片式电感简介及应用

片式电感简介及应用
片式电感简介及应用

片式电感简介及应用

引言

按照电感器在线路中发挥的功能,主要有两方面的应用,分别是波形发生器和扼流电抗器。其中,在波形发生方面的应用又包括了谐振电路,振荡电路,时钟电路和脉冲电路等。在这类电路中,电感器必须具有高Q、小的电感偏差和稳定的温度系数。高的Q值使电路具有尖锐的谐振峰值;窄的电感偏差则保证了谐振频率偏差尽可能的小;而稳定的温度系数则保证谐振频率具有稳定的温度变化特性。

而扼流电抗器是将电感作为扼流圈来使用,这在电源电路中有广泛应用。这时电感器的主要参数是额定的工作电流、低的直流电阻和低的Q值。

当电感作为扼流电抗器来使用时,总希望用它构成的滤波电路具有宽的频率抑制特性,因此,这种电感器并不需要有高的Q值。福鹰电子而低的直流电阻可以保证在额定电流通过电感器时,将有最小的电压降。

这样看来,同样是一个电感器,不同的应用场合中对电感器性能要求是不同的。

片式电感

片式电感分为绕线型和叠层型两大类。绕线型电感器是将细的导线绕在软磁铁氧体磁芯上制成,外层一般用树脂封固。其工艺继承性强,但体积小型化有限。

而片式叠层电感器则不用绕线,是用铁氧体浆料和导体浆料交替印刷、叠层、烧结,形成闭合磁路;它采用先进的厚膜多层钝化技术和叠层生产工艺,实现了超小型表面安装。

叠层型电感的主要特点是有磁屏蔽和直流电阻小。与绕线型相比,电感量和可允许通过的电流相对较小,但是更适合在高频下使用。

片式电感的材料分成以铁氧体磁性材料为基体和以陶瓷材料为基体两个大类。

前者采用镍锌系和锰锌系材料制成各种小型铁氧体磁芯。大多数片式电感器,特别是片式功率电感器、片式EMI抑制器都使用镍锌系材料。

而锰锌系材料主要用在片式变压器和片式低频电感器中。

后者采用低介电常数陶瓷制成的高频片式叠层电感器,在其制作当中还考虑了抑制杂散电容的问题,用它做成的叠层电感器可以获得较高的自谐振频率,用在亚微波到微波波段,适合移动电话向高频化、网络化发展的需要。

1)片式叠层电感器

片式叠层电感器,是电感领域重点开发的产品。制作时不用绕线,而用铁氧体浆料和导电浆料交替进行多层印刷,然后通过高温共烧结,形成有闭合磁路的电感线圈(见图1)。或者将微米级铁氧体薄片进行叠层,每个磁性层有印刷的导体图案和孔,孔中填充导电材料,从而把上层图案和下层图案连结起来,经过加压、烧结,形成一体化的多层电感器。这类电感器制作工艺更加适合尺寸微小型化,容易实现规模化大生产。福鹰电子片式叠层电感器与片式绕线电感器相比有诸多优点:尺寸小,有利于电路的小型化;磁路封闭,不会干扰周围的元器件,也不会受临近元器件的干扰,有利于元器件的高密度安装;一体化结构,可靠性高;耐热性、可焊性好;形状规整,适合于自动化表面安装生产。

目前这类产品已取得较大进展,并通过改进磁性材料性能、改善内部磁路结构和加速器件小型化等措施,不断拓展其应用市场。片式叠层电感器是面向便携式电话等移动通信终端的高频毫微亨级电感器,以及面向个人电脑等高速数字信号处理设备的噪声抑制器。

2)绕线型片式电感

另一种形式的片式电感器是片式绕线电感器,这是对传统绕线型电感器的一种改进,采用微小型工字型磁芯,经绕线、焊接、电极成型、塑封等工序制成,见图2。

这种类型的片式电感生产工艺简单,电性能优良(电感量大,品质因素高),适合于大电流通过,可靠性好。但受磁芯尺寸和制造工艺限制,进一步微小型有困难。

还有一种片式绕线电感是采用H型陶瓷芯,经过绕线、焊接、涂复、环氧树脂灌封等工艺制成,见图3,由于电极已预制在陶瓷芯体上,制造工艺更加简单,而且可以进一步小型化。这类电感的电感量较小,但自谐振频率高(通常为5~6GHz,最高达12.5GHz),更适合高频使用。

片式绕线电感

2 片式电感与片式磁珠的区别

在《片式电磁兼容对策器件》这个话题中,片式电感主要是用来抑制电磁干扰的发生。所以比较电感器与磁珠(包括片式电感与片式磁珠)也应该从这个主题出发。

电感器本身是一个无功元件,它在电路中不消耗能量。电感器之所以能够阻止高频信号在线路中流通,发挥对电磁干扰的抑制作用,是因为电感器在高频信号作用下体现了一个高阻抗元件,阻止了高频信号在线路中的流通,而将高频信号反射回干扰源。就这个应用的频率范围来说,很少有超过50MHz的。

对磁珠来说,它本身是一个软磁铁氧体磁芯,串联在需要抑制干扰的线路上,诚然在频率较低时,铁氧体磁珠在串联电路上仍然体现为一个电感。然而对于频率更高的干扰,由于磁芯的磁导率的降低,导致电感的电感量减小,感抗成分减小,因此磁珠电感对于高频干扰的阻挡作用在减少。而与此同时,磁芯的损耗(涡流损耗) 却在增加。福鹰电子后者等效为

损耗电阻,电阻成分的增加,导致磁珠在线路上的总阻抗依然在增加,所以当高频干扰通过铁氧体时,磁珠对高频干扰的阻挡作用依然在增加,不过这次磁珠不是将高频干扰反射回干扰源,而是将高频干扰转换成热能的形式给耗散掉了。

这样看来,电感器和磁珠在结构上没有本质性的不同,但是从抑制干扰的机理(依照抑

制干扰的频率范围来划分)来说,两者明显是不同的,一个是将干扰反射回干扰源(指电感),另一个是将干扰吸收掉(指磁珠)。

3 片式共模电感器

在电子设备中,我们要抑制的电磁干扰无非是出现在信号线和电源线上的干扰,因此对于电磁兼容对策器件中的电感器,特别是片式电感器的适用形式也是从这两方面来分析。

1)信号线的滤波

信号线的滤波作用更多是用来对付来自空间的干扰问题(包括从空间辐射进设备的干扰,和设备向空间发射的干扰)。福鹰电子这说明了电缆线是电磁兼容的薄弱环节,也说明了共

模干扰是设备的主要危害。这是信号线所起的天线作用惹的祸。基于这一原因,对于非屏蔽的信号线端口应当安装信号线滤波器,滤波器要安装在信号线进出的交界面上,要滤除的主要是一些频率相当高的共模干扰信号。

2)电源线的滤波

在设备的电磁干扰的传播途径中,电源线是最重要的媒介,因为电源线的长度(包括设备的电源进线和电力传输的架空线延伸)足以构成射频信号的被动天线。福鹰电子此外,电网内的各种设备开、关和运行中形成的骚动也在电网中肆意流传。上述干扰对电网内的敏感设备的可靠工作造成威胁。射频信号在电源线上的传输是以两种模式进行的,一种是共模型式,在线一大地及中线一大地两个路径上出现;另一种是差模型式,在线一中线里传播。

电源线滤波器则被安插在电源线上,专门用来抑制射频信号传播的器件。

在电源线滤波器设计中往往不用差模电感,而采用共模电感。共模电感的两个线圈绕在同一磁芯上(同名端在线圈的同一侧),这种绕线方法对于差模电流(包括电源电流)产生的磁通相互抵消,不会产生磁路饱和;而对共模电流则体现一个很大的电感,取得大的滤波效果。

