为AB 之中点,则SM与BC所成的角为 .【答案】arccos【解析】设正四面体边长为1,取AC中点N,则MN∥BC,∠SMN为异面直线SM与BC所成的角或其补角,且MN=,SM=SN=,由余弦定理可得cos∠SMN=.73.【2010·石家庄市质量检测(二)】如图,在底面边长为2的正三棱柱ABC-A1B1C1中,若二面角C1-AB-C的大小为60,则点C到平面ABC1的距离为.【答案】【解析】过点C作CD⊥AB交AB于D,连结C1D,则由三垂线定理知∠CDC1为二面角的平面角,则∠CDC1=60°.过点C作CH⊥C1D,交C1D于H,则CH⊥平面ABC1,故CH为所求,在三角形CC1D中,CD=,从而CC1=3,从而CH=.74.【2010·云南曲靖一中高考冲刺卷六】正四面体外接球的体积为,则点A到平面BCD的距离为__________________.【答案】【解析】V=,所以R=,过A作AH⊥平面BCD,则垂足为底面中心,则AH为所求.又由正四面体与外接球的关系知,AH=R=.75.【2010·上海市长宁区二模】棱长为a的正方体ABCD-A1B1C1D1的8个顶点都在球O的表面上,E、F分别是棱AA1、DD1的中点,则直线EF被球O截得的线段长是_________.【答案】a【解析】由题意知球心为正方体对角线的中点,球半径为a,球心到直线EF 的距离为,所以直线EF被球O截得的线段长l=2=a.76.【2010·邯郸市二模】三棱锥A—BCD,AB=a,CD=b,∠ABD=∠BDC,M,N 分别为AD,BC的中点,P为BD上一点,则MP+NP 的最小值是 .。
2011年全国高考数学试卷(含标准答案)
2011年普通高等学校招生全国统一考试(全国卷)数学本试卷共4页,三大题21小题。
满分150分,考试时间120分钟。
注意事项:1. 答题前,考生务必将自己的姓名、准考证号填在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。
2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效。
3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效。
4. 考试结束,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是满足题目要求的。
1.复数1z i =+,z 为z 的共轭复数,则1z z z --= (A) -2i (B) -i (C) i (D) 2i2. 函数()20y x x =≥的反函数为(A)()24xy x R =∈ (B)()204xy x =≥(C)()24y xx R =∈ (D)()240y xx =≥3.下面四个条件中,使a b >成立的充分而不必要的条件是 (A) 1a b >+ (B) 1a b >- (C)22a b > (D) 33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差22,24k k d S S +=-=,则k= (A) 8 (B) 7 (C) 6 (D) 55.设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A)13(B) 3 (C) 6 (D) 96.已知直二面角l αβ--,点,,A AC l C α∈⊥为垂足,,,B BD l D β∈⊥为垂足,若2,1A B A C B D ===,则D 到平面ABC 的距离等于(A) 22(B) 33(C) 63(D) 17.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有(A) 4种 (B) 10种 (C) 18种 (D) 20种8.曲线21x y e =+在点()0,2处的切线与直线0y =和y x =围成的三角形的面积为 (A)13(B)12(C)23(D) 19.设()f x 是周期为2的奇函数,当01x ≤≤时,()()21f x x x =-,则52f ⎛⎫-= ⎪⎝⎭(A) 12-(B) 14-(C)14(D)1210.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A 、B 两点,则cos A F B ∠= (A)45(B)35(C) 35-(D) 45-11.已知平面α截一球面得圆M ,过圆心M 且与α成60 二面角的平面β截该球面得圆N ,若该球面的半径为4.圆M 的面积为4π,则圆N 的面积为 (A) 7π (B) 9π (C) 11π (D) 13π12. 设向量,,a b c 满足11,,,602a b a b a c b c ===---=,则c 的最大值等于(A) 2 (B) 3 (C) 2 (D) 1二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写. 13. ()201x-的二项展开式中,x 的系数与9x 的系数之差为 .14. 已知,2παπ⎛⎫∈⎪⎝⎭,5sin 5α=,则tan 2α= . 15. 已知12F F 、分别为双曲线22:1927xyC -=的左、右焦点,点A C ∈,点M 的坐标为()2,0,AM 为12F A F ∠的角平分线,则 2AF = .16. 已知点E 、F 分别在正方体1111ABC D A B C D - 的棱11BB C C 、上,且12B E E B =,12C F FC =,则面AEF 与面ABC 所成的二面角的正切值等于 .三、解答题:本大题共6小题,共70分。
2011届高三数学下册专题检测试题7
12.通过研究学生的学习行为,专家发现,学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设f(t)表示学生注意力随时间t(分钟)的变化规律,f(t)越大,表明学生注意力越集中,经过实验分析得知:
专题四不等式、推理与证明
第1讲不等式
1.已知函数f(x)= ,则不等式f(x)≥x2的解集为()
A.[-1,1]B.[-2,2]
C.[-2,1]D.[-1,2]
2.已知a<0,b<-1,则下列不等式成立的是()
A.a> > B. > >a
C. > >aD. >a>
3.设集合A={x|2x2-x-10≥0},B={x| ≥0},则A∩B=()
A.(-3,-2]B.(-3,-2]∪[0, ]
C.(-∞,-3]∪[ ,+∞)D.(-∞,-3)∪[ ,+∞)
4.(2010年高考安徽卷)设x,y满足约束条件 则目标函数z=x+y的最大值是()
A.B.4
C.6D.8
5.(2010年高考四川卷)设a>b>0,则a2+ + 的最小值是()
A.1B.2
9.(2010年高考安徽卷)设x,y满足约束条件
若目标函数z=abx+y(a>0,b>0)的最大值为8,则a+b的最小值为________.
10.若a∈[1,3]时,不等式ax2+(a-2)x-2>0恒成立,求实数x的取值范围.
11.设集合A= ,B={x|(x-m+1)·(x-2m-1)<0}.
