六年级数学下册9.1用表格表示变量之间的关系教学设计鲁教版五四制(1)
鲁教版(五四制)数学六年级下册教案:9.1用表格表示变量之间的关系
课题9.1用表格表示变量之间的关系授课课型新授课教学目标1、知识与技能经历探索具体情境中两个变量之间的关系的过程,进一步发展符号感和抽象思维,培养学生分析问题的能力与归纳思维的能力2、过程与方法能发现实际情境中的变量及其相互关系,并确定其中的自变量和因变量.3、情感态度价值观体会表格法的优点,能借助表格中的数据探究变量的变化规律,推算或预测变量的变化趋势学情分析在学生现有的知识基础上,本节的教学及学习任务是鼓励学生用表格整理数据并充分地从表格中获取信息,运用自己的语言进行描述,与同伴进行交流,提高学生合作交流的意识.教材分析本节课是本章的起始课,与后面三个课时合起来分别呈现的是表示变量之间关系的三种方式——表格法、解析式法和图象法.本章作为研究变量和函数的起始章节,重在让学生感受和体会生活中的“变量”.同时,在第一课时还要教给学生用表格呈现实验中变量的数据的方法.教学方法小组交流,合作探究教学重点:能从表格的数据中分清什么是变量,自变量,因变量以及因变(幻灯片动画显示)利用同一块木板,测量小车从不同的高度下滑的时间,然后将得到下表的数据:支撑物高102030405060708090100度/ 厘米小车下滑4.233.002.452.131.891.711.591.501.411.35时间/ 秒根据上表回答下列问题:(1)支撑物高度为70厘米时,小车下滑时间是多少?(2)如果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?(3)h每增加10厘米,t的变化情况相同吗?(4)估计当h=110厘米时,t的值是多少.你是怎样估计的?(5)随着支撑物高度h的变化,还有哪些量发生变化?哪些量始终不发生变化?三:概念介绍(学生可以看着课本划重点)在“小车下滑的时间”中,支撑物的高度h和小车下滑的时间t 都在变化,它们都是变量(variable).其中小车下滑的时间t随支撑物的高度h的变化而变化.支撑物的高度h是自变量(independent variale),小车下滑的时间t是因变量(dependent variale).在这一变化过程中,小车下滑的距离(木板的长度)一直没有变化.像这种在变化过程中数值始终不变的量叫做常量(constant).、研究表明,当钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:0 34 67 101 135 202 259 336 404 471氮肥施用量/千克/公顷15.18 21.36 25.72 32.29 34.03 39.45 43.15 43.46 40.83 30.75土豆产量/吨/公顷(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当氮肥的施用量是101千克/公顷时,土豆的产量是多少?如果不施氮肥呢?(3)根据表格中的数据,你认为氮肥的施用量是多少时比较适宜?说说你的理由。
六年级数学下册9.2用表达式表示变量之间的关系教案鲁教版五四制
用表达式表示变量之间的关系教学目标1、知识与技能:能根据具体情景,用关系式表示某些变量之间的关系,能根据关系式求值。
2、过程与方法:经历探索某些图形中变量之间的关系的过程,体会一个变量对另一个变量的影响。
3、情感态度价值观:能根据关系式求值,初步体会自变量和因变量的数值对应关系,发展符号感.二.教学重点:1、列关系式表示两个变量之间的关系.2、根据关系式解决相关问题.三.教学难点:将具体问题抽象成数学问题并将它用关系式表示出来.教学过程:1复习导入你还记得什么是变量么?请举例说明实际生活中的变量。
并指出哪个是自变量,哪个是因变量.(本章主要讨论的是现实世界中大量存在的变量,讨论如何用数学的方法去理解、表示变量之间的关系,并解决一些问题.因此在教学中,因此导入环节励学生自己从生活中寻找有关素材供课堂讨论教师要创设丰富的现实情境使学生体会变量以及变量之间相互依赖的关系,而不是形式地讨论函数的有关概念).2合作探究一:如图:三角形底边BC上的高AD是6cm,当三角形该底边BC的长短发生变化时,三角形的面积发生了变化(1)在这个变化过程中,决定该三角形的面积大小的因素有哪些?(2)在这个变化过程中,自变量,因变量各是什么?(3)若△ABC底边BC上的高是6厘米,三角形的顶点C沿底边BC所在直线向点B运动时,三角形的面积发生了怎样的变化?(4)若BC的长为x(cm),那么三角形的面积y(平方厘米)可以表示为?(5)当边长从12cm变化到3cm时,三角形的面积如何变化?(运用数学的语言、方法、知识去理解、刻画现实世界中的变化规律,是本章学习的主要目标之一,为实现这个目标,借助多媒体技术,注重使学生亲身经历探索现实世界变化规律的过程,并尝试用语言和符号去刻画).3合作探究二:如图,圆锥的高是4厘米,当圆锥的底面半径由小变化到大时,圆锥的体积也随之发生了变化。