应当指出的是,共模电感器的两个线圈绕制不可能完全对称,因此共模电感器实际上还是残留一定程度的差模电感成分,对于差模干扰仍有一定程度抑制作用。

这样看来,无论是信号线或者是电源线,从抑制电磁干扰的角度出发,用得最多的还是共模抑制措施。因此从使用片式电感器的角度出发,用得最多的还是片式共模电感器。另外,从电磁兼容对策器件生产商提供的电感器来说也是片式共模电感器。

4 片式共模电感器举例

1)片式共模电感例

这里举日本村田制作所的片式共模电感为例,村田的片式共模电感拥有多个不同的子系列,其中:

DLP S系列为薄膜型片式共模电感,在一个元件中含有一个双路工作的共模电感。该系列产品有线路阻抗匹配功能(共模阻抗为67~550 Ω,其间有若干档),可在不造成高速信号传输失真情况下实现差分信号的噪声抑制。福鹰电子用于USB 2.0、IEEE 1934、LVDS的高速差分信号线的共模噪声抑制。常用于移动电话、笔记本电脑、数码相机和数码录像机。

DLP D系列为薄膜型片式共模电感,在一个元件中含有两个双路工作的共模电感。该系列产品有线路阻抗匹配功能(共模阻抗为67~440Ω,其间有若干档),可在不造成高速信号传输失真情况下实现差分信号的噪声抑制。用于USB 2.0、IEEE1934、LVDS、DVI、HDMI 的高速差分信号线的共模噪声抑制。常用于电脑、笔记本电脑主板、打印机、扫描仪、LED 显示器、游戏机和电脑外围设备。

DLM G系列叠层共模电感,其中DLM11G可以同时实现共模和差模噪声的抑制。在100MHz 时的共模阻抗为600Ω,差模阻抗为1 200Ω。福鹰电子可采取高密度安装(窄中心距),用于个人移动通信设备(如移动电话的麦克风、扬声器和耳机),以及电活机和个人移动设备(PDA、数码相机、MD播放机)的噪声抑制。

另一种,D L M 2 H G叠层共模电感,它100MHz时的共模阻抗为600Ω,内部含有三根连接线,可用于高品质的数字音乐设备的耳机线。福鹰电子特点是音频信号失真低,串音低,对共模和差模噪声均有抑制能力。典型应用例子有DVD、MD播放机、笔记本电脑和PDAM 的耳机线。

DLW21S系列绕线型片式共模电感,它的共模阻抗为67~370Ω,中间有若干档次,可匹配阻抗为100Ω的线路,在不造成高速信号传输失真情况下实现差分信号的噪声抑制;小尺寸更实现了高密度装配。福鹰电子常用在DVD录像机、电脑、LCD电视机和显示器中用于数字AV接口(如HDMI和DVI等)、电脑外设的USB线,笔记本电脑和LCD的LVDS线的USB线。

DLW31S系列绕线型片式共模电感,共模阻抗为90~2200 Ω,在高频时的高共模阻抗对噪声有极好的抑制功能,DLW31S的高耦合性能可在不造成高速信号传输失真的情况下实现差分线的噪声抑制。常用于电脑、外设中的USB线,笔记本电脑和LCD的LVDS线。

DLW21H系列绕线型片式电感,共模阻抗有67、90、120和180Ω几种,由于DLW21H系

列的高耦合性,不会对高速信号传输造成失真,常用在小而薄的数字设备(如电脑、外设和通信设备)中的信号差分线(USB2.0、IEEE1934和LVDS)共模噪声抑制。

DLW5AH/5BS系列高性能绕线型片式共模电感,其外形尺寸为5.0×5.0×4.5mm,共模阻抗达到190~4 000Ω,通过电流为200mA~5A。由于100MHz时的共模阻抗最大值可达到4 000Ω,实现了大的噪声抑制。另外,由于最大通过电流可达5A,非常适合于在电源线上使用。福鹰电子该系列的高耦合共模结构不会损害高速信号的传输。可用于便携设备的AC适配器中的直流电源线。DC-DC转换器、电池充电器中的直流电源线。DLW 5 BT系列绕线型片式共模电感,外形尺寸为5.0×5.0×2.5mm,该系列电感为薄型结构。在100MHz 时的共模阻抗最大值可达1 400Ω,最大通过电流可达6A。福鹰电子适合于DC-DC转换器、电池充电器等电源设备;PDA(个人数字助理)、笔记本电脑、打印机等便携设备使用。

2)片式共模电感的应用

1)USB接口噪声的抑制例

USB接口噪声的抑制例见图4,其中VDD/GND线用DLW5BSN35 1SQ2高性能绕线型共模电感(或BLM21PG221SN1片式磁珠);D+/D一线用DLP31SN221SL2或DLP31SN121SL2片式共模电感(如采用片式磁珠,对1.5Mbps传输速率用BLM21BD102SN1,对12Mbps用BLM21BB221SN1)。

USB接口噪声的抑制

图5为笔记本电脑液晶显示器部分的噪声抑制方案,利用共模电感可以很方便地将有用信号与线间串扰信号(共模干扰)分离开来。

共模_差模详解

EMC(electromagnetic compatibility)作为产品的一个特性,译为电磁兼容性;如果作为一门学科,则译为电磁兼容。它包括两个概念:EMI和EMS。EMI (electromagnetic interference) 电磁干扰,指自身干扰其它电器产品的电磁干扰量。EMS (electromagnetic susceptibility) 电磁敏感性,也有称为电磁抗扰度,是指能忍受其它电器产品的电磁干扰的程度。因此,电磁兼容性EMC一方面要滤除从电源线上引入的外部电磁干扰(辐射+传导),另一方面还能避免本身设备向外部发出噪声干扰,以免影响同一电磁环境下其他电子设备的正常工作。EMC滤波器主要是用来滤除传导干扰,抑制和衰减外界所产生的噪声信号干扰和影响受到保护的设备,同时抑制和衰减设备对外界产生干扰。而辐射干扰主要通过屏蔽的手段加以滤除。 从滤波器的功能来看,它的作用是允许某一部分频率的信号顺利的通过,而另外一部分无用频率的信号则受到较大的抑制,它实质上是一个选频电路。而我们常见的低通滤波器功能是允许信号中的低频或直流分量通过,抑制高频分量或干扰噪声。 电源噪声干扰在日常生活中很常见。比如你正在使用电脑的时候,当手机信号出现时,电脑音响会有杂音。比如电话或手机通话时有嗞嗞的杂声。又比如使用电吹风烫头发时,电视机不但会产生噪音,而且屏幕会出现很大的雪花般的条纹。这都是一些常见的噪声信号干扰,但实际上有些干扰日常看不到,一但受到影响就有可能措手不及,甚至找不到根源。这些噪声信号如果出现在自动化仪器,医疗仪器有可能带来极大的损失甚至生命安全。比如,会造成自动化仪器误动作,造成医疗仪器失控等等。 我们常说的噪声干扰,是指对有用信号以外的一切电子信号的一个总称,也可以理解为电磁干扰。最初,人们把造成收音机之音响设备所发出噪声的那些电子信号,称为噪声。但是,一些非有用电子信号对电子电路造成的后果并非都和声音有关,因此,后来人们逐步扩大了噪声概念。如:某一频率的无线电波信号,对需要接收这种信号的接收机来讲,它是正常的有用信号,而对于另一频率的接收机它就是一种无用信号,即是噪声。 噪声按传播路径来分可分为传导噪声干扰和空间噪声干扰。其传导干扰主要通过导体传播,通过导电介质把一个电网络上的信号耦合(干扰)到另一个电网络,其频谱主要为30MHz以下。而空间噪声干扰源通过空间把其信号耦合(干扰)到另一个电网络,其频率范围比传导噪声频率宽很多,30Hz-30GHz。传导噪声干扰可以通过设计滤波电路或追加滤波器的方法来进行抑制和衰减,而空间辐射干扰主要通过主要应用密封屏蔽技术,在结构上实行电磁封闭。目前为减少重量大都采用铝合金外壳,但铝合金导磁性能差,因而外壳需要镀一层镍或喷涂导电漆,内壁贴覆高导磁率的屏蔽材料。 上面我们提到传导噪声干扰,又分为差模干扰与共模干扰两种。差模干扰是两条电源线之间(简称线对线)的噪声,主要通过选择合适的电容(X电容),差模线圈来进行抑制和衰减。共模干扰则是两条电源线对大地(简称线对地)的噪声,主要通过选择合适的电容(Y电容),和共模线圈来进行抑制和衰减。我们常见的低通滤波器一般同时具有抑制共模和差模干扰的功能。 第 1 页