(1)求A∩Z;
C.3D.4
2011年福州高三质检数学参考答案
2011年福州市高中毕业班质量检查理科数学试卷参考答案及评分标准一、选择题1. C2. A3. B4. D5. D6. A7. B8. C9. C 10. C 二、填空题 11. 638-12.3 13. 6 14.14π- 15. 21n-三、解答题16. 解:(Ⅰ)∵1()cos 2f x x x ππ=+ =sin()6x ππ+··· 2分∵x R ∈ ∴1sin()16x ππ-≤+≤,∴函数()f x 的最大值和最小值分别为1,—1. ············ 4分 (Ⅱ)解法1:令()sin()06f x x ππ=+=得,6x k k Z πππ+=∈,∵[1,1]x ∈- ∴16x =-或56x = ∴15(,0),(,0),66M N - ······ 6分由sin()16x ππ+=,且[1,1]x ∈-得13x = ∴ 1(,1),3P ······· 8分∴11(,1),(,1),22PM PN =--=- ················ 10分∴cos ,||||PM PNPM PN PM PN ⋅<>=⋅35= ············· 13分 解法2:过点P 作PA x ⊥轴于A ,则||1,PA =由三角函数的性质知1||12MN T ==, ··············· 6分||||2PM PN ===, ·················· 8分 由余弦定理得222||||||cos ,2||||PM PN MN PM PN PM PN +-<>=⋅ ······ 10分=521345524⨯-=⨯. ··········· 13分解法3:过点P 作PA x ⊥轴于A ,则||1,PA =由三角函数的性质知1||12MN T ==, ·················· 6分||||PM PN ===··················· 8分 在Rt PAM ∆中,||cos ||PA MPA PM ∠===········· 10分 ∵PA 平分MPN ∠ ∴2cos cos 22cos 1MPN MPA MPA ∠=∠=∠-232(155=⨯-=. ······················ 13分 17. 解:(Ⅰ)玩家甲、乙双方在1次游戏中出示手势的所有可能结果是:(石头,石头);(石头,剪刀);(石头,布);(剪刀,石头);(剪刀,剪刀);(剪刀,布);(布,石头);(布,剪刀);(布,布).共有9个基本事件, ··········· 3分 玩家甲胜玩家乙的基本事件分别是:(石头,剪刀);(剪刀,布);(布,石头),共有3个.所以,在1次游戏中玩家甲胜玩家乙的概率3193P ==. ······ 6分 (Ⅱ)X 的可能取值分别为0,1,2,3.()303280327P X C ⎛⎫==⋅= ⎪⎝⎭,()1213121213327P X C ⎛⎫⎛⎫==⋅⋅=⎪⎪⎝⎭⎝⎭, ()212312623327P X C ⎛⎫⎛⎫==⋅⋅= ⎪⎪⎝⎭⎝⎭, ()333112327P X C ⎛⎫==⋅= ⎪⎝⎭.····················· 10分11分812610123127272727EX =⨯+⨯+⨯+⨯= (或:1~(3,)3X B ,1313EX np ==⨯=). ·············· 13分18. 【解析】 方法一:(Ⅰ)证明:在△BCE 中,BC ⊥CF,BC=AD=3,BE=3,∴EC= 在△FCE 中,CF 2=EF 2+CE 2,∴EF ⊥CE ········ 3分由已知条件知,DC ⊥平面EFCB,∴DC ⊥EF ,又DC 与EC 相交于C , ············· 5分 ∴EF ⊥平面DCE ················ 6分 (Ⅱ)过点B 作BH ⊥EF交FE 的延长线于H ,连结AH . 由平面ABCD ⊥平面BEFC ,平面ABCD ∩平面BEFC=BC, AB ⊥BC ,得AB ⊥平面BEFC ,从而AH ⊥EF .所以∠AHB 为二面角A-EF-C 的平面角.······················· 8分 在Rt △CEF 中,因为EF=2,CF=4.EC=∴∠CEF=60°,由CE ∥BH ,得∠BHE=60°, 又在RT △BHE 中,BE=3, ∴sin 2BH BE BEH =⋅∠=········ 10分 由二面角A-EF-C 的平面角∠AHB=60°,A BEFCHD在RT △AHB 中,解得9tan 2AB BH AHB =⋅∠=, 所以当92AB =时,二面角A-EF-C 的大小为60° · 13分 方法二:(Ⅰ)同解法一(Ⅱ)如图,以点C 为坐标原点,以CB ,CF 和CD 分别作为x 轴,y 轴和z 轴,建立空间直角坐标系C-xyz . ·············· 7分设AB=a (a >0),则C(0,0,0),a ),B0,0),E3,0),F (0,4,0).从而(,0),(0,3,),EF AE a ==-······ 9分设平面AEF 的法向量为(,,)n x y z =,由0,0EF n AE n ⋅=⋅= 得, 030y y az ⎧+=⎪⎨-=⎪⎩,取x=1,则y z ==,即n = , ··············· 11分不妨设平面EFCB 的法向量为(0,0,)BA a =,由条件,得1|cos ,|2||||n BA n BA n BA ⋅<>===解得92a =.所以以当92AB =时,二面角A-EF-C 的大小为60°. ·································· 13分 19.解:(Ⅰ)依题意N (k,-l ),且∵klmn ≠0及MP 、NP 与x 轴有交点知: ·· 2分M 、P 、N 为不同点,直线PM 的方程为()n ly x m n m k-=-+-, ···· 3分 则E nk mlx n l-=-, 同理可得F nk mlx n l+=+ ···················· 5分(Ⅱ)∵M,P 在圆C :x 2+y 2=R 2上,222222m R n k R l⎧=-∴⎨=-⎩,222222222222222()()E F n k m l n R l R n l x x R n l n l ----⋅===--(定值). E F x x ∴⋅的值与点M 、N 、P 的位置无关. ················· 8分同理∵M,P 在椭圆C :22221(0)x y a b a b+=>>上,2222222222a n m a b a lk a b ⎧=-⎪⎪∴⎨⎪=-⎪⎩,2222222222222222222()()E F a l a n n a a l n k m l b b x x a n l n l ----⋅===--(定值).∴E F x x ⋅的值与点M 、N 、P 的位置无关. ················ 11分(Ⅲ)一个探究结论是:0E F x x +=. ················· 13分 证明如下:依题意, E nk ml x n l -=-,F nk mlx n l+=+. ∵M,P 在抛物线C :y 2=2px (p >0)上,∴n 2=2pm,l 2=2pk.2222222()2(22)0E F n k ml pmk pmk x x n l n l--+===--. ∴E F x x +为定值.20.解:(Ⅰ)F (x )= e x+sinx -ax,'()cos x F x e x a =+-.因为x =0是F (x )的极值点,所以'(0)110,2F a a =+-==……………………………2分 又当a =2时,若x <0, '()cos 0xF x e x a =+-<;若 x >0, '()cos 0xF x e x a =+->.(由()sin 0()xF x e x x o ''=->>及'(0)0F =可证)∴x =0是F (x )的极小值点, ∴a=2符合题意. ……………………………………………4分(Ⅱ) ∵a =1, 且PQ //x 轴,由f (x 1)=g (x 2)得:121sin x x e x =+,所以12111sin x x x e x x -=+-.