(1)、在这个变化过程中,自变量和因变量各是什么?(2)、如果圆锥的半径为r厘米那么圆锥的体积V(立方厘米)与r的关系式为?(3),当半径由1厘米变到10厘米时,圆锥的体积由( )变到( )。
六年级数学下册 第九章 变量之间的关系教学设计2 鲁教版五四制
第九章变量之间的关系第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
2、了解我国书法发展的历史。
3、掌握基本笔画的书写特点。
重点:基本笔画的书写。
难点:运笔的技法。
教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。
2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。
二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。
换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。
三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。
2、教师边书写边讲解。
3、学生练习,教师指导。
(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。
在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。
5、学生练习,教师指导。
(发现问题及时指正)四、作业:完成一张基本笔画的练习。
板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。
这是书写的起步,让学生了解书写工具及保养的基本常识。
基本笔画书写是整个字书写的基础,必须认真书写。
课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。
总第(2)课时课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。
2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
重点:正确书写6个字。
难点:注意字的结构和笔画的书写。
教学过程:一、小结课堂内容,评价上次作业。
二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。
2、书写方法是:写一个字看一眼黑板。
六年级数学下册 9.1 用表格表示变量之间的关系教学设计 鲁教版五四制
二、同层展示(5分钟)
同层比较个性学习内容的质量和数量
三、小组合作(15分钟)
1、同质交流:
2、异质帮扶:
3、提出疑难问题:
四、师生探究(10分钟)
王波学习小组利用同一块木板,测量了小车从不同高度下滑的时间.他们得到如下数据:
(2)如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?
(3)当t每增加1秒时,v的变化情况相同吗?在哪1秒钟内,v的增加最大?
(4)若高速公路上小汽车行驶速度的上限为120千米/时,试估计大约还需几秒这辆小汽车速度就将达到这个上限?
六、小结与作业(5分钟)
必做:
选做:
学科知识构建与板书设计
小结:通过分析小车在斜坡上下滑时高度与时间数据之间的联系,使学生体会小车下滑时间随着高度变化而变化,从而了解变量、自变量和因变量的意义,了解可以用列表示两个变量之间的关系
反思与重建
教学准备
多媒体,投影
教学过程:
结合学科特点,体现单元组教学环节,学习内容,时间预测,教师活动,学生活动,自主学习设计,问题探究,单元组合作,同层竞争,人人参与,精讲足练,联系实际,点拨升华,
集体备课
二次备课
一、个性学习
针对本节所学习教材内容,教师提出三个或以上可操作,可测的大问题:
1、你能在具体情境中理解什么是变量、自变量、因变量吗?
情感态度价值观:在发展推理能力和有条理的语言、符号表达能力的同时,进一步体会学习数学的兴趣,提高学习数学的信心,感受数学的简洁美.