详解电感分类及差异

详解电感分类及差异 显卡帝详解供电模块中电感的作用 显卡供电模块里的电容、MOSFET在之前的文章中我们都做了详细的介绍,今天我们所要讲解的是供电模块里面的电感。在本次讲解中我们将重点讨论显卡 PCB上电感的主要作用、常见电感分类和市售显卡采用电感实例解析等。希望通过本次的讲解能让各位玩家对显卡电感的作用以及不同电感的差异性有一个清晰的认识。 显卡帝详解电感 显卡帝详解供电模块中电感的作用

电感这个物理名词想必各位玩家在中学物理课堂中有所了解。其基本作用是:滤波、振荡、延迟、陷波等。形象的来讲:“通直流,阻交流”。而在我们显卡PCB 供电模组中,电感的主要作用有两个:一、与电容、MOSFET组成直流转换(交流—>直流)电路;二、储能; 三、滤波。 详解:在GPU供电中由于是开关电路,所产生的电压是一个PWM脉冲电压,而GPU用的必须是直流电,所以需要电感来转换成直流。关于储能和滤波作用,电感线圈就像一个水池一样进行蓄水达到一定程度就会释放出去,在工作中不间断的进行储能与释放,在这个过程中电压中的一些尖波和不稳定的因素同时也被排除掉,即发挥了电感的储能和滤波作用。而关于延迟作用,有时也会考虑,比如所当GPU为很多相供电的时候,为了每相供电能够稳定故而要求同时输出所需要的的电压和电流,所以设计者也会考虑到这一点。 显卡供电模块电感常规分类介绍 在显卡的供电模块上所使用的电感一般为如下几种:全开放式电感、半封闭式电感、全封闭式电感和贴片电感等。 全开放式电感 全开放式电感:价格低廉,但散热较好,受电磁干扰非常大,提供的电流不纯正。高端显卡以及核心供电模块不会采用这种电感,只有在电流不高的显存周边采用这种电感。 半封闭电感

片式电感及其应用

片式电感及其应用 0 引言按照电感器在线路中发挥的功能,主要有两方面的应用,分别是波形发生器和扼流电抗器。其中,在波形发生方面的应用又包括了谐振电路,振荡电路,时钟电路和脉冲电路等。在这类电路中,电感器必须具有高Q、小的电感偏差和稳定的温度系数。高的Q 值使电路具有尖锐的谐振峰值;窄的电感偏差则保证了谐振频率偏差尽可能的小;而稳定的温度系数则保证谐振频率具有稳定的温度变化特性。而扼流电抗器是将电感作为扼流圈来使用,这在电源电路中有广泛应用。这时电感器的主要参数是额定的工作电流、低的直流电阻和低的Q 值。当电感作为扼流电抗器来使用时,总希望用它构成的滤波电路具有宽的频率抑制特性,因此,这种电感器并不需要有高的Q 值。而低的直流电阻可以保证在额定电流通过电感器时,将有最小的电压降。这样看来,同样是一个电感器,不同的应用场合中对电感器性能要求是不同的。 1 片式电感片式电感分为绕线型和叠层型两大类。绕线型电感器是将细的导线绕在软磁铁氧体磁芯上制成,外层一般用树脂封固。其工艺继承性强,但体积小型化有限。而片式叠层电感器则不用绕线,是用铁氧体浆料和导体浆料交替印刷、叠层、烧结,形成闭合磁路;它采用先进的厚膜多层钝化技术和叠层生产工艺,实现了超小型表面安装。叠层型电感的主要特点是有磁屏蔽和直流电阻小。与绕线型相比,电感量和可允许通过的电流相对较小,但是更适合在高频下使用。片式电感的材料分成以铁氧体磁性材料为基体和以陶瓷材料为基体两个大类。前者采用镍锌系和锰锌系材料制成各种小型铁氧体磁芯。大多数片式电感器,特别是片式功率电感器、片式EMI 抑制器都使用镍锌系材料。而锰锌系材料主要用在片式变压器和片式低频电感器中。后者采用低介电常数陶瓷制成的高频片式叠层电感器,在其制作当中还考虑了抑制杂散

共模电感认识

共模电感(Common mode Choke),也叫共模扼流圈,是在一个闭合磁环上对称绕制方向相反、匝数相同的线圈。理想的共模扼流圈对L(或N)与E 之间的共模干扰具有抑制作用,而对L 与N 之间存在的差模干扰无电感抑制作用。但实际线圈绕制的不完全对称会导致差模漏电感的产生。信号电流或电源电流在两个绕组中流过时方向相反,产生的磁通量相互抵消,扼流圈呈现低阻抗。共模噪声电流(包括地环路引起的骚扰电流,也处称作纵向电流)流经两个绕组时方向相同,产生的磁通量同向相加,扼流圈呈现高阻抗,从而起到抑制共模噪声的作用。共模电感实质上是一个双向滤波器:一方面要滤除信号线上共模电磁干扰,另一方面又要抑制本身不向外发出电磁干扰,避免影响同一电磁环境下其他电子设备的正常工作。 共模电感是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作用。原理是流过共模电流时磁环中的磁通相互叠加,从而具有相当大的电感量,对共模电流起到抑制作用,而当两线圈流过差模电流时,磁环中的磁通相互抵消,几乎没有电感量,所以差模电流可以无衰减地通过。因此共模电感在平衡线路中能有效地抑制共模干扰信号,而对线路正常传输的差模信号无影响。 共模电感在制作时应满足以下要求: 1)绕制在线圈磁芯上的导线要相互绝缘,以保证在瞬时过电压作用下线圈的匝间不发生击穿短路。 2)当线圈流过瞬时大电流时,磁芯不要出现饱和。 3)线圈中的磁芯应与线圈绝缘,以防止在瞬时过电压作用下两者之间发生击穿。 4)线圈应尽可能绕制单层,这样做可减小线圈的寄生电容,增强线圈对瞬时过电压的而授能力。 通常情况下,同时注意选择所需滤波的频段,共模阻抗越大越好,因此我们在选择共模电感时需要看器件资料,主要根据阻抗频率曲线选择。另外选择时注意考虑差模阻抗对信号的影响,主要关注差模阻抗,特别注意高速端口。 一、初识共模电感 由于EMC所面临解决问题大多是共模干扰,因此共模电感也是我们常用的有力元件之一!这里就给大家简单介绍一下共模电感的原理以及使用情况。 共模电感是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作用。原理是流过共模电流时磁环中的磁通相互叠加,从而具有相当大的电感量,对共模电流起到抑制作用,而当两线圈流过差模电流时,磁环中的磁通相互抵消,几乎没有电感量,所以差模电流可以无衰减地通过。因此共模电感在平衡线路中能有效地抑制共模干扰信号,而对线路正常传输的差模信号无影响。