令()sin ,'()cos 10x x h x e x x h x e x =+-=+->当x >0时恒成立.∴x ∈[0,+∞)时,h (x )的最小值为h (0)=1.∴|PQ|mi n =1. ……………………………………9分(Ⅲ)令()()()2sin 2.x x x F x F x e e x ax ϕ-=--=-+-则'()2cos 2.x x x e e x a ϕ-=++-()''()2sin x x S x x e e x ϕ-==--.因为'()2cos 0x x S x e e x -=+-≥当x ≥0时恒成立, …………………………………11分 所以函数S (x )在[0,)+∞上单调递增, ……………………………………………………12分∴S (x )≥S (0)=0当x ∈[0,+∞)时恒成立;因此函数'()x ϕ在[0,)+∞上单调递增, '()'(0)42x a ϕϕ≥=-当x ∈[0,+∞)时恒成立. 当a ≤2时,'()0x ϕ≥,()x ϕ在[0,+∞)单调递增,即()(0)0x ϕϕ≥=.故a ≤2时F (x )≥F(-x )恒成立.…………………………………………………………… 13分[)[)[)[)(]00002'()0,'()0,(0,),0'()0.()0,(0)0(0,)()0()()00,21a x x x x x x x x x x F x F x x a a ϕϕϕϕϕϕ><+∞∴∈+∞<=∴∈<--≥∈+∞∴>∞⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 当时,又在单调递增,总存在使得在区间,上导致在递减,而,当时,,这与对恒成立不符,不合题意.综上取值范围是-,24分21. (1)解:设M =a b c d ⎡⎤⎢⎥⎣⎦,则a b c d ⎡⎤⎢⎥⎣⎦11⎡⎤⎢⎥⎣⎦=311⎡⎤⎢⎥⎣⎦=33⎡⎤⎢⎥⎣⎦,故3,3.a b c d +=⎧⎨+=⎩···· 3分 a b c d ⎡⎤⎢⎥⎣⎦12-⎡⎤⎢⎥⎣⎦=915⎡⎤⎢⎥⎣⎦,故29,215.a b c d -+=⎧⎨-+=⎩ ·················· 5分联立以上两方程组解得a =1-,b =4,c =3-,d =6,故M =1436-⎡⎤⎢⎥-⎣⎦. ····· 7分 (2)解:曲线C 的直角坐标方程是22(2)4x y -+=, ··········· 3分 因为222x y ρ+=,cos y ρθ=,…5分故曲线C 的极坐标方程为24cos 0ρρθ-=,即4cos ρθ=. ········ 7分 (3)解:令214y x x =+--,则1521334254x x y x x x x ⎧---⎪⎪⎪=--<<⎨⎪⎪+⎪⎩, ,, ,, .≤≥ ···· 3分作出函数214y x x =+--的图象,它与直线2y =的交点为(72)-,和523⎛⎫ ⎪⎝⎭, ················· 6分所以2142x x +-->的解集为5(7)3x x ⎛⎫--+ ⎪⎝⎭,, ············ 7分。
2011届高考数学一轮复习测评卷7.8
2011年《新高考全案》高考总复习第一轮复习测评卷第七章 第八讲一、选择题 1.(2009·全国Ⅱ,5)已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1中点,则异面直线BE 与CD 1所成角的余弦值为( )A.1010B.15C.31010D.35[答案] C 2.(2009·浙江,5)在三棱柱ABC -A 1B 1C 1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB 1C 1C 的中心,则AD 与平面BB 1C 1C 所成角的大小是( )A .30°B .45°C .60°D .90° [答案] C3.点P 在正方形ABCD 所在的平面外,PD ⊥平面ABCD ,PD =AD ,则P A 与BD 所成角的度数为( )A .30°B .45°C .60°D .90°[解析] 将其补成正方体,如右图P A 与BD 成60°角,故选C.[答案] C 4.(2009·全国Ⅰ,10)已知二面角α-l -β为60°,动点P 、Q 分别在面α、β内,P 到β的距离为3,Q 到α的距离为23,则P 、Q 两点之间距离的最小值为( )A. 2 B .2 C .2 3 D .4 [答案] C5.在直三棱柱ABC —A 1B 1C 1中,AA 1=AB =AC ,AB ⊥AC ,M 是CC 1的中点,Q 是BC 的中点,点P 在A 1B 1上,则直线PQ 与直线AM 所成的角等于( )A .30°B .45°C .60°D .90°[解析] 如图,以A 为原点,AB 为x 轴,AC 为y 轴,AA 1为z 轴建立空间直角坐标系,A (0,0,0),M (0,1,12),Q (12,12,0),P (x,0,1)∴AM →=(0,1,12),PQ →=(12-x ,12,-1)AM →·PQ →=0×(12-x )+1×12+12×(-1)=0,∴AM →⊥PQ →.[答案] D 6.(2007·深圳二模理7)在教材中,我们学过“经过点P (x 0,y 0,z 0),法向量为e =(A ,B ,C )的平面的方程是:A (x -x 0)+B (y -y 0)+C (z -z 0)=0”.现在我们给出平面α的方程是x -y+z =1,平面β的方程是x 6-y 3-z6=1,则由这两平面所成的锐二面角的余弦值是( )A.23B.33C.39D.223 [答案] A 二、填空题 7.(2009·四川,15)如图,已知正三棱柱ABC -A 1B 1C 1的各条棱长都相等,M 是侧棱CC 1的中点,则异面直线AB 1和BM 所成的角的大小是________.[答案] 90°8.已知正四棱锥的体积为12,底面对角线的长为26,则侧面与底面所成的二面角等于____________.[解析] 如图,在正四棱锥S -ABCD 中,底面对角线BD =26,则边长BC =2 3.作SO ⊥底面ABCD ,作OE ⊥CD ,连SE ,则∠SEO 就是侧面与底面所成二面角的平面角,又由V =13×(23)2·SO =12,得SO =3.则在Rt △SEO 中,tan ∠SEO =3,∴∠SEO =π3,即侧面与底面所成的二面角等于π3.[答案] π39.如图,已知正三棱柱ABC -A 1B 1C 1的所有棱长都相等,D 是A 1C 1的中点,则直线AD 与平面B 1DC 所成角的正弦值为________.[解析] 不妨设正三棱柱ABC -A 1B 1C 1的棱长为2,建立如图所示空间直角坐标系. 则C (0,0,0),A (3,-1,0),B 1(3,1,2),D (32,-12,2) ∴CD →=(32,-12,2),CB 1→=(3,1,2)设平面B 1DC 的法向量为n =(x ,y,1) 由⎩⎪⎨⎪⎧n ·CD →=0n ·CB 1→=0解得 n =(-3,1,1)又∵DA →=(32,-12,-2) ∴sin θ=1,cos<DA →·n >=45.[答案] 4510.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AA 1、BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为________.[解析] 解法一:A 1B 1∥平面D 1EF ,∴G 到平面D 1EF 的距离为A 1到平面D 1EF 的距离.在△A 1D 1E 中,过A 1作A 1H ⊥D 1E 交D 1E 于H ,显然A 1H ⊥平面D 1EF ,则A 1H 即为所求,在Rt △A 1D 1E 中, A 1H =A 1D 1·A 1E D 1E=1×121+(12)2=55. 解法二:等体积法,设h 为G 到平面D 1EF 的距离. ∵VG -D 1EF =VA 1-D 1EF =VF -D 1A 1E ,∴12×1×52×h =12×1×12×1,∴h =55. [答案] 55三、解答题 11.