教学重点
重点:能从表格的数据中分清什么是变量,自变量、因变量以及因变量随自变量的变化情况。
2019年六年级数学下册 第九章 变量之间的关系教学设计3 鲁教版五四制
(2)中途中加油_________L;
(3)已知加油站距目的地还有,车速为,
若要达到目的地,油箱中的油是否够用?并说明原因.
六、小结与作业(5分钟)
必做:
选做:
学科知识构建与板书设计
小结:通过具体实际情境,进一步经历从图中分析变量之间关系的过程,加深对图象表示的理解,进一步发展从图象中获得信息的能力及有条理地进行语言表达的能力。
5、结合对变量之间关系的分析,尝试对变化趋势进行初步的预测.
二、技能目标:
体验从运动变化的角度认识数学对象的过程,发展发现问题、提出问题、分析问题和解决问题的能力。
三、情感态度价值观目标:
在探究、学习变量之间关系的过程中,进一步发展学习兴趣和增强学好数学的自信心。
教学重点
变量以及自变量、因变量等相关概念的理解与认识,掌握三种表示变量之间关系的方法,并注意区别。
教学重点
通过实际情境,能分析出变量之间关系。
教学难点
现实中变量的变化关系,判断变化的可能图象。
学情分析
学生初次接触变量之间的关系,学习起来有一定难度。
教学准备
多媒体,投影
教学过程:
集体备课
二次备课
一、个性学习配套P147统计调查
1、对照老师出示的习题答案
2、自主改错
二、同层展示(5分钟)
同层比较个性学习内容的质量和数量
反思与重建
附送:
2019年六年级数学下册第九章变量之间的关系
教学设计4鲁教版五四制
教材分析
本套教科书从六年级下册开始引入变量和变量之间关系的内容,非形式化地开始对函数内容的学习.本套教科书对函数内容的处理是分层次的,是遵照循序渐进、螺旋上升的原则进行设计的,而不是一蹴而就的.本章主要通过丰富的生活实例(如小车下滑的时间、变化中的三角形、温度的变化、速度的变化等)内容使学生感受现实世界
山东省泰山博文中学六年级(五四学制)数学下册《91用表格表示变量之间的关系》课堂学习设计(无答案)
1
2
3
4
5
温度(℃)
20
14
8
2
-4
-10
回答:
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎样变化的?
(3)你知道距离地面5千米的高空温度是多少吗?
(4)你能猜出距离地面6千米的高空温度是多少吗?
2、影院的座位按下列方式设置。
(1)述哪些量在变化,自变量和因变量分别是什么?
排数
1
2
3
4
座位数
60
64
68
72
第5排、第6排各有多少个座位?第n排有多少个座位?
(2)根据表格中的数据,说一说座位数是如何随排数的变化而变化的?
3、爷爷告诉小强:“距离地面越高,温度越低。”并出示了下面的表格:
距离地面高度(千米)
课题:9.1用表格表示变量之间的关系(2)课型:新授课
一、学习目标
1、经历探索具体情景中两个变量之间关系的过程,探索变量之间
关系的体验,进一步发展符号感。
2、在具体情景中理解什么是变量、自变量、因变量,并能举出反映变量之间关系的例子。
3、能从表格中获得变量之间关系的信息,能用表格表示变量之间的关系,并根据表格中的数据尝试对变化趋势进行初步的预测。
(1)上述问题中哪些量在发生变化,自变量和因变量各是什么?
(2)用表格形式表示上述问题。
(3)根据表格中的数据说一说苹果的售价与所购苹果质量之间的关系,并计算出买500千克苹果所需钱数。
对应训练;
一、指出下列问题中的自变量、因变量。
4、你还能举出生活中存在自变量和因变量的例子吗?
六年级数学下册9.1用表格表示变量之间的关系-优秀课件鲁教版五四制
((132))上 根某述据婴的表儿哪中在些的出量 数生在 据时发 ,的生 说体变 一重化 说是? 儿3童.5千从克出,生请到把10 周他岁在之发间育体过重程是中怎的样体随重着情年况龄填的入增下长表而:变化的.