电感器的原理、结构、作用及分类

电感器的原理、结构、作用及分类 电感器是能够把电能转化为磁能而存储起来的元件。电感器的结构类似于变压器,但只有一个绕组。电感器具有一定的电感,它只阻碍电流的变化。 如果电感器在没有电流通过的状态下,电路接通时它将试图阻碍电流流过它;如果电感器在有电流通过的状态下,电路断开时它将试图维持电流不变。电感器又称扼流器、电抗器、动态电抗器。 电感的原理 电感是导线内通过交流电流时,在导线的内部周围产生交变磁通,导线的磁通量与生产此磁通的电流之比。当电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化,可是当在线圈中通过交流电流时,其周围将呈现出随时间而变化的磁力线。 根据法拉第电磁感应定律——磁生电来分析,变化的磁力线在线圈两端会产生感应电势,此感应电势相当于一个“新电源”。当形成闭合回路时,此感应电势就要产生感应电流。由楞次定律知道感应电流所产生的磁力线总量要力图阻止磁力线的变化的。 磁力线变化来源于外加交变电源的变化,故从客观效果看,电感线圈有阻止交流电路中电流变化的特性。电感线圈有与力学中的惯性相类似的特性,在电学上取名为“自感应”,通常在拉开闸刀开关或接通闸刀开关的瞬间,会发生火花,这自感现象产生很高的感应电势所造成的。 总之,当电感线圈接到交流电源上时,线圈内部的磁力线将随电

流的交变而时刻在变化着,致使线圈产生电磁感应。这种因线圈本身电流的变化而产生的电动势,称为“自感电动势”。由此可见,电感量只是一个与线圈的圈数、大小形状和介质有关的一个参量,它是电感线圈惯性的量度而与外加电流无关。 电感的代换原则 电感线圈必须原值代换(匝数相等,大小相同)。 贴片电感只须大小相同即可,还可用0欧电阻或导线代换。 电感器的发展 最原始的电感器是1831年英国迈克尔·法拉第(Michael Faraday) 用以发现电磁感应现象的铁芯线圈。1832年美国的约瑟夫·亨利(Joseph Henry) 发表关于自感应现象的论文,人们把电感量的单位称为亨利,简称亨。19世纪中期,电感器在电报、电话等装置中得到实际应用。1887年德国的海因里希·鲁道夫·赫兹(Heinrich Rudolf Hertz) ,1890年美国尼古拉·特斯拉(Nikola Tesla) 在实验中所用的电感器都是非常著名的,分别称为赫兹线圈和特斯拉线圈。 电感器的作用 电感器在电路中主要起到滤波、振荡、延迟、陷波等作用,还有筛选信号、过滤噪声、稳定电流及抑制电磁波干扰等作用。 电感在电路最常见的作用就是与电容一起,组成LC滤波电路。电容具有“阻直流,通交流”的特性,而电感则有“通直流,阻交流”的功能: 通直流:指电感器对直流呈通路关态,如果不计电感线圈的电阻,

电容电感的种类及应用电子版本

电容电感的种类及应 用

电容电感的种类及应用 学生姓名:杨胜驿 学号:2014112123 专业班级:物理学应用物理

电容种类 1.1聚酯(涤纶)电容(CL) ?电容量:40pF~4μF ?额定电压:63~630V ?主要特点:小体积,大容量,耐热耐湿,稳定性差 ?应用:对稳定性和损耗要求不高的低频电路 1.2聚苯乙烯电容(CB) ?电容量:10pF~4μF ?额定电压:100V~30KV ?主要特点:稳定,低损耗,体积较大 ?应用:对稳定性和损耗要求较高的电路 1.3聚丙烯电容(CBB) ?电容量:1000pF~10μF ?额定电压:63V~2000V ?主要特点:性能与聚苯相似但体积小,稳定性略差 ?应用:代替大部分聚苯或云母电容,用于要求较高的电路1.4云母电容(CY) ?电容量:10pF~0.1μF ?额定电压:100V--7kV ?主要特点:高稳定性,高可靠性,温度系数小 ?应用:高频振荡,脉冲等要求较高的电路 1.5高频瓷介电容(CC) ?电容量:1~6800pF ?额定电压:63V~500V ?主要特点:高频损耗小,稳定性好 ?应用:高频电路 1.6低频瓷介电容(CT) ?电容量:10pF~4.7μF ?额定电压:50V~100V ?主要特点:体积小,价廉,损耗大,稳定性差 ?应用:要求不高的低频电路 1.7玻璃釉电容(CI) ?电容量:10p~0.1μF ?额定电压:63V~400V ?主要特点:稳定性较好,损耗小,耐高温(200度)

?应用:脉冲、耦合、旁路等电路 1.8铝电解电容 ?电容量:0.47μF ~10000μF ?额定电压:6.3V~450V ?主要特点:体积小,容量大,损耗大,漏电大 ?应用:电源滤波,低频耦合,去耦,旁路等 1.9钽电解电容(CA)铌电解电容(CN) ?电容量:0.1μF ~1000μF ?额定电压:6.3V~125V ?主要特点:损耗、漏电小于铝电解电容 ?应用:在要求高的电路中代替铝电解电容 1.10空气介质可变电容器 ?可变电容量:100pF~1500pF ?主要特点:损耗小,效率高;可根据 要求制成直线式、直线波长式、直线 频率式及对数式等 ?应用:电子仪器,广播电视设备等 1.11薄膜介质可变电容器 ?可变电容量:15pF~550pF ?主要特点:体积小,重量轻;损耗比空 气介质的大 ?应用:通讯,广播接收机等 1.12薄膜介质微调电容器 ?可变电容量:1pF~29pF ?主要特点:损耗较大,体积小 ?应用:收录机,电子仪器等电路作电路补偿 1.13陶瓷介质微调电容器 ?可变电容量:0.3pF~22pF ?主要特点:损耗较小,体积较小 ?应用:精密调谐的高频振荡回路 1.14独石电容 ?电容量:0.5pF~1μF ?主要特点:电容量大、体积小、可靠性高、电容量稳定,耐高温耐湿性好等。 ?耐压:二倍额定电压。 ?应用范围:广泛应用于电子精密仪器。各种小型电子设备作谐振、耦合、滤波、旁路。

共模扼流圈在开关电源中的应用

共模扼流圈在开关电源中的应用 摘要: 本文阐述了对共模扼流圈的工作原理及使用方法,及其在开关电源中的应用与实现。 我们经常采用共模扼流的方法可以抑制外界的噪声干扰,但是目前现有的共模扼流圈(这里指的是开关电源中所用的共模扼流圈,不考虑经过调制解调的)多数都是采用同轴电缆在变压器的铁心上绕制而成,为了获得较大的电感值,就要尽量多绕制才能取得足够的电感值。本文则介绍共模扼流圈在开关电源中的应用。 关键词:开关电源;电磁干扰;共模扼流圈;合成扼流圈;共模电感 引言: 由于功率开关管的高速开关动作,开关电源会产生较强的电磁干扰( EMI) 信号。为了抑制开关电源对外电磁噪声和外界对内电磁干扰,使得产品能够满足相关EMC 标准,有必要在开关电源输入线上添加额外的EMI 滤波器。尤其对于车用DC/ DC 变换器的控制器来说,周围电磁环境相当恶劣,所应遵循的整车及零部件EMC 标准也很严格,因此必须在控制器电源输入线上添加EMI 滤波器,使其满足相关EMC 标准。传统的EMI 滤波器一般由共模电感、差模电感和电容等分立元件组成,元件数量多,体积大。分立元件较长的引线造成的分布电感和分布电容对滤波特性有很大的影响。而共差模合成扼流圈利用两个不同特性的磁芯将共模电感和差模电感集成在一起,替代分立的共模电感与差模电感,可以使滤波器尺寸和性能上得到进一步的改善。 正文: 1、共模扼流圈的简介: 共模电感(Common mode Choke),也叫共模扼流圈,是在一个闭合磁环上对称绕制方向相反、匝数相同的线圈。理想的共模扼流圈对L(或N)与E 之间的共模干扰具有抑制作用,而对L 与N 之间存在的差模干扰无电感抑制作用。但实际线圈绕制的不完全对称会导致差模漏电感的产生。信号电流或电源电流在两个绕组中流过时方向相反,产生的磁通量相互抵消,扼流圈呈现低阻抗。共模噪声电流(包括地环路引起的骚扰电流,也处称作纵向电流)流经两个绕组时方向相同,产生的磁通量同向相加,扼流圈呈现高阻抗,从而起到抑制共模噪声的作用。 共模电感实质上是一个双向滤波器:一方面要滤除信号线上共模电磁干扰,另一方面