(2009·全国Ⅱ,18)如图,直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,D 、E 分别为AA 1、B 1C 的中点,DE ⊥平面BCC 1.(1)证明:AB =AC ;(2)设二面角A -BD -C 为60°,求B 1C 与平面BCD 所成的角的大小.解法一:(1)[证明] 取BC 中点F ,连接EF ,则EF 綊12B 1B ,从而EF 綊DA .连接AF ,则ADEF 为平行四边形,从而AF ∥DE . 又DE ⊥平面BCC 1,故AF ⊥平面BCC 1.从而AF ⊥BC ,即AF 为BC 的垂直平分线,所以AB =AC .(2)如图(1)作AG ⊥BD ,垂足为G ,连接CG .由三垂线定理知CG ⊥BD ,故∠AGC 为二面角A -BD -C 的平面角.由题设知,∠AGC =60°.设AC =2,则AG =23.(1)∴AB =2,BC =2 2.∴AF = 2.由AB ·AD =AG ·BD 得2AD =23·AD 2+22,解得AD = 2.故AD =AF .又AD ⊥AF ,∴四边形ADEF 为正方形.∵BC ⊥AF ,BC ⊥AD ,AF ∩AD =A ,故BC ⊥平面DEF ,因此平面BCD ⊥平面DEF . 连接AE ,DF ,设AE ∩DF =H ,则EH ⊥DF . ∴EH ⊂平面DEF ,∴EH ⊥平面BCD .连接CH ,则∠ECH 为B 1C 与平面BCD 所成的角.因ADEF 为正方形,AD =2,故EH =1.又EC =12B 1C =2,∴∠ECH =30°,即B 1C 与平面BCD 所成的角为30°.解法二:(1)[证明] 以A 为坐标原点,射线AB 为x 轴的正半轴,建立如图(2)所示的直角坐标系A -xyz .(2)设AB =1,则B (1,0,0),C (0,b,0),D (0,0,c ),则B 1(1,0,2c ),E (12,b2,c ).于是DE →=(12,b2,0),BC →=(-1,b,0).由DE ⊥平面BCC 1知DE ⊥BC ,即DE →·BC →=0,求得b =1. 所以AB =AC .(2)设平面BCD 的法向量AN →=(x ,y ,z ),则AN →·BC →=0,AN →·BD →=0.又BC →=(-1,1,0),BD →=(-1,0,c ), 故⎩⎪⎨⎪⎧-x +y =0,-x +cz =0. 令x =1,则y =1,z =1c ,AN →=(1,1,1c).又平面ABD 的法向量AC →=(0,1,0),由二面角A -BD -C 为60°知,〈AN →,AC →〉=60°,故AN →·AC →=|AN →|·|AC →|·cos60°,求得c =12.于是AN →=(1,1,2),CB 1→=(1,-1,2),cos 〈AN →,CB 1→〉=AN →·CB 1→|AN →|·|CB 1→|=12, ∴〈AN →,CB 1→〉=60°.∴B 1C 与平面BCD 所成的角为30°. 12.(2008·广东理)如图所示,等腰三角形△ABC 的底边AB =66,高CD =3,点E 是线段BD 上异于B 、D 的动点,点F 在BC 边上,且EF ⊥AB ,现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE ,记BE =x ,V (x )表示四棱锥P -ACFE 的体积.(1)求V (x )的表达式;(2)当x 为何值时,V (x )取得最大值?(3)当V (x )取得最大值时,求异面直线AC 与PF 所成角的余弦值. [解] (1)∵EF ⊥AB ,∴EF ⊥PE .又∵PE ⊥AE ,EF ∩AE =E ,且PE 在平面ACFE 外, ∴PE ⊥平面ACFE .∵EF ⊥AB ,CD ⊥AB ,∴EF ∥CD . ∴EF CD =x BD ⇒EF =CD BD x =x 6. ∴四边形ACFE 的面积S 四边形ACFE =S △ABC -S △BEF =12×66×3-12×16x 2=96-126x 2.∴四棱锥P -ACFE 的体积V P -ACFE =13S 四边形ACFE ·PE =36x -166x 3,即V (x )=36x -166x 3(0<x <36).(2)由(1)知V ′(x )=36-126x 2.令V ′(x )=0⇒x =6.∵当0<x <6时,V ′(x )>0,当6<x <36时,V ′(x )<0, ∴当BE =x =6时,V (x )有最大值,最大值为V (6)=12 6.(3)解法一:如图,以点E 为坐标原点,向量EA →、EF →、EP →分别为x 、y 、z 轴的正向建立空间直角坐标系,则E (0,0,0),P (0,0,6),F (0,6,0),A (66-6,0,0),C (36-6,3,0).于是AC →=(-36,3,0),PF →=(0,6,-6). AC 与PF 所成角θ的余弦值为cos θ=AC →·PF →|AC →||PF →|=3654+9+00+6+36=17.∴异面直线AC 与PF 所成角的余弦值为17.解法二:过点F 作FG ∥AC 交AE 于点G ,连接PG ,则∠PFG 为异面直线AC 与PF 所成的角.∵△ABC 是等腰三角形, ∴△GBF 也是等腰三角形. 于是FG =BF =PF =BE 2+EF 2=42,从而PG =PE 2+GE 2=BE 2+BE 2=6 2.在△GPF 中,根据余弦定理得cos ∠PFG =PF 2+FG 2-PG 22PF ·FG =17.故异面直线AC 与PF 所成角的余弦值为17.亲爱的同学请写上你的学习心得。
2011届高三数学下册专题检测试题6
2011届高三数学下册专题检测试题6DA.32B.92C.34D.944.如图,△ABC 为正三角形,AA ′∥BB ′∥CC ′,CC ′⊥平面ABC 且3AA ′=32BB ′=CC ′=AB ,则多面体ABC -A ′B ′C ′的正视图(也称主视图)是( )6.如图,已知△ABC 的平面直观图A ′B ′C ′是边长为2的正三角形,则原△ABC 的面积为( )A. 3 B .2 3C. 6 D .2 67.(2010年辽宁抚顺一中模拟)若圆锥的侧面展开图是圆心角为120°、半径为l 的扇形,则这个圆锥的表面积与侧面积的比是( )A .3∶2B .2∶1C .4∶3D .5∶38.已知S ,A ,B ,C 是球O 表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,BC=2,则球O的表面积等于()A.4π B.3π C.2π D.π9.设a、b、c是空间三条直线,α、β是空间两个平面,则下列命题中,逆命题不.成立的是()A.当c⊥α时,若c⊥β,则α∥βB.当b⊂α时,若b⊥β,则α⊥βC.当b⊂α,且c是a在α内的射影时,若b⊥c,则a⊥bD.当b⊂α,且c⊄α时,若c∥α,则b∥c11.如图,三棱锥P-ABC的高PO=8,AC=BC =3,∠ACB=30°,M、N分别在BC和PO上,且CM=x,PN=2CM,则下面四个图象中大致描绘了三棱锥N-AMC的体积V与x的变化关系(x∈(0,3])的是()12.如图,正方体ABCD-A1B1C1D1的棱长为1,E、F分别是棱BC、DD1上的点,如果B1E⊥平面ABF,则点E、F满足的条件一定是()A.CE=D1F=1 2B.CE+DF=1C.BE+D1F=1D.E、F为棱BC、DD1上的任意位置二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.(2010年高考天津卷)一个几何体的三视图如图所示,则这个几何体的体积为________.14.如图所示,在直三棱柱ABC-A1B1C1中,底面是∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中点,点F在线段AA1上,当AF=________时,CF⊥平面B1DF.15.已知a、b是两条异面直线,a⊥b.点P∉a 且P∉b.