年龄 刚出 6个月 1周岁 2周岁 6周岁 10周
生
岁体Leabharlann / 千克3.57.0
10.5 14.0 21.0
像这种在变化过程中数值始终不变
的量叫做常量.
始终不变
的量
练习:
• 例题1. 指出下列各题中,哪些量在发生改 变?其中的自变量与因变量各是什么?
(1) 用总长为60m的篱笆围成一个长为a, 面积为S的长方形场地.
(2) 正方形的边长为3,若边长增加x,则面 积增加y.
议一议:
我国从1949年到1999年的人口统计数据如下: (精确到0.01亿):
合作学习
1.圆的面积公式为 S r2, 取 r 的些不同的值,
算出相应的 S 的值:
r _2__ cm
S __4___ cm2
r __3_ cm
S __9___ cm2
r __5_ cm
3
r __2_ cm
S __5___ cm2
S __94___ cm2
在计算半径不同的圆的面积的过程中,哪些 量在改变,哪些量不变?
(2)当圆锥的高由1 厘米变化到10 厘米时,圆锥的体积由 ( V=4π /3 ) 厘米3变化到(V=40π /3 )厘米3。
2厘米
1、到今天为止我们一共学了几种方法来表示自变量与 因变量之间的关系?
列表格与列关系式两种方法
2、列表与列关系式表示变量之间的关系各有什么特点?
通过列表格,可以较直观地表示因变量随自变量 变化而变化的情况。 利用关系式,我们可以根据一个自变量的值求出 相应的因变量的值 .
鲁教版数学六年级下册9.1用表格表示变量之间的关系教学设计
在教学过程中,教师应为学生提供适当的脚手架,如示例、提示、引导性问题等,帮助学生逐步攻克难点。
5.实践应用,巩固提高:
设计具有挑战性的实际问题,让学生运用所学知识解决,巩固所学内容,提高学生解决问题的能力。
6.情感态度与价值观的培养:
在教学过程中,注重引导学生体会数学与生活的联系,培养学生的数据意识和逻辑思维,使其形成积极向上的情感态度。
7.教学评价:
采用多元化的评价方式,如课堂表现、小组讨论、课后作业等,全面评估学生的学习效果。
8.教学策略:
(1)直观演示:利用多媒体、教具等,直观演示变量之间的关系,帮助学生形象地理解抽象概念。
(2)案例教学:选择具有代表性的案例,引导学生从案例中总结规律,学会用表格表示变量之间的关系。
(3)任务驱动:设置具有挑战性的任务,鼓励学生主动探究,培养其解决问题的能力。
3.教师引导学生思考:这些现象中,哪些是变量?它们之间的关系是如何变化的?
(二)讲授新知
1.教师讲解变量之间的关系,如线性关系、非线性关系等,并通过示例进行说明。
2.介绍用表格表示变量关系的方法,强调表格的标题、列标题和行标题的设置。
3.示例讲解:以购物为例,列出不同数量商品的价格,引导学生观察数据,找出变量之间的关系。
1.注重引导学生从实际问题中发现变量之间的关系,培养他们运用表格进行数据整理和分析的意识。
2.针对学生对表格数据处理的难点,设计具有层次性和启发性的教学活动,帮助学生克服困难,逐步提高数据分析能力。
3.关注学生在学习过程中的情感体验,鼓励他们积极参与课堂讨论,发挥团队合作精神,共同解决实际问题。
4.注意因材施教,针对不同学生的认知水平和学习风格,提供个性化的指导和帮助,使他们在原有基础上得到提高。
鲁教版小学数学六年级下册《用图象表示变量之间的关系(1)》教学设计
用图象表示变量之间的关系(1)
教材与学情分析
1、本节教材"温度的变化"从学生所熟悉的情境人手,从图象中获取两变量之间的关系的信息,经历从数学的角度体会变量和变量之间相互依赖的关系,体会图象在表达两变量间变化关系的直观性,感受数学的应用价值.本节教材能使学生初步感受函数思想,能更好地发展学生有条理地进行思考和表达的能力,为以后顺利过渡到函数学习打下基础.