电感专题详解

电感专题详解 From ItechBe@ts At 2012.06.13 一.电感简述 电感(电感线圈)是用绝缘导线(如漆包线、纱包线或塑皮线等)在绝缘骨架或磁心、铁心上绕制成的一组串联的同轴线匝,是电子电路中常用的元器件之一。它在电路中用字母“L”表示,单位为亨利(简称亨),用字母"H"表示,常用的单位还有毫亨(mH)和微亨(μH),它们之间的关系是:1H=1000mH;1mH=1000μH。 电感的主要作用是对交流信号进行隔离、滤波或与电容器、电阻器等组成谐振电路。 电感的计算公式: 串联:L = L1 + L2 + … + Ln 并联:1/L = 1/L1 + 1/L2 + … + 1/Ln 定义式:L = NΦ/i 决定式:一般用电感测试仪测试出来(欢迎补充) 二.电感之源 因磁通量变化产生感应电动势的现象,闭合电路的一部分导体在磁场里做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应。闭合电路的一部分导体在磁场中做切割磁感线运动,导体中就会产生电流。这种现象叫电磁感应现象。产生的电流称为感应电流。这就是法拉第与1831年发现并提出的电磁感应定律。 当线圈通过电流后,在线圈中形成磁场感应,感应磁场又会产生感应电流来抵制通过线圈中的电流。 我们把这种电流与线圈的相互作用关系称其为电的感抗,也就是电感。 这么说可能有些抽象,在网上找到一个举例相信能帮助大家理解:假定有一条人工渠,渠边有一个大大的水车,水车很繁重,需求较大流量的渠水才干推进它。首先,渠道中没有水的时分,水车是不会转动的。接下去工人开启闸门开端放水,在放水最开端的时分,水流会从小到大,那么水车是怎样样变化的呢? 水车会随着水的到来而快速旋转和水同步?显然不是,由于惯性和阻力的存在,水车会迟缓的开端转动,过一段时刻后才会和水流构成稳固的均衡。在水车“起步”,开端迟缓转动的进程,实践上也是水车在阻拦制止水流向前,抵抗水流变化的进程。在水流颠簸、水车转速也稳固后,水和水车构成一种调和共生的关系,就互不干预了。那么假如关掉闸门呢?关掉闸门后,水会逐步增加,流速也会下降。在水流流速下降的时分,水车并不能快速和水流树立新的均衡,它还会依据之前的速率持续旋转一段时刻,并带动水流在一定时刻内维持之前的速率,接着水车会随着水流速降低、水流增加而渐渐中止转动。恰是这种紧张电路中电流的变化幅度的特性,使得电感就像是电路中的一个“整理、梳理者”。 三.电感的种类 电感的体积大小可以分辨出能通过电流的大小。因为电感的使用环境千差万别,不可能用一种方式计

共模电感

一、共模电感原理 在介绍共模电感之前先介绍扼流圈,扼流圈是一种用来减弱电路里面高频电流的低阻抗线圈。为了提高其电感扼流圈通常有一软磁材料制的核心。共模扼流圈有多个同样的线圈,电流在这些线圈里反向流,因此在扼流圈的芯里磁场抵消。共模扼流圈常被用来压抑干扰辐射,因为这样的干扰电流在不同的线圈里反向,提高系统的EMC。对于这样的电流共模扼流圈的电感非常高。共模电感的电路图如图1所示。 图1共模电感电路图示 共模信号和差模信号只是一个相对量,共模信号又称共模噪声或者称对地噪声,指两根线分别对地的噪声,对于开关电源的输入滤波器而言,是零线和火线分别对大地的电信号。虽然零线和火线都没有直接和大地相连,但是零线和火线可以分别通过电路板上的寄生电容或者杂散电容又或者寄生电感等来和大地相连。差模信号是指两根线直接的信号差值也可以称之为电视差。 假设有两个信号V1、V2 共模信号就为(V1+V2)/2 差模信号就为:对于V1 (V1-V2)/2;对于V2 -(V1-V2)/2 共模信号特点:幅度相等、相位相同的信号。 差模信号特点:幅度相等、相位相反的信号。 如图2所示为差模信号和共模信号的示意图。

图2差模信号和共模信号示意图

二、共差模噪声来源 对于开关电源而言,如果整流桥后的储能滤波大电容为理想电容,即等效 串联电阻为零(忽略所有电容寄生参数),则输入到电源的所有可能的差模噪 声源都会被该电容完全旁路或解耦,可是大容量电容的等效串联电阻并非为零。因此,输入电容的等效串联电阻是从差模噪声发生器看进去的阻抗Zdm的主 要部分。输入电容除了承受从电源线流入的工作电流外,还要提供开关管所需 的高频脉冲电流,但无论如何,电流流经电阻必然产生压降,如电容的等效串 联电阻,所以输入滤波电容两端会出现高频电压纹波,高频高压纹波就是来自 于差模电流。它基本上是一个电压源(由等效串联电阻导致的)。理论上,整 流桥导通时,该高频纹波噪声应该仅出现在整流桥输入侧。事实上,整流桥关 断时,噪声会通过整流桥二极管的寄生电容泄露。 高频电流流入机壳有许多偶然的路径。当开关电源中的主开关管的漏极高 低跳变时,电流流经开关管与散热器之间的寄生电容(散热器连接至外壳或者 散热器就是外壳)。在交流电网电流保持整流桥导通时,注入机壳的噪声遭遇 几乎相等的阻抗,因此等量流入零线和火线。因此,这是纯共模噪声。

电容电感的选择及EMI 中的应用

电容电感的选择及EMI中的应用 电容电感的选择及EMI中的应用 云母电容: 用金属箔或者在云母片上喷涂银层做电极板,极板和云母一层一层叠合后,再压铸在胶木粉或封固在环氧树脂中制成。它的特点是介质损耗小,绝缘电阻大、温度系数小,适宜用于高频电路。 陶瓷电容: 用陶瓷做介质,在陶瓷基体两面喷涂银层,然后烧成银质薄膜做极板制成。它的特点是体积小,耐热性好、损耗小、绝缘电阻高,但容量小,适宜用于高频电路。 铁电陶瓷电容容量较大,但是损耗和温度系数较大,适宜用于低频电路。 薄膜电容: 结构和纸介电容相同,介质是涤纶或者聚苯乙烯。涤纶薄膜电容,介电常数较高,体积小,容量大,稳定性较好,适宜做旁路电容。 聚苯乙烯薄膜电容,介质损耗小,绝缘电阻高,但是温度系数大,可用于高频电路。 金属化纸介电容 结构和纸介电容基本相同。它是在电容器纸上覆上一层金属膜来代替金属箔,体积小,容量较大,一般用在低频电路中。 油浸纸介电容: 它是把纸介电容浸在经过特别处理的油里,能增强它的耐压。它的特点是电容量大、耐压高,但是体积较大。 铝电解电容: 它是由铝圆筒做负极,里面装有液体电解质,插入一片弯曲的铝带做正极制成。还需要经过直流电压处理,使正极片上形成一层氧化膜做介质。它的特点是容量大,但是漏电大,稳定性差,有正负极性,适宜用于电源滤波或者低频电路中。使用的时候,正负极不要接反。 钽、铌电解电容: 它用金属钽或者铌做正极,用稀硫酸等配液做负极,用钽或铌表面生成的氧化膜做介质制成。它的特点是体积小、容量大、性能稳定、寿命长、绝缘电阻大、温度特性好。用在要求较高的设备中。 半可变电容: 也叫做微调电容。它是由两片或者两组小型金属弹片,中间夹着介质制成。调节的时候改变两片之间的距离或者面积。它的介质有空气、陶瓷、云母、薄膜等。 可变电容: 它由一组定片和一组动片组成,它的容量随着动片的转动可以连续改变。把两组可变电容装在一起同轴转动,叫做双连。可变电容的介质有空气和聚苯乙烯两种。空气介质可变电容体积大,损耗小,多用在电子管收音机中。聚苯乙烯介质可变电容做成密封式的,体积小,多用在晶体管收音机中。 NPO(COG):电气性能最稳定,基本上不随温度、电压与时间的改变面改变,适用于对稳定性要求高的高频电路;