下列命题中:①在上述已知条件下,平面α一定满足:P ∈α且a∥α且b∥α;②在上述已知条件下,存在平面α,使P∉α,a⊂α且b⊥α;③在上述已知条件下,直线c一定满足:P ∈c,a∥c且b∥c;④在上述已知条件下,存在直线c,使P∉α,a⊥c且b⊥c.正确的命题有________(把所有正确的序号都填上).16.如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)一几何体的三视图如下:(1)画出它的直观图,并求其体积;(2)你能发现该几何体的哪些面互相垂直?试一一列出.18.(本小题满分12分)如图,已知三棱锥A -PBC,∠ACB=90°,AB=20,BC=4,AP⊥PC,D为AB的中点,且△PDB为正三角形.(1)求证:BC⊥平面PAC;(2)求三棱锥D-PBC的体积.19.(本小题满分12分)如图1所示,在边长为12的正方形AA1A′1A′中,BB1∥CC1∥AA1,且AB=3,BC=4,AA′1分别交BB1、CC1于点P、Q,将该正方形沿BB1、CC1折叠,使得A′A′1与AA1重合,构成如图2所示的三棱柱ABC-A1B1C1.(1)求证:AB⊥PQ;(2)在底边AC上有一点M,AM∶MC=3∶4,求证:BM∥平面APQ.20.(本小题满分12分)四棱柱ABCD—A1B1C1D1的三视图如下.(1)求出该四棱柱的表面积;(2)求证:D1C⊥AC1.21.(本小题满分12分)一个空间几何体G -ABCD的三视图如图所示,其中A i、B i、C i、D i、G i(i=1,2,3)分别是A、B、C、D、G五点在直立、侧立、水平三个投影面内的投影.在正(主)视图中,四边形A1B1C1D1为正方形,且A1B1=2a;在侧(左)视图中,A2D2⊥A2G2;在俯视图中,A3G3=B3G3.(1)根据三视图作出空间几何体G-ABCD的直观图,并标明A 、B 、C 、D 、G 五点的位置;(2)在空间几何体G -ABCD 中,过点B 作平面AGC 的垂线,若垂足H 在直线CG 上,求证:平面AGD ⊥平面BGC ;(3)在(2)的条件下,求三棱锥D -ACG 的体积及其外接球的表面积.22.(本小题满分12分)如图,四棱锥P -ABCD 中,PD ⊥平面ABCD ,底面ABCD 为正方形,BC =PD =2,E 为PC 的中点,CG →=13CB →. (1)求证:PC ⊥BC ;(2)求三棱锥C -DEG 的体积;(3)AD 边上是否存在一点M ,使得PA ∥平面MEG ?若存在,求AM 的长;否则,说明理由.。
2011学年第二学期高三数学区期末统测试卷(理科)
2011学年第二学期徐汇区高三年级数学学科学习能力诊断卷(理科试卷)(考试时间:120分钟,满分150分)2012.4一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1、已知2111n na n n=+,则=∞→n n a lim .2、已知集合7|03x A x x -⎧⎫=≥⎨⎬-⎩⎭,函数2lg(68)y x x =-+-的定义域为集合B ,则A B ⋂=.3、某区有200名学生参加数学竞赛,随机抽取10名学生成绩如下:则总体标准差的点估计值是.(精确到0.01)4、若函数)(x g y =图像与函数)1()1(2≤-=x x y 的图像关于直线x y =对称,则(4)g =___.5、若bi ia-=-11,其中b a ,都是实数,i 是虚数单位,则bi a +=.6、53223(xx -的二项展开式中,常数项的值是.7、某学校要从5名男生和2名女生中选出2人作为志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望E ξ=____________.(结果用最简分数表示)8、已知数列{}n a 的前n 项和21n n S a =-,则数列{}n a 的通项公式为n a =.*()n N ∈9、函数()2sin sin()3f x x x π=⋅-的值域是.10、如图:底面直径为2的圆柱被与底面成030二面角的平面所截,截面是一个椭圆,则此椭圆的焦距为.11、在极坐标系中,若过点(3,0)且与极轴垂直的直线交曲线4cos ρθ=于A 、B 两点,则AB =.12、若函数()y f x =(x R ∈)满足()()2f x f x -=,且[]1,1x ∈-时,()21f x x =-,函数成绩人数401150602213708090()lg(1)110001x x g x x x x ->⎧⎪⎪=-<⎨⎪⎪≤≤⎩,则函数()()()h x f x g x =-在区间[]5,6-内的零点的个数为______.13、已知函数()1x f x x=+,在9行9列的矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛999392912923222119131211a a a a a a a a a a a a中,第i 行第j 列的元素()ij ia f j=,则这个矩阵中所有数之和为_______________.14、如图,点(,)(0,0)P x y x y >>是双曲线22221(0,0)x y a b a b -=>>上的动点,12,F F 是双曲线的焦点,M 是12F PF ∠的平分线上一点,且20F M MP ⋅=.某同学用以下方法研究OM :延长2F M 交1PF 于点N ,可知2PNF ∆为等腰三角形,且M 为2F N 的中点,得112OM NF a === .类似地:点(,)(0,0)P x y x y >>是椭圆22221(0)x y a b a b +=>>上的动点,12,F F 是椭圆的焦点,M 是12F PF ∠的平分线上一点,且20F M MP ⋅=,则OM 的取值范围是.二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15、条件甲:函数)(x f 满足()1()f x f x -=;条件乙:函数)(x f 是偶函数,则甲是乙的()(A )充分非必要条件(B )必要非充分条件(C )充要条件(D )既非充分也非必要条件16、设(,1)(2,)(4,5)A a B b C 、、为坐标平面上三点,O 为坐标原点。
数学_2011年山东省济南市某校高三第七次质量检测数学试卷(理科)_(含答案)
2011年山东省济南市某校高三第七次质量检测数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1. 设全集U =R ,集合A ={x|0<x ≤2},B ={y|1≤y ≤3},则(C U A)∪B =( ) A (2, 3] B (−∞, 1]∪(2, +∞) C [1, 2] D (−∞, 0]∪[1, +∞)2. 复数z =i 1+i在复平面上对应的点位于( )A 第一象限B 第二象限C 第三象限D 第四象限3. 水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的上面,则这个正方体的下面是 ( )A 0B 7C 快D 乐4. 为积极倡导“学生每天锻炼一小时”的活动,某学校举办了一次以班级为单位的广播操比赛,9位评委给高三.1班打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应该是( ) A 2 B 3 C 4 D 55.函数f(x)=Asin(ωx +φ)(其中A >0,|φ|<π2)的图象如图所示,为了得到f(x)的图象,则只要将g(x)=sin2x 的图象( )A 向右平移π12个单位长度 B 向右平移π6个单位长度 C 向左平移π12个单位长度 D 向左平移π6个单位长度6. 设O 为坐标原点,A(1, 1),若点B(x, y)满足{x 2+y 2≥10≤x ≤10≤y ≤1,则OA →⋅OB →取得最小值时,点B 的个数是( )A 1B 2C 3D 无数个7. 不等式|x −1|−|x +1|≤a 恒成立,则a 的范围是( ) A (−∞, −2] B (−∞, 2] C [−2, +∞) D [2, +∞) 8. 下列四个命题中,真命题为( )①命题“∀x ∈R ,x 2≥0”的否定是“∃x 0∈R ,x 02<0”; ②若n ⊂α,m // n ,则m // α;③线性相关系数r 的绝对值越接近于1,表明两个变量线性相关程度越强;④数列{a n }为等比数列的充要条件是a n 2=a n−1⋅a n+1. A ①② B ②③ C ②④ D ①③ 9. 设双曲线x 2a 2−y 2b 2=1(a >0,b >0)的离心率为e =√2,右焦点为F(c, 0),方程ax 2−bx −c =0的两个实根分别为x 1和x 2,则点P(x 1, x 2)( )A 在圆x 2+y 2=8外B 在圆x 2+y 2=8上C 在圆x 2+y 2=8内D 不在圆x 2+y 2=8内10. 已知函数f(x)在(−1, 3]上的解析式为f(x)={1−x 2x ∈(−1,1]1−|x −2|x ∈(1,3],则函数y =f(x)−log 3x 在(−1, 3]上的零点的个数为( ) A 4 B 3 C 2 D 111. 已知两点A(1, 0),B(1, √33),O 为坐标原点,点C 在第三象限,且∠AOC =2π3,设OC →=2OA →+λOB →,则λ等于( )A −2B 2C −3D 312. 已知函数y =f(x)的定义域是R ,若对于任意的正数a ,函数g(x)=f(x)−f(x −a)都是其定义域上的增函数,则函数y =f(x)的图象可能是( )A B C D二、填空题(共4小题,每小题4分,满分16分)13.按如图所示的程序框图运算,则输出S 的值是________.14. 若a =∫(102x +1)dx ,则二项式(ax +1x )6的展开式中的常数项为________.15. 已知{m,n∈R|m|≤1|n|≤1则在方程x2+2mx−n2+1=0,有实数根的条件下,又满足m≥n的概率为________.16. 在实数集R中定义一种运算“△”,且对任意a,b∈R,具有性质:①a△b=b△a;②a△0=a;③(a△b)△c=c△(a⋅b)+(a△c)+(b△c)+c,则函数f(x)=|x|△1|x|的最小值为________.三、解答题(共6小题,满分74分)17. 已知函数f(x)=√3sin2x+2cos2x+1.(1)求函数f(x)的单调递增区间;(2)设△ABC内角A,B,C的对边分别为a,b,c,且c=√3,f(C)=3,若向量m→= (sinA, −1)与向量n→=(2, sinB)垂直,求a,b的值.18. 如图所示,在矩形ABCD中,AB=4,AD=2,E是CD的中点,O为AE的中点,以AE为折痕将△ADE向上折起,使D到P点位置,且PC=PB.(1)求证:PO⊥面ABCE;(2)求二面角E−AP−B的余弦值.19. 为迎接建党90周年,某班开展了一次“党史知识竞赛”,竞赛分初赛和决赛两个阶段进行,在初赛后,把成绩(满分为100分,分数均匀整数)进行统计,制成如图的频率分布表:(1)求a,b,c,d的值;(2)决赛规则如下:为每位参加决赛的选手准备四道题目,选手对其依次作答,答对两道就终止答题,并获得一等奖,若题目答完仍然只答对一道,则获得二等奖.某同学进入决赛,每道题答对的概率P的值恰好与频率分布表中不少于90分的频率的值相同.设该同学决赛中答题个数为X,求X的分布列以及X的数学期望.20. 汉诺塔问题是根据一个传说形成的一个问题:有三根杆子和套在一根杆子上的若干大小不等的穿孔圆盘,按下列规则,把圆盘从一根杆子上全部移到另一根杆子上.①每次只能移动1个碟片;②大盘不能叠在小盘上面.如图所示,将A 杆上所有碟片移到C 杆上,B 杆可以作为过渡杆使用,称将碟片从一个杆子移动到另一个标子为移动一次,记将A 杆子上的n 个碟片移动到C 杆上最少需要移动a n 次. (1)写出a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式; (3)设b n =nan +1,求数列{b n }的前n 项和Sn .21. 已知抛物线C:y 2=2px(p >0)的焦点F 和椭圆x 24+y 23=1的右焦点重合,直线l 过点F 交抛物线于A 、B 两点,点A 、B 在抛物线C 的准线上的射影分别为点D 、E . (1)求抛物线C 的过程;(2)若直线l 交y 轴于点M ,且MA →=mAF →,MB →=nBF →,对任意的直线l ,m +n 是否为定值?若是,求出m +n 的值,否则,说明理由. 22. 已知函数f(x)=lnx −ax −3(a ≠0), (Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若对于任意的a ∈[1, 2],若函数g(x)=x 3+x 22[m −2f ′(x)]在区间(a, 3)上有最值,求实数m 的取值范围;(Ⅲ)求证:ln(122+1)+ln(132+1)+ln(142+1)+⋯+ln(1n 2+1)<1(n ≥2,n ∈N ∗).2011年山东省济南市某校高三第七次质量检测数学试卷(理科)答案1. D2. A3. B4. A5. C6. B7. D8. D9. C 10. C 11. C 12. A 13. 63 14. 160 15. 1216. 317. 解:(1)∵ f(x)=√3sin2x+cos2x+2=2sin(2x+π6)+2令−π2+2kπ≤2x+π6≤π2+2kπ,得−π3+kπ≤x≤π6+kπ,∴ 函数f(x)的单调递增区间为[−π3+kπ,π6+kπ],k∈z,T=2π2=π(2)由题意可知,f(C)=2sin(2C+π6)+2=3,∴ sin(2C+π6)=12,∵ 0<C<π,∴2C+π6=π6或2C+π6=5π6,即C=0(舍)或C=π3∵ m→=(sinA,−1)与n→=(2,sinB)垂直,∴ 2sinA−sinB=0,即2a=b∵ c2=a2+b2−2abcosπ3=a2+b2−ab=3②由①②解得,a=1,b=2.18. (1)证明:∵ PA=PE,OA=OE,∴ PO⊥AE取BC的中点F,连接OF,PF,∴ OF // AB,∴ OF⊥BC,∵ PB=PC,∴ BC⊥PF,∴ BC⊥面POF从而BC⊥PO,又BC与PO相交,可得PO⊥面ABCE.(2)解:作OG // BC交AB于G,∴ OG⊥OF,建立如图所示的空间直角坐标系,则A(1, −1, 0),B(1, 3, 0),C(−1, 3, 0),P(0, 0, √2),AC →=(−2,4,0),AP →=(−1,1,√2),AB →=(0,4,0), 设平面PAB 的法向量为n →1=(x,y,z), {n →⋅AP →=−x +y +√2z =0,n →⋅AB →=4y =0, 令x =√2,则n →1=(√2,0,1),同理可得:平面PAE 的法向量为n →2=(1,1,0), ∴ cos <n 1→,n 2→>=n 1→⋅n 2→|n 1→||n 2→|=√2√3⋅√2=√33, ∴ 二面角E −AP −B 的余弦值为√33.19. 解:(1)根据所给的频率,频数和样本容量三者之间的关系得到a =50×0.1=5,b =1550=0.3,c =10,d =0.2 (2)由题意知X 的可能取值为2,3,4, P(X =2)=0.2×0.2=0.04,P(X =3)=C 210.2×0.8×0.2=0.064,P(X =4)=C 310.2×0.82+0.83=0.896 ∴ 分布列为20. 解:(1)由题意,知a 1=1,a 2=3,a 3=7,a 4=15. (2)由(1)推测,数列{a n }的通项公式为a n =2n −1. 下面用数学归纳法证明如下:①当n =1时,从A 杆移到C 杆上只有一种方法,即a 1=1,这时a n =1=21−1成立; ②假设当n =k(k ≥1)时,a k =2k −1成立.则当n =k +1时,将A 杆上的k +1个碟片看做由k 个碟片和最底层1张碟片组成的,由假设可知,将A 杆上的k 个碟片移到B 杆上有a k =2k −1种方法,再将最底层1张碟片移到C 杆上有1种移法,最后将B 杆上的k 个碟片移到C 杆上(此时底层有一张最大的碟片)又有a k =2k −1种移动方法,故从A 杆上的k +1个碟片移到C 杆上共有a k+1=a k +1+a k =2a k +1=2(2k −1)+1=2k+1−1种移动方法. 所以当n =k +1时,a n =2n −1成立.由①②可知数列{a n }的通项公式是a n =2n −1.(3)由(2)可知,a n =2n −1,所以,b n =n2n −1+1=n2n =n ⋅(12)n ; ∴ s n =1⋅12+2⋅(12)2+3⋅(12)3+...+n ⋅(12)n ①;12s n =1⋅(12)2+2⋅(12)3+3⋅(12)4+...+n ⋅(12)n+1②; ①-②,得(1−12)s n =12+(12)2+(12)3+...+(12)n −n ⋅(12)n+1; ∴ 12S n =12[1−(12)n ]1−12−n ⋅(12)n+1,∴ S n =2−(n +2)⋅(12)n .21. 解:(1)∵ 椭圆的右焦点F(1, 0),∴ p2=1,p =2,∴ 抛物线C 的方程为y 2=4x(2)由已知得直线l 的斜率一定存在,所以设l:y =k(x −1),l 与y 轴交于M(0, −k),设直线l 交抛物线于A(x 1, y 1),B(x 2, y 2), 由{y =k(x −1)y 2=4x ⇒k 2x 2−2(k 2+2)x +k 2=0 ∴ △=4(k 2+2)2−4k 4=16(k 2+1)>0 ∴ x 1+x 2=2k 2+4k 2,x 1⋅x 2=1又由MA →=mAF →,∴ (x 1, y 1+k)=m(1−x 1, −y 1),∴ x 1=m(1−x 1), 即m =x 11−x 1,同理n =x 21−x 2,∴ m +n =x 11−x 1+x 21−x 2=1−(x 1+x 2)+x 1⋅x 2˙=−1所以,对任意的直线l ,m +n 为定值−122. (1)由已知得f(x)的定义域为(0, +∞),且f ′(x)=1x −a ,当a >0时,f(x)的单调增区间为(0, 1a),减区间为(1a,+∞);当a <0时,f(x)的单调增区间为(0, +∞),无减区间; (2)g(x)=x 3+x 22[m −2f ′(x)]=x 3+(m2+a)x 2−x ,∴ g ′(x)=3x 2+(m +2a)x −1, ∵ g(x)在区间(a, 3)上有最值,∴ g(x)在区间(a, 3)上不总是单调函数, 又g ′(0)=−1∴ {g ′(a)<0g ′(3)>0由题意知:对任意a ∈[1, 2],g ′(a)=3a 2+(m +2a)⋅a −1=5a 2+ma −1<0恒成立, ∴ m <1−5a 2a=1a −5a ,因为a ∈[1, 2],所以m <−192,对任意,a ∈[1, 2],g ′(3)=3m +26+6a >0恒成立,∴ m >−323∴ −323<m <−192(Ⅲ)令a =1此时f(x)=lnx −x −3,由(Ⅰ)知f(x)=lnx −x −3在(0, 1)上单调递增,在(1, +∞)上单调递减,∴ 当x ∈(0, +∞)时f(x)<f(1),∴ lnx <x −1对一切x ∈(0, +∞)成立, ∴ ln(x +1)<x 对一切x ∈(0, +∞)成立, ∵ n ≥2,n ∈N ∗,则有ln(1n 2+1)<1n 2,∴ ln(122+1)+ln(132+1)+⋯+ln(1n 2+1)<122+132+⋯+1n 2<11×2+12×3+⋯+1(n−1)n =(1−12)+(12−13)+⋯+(1n −1−1n )=1−1n<1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间向量一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若b D A a B A ==1111,, c A A =1,则下列向量中与M B 1相等的向量是( )A .c b a ++-2121 B .c b a ++2121C .c b a +-2121D .c b a +--21212.化简(-3,4,1)·[2(5,-2,3)+3(-3,1,0)]·(2,-1,4)的结果是 ( )A .(-4,2,8)B .(2,-1,4)C .(-2,1,-4)D .(4,-2,8) 3.设OA =a ,OB =b ,OC =c ,则使A 、B 、C 三点共线的条件是 ( )A .c =a +b ,B .c =12a +13b C .c =3a -4b D .c =4a -3b 4.若点A(x 2+4,4-y ,1+2z )关于y 轴的对称点是B(-4x ,9,7-z ),则x ,y ,z 的值依次为( )A .1,-4,9B .2,-5,-8C .2,5,8D .-2,-5,85.若OA 、OB 、OC 三个单位向量两两之间夹角为60°,则|OA +OB +OC |= ( )A .6B .6C .3D .36.正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AA 1与CC 1的中点,则直线ED 与D 1F 所成角的大小是( )A .51arccosB .31arccosC .3π D .6π7.设a 、b 是平面α内的两个非零向量,则n ·a =0,n ·b =0是n 为平面α的法向量的( )A .充分条件B .充要条件C .必要条件D .既非充分又非必要条件 8.已知a =(2,2,1),b =(4,5,3),而n ·a =n ·b =0,且|n |=1,则n = ( )A .(13,23,-23) B .(13,-23,23) C .(-13,23,-23)D .±(13,-23,23) 9.设A 、B 、C 、D 是空间任意四个点,令u =AD BC +,v =AB CD +,w =AC BD +,则u 、v 、w 三个向量 ( )A .互不相等B .至多有两个相等C .至少有两个相等D .有且只有两个相等10.如图,以等腰直角三角形斜边BC 上的高AD 为折痕,把△ABD 和△ACD 折成互相垂直的两个平面后,某学生得出下列四个结论:①0≠⋅AC BD ;②∠BAC =60°;③三棱锥D —ABC 是正三棱锥; ④平面ADC 的法向量和平面ABC 的法向量互相垂直.其中正确的是( )D CA 1B 1 A B MD 1C 1A B DC ACB DA .①②B .②③C .③④D .①④ 11.若a 、b 、c 是空间的一个基底,下列各组 ①l a 、m b 、n c (lmn ≠0); ②a +2b 、2b +3c 、3a -9c ; ③a +2b 、b +2c 、c +2a ; ④a +3b 、3b +2c 、-2a +4c中,仍能构成空间基底的是 ( ) A .①② B .②③ C .①③ D .②④12.在空间直角坐标系O —xyz 中,有一个平面多边形,它在x O y 平面的正射影的面积为8,在y O z 平面和z O x平面的正射影的面积都为6,则这个多边形的面积为 ( )A .46B .246C .34D .234二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中横线上.)13.若A(-1,2,3)、B(2,-4,1)、C(x ,-1,-3)是直角三角形的三个顶点,则x = . 14.若a =(3x ,-5,4)与b =(x ,2x ,-2)之间夹角为钝角,则x 的取值范围为 . 15.设向量a =(1,-2,2),b =(-3,x ,4),已知a 在b 上的射影是1,则x = .16.设A(1,2,-1),B(0,3,1),C(-2,1,2)是平行四边形的三个顶点,则此平行四边形的面积为 .三、解答题(本大题共6小题,共74分.解答应有证明过程或演算步骤) 17.(本题12分)在四面体ABCD 中,AB ⊥平面BCD ,BC=CD ,∠BCD=90°,∠ADB=30°,E ,F 分别是AC ,AD 的中点。
⑴求证:平面BEF ⊥平面ABC ; ⑵求平面BEF 和平面BCD 所成的角.18.(本题12分)已知正三棱柱ABC —A 1B 1C 1,底面边长AB=2,AB 1⊥BC 1,点O 、O 1分别是边AC ,A 1C 1的中点,建立如图所示的空间直角坐标系. ⑴求正三棱柱的侧棱长.⑵若M 为BC 1的中点,试用基向量1AA 、AB 、AC 表示向量AM ; ⑶求异面直线AB 1与BC 所成角的余弦值..BB 1OO 1 AC yC 1A 1 xz19.(本题12分)如图,已知正四棱柱ABCD —A 1B 1C 1D 1中,底面边长AB=2,侧棱BB 1的长为4,过点B 作B 1C 的垂线交侧棱CC 1于点E ,交B 1C 于点F. ⑴求证:A 1C ⊥平面BED ;⑵求A 1B 与平面BDE 所成的角的正弦值.20.(本题12分).在60°的二面角的棱上,有A 、B 两点,线段AC 、BD 分别在二面角的两个面内,且都垂直于AB ,已知AB=4,AC=6,BD=8. ⑴求CD 的长度;⑵求CD 与平面α所成的角21.(本题12分)棱长为a 的正方体OABC —O 1A 1B 1C 1中,E 、F 分别为棱AB 、BC 上的动点,且AE=BF=x (0≤x ≤a ).以O 为原点,直线OA 、OC 、OO 1分别为x 、y 、z 轴建立空间直角坐标系,如图. ⑴求证:A 1F ⊥C 1E ; ⑵当△BEF 的面积取得最大值时,求二面角B 1—EF —B 的大小.22.(本题14分)如图直角梯形OABC 中,∠COA =∠OAB =2π,OC =2,OA =AB =1,SO ⊥平面OABC ,SO=1,以OC 、OA 、OS 分别为x 轴、y 轴、z 轴建立直角坐标系O-xyz .⑴求SC OB α与的夹角的大小(用反三角函数表示);A B D C A 1B 1D 1 C 1EF CBAO C 1 B 1 O 1 A 1 EF yxzSz⑵设:,),,,1(求平面满足SBC n q p n ⊥= ①;n 的坐标②OA 与平面SBC 的夹角β(用反三角函数表示);③O 到平面SBC 的距离.⑶设:.),,1(填写且满足OB k SC k s r k ⊥⊥= ①的坐标为k .②异面直线SC 、OB 的距离为 .(注:⑶只要求写出答案)CBAO C 1B 1O 1 A 1EFyxz空间向量参考答案一、1.A 2.C 3.D 4.B 5.B 6.A 7.C 8.D 9.D 10.B 11.C 12.D 二、13.163或-11 14.243x -<< 15.016.52三、17.解:⑴建立如图所示的空间直角坐标系,取A (0,0,a ). 由),0,0,0(),0,23,23(),0,3,0(30B a a C a D ADB 可得 =∠).2,23,0(),2,43,43(a a F a a a E所以)0,23,23(),0,0(),0,43,43(a a BC a BA a a EF ==-=因为 BC EF AB EF BC EF BA EF ⊥⊥=⋅=⋅,,0,0所以所以ABC DEF BEF EF ABC EF 平面所以平面平面又平面⊥≠⊥.,⑵作2163)0,23,0(,)0,43,43(,a S a F F BD F F a a E E BC E E F E B =''⊥'''⊥'''∆于作于EF BE EF BE a a EF a a a BE ⊥=⋅-==所以显然,0)0,43,43(),2,43,43(所以.5151015/163cos ,1615,46||.410||222=====∆a a a S a EF a BE BEF θ所以所以θ=,515arccos 即平面BEF 和平面BCD 所成的角为.515arccos18.解:⑴设正三棱柱的高为h ,由AB=2及正三棱柱的性质知B ),1,3(),,1,0(),0,1,0(),,0,3(),0,0,3(111h AB hC A h B =∴- ),,1,3(1h BC -=又0,1111=⋅∴⊥BC AB BC AB ,即,2,011)3(322==+⨯+-⨯h h 得2,0=∴>h h ,则正三棱柱的侧棱长为2.⑵连结AC 1,∵点M 是BC 1的中点.212121)(21)(2111111AC AA AB C A AA AB AC AB AM ++=++=+=∴⑶),2,1,3(),0,1,3(),10,0(),0,0,3(1=-=∴AB BC C B 又,20211)3(31-=⨯+⨯+-⨯=⋅∴BC AB 2013||,6213||=++==++=BC AB ,而,66262||||,cos 1111-=⨯-=⋅⋅>=<BC AB BC AB BC AB∴异面直线AB 1与BC 所成角的余弦值为.66.DCE ′BF ′ AE F yxz19.解:⑴解法(一)(1)以D 为原点,DA 、DC 、DD 1所在直线分别为x 、y 、z 轴建立空间直角坐标系0-xyz ,则D (0,0,0),A (2,0,0),C (0,2,0),B (2,2,0), A 1(2,0,4),D 1(0,0,4),C 1(0,2,4),B 1(2,2,4), 设E (0,2,t ),则∵),4,0,2(),,0,2(,11--=-=⊥C B t BE C B BE,1,04041=∴=-+=⋅∴t t C B BE404),0,2,2(),4,2,2(),1,0,2(),1,2,0(11=-+=⋅∴=--=-=∴BE C A DB C A BE E 又 且,00441=++-=⋅DB C A,11BE C A DB C A ⊥⊥∴且BDE C A BE C A DB C A 平面且⊥∴⊥⊥∴111,(2)设A 1C ∩平面BDE=K , 设A 1C ∩平面BDE=K ,),4,22,22(),,22,2(),,22,2()1,2,0()0,2,2(1-+-=∴+∴+=+=⋅+⋅=n n m m K A n n m m K n n m m n m DEn DB m DK 设0120)22(2)22(211=-+⇒=++-=⋅⇒⊥n m n m m DB K A DB K A …①同理有045404)22(211=-+⇒=-++=⋅⇒⊥n m n n m DE K A DE K A …②由①,②联立解得),310,35,35(,32,611--=∴==K A n m,52||,365||11==∴B A K A 又易知,63052635||||sin 111===∠∴B A K A BK A 即所求角的正弦值是630解法(二)(1)证明:连AC 交BD 于点O ,由正四棱柱性质可知AA 1⊥底面ABCD ,AC ⊥BD ,∴A 1C ⊥BD又∵A 1B ⊥侧面BC 1且B 1C ⊥BE , ∴A 1C ⊥BE , ∵BD ∩BE=B , ∴A 1C ⊥平面BDE (2)解:设A 1C 交平面BDE 于点K ,连BK , 则∠A 1BK 为A 1B 与平面BDE 所成的角,∵在侧面BC 1中BE ⊥B 1C ,∴△BCE ∽△B 1BC ,1,4,2,11=∴===∴CE BB BC BB BCBC CE 又 ABD CA 1B 1D 1C 1E F K yxzA 1B 1D 1 C 1连结OE ,则OE 为平面ACC 1A 1与平面DBE 的交线,122,12,2,223,126,33OEAC K Rt ECO CO AC AB OE CO EC OE CK EC CO CK ∴=∆===∴=+=⨯⋅=⋅∴==在中又3653662,62121221=-=∴=++=K A AA BC AB C A63042635sin 221111=+==∠∆∴BA KA BK A BK A Rt 中在即为A 1B 与平面BDE 所成的角的正弦值.20.解:⑴因为BD AB CA CD BD CA BD AC ++=>=<>=<又所以.120,,60, ,故有BD CA BD AB AB CA BD AB CA BD AB CA BD AB CA CD CD ⋅+⋅+⋅+++=++++==222))((||22222,因为CA ⊥AB ,BD ⊥AB ,所以.0,0=⋅=⋅BD AB AB CA 所以172||.6821862846||2222==⨯⨯⨯-++=CD CD 所以. (2)过C 作CE ⊥平面α于E ,连接AE 、CE 在△ACE 中,CE=6sin 60°=33,连接DE ,则∠CDE 就是CD 与平面α所成角。