2、学生通过观察现实生活,对用图象来反映两变量之间的关系有了一定的体验,积累有了一些生活的经验;具有初步的搜集信息的能力.通过本节的学习,培养了学生的观察能力、思维表达能力等.
教学目标
知识与技能目标:
1、了解两个变量之间的对应关系,初步形成函数的思想.
2、结合具体情境理解图象上的点所表示的意义.
3、发展从图象中获得信息的能力及有条理地进行语言表达的能力.
4、理解用数学的方法描述变量之间的关系,感受数学的价值.
过程与方法目标:
经历从图象中分析变量之间的关系的过程,进一步体会变量之间的关系,在具体情境中培养学生对变量之间关系的认识和语言描述的合理性,培养学生从图象中获取信息的广泛性和准确性.
情感与态度目标:
从解决大量实际问题和学生感兴趣的问题中提高学生用数学的意识,体验数学所蕴含的数学美.
教学重点
把实际问题转化为数学图象,再根据图象来研究实际问题,使学生获得对图象反映变量之间关系的体验.
教学难点
从图象中获得一些信息与在现实情景下用语言进行描述之间的等价转化;用图象法来反映两变量之间关系,解决自己身边的一些实际问题,根据图象的特点
来研究实际问题.
教学过程设计:
1.一天中,骆驼体温的变化范围是什么?它的体温从最低上升到最高需要。
鲁教版数学六年级下册92用表达式表示变量之间的关系教学设计1.doc
9. 2用表达式表示变量之间的关系教学目标:【知识与技能】1•能根据具体情景,用关系式表示某些变量之间的关系。
2、能根据关系式求值,初步体会自变量和因变量的数值对应关系。
【过程与方法】经历探索某些图形屮变量Z间的关系的过程,进一步体会一个变量对另一个变量的影响,发展符号感。
【情感态度与价值观】通过联系牛活实际的学习,学牛体会到变量之间的关系,体验数学活动充满着探索性和创造性。
教学重点:1、找问题中的自变量和因变量。
2、根据关系式找自变量和因变量之间的对应关系。
教学难点:根据关系式找自变量和因变量之间的对应关系。
教学过程:一、知识回顾:在用表格表示变量之间的关系中:支撑物的高度h和小车下滑的时间t都在变化,它们都是变量.英屮小车下滑的时间t随支撑物的高度h的变化而变化,支撑物的高度h是自变量,小车下滑的时间t是因变量。
这节课我们尝试用另一种方法表示变量之间的关系(引入新课,认定目标)二、尝试预检、引导发现三角形是日常生活中很常见的图形,1、决定一个三角形面积的因素有哪些?2、课件演示:(高一定)变化中的三角形(如图4-1)三、尝试探究、引导解惑提出思考问题:如果AABC底边BC上的高是6厘米。
当三角形的顶点C沿底边BC所在直线向点B运动吋,三角形的僧积发生了怎样的变化?在这个变化过程中,AABC中的哪些因素在改变?(1)这个变化过程中,自变量、因变量各是什么?⑵绡(稣),另哙角丿mwiy (W2)o⑶违撤长从12厘米变化JIJ3厘米时,三角形的面枳从cnf变化到cnf.学生活动:(1)同学们能根据要求填写下列的表格吗?根据三角形的底边长为/(厘米),和三角形的面积y (厘米b的关系式填表:Z(cm)• • •10987654• • •X(cm2)• • •• • •(2)通过填表、探允,同学们能说出用关系式表达变量间变化关系的优势在哪些方面吗?四、巩固提高例1:汽车以60千米/时的速度匀速行驶,行驶里程为S千米,行驶时|'可为十小时。
9.1《用表格表示变量之间的关系》教学设计-2023--2024学年鲁教版(五四制)六年级数学下册