共模滤波电感原理分析

共模滤波电感器不是电感量越大越好.主要看你要滤除的共模干扰的频率范围,先说一下共模电感器滤波原理:共模电感器对共模干扰信号的衰减或者说滤除有两个原理,一是靠感抗的阻挡作用,但是到高频电感量没有了靠的是磁心的损耗吸收作用;他们的综合效果是滤波的真实效果.当然在低频段靠的是电感量产生的感抗.同样的电感器磁心材料绕制成的电感器,随着电感量的增加,Z阻抗与频率曲线变化的趋势是随着你绕制的电感器的电感量的增加,Z 阻抗峰值电时的频率就会下降,也就是说电感量越高所能滤除的共模干扰的频率越低,换句话说对低频共模干扰的滤除效果越好,对高频共模信号的滤除效果越差甚至不起作用. 这就是为什么有的滤波器使用两级滤波共模电感器的原因一级是用低磁导率(磁导率7K以下铁氧体材料甚至可以使用1000的NiZn材料) 材料作成共模滤波电感器,滤出几十MHz 或更高频段的共模干扰信号,另一级采用高导磁材料(如磁导率10000h00的铁氧体材料或着非晶体材料)来滤除1MHz以下或者几百kHz的共模干扰信号. 因此首先要确认你要滤除共模干扰的频率范围然后再选择合适的滤波电感器材料. 共 模电感的测量与诊断 电源滤波器的设计通常可从共模和差模两方面来考虑。共模滤波器 最重要的部分就是共模扼流圈,与差模扼流圈相比,共模扼流圈的一个 显著优点在于它的电感值极高,而且体积又小,设计共模扼流圈时要考 虑的一个重要问题是它的漏感,也就是差模电感。通常,计算漏感的办 法是假定它为共模电感的1%,实际上漏感为共模电感的 0.5% ~ 4%之 间。在设计最优性能的扼流圈时,这个误差的影响可能是不容忽视的。 漏感的重要性 漏感是如何形成的呢?紧密绕制,且绕满一周的环形线圈,即 使没有磁芯,其所有磁通都集中在线圈“芯”内。但是,如果环形线圈 没有绕满一周,或者绕制不紧密,那么磁通就会从芯中泄漏出来。这种 效应与线匝间的相对距离和螺旋管芯体的磁导率成正比。共模扼流圈有 两个绕组,这两个绕组被设计成使它们所流过的电流沿线圈芯传导时方 向相反,从而使磁场为0。如果为了安全起见,芯体上的线圈不是双线 绕制,这样两个绕组之间就有相当大的间隙,自然就引起磁通“泄漏”, 这即是说,磁场在所关心的各个点上并非真正为0。共模扼流圈的漏感 是差模电感。事实上,与差模有关的磁通必须在某点上离开芯体,换句 话说,磁通在芯体外部形成闭合回路,而不仅仅只局限在环形芯体内。 如果芯体具有差模电感,那么,差模电流就会使芯体内的磁通 发生偏离零点,如果偏离太大,芯体便会发生磁饱和现象,使共模电感 基本与无磁芯的电感一样。结果,共模辐射的强度就如同电路中没有扼 流圈一样。差模电流在共模环形线圈中引起的磁通偏离可由下式得出:

电感的作用及分类

电感是用绝缘导线(例如漆包线,沙包线等)绕制而成的电磁感应元件。属于常用元件。 一,电感的作用:通直流阻交流这是简单的说法,对交流信号进行隔离,滤波或与电容器,电阻器等组成谐振电路. 调谐与选频电感的作用:电感线圈与电容器并联可组成LC 调谐电路。即电路的固有振荡频率f0与非交流信号的频率f相等,则回路的感抗与容抗也相等,于是电磁能量就在电感、电容之间来回振荡,这就是L C回路的谐振现象。谐振时由于电路的感抗与容抗等值又反向,因此回路总电流的感抗最小,电流量最大(指f=f0的交流信号),所以L C谐振电路具有选择频率的作用,能将某一频率f的交流信号选择出来。 磁环电感的作用:磁环与连接电缆构成一个电感器(电缆中的导线在磁环上绕几圈作为电感线圈),它是电子电路中常用的抗干扰元件,对于高频噪声有很好的屏蔽作用,故被称为吸收磁环,由于通常使用铁氧体材料制成,所以又称铁氧体磁环(简称磁环)。在图中,上面为一体式磁环,下面为带安装夹的磁环。磁环在不同的频率下有不同的阻抗特牲。一般在低频时阻抗很小,当信号频率升高后磁环的阻抗急剧变大。可见电感的作用如此之大,大家都知道,信号频率越高,越容易辐射出去,而一般的信号线都是没有屏蔽层的,这些信号线就成了很好的天线,接收周围环境中各种杂乱的高频信号,而这些信号叠加在原来传输的信号上,甚至会改变原来传输的有用信号,严重干扰电子设备的正常工作,因此降低电子设备的电磁干扰(E M)已经是必须考虑的问题。在磁环作用下,即使正常有用的信号顺利地通过,又能很好地抑制高频于扰信号,而且成本低廉。 电感的作用还有筛选信号、过滤噪声、稳定电流及抑制电磁波干扰等重要的作用。

电感器的结构、分类及特性

电感器的结构、分类及特性 电感器是能够把电能转化为磁能而存储起来的元件。 电感器的结构类似于变压器,但只有一个绕组。电感器具有一定的电感,它只阻碍电流的变化。如果电感器在没有电流通过的状态下,电路接通时它将试图阻碍电流流过它;如果电感器在有电流通过的状态下,电路断开时它将试图维持电流不变。 电感器又称扼流器、电抗器、动态电抗器。 一、电感器的发展 最原始的电感器是1831年英国M.法拉第用以发现电磁感应现象的铁芯线圈。1832年美国的J.亨利发表关于自感应现象的论文。人们把电感量的单位称为亨利,简称亨。 19世纪中期,电感器在电报、电话等装置中得到实际应用。1887年德国的H.R.赫兹,1890年美国N.特斯拉在实验中所用的电感器都是非常著名的,分别称为赫兹线圈和特斯拉线圈。 二、电感器的功能用途 电感器在电路中主要起到滤波、振荡、延迟、陷波等作用,还有筛选信号、过滤噪声、稳定电流及抑制电磁波干扰等作用。电感在电路最常见的作用就是与电容一起,组成LC滤波电路。 电容具有“阻直流,通交流”的特性,而电感则有“通直流,阻交流”的功能。 如果把伴有许多干扰信号的直流电通过LC滤波电路,那么,交流干扰信号将被电感变成热能消耗掉;变得比较纯净的直流电流通过电感时,其中的交流干扰信号也被变成磁感和热能,频率较高的最容易被电感阻抗,这就可以抑制较高频率的干扰信号。 电感器具有阻止交流电通过而让直流电顺利通过的特性,频率越高,线圈阻抗越大。因此,电感器的主要功能是对交流信号进行隔离、滤波或与电容器、电阻器等组成谐振电路。 三、电感器的结构 电感器一般由骨架、绕组、屏蔽罩、封装材料、磁心或铁心等组成。 1、骨架 骨架泛指绕制线圈的支架。一些体积较大的固定式电感器或可调式电感器(如振荡线圈、阻流圈等),大多数是将漆包线(或纱包线)环绕在骨架上,再将磁心或铜心、铁心等装入骨架的内腔,以提高其电感量。 骨架通常是采用塑料、胶木、陶瓷制成,根据实际需要可以制成不同的形状。小型电感器(例如色码电感器)一般不使用骨架,而是直接将漆包线绕在磁心上。空心电感器(也

电感封装与类型

电感资料整理 封装: 可知电感封装以如下格式记录。 对于电感来说,封装方式一般包括贴片电感封装和插件电感封装。 贴片电感封装的主要类型有0402,0603,0805,1206,CDR1608,CDR1813,CD105等等。0402,0603指的是叠层电感。CD1813,CD105中的CD指的是贴片的工字电感,1813中的18指的是直径为18~19mm3指的是高度为13~14mm。 贴片功率电感分为开放式功率电感和屏蔽式功率电感2种: 其中,屏蔽式功率电感的封装为CKCD系列,CKCH系列。 而插件电感的封装有PK0345,PK0406,PK0507等等。PK指的是工字电感系列。0406指的是不包括外被,直径为4mm,高度为6mm。

类型: 常用的电感可以分为以下类型: 1、单层线圈 单层线圈是用绝缘导线一圈挨一圈地绕在纸筒或胶木骨架上。如晶体管收音机中波天线线圈。 2、蜂房式线圈 如果所绕制的线圈,其平面不与旋转面平行,而是相交成一定的角度,这种线圈称为蜂房式线圈。而其旋转一周,导线来回弯折的次数,常称为折点数。蜂房式绕法的优点是体积小,分布电容小,而且电感量大。蜂房式线圈都是利用蜂房绕线机来绕制,折点越多,分布电容越小。 3、铁氧体磁芯和铁粉芯线圈 线圈的电感量大小与有无磁芯有关。在空芯线圈中插入铁氧体磁芯,可增加电感量和提高线圈的品质因素。 4、铜芯线圈 铜芯线圈在超短波范围应用较多,利用旋动铜芯在线圈中的位置来改变电感量,这种调整比较方便、耐用。 5、色码电感器 色码电感器是具有固定电感量的电感器,其电感量标志方法同电阻一样以色环来标记。 6、阻流圈(扼流圈) 限制交流电通过的线圈称阻流圈,分高频阻流圈和低频阻流圈。

(整理)抑制共模电感

共模电感 求助编辑 共模电感 共模电感(Common mode Choke),也叫共模扼流圈,常用于电脑的开关电源中过滤共模的电磁干扰信号。在板卡设计中,共模电感也是起EMI滤波的作用,用于抑制高速信号线产生的电磁波向外辐射发射。 目录

小知识:EMI(Electro Magnetic Interference,电磁干扰) 计算机内部的主板上混合了各种高频电路、数字电路和模拟电路,它们工作时会产生大量高频电磁波互相干扰,这就是EMI。EMI还会通过主板布线或外接线缆向外发射,造成电磁辐射污染,不但影响其他的电子设备正常工作,还对人体有害。 PC板卡上的芯片在工作过程中既是一个电磁干扰对象,也是一个电磁干扰源。总的来说,我们可以把这些电磁干扰分成两类:串模干扰(差模干扰)与共模干扰(接地干扰)。以主板上的两条PCB走线(连接主板各元件的导线)为例,所谓串模干扰,指的是两条走线之间的干扰;而共模干扰则是两条走线和PCB地线之间的电位差引起的干扰。串模干扰电流作用于两条信号线间,其传导方向与波形和信号电流一致;共模干扰电流作用在信号线路和地线之间,干扰电流在两条信号线上各流过二分之一且同向,并以地线为公共回路。 共模电感 如果板卡产生的共模电流不经过衰减过滤(尤其是像USB和IEEE 1394接口这种高速接口走线上的共模电流),那么共模干扰电流就很容易通过接口数据线产生电磁辐射——在线缆中因共模电流而产生的共模辐射。美国FCC、国际无线电干扰特别委员会的CISPR22以及我国的GB9254等标准规范等都对信息技术设备通信端口的共模传导干扰和辐射发射有相关的限制要求。为了消除信号线上输入的干扰信号及感应的各种干扰,我们必须合理安排滤波电路来过滤共模和串模的干扰,共模电感就是滤波电路中的一个组成部分。 共模电感实质上是一个双向滤波器:一方面要滤除信号线上共模电磁干扰,另一方面又要抑制本身不向外发出电磁干扰,避免影响同一电磁环境下其他电子设备的正常工作。 图2是我们常见的共模电感的内部电路示意图,在实际电路设计中,还可以采用多级共模电路来更好地滤除电磁干扰。此外,在主板上我们也

电容和电感区别

电容 电容(或电容量, Capacitance)指的是在给定电位差下的电荷储藏量;记为C,国际单位是法拉(F)。一般来说,电荷在电场中会受力而移动,当导体之间有了介质,则阻碍了电荷移动而使得电荷累积在导体上;造成电荷的累积储存,最常见的例子就是两片平行金属板。也是电容器的俗称。 电容(或称电容量)是表征电容器容纳电荷本领的物理量。我们把电容器的两极板间的电势差增加1伏所需的电量,叫做电容器的电容。电容器从物理学上讲,它是一种静态电荷存储介质(就像一只水桶一样,你可以把电荷充存进去,在没有放电回路的[1]情况下,刨除介质漏电自放电效应/电解电容比较明显,可能电荷会永久存在,这是它的特征),它的用途较广,它是电子、电力领域中不可缺少的电子元件。主要用于电源滤波、信号滤波、信号耦合、谐振、隔直流等电路中。 电容的符号是C。 C=εS/d=εS/4πkd(真空)=Q/U 在国际单位制里,电容的单位是法拉,简称法,符号是F,常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)(皮法又称微微法)等, 换算关系是: 1法拉(F)= 1000毫法(mF)=1000000微法(μF) 1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。 电子电路中,只有在电容器充电过程中,才有电流流过,充电过程结束后,电容器是不能通过直流电的,在电路中起着“隔直流”的作用。电路中,电容器常被用作耦合、旁路、滤波等,都是利用它“通交流,隔直流”的特性。那么交流电为什么能够通过电容器呢?我们先来看看交流电的特点。交流电不仅方向往复交变,它的大小也在按规律变化。电容器接在交流电源上,电容器连续地充电、放电,电路中就会流过与交流电变化规律一致(相位不同)的充电电流和放电电流。 电容器的选用涉及到很多问题。首先是耐压的问题。加在一个电容器的两端的电压超过了它的额定电压,电容器就会被击穿损坏。一般电解电容的耐压分档为6.3V,10V,16V,25V,50V等。 电感 电感是指线圈在磁场中活动时,所能感应到的电流的强度,单位是“亨利”(H)。也指利用此性质制成的元件。 电感器(电感线圈)和变压器均是用绝缘导线(例如漆包线、纱包线等)绕制而成的电磁感应元件,也是电子电路中常用的元器件之一,相关产品如共模滤波器等。 电感简介 diàn’gǎn [INDUCTOR] ,复数:INDUCTORS 电感器(电感线圈)和变压器均是用绝缘导线(例如漆包线、纱包线等)绕制而成的电磁感应元件,也是电子电路中常用的元器件之一,相关产品如共模滤波器等。 编辑本段自感与互感 自感

电感封装与类型

电感封装与类型集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

电感资料整理 封装: 可知电感封装以如下格式记录。 对于电感来说,封装方式一般包括贴片电感封装和插件电感封装。 贴片电感封装的主要类型有0402,0603,0805,1206,CDR1608,CDR1813,CD105等等。0402,0603指的是叠层电感。CD1813,CD105中的CD指的是贴片的工字电感,1813中的18指的是直径为18~19mm3指的是高度为13~14mm。 贴片功率电感分为开放式功率电感和屏蔽式功率电感2种: 其中,屏蔽式功率电感的封装为CKCD系列,CKCH系列。 而插件电感的封装有PK0345,PK0406,PK0507等等。PK指的是工字电感系列。0406指的是不包括外被,直径为4mm,高度为6mm。 类型: 常用的电感可以分为以下类型: 1、单层线圈 单层线圈是用绝缘导线一圈挨一圈地绕在纸筒或胶木骨架上。如晶体管收音机中波天线线圈。 2、蜂房式线圈 如果所绕制的线圈,其平面不与旋转面平行,而是相交成一定的角度,这种线圈称为蜂房式线圈。而其旋转一周,导线来回弯折的次数,常称为折点数。蜂房式绕法的优点是体积小,分布电容小,而且电感量大。蜂房式线圈都是利用蜂房绕线机来绕制,折点越多,分布电容越小。3、铁氧体磁芯和铁粉芯线圈 线圈的电感量大小与有无磁芯有关。在空芯线圈中插入铁氧体磁芯,可增加电感量和提高线圈的品质因素。 4、铜芯线圈 铜芯线圈在超短波范围应用较多,利用旋动铜芯在线圈中的位置来改变电感量,这种调整比较方便、耐用。 5、色码电感器 色码电感器是具有固定电感量的电感器,其电感量标志方法同电阻一样以色环来标记。 6、阻流圈(扼流圈) 限制交流电通过的线圈称阻流圈,分高频阻流圈和低频阻流圈。 而电感经常会出现在我们的显卡上,显卡中供电模块上的电感从外观上,则可分为以下几种。 全开放式电感: 价格低廉,但散热较好,受电磁干扰非常大,提供的电流不纯正。高端 显卡以及核心供电模块不会采用这种电感,只有在电流不高的显存周边采用这种电感。 半封闭电感: 价格适中,防电磁干扰良好,在高频电流通过时不会发生异响,散热良好, 可以提供大电流。目前在主流显卡上较常用。?

滤波电容器共模电感和磁珠在EMC设计电路中作用及原理

滤波电容器共模电感和磁珠在EMC设计电 路中作用及原理 滤波电容器、共模电感、磁珠在EMC设计电路中是常见的身影,也是消灭电磁干扰的三大利器。对于这这三者在电路中的作用,相信还有很多工程师搞不清楚。本文从设计设计中,详细分析了消灭EMC三大利器的原理。 三大利器之滤波电容器 尽管从滤除高频噪声的角度看,电容的谐振是不希望的,但是电容的谐振并不是总是有害的。当要滤除的噪声频率确定时,可以通过调整电容的容量,使谐振点刚好落在骚扰频率上。 在实际工程中,要滤除的电磁噪声频率往往高达数百MHz,甚至超过1GHz。对这样高频的电磁噪声必须使用穿心电容才能有效地滤除。普通电容之所以不能有效地滤除高频噪声,是因为两个原因,一个原因是电容引线电感造成电容谐振,对高频信号呈现较大的阻抗,削弱了对高频信号的旁路作用;另一个原因是导线之间的寄生电容使高频信号发生耦合,降低了滤波效果。 穿心电容之所以能有效地滤除高频噪声,是因为穿心电容不仅没有引线电感造成电容谐振频率过低的问题,而且穿心电容可以直接安装在金属面板上,利用金属面板起到高频隔离的作用。但是在使用穿心电容时,要注意的问题是安装问题。穿心电容最大的弱点是怕高温和温度冲击,这在将穿心电容往金属面板上焊接时造成很大困难。许多电容在焊接过程中发生损坏。特别是当需要将大量的穿心电容安装在面板上时,只要有一个损坏,就很难修复,因为在将损坏的电容拆下时,会造成邻近其它电容的损坏。 三大利器之共模电感 由于EMC所面临解决问题大多是共模干扰,因此共模电感也是我们常用的有力元件之一,共模电感是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作用。原理是流过共模电流时磁环中的磁通相互叠加,从而具有相当大的电感量,对共模电流起到抑制作用,而当两线圈流过差模电流时,磁环中的磁通相互抵消,几乎没有电感量,所以差模电流可以无衰减地通过。因此共模电感在平衡线路中能有效地抑制共模干扰信号,而对线路正常传输的差模信号无影响。 共模电感在制作时应满足以下要求: 1)绕制在线圈磁芯上的导线要相互绝缘,以保证在瞬时过电压作用下线圈的匝间不发生击穿短路。 2)当线圈流过瞬时大电流时,磁芯不要出现饱和。 3)线圈中的磁芯应与线圈绝缘,以防止在瞬时过电压作用下两者之间发生击穿。 4)线圈应尽可能绕制单层,这样做可减小线圈的寄生电容,增强线圈对瞬时过电压的而授能力。 通常情况下,同时注意选择所需滤波的频段,共模阻抗越大越好,因此我们在选择共模电感时需要看器件资料,主要根据阻抗频率曲线选择。另外选择时注意考虑差模阻抗对信号的影响,主要关注差模阻抗,特别注意高速端口。 三大利器之磁珠

电子元件的基本作用(电容、电感等)

电子元件的基本作用(电容、电感等) 电容: 所谓电容,就是容纳和释放电荷的电子元器件。电容的基本工作原理就是充电放电,当然还有整流、振荡以及其它的作用。另外电容的结构非常简单,主要由两块正负电极和 夹在中间的绝缘介质组成,所以电容类型主要是由电极和绝缘介质决定的。在计算机系统的主板、插卡、电源的电路中,应用了电解电容、纸介电容和瓷介电容等几类电容,并以电解电容为主。 纸介电容是由两层正负锡箔电极和一层夹在锡箔中间的绝缘蜡纸组成,并拆叠成扁体 长方形。额定电压一般在63V~250V之间,容量较小,基本上是pF(皮法)数量级。现代纸介电容由于采用了硬塑外壳和树脂密封包装,不易老化,又因为它们基本工作在低压区,且耐压值相对较高,所以损坏的可能性较小。万一遭到电损坏,一般症状为电容外表发热。 瓷介电容是在一块瓷片的两边涂上金属电极而成,普遍为扁圆形。其电容量较小,都 在pμF(皮微法)数量级。又因为绝缘介质是较厚瓷片,所以额定电压一般在1~3kV左右,很难会被电损坏,一般只会出现机械破损。在计算机系统中应用极少,每个电路板中分别只有2~4枚左右。 电解电容的结构与纸介电容相似,不同的是作为电极的两种金属箔不同(所以在电解 电容上有正负极之分,且一般只标明负极),两电极金属箔与纸介质卷成圆柱形后,装在 盛有电解液的圆形铝桶中封闭起来。因此,如若电容器漏电,就容易引起电解液发热,从而出现外壳鼓起或爆裂现象。电解电容都是圆柱形(图1),体积大而容量大,在电容器上 所标明的参数一般有电容量(单位:微法)、额定电压(单位:伏特),以及最高工作温度(单位:℃)。其中,耐压值一般在几伏特~几百伏特之间,容量一般在几微法~几千微法之 间,最高工作温度一般为85℃~105℃。指明电解电容的最高工作温度,就是针对其电解液受热后易膨胀这一特点的。所以,电解电容出现外壳鼓起或爆裂,并非只有漏电才出现,工作环境温度过高同样也会出现。 1.电容器主要用于交流电路及脉冲电路中,在直流电路中电容器一般起隔断直流的作用。 2.电容既不产生也不消耗能量,是储能元件。 3.电容器在电力系统中是提高功率因数的重要器件;在电子电路中是获得振荡、滤波、相移、旁路、耦合等作用的主要元件。 4.因为在工业上使用的负载主要是电动机感性负载,所以要并电容这容性负载才能使电网平衡. 5.在接地线上,为什么有的也要通过电容后再接地咧?

相关文档
最新文档