9.1用表格表示变量之间的关系一、教材分析本节课是鲁教版数学教材六年级下册第九章第一节《用表格表示变量之间的关系》. 六年级上册学生已经学习了用字母表示数,通过这一部分的学习,学生体验、认识到“变量”,探索规律和从统计图中获取信息让学生积累了寻找本节课具体实例中变量变化规律的经验. 本节课作为本章的起始课,是从表格的角度让学生感受函数的本质特征之一——联系与变化,为后面 《用表达式表示变量之间的关系》和 《用图象表示变量之间的关系》两节继续从表达式和图象的角度感受函数的这一本质特征做了铺垫. 七年级上册第八章第一节继续从表格、图象、表达式三个方面让学生感受函数的另一本质特征——单值对应,进而从这两方面总结了函数的概念. 本章作为研究变量和函数的起始章节,重在让学生感受和体会生活中的“变量”,三节课合起来分别呈现了表示变量之间关系的三种方式,又为七年级上册一次函数、九年级上册反比例函数和二次函数的研究明确了方向.二、学法分析《数学新课程标准纲要》指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式.为了充分体现《数学新课程标准纲要》的要求,培养学生的动手实践能力,逻辑推理能力,积累丰富的数学活动经验,这节课主要采用自主探索与合作交流的学习方法,使学生积极参与教学过程,在教学过程展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步理解观察、类比、分析等数学思想方法.三、教学目标(1)经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,理解什么是变量、自变量、因变量和常量,能从表格中获得变量之间关系的信息并能根据表格中的数据尝试对变化趋势进行初步的预测,进一步发展符号感.(2)经历探索具体情境中两个变量之间关系的过程,在探索活动中理解变量之间的相依关系,能用数学的语言表达信息.(3)通过学习用表格表示变量之间的关系,从运动变化的角度认识数学对象,提高学生的数学素养,感受数学的价值;结合人口增长问题和水稻种植问题,在探索现实世界变化规律的过程中,渗透爱国主义精神,培养爱国情怀.四、教学重难点重点: 能从表格中分清什么是变量、自变量与因变量,理解因变量随自变量的变化而变化的情况.难点:理解两个变量之间的相依关系.五、教学方法的选择与应用根据本节课的教学目标、教材内容以及学生的认知特点,教学上采用以引导发现法为主,并以讨论法、演示法相结合,设计 “实验——观察——讨论”的教学方法,意在帮助学生通过直观情景观察和自己动手实验,从自己的实践中获取知识,并通过讨论来深化对知识的理解.本节课采用了多媒体辅助教学,一方面能够直观、生动地反映小车下滑时间与支撑高度之间的关系,增加课堂的容量,同时有利于突出重点、分散难点,增强教学条理性,形象性,更好地提高课堂效率.六、教学过程情景导入----活动探究----巩固练习----课堂小结----布置作业情,引出课题.中国少年智——观察根据上表回答下列问题:(1)支撑物高度为 30cm时,小车下滑时间是多少?(2)如果用 h表示支撑物高度,t表示小车下滑时间,随着 h逐渐变大,t的变化趋势是什么?(3)h每增加 10cm,t 的变化情况相同吗?(4)估计当 h=110cm时,t 的值是多少?(5)随着支撑物高度 h的变化,还有哪些量发生变化?哪些量始终不发生变化?骏马踏平川——练习2.一人指出其中的自变量和因变量.强国有我在——巩固(1)上表反映了______随着______的变化而变化.自变量是_______,因变量是_______.(2)1989年我国人口总数是______亿.(3)如果用 x表示时间,y表示我国人口总数,那么随着 x的变化,y的变化趋势是什么?(4)从 1949年起,时间每向后推移 10年,我国人口的变化情况相同吗?(5)你能为我国未来人口增长建言献策吗?我向总理提建议:_____________________.强国有我在——归纳1.通过表格可以看出自变量与因变量的对应取值.2.通过表格可以看出因变量随自变量变化而变化的趋势.4.表格能帮助我们做出决策禾下乘凉梦——应用研究表明,水稻的产量与氮肥的施用量有如下关系:(1)上表反映了_______与_______两个变量之间的关系.其中自变量是______.因变量是__________.(2)当氮肥的施用量是 120千克/公顷时,水稻的产量是_________吨/公顷,如果不施氮肥,水稻的产量是_________吨/公顷.(3)根据表格中的数据,你认为氮肥的施用量是多少时比较适宜?说说你的理由.(4)粗略说一说氮肥的施用量对水稻产量的影响.学成归来悟——收获学成归来练——作业此环节进一步巩固落实本节课所。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五、课堂检测(10分钟)
一辆小汽车在高速公路上从静止到启动10秒后的速度经测量如下表:
时间(秒)
0
1
2
3
4
5
6
7
8
9
10
速度
(米/秒)
0
0.3
1.3
2.8
4.9
7.6
11.0
14.1
18.4
24.2
28.9
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?
(3)当t每增加1秒时,v的变化情况相同吗?在哪1秒钟内,v的增加最大?
(4)若高速公路上小汽车行驶速度的上限为120千米/时,试估计大约还需几秒这辆小汽车速度就将达到这个上限?
六、小结与作业(5分钟)
必做:
选做:
学科知识构建与板书设计
小结:通过分析小车在斜坡上下滑时高度与时间数据之间的联系,使学生体会小车下滑时间随着高度变化而变化,从而了解变量、自变量和因变量的意义,了解可以用列表示两个变量之间的关系
反思与重建
支撑物高
度/厘米
10
20
30
40
50
60
70
80
90
100
小车下滑
时间/秒
4.23
3.00
2.45
2.13
1.89
1.71
1.59
1.50
1.41
1.果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?
(3)h每增加10厘米,t的变化情况相同吗?
9.1用表格表示变量之间的关系
教学目标
知识目标:通过分析小车在斜坡上下滑时高度与时间数据之间的联系,使学生体会小车下滑时间随着高度变化而变化,从而了解变量、自变量和因变量的意义,了解可以用列表示两个变量之间的关系,培养学生分析问题的能力与归纳思维的能力。
过程与方法:培养学生分析问题的能力与归纳思维的能力。
情感态度价值观:在发展推理能力和有条理的语言、符号表达能力的同时,进一步体会学习数学的兴趣,提高学习数学的信心,感受数学的简洁美.
教学重点
重点:能从表格的数据中分清什么是变量,自变量、因变量以及因变量随自变量的变化情况。
教学难点
难点:对表格所表达的两个变量关系的理解.
学情分析
学生初次接触变量之间的关系,学习起来有一定难度。
教学准备
多媒体,投影
教学过程:
结合学科特点,体现单元组教学环节,学习内容,时间预测,教师活动,学生活动,自主学习设计,问题探究,单元组合作,同层竞争,人人参与,精讲足练,联系实际,点拨升华,
集体备课
二次备课
一、个性学习
针对本节所学习教材内容,教师提出三个或以上可操作,可测的大问题:
1、你能在具体情境中理解什么是变量、自变量、因变量吗?
2、你能从表格中获得变量之间关系的信息,能用表格表示变量之间的关系,尝试对变化趋势进行初步的预测吗?
二、同层展示(5分钟)
同层比较个性学习内容的质量和数量
三、小组合作(15分钟)
1、同质交流:
2、异质帮扶:
3、提出疑难问题:
四、师生探究(10分钟)
王波学习小组利用同一块木板,测量了小车从不同高度下滑的时间.他们得到如下数据: