高三排列梳理与解三角形难点突破-教师用卷
高考数学压轴专题人教版备战高考《三角函数与解三角形》难题汇编及答案

新数学高考《三角函数与解三角形》专题解析一、选择题1.已知πππsin()cos()0,322ααα++-=-<<则2πcos()3α+等于( )A B .35-C .45D .35【答案】C 【解析】 【分析】首先根据等式化简,得到4sin 65πα⎛⎫+=- ⎪⎝⎭,再利用诱导公式化简2cos 3πα⎛⎫+ ⎪⎝⎭求值. 【详解】解析:∵ππsin cos 32αα⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭13sin sin sin 22225ααααα++=+=-65πα⎛⎫=+=-⎪⎝⎭ ∴π4sin 65()α+=-.又2ππππcos cos sin 32()())6(6ααα+=++=-+, ∴2π4co (s 35)α+=. 故选:C 【点睛】本题考查三角恒等变换,化简求值,重点考查转化与变形,计算能力,属于基础题型.2.能使sin(2))y x x θθ=+++为奇函数,且在0,4⎡⎤⎢⎥⎣⎦π上是减函数的θ的一个值是( ) A .5π3B .43π C .23π D .3π【答案】C 【解析】 【分析】首先利用辅助角公式化简函数,然后根据函数的奇偶性和单调性求得θ的值. 【详解】依题意π2sin 23y x θ⎛⎫=++⎪⎝⎭,由于函数为奇函数,故πππ,π33k k θθ+==-,当1,2k =时,2π3θ=或5π3θ=,由此排除B,D 两个选项.当2π3θ=时,()2sin 2π2sin 2y x x =+=-在0,4⎡⎤⎢⎥⎣⎦π上是减函数,符合题意.当5π3θ=时,()2sin 22π2sin 2y x x =+=,在0,4⎡⎤⎢⎥⎣⎦π上是增函数,不符合题意.故选C. 【点睛】本小题主要考查诱导公式的运用,考查三角函数的奇偶性和单调性,属于基础题.3.在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,已知cos cos 2b C c B b +=,则ab=( )A .B .2CD .1【答案】B 【解析】 【分析】由正弦定理及题设可知,sin cos sin cos 2sin B C C B B +=,即sin()2sin B C B +=,又A B C π++=,可得sin 2sin A B =,再由正弦定理,可得解【详解】由正弦定理:2sin sin b cR B C==,又cos cos 2b C c B b += 得到sin cos sin cos 2sin B C C B B +=,即sin()2sin B C B +=在ABC ∆中,A B C π++=故sin()2sin A B π-=,即sin 2sin A B =故sin 2sin a A b B == 故选:B 【点睛】本题考查了正弦定理在边角互化中的应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题4.函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象的交点横坐标的和为( )A .53π B .2πC .76π D .π【答案】B 【解析】 【分析】根据两个函数相等,求出所有交点的横坐标,然后求和即可. 【详解】令sin cos2x x =,有2sin 12sin x x =-,所以sin 1x =-或1sin 2x =.又[],2x ππ∈-,所以2x π=-或32x π=或6x π=或56x π=,所以函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象交点的横坐标的和3522266s πππππ=-+++=,故选B. 【点睛】本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.5.已知ABC V 的内角,,A B C 的对边分别为,,a b c ,且cos cos 2cos a B b A C+=,1a =,b =c =( )A B .1CD 【答案】B 【解析】 【分析】先由正弦定理将cos cos a B b A +=中的边转化为角,可得sin()A B +=可求出角6C π=,再利用余弦定理可求得结果.【详解】解:因为cos cos 2cos a B b A C+=,所以正弦定理得,sin cos sin cos A B B A +=所以sin()A B +=sin 2cos C C C=,因为sin 0C ≠,所以cos C =, 又因为(0,)C π∈,所以6C π=,因为1a =,b =所以由余弦定理得,2222cos 13211c a b ab C =+-=+-⨯=, 所以1c = 故选:B 【点睛】此题考查的是利用正、余弦定理解三角形,属于中档题.6.要得到函数y =sin (2x +9π)的图象,只需将函数y =cos (2x ﹣9π)的图象上所有点( ) A .向左平移518π个单位长度 B .向右平移518π个单位长度 C .向左平移536π个单位长度 D .向右平移536π个单位长度 【答案】D 【解析】 【分析】先将函数cos 29y x π⎛⎫=- ⎪⎝⎭转化为7sin 218y x π⎛⎫=+ ⎪⎝⎭,再结合两函数解析式进行对比,得出结论. 【详解】函数75cos 2sin 2sin 2sin 299218369y x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-+=+=++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ∴要得到函数sin 29y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数cos 29y x π⎛⎫=- ⎪⎝⎭的图象上所有点向右平移536π个单位长度,故选D . 【点睛】本题考查函数()sin y A x b ωϕ=++的图象变化规律,关键在于能利用诱导公式将异名函数化为同名函数,再根据左右平移规律得出结论.7.在ABC ∆中,060,A BC D ∠==是边AB 上的一点,CD CBD =∆的面积为1,则BD 的长为( )A .32B .4C .2D .1【答案】C【解析】1sin 1sin 2BCD BCD ∠=∴∠=2242BD BD ∴=-=∴=,选C8.已知1tan 4,tan θθ+=则2sin ()4πθ+=( )A .15 B .14C .12D .34【答案】D 【解析】 【分析】根据同角三角函数的关系化简1tan 4tan θθ+=成关于正余弦的关系式,再利用降幂公式与诱导公式化简2sin ()4πθ+求解即可.【详解】由题, 1tan 4,tan θθ+=则22sin cos sin cos 444sin cos 1cos sin sin cos θθθθθθθθθθ++=⇒=⇒=, 故1sin 22θ=.所以2sin ()4πθ+=1cos 222πθ⎛⎫-+ ⎪⎝⎭1sin 2324θ+==. 故选:D 【点睛】本题主要考查了三角函数的公式运用,在有正切函数时可考虑转化为正余弦的关系进行化简,属于基础题.9.已知角α的终边与单位圆交于点34(,)55P -,则cos α的值为( ) A .35B .35-C .45D .45-【答案】B 【解析】 【分析】根据已知角α的终边与单位圆交于点34(,)55P -,结合三角函数的定义即可得到cos α的值. 【详解】因为角α的终边与单位圆交于点34(,)55P -, 所以34,,155x y r =-==, 所以3cos 5α=-, 故选B. 【点睛】该题考查的是有关已知角终边上一点求其三角函数值的问题,涉及到的知识点有三角函数的定义,属于简单题目.10.若函数()y f x =同时满足下列三个性质:①最小正周期为π;②图象关于直线3x π=对称;③在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增,则()y f x =的解析式可以是( ) A .sin 26y x π⎛⎫=- ⎪⎝⎭B .sin 26x y π⎛⎫=-⎪⎝⎭ C .cos 26y x π⎛⎫=- ⎪⎝⎭D .cos 23y x π⎛⎫=+⎪⎝⎭【答案】A 【解析】 【分析】利用性质①可排除B ,利用性质②可排除C ,利用性质③可排除D ,通过验证选项A 同时满足三个性质. 【详解】逐一验证,由函数()f x 的最小正周期为π,而B 中函数最小正周期为2412ππ=,故排除B ;又cos 2cos 0362πππ⎛⎫⨯-== ⎪⎝⎭,所以cos 26y x π⎛⎫=- ⎪⎝⎭的图象不关于直线3x π=对称,故排除C ; 若63x ππ-≤≤,则023x ππ≤+≤,故函数cos 23y x π⎛⎫=+ ⎪⎝⎭在,63ππ⎡⎤-⎢⎥⎣⎦上单调递减,故排除D ; 令2262x πππ-≤-≤,得63x ππ-≤≤,所以函数sin 26y x π⎛⎫=- ⎪⎝⎭在,63ππ⎡⎤-⎢⎥⎣⎦上单调递增.由周期公式可得22T ππ==,当3x π=时,sin(2)sin 1362πππ⨯-==, 所以函数sin 26y x π⎛⎫=- ⎪⎝⎭同时满足三个性质.故选A . 【点睛】本题考查了三角函数的周期性,对称性,单调性,属于中档题.11.在OAB ∆中,已知OB =u u u v 1AB u u u v=,45AOB ∠=︒,点P 满足(),OP OA OB λμλμ=+∈R u u u v u u u v u u u v ,其中λ,μ满足23λμ+=,则OP u u u v的最小值为( )A.5BC.3D.2【答案】A 【解析】 【分析】根据OB =u u u r,1AB =uu u r ,45AOB ∠=︒,由正弦定理可得OAB ∆为等腰直角三角形,进而求得点A 坐标.结合平面向量的数乘运算与坐标加法运算,用λ,μ表示出OP u u u r.再由23λμ+=,将OP u u u r 化为关于λ的二次表达式,由二次函数性质即可求得OP u u u r的最小值.【详解】在OAB ∆中,已知OB =u u u r,1AB =uu u r ,45AOB ∠=︒由正弦定理可得sin sin AB OBAOB OAB=∠∠u u u r u u u rsin 2OAB =∠,解得sin 1OAB ∠=即2OAB π∠=所以OAB ∆为等腰直角三角形以O 为原点,OB 所在直线为x 轴,以OB 的垂线为y 轴建立平面直角坐标系如下图所示:则点A 坐标为22,22⎛ ⎝⎭所以2222OA ⎛= ⎝⎭u u u r ,)2,0OB =u u ur因为(),OP OA OB λμλμ=+∈R u u u r u u u r u u u r则)222,022OP λμ⎛ =+ ⎝⎭u u u r 222,22λμλ⎛⎫⎪ ⎪⎝⎭= 则2222222OP λμλ⎛⎫=++⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u r 2222λλμμ=++因为23λμ+=,则32μλ=- 代入上式可得()()22322232λλλλ+-+-218518λλ-=+299555λ⎛⎫=-+ ⎪⎝⎭所以当95λ=时, min 9355OP ==u u u r 故选:A 【点睛】本题考查了平面向量基本定理的应用,正弦定理判断三角形形状,平面向量的坐标运算,属于中档题.12.若函数tan 23y x k π⎛⎫=-+ ⎪⎝⎭,0,6x π⎛⎫∈ ⎪⎝⎭的图象都在x 轴上方,则实数k 的取值范围为( )A .)+∞ B .)+∞C .()+∞D .()【答案】A 【解析】 【分析】计算tan 203x π⎛⎫<-< ⎪⎝⎭,tan 23x k π⎛⎫->- ⎪⎝⎭恒成立,得到答案.【详解】∵0,6x π⎛⎫∈ ⎪⎝⎭,∴2033x ππ-<-<,∴tan 203x π⎛⎫-< ⎪⎝⎭,函数tan 23y x k π⎛⎫=-+ ⎪⎝⎭,0,6x π⎛⎫∈ ⎪⎝⎭的图象都在x 轴上方, 即对任意的0,6x π⎛⎫∈ ⎪⎝⎭,都有tan 203x k π⎛⎫-+> ⎪⎝⎭,即tan 23x k π⎛⎫->- ⎪⎝⎭,∵tan 23x π⎛⎫-> ⎪⎝⎭k -≤,k ≥ 故选:A . 【点睛】本题考查了三角函数恒成立问题,转化为三角函数值域是解题的关键.13.ABC V 中,角A 、B 、C 的对边分别为a ,b ,c ,且tanC cos cos c B A =,若c =4a =,则b 的值为( )A .6B .2C .5D【答案】A 【解析】 【分析】由正弦定理,两角和的正弦公式化简已知等式可得sin tan C C C =,结合sin 0C ≠,可求得tan C =()0,C π∈,可求C ,从而根据余弦定理24120b b --=,解方程可求b 的值. 【详解】解:∵tan cos cos c C B A =, ∴由正弦定理可得:)()sin tan sin cos sin cos C C A B B A A B C =+=+=,∵sin 0C ≠,∴可得tan C = ∵()0,C π∈,∴3C π=,∵c =4a =,∴由余弦定理2222cos c a b ab C =+-,可得212816242b b =+-⨯⨯⨯,可得24120b b --=,∴解得6b =,(负值舍去). 故选:A . 【点睛】本题考查正弦定理、余弦定理的综合应用,其中着重考查了正弦定理的边角互化、余弦定理的解三角形,难度一般.利用边角互化求解角度值时,注意三角形内角对应的角度范围.14.设函数())cos(2)f x x x ϕϕ=+++(||)2πϕ<,且其图像关于直线0x =对称,则( )A .()y f x =的最小正周期为π,且在(0,)2π上为增函数B .()y f x =的最小正周期为2π,且在(0,)4π上为增函数 C .()y f x =的最小正周期为π,且在(0,)2π上为减函数D .()y f x =的最小正周期为2π,且在(0,)4π上为减函数【答案】C 【解析】试题分析:())cos(2)f x x x ϕϕ=+++2sin(2)6x πϕ=++,∵函数图像关于直线0x =对称,∴函数()f x 为偶函数,∴3πϕ=,∴()2cos 2f x x =,∴22T ππ==, ∵02x π<<,∴02x π<<,∴函数()f x 在(0,)2π上为减函数.考点:1.三角函数式的化简;2.三角函数的奇偶性;3.三角函数的周期;4.三角函数的单调性.15.已知曲线1:sin C y x =,21:cos 23C y x π⎛⎫=- ⎪⎝⎭,则下面结论正确的是( )A .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移3π个单位长度,得到曲线2CD .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移3π个单位长度,得到曲线2C 【答案】D 【解析】 【分析】根据三角函数的周期变换和左右平移变换依次得到各选项中所得的函数解析式,从而得到正确选项. 【详解】A 中,将sin y x =横坐标缩短到原来的12倍得:sin 2y x =;向右平移3π个单位长度后得:2sin 2sin 2sin 2cos 233266y x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫=-=-=--=-- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,A 错误;B 中,将sin y x =横坐标伸长到原来的2倍得:1sin2y x =;向右平移3π个单位长度后得:11121sin sin cos cos 232622632y x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-=--=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,B 错误;C 中,将sin y x =横坐标缩短到原来的12倍得:sin 2y x =;向左平移3π个单位长度后得:2sin 2sin 2sin 2cos 233266y x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=+=++=+ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,C 错误;D 中,将sin y x =横坐标伸长到原来的2倍得:1sin2y x =;向左平移3π个单位长度后得:1111sin sin cos cos 232622623y x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+=+=-+=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,D 正确. 故选:D 【点睛】本题考查三角函数的周期变换和平移变换的问题,关键是能够准确掌握变换原则,得到变换后的函数解析式.16.已知函数()sin()f x x ωϕ=+(0>ω,2πω<)的最小正周期为π,且其图象向左平移3π个单位后,得到函数()cos g x x ω=的图象,则函数()f x 的图象( ) A .关于直线12x π=对称B .关于直线512x π=对称 C .关于点(,0)12π对称D .关于点5(,0)12π对称 【答案】C 【解析】试题分析:依题意()()2,sin 2f x x ωϕ==+,平移后为2sin 2cos 2,36x x ππϕϕ⎛⎫++==- ⎪⎝⎭,()sin 26f x x π⎛⎫=- ⎪⎝⎭,关于,012π⎛⎫⎪⎝⎭对称.考点:三角函数图象与性质.17.关于函数()()()sin tan cos tan f x x x =-有下述四个结论: ①()f x 是奇函数; ②()f x 在区间0,4π⎛⎫⎪⎝⎭单调递增; ③π是()f x 的周期; ④()f x 的最大值为2.其中所有正确结论的个数是( ) A .4 B .3C .2D .1【答案】C 【解析】 【分析】计算()()()sin tan cos tan f x x x -=--得到①错误,根据复合函数单调性判断法则判断②正确,()()f x f x π+=③正确,假设()f x 的最大值为2,取()2f a =,得到矛盾,④错误,得到答案. 【详解】()()()sin tan cos tan f x x x =-,()()()sin tan cos tan f x x x -=---⎡⎤⎡⎤⎣⎦⎣⎦()()sin tan cos tan x x =--,所以()f x 为非奇非偶函数,①错误; 当0,4x π⎛⎫∈ ⎪⎝⎭时,令tan t x =,()0,1t ∈,又()0,1t ∈时sin y t =单调递增,cos y t =单调递减,根据复合函数单调性判断法则, 当0,4x π⎛⎫∈ ⎪⎝⎭时,()sin tan y x =,()cos tan y x =-均为增函数, 所以()f x 在区间0,4π⎛⎫⎪⎝⎭单调递增,所以②正确; ()()()sin tan cos tan f x x x πππ+=+-+⎡⎤⎡⎤⎣⎦⎣⎦()()()sin tan cos tan x x f x =-=,所以π是()f x 的周期,所以③正确;假设()f x 的最大值为2,取()2f a =,必然()sin tan 1a =,()cos tan 1a =-, 则tan 22a k ππ=+,k Z ∈与tan 2a k ππ=+,k Z ∈矛盾,所以()f x 的最大值小于2,所以④错误. 故选:C . 【点睛】本题考查了三角函数奇偶性,单调性,周期,最值,意在考查学生对于三角函数知识的综合应用.18.将函数sin(2)4y x π=-的图象向左平移4π个单位,所得图象对应的函数在区间(,)m m -上无极值点,则m 的最大值为( )A .8π B .4π C .38π D .2π 【答案】A 【解析】 【分析】由三角函数的图象变换,求得函数sin 24y x π⎛⎫=+⎪⎝⎭,求得增区间3,,88k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,令0k =,可得函数的单调递增区间为3,88ππ⎡⎤-⎢⎥⎣⎦,进而根据函数sin 24y x π⎛⎫=+ ⎪⎝⎭在区间(),m m -上无极值点,即可求解. 【详解】由题意,将函数sin 24y x π⎛⎫=- ⎪⎝⎭的图象向左平移4π个单位, 可得函数sin 2sin 2444y x x πππ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令222,242k x k k Z πππππ-+≤+≤+∈,解得3,88k x k k Z ππππ-+≤≤+∈ 即函数sin 24y x π⎛⎫=+⎪⎝⎭的单调递增区间为3,,88k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,令0k =,可得函数的单调递增区间为3,88ππ⎡⎤-⎢⎥⎣⎦, 又由函数sin 24y x π⎛⎫=+ ⎪⎝⎭在区间(),m m -上无极值点,则m 的最大值为8π,故选A. 【点睛】本题主要考查了三角函数的图象变换,以及三角函数的性质的应用,其中解答中熟练应用三角函数的图象变换得到函数的解析式,再根据三角函数的性质,求得其单调递增区间是解答的关键,着重考查了运算与求解能力,属于中档试题.19.在函数:①cos |2|y x =;②|cos |y x =;③cos 26y x π⎛⎫=+ ⎪⎝⎭;④tan 24y x π⎛⎫=- ⎪⎝⎭中,最小正周期为π的所有函数为( ) A .①②③ B .①③④C .②④D .①③【答案】A 【解析】逐一考查所给的函数:cos 2cos2y x x == ,该函数为偶函数,周期22T ππ== ; 将函数cos y x = 图象x 轴下方的图象向上翻折即可得到cos y x = 的图象,该函数的周期为122ππ⨯= ; 函数cos 26y x π⎛⎫=+ ⎪⎝⎭的最小正周期为22T ππ== ; 函数tan 24y x π⎛⎫=-⎪⎝⎭的最小正周期为22T ππ==;综上可得最小正周期为π的所有函数为①②③. 本题选择A 选项.点睛:求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数的式子,否则很容易出现错误.一般地,经过恒等变形成“y =A sin(ωx +φ),y =A cos(ωx +φ),y =A tan(ωx +φ)”的形式,再利用周期公式即可.20.函数()4sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期是3π,则其图象向左平移6π个单位长度后得到的函数的一条对称轴是( ) A .4x π=B .3x π=C .56x π=D .1912x π=【答案】D 【解析】 【分析】由三角函数的周期可得23πω=,由函数图像的变换可得, 平移后得到函数解析式为244sin 39y x π⎛⎫=+ ⎪⎝⎭,再求其对称轴方程即可. 【详解】解:函数()4sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期是3π,则函数2()4sin 33f x x π⎛⎫=+ ⎪⎝⎭,经过平移后得到函数解析式为2244sin 4sin 36339y x x πππ⎡⎤⎛⎫⎛⎫=++=+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由24()392x k k πππ+=+∈Z , 得3()212x k k ππ=+∈Z ,当1k =时,1912x π=. 故选D. 【点睛】本题考查了正弦函数图像的性质及函数图像的平移变换,属基础题.。
(浙江专用)高考数学三轮冲刺 抢分练 压轴大题突破练(一)三角函数与解三角形-人教版高三全册数学试题

(一)三角函数与解三角形1.(2019·余高、缙中、长中模拟)已知函数f (x )=cos x (sin x +cos x )-12.(1)求函数f (x )的单调增区间; (2)若f (α)=26,α∈⎝ ⎛⎭⎪⎫π8,3π8,求cos2α的值.解 (1)f (x )=12sin2x +1+cos2x 2-12=22sin ⎝⎛⎭⎪⎫2x +π4,由-π2+2k π≤2x +π4≤π2+2k π,k ∈Z ,得函数f (x )的单调增区间是⎣⎢⎡⎦⎥⎤-38π+k π,π8+k π,k ∈Z .(2)由f (α)=26得sin ⎝⎛⎭⎪⎫2α+π4=13,因为α∈⎝ ⎛⎭⎪⎫π8,3π8,所以2α+π4∈⎝ ⎛⎭⎪⎫π2,π, 所以cos ⎝⎛⎭⎪⎫2α+π4=-223, 所以cos2α=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2α+π4-π4=2-46.2.(2019·某某二中高考热身考)已知函数f (x )=sin 2π4x -3sin π4x cos π4x . (1)求f (x )的最大值及此时x 的值; (2)求f (1)+f (2)+…+f (2019)的值. 解 (1)f (x )=12-12cos π2x -32sin π2x=12-sin ⎝ ⎛⎭⎪⎫π2x +π6, 令π2x +π6=-π2+2k π,k ∈Z , 得x =4k -43,k ∈Z ,∴当x =4k -43(k ∈Z )时,f (x )max =32.(2)由(1)知函数的周期T =4,f (1)=12-32,f (2)=12+12,f (3)=12+32,f (4)=12-12, ∴f (4k +1)=12-32,f (4k +2)=12+12,f (4k +3)=12+32,f (4k +4)=12-12, ∴f (4k +1)+f (4k +2)+f (4k +3)+f (4k +4)=2, ∴f (1)+f (2)+…+f (2019) =504×2+f (1)+f (2)+f (3)=1010.3.(2019·余高等三校联考)设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b sin A -3a cos B =0. (1)求角B 的大小;(2)若a +c =3,求AC 边上中线长的最小值. 解 (1)由正弦定理得,sin B sin A -3sin A cos B =0, ∵sin A ≠0, ∴tan B =3, ∵B 是三角形的内角, ∴B =60°.(2)方法一 设AC 边上的中点为E ,在△BAE 中,由余弦定理得,BE 2=c 2+⎝ ⎛⎭⎪⎫b 22-2c ·b2·cos A ,又cos A =b 2+c 2-a 22bc,a 2+c 2-b 2=2·cos60°ac ,∴BE 2=c 2+b 24-b 2+c 2-a 22=2a 2+2c 2-b 24=a 2+c 2+ac 4=(a +c )2-ac 4=9-ac 4≥9-⎝⎛⎭⎪⎫a +c 224=2716, 当且仅当a =c 时取到“=”, ∴AC 边上中线长的最小值为334. 方法二 设AC 边上的中点为E , BE →=12(BA →+BC →),|BE →|2=14|BA →+BC →|2=c 2+a 2+ac 4,以下同方法一.4.(2019·浙大附中考试)已知f (x )=2cos x ·sin ⎝⎛⎭⎪⎫x +π6+3sin x ·cos x -sin 2x .(1)求函数y =f (x )(0<x <π)的单调递增区间;(2)设△ABC 的内角A 满足f (A )=2,而AB →·AC →=3,求BC 边上的高AD 长的最大值. 解 (1)f (x )=2cos x ·sin ⎝ ⎛⎭⎪⎫x +π6+2sin x ·cos ⎝ ⎛⎭⎪⎫x +π6=2sin ⎝ ⎛⎭⎪⎫2x +π6.由-π2+2k π≤2x +π6≤π2+2k π,k ∈Z ,解得k π-π3≤x ≤k π+π6,k ∈Z .∴当0<x <π时,函数y =f (x )的单调递增区间是⎝ ⎛⎦⎥⎤0,π6和⎣⎢⎡⎭⎪⎫2π3,π.(2)∵f (A )=2,∴2sin ⎝ ⎛⎭⎪⎫2A +π6=2,∴A =π6,∵AB →·AC →=3,∴bc ·cos A =3,∴bc =2, ∴S △ABC =12bc sin A =12,而a =b 2+c 2-3bc ≥(2-3)bc =3-1(当且仅当b =c 时等号成立), ∴所求BC 边上的高AD ≤3+12, 即AD 的最大值为3+12. 5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +sin B =3sin C . (1)若cos 2A =sin 2B +cos 2C +sin A sin B ,求sin A +sin B 的值; (2)若c =2,求△ABC 面积的最大值. 解 (1)∵cos 2A =sin 2B +cos 2C +sin A sin B , ∴1-sin 2A =sin 2B +1-sin 2C +sin A sin B , ∴sin 2A +sin 2B -sin 2C =-sin A sin B , ∴由正弦定理,得a 2+b 2-c 2=-ab ,∴由余弦定理,得cos C =a 2+b 2-c 22ab =-12,又0<C <π,∴C =2π3,∴sin A +sin B =3sin C =3sin 2π3=32.(2)若c =2,则a +b =3c =23,∴cos C =a 2+b 2-c 22ab =(a +b )2-2ab -c 22ab =4ab-1,∴sin C =1-cos 2C =1-⎝ ⎛⎭⎪⎫4ab-12=-⎝ ⎛⎭⎪⎫4ab 2+8ab, ∴S =12ab sin C =12ab-⎝ ⎛⎭⎪⎫4ab 2+8ab=12-16+8ab . ∵a +b =23≥2ab ,即0<ab ≤3,当且仅当a =b =3时等号成立, ∴S =12-16+8ab ≤12-16+8×3=2,∴△ABC 面积的最大值为 2.6.已知m =(3sin ωx ,cos ωx ),n =(cos ωx ,-cos ωx )(ω>0,x ∈R ),f (x )=m·n -12且f (x )的图象上相邻两条对称轴之间的距离为π2.(1)求函数f (x )的单调递增区间;(2)若△ABC 中内角A ,B ,C 的对边分别为a ,b ,c 且b =7,f (B )=0,sin A =3sin C ,求a ,c 的值及△ABC 的面积.解 (1)f (x )=m·n -12=3sin ωx cos ωx -cos 2ωx -12=32sin2ωx -12cos2ωx -1 =sin ⎝⎛⎭⎪⎫2ωx -π6-1.∵f (x )的图象上相邻两条对称轴之间的距离为π2,∴T =2π2ω=π,∴ω=1,∴f (x )=sin ⎝⎛⎭⎪⎫2x -π6-1,令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,则k π-π6≤x ≤k π+π3,k ∈Z ,∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3,k ∈Z .(2)由(1)知,f (B )=sin ⎝ ⎛⎭⎪⎫2B -π6-1=0,∵0<B <π,∴-π6<2B -π6<11π6,∴2B -π6=π2,∴B =π3,由sin A =3sin C 及正弦定理,得a =3c , 在△ABC 中,由余弦定理,可得cos B =a 2+c 2-b 22ac =9c 2+c 2-76c 2=10c 2-76c 2=12, ∴c =1,a =3,∴S △ABC =12ac sin B =12×3×1×32=334.。
2024届高考数学一轮复习第四章《三角函数与解三角形》专项突破二 三角函数与解三角形

(1) 求 的面积;
[答案] 规范答题由题意得 , , ,阅卷得分:正确利用面积公式写出三个正三角形的面积,收获1分;则 ,即 ,阅卷得分:根据三个正三角形面积之间的关系求出 , , 之间的关系,收获2分;由余弦定理的推论 ,得 ,阅卷得分:利用余弦定理的推论得出 ,收获2分;则 ,又 ,则 , ,
2. (2022湖北荆州高三四模)在 中,角 , , 所对的边分别为 , , , , ,延长 至 ,使 , 的面积为 .
(1) 求 的长;
[解析] 由 及余弦定理的推论得 ,因为 ,所以 ,又因为 ,所以 为等边三角形,故 ,由 ,可得 ,所以 ,解得 或 .
第四章 三角函数与解三角形
专项突破二 三角函数与解三角形
解三角形是高中数学的一个重要考点,在新高考Ⅰ卷中为解答题必考考点之一.主要与三角恒等变换、三角形的有关性质结合命题.通常第一问是解三角形,第二问是求三角形的面积、周长等的最值或范围.主要位于解答题的前两题位置,难度不大.需重点关注开放性试题,通过对不同条件的选取获得不同的解题思路,培养学生提出问题、发现问题、分析问题、解决问题的能力.
(2) 若 ,求 的取值范围.
[解析] , , , ,当且仅当 时取等号,又 , 的取值范围是 .
例4 (2022山东高三模拟)如图,在 中, , , 的对边分别为 , , , 的面积为 ,且 .
(1) 求 的大小;
[解析] 在 中,由 ,有 ,则 ,即 , , .
阅卷得分:利用已知条件求出 , 的值,收获2分;则 .阅卷得分:利用三角形面积公式求出三角形的面积,收获1分;
[解析] 思路分析先表示出 , , ,然后由 得到 ,结合余弦定理的推论求得 ,再由三角形面积公式求解即可;
解三角形图形类问题(十大题型)(原卷版)-2025数学一轮复习(含2024年高考真题+回归教材)

重难点突破02解三角形图形类问题目录01方法技巧与总结 (2)02题型归纳与总结 (2)题型一:妙用两次正弦定理(两式相除消元法) (2)题型二:两角使用余弦定理建立等量关系 (4)题型三:张角定理与等面积法 (5)题型四:角平分线问题 (6)题型五:中线问题 (7)题型六:高问题 (9)题型七:重心性质及其应用 (10)题型八:外心及外接圆问题 (12)题型九:两边夹问题 (13)题型十:内心及内切圆问题 (14)03过关测试 (15)解决三角形图形类问题的方法:方法一:两次应用余弦定理是一种典型的方法,充分利用了三角形的性质和正余弦定理的性质解题;方法二:等面积法是一种常用的方法,很多数学问题利用等面积法使得问题转化为更为简单的问题,相似是三角形中的常用思路;方法三:正弦定理和余弦定理相结合是解三角形问题的常用思路;方法四:构造辅助线作出相似三角形,结合余弦定理和相似三角形是一种确定边长比例关系的不错选择;方法五:平面向量是解决几何问题的一种重要方法,充分利用平面向量基本定理和向量的运算法则可以将其与余弦定理充分结合到一起;方法六:建立平面直角坐标系是解析几何的思路,利用此方法数形结合充分挖掘几何性质使得问题更加直观化.题型一:妙用两次正弦定理(两式相除消元法)【典例1-1】(2024·河南·三模)已知P 是ABC 内一点,π3π,,,44PB PC BAC BPC ABP ∠∠∠θ====.(1)若π,24BC θ=,求AC ;(2)若π3θ=,求tan BAP ∠.【典例1-2】ABC 的内角,,A B C 的对边分别为,,,a b c AD 为BAC ∠平分线,::2:c AD b =(1)求A ∠;(2)AD 上有点,90M BMC ∠= ,求tan ABM ∠.【变式1-1】如图,在平面四边形ABCD 中,90ACB ADC ∠=∠=︒,AC =30BAC ∠=︒.(1)若CD =BD ;(2)若30CBD ∠=︒,求tan BDC ∠.【变式1-2】(2024·广东广州·二模)记ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos cos b A a B b c -=-.(1)求A ;(2)若点D 在BC 边上,且2CD BD =,cos 3B =,求tan BAD ∠.【变式1-3】在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且2cos (cos cos )A c B b C a +=.(1)求角A ;(2)若O 是ABC 内一点,120AOB ∠=︒,150AOC ∠=︒,1b =,3c =,求tan ABO ∠.题型二:两角使用余弦定理建立等量关系【典例2-1】如图,四边形ABCD 中,1cos 3BAD ∠=,3AC AB AD ==.(1)求sin ABD ∠;(2)若90BCD ∠=︒,求tan CBD ∠.【典例2-2】如图,在梯形ABCD 中,AB CD ∥,AD ==(1)求证:sin C A =;(2)若2C A =,2AB CD =,求梯形ABCD 的面积.【变式2-1】(2024·全国·模拟预测)在锐角ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,2232cos 235cos22C C π⎛⎫=-- ⎪⎝⎭.(1)求角C ;(2)若点D 在AB 上,2BD AD =,BD CD =,求AC BC的值.【变式2-2】平面四边形ABCD 中,1AB =,2AD =,πABC ADC ∠+∠=,π3BCD ∠=.(1)求BD ;(2)求四边形ABCD 周长的取值范围;(3)若E 为边BD 上一点,且满足CE BE =,2BCE CDE S S =△△,求BCD △的面积.题型三:张角定理与等面积法【典例3-1】(2024·吉林·模拟预测)ABC 的内角,,A B C 的对边分别是,,a b c ,且sin sin sin A B a c C a b --=+,(1)求角B 的大小;(2)若3b =,D 为AC 边上一点,2BD =,且BD 为B ∠的平分线,求ABC 的面积.【典例3-2】(2024·黑龙江哈尔滨·二模)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知4b =,2cos sin cos tan b B A A c C=+.(1)求角B 的大小;(2)已知直线BD 为ABC ∠的平分线,且与AC 交于点D ,若3BD =,求ABC 的周长.【变式3-1】(2024·吉林通化·梅河口市第五中学校考模拟预测)已知锐角ABC 的内角,,A B C 的对边分别为,,a b c ,且sin sin sin sin a B C b c A C-=+-.(1)求B ;(2)若bB 的平分线交AC 于点D ,1BD =,求ABC 的面积.【变式3-2】(2024·江西抚州·江西省临川第二中学校考二模)如图,在ABC 中,4AB =,1cos 3B =,点D 在线段BC 上.(1)若3π4ADC ∠=,求AD 的长;(2)若2BD DC =,ACD sin sin BAD CAD ∠∠的值.题型四:角平分线问题【典例4-1】(2024·全国·模拟预测)已知在△ABC 中,内角,,A B C 的对边分别为,,a b c ,且6,60a A =∠=︒.(1)若AD 为BC 边上的高线,求AD 的最大值;(2)已知AM 为BC 上的中线,BAC ∠的平分线AN 交BC 于点N ,且sin tan 2cos A B A=-,求△AMN 的面积.【典例4-2】如图所示,在ABC 中,3AB AC =,AD 平分BAC ∠,且AD kAC =.(1)若2DC =,求BC 的长度;(2)求k 的取值范围;(3)若1ABC S =△,求k 为何值时,BC 最短.【变式4-1】在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知2π3A =,22cos c b ac C -=.(1)求tan C ;(2)作角A 的平分线,交边BC 于点D ,若AD =AC 的长度;(3)在(2)的条件下,求ABC 的面积.【变式4-2】已知ABC 的内角,,A B C 的对边分别为,,a b c ,其面积为S ,且()()sin sin sin 6a b c a A B C S+-++=(1)求角A 的大小;(2)若3,a BA AC A ∠=⋅=-的平分线交边BC 于点T ,求AT 的长.题型五:中线问题【典例5-1】如图,在ABC 中,已知2AB =,AC =,45BAC ∠=︒,BC 边上的中点为M ,点N 是边AC 上的动点(不含端点),AM ,BN 相交于点P .(1)求BAM ∠的正弦值;(2)当点N 为AC 中点时,求MPN ∠的余弦值.(3)当NA NB ⋅ 取得最小值时,设BP BN λ= ,求λ的值.【典例5-2】(2024·辽宁沈阳·东北育才双语学校校考一模)如图,设ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,AD 为BC 边上的中线,已知1c =且12sin cos sin sin sin 4c A B a A b B b C =-+,cos BAD ∠=(1)求b 边的长度;(2)求ABC 的面积;(3)设点E ,F 分别为边AB ,AC 上的动点(含端点),线段EF 交AD 于G ,且AEF △的面积为ABC 面积的16,求AG EF 的取值范围.【变式5-1】阿波罗尼奥斯(Apollonius )是古希腊著名的数学家,他提出的阿波罗尼奥斯定理是一个关于三角形边长与中线长度关系的定理,内容为:三角形两边平方的和,等于所夹中线及第三边之半的平方和的两倍,即如果AD 是ABC 中BC 边上的中线,则222222BC AB AC AD ⎡⎤⎛⎫+=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.(1)若在ABC 中,5AB =,3AC =,π3BAC ∠=,求此三角形BC 边上的中线长;(2)请证明题干中的定理;(3)如图ABC 中,若AB AC >,D 为BC 中点,3BD DC ==,()sin 3sin 3sin a A b B b A C +=-,2ABC S =△,求cos DAC ∠的值.【变式5-2】在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,30B ︒=.(1)已知b =cos cos 2b A a B +=(i )求C ;(ii )若a b <,D 为AB 边上的中点,求CD 的长.(2)若ABC 为锐角三角形,求证:3a c <【变式5-3】(2024·江苏南通·模拟预测)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2a =,2c BA BC =⋅- ,其中S 为ABC 的面积.(1)求角A 的大小;(2)设D 是边BC 的中点,若AB AD ⊥,求AD 的长.题型六:高问题【典例6-1】(2024·河北秦皇岛·三模)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,π3C =且7a b +=,ABC (1)求ABC 的面积;(2)求ABC 边AB 上的高h .【典例6-2】(2024·四川·模拟预测)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且()sin cos B b A B b ++=.(1)求角C 的大小;(2)若8a =,ABC 的面积为AB 边上的高.【变式6-1】在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知7,8a c ==.(1)若4sin 7C =,求角A 的大小;(2)若5b =,求AC 边上的高.【变式6-2】(2024·山东枣庄·一模)在ABC 中,角,,A B C 的对边分别为,,a b c ,且sin tan 22a C A c =.(1)求C ;(2)若8,5,ab CH ==是边AB 上的高,且CH mCA nCB =+ ,求m n .题型七:重心性质及其应用【典例7-1】(2024·四川内江·一模)ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,6a =,sin sin 2B C b a B +=.(1)求角A 的大小;(2)M 为ABC 的重心,AM 的延长线交BC 于点D ,且AM =ABC 的面积.【典例7-2】(2024·江西景德镇·一模)如图,已知△ABD 的重心为C ,△ABC 三内角A 、B 、C 的对边分别为a ,b ,c .且2cos 22A b c c+=(1)求∠ACB 的大小;(2)若π6CAB ∠=,求sin CDA ∠的大小.【变式7-1】(2024·高三·福建福州·期中)已知ABC 内角A ,B ,C 的对边分别为a ,b ,c ,点G 是ABC的重心,且0AG BG ⋅= .(1)若π6GAB ∠=,①直接写出AG CG=______;②设CAG α∠=,求tan α的值(2)求cos ACB ∠的取值范围.【变式7-2】(2024·浙江温州·模拟预测)ABC 的角,,A B C 对应边是a ,b ,c ,三角形的重心是O .已知3,4,5OA OB OC ===.(1)求a 的长.(2)求ABC 的面积.题型八:外心及外接圆问题【典例8-1】(2024·广东深圳·二模)已知在ABC 中,角,,A B C 的对边分别为,,,2,1a b c a b c ===.(1)求角A 的余弦值;(2)设点O 为ABC 的外心(外接圆的圆心),求,AO AB AO AC ⋅⋅ 的值.【典例8-2】已知ABC 的内角,,A B C 所对的边分别为,,,3,22cos a b c a c b a B =-=.(1)求A ;(2)M 为ABC 外心,AM 的延长线交BC 于点D ,且2MD =,求ABC 的面积.【变式8-1】ABC 的内角,,A B C 的对边分别为,,,,20,a b c c b AB AC ABC >⋅= 的面积为(1)求A ∠;(2)设O 点为ABC 外心,且满足496OB OC ⋅=- ,求a .【变式8-2】(2024·河南·模拟预测)已知ABC 的外心为O ,点,M N 分别在线段,AB AC 上,且O 恰为MN 的中点.(1)若1BC OA ==,求ABC 面积的最大值;(2)证明:AM MB AN NC ⋅=⋅.【变式8-3】(2024·安徽黄山·三模)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知c =(1cos )sin b C B +=.(1)求角C 的大小和边b 的取值范围;(2)如图,若O 是ABC 的外心,求OC AB CA CB ⋅+⋅ 的最大值.题型九:两边夹问题【典例9-1】在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若2cos sin 0sin cos A A B B +-=+,则a b c +的值是()A .2BC D .1【典例9-2】在ABC ∆中,a 、b 、c 分别是A ∠、B ∠、C ∠所对边的边长.若2cos sin 0cos sin A A B B +-=+,则a b c+的值是().A .1B CD .2【变式9-1】在ABC ∆中,已知边,,a b c 所对的角分别为,,A B C ,若2223sin 2sin sin si 2si n sin n C A B C B A ++=,则tan A =_________________【变式9-2】(2024·江苏苏州·吴江中学模拟预测)在ABC ∆中,已知边,,a b c 所对的角分别为,,A B C ,若22252cos 3cos 2sin sin sin sin --=+B C A B C A ,则tan A =_____.【变式9-3】在ABC ∆中,已知边a 、b 、c 所对的角分别为A 、B 、C ,若a =,2223sin 2sin sin si 2si n sin n C A B C B A ++=,则ABC ∆的面积S =______.【变式9-4】在ABC 中,若(cos sin )(cos sin )2A A B B ++=,则角C =__.题型十:内心及内切圆问题【典例10-1】(2024·全国·模拟预测)设ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且满足2cos 2a B b c +=,5a =.(1)求ABC 的周长的取值范围;(2)若ABC 的内切圆半径6r =,求ABC 的面积S .【典例10-2】(2024·湖南永州·一模)在ABC 中,设,,A B C 所对的边分别为,,a b c ,且满足cos cos c A a C a b -=+.(1)求角C ;(2)若5,c ABC = 的内切圆半径4r =,求ABC 的面积.【变式10-1】(2024·全国·模拟预测)已知ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,sin cos c A C -=.(1)求角A 的大小;(2)若7a =,ABC 外接圆的半径为R ,内切圆半径为r ,求R r的最小值.【变式10-2】(2024·全国·模拟预测)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且22sin 2sin 2sin sin 4A B A B ⋅⋅=.(1)求C ;(2)若2c =,求ABC 内切圆半径取值范围.【变式10-3】(2024·广西南宁·一模)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2a =,且sin sin sin A B b c C b a+-=-.(1)求ABC 的外接圆半径R ;(2)求ABC 内切圆半径r 的取值范围.【变式10-4】(2024·吉林·二模)已知ABC 的三个内角,,A B C 的对边分别为,,,a b c ABC 的外接圆半径为222sin sin sin sin sin B C B C A +-=.(1)求a ;(2)求ABC 的内切圆半径r 的取值范围1.如图所示,在ABC 中,设,,a b c 分别为内角,,A B C 的对边,已知3b c a +=,()4b c a =-.(1)求角C ;(2)若7c =,过B 作AC 的垂线并延长到点D ,使,,,A B C D 四点共圆,AC 与BD 交于点E ,求四边形ABCD 的面积.2.如图,在梯形ABCD 中,//AB CD ,60D ∠= .(1)若3AC =,求ACD 周长的最大值;(2)若2CD AB =,45BCD ∠= ,求tan DAC ∠的值.3.(2024·全国·模拟预测)在ABC 中,已知sin()sin sin BAC B B C ∠-∠=+.(1)求BAC ∠.(2)若2AC AB =,BAC ∠的平分线交BC 于点D ,求cos ADB ∠.4.(2024·四川成都·模拟预测)在ABC 中,角,,A B C 所对的边分别为,,a b c sin sin 2B C a B +=,边BC 上有一动点D .(1)当D 为边BC 中点时,若2AD b ==,求c的长度;(2)当AD 为BAC ∠的平分线时,若4a =,求AD 的最大值.5.(2024·安徽合肥·模拟预测)已知函数()π2π1sin sin 332f x x x ⎛⎫⎛⎫=+⋅+- ⎪ ⎪⎝⎭⎝⎭,角A 为△ABC 的内角,且()0f A =.(1)求角A 的大小;(2)如图,若角A 为锐角,3AB =,且△ABC 的面积S E 、F 为边AB 上的三等分点,点D 为边AC 的中点,连接DF 和EC 交于点M ,求线段AM 的长.6.(2024·全国·模拟预测)在ABC 中,角,,A B C ,的对边分别为,,a b c ,ABC 的面积为S ,()2sin 213sin A B S b B ⎡⎤+=+⎢⎥⎣⎦.(1)求角A .(2)若ABC 的面积为a =,D 为边BC 的中点,求AD 的长.7.(2024·四川成都·三模)在ABC 中,15,6,cos 8BC AC B ===.(1)求AB 的长;(2)求AC 边上的高.8.(2024·江苏南通·三模)在ABC 中,角,,A B C 的对边分别为(),,,2cos cos a b c b c A a C -=.(1)求A ;(2)若ABCBC 边上的高为1,求ABC 的周长.9.(2024·高三·河南·开学考试)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,且满足()()()10sin sin sin sin 2sin 2sin 3a b c A B C a B c A b c C ++++=+++.(1)求cos C ;(2)若AB 边上的高为2,c =,a b .10.(2024·高三·山东济南·开学考试)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知()cos 2cos b A a B =-.(1)求c a;(2)若2π3B =,且AC ABC 的周长.11.在ABC 中,设a ,b ,c 分别表示角A ,B ,C 对边.设BC 边上的高为h ,且2a h =.(1)把b cc b +表示为sin cos x A y A +(x ,R y ∈)的形式,并判断b c c b+能否等于(2)已知B ,C 均不是直角,设G 是ABC 的重心,BG CG ⊥,c b >,求tan B 的值.12.(2024·江苏苏州·二模)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin sin sin a b C B c A B+-=-.(1)求角A ;(2)若6a =,点M 为ABC 的重心,且AM =ABC 的面积.13.(2024·河南开封·模拟预测)记ABC 的内角,,A B C 的对边分别为,,a b c,已知sin cos cos ,B a C c A b G -==为ABC 的重心.(1)若2a =,求c 的长;(2)若AG =ABC 的面积.14.(2024·辽宁抚顺·一模)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知()()()sin sin sin sin a b A B c C B +-=-.(1)求角A ;(2)若6a =,点M 为ABC的重心,且AM =ABC 的面积.15.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a ,b ,c 是公差为2的等差数列.(1)若2sin 3sin C A =,求ABC 的面积.(2)是否存在正整数b ,使得ABC 的外心在ABC 的外部?若存在,求b 的取值集合;若不存在,请说明理由.16.(2024·湖北·模拟预测)已知ABC 的外心为O ,,M N 为线段,AB AC 上的两点,且O 恰为MN 中点.(1)证明:||||||||AM MB AN NC ⋅=⋅(2)若||AO ||1OM =,求AMN ABCS S V V 的最大值.17.在ABC 中,角,,A B C 所对的边分别为,,a b c ,满足3cos 5c a B b =+.(1)求cos A 的值;(2)当BC 与BC 边上的中线长均为2时,求ABC 的周长;(3)当ABC 内切圆半径为1时,求ABC 面积的最小值.18.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且()cos b c a C C +=+.(1)求A ;(2)若2a =,求ABC 内切圆周长的最大值.19.(2024·浙江杭州·模拟预测)已知ABC 的周长为20,角A ,B ,C 所对的边分别为a ,b ,c (1)若π4C =,7c =,求ABC 的面积;(2)若ABC 7a =,求tan A 的值.20.(2024·高三·江苏扬州·开学考试)已知ABC 的内角,,A B C 的对边分别为,,a b c ,23A π=,10b =,6c =,ABC 的内切圆I 的面积为S .(1)求S 的值;(2)若点D 在AC 上,且,,B I D 三点共线,求BD BC ⋅ 的值.21.(2024·贵州·模拟预测)在ABC 中,AB =2AC =,π6C ∠=,N 为AB 的中点,A ∠的角平分线AM 交CN 于点O .(1)求CN 的长;(2)求AOC 的面积.22.(2024·广东梅州·二模)在ABC 中,角A ,B ,C 所对应的边分别为a ,b ,ccos sin B b A -=,2c =,(1)求A 的大小:(2)点D 在BC 上,(Ⅰ)当AD AB ⊥,且1AD =时,求AC 的长;(Ⅱ)当2BD DC =,且1AD =时,求ABC 的面积ABC S .23.(2024·甘肃陇南·一模)在ABC 中,内角A ,B ,C 的对边分别为,,a b c .已知cos cos 3c A a C +=.(1)求b ;(2)D 为边AC 上一点,π26AD DC,DBC ,AB BD =∠=⊥,求BD 的长度和ADB ∠的大小.24.(2024·全国·模拟预测)如图,四边形ABCD 为梯形,//AB CD ,2AB CD ==tan2A =,1cos 3ADB ∠=.(1)求cos BDC(2)求BC的长.。
【高中数学】解三角形专题突破——分类整理43题(附详细解析)

=
k2
sin
2
(
2 3
− C) + sin2
C
=
k
2
1
+
1 2
sin
2C
−
6
由C
0,
2 3
,
得2C
−
6
−
6
,
7 6
,则
1 2
sin
2C
−
6
−
1 4
,
1 2
1
+
1 2
sin
2C
−
6
3 4
,
3 2
又k 2 = 16 ,则b2 + c2 (4,8.
3
类型题:
(07)
SABC
=
abc 4R
SABC
=
1 2
ac sin
B
=
1 2
ac
b 2R
=
abc 4R
;
SABC
=
1 2
(a
+b
+
c) r (r为内切圆半径);
S3 ABC
=
1 8
a2b2c2
sin
A sin
B sin C;
(08) tan A + tan B + tan C = tan A tan B tan C;
在 ABC 中,内角 A, B,C 所对的边分别为 a,b, c ,已知
4sin2 A − B + 4sin Asin B = 2 + 2 . 2
(1) 求角 C 的大小;
(2) 已知 b = 4 , ABC 的面积为 6 ,求边长 c 的值.
高三数学专题复习专题08 解三角形(教师版)

专题8 解三角形★★★高考在考什么【考题回放】1.设,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,则()2a b b c =+是2A B =的( A )(A )充分条件 (B )充分而不必要条件 (C )必要而充分条件 (D )既不充分又不必要条件2.在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断:① 1cot tan =⋅B A② 2sin sin 0≤+<B A③ 1cos sin 22=+B A④ C B A 222sin cos cos =+其中正确的是( B )(A )①③(B )②④ (C )①④ (D )②③3.在△ABC 中,已知A 、B 、C 成等差数列,则2tan2tan 32tan 2tan C A C A ++的值为__________3.4.如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则()A .111ABC ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形 C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形5.己知A 、C 是锐角△ABC 的两个内角,且tanA, tanC 是方程x 2-3px+1-p =0 (p ≠0,且p ∈R),的两个实根,则tan(A+C)=_______,tanA,tanC 的取值范围分别是___ _和__ ___,p 的取值范围是__________3;(0,3);(0,3);[32,1)6.在ΔABC 中,已知66cos ,364==B AB ,AC 边上的中线BD=5,求sinA.【专家解答】 设E 为BC 的中点,连接DE ,则DE//AB ,且36221==AB DE ,设BE=x 在ΔBDE 中可得2222cos BD BE ED BE ED BED =+-⋅∠,x x 6636223852⨯⨯++=,解得1=x ,37-=x (舍去)故BC=2,从而328cos 2222=⋅-+=B BC AB BC AB AC ,即3212=AC 又630sin =B,故2sin A =,1470sin =A ★★★高考要考什么【考点透视】本专题主要考查正弦定理和余弦定理. 【热点透析】三角形中的三角函数关系是历年高考的重点内容之一,本节主要帮助考生深刻理解正、余弦定理,掌握解斜三角形的方法和技巧 学生需要掌握的能力:(1)运用方程观点结合恒等变形方法巧解三角形; (2)熟练地进行边角和已知关系式的等价转化;(3)能熟练运用三角形基础知识,正(余)弦定理及面积公式与三角函数公式配合,通过等价转化或构建方程解答三角形的综合问题,注意隐含条件的挖掘★★★突破重难点【范例1】在△ABC 中,角A ,B ,C 所对的边分别为a,b,c, b=acosC,且△ABC 的最大边长为12,最小角的正弦值为31。
收集2解三角形重难点,易错点突破(含答案解析)

专题1-2 解三角形重难点、易错点突破(建议用时:60分钟)三角形定“形”记根据边角关系判断三角形的形状是一类热点问题.解答此类问题,一般需先运用正弦、余弦定理转化已知的边角关系,再进一步判断三角形的形状,这种转化一般有两个通道,即化角为边或化边为角.下面例析这两个通道的应用.1.通过角之间的关系定“形”例1 在△ABC 中,已知2sin A cos B =sin C ,那么△ABC 一定是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形2.通过边之间的关系定“形”例2 在△ABC 中,若sin A +sin C sin B =b +ca ,则△ABC 是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形细说三角形中解的个数解三角形时,处理“已知两边及其一边的对角,求第三边和其他两角”问题需判断解的个数,这是一个比较棘手的问题.下面对这一问题进行深入探讨. 1.出现问题的根源我们作图来直观地观察一下.不妨设已知△ABC 的两边a ,b 和角A ,作图步骤如下:①先做出已知角A ,把未知边c 画为水平的,角A 的另一条边为已知边b ;②以边b 的不是A 点的另外一个端点为圆心,边a 为半径作圆C ;③观察圆C 与边c 交点的个数,便可得此三角形解的个数. 显然,当A 为锐角时,有如图所示的四种情况:当A 为钝角或直角时,有如图所示的两种情况:根据上面的分析可知,由于a ,b 长度关系的不同,导致了问题有不同个数的解.若A 为锐角,只有当a 不小于b sin A 时才有解,随着a 的增大得到的解的个数也是不相同的.当A 为钝角时,只有当a 大于b 时才有解. 2.解决问题的策略 (1)正弦定理法已知△ABC 的两边a ,b 和角A ,求B . 根据正弦定理a sin A =b sin B,可得sin B =b sin A a.若sin B>1,三角形无解;若sin B=1,三角形有且只有一解;若0<sin B<1,B有两解,再根据a,b的大小关系确定A,B的大小关系(利用大边对大角),从而确定B的两个解的取舍.(2)余弦定理法已知△ABC的两边a,b和角A,求c.利用余弦定理可得a2=b2+c2-2bc cos A,整理得c2-2bc cos A-a2+b2=0.适合问题的上述一元二次方程的解c便为此三角形的解.(3)公式法当已知△ABC的两边a,b和角A时,通过前面的分析可总结三角形解的个数的判断公式如下表:A<90°A≥90°a≥ba<ba>b a≤b a>b sin A a=b sin A a<b sin A一解二解一解无解一解无解3.实例分析例在△ABC中,已知A=45°,a=2,b=2(其中角A,B,C的对边分别为a,b,c),试判断符合上述条件的△ABC有多少个?挖掘三角形中的隐含条件解三角形是高中数学的重要内容,也是高考的一个热点.由于我们对三角公式比较熟悉,做题时比较容易入手.但是公式较多且性质灵活,解题时稍有不慎,常会出现增解、错解现象,其根本原因是对题设中的隐含条件挖掘不够.下面结合例子谈谈解三角形时,题目中隐含条件的挖掘. 隐含条件1.两边之和大于第三边例1 已知钝角三角形的三边a =k ,b =k +2,c =k +4,求k 的取值范围.隐含条件2.三角形的内角范围 例2 已知△ABC 中,B =30°,AB =23,AC =2,则△ABC 的面积是________.例3 在△ABC 中,tan A tan B =a 2b 2,试判断三角形的形状.例4 在△ABC 中,B =3A ,求b a的取值范围.正弦、余弦定理三应用有些题目,表面上看不能利用正弦、余弦定理解决,但若能构造适当的三角形,就能利用两定理,题目显得非常容易,本文剖析几例. 1.平面几何中的长度问题例1 如图,在梯形ABCD 中,CD =2,AC =19,∠BAD =60°,求梯形的高.2.求范围例2 如图,等腰△ABC 中,底边BC =1,∠ABC 的平分线BD 交AC 于点D ,求BD 的取值范围(注:0<x <1时,f (x )=x -1x为增函数).3.判断三角形的形状例3 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若AB →·AC →=BA →·BC →=k ,(k ∈R ). (1)判断△ABC 的形状; (2)若c =2,求k 的值.专题1-2 解三角形重难点、易错点突破参考答案三角形定“形”记例1 分析 通过三角形恒等变换和正弦、余弦定理,把条件式转化,直至能确定两角(边)的关系为止,即可判断三角形的形状.解析 方法一 利用正弦定理和余弦定理 2sin A cos B =sin C 可化为2a ·a 2+c 2-b 22ac=c ,即a 2+c 2-b 2=c 2,即a 2-b 2=0,即a 2=b 2,故a =b . 所以△ABC 是等腰三角形.故选B. 方法二 因为在△ABC 中,A +B +C =π, 即C =π-(A +B ),所以sin C =sin(A +B ). 由2sin A cos B =sin C ,得2sin A cos B =sin A cos B +cos A sin B , 即sin A cos B -cos A sin B =0,即sin(A -B )=0. 又因为-π<A -B <π, 所以A -B =0,即A =B . 所以△ABC 是等腰三角形,故选B. 答案 B点评 根据角的三角函数之间的关系判断三角形的形状,一般需通过三角恒等变换,求出角(边)之间的关系. 例2分析 先运用正弦定理化角为边,根据边之间的关系即可判断三角形的形状. 解析 在△ABC 中,由正弦定理,可得sin A +sin C sin B =a +c b =b +ca ,整理得a (a +c )=b (b +c ),即a 2-b 2+ac -bc =0,(a -b )(a +b +c )=0. 因为a +b +c ≠0,所以a -b =0,即a =b ,所以△ABC 是等腰三角形.故选C. 答案 C点评 本题也可化边为角,但书写复杂,式子之间的关系也不易发现.细说三角形中解的个数例 分析 此题为“已知两边和其中一边的对角”解三角形的问题,可以利用上述办法来判断△ABC 解的情况.解 方法一 由正弦定理a sin A =bsin B ,可得sin B =22sin 45°=12<1. 又因为a >b ,所以A >B ,故B =30°, 符合条件的△ABC 只有一个. 方法二 由余弦定理得 22=c 2+(2)2-2×2×c cos 45°,即c 2-2c -2=0,解得c =1±3.而1-3<0,故仅有一解,符合条件的△ABC 只有一个.方法三 A 为锐角,a >b ,故符合条件的△ABC 只有一个.挖掘三角形中的隐含条件例1 [错解] ∵c >b >a 且△ABC 为钝角三角形, ∴C 为钝角. 由余弦定理得cos C =a 2+b 2-c 22ab=k 2+(k +2)2-(k +4)22k (k +2)=k 2-4k -122k (k +2)<0.∴k 2-4k -12<0,解得-2<k <6. 又∵k 为三角形的边长, ∴k >0.综上所述,0<k <6.[点拨] 忽略了隐含条件:k ,k +2,k +4构成一个三角形,需满足k +(k +2)>k +4.即k >2而不是k >0. [正解] ∵c >b >a ,且△ABC 为钝角三角形, ∴C 为钝角. 由余弦定理得cos C =a 2+b 2-c 22ab=k 2-4k -122k (k +2)<0.∴k 2-4k -12<0,解得-2<k <6.由两边之和大于第三边得k +(k +2)>k +4,∴k >2, 综上所述,k 的取值范围为2<k <6.温馨点评 虽然是任意两边之和大于第三边,但实际应用时通常不用都写上,只需最小两边之和大于最大边就行了.例2 [错解] 由正弦定理,得sin C =AB sin B AC =32. ∴C =60°,∴A =90°.则S △ABC =12AB ·AC ·sin A =12×23×2×1=23.[点拨] 上述解法中在用正弦定理求C 时丢了一解.实际上由sin C =32可得C =60°或C =120°,它们都满足条件.[正解] 由正弦定理,得sin C =AB sin B AC=32.∴C =60°或C =120°. 当C =60°时,A =90°,∴S △ABC =12AB ·AC ·sin A =23.当C =120°时,A =30°, ∴S △ABC =12AB ·AC ·sin A =3. 故△ABC 的面积是23或3.温馨点评 利用正弦定理理解“已知两边及其中一边对角,求另一角”问题时,由于三角形内角的正弦值都为正的,而这个内角可能为锐角,也可能为钝角,容易把握不准确出错.例3 [错解] tan A tan B =a 2b 2⇔sin A cos B cos A sin B =sin 2A sin 2B ⇔cos B cos A =sin Asin B ⇔sin A cos A =sin B cos B ⇔sin 2A =sin2B , ∴A =B .∴△ABC 是等腰三角形.[点拨] 上述错解忽视了满足sin 2A =sin 2B 的另一个角之间的关系:2A +2B =180°. [正解] tan A tan B =a 2b 2⇔sin A cos B cos A sin B =sin 2A sin 2B ⇔cos B cos A =sin Asin B ⇔sin A cos A =sin B cos B⇔sin 2A =sin 2B ⇔2A =2B 或2A +2B =180°. ∴A =B 或A +B =90°.∴△ABC 是等腰三角形或直角三角形.温馨点评 在△ABC 中,sin A =sin B ⇔A =B 是成立的,但sin 2A =sin 2B ⇔2A =2B 或2A +2B =180°. 例4 [错解] 由正弦定理得b a =sin B sin A =sin 3A sin A =sin (A +2A )sin A=sin A cos 2A +cos A sin 2Asin A=cos 2A +2cos 2A =4cos 2A -1. ∵0≤cos 2A ≤1, ∴-1≤4cos 2A -1≤3, ∵b a>0,∴0<b a≤3.[点拨] 忽略了三角形内角和为180°,及角A 、B 的取值范围,从而导致b a 取值范围求错. [正解] 由正弦定理得b a =sin B sin A =sin 3A sin A=sin (A +2A )sin A =sin A cos 2A +cos A sin 2A sin A=cos 2A +2cos 2A =4cos 2A -1. ∵A +B +C =180°,B =3A .∴A +B =4A <180°,∴0°<A <45°.∴22<cos A <1, ∴1<4cos 2 A -1<3,∴1<ba <3.温馨点评 解三角形问题,角的取值范围至关重要.一些问题,角的取值范围隐含在题目的条件中,若不仔细审题,深入挖掘,往往疏漏而导致解题失败.正弦、余弦定理三应用例1 分析 如图,过点D 作DE ⊥AB 于点E ,则DE 为所求的高.由∠BAD =60°,知∠ADC =120°,又边CD 与AC 的长已知,故△ACD 为已知两边和其中一边的对角,可解三角形.解Rt △ADE ,需先求AD 的长,这只需在△ACD 中应用余弦定理.解 由∠BAD =60°,得∠ADC =120°,在△ACD 中,由余弦定理得AC 2=AD 2+CD 2-2AD ·CD ·cos ∠ADC ,即19=AD 2+4-2AD ×2×⎝ ⎛⎭⎪⎫-12, 解得AD =3或AD =-5(舍去).在△ADE 中,DE =AD ·sin 60°=332.点评 依据余弦定理建立方程是余弦定理的一个妙用,也是函数与方程思想在解三角形中的体现.2.求范围例2 分析 把BD 的长表示为∠ABC 的函数,转化为求函数的值域.解 设∠ABC =α.因为∠ABC =∠C ,所以∠A =180°-2α,∠BDC =∠A +∠ABD =180°-2α+α2=180°-3α2, 因为BC =1,在△BCD 中,由正弦定理得BD =sin αsin 3α2=2sin α2cos α2sin αcos α2+cos αsin α2=2cos α24cos 2α2-1=24cos α2-1cos α2, 因为0°<α2<45°,所以22<cos α2<1, 而当cos α2增大时,BD 减小,且当cos α2=22时, BD =2;当cos α2=1时,BD =23, 故BD 的取值范围是⎝ ⎛⎭⎪⎫23,2. 点评 本题考查:(1)三角知识、正弦定理以及利用函数的单调性求值域的方法;(2)数形结合、等价转化等思想.例3 解 (1)∵AB →·AC →=cb cos A ,BA →·BC →=ca cos B .又AB →·AC →=BA →·BC →,∴bc cos A =ac cos B ,∴b cos A =a cos B .方法一 ∴sin B cos A =sin A cos B ,即sin A cos B -cos A sin B =0,∴sin(A -B )=0,∵-π<A -B <π,∴A =B .∴△ABC 为等腰三角形.方法二 利用余弦定理将角化为边, ∵b cos A =a cos B ,∴b ·b 2+c 2-a 22bc =a ·a 2+c 2-b 22ac ,∴b 2+c 2-a 2=a 2+c 2-b 2,∴a 2=b 2,∴a =b .∴△ABC 为等腰三角形.(2)由(1)知:a =b .∴AB →·AC →=bc cos A =bc ·b 2+c 2-a 22bc =c 22=k , ∵c =2,∴k =1.。
高考数学压轴专题新备战高考《三角函数与解三角形》难题汇编含答案

高考数学《三角函数与解三角形》课后练习一、选择题1.在ABC ∆中,若2sin sin cos 2CA B =,则ABC ∆是( ) A .等边三角形 B .等腰三角形C .不等边三角形D .直角三角形【答案】B 【解析】试题分析:因为2sin sin cos2CA B =,所以,1cos sin sin 2C A B +=,即2sin sin 1cos[()],cos()1A B A B A B π=+-+-=,故A=B ,三角形为等腰三角形,选B 。
考点:本题主要考查和差倍半的三角函数,三角形内角和定理,诱导公式。
点评:简单题,判断三角形的形状,一般有两种思路,一种是从角入手,一种是从边入手。
2.已知函数()sin f x a x x =的一条对称轴为56x π=,函数()f x 在区间()12,x x 上具有单调性,且()()12f x f x =-,则下述四个结论:①实数a 的值为1;②()()1,x f x 和()()22,x f x 两点关于函数()f x 图象的一条对称轴对称; ③21x x -的最大值为π, ④12x x +的最小值为23π. 其中所有正确结论的编号是( ) A .①②③ B .①③④C .①④D .③④【答案】B 【解析】 【分析】 根据56x π=是函数()f x 的一条对称轴,确定函数()f x ,再根据函数()f x 在区间()12,x x 上具有单调性,得到21x x -的最大值为2Tπ=,然后由()()12f x f x =-,得到()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称求解验证.【详解】 ∵56x π=是函数()f x 的一条对称轴,∴()53f x f x π⎛⎫=-⎪⎝⎭,令0x =,得()503f f π⎛⎫=⎪⎝⎭,即-1a =,①正确;∴()sin 3cos 2sin 3π⎛⎫=-=- ⎪⎝⎭f x x x x .又因为函数()f x 在区间()12,x x 上具有单调性, ∴21x x -的最大值为2Tπ=,且()()12f x f x =-, ∴()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称,∴121233223x x x x k ππ⎛⎫⎛⎫-+- ⎪ ⎪+π⎝⎭⎝⎭=-=π,k Z ∈, ∴12223x x k ππ+=+,k Z ∈,当0k =时,12x x +取最小值23π,所以①③④正确,②错误. 故选:B 【点睛】本题主要考查三角函数的图象和性质,还考查了推理论证,运算求解的能力,属于中档题.3.小赵开车从A 处出发,以每小时40千米的速度沿南偏东40︒的方向直线行驶,30分钟后到达B 处,此时,小王发来微信定位,显示他自己在A 的南偏东70︒方向的C 处,且A 与C 的距离为153千米,若此时,小赵以每小时52千米的速度开车直线到达C 处接小王,则小赵到达C 处所用的时间大约为( )()7 2.6≈A .10分钟B .15分钟C .20分钟D .25分钟【答案】B 【解析】 【分析】首先根据题中所给的条件,得到30BAC ∠=︒,20AB =,153AC =,两边和夹角,之后应用余弦定理求得5713BC =≈(千米),根据题中所给的速度,进而求得时间,得到结果. 【详解】根据条件可得30BAC ∠=︒,20AB =,153AC =,由余弦定理可得2222cos30175BC AB AC AB AC ︒=+-⋅⋅=,则13BC =≈(千米), 由B 到达C 所需时间约为130.2552=(时)15=分钟. 故选:B . 【点睛】该题是一道关于解三角形的实际应用题,解题的关键是掌握余弦定理的应用,属于简单题目.4.若函数()sin 2f x x =向右平移6π个单位后,得到()y g x =,则关于()y g x =的说法正确的是( ) A .图象关于点,06π⎛⎫- ⎪⎝⎭中心对称 B .图象关于6x π=-轴对称C .在区间5,126ππ⎡⎤--⎢⎥⎣⎦单调递增 D .在5,1212ππ⎡⎤-⎢⎥⎣⎦单调递增 【答案】D 【解析】 【分析】利用左加右减的平移原则,求得()g x 的函数解析式,再根据选项,对函数性质进行逐一判断即可. 【详解】函数()sin 2f x x =向右平移6π个单位,得()sin 2()sin(2)63g x x x ππ=-=-. 由23x π-=k π,得26k x ππ=+()k ∈Z ,所以,06π⎛⎫- ⎪⎝⎭不是()g x 的对称中心,故A 错; 由23x π-=2k ππ+, 得212k x π5π=+()k ∈Z ,所以()g x 的图象不关于6x π=-轴对称,故B 错;由222232k x k πππππ-≤-≤+,得1212k x k π5ππ-≤≤π+()k ∈Z , 所以在区间5,126ππ⎡⎤--⎢⎥⎣⎦上()g x 不单调递增,在5,1212ππ⎡⎤-⎢⎥⎣⎦上单调递增, 故C 错,D 对; 故选:D . 【点睛】解答三角函数问题时一般需将解析式化简为sin()y A x B ωϕ=++或cos()y A x B ωϕ=++,从而可利用正(余)弦型周期计算公式2||T πω=周期,对正弦型函数,其函数图象的对称中心为,k B πϕω-⎛⎫⎪⎝⎭,且对称中心在函数图象上,而对称轴必经过图象的最高点或最低点,此时函数取得最大值或最小值.5.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表: 黄赤交角 2341︒'2357︒'2413︒'2428︒'2444︒'正切值 0.439 0.444 0.450 0.455 0.461 年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是( ) A .公元前2000年到公元元年 B .公元前4000年到公元前2000年 C .公元前6000年到公元前4000年 D .早于公元前6000年【答案】D 【解析】 【分析】先理解题意,然后根据题意建立平面几何图形,在利用三角函数的知识计算出冬至日光与春秋分日光的夹角,即黄赤交角,即可得到正确选项. 【详解】解:由题意,可设冬至日光与垂直线夹角为α,春秋分日光与垂直线夹角为β, 则αβ-即为冬至日光与春秋分日光的夹角,即黄赤交角, 将图3近似画出如下平面几何图形:则16tan 1.610α==,169.4tan 0.6610β-==, tan tan 1.60.66tan()0.4571tan tan 1 1.60.66αβαβαβ---==≈++⨯g .0.4550.4570.461<<Q ,∴估计该骨笛的大致年代早于公元前6000年.故选:D . 【点睛】本题考查利用三角函数解决实际问题的能力,运用了两角和与差的正切公式,考查了转化思想,数学建模思想,以及数学运算能力,属中档题.6.{}n a 为等差数列,公差为d ,且01d <<,5()2k a k Z π≠∈,223557sin 2sin cos sin a a a a +⋅=,函数()sin(4)(0)f x d wx d w =+>在20,3π⎛⎫⎪⎝⎭上单调且存在020,3x π⎛⎫∈ ⎪⎝⎭,使得()f x 关于0(,0)x 对称,则w 的取值范围是( ) A .20,3⎛⎤ ⎥⎝⎦ B .30,2⎛⎤ ⎥⎝⎦C .24,33⎛⎤⎥⎝⎦D .33,42⎛⎤⎥⎝⎦【答案】D 【解析】 【分析】推导出sin4d =1,由此能求出d ,可得函数解析式,利用在203x π⎛⎫∈ ⎪⎝⎭,上单调且存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,,即可得出结论. 【详解】∵{a n }为等差数列,公差为d ,且0<d <1,a 52k π≠(k ∈Z ), sin 2a 3+2sin a 5•cos a 5=sin 2a 7, ∴2sin a 5cos a 5=sin 2a 7﹣sin 2a 3=2sin372a a +cos 732a a -•2cos 372a a +sin 732a a -=2sin a 5cos2d •2cos a 5sin2d , ∴sin4d =1,∴d 8π=.∴f (x )8π=cosωx ,∵在203x π⎛⎫∈ ⎪⎝⎭,上单调 ∴23ππω≥, ∴ω32≤; 又存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,, 所以f (x )在(0,23π)上存在零点, 即223ππω<,得到ω34>. 故答案为 33,42⎛⎤⎥⎝⎦故选D 【点睛】本题考查等差数列的公差的求法,考查三角函数的图象与性质,准确求解数列的公差是本题关键,考查推理能力,是中档题.7.已知函数()()πsin 06f x x ωω⎛⎫=-> ⎪⎝⎭,若()π02f f ⎛⎫=- ⎪⎝⎭在π0,2⎛⎫⎪⎝⎭上有且仅有三个零点,则ω= ( ) A .23B .2C .143D .263【答案】C 【解析】∵函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭,()02f fπ⎛⎫=- ⎪⎝⎭∴1sin()sin()6262πππω-=--=- ∴2266k πππωπ-=+或52,266k k Z πππωπ-=+∈ ∴243k ω=+或42,k k ω=+∈Z∵函数()f x 在0,2π⎛⎫⎪⎝⎭上有且仅有三个零点 ∴(,)6626x ππωππω-∈-- ∴2326ωππππ<-≤∴131933ω<≤ ∴143ω=或6ω= 故选C.8.设函数())cos(2)f x x x ϕϕ=+++(||)2πϕ<,且其图像关于直线0x =对称,则( )A .()y f x =的最小正周期为π,且在(0,)2π上为增函数B .()y f x =的最小正周期为2π,且在(0,)4π上为增函数 C .()y f x =的最小正周期为π,且在(0,)2π上为减函数D .()y f x =的最小正周期为2π,且在(0,)4π上为减函数【答案】C 【解析】试题分析:())cos(2)f x x x ϕϕ=+++2sin(2)6x πϕ=++,∵函数图像关于直线0x =对称,∴函数()f x 为偶函数,∴3πϕ=,∴()2cos 2f x x =,∴22T ππ==, ∵02x π<<,∴02x π<<,∴函数()f x 在(0,)2π上为减函数.考点:1.三角函数式的化简;2.三角函数的奇偶性;3.三角函数的周期;4.三角函数的单调性.9.若函数()sin()f x A x ωϕ=+(其中0A >,||)2πϕ<图象的一个对称中心为(3π,0),其相邻一条对称轴方程为712x π=,该对称轴处所对应的函数值为1-,为了得到()cos2g x x =的图象,则只要将()f x 的图象( )A .向右平移6π个单位长度 B .向左平移12π个单位长度 C .向左平移6π个单位长度 D .向右平移12π个单位长度【答案】B 【解析】 【分析】由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出ϕ的值,可得()f x 的解析式,再根据函数()sin y A x ωϕ=+的图象变换规律,诱导公式,得出结论. 【详解】根据已知函数()()sin f x A x ωϕ=+(其中0A >,)2πϕ<的图象过点,03π⎛⎫ ⎪⎝⎭,7,112π⎛⎫-⎪⎝⎭, 可得1A =,1274123πππω⋅=-, 解得:2ω=. 再根据五点法作图可得23πϕπ⋅+=,可得:3πϕ=,可得函数解析式为:()sin 2.3f x x π⎛⎫=+ ⎪⎝⎭ 故把()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移12π个单位长度, 可得sin 2cos236y x x ππ⎛⎫=++= ⎪⎝⎭的图象, 故选B . 【点睛】本题主要考查由函数()sin y A x ωϕ=+的部分图象求解析式,由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出ϕ的值,函数()sin y A x ωϕ=+的图象变换规律,诱导公式的应用,属于中档题.10.若函数tan 23y x k π⎛⎫=-+ ⎪⎝⎭,0,6x π⎛⎫∈ ⎪⎝⎭的图象都在x 轴上方,则实数k 的取值范围为( )A .)+∞ B .)+∞C .()+∞D .()【答案】A 【解析】 【分析】计算tan 203x π⎛⎫<-< ⎪⎝⎭,tan 23x k π⎛⎫->- ⎪⎝⎭恒成立,得到答案.【详解】∵0,6x π⎛⎫∈ ⎪⎝⎭,∴2033x ππ-<-<,∴tan 203x π⎛⎫-< ⎪⎝⎭,函数tan 23y x k π⎛⎫=-+ ⎪⎝⎭,0,6x π⎛⎫∈ ⎪⎝⎭的图象都在x 轴上方, 即对任意的0,6x π⎛⎫∈ ⎪⎝⎭,都有tan 203x k π⎛⎫-+> ⎪⎝⎭,即tan 23x k π⎛⎫->- ⎪⎝⎭,∵tan 23x π⎛⎫-> ⎪⎝⎭k -≤,k ≥ 故选:A . 【点睛】本题考查了三角函数恒成立问题,转化为三角函数值域是解题的关键.11.函数()22sin 3cos 2f x x x =+-,2,36x ππ⎡⎤∈-⎢⎥⎣⎦的值域为( ) A .40,3⎡⎤⎢⎥⎣⎦B .41,3⎡⎤⎢⎥⎣⎦C .51,4⎡⎤⎢⎥⎣⎦D .50,4⎡⎤⎢⎥⎣⎦【答案】A 【解析】 【分析】化简得到()23sin 2sin 1f x x x =-++,设sin t x =,利用二次函数性质得到答案. 【详解】根据22sin cos 1x x +=,得()23sin 2sin 1f x x x =-++,2,36x ππ⎡⎤∈-⎢⎥⎣⎦, 令sin t x =,由2,36x ππ⎡⎤∈-⎢⎥⎣⎦,得1sin 1,2x ⎡⎤∈-⎢⎥⎣⎦, 故[]0,1t ∈,有2321y t t =-++,[]0,1t ∈,二次函数对称轴为13t =, 当13t =时,最大值43y =;当1t =时,最小值0y =,综上,函数()f x 的值域为40,3⎡⎤⎢⎥⎣⎦.故选:A . 【点睛】本题考查了三角函数值域,换元可以简化运算,是解题的关键.12.在三角形ABC 中,给出命题:p “2ab c >”,命题:q “3C π<”,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】 【分析】由余弦定理将2c 化为222cos a b ab C +-,整理后利用基本不等式求得12cos 2C +>,求出C 范围,即可判断充分性,取4a =,7b =,6c =,则可判断必要性不成立,两者结合可得正确的选项. 【详解】充分性:由余弦定理,2222cos c a b ab C =+-, 所以2ab c >,即222cos ab a b ab C >+-,整理得,2212cos a b C ab++>,由基本不等式,222a b ab +≥=,当且仅当a b =时等号成立, 此时,12cos 2C +>,即1cos 2C >,解得3C π<, 充分性得证;必要性:取4a =,7b =,6c =,则164936291cos 247562C +-==>⨯⨯,故3C π<,但228ab c =<,故3C π<推不出2ab c >.故必要性不成立; 故p 是q 的充分不必要条件. 故选:A 【点睛】本题主要考查充分必要条件的判断、余弦定理的应用和基本不等式的应用,考查学生分析转化能力,属于中档题.13.若θ是第二象限角,则下列选项中能确定为正值的是( )A .sinB .cosC .tanD .cos2θ【答案】C 【解析】 【分析】直接利用三角函数象限角的三角函数的符号判断即可. 【详解】由θ是第二象限角可得为第一或第三象限角,所以tan >0.故选C 【点睛】本题考查三角函数值的符号的判断,是基础题.14.在ABC ∆中,60B ∠=︒,AD 是BAC ∠的平分线交BC 于D ,2BD =,1cos 4BAC ∠=,则AD =( ) A .2 B 2C 3D .62【答案】A 【解析】 【分析】先求出6sin 4BAD ∠=,再利用正弦定理求AD. 【详解】∵21cos 12sin 4BAC BAD ∠=-∠=, ∴6sin BAD ∠=.在ABD ∆中,sin sin AD BD B BAD =∠, ∴3sin 222sin 6BAD BD BAD =⋅==∠. 【点睛】本题主要考查二倍角的余弦和正弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.15.已知函数()()sin x f x x R ωφ+=∈,,其中0ωπφπ>-<,≤.若函数()f x 的最小正周期为4π,且当23x π=时,()f x 取最大值,是( ) A .()f x 在区间[]2ππ--,上是减函数 B .()f x 在区间[]0π-,上是增函数C .()f x 在区间[]0π,上是减函数 D .()f x 在区间[]02π,上是增函数 【答案】B 【解析】 【分析】先根据题目所给已知条件求得()f x 的解析式,然后求函数的单调区间,由此得出正确选项. 【详解】由于函数()f x 的最小正周期为4π,故2π14π2ω==,即()1sin 2f x x φ⎛⎫=+ ⎪⎝⎭,2ππsin 1,33π6f φφ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭=⎭⎝.所以()1πsin 26f x x ⎛⎫=+ ⎪⎝⎭.由π1ππ2π2π2262k x k -≤+≤+,解得4π2π4π4π33k x k -≤≤+,故函数的递增区间是4π2π4π,4π33k k ⎡⎤-+⎢⎥⎣⎦,令0k =,则递增区间为4π2π,33⎡⎤-⎢⎥⎣⎦,故B 选项正确.所以本小题选B. 【点睛】本小题主要考查三角函数解析式的求法,考查三角函数单调区间的求法,属于基础题.16.函数()sin())f x x x ωϕωϕ=+++(ω>0)的图像过点(1,2),若f (x )相邻的两个零点x 1,x 2满足|x 1-x 2|=6,则f (x )的单调增区间为( ) A .[-2+12k ,4+12k](k ∈Z ) B .[-5+12k ,1+12k](k ∈Z ) C .[1+12k ,7+12k](k ∈Z ) D .[-2+6k ,1+6k](k ∈Z )【答案】B 【解析】 【分析】由题意得()23f x sin x πωϕ⎛⎫=++⎪⎝⎭,根据相邻两个零点满足126x x -=得到周期为12T =,于是可得6π=ω.再根据函数图象过点()1,2求出2()k k Z ϕπ=∈,于是可得函数的解析式,然后可求出单调增区间. 【详解】由题意得()()()23f x sin x x sin x πωϕωϕωϕ⎛⎫=++=++ ⎪⎝⎭, ∵()f x 相邻的两个零点1x ,2x 满足126x x -=, ∴函数()f x 的周期为12T =,∴6π=ω, ∴()263f x sin x ππϕ⎛⎫=++⎪⎝⎭.又函数图象过点()1,2,∴2222632sin sin cos πππϕϕϕ⎛⎫⎛⎫++=+== ⎪ ⎪⎝⎭⎝⎭, ∴cos 1ϕ=, ∴2()k k Z ϕπ=∈, ∴()263f x sin x ππ⎛⎫=+ ⎪⎝⎭.由22,2632k x k k Z ππππππ-+≤+≤+∈,得512112,k x k k Z -+≤≤+∈,∴()f x 的单调增区间为[]()512,112k k k Z -++∈. 故选B . 【点睛】解答本题的关键是从题中所给的信息中得到相关数据,进而得到函数的解析式,然后再求出函数的单调递增区间,解体时注意整体代换思想的运用,考查三角函数的性质和应用,属于基础题.17.已知函数())(0f x x ωϕω=+>,)22ππ-<ϕ<,1(3A ,0)为()f x 图象的对称中心,B ,C 是该图象上相邻的最高点和最低点,若4BC =,则()f x 的单调递增区间是()A .2(23k -,42)3k +,k Z ∈ B .2(23k ππ-,42)3k ππ+,k Z ∈C .2(43k -,44)3k +,k Z ∈ D .2(43k ππ-,44)3k ππ+,k Z ∈【答案】C 【解析】 【分析】由三角函数图像的性质可求得:2πω=,6πϕ=-,即()sin()26f x x ππ=-,再令222262k x k ππππππ--+剟,求出函数的单调增区间即可.【详解】解:函数())(0f x x ωϕω=+>,)22ππ-<ϕ<, 因为1(3A ,0)为()f x 图象的对称中心,B ,C 是该图象上相邻的最高点和最低点,又4BC =,∴222()42T +=,即221216πω+=,求得2πω=.再根据123k πϕπ+=g ,k Z ∈,可得6πϕ=-,()3sin()26f x x ππ∴=-,令222262k x k ππππππ--+剟,求得244433k x k -+剟, 故()f x 的单调递增区间为2(43k -,44)3k +,k Z ∈, 故选:C . 【点睛】本题考查了三角函数图像的性质及单调性,属中档题.18.已知向量m =r (1,cosθ),(sin ,2)n θ=-r ,且m r ⊥n r,则sin 2θ+6cos 2θ的值为( ) A .12B .2C .D .﹣2【答案】B 【解析】 【分析】根据m r ⊥n r 可得tanθ,而sin 2θ+6cos 2θ22226sin cos cos sin cos θθθθθ+=+,分子分母同除以cos 2θ,代入tanθ可得答案. 【详解】因为向量m =r (1,cosθ),n =r(sinθ,﹣2),所以sin 2cos m n θθ⋅=-u r r因为m r ⊥n r ,所以sin 2cos 0θθ-=,即tanθ=2,所以sin 2θ+6cos 2θ22222626226141sin cos cos tan sin cos tan θθθθθθθ++⨯+====+++ 2. 故选:B. 【点睛】本题主要考查平面向量的数量积与三角恒等变换,还考查运算求解的能力,属于中档题.19.化简21sin 352sin 20︒︒-=( )A .12B .12-C .1-D .1【答案】B 【解析】 【分析】利用降次公式和诱导公式化简所求表达式,由此求得正确结论. 【详解】依题意,原式1cos7011cos701sin 20122sin 202sin 202sin 202--==-⨯=-⨯=-o o o o o o ,故选B. 【点睛】本小题主要考查三角函数降次公式,考查三角函数诱导公式,属于基础题.20.在极坐标系中,曲线4sin 6πρθ⎛⎫=+ ⎪⎝⎭关于( ) A .直线3πθ=对称B .直线6πθ=对称C .点2,6π⎛⎫⎪⎝⎭对称 D .极点对称【答案】A 【解析】 【分析】 由4sin 6πρθ⎛⎫=+ ⎪⎝⎭,得直角坐标方程:2220x x y -+-=,圆心为( ,又因为直线3πθ=即:y =过点(,由此便可得出答案.【详解】由曲线4sin 6πρθ⎛⎫=+⎪⎝⎭,即:24sin 6πρρθ⎛⎫=+ ⎪⎝⎭,又因为cos sin x y ρθρθ=⎧⎨=⎩,化简得曲线的直角坐标方程:2220x x y -+-=,故圆心为( . 又因为直线3πθ=,直角坐标方程为:y =,直线y =过点(,故曲线关于直线3πθ=对称故选:A. 【点睛】本题主要考查曲线及直线的极坐标方程与直角坐标方程的转化,以及圆关于过圆心的直线对称的知识,属于中等难度题目.。
高三数学解三角形试题答案及解析

高三数学解三角形试题答案及解析1.在△ABC中,,,则△ABC的面积为()A.3B.4C.6D.【答案】A【解析】由已知,所以,,三角形的面积为,故选.【考点】1.平面向量的数量积;2.三角形的面积.2.在中,内角所对的边分别为.已知,(1)求角的大小;(2)若,求的面积.【答案】(1);(2).【解析】(1)求角的大小,由已知,可利用降幂公式进行降幂,及倍角公式变形得,移项整理,,有两角和与差的三角函数关系,得,可得,从而可得;(2)求的面积,由已知,,且,可由正弦定理求出,可由求面积,故求出即可,由,,故由即可求出,从而得面积.(1)由题意得,,即,,由得,,又,得,即,所以;(2)由,,得,由,得,从而,故,所以的面积为.点评:本题主要考查诱导公式,两角和与差的三角函数公式,二倍角公式,正弦定理,余弦定理,三角形面积公式,等基础知识,同时考查运算求解能力.3.如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10 m到位置D,测得∠BDC=45°,则塔AB的高是()A.10mB.10mC.10mD.10m【答案】D【解析】在△BCD中,CD=10,∠BDC=45°,∠BCD=15°+90°=105°,∠DBC=30°,由正弦定理知=,所以BC==10.在Rt△ABC中,tan60°=,所以AB=BCtan60°=10.4.在锐角△ABC中,角A,B所对的边长分别为a,b.若2a sin B=b,则角A等于() A.B.C.D.【答案】A【解析】在△ABC中,a=2R sin A,b=2R sin B(R为△ABC的外接圆半径).∵2a sin B=b,∴2sin A sin B=sin B.∴sin A=.又△ABC为锐角三角形,∴A=.5.如图,在坡度一定的山坡A处测得山顶上一建筑物CD的顶端C对于山坡的斜度为15°,向山顶前进100米到达B后,又测得C对于山坡的斜度为45°,若CD=50米,山坡对于地平面的坡角为θ,则cosθ=.【答案】-1【解析】在△ABC中,BC===50(-).在△BCD中,sin∠BDC===-1.又∵cosθ=sin∠BDC,∴cosθ=-1.6.在△ABC中,若0<tan A·tan B<1,那么△ABC一定是()A.锐角三角形B.钝角三角形C.直角三角形D.形状不确定【答案】B【解析】由0<tan A·tan B<1,可知tan A>0,tan B>0,即A,B为锐角.tan(A+B)=>0,即tan(π-C)=-tan C>0,所以tan C<0,所以C为钝角.所以△ABC为钝角三角形.7.在△ABC中,a2+b2+c2=2ab sin C,则△ABC的形状是()A.直角三角形B.锐角三角形C.钝角三角形D.正三角形【答案】D【解析】a2+b2+c2=a2+b2+a2+b2-2ab cos C=2ab sin C,即a2+b2=2ab sin,由于2ab≤a2+b2=2ab sin,故只能a=b且C+=,故三角形为正三角形.也可用特殊值的方法断定正三角形合适,排除其他情况8.在中,角A,B,C所对边分别为a,b,c,且向量,,满足(1)求角C的大小;(2)若成等差数列,且,求边的长【答案】(1);(2).【解析】求角的大小,由已知向量,,满足可得,,即,利用三角形的内角和为得,,可得,从而求得角的大小;(2)若成等差数列,且,求边的长,由成等差数列,可得,由正弦定理得,再由,得,再由得,由于,结合余弦定理可得边的长.试题解析:(1)由可得 2分即,又得而 4分即 ..6分(2)成等差数列由正弦定理可得 .①可得,,而,②由余弦定理可得③由①②③式可得 12分【考点】向量的数量积,解三角形.9.在△中,所对边分别为、、.若,则.【答案】【解析】三角形中问题在解决时要注意边角的互化,本题求角,可能把边化为角比较方便,同时把正切化为正弦余弦,由正弦定理可得,,所以有,即,在三角形中,于是有,,.【考点】解三角形.10.如图,在中,已知,是边上的一点,(Ⅰ)求的值;(Ⅱ)求的值。
重难点12 解三角形-2023年高考数学(热点 重点 难点)专练(全国通用)(解析版)

重难点12 解三角形1.正弦定理(1)定理:在△ABC 中,a sin A =b sin B =csin C =2R (其中R 为△ABC 的外接圆半径)。
(2)运用方法适用情形:两角A ,B 及其对边a ,b (知三求一)。
列方程:a sin A =bsin B 。
(3)变形:a =2R sin_A ,sin A =a2R ,a ∶b ∶c =sin_A ∶sin_B ∶sin_C 等等。
2.余弦定理(1)定理:在△ABC 中,a 2=b 2+c 2-2bc cos A , b 2=c 2+a 2-2ac cos B ,c 2=a 2+b 2-2ab cos_C 。
(2)运用方法适用情形:三边a ,b ,c ,任一内角A (知三求一)。
列方程:a 2=b 2+c 2-2bc cos A 或cos A =b 2+c 2-a22bc 。
(3)变形:cos A =b 2+c 2-a 22bc ,b 2+c 2-a 2=2bc cos A 等等。
3.三角形面积公式(1)正弦定理推论:S △ABC =12ab sin C =12bc sin A =12ac sin B 。
(2)其他常用公式方法:S =12底×高;S =12×C ×r (C 为周长,r 为内切圆半径)等等。
4.判断三角形的形状主要从两个角度考虑(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状。
(2)化角:通过三角恒等变换,得出内角的关系,从而判断三角形的形状,此时要注意应用A +B +C =π这个结论。
无论使用哪种方法,都不要随意约掉公因式,要移项提取公因式,避免漏掉一些可能情况。
解题时注意挖掘隐含条件,重视角的范围对三角函数值的限制。
5.破解平面向量与“三角”相交汇题的常用方法是“化简转化法”(1)先利用三角公式对三角函数式进行“化简”;然后把以向量共线、向量垂直、向量的数量积运算等形式出现的条件转化为三角函数式; (2)再活用正、余弦定理对边、角进行互化.2023年高考仍将重点考查已知三角形边角关系利用正弦定理解三角形及利用正余弦定理解平面图形的边、角与面积,题型既有选择也有填空更多是解答题;若考解答题,主要放在第17题位置,为中档题,若为选(填)题可以为基础题,多为中档题,也可为压轴题.(建议用时:40分钟)一、单选题1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知A = 3π,a 3b = 1,则c =( ) A 31 B 3C .1 D .2【答案】D【解析】解法一:(余弦定理)由2222cos a b c bc A =+-得: 223121cos13c c c c π=+-⨯⨯=+-,220c c ∴--=,2c ∴=或1-(舍).解法二:(正弦定理)由sin sin a b A B=,得:31sin sin 3B π=,1sin 2B ∴=, b a <,6B π∴=,从而2C π=,2224c a b ∴=+=,2c ∴=.故选:D2.在△ABC 中,cos C =3,AC =4,BC =3,则cos B =( ) A .19B .13C .12D .23【答案】A【解析】在ABC 中,2cos 3C =,4AC =,3BC = 根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅ 2224322433AB =+-⨯⨯⨯可得29AB = ,即3AB = 由22299161cos 22339AB BC AC B AB BC +-+-===⋅⨯⨯故1cos 9B =. 故选:A.3.如图,在△ABC 中,D 是边AC 上的点,且,23,2AB CD AB BD BC BD ===, 则sin C 的值为( )A 3B 6C 3D .无解【答案】D【解析】3,23,2AB CD AB BD CD BD ==∴=22222234534cos 12?832?22BD BD BD BC DC BD C DC BC BD BD+-+-∴===>⨯,无解.故选D..ABC 的内角,ABC 的面积为32,则b =( )A 13+ B .13C 23+D .23【答案】B 【解析】a ,b ,c 成等差数列,2b a c ∴=+,平方得22242a c b ac +=-,又ABC 的面积为32,且30B =︒,故由1113sin sin 302242S ac B ac ac ==︒==,得6ac =,222412a c b ∴+=-,由余弦定理得22222241243cos 22642a cb b b b B ac +----====⨯, 解得2423b =+,又b 为边长,13b ∴=+, 故选B .5.魏晋南北朝时期,中国数学的测量学取得了长足进展.刘徽提出重差术,应用中国传统的出入相补原理,因其第一题为测量海岛的高度和距离,故题为《海岛算经》.受此题启发,某同学依照此法测量郑州市二七纪念塔的高度.如图,点D ,G ,F 在水平线DH 上,CD 和EF 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”测得以下数据(单位:米):前表却行DG =1,表高CD =EF =2,后表却行FH =3,表距DF =61.则塔高AB =( )A .60米B .61米C .62米D .63米【答案】D【解析】解:根据题意,CDG ABG ∽△△,EFH ABH ∽, 所以22,1643AB AB BD BD ==++,解得63AB =. 故选:D.6.在ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若32a b =,则22sin sin sin B A A -的值为( ) A .19B .13C .1D .72【答案】D【解析】由正弦定理有22222222sin sin 221sin B A b a b A a a --⎛⎫==- ⎪⎝⎭.又3322b a b a =⇒=,故297212142b a ⎛⎫-=⨯-= ⎪⎝⎭.故选:D7.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =A .6B .5C .4D .3【答案】A【解析】详解:由已知及正弦定理可得2224a b c -=,由余弦定理推论可得 22222141313cos ,,,464224242b c a c c c b A bc bc b c +---==∴=-∴=∴=⨯=,故选A . 8.在中,若,则的形状是 ( )A .钝角三角形B .直角三角形C .锐角三角形D .不能确定.【答案】A【解析】由条件结合正弦定理,得,再由余弦定理,得,所以三角形是钝角三角形,故选A.9.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若()222tan 3a c b B ac +-=,则角B的值为( ). A .6πB .3πC .6π或56π D .3π或23π 【答案】D 【解析】解:()222tan 3ac b B ac +-=,()2223cos 22sin ac b B acB+-∴=,即3cos cos 2sin B B B =, 3sin cos 02B B ⎛⎫∴-= ⎪ ⎪⎝⎭且tan B 有意义即2B π≠, 3sin 2B ∴=, 在ABC 中,B 为3π或23π,故选:D .10.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222sin a b c ab C +=+,且sin cos +a B C 2sin cos 2c B A b =,则tan A 等于( ) A .3 B .13-C .3或13-D .-3或13【答案】A 【解析】222sin cos tan 222a b c CC C ab +-==⇒=,4C π∴>,2sin sin sin a b cR A B C===, 2sin sin cos sin sin cos sin 2A B C C B A B ∴⋅⋅+⋅⋅=, 22sin()sin 22A CB ∴+=⇒=,4B π∴=, tan 1B ∴=,∴tan tan tan tan()31tan tan B CA B C B C+=-+=-=-⋅,故选:A.11.在∆ABC 中,222sin sin sin sin sin A B C B C +-≤.则的取值范围是( )A .(0,6π] B .[6π,π) C .(0,3π] D .[3π,π) 【答案】C【解析】由于222sin sin sin sin sin A B C B C +-≤,根据正弦定理可知222a b c bc +-≤,故2221cos 22b c a A bc +-=≥.又(0,)A π∈,则A 的范围为0,3π⎛⎤ ⎥⎝⎦.故本题正确答案为C.ABC 的三个内角()()31cos sin m n A A =-=,,,.若 m n ⊥,且 cos cos sin a B b A c C +=,则角A B ,的大小分别为 A .ππ63,B .2ππ36, C .ππ36,D .ππ33,【答案】C【解析】由m n ⊥可得0m n = 即3cos sin 0A A -= 所以角3A π=,因为cos cos sin a B b A c C +=二、填空题13.在△ABC 中,105A ∠=︒,45C ∠=︒,AB =BC 等于______. .记ABC 的内角则b =________. ABCS=12,cos ac B ∠CAE =30°,则cos ∠FCB =______________.【答案】14-【解析】AB AC ⊥,3AB =,1AC =,由勾股定理得222BC AB AC =+=, 同理得6BD =,6BF BD ∴==,在ACE △中,1AC =,3AE AD ==,30CAE ∠=,由余弦定理得22232cos301321312CE AC AE AC AE =+-⋅=+-⨯⨯⨯=, 1CF CE ∴==,在BCF △中,2BC =,6BF =,1CF =,由余弦定理得2221461cos 22124CF BC BF FCB CF BC +-+-∠===-⋅⨯⨯. 故答案为:14-.在ABC 中,点D ,且1BD =,则4a c +的最小值为________. 【答案】9【解析】[方法一]:【最优解】角平分线定义+三角形面积公式+基本不等式 由题意可知,ABC ABD BCD S S S =+△△△,由角平分线定义和三角形面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得ac a c =+,即111a c +=, 因此11444(4)()5529,c a c aa c a c a c a c a c+=++=++≥+⋅=当且仅当23c a ==时取等号,则4a c +的最小值为9.故答案为:9.[方法二]: 角平分线性质+向量的数量积+基本不等式 由三角形内角平分线性质得向量式a cBD BA BC a c a c=+++. 因为1BD =,所以2222212()a c ac BA BC BA BC a c a c a c ⎛⎫⎛⎫=++⋅ ⎪ ⎪+++⎝⎭⎝⎭,化简得1ac a c =+,即ac a c =+,亦即(1)(1)1a c --=,所以44(1)(1)5524(1)(1)9a c a c a c +=-+-+≥+--=, 当且仅当4(1)1a c -=-,即3,32a c ==时取等号. [方法三]:解析法+基本不等式如图5,以B 为坐标原点,BC 所在直线为x 轴建立平面直角坐标系.设(,0)C a ,1313,,,2222D A c c ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭.因为A ,D ,C 三点共线,则AD CD k k =,即333222111222c c a -=---,则有a c ac +=,所以111a c+=.下同方法一.[方法四]:角平分线定理+基本不等式 在BDC 中,22π12cos13CD a a a a =+-=+-,同理21AD c c =+-.根据内角平分线性质定理知CD BC AD AB =,即2211a a a cc c +-=+-,两边平方,并利用比例性质得2211a a c c -=-,整理得()()0a c a c ac -+-=,当a c =时,可解得2,410a c a c ==+=.当a c ac +=时,下同方法一.[方法五]:正弦定理+基本不等式 在ABD △与BCD △中,由正弦定理得11,sin 60sin sin 60sin AD CD A C==︒︒.在ABC 中,由正弦定理得sin sin sin120sin60sin60a b AD CD AD CDA B +===+︒︒︒. 所以11sin sin sin a A A C =+,由正弦定理得111a a a c==+,即ac a c =+,下同方法一. [方法六]: 相似+基本不等式如图6,作AE BC ∥,交BD 的延长线于E .易得ABE 为正三角形,则,1AE c DE c ==-.由ADE CDB ∽,得AE DEBC BD =,即11c c a -=,从而a c ac +=.下同方法一. 三、解答题17.在ABC 中,5cos 13A =-,3cos 5B =. (1)求sinC 的值.(2)设5BC =,求ABC 的面积. 【答案】(1)1665;(2)83【解析】(1)5cos 13A =-,3cos 5B =,()0,A π∈,()0,B π∈,12sin 13A ∴=,4sin 5B =,()()()sin sin sin sin cos cos sin C A B A B A B A Bπ∴=-+=+=+123541613513565=⨯-⨯=. (2)由正弦定理得:45sin 13512sin 313BC B AC A ⨯⋅===; 1113168sin 5223653ABCSAC BC C ∴=⋅=⨯⨯⨯=. 18.在ABC 中,2cos c b B =,3C =. (1)求B ∠;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长. 条件①:2c b =;条件②:ABC的周长为4+条件③:ABC)2cos c b =2332π=,23C π=,,解得6B π=;①:由正弦定理结合(矛盾,故这样的ABC 不存在;6π=,设ABC 的外接圆半径为R ,则由正弦定理可得2sin6R π=22sin 3R π=则周长a b +解得2R =,则ABC S =则由余弦定理可得2a ⎛⎫+ ⎪⎝⎭。
文科高考数学重难点02 三角函数与解三角形(解析版)

重难点02 三角函数与解三角形【高考考试趋势】新高考环境下,三角函数与解三角形依然会作为一个重点参与到高考试题中,其中对应的题目的分布特点与命题规律分析可以看出,三角试题每年都考,而且文理有别,或"一大一小",或"三小",或"二小"("小"指选择题或填空题,"大"指解答题),解答题以简单题或中档题为主,选择题或填空题比较灵活,有简单题,有中档题,也有对学生能力和素养要求较高的题.三角函数的图象与性质是高考考查的重点及热点内.备考时要熟练掌握三角函数的图象与性质、三角恒等变换公式及正、余弦定理,在此基础上掌握一些三角恒变换的技巧,如角的变换,函数名称的变换等,此外,还要注意题目中隐含的各种限制条件,选择合理的解决方法,灵活实现问题的转化鉴于新课标核心素养的要求,三角函数与解三角形在实际背景下的应用也将是一个考试试点.考点主要集中在三角函数图像及其性质的应用,三角函数恒等变换,以及正弦余弦定理的应用.本专题在以往高考常见的题型上,根据新课标的要求,精选了部分预测题型,并对相应的题型的解法做了相应的题目分析以及解题指导,希望你在学习完本专题以后能够对三角函数以及解三角形的题型以及解答技巧有一定的提升.【知识点分析以及满分技巧】三角函数与解三角形:从返几年高考情况来看,高考对本部分内容的考查主要有,1.三解恒等变换与三角函数的图象、性质相结合;2.三角恒等变换与解三角形相结合;3.平面向量、不等式、数列与三角函数和解三角形相结合,难度一般不大,属中档题型.三角函数图形的性质以及应用:对于选择题类型特别是对称中心,对称轴等问题选项中特殊点的带入简单方便,正确率比较高.总额和性的问题一般采用换元法转化成最基本的函数问题去解答.对于三角函数有关恒等变换的题目应注重公式的变形.解三角形类型的大题中,重点是角边转化,但是要注意两边必须同时转化,对于对应的面积的最大值问题以及周长的最值问题一般转化成基本不等式去求,但是在用基本不等式的时候应注意不等式等号成立的条件.【常见题型限时检测】(建议用时:35分钟)一、单选题1.(2020·贵溪市实验中学高三月考(文))在中,角,,所对的边分别ABC :A B C 为,,,且,则的最大值是( )a b c BC c bb c +A .8B .6C .D .4【答案】D【分析】由已知可得:,11sin 22bc A a =所以,2sin a A =因为,所以222cos 2b c a A bc +-=2222cos sin 2cos b c a bc AA bc A +=+=+所以,222cos 4sin 46c b b c A A A b c bc π+⎛⎫+==+=+≤ ⎪⎝⎭所以的最大值是4c bb c +故选:D2.(2020·南昌市新建一中(文))在中,内角,,所对应的边分别为ABC :A B C a ,,,且,若,则边的最小值为()b c sin 2sin 0a B b A +=2a c +=b AB .C .2D【答案】D【分析】根据由正弦定理可得,sin2sin 0a B b A +=sin sin2sin sin 0A B B A +=即,,2sin sin cos sin sin 0A B B B A +=sin 0,sin 0A B ≠≠ ,,∴1cos 2B =-23B π∴=由余弦定理可得.()2222222cos 4b a c ac B a c ac a c ac ac=+-=++=+-=- .2a c +=≥ 1ac ∴≤ 即.,243bac ∴=-≥,b ≥故边.b 故选:D .3.(2020·吉林高三其他模拟(文))在中,内角,,所对的边分别为,ABC :A B C a ,,且,,在边上,且,则b c 3a =b =c =M AB BM CM =AMAB=( )A .B .C .D .14133423【答案】C【分析】因为,BM CM =所以为等腰三角形,MBC △因为,,.3a =b =c =由条件可得,222cos2a c b B ac +-==所以,解得3·cos 22BC BM B ==BM =所以AM AB BM =-=可得.34AM AB =故选:.C 4.(2020·河南郑州市·高三月考(文))已知的三个内角,,对应的边分ABC :A B C 别为,,,且,,成等差数列,则a b c sin 2a C π⎛⎫- ⎪⎝⎭()cos 4b B π-()cos 3c A π-的形状是( )ABC :A .直角三角形B .锐角三角形C .钝角三角形D .正三角形【答案】C【分析】,,sin cos 2a C a Cπ⎛⎫-=- ⎪⎝⎭()cos 4cos b B b B π-=,()cos 3cos c A c Aπ-=-依题意得,2cos cos cos b B a C c A =--根据正弦定理可得,()2sin cos sin cos cos sin B B A C A C =-+即,()2sin cos sin sin B B A C B=-+=-又,则,sin 0B ≠1cos 2B =-又,所以,()0,B π∈23B π=故的形状是钝角三角形.ABC :故选:C .5.(2020·安徽六安市·六安一中高三月考(文))已知的三个内角,,所ABC :A B C 对的边分别为,,,满足,且a b c 222cos cos cos 1sin sin A B C A C -+=+,则的形状为( )sin sin 1A C +=ABC :A .等边三角形B .等腰直角三角形C .顶角为的非等腰三角形D .顶角为的等腰三角形120120【答案】D【分析】因为,222cos cos cos 1sin sin A B C A C -+=+所以,2221sin (1sin )1sin 1sin sin A B C A C ---+-=+所以,222sin sin sin sin sin A C B A C +-=-根据正弦定理可得,即,222a cb ac +-=-222122a c b ac +-=-所以,因为,所以,所以,1cos 2B =-0B π<<120B = 60A C += 由得,sin sin 1A C +=sin sin(60)1A A +-=得,sin sin 60cos cos 60sin 1AA A +-=得,1sin sin 12A A A +-=得,1sin 12A A +=得,因为为三角形的内角,所以,,sin(60)1A +=A 30A = 30C =所以为顶角为的等腰三角形.ABC :120故选:D6.(2020·贵州黔东南苗族侗族自治州·高三月考(文))将函数的图象向右平2sin 2y x =移个单位得到函数的图象.若,则的值为(02πϕϕ⎛⎫<<⎪⎝⎭()f x 50412f f ππ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭ϕ)A .B .C .D .12π8π6π3π【答案】A依题意,函数,由得()()2sin 22)i (2s n 2f x x x ϕϕ-=-=50412f f ππ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即,故5124f f ππ⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭52sin 222sin 22124ππϕϕ⎛⎫⎛⎫⨯-=--⨯- ⎪ ⎪⎝⎭⎝⎭,即,5sin 262sin 2ππϕϕ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭1cos 22cos 22ϕϕϕ+=2cos 2ϕϕ=故,又,则,故,即.tan 2ϕ=02πϕ<<02ϕπ<<26πϕ=12πϕ=故选:A.7.(2020·梅河口市第五中学高三月考(文))已知角的顶点为坐标原点,始边与αβ,轴的非负半轴重合,若角的终边过点,,且,则x α()21,()4cos 5αβ+=0,2πβ⎛⎫∈ ⎪⎝⎭( )sin β=ABCD【答案】C【分析】因为角的终边过点,所以是第一象限角,α()21,α所以sin α==cos α==因为,,所以为第一象限角,,0,2πβ⎛⎫∈⎪⎝⎭()4cos 5αβ+=αβ+所以,()sin 35αβ+==所以()()()sin sin sin cos cos sin βαβααβααβα=+-=+-+⎡⎤⎣⎦3455==故选:C.8.(2020·罗山县楠杆高级中学高三月考(文))函数的()()cosln 2xx f x x e e π-⎛⎫=-+ ⎪⎝⎭图象大致为()A .B .C .D .【答案】C【分析】因为,()()()πcos ln sin ln 2x x x x f x x e e x e e --⎛⎫=-+=+ ⎪⎝⎭所以,()()()()()sin ln sin ln x x x x f x x x e e x e e f x ---=-+=-+=-即函数为奇函数,其图象关于原点对称,故排除D ,()f x又因为,当且仅当时取等号,2xxy e e-=+≥=0x =所以,()ln ln 2ln10x x e e -+≥>=当时,,当时,,[)0,πx ∈sin 0x ≥[)π,2πx ∈sin 0x ≤所以,当时,,当时,,故排除A 、B ,[)0,πx ∈()0f x >[)π,2πx ∈()0f x ≤故选:C .二、填空题9.(2020·新疆实验高三月考(文))在中,ABC :BC =,则外接圆的面积为______.222cos cos sin sin C A B B C --=ABC :【答案】π【分析】,222cos cos sin sin C A B B C --=,()()2221sin 1sin sin sin C A B B C∴----=即.222sin sin sin sin A C B B C --=由正弦定理得,222222a cb ac b --=⇒-=+由余弦定理得,所以,2222cos a c b bc A =+-cos A =,则,0A π<< 4A π=设的外接圆半径为,则,则,ABC :R 2sin BCRA =1R =则外接圆的面积为:,ABC :2R ππ=故答案为:.π10.(2020·山西高三期中(文))中,角A ,B ,C 所对的边分别为a ,b ,c ,若ABC :函数有极值点,则的取值范围是()()3222113f x x bx a c ac x =+++-+cos 23B π⎛⎫- ⎪⎝⎭______.【答案】11,2⎡⎫-⎪⎢⎣⎭【分析】由题意,函数,()()3222113f x x bx a c ac x =+++-+可得,()2222()f x x bx a c ac '=+++-因为函数有极值点,所以有两个不同的实数根,()f x 2222()0x bx a c ac +++-=可得,整理得,222(2)4()0b a c ac ∆=-+->222ac a c b >+-又由,2221cos 222a c b ac B ac ac +-=<=因为,所以,可得,(0,)B π∈3B ππ<<52333B πππ<-<当时,即时,取得最小值,最小值为;23B ππ-=23B π=cos 23B π⎛⎫- ⎪⎝⎭cos 1π=-当时,即时,此时,233B ππ-=3B π=1cos 2cos 332B ππ⎛⎫-<= ⎪⎝⎭所以的取值范围是.cos 23B π⎛⎫- ⎪⎝⎭11,2⎡⎫-⎪⎢⎣⎭三、解答题11.(2020·山东济南市·高三开学考试)在四边形中,,是上的ABCD A C ∠=∠E AD 点且满足与相似,,,.BED ∆ABD ∆34AEB π∠=6DBE π∠=6DE =(1)求的长度;BD (2)求三角形面积的最大值.BCD【答案】(1)2)36+【分析】(1),4BED AEB ππ∠=-∠=在三角形中,,BDE sin sin DE BD DBE BED =∠∠即,6sinsin 64BD ππ=所以612=BD =(2)因为,所以,BED ABD ∆∆:C A ∠=∠=6DBE π∠=在三角形中,,BDC 2222cos 6BD DC BC DC BCπ=+-::所以,2272DCBC BC =+:所以,722DCBC BC ≥::所以,(72DCBC ≤:所以,((11sin 7218264BCD S DC BC π∆=≤⨯=::所以三角形面积的最大值为BCD 36+12.(2020·北京海淀区·人大附中高三月考)已知,(2sin ,sin cos )mx x x =-,记函数.,sin cos )n x x x =+ ()f x m n =⋅ (1)求函数取最大值时的取值集合;()f x x (2)设函数在区间是减函数,求实数的最大值.()f x ,2m π⎡⎤⎢⎥⎣⎦m【答案】(1) ;(2).,3x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭56π【分析】(1)由题意,得,()2cos 22sin(26f x m n x x x π=⋅=-=- 当取最大值时,即,此时()f x sin(2)16x π-=22()62x k k Z πππ-=+∈所以的取值集合为.x ,3x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭(2)由得3222262k x k πππππ+≤-≤+,41022266k x k ππππ+≤≤+536k x k ππππ+≤≤+所以的减区间,()f x 5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦当,得是一个减区间,且1k =5,36ππ⎡⎤⎢⎥⎣⎦52,36πππ∈⎡⎤⎢⎥⎣⎦所以,5,,236m πππ⎡⎤⎡⎤⊂⎢⎥⎢⎥⎣⎦⎣⎦所以, 5(,]26m ππ∈所以的最大值为.m 56π13.(2020·宁夏固原市·固原一中高三月考(文))已知函数.()2cos sin 3f x x x x π⎛⎫=⋅+ ⎪⎝⎭x ∈R(1)求的最小正周期;()f x (2)求在闭区间上的值域.()f x ,44ππ⎡⎤-⎢⎥⎣⎦【答案】(1);(2).π11,24⎡⎤-⎢⎥⎣⎦【分析】(1)由已知,有21()cos sin 2f x x x x x ⎛⎫=⋅+ ⎪ ⎪⎝⎭21sin cos 2x x x =⋅-1sin 2cos 2)4x x =-+,11sin 22sin 2423x x x π⎛⎫=-=- ⎪⎝⎭的最小正周期;∴()f x 22T ππ==(2)∵,,,44x ππ⎡⎤∈-⎢⎥⎣⎦52,366x πππ⎡⎤∴-∈-⎢⎥⎣⎦当,即时,取得最大值为,236x ππ-=4x π=()f x 14当,即时,取得最小值为,232x ππ-=-12x π=-()f x 12-的值域为.()f x ∴11,24⎡⎤-⎢⎥⎣⎦14.(2020·梅河口市第五中学高三月考(文))在的中,角,,的对边分ABC :A B C别为,且a b c ,,sin (sin sin )sin 0a A b A B c C ++-=(1)求角;C (2)若,求的取值范围.2c =+a b 【答案】(1);(2).23C π=2⎛ ⎝【分析】:(1)由,及正弦定理得sin (sin sinB)sin 0a A b A c C ++-=,2220a ab b c ++-=由余弦定理得,又,所以;2221cos 222a b c ab C ab ab +--===-0C π<<23C π=(2)由及,得,即,2220a ab b c ++-=2c =224a ab b ++=2()4a b ab +-=所以,所以,当且仅当221()4()4ab a b a b =+-≤+a b +≤a b ==成立,又,所以,2a b c +>=2a b <+≤所以的取值范围为.+a b 2⎛ ⎝15.(2020·黑龙江高三月考(文))在中,角,,所对的边分别为,ABC :A B C a b,,,.c sin 3sin b A B =222b c a bc +-=(1)求外接圆的面积;ABC :(2)若的周长.BC ABC :【答案】(1);(2)9.3π【分析】解:(1)因为,又,即,所以,sin 3sin b A B =sin sin a b A B =sin sin b A a B =3a =由,得,设外接圆的半径为2221cos 22b c a A bc --==3A π=ABC :R 则,所以外接圆的面积为.12sin a R A=⋅==ABC :3π(2)设的中点为,则.因为,BC D AD =()12AD AB AC =+ 所以,()()222221127||2444AD AB AC AB AC c b bc =++⋅=++= 即,又,,则 ,2227c b bc ++=222b c a bc +-=3a =22918bc b c =⎧⎨+=⎩整理得,解得或(舍去),则.所以的周长为9.()2290b -=3b =3-3c =ABC :。
高三数学一轮复习三角函数与解三角形知识点突破训练含答案解析

精品基础教育教学资料,仅供参考,需要可下载使用!第四章⎪⎪⎪三角函数、解三角形第一节任意角和弧度制、任意角的三角函数突破点(一) 角的概念基础联通 抓主干知识的“源”与“流” 1.角的定义角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 2.角的分类角的分类⎩⎪⎨⎪⎧按旋转方向不同分类⎩⎪⎨⎪⎧ 正角:按顺时针方向旋转形成的角负角:按逆时针方向旋转形成的角零角:射线没有旋转按终边位置不同分类⎩⎪⎨⎪⎧象限角:角的终边在第几象限,这个角就是第几象限角轴线角:角的终边落在坐标轴上3.终边相同的角 所有与角α终边相同的角,连同角α在内,可构成一个集合:S ={β|β=α+k ·360°,k∈Z}或{β|β=α+2k π,k ∈Z}.考点贯通 抓高考命题的“形”与“神”终边相同的角[例1] (1)设集合M =⎩⎨⎧x ⎪⎪⎭⎬⎫x =k 2·180°+45°,k ∈Z ,N =xx =k4·180°+45°,k ∈Z ,那么( )A .M =NB .M ⊆NC .N ⊆MD .M ∩N =∅本节主要包括3个知识点: 1.角的概念;2.弧度制及其应用;3.任意角的三角函数.(2)在-720°~0°范围内所有与45°终边相同的角为________.[解析] (1)法一:由于M =xx =k2·180°+45°,k ∈Z ={…,-45°,45°,135°,225°,…},N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 4·180°+45°,k ∈Z ={…,-45°,0°,45°,90°,135°,180°,225°,…},显然有M ⊆N .法二:由于M 中,x =k2·180°+45°=k ·90°+45°=45°·(2k +1),k ∈Z,2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k ∈Z ,k +1是整数,因此必有M ⊆N .(2)所有与45°有相同终边的角可表示为:β=45°+k ×360°(k ∈Z), 则令-720°≤45°+k ×360°<0°,得-765°≤k ×360°<-45°,解得-765360≤k <-45360(k ∈Z), 从而k =-2或k =-1.将k =-2,k =-1分别代入β=45°+k ×360°(k ∈Z),得β=-675°或β=-315°.[答案] (1)B (2)-675°或-315° [方法技巧]终边相同角的集合的应用利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角.象限角[例2] (1)给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有( )A .1个B .2个C .3个D .4个(2)若角α是第二象限角,则α2是( )A .第一象限角B .第二象限角C .第一或第三象限角D .第二或第四象限角[解析] (1)-3π4=5π4-2π=π4+π-2π,从而-3π4是第三象限角,故①错误;4π3=π+π3,从而4π3是第三象限角,故②正确;-400°=-360°-40°,从而-400°是第四象限角,故③正确;-315°=-360°+45°,从而-315°是第一象限角,故④正确.(2)∵α是第二象限角, ∴π2+2k π<α<π+2k π,k ∈Z , ∴π4+k π<α2<π2+k π,k ∈Z. 当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.[答案] (1)C (2)C [方法技巧]确定αn (n ≥2,且n ∈N *)的终边位置的方法(1)讨论法①用终边相同角的形式表示出角α的范围; ②写出αn的范围;③根据k 的可能取值讨论确定αn 的终边所在位置. (2)等分象限角的方法已知角α是第m (m =1,2,3,4)象限角,求αn 是第几象限角.①等分:将每个象限分成n 等份;②标注:从x 轴正半轴开始,按照逆时针方向顺次循环标上1,2,3,4,直至回到x 轴正半轴;③选答:出现数字m 的区域,即为αn 的终边所在的象限.1.[考点一、二]给出下列命题: ①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形半径的大小无关; ④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确命题的个数是( ) A .1 B .2 C .3D .4解析:选A 由于第一象限角如370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin π6=sin5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时,θ既不是第二象限角,也不是第三象限角,故⑤错.综上可知只有③正确.2.[考点一]集合⎩⎨⎧⎭⎬⎫α⎪⎪k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )解析:选C 当k =2n (n ∈Z)时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z)时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样.比较各选项,可知选C.3.[考点二]若α为第一象限角,则β=k ·180°+α(k ∈Z)是第________象限角. 解析:∵α是第一象限角,∴k 为偶数时,k ·180°+α的终边在第一象限;k 为奇数时,k ·180°+α的终边在第三象限.即β=k ·180°+α(k ∈Z)是第一或第三象限角.答案:一或三4.[考点一]终边在直线y =3x 上的角的集合为________. 解析:终边在直线y =3x 上的角的集合为αα=k π+π3,k ∈Z.答案:αα=k π+π3,k ∈Z5.[考点一、二]已知α与150°角的终边相同,写出与α终边相同的角的集合,并判断α3是第几象限角.解:与α终边相同的角的集合为{α|α=k ·360°+150°,k ∈Z}. 则α3=k ·120°+50°,k ∈Z. 若k =3n (n ∈Z),α3是第一象限角;若k =3n +1(n ∈Z),α3是第二象限角;若k =3n +2(n ∈Z),α3是第四象限角.故α3是第一、第二或第四象限角. 突破点(二) 弧度制及其应用基础联通 抓主干知识的“源”与“流”1.弧度制的定义把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. 2.弧度制下的有关公式角α的弧度数公式 |α|=lr (弧长用l 表示)角度与弧度的换算①1°=π180rad ;②1 rad =⎝⎛⎭⎫180π° 弧长公式 弧长l =|α|r 扇形面积公式S =12lr =12|α|r 2考点贯通 抓高考命题的“形”与“神”扇形的弧长及面积公式[典例] (1)已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是( ) A .1 B .4 C .1或4 D .2或4(2)若扇形的圆心角是α=120°,弦长AB =12 cm ,则弧长l =________cm. [解析] (1)设此扇形的半径为r ,弧长为l , 则⎩⎪⎨⎪⎧2r +l =6,12rl =2,解得⎩⎪⎨⎪⎧ r =1,l =4或⎩⎪⎨⎪⎧r =2,l =2.从而α=l r =41=4或α=l r =22=1.(2)设扇形的半径为r cm ,如图. 由sin 60°=122r ,得r =43(cm),又α=2π3, 所以l =|α|·r =2π3×43=833π(cm). [答案] (1)C (2)833π[方法技巧]弧度制下有关弧长、扇形面积问题的解题策略(1)明确弧度制下弧长及扇形面积公式,在使用公式时,要注意角的单位必须是弧度. (2)分析题目已知哪些量、要求哪些量,然后灵活地运用弧长公式、扇形面积公式直接求解,或合理地利用圆心角所在三角形列方程(组)求解.1.若一扇形的圆心角为72°,半径为20 cm ,则扇形的面积为( ) A .40π cm 2 B .80π cm 2 C .40 cm 2D .80 cm 2解析:选B ∵72°=2π5,∴S 扇形=12αr 2=12×2π5×202=80π(cm 2). 2.如果一个圆的半径变为原来的一半,而弧长变为原来的32倍,则该弧所对的圆心角是原来的________倍.解析:设圆的半径为r ,弧长为l ,则其弧度数为lr .将半径变为原来的一半,弧长变为原来的32倍,则弧度数变为32l 12r =3·lr ,即弧度数变为原来的3倍. 答案:33.弧长为3π,圆心角为135°的扇形半径为________,面积为________. 解析:由题可知,弧长l =3π,圆心角α=135°=3π4,所以半径r =l α=3π3π4=4.面积S =12lr =12×3π×4=6π.答案:4 6π4.已知扇形周长为40,当它的半径和圆心角分别取何值时,扇形的面积最大?解:设圆心角是θ,半径是r,则2r+rθ=40.又S =12θr 2=12r(40-2r)=r(20-r)=-(r-10)2+100≤100.当且仅当r=10时,S max=100,此时2×10+10θ=40,θ=2.所以当r=10,θ=2时,扇形的面积最大.突破点(三)任意角的三角函数基础联通抓主干知识的“源”与“流”三角函数正弦余弦正切定义设α是一个任意角,它的终边与单位圆交于点P(x,y),那么y叫做α的正弦,记作sinαx叫做α的余弦,记作cosαyx叫做α的正切,记作tan α各象限符号Ⅰ+++Ⅱ+--Ⅲ--+Ⅳ-+-三角函数线有向线段MP为正弦线有向线段OM为余弦线有向线段AT为正切线考点贯通抓高考命题的“形”与“神”三角函数值的符号判定[例1](1)若sin αtan α<0,且cos αtan α<0,则角α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角(2)sin 2·cos 3·tan 4的值()A.小于0 B.大于0C.等于0 D.不确定[解析] (1)由sin αtan α<0可知sin α,tan α异号,则α为第二或第三象限角. 由co s αtan α<0可知cos α,tan α异号,则α为第三或第四象限角.综上可知,α为第三象限角.(2)2 rad,3 rad 是第二象限角,所以sin 2>0,cos 3<0,4 rad 是第三象限角,所以tan 4>0,故sin 2·cos 3·tan 4<0.[答案] (1)C (2)A根据三角函数的定义求三角函数值[例2] (1)已知角α的终边经过点P (4,-3),则sin α=________. (2)若角α的终边在直线3x +4y =0上,求sin α, cos α和tan α的值. [解析] (1)sin α=-342+(-3)2=-35.(2)设α终边上任一点为P (-4a,3a ),当a >0时,r =5a ,sin α=35,cos α=-45,tan α=-34;当a <0时,r =-5a ,sin α=-35,cos α=45,tan α=-34.[答案] (1)-35[方法技巧]由三角函数定义求三角函数值的方法(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解.(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求解.由三角函数值求点的坐标[例3] (1)若角α的终边上有一点P (-4,a ),且sin α·cos α=3,则a 的值为( ) A .4 3B .±4 3C .-43或-433D. 3(2)若420°角的终边所在直线上有一点(x,3),则x 的值为________.[解析] (1)由三角函数的定义得sin α·cos α=a(-4)2+a 2·-4(-4)2+a 2=-4a (-4)2+a2=34, 即3a 2+16a +163=0, 解得a =-43或-433.故选C. (2)由三角函数的定义知tan 420°=3x ,所以x =3tan 420°=33= 3.[答案] (1)C (2) 3 [方法技巧]求角α终边上点的坐标的类型及方法(1)已知角α的某三角函数值,求角α终边上一点P 的坐标中的参数值,可根据定义中的两个量列方程求参数值.(2)已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标.1.[考点一]若θ是第二象限角,则下列选项中能确定为正值的是( ) A .sin θ2B .cos θ2C .tan θ2D .cos 2θ解析:选C 由θ是第二象限角可得θ2为第一或第三象限角,所以tan θ2>0,故选C.2.[考点一]已知θ是第四象限角,则sin(sin θ)( ) A .大于0 B .大于等于0 C .小于0D .小于等于0解析:选C ∵θ是第四象限角,∴sin θ∈(-1,0).令sin θ=α,当-1<α<0时,sin α<0.故sin(sin θ)<0.3.[考点二]已知角α的终边与单位圆的交点P ⎝⎛⎭⎫x ,32,则tan α=( ) A. 3B .±3C.33D .±33解析:选B 因为P ⎝⎛⎭⎫x ,32在单位圆上,所以x 2+⎝⎛⎭⎫322=1,解得x =±12.所以tan α=±3.4.[考点二、三]设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α=( )A.43B.34 C .-34D .-43解析:选D ∵α是第二象限角,∴x <0. 又由题意知x x 2+42=15x , 解得x =-3. ∴tan α=4x =-43.5.[考点三]已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是________.解析:∵cos α≤0,sin α>0,∴⎩⎪⎨⎪⎧3a -9≤0,a +2>0,即-2<a ≤3. 答案:(-2,3]近五年全国卷对本节内容未直接考查[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.若cos α>0且tan α<0,则α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角解析:选D 由cos α>0,得α的终边在第一或第四象限或x 轴非负半轴上,又由tan α<0,得α的终边在第二或第四象限,所以α是第四象限角.2.若α=k ·360°+θ,β=m ·360°-θ(k ,m ∈Z),则角α与β的终边的位置关系是( ) A .重合 B .关于原点对称 C .关于x 轴对称D .关于y 轴对称解析:选C 角α与θ终边相同,β与-θ终边相同.又角θ与-θ的终边关于x 轴对称,所以角α与β的终边关于x 轴对称.3.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α(0<α<π)的弧度数为( )A.π3B.π2C. 3D .2解析:选C 设圆的半径为r ,则其内接正三角形的边长为3r .根据题意,由3r =αr ,得α= 3.4.角α的终边与直线y =3x 重合,且sin α<0,又P (m ,n )是角α终边上一点,且|OP |=10,则m -n 等于( )A .2B .-2C .4D .-4解析:选A ∵角α的终边与直线y =3x 重合,且sin α<0,∴角α的终边在第三象限.又P (m ,n )是角α终边上一点,故m <0,n <0.又|OP |=10,∴⎩⎨⎧n =3m ,m 2+n 2=10,解得m =-1,n =-3,故m -n =2. 5.设角α是第三象限角,且⎪⎪⎪⎪sin α2=-sin α2,则角α2是第________象限角. 解析:由角α是第三象限角,知2k π+π<α<2k π+3π2(k ∈Z),则k π+π2<α2<k π+3π4(k ∈Z),故α2是第二或第四象限角.由⎪⎪⎪⎪sin α2=-sin α2知sin α2<0,所以α2只能是第四象限角. 答案:四[练常考题点——检验高考能力]一、选择题1.已知sin θ-cos θ>1,则角θ的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B 由已知得(sin θ-cos θ)2>1,即1-2sin θcos θ>1,则sin θcos θ<0.又由sin θ-cos θ>1知sin θ>cos θ,所以sin θ>0>cos θ,所以角θ的终边在第二象限.2.若α是第三象限角,则y =sin α2sin α2+cos α2cos α2的值为( )A .0B .2C .-2D .2或-2解析:选A 由于α是第三象限角, 所以α2是第二或第四象限角.当α2是第二象限角时,sin α2>0,cos α2<0, y =sinα2sin α2+-cos α2cos α2=1-1=0;当α2是第四象限角时,sin α2<0,cos α2>0, y =-sin α2sin α2+cosα2cos α2=-1+1=0.故选A.3.已知角α的终边经过一点P (x ,x 2+1)(x >0),则tan α的最小值为( ) A .1 B .2 C.12D. 2解析:选B tan α=x 2+1x =x +1x ≥2 x ·1x =2,当且仅当x =1时取等号,即tan α的最小值为2.故选B.4.如图,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是( )A .(cos θ,sin θ)B .(-cos θ,sin θ)C .(sin θ,cos θ)D .(-sin θ,cos θ)解析:选A 由三角函数定义知,点P 的横坐标x =cos θ,纵坐标y =sin θ. 5.已知角α的终边与单位圆x 2+y 2=1交于P ⎝⎛⎭⎫12,y 0,则cos 2α=( ) A .-12B .1 C.12D .-32解析:选A ∵角α的终边与单位圆x 2+y 2=1交于P ⎝⎛⎭⎫12,y 0, ∴⎝⎛⎭⎫122+(y 0)2=1,∴y 0=±32, 则cos α=12,sin α=±32,∴cos 2α=cos 2α-sin 2α=-12.6.(2017·连云港质检)已知角α的终边上一点的坐标为⎝⎛⎭⎫sin 2π3,cos 2π3,则角α的最小正值为( )A.5π6 B.2π3 C.5π4D.11π6解析:选D ∵⎝⎛⎭⎫sin 2π3,cos 2π3=⎝⎛⎭⎫32,-12, ∴角α为第四象限角,且sin α=-12,cos α=32.∴角α的最小正值为11π6.二、填空题7.已知点P (sin θcos θ,2cos θ)位于第三象限,则θ是第________象限角. 解析:因为点P (sin θcos θ,2cos θ)位于第三象限,所以⎩⎪⎨⎪⎧ sin θcos θ<0,2cos θ<0,即⎩⎪⎨⎪⎧sin θ>0,cos θ<0,所以θ为第二象限角. 答案:二8.已知角α的终边上一点P (-3,m )(m ≠0),且sin α=2m4, 则m =________.解析:由题设知点P 的横坐标x =-3,纵坐标y =m , ∴r 2=|OP |2=(-3)2+m 2(O 为原点), 即r =3+m 2.∴sin α=m r =2m 4=m 22,∴r =3+m 2=22, 即3+m 2=8,解得m =±5. 答案:±59.一扇形的圆心角为120°,则此扇形的面积与其内切圆的面积之比为________. 解析:设扇形半径为R ,内切圆半径为r ,如图. 则(R -r )sin 60°=r ,即R =⎝⎛⎭⎫1+233r . 又S 扇=12|α|R 2=12×2π3×R 2=π3R 2=π3⎝⎛⎭⎫1+2332r 2=7+439πr 2,S 内切圆=πr 2,所以S 扇S 内切圆=7+439.答案:(7+43)∶910.在(0,2π)内,使sin x >cos x 成立的x 的取值范围为________. 解析:如图所示,找出在(0,2π)内,使sin x =cos x 的x 值,sinπ4=cos π4=22,sin 5π4=cos 5π4=-22.根据三角函数线的变化规律可知,满足题中条件的角x ∈⎝⎛⎭⎫π4,5π4.答案:⎝⎛⎭⎫π4,5π4 三、解答题11.已知sin α<0,tan α>0. (1)求角α的集合; (2)求角α2终边所在的象限;(3)试判断 tan α2sin α2cos α2的符号.解:(1)由sin α<0,知角α的终边在第三、四象限或y 轴的非正半轴上; 由tan α>0, 知角α的终边在第一、三象限, 故角α的终边在第三象限,其集合为⎩⎨⎧⎭⎬⎫α⎪⎪2k π+π<α<2k π+3π2,k ∈Z .(2)由2k π+π<α<2k π+3π2,k ∈Z ,得k π+π2<α2<k π+3π4,k ∈Z ,当k 为偶数时,角α2终边在第二象限;当k 为奇数时,角α2终边在第四象限.故角α2终边在第二或第四象限.(3)当角α2在第二象限时,tan α2<0,sin α2>0, cos α2<0,所以tan α2sin α2cos α2取正号;当α2在第四象限时, tan α2<0, sin α2<0, cos α2>0, 所以 tan α2sin α2cos α2也取正号.因此,tan α2sin α2cos α2取正号.12.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB . 解:设扇形AOB 的半径为r ,弧长为l ,圆心角为α, (1)由题意可得⎩⎪⎨⎪⎧2r +l =8,12lr =3,解得⎩⎪⎨⎪⎧ r =3,l =2或⎩⎪⎨⎪⎧r =1,l =6,∴α=l r =23或α=lr =6.(2)∵2r +l =8,∴S 扇=12lr =12r (8-2r )=r (4-r )=-(r -2)2+4≤4,当且仅当r =2,l =4,即α=lr =2时,扇形面积取得最大值4. 此时弦长AB =2sin 1×2=4sin 1. 第二 节同角三角函数的基本关系与诱导公式本节主要包括2个知识点: 1.同角三角函数的基本关系; 2.三角函数的诱导公式.突破点(一)同角三角函数的基本关系基础联通抓主干知识的“源”与“流”1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1(α∈R).(2)商数关系:tan α=sin αcos α⎝⎛⎭⎫α≠kπ+π2,k∈Z.2.同角三角函数基本关系式的应用技巧技巧解读适合题型切弦互化主要利用公式tan θ=sin θcos θ化成正弦、余弦,或者利用公式sin θcos θ=tan θ化成正切表达式中含有sin θ,cos θ与tan θ“1”的变换1=sin2θ+cos2θ=cos2θ(1+tan2θ)=(sinθ±cos θ)2∓2sin θcos θ=tanπ4表达式中需要利用“1”转化和积转换利用关系式(sin θ±cos θ)2=1±2sin θcos θ进行变形、转化表达式中含有sin θ±cos θ或sin θcos θ考点贯通抓高考命题的“形”与“神”化简求值[例1](2017·南京模拟)已知α为第二象限角,则cos α·1+tan2α+sin α1+1tan2α=________.[解析]原式=cos αsin2α+cos2αcos2α+sin αsin2α+cos2αsin2α=cos α·1|cos α|+sin α·1|sin α|,因为α是第二象限角,所以sin α>0, cos α<0,所以cos α·1|cos α|+sin α·1|sin α|=-1+1=0,即原式等于0. [答案]0条件求值[例2]若tan α=2,则(1)2sin α-3cos α4sin α-9cos α=________; (2)4sin 2α-3sin αcos α-5cos 2α=________.[解析] (1)2sin α-3cos α4sin α-9cos α=2tan α-34tan α-9=2×2-34×2-9=-1.(2)4sin 2α-3sin αcos α-5cos 2α=4sin 2α-3sin αcos α-5cos 2αsin 2α+cos 2α=4tan 2α-3tan α-5tan 2α+1=4×4-3×2-54+1=1.[答案] (1)-1 (2)1 [方法技巧]同角三角函数关系式应用的注意事项(1)同角并不拘泥于角的形式,如sin 2α2+cos 2α2=1,sin 3xcos 3x =tan 3x ⎝⎛⎭⎫3x ≠k π+π2,k ∈Z 都成立,但是sin 2α+cos 2β=1就不一定成立.(2)对于含有sin α,cos α的齐次式,可根据同角三角函数商的关系,通过除以某一齐次项,转化为只含有正切的式子,即化弦为切,整体代入.sin α±cos α与sin αcos α关系的应用[例3] 已知x ∈(-π,0),sin x +cos x =15.(1)求sin x -cos x 的值; (2)求sin 2x +2sin 2x 1-tan x 的值.[解] (1)由sin x +cos x =15,平方得sin 2x +2sin x cos x +cos 2x =125,整理得2sin x cos x =-2425. ∴(sin x -cos x )2=1-2sin x cos x =4925. 由x ∈(-π,0),知sin x <0, 又sin x +cos x >0,∴cos x >0,则sin x -cos x <0, 故sin x -cos x =-75.(2)sin 2x +2sin 2x 1-tan x=2sin x (cos x +sin x )1-sin x cos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175.[方法技巧]同角三角函数关系式的方程思想对于sin α+cos α,sin α-cos α,sin αcos α这三个式子,知一可求二,转化公式为(sin α±cos α)2=1±2sin αcos α,体现了方程思想的应用.1.[考点二]若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125 B .-125 C.512D .-512解析:选D 因为α为第四象限角,故cos α=1-sin 2α= 1-⎝⎛⎭⎫-5132=1213,所以tan α=sin αcos α=-5131213=-512.2.[考点三](2017·厦门质检)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为( )A .-32 B.32 C .-34 D.34解析:选B ∵5π4<α<3π2,∴cos α<0,sin α<0且|cos α|<|sin α|,∴cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,∴cos α-sin α=32.3.[考点二]已知sin α+2cos α=3,则tan α=( ) A.22 B. 2 C .-22D .- 2解析:选A ∵sin α+2cos α=3,∴(sin α+2cos α)2=3,即sin 2α+22sin αcos α+2cos 2α=3,∴sin 2α+22sin αcos α+2cos 2αsin 2α+cos 2α=3,∴tan 2α+22tan α+2tan 2α+1=3,即2tan 2α-22tan α+1=0,解得tan α=22.4.[考点一]sin 21°+sin 22°+…+sin 289°=________.解析:原式=(sin 21°+sin 289°)+(sin 22°+sin 288°)+…+(sin 244°+sin 246°)+sin 245°=(sin 21°+cos 21°)+(sin 22°+cos 22°)+…+(sin 244°+cos 244°)+12=+12=4412. 答案:44125.[考点二、三]已知tan α=-43,求:(1)sin α-4cos α5sin α+2cos α的值; (2)1cos 2α-sin 2α的值; (3)sin 2α+2sin αcos α的值.解:(1)sin α-4cos α5sin α+2cos α=tan α-45tan α+2=-43-45×⎝⎛⎭⎫-43+2=87.(2)1cos 2α-sin 2α=sin 2α+cos 2αcos 2α-sin 2α=sin 2α+cos 2αcos 2αcos 2α-sin 2αcos 2α=tan 2α+11-tan 2α=⎝⎛⎭⎫-432+11-⎝⎛⎭⎫-432=-257. (3)sin 2α+2sin αcos α=sin 2α+2sin αcos αsin 2α+cos 2α=tan 2α+2tan αtan 2α+1=169-83169+1=-825.突破点(二) 三角函数的诱导公式基础联通 抓主干知识的“源”与“流”1.三角函数的诱导公式 组数 一 二 三 四 五 六 角 2k π+α(k ∈Z)π+α -α π-α π2-α π2+α 正弦 sin_α -sin_α -sin_α sin_α cos_α cos_α 余弦 cos_α -cos_α cos_α -cos_α sin_α -sin_α正切tan_αtan_α-tan_α-tan_α2.特殊角的三角函数值 角α 0°30° 45° 60° 90° 120° 150° 180° 角α的弧度数 0 π6 π4 π3 π2 2π3 5π6 π sin α 0 12 22 32 1 32 12 0 cos α 1 32 22 12 0 -12 -32 -1 tan α 0 3313-3-33考点贯通 抓高考命题的“形”与“神”诱导公式的应用1.利用诱导公式把任意角的三角函数转化为锐角三角函数的步骤也就是:“负化正,大化小,化到锐角就好了”. 2.利用诱导公式化简三角函数的要求 (1)化简过程是恒等变形;(2)结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值. [典例] (1)若sin α是方程5x 2-7x -6=0的根,则sin ⎝⎛⎭⎫-α-3π2sin ⎝⎛⎭⎫3π2-αtan 2(2π-α)cos ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2+αsin (π+α)=( )A.35B.53C.45D.54(2)求值:sin(-1 200°)cos 1 290°+cos(-1 020°)·sin(-1 050°)=________. [解析] (1)方程5x 2-7x -6=0的两根为x 1=-35,x 2=2,则sin α=-35.原式=cos α(-cos α)tan 2αsin α(-sin α)(-sin α)=-1sin α=53.(2)原式=-sin 1 200°cos 1 290°-cos 1 020°sin 1 050°=-sin(3×360°+120°)cos(3×360°+210°)-cos(2×360°+300°)sin(2×360°+330°)=-sin 120°cos 210°-cos 300°sin 330°=-sin(180°-60°)cos(180°+30°)-cos(360°-60°)·sin(360°-30°) =sin 60°cos 30°+cos 60°sin 30° =32×32+12×12=1. [答案] (1)B (2)1[方法技巧]应用诱导公式化简求值的注意事项(1)已知角求值问题,关键是利用诱导公式把任意角的三角函数值转化为锐角的三角函数值求解.转化过程中注意口诀“奇变偶不变,符号看象限”的应用.(2)对给定的式子进行化简或求值时,要注意给定的角之间存在的特定关系,充分利用给定的关系结合诱导公式将角进行转化.特别要注意每一个角所在的象限,防止符号及三角函数名出错.1.已知sin ⎝⎛⎭⎫5π2+α=15,那么cos α=( ) A .-25 B .-15 C.15 D.25解析:选C ∵sin ⎝⎛⎭⎫5π2+α=sin ⎝⎛⎭⎫π2+α=cos α,∴cos α=15. 2.sin 210°cos 120°的值为( )A.14 B .-34 C .-32 D.34解析:选A sin 210°cos 120°=-sin 30°(-cos 60°)=-12×⎝⎛⎭⎫-12=14. 3.已知A =sin (k π+α)sin α+cos (k π+α)cos α(k ∈Z),则A 的值构成的集合是( )A .{1,-1,2,-2}B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2}解析:选C k 为偶数时,A =sin αsin α+cos αcos α=2;k 为奇数时,A =-sin αsin α+-cos αcos α=-2.则A 的值构成的集合为{2,-2}.4.已知tan ⎝⎛⎭⎫π6-α=33,则tan ⎝⎛⎭⎫5π6+α=________. 解析:tan ⎝⎛⎭⎫5π6+α=tan ⎝⎛⎭⎫π-π6+α=tanπ-π6-α=-tan ⎝⎛⎭⎫π6-α=-33.答案:-335.已知α为第三象限角,f (α)=sin ⎝⎛⎭⎫α-π2·cos ⎝⎛⎭⎫3π2+α·tan (π-α)tan (-α-π)·sin (-α-π).(1)化简f (α);(2)若cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值. 解:(1)f (α)=sin ⎝⎛⎭⎫α-π2·cos ⎝⎛⎭⎫3π2+α·tan (π-α)tan (-α-π)·sin (-α-π)=(-cos α)·sin α·(-tan α)(-tan α)·sin α=-cos α.(2)∵cos ⎝⎛⎭⎫α-3π2=15, ∴-sin α=15,从而sin α=-15.又α为第三象限角,∴cos α=-1-sin 2α=-265,∴f (α)=-cos α=265. [全国卷5年真题集中演练——明规律] 1.(2016·全国丙卷)若tan α=34,则cos 2α+2sin 2α=( )A.6425B.4825 C .1D.1625解析:选A 因为tan α=34,则cos 2α+2sin 2α=cos 2α+4sin αcos αsin 2α+cos 2α=1+4tan αtan 2α+1=1+4×34⎝⎛⎭⎫342+1=6425.故选A. 2.(2016·全国乙卷)已知θ是第四象限角,且sin ⎝⎛⎭⎫θ+π4=35,则tan ⎝⎛⎭⎫θ-π4=________. 解析:由题意知sin ⎝⎛⎭⎫θ+π4=35,θ是第四象限角, 所以cos ⎝⎛⎭⎫θ+π4>0,所以cos ⎝⎛⎭⎫θ+π4= 1-sin 2⎝⎛⎭⎫θ+π4=45. 则tan ⎝⎛⎭⎫θ-π4=tan ⎝⎛⎭⎫θ+π4-π2 =-sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫θ+π4cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫θ+π4=-cos ⎝⎛⎭⎫θ+π4sin ⎝⎛⎭⎫θ+π4=-45×53=-43.答案:-43[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.若α∈⎝⎛⎭⎫-π2,π2,sin α=-35,则cos(-α)=( ) A .-45B.45C.35D .-35解析:选B 因为α∈⎝⎛⎭⎫-π2,π2,sin α=-35,所以cos α=45,则cos(-α)=cos α=45. 2.若sin θcos θ=12,则tan θ+cos θsin θ的值是( )A .-2B .2C .±2D.12解析:选B tan θ+cos θsin θ=sin θcos θ+cos θsin θ=1cos θsin θ=2. 3.已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于( )A .-π6B .-π3C.π6D.π3解析:选D ∵sin(π+θ)=-3cos(2π-θ),∴-sin θ=-3cos θ,∴tan θ= 3.∵|θ|<π2,∴θ=π3.4.已知α∈⎝⎛⎭⎫π2,π,sin α=45,则tan α=________. 解析:∵α∈⎝⎛⎭⎫π2,π,sin α=45,∴cos α=-1-sin 2α=-35,∴tan α=sin αcos α=-43. 答案:-435.1-2sin 40°cos 40°cos 40°-1-sin 250°=________. 解析:原式=sin 240°+cos 240°-2sin 40°cos 40°cos 40°-cos 50°=|sin 40°-cos 40°|sin 50°-sin 40°=|sin 40°-sin 50°|sin 50°-sin 40°=sin 50°-sin 40°sin 50°-sin 40°=1.答案:1[练常考题点——检验高考能力]一、选择题1.sin(-600°)的值为( ) A.32B.22 C .1D.33解析:选A sin(-600°)=sin(-720°+120°)=sin 120°=32. 2.已知tan(α-π)=34,且α∈⎝⎛⎭⎫π2,3π2,则sin ⎝⎛⎭⎫α+π2=( ) A.45 B .-45C.35D .-35解析:选B 由tan(α-π)=34得tan α=34.又因为α∈⎝⎛⎭⎫π2,3π2,所以α为第三象限的角,由⎩⎪⎨⎪⎧tan α=sin αcos α=34,sin 2α+cos 2α=1,可得,sin α=-35,cos α=-45.所以sin ⎝⎛⎭⎫α+π2=cos α=-45. 3.已知函数f (x )=a sin(πx +α)+b cos(πx +β),且f (4)=3,则f (2 017)的值为( ) A .-1 B .1 C .3D .-3解析:选D ∵f (4)=a s in(4π+α)+b cos(4π+β)=a sin α+b cos β=3,∴f (2 017)=a sin(2 017π+α)+b cos(2 017π+β) =a sin(π+α)+b cos(π+β) =-a sin α-b cos β =-(a sin α+b cos β)=-3.4.已知2tan α·sin α=3,-π2<α<0,则sin α=( )A.32B .-32C.12 D .-12解析:选B 因为2tan α·sin α=3,所以2sin 2αcos α=3,所以2sin 2α=3cos α,即2-2cos 2α=3cos α,所以cos α=12或cos α=-2(舍去),又-π2<α<0,所以sin α=-32.5.若θ∈⎣⎡⎦⎤π4,π2,sin θ·cos θ=3716,则sin θ=( ) A.35 B.45 C.74D.34解析:选D ∵sin θ·cos θ=3716,∴(sin θ+cos θ)2=1+2sin θ·cos θ=8+378,(sin θ-cos θ)2=1-2sin θcos θ=8-378,∵θ∈⎣⎡⎦⎤π4,π2,∴sin θ+cos θ=3+74①,sin θ-cos θ=3-74 ②,联立①②得,sin θ=34.6.(2017·长沙模拟)若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为( ) A .1+ 5 B .1- 5 C .1±5D .-1- 5解析:选B 由题意知,sin θ+cos θ=-m 2,sin θcos θ=m4.∵(sin θ+cos θ)2=1+2sinθcos θ,∴m 24=1+m2,解得m =1±5,又Δ=4m 2-16m ≥0,∴m ≤0或m ≥4,∴m =1- 5.二、填空题7.化简:cos (α-π)sin (π-α)·sin ⎝⎛⎭⎫α-π2·cos ⎝⎛⎭⎫3π2-α=________. 解析:cos (α-π)sin (π-α)·sin ⎝⎛⎭⎫α-π2·cos ⎝⎛⎭⎫3π2-α=-cos αsin α·(-cos α)·(-sin α)=-cos 2α.答案:-cos2α8.若f(α)=sin[(k+1)π+α]·cos[(k+1)π-α]sin(kπ-α)·cos(kπ+α)(k∈Z),则f(2 017)=________.解析:①当k为偶数时,设k=2n(n∈Z),原式=sin(2nπ+π+α)·cos(2nπ+π-α) sin(2nπ-α)·cos(2nπ+α)=-sin α·(-cos α)-sin α·cos α=-1;②当k为奇数时,设k=2n+1(n∈Z),原式=sin[(2n+2)π+α]·cos[(2n+2)π-α] sin[(2n+1)π-α]·cos[(2n+1)π+α]=sin α·cos αsin α·(-cos α)=-1.综上所述,当k∈Z时,f(α)=-1,故f(2 017)=-1.答案:-19.若角θ满足2cos⎝⎛⎭⎫π2-θ+cos θ2sin(π+θ)-3cos(π-θ)=3,则tan θ的值为________.解析:由2cos⎝⎛⎭⎫π2-θ+cos θ2sin(π+θ)-3cos(π-θ)=3,得2sin θ+cos θ-2sin θ+3cos θ=3,等式左边分子分母同时除以cos θ,得2tan θ+1-2tan θ+3=3,解得tan θ=1. 答案:110.已知角A为△ABC的内角,且sin A+cos A=15,则tan A的值为________.解析:∵sin A+cos A=15①,①式两边平方得1+2sin A cos A=1 25,∴sin A cos A=-1225,则(sin A-cos A)2=1-2sin A cos A=1+2425=4925,∵角A为△ABC的内角,∴sin A>0,又sin A cos A=-1225<0,∴cos A<0,∴sin A-cos A>0,则sin A -cos A =75②.由①②可得sin A =45,cos A =-35,∴tan A =sin A cos A =45-35=-43.答案:-43三、解答题11.已知sin(3π+α)=2sin ⎝⎛⎭⎫3π2+α,求下列各式的值: (1)sin α-4cos α5sin α+2cos α; (2)sin 2α+sin 2α.解:由已知得sin α=2cos α. (1)原式=2cos α-4cos α5×2cos α+2cos α=-16.(2)原式=sin 2α+2sin αcos αsin 2α+cos 2α=sin 2α+sin 2αsin 2α+14sin 2α=85.12.已知关于x 的方程2x 2-(3+1)x +m =0的两根分别是sin θ和cos θ,θ∈(0,2π),求:(1)sin 2θsin θ-cos θ+cos θ1-tan θ的值; (2)m 的值;(3)方程的两根及此时θ的值. 解:(1)原式=sin 2θsin θ-cos θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ =sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ. 由条件知sin θ+cos θ=3+12, 故sin 2θsin θ-cos θ+cos θ1-tan θ=3+12.(2)由已知,得sin θ+cos θ=3+12,sin θcos θ=m2, 又1+2sin θcos θ=(sin θ+cos θ)2,可得m =32. (3)由⎩⎪⎨⎪⎧sin θ+cos θ=3+12,sin θcos θ=34,得⎩⎨⎧sin θ=32,cos θ=12或⎩⎨⎧sin θ=12,cos θ=32.又θ∈(0,2π),故θ=π3或θ=π6.第三节三角函数的图象与性质突破点(一) 三角函数的定义域和值域基础联通 抓主干知识的“源”与“流” 三角函数 正弦函数y =sin x余弦函数y =cos x正切函数y =tan x图象定义域 R Rxx ∈R ,且x⎭⎬⎫≠k π+π2,k ∈Z值域 [-1,1][-1,1]R最值 当且仅当x =π2+2k π(k ∈Z)时,取得最大值1;当且仅当x =-π2+2k π(k ∈Z)当且仅当x =2k π(k ∈Z)时,取得最大值1;当且仅当x =π+2k π(k ∈Z)时,取得最小值-1本节主要包括2个知识点: 1.三角函数的定义域和值域; 2.三角函数的性质.时,取得最小值-1考点贯通 抓高考命题的“形”与“神”三角函数的定义域[例1] 函数y =lg(2sin x -1)+1-2cos x 的定义域是________. [解析] 要使函数y =lg(2sin x -1)+1-2cos x 有意义,则⎩⎪⎨⎪⎧2sin x -1>0,1-2cos x ≥0,即⎩⎨⎧sin x >12,cos x ≤12.解得2k π+π3≤x <2k π+5π6,k ∈Z.即函数的定义域为⎣⎡⎭⎫2k π+π3,2k π+5π6,k ∈Z. [答案] ⎣⎡⎭⎫2k π+π3,2k π+5π6,k ∈Z [方法技巧]三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.[提醒] 解三角不等式时要注意周期,且k ∈Z 不可以忽略.三角函数的值域(最值)求解三角函数的值域(最值)常见的题目类型:(1)形如y =a sin x +b cos x +k 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求值域(最值);(2)形如y =a sin 2x +b sin x +k 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);(3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).[例2] (1)函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( ) A .2- 3 B .0 C .-1 D .-1- 3(2)函数y =3-sin x -2cos 2x ,x ∈⎣⎡⎦⎤π6,76π的值域为________. [解析] (1)∵0≤x ≤9,∴-π3≤π6x -π3≤7π6,∴sin ⎝⎛⎭⎫π6x -π3∈⎣⎡⎦⎤-32,1. ∴y ∈[-3,2],∴y max +y min =2- 3. (2)∵x ∈⎣⎡⎦⎤π6,7π6,∴sin x ∈⎣⎡⎦⎤-12,1. 又y =3-sin x -2cos 2x =3-sin x -2(1-sin 2x )=2⎝⎛⎭⎫sin x -142+78,∴当sin x =14时,y min=78; 当sin x =-12或sin x =1时,y max =2.故该函数的值域为⎣⎡⎦⎤78,2. [答案] (1)A (2)⎣⎡⎦⎤78,2 [方法技巧]三角函数值域或最值的三种求法(1)直接法:直接利用sin x ,cos x 的值域求出.(2)化一法:化为y =A sin(ωx +φ)+k 的形式,确定ωx +φ的范围,根据正弦函数单调性写出函数的值域(最值).(3)换元法:把sin x 或cos x 看作一个整体,转化为二次函数,求在给定区间上的值域(最值)问题.1.[考点一]函数y = cos x -32的定义域为( ) A.⎣⎡⎦⎤-π6,π6 B.⎣⎡⎦⎤k π-π6,k π+π6(k ∈Z) C.⎣⎡⎦⎤2k π-π6,2k π+π6(k ∈Z) D .R解析:选C 要使函数有意义,则cos x -32≥0,即cos x ≥32,解得2k π-π6≤x ≤2k π+π6,k ∈Z. 2.[考点二]函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为( ) A .-1B .-22 C .0 D.22解析:选B 因为0≤x ≤π2,所以-π4≤2x -π4≤3π4,由正弦函数的图象知,-22≤sin ⎝⎛⎭⎫2x -π4≤1,所以函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为-22. 3.[考点一]函数y =1tan x -1的定义域为________.解析:要使函数有意义,必须有⎩⎪⎨⎪⎧tan x -1≠0,x ≠π2+k π,k ∈Z ,即⎩⎨⎧x ≠π4+k π,k ∈Z ,x ≠π2+k π,k ∈Z.故函数的定义域为xx ≠π4+k π且x ≠π2+k π,k ∈Z.答案:⎩⎨⎧x ⎪⎪⎭⎬⎫x ≠π4+k π且x ≠π2+k π,k ∈Z 4.[考点一]函数y =lg(sin 2x )+9-x 2的定义域为________.解析:由⎩⎪⎨⎪⎧sin 2x >0,9-x 2≥0, 得⎩⎪⎨⎪⎧k π<x <k π+π2,k ∈Z ,-3≤x ≤3. ∴-3≤x <-π2或0<x <π2.∴函数y =lg(sin 2x )+9-x 2的定义域为⎣⎡⎭⎫-3,-π2∪⎝⎛⎭⎫0,π2. 答案:⎣⎡⎭⎫-3,-π2∪⎝⎛⎭⎫0,π2 5.[考点二]求函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值与最小值. 解:令t =sin x ,则y =-t 2+t +1=-⎝⎛⎭⎫t -122+54. ∵|x |≤π4,∴t ∈⎣⎡⎦⎤-22,22,∴当t =12时,y max =54,当t =-22时,y min =1-22.∴函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值为54,最小值为1-22. 突破点(二) 三角函数的性质基础联通 抓主干知识的“源”与“流” 函数 y =sin x y =cos x y =tan x图象最小正周期 2π 2π π奇偶性奇函数偶函数奇函数单调性2k π-π2,2k π+π2为增;2k π+π2,2k π+3π2为减,k ∈Z [2k π,2k π+π]为减;[2k π-π,2k π]为增,k ∈Zk π-π2,k π+π2为增,k∈Z对称中心 (k π,0),k ∈Z ⎝⎛⎭⎫k π+π2,0,k ∈Z⎝⎛⎭⎫k π2,0,k ∈Z对称轴 x =k π+π2,k ∈Zx =k π,k ∈Z考点贯通 抓高考命题的“形”与“神”三角函数的单调性考法(一) [例1] 求下列函数的单调区间: (1)f (x )=2sin ⎝⎛⎭⎫x +π4,x ∈[0,π]; (2)f (x )=|tan x |;(3)f (x )=cos ⎝⎛⎭⎫2x -π6,x ∈⎣⎡⎦⎤-π2,π2. [解] (1)当-π2+2k π≤x +π4≤π2+2k π,k ∈Z ,即-3π4+2k π≤x ≤π4+2k π,k ∈Z 时,函数f (x )是增函数.当2k π+π2≤x +π4≤2k π+3π2,k ∈Z ,即2k π+π4≤x ≤2k π+5π4,k ∈Z 时,函数f (x )是减函数.又x ∈[0,π],所以f (x )的单调递增区间为⎣⎡⎦⎤0,π4, 单调递减区间为⎣⎡⎦⎤π4,π.(2)观察图象可知,y =|tan x |的单调递增区间是⎣⎡⎭⎫k π,k π+π2,k ∈Z ,单调递减区间是k π-π2,k π,k ∈Z.(3)当2k π-π≤2x -π6≤2k π(k ∈Z),即k π-5π12≤x ≤k π+π12,k ∈Z 时,函数f (x )是增函数;当2k π≤2x -π6≤2k π+π(k ∈Z),即k π+π12≤x ≤k π+7π12,k ∈Z 时,函数f (x )是减函数.因此函数f (x )在⎣⎡⎦⎤-π2,π2上的单调递增区间是-5π12,π12,单调递减区间为⎣⎡⎦⎤-π2,-5π12,⎣⎡⎦⎤π12,π2.[方法技巧]求三角函数单调区间的两种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用基本三角函数的单调性列不等式求解.(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.[提醒] 求解三角函数的单调区间时,若x 的系数为负,应先化为正,同时切莫忽视函数自身的定义域.考法(二) 已知单调区间求参数范围[例2] 已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上是减函数,则ω的取值范围是________.[解析] 由π2<x <π,得π2ω+π4<ωx +π4<πω+π4,由题意知⎝⎛⎭⎫π2ω+π4,πω+π4⊆π2+2k π,3π2+2k π(k ∈Z)且2πω≥2×⎝⎛⎭⎫π-π2,则⎩⎨⎧π2ω+π4≥π2+2k π,k ∈Z ,πω+π4≤3π2+2k π,k ∈Z ,。
备战2024年高考数学考试易错题专题06 解三角形及应用(3大易错点分析)(原卷版)

专题06解三角形及应用易错点一:易忽视三角形解的个数(解三角形多解情况)1.方法技巧:解三角形多解情况在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式sin a b Asin b A a ba b a b a b解的个数一解两解一解一解无解2.在解三角形题目中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则常用:(1)若式子含有sin x 的齐次式,优先考虑正弦定理,“角化边”;(2)若式子含有,,a b c 的齐次式,优先考虑正弦定理,“边化角”;(3)若式子含有cos x 的齐次式,优先考虑余弦定理,“角化边”;(4)代数变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理使用;(6)同时出现两个自由角(或三个自由角)时,要用到A B C .技巧:正弦定理和余弦定理是解三角形的两个重要工具,它沟通了三角形中的边角之间的内在联系,正弦定理能够解决两类问题问题1:已知两角及其一边,求其它的边和角。
这时有且只有一解。
问题2:已知两边和其中一边的对角,求其它的边和角,这是由于正弦函数在在区间 0, 内不严格格单调,此时三角形解的情况可能是无解、一解、两解,可通过几何法来作出判断三角形解的个数。
题设三角形中,已知一个角A 和两个边b a ,,判断三角形个数,遵循以下步骤第一步:先画一个角并标上字母A 第二步:标斜边(非对角边)b 第三步:画角的高,然后观察(A b a sin ,)易错提醒:利用正弦定理解三角形时,若已知三角形的两边及其一边的对角解三角形时,易忽视三角形解的个数.C .若222222a bb c a a c b b a,则ABC 为等腰三角形D .若ABC 不是直角三角形,则tan tan tan tan tan tan A B C A B C1.在ABC 中,已知3cos 5A ,sinB a ,若cosC 有唯一值,则实数a 的取值范围为()A .40,5B .30,{1}5C .40,{1}5D .4,152.在ABC 中,角,,A B C 所对的边为,,a b c ,有如下判断,其中正确的判断是()A .若sin 2sin 2AB ,则ABC 为等腰直角三角形B .若sin cos a b C c B ,则π4CC .若12,10,60a b B ,则符合条件的ABC 有两个D .在锐角三角形ABC 中,不等式2220b c a 恒成立3.在ABC 中,角,,A B C 所对的边分别为,,a b c ,以下说法中正确的是()A .若AB ,则sin sin A B B .若π8,10,4a b A,则符合条件的三角形有一个C .若4,5,6a b c ,则ABC 为钝角三角形D .若21sin222A b c ,则ABC 直角三角形4.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,则下列说法正确的是()A .若AB ,则sin sin A BB .若30A ,4b ,3a ,则ABC 有两解C .若ABC 为钝角三角形,则222a b c D .若sin 2sin 2A B ,则此三角形为等腰三角形5.对于△ABC ,有以下判断,其中正确的是()A .若sin 2sin 2AB ,则△ABC 为等腰三角形B .若A B ,则sin sin A BC .若9a ,10b ,60A ,则符合条件的三角形有两个D .若222sin sin sin A B C ,则△ABC 是锐角三角形sin2A =sin2B 《正弦定理》①正弦定理:R CcB b A a 2sin sin sin ②变形:acA C c b CB b a B A sin sin ,sin sin ,sin sin ③变形:C B A c b a sin :sin :sin :: ④变形:CcB b A aC B A c b a sin sin sin sin sin sin⑤变形:B c C b A c C a A b B a sin sin ,sin sin ,sin sin 《余弦定理》①余弦定理:Cab c b a B ac b c a A bc a c b cos 2,cos 2,cos 2222222222 ②变形:abc b a C ac b c a B bc a c b A 2cos ,2cos ,2cos 222222222核心问题:什么情况下角化边什么情况下边化角?⑴当每一项都有边且次数一样时,采用边化角⑵当每一项都有角《sin 》且次数一样时,采用角化边⑶当每一项都是边时,直接采用边处理问题⑷当每一项都有角《sin 》及边且次数一样时,采用角化边或变化角均可三角形面积公式①A bc S B ac S C ab S ABC ABC ABC sin 21,sin 21,sin 21 ② rl c b a r S ABC2121 其中l r ,分别为ABC 内切圆半径及ABC 的周长推导:将ABC 分为三个分别以ABC 的边长为底,内切圆与边相交的半径为高的三角形,利用等面积法即可得到上述公式③RabcC B A R S ABC 4sin sin sin 22(R 为ABC 外接圆的半径)推导:将A R a sin 2 代入ACB a S ABCsin sin sin 212可得C B A R S ABC sin sin sin 22 将C R c B R b A R a sin 2sin 2,sin 2 ,代入CB A R S ABC sin sin sin 22可得Rabc S ABC 4④CBA c SBC A b S A C B a S ABC ABC ABC sin sin sin 21,sin sin sin 21,sin sin sin 21222 ⑤海伦公式 c p b p a p p S ABC (其中 c b a p 21)推导:根据余弦定理的推论abc b a C 2cos 222222222121cos 121sin 21ab c b a ab C ab C ab S ABCc b a b a c a c b c b a c b a ab 4124122222令 c b a p 21,整理得c p b p a p p S ABC 正规方法:面积公式+基本不等式① C c ab ab c C ab b a C ab c b a C ab S cos 122cos 2cos 2sin 212222222② B b ac ac b B ac c a B ac b c a B ac S cos 122cos 2cos 2sin 212222222③ A a bc bc a A bc c b Abc a c b A bc S cos 122cos 2cos 2sin 212222222易错提醒:当解题过程中出现类似于sin2A =sin2B这样的情况要注意结合三角形内角范围进行讨论,另外当题设中出现锐角三角形时一定要注意条件之间的相互“限制”例.对于ABC ,有如下命题:①若sin 2sin 2A B ,则ABC 为等腰三角形;②若sin cos A B ,则ABC 为直角三角形;③若222sin sin cos 1A B C ,则ABC 为钝角三角形.其中正确命题的序号是()易错点三:实际问题中题意不明致误(利用解三角形知识解决实际问题)解三角形的实际应用问题的类型及解题策略1、求距离、高度问题(1)选定或确定要创建的三角形,要先确定所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解.有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的量.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.2、求角度问题(1)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步,画图时,要明确仰角、俯角、方位角以及方向角的含义,并能准确找到这些角.(2)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的综合应用.易错提醒:实际问题应用中有关名词、术语也是容易忽视和混淆的。
人教版高三数学第二学期三角函数与解三角形多选题单元 易错题难题学能测试试卷

人教版高三数学第二学期三角函数与解三角形多选题单元 易错题难题学能测试试卷一、三角函数与解三角形多选题1.在ABC 中,角,,A B C 所对的边分别为,,a b c ,下列命题正确的是( )A .若::4:5:6a b c =,ABC 的最大内角是最小内角的2倍B .若cos cos a B b A c -=,则ABC 一定为直角三角形 C .若4,5,6a b c ===,则ABCD .若()()()cos cos cos 1A B B C C A ---=,则ABC 一定是等边三角形 【答案】ABD 【分析】对于A 选项,求得2A C =,由此确定选项正确.对于B 选项,求得2A π=,由此确定选项正确.对于C 选项,利用正弦定理求得ABC 外接圆半径,由此确定选项错误.对于D 选项,证得()()()cos cos cos 1A B B C C A -=-=-=,得到A B C ==,确定选项正确. 【详解】对于A 选项,A 角最小,C 角最大.由余弦定理得253616453cos 0256604A +-===>⨯⨯,16253651cos 0245408C +-===>⨯⨯,2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭,cos2cos A C =.0,022A C ππ<<<<,则02A π<<,所以2A C =,所以A 选项正确.对于B 选项,cos cos a B b A c -=,由正弦定理得sin cos sin cos sin A B B A C -=,()sin cos cos sin sin sin cos cos sin A B A B A B A B A B -=+=+,cos sin 0=A B ,由于0,0A B ππ<<<<,所以2A π=,故B 选项正确.对于C 选项,16253651cos 245408C +-===⨯⨯,0C π<<,sin 8C ==, 设三角形ABC 外接圆半径为R,则2sin 2sin 7c cR R C C=⇒===,故C 选项错误.对于D 选项,0,0,A B A B ππππ<<-<-<-<-<,故()1cos 1A B -<-≤,同理可得()()1cos 1,1cos 1B C C A -<-≤-<-≤, 要使()()()cos cos cos 1A B B C C A ---=,则需()()()cos cos cos 1A B B C C A -=-=-=,所以0,0,0A B B C C A -=-=-=,所以A B C ==,所以D 选项正确. 故选:ABD 【点睛】利用正弦定理可求得三角形外接圆的半径R ,要注意公式是2sin aR A=,而不是sin aR A =.2.设函数()sin 6f x M x πω⎛⎫=+ ⎪⎝⎭(0,0)M ω>>的周期是π,则下列叙述正确的有( )A .()f x 的图象过点10,2⎛⎫ ⎪⎝⎭B .()f x 的最大值为MC .()f x 在区间2,63ππ⎡⎤⎢⎥⎣⎦上单调递减D .5,012π⎛⎫⎪⎝⎭是()f x 的一个对称中心 【答案】BCD 【分析】已知只有周期的条件,只能求出ω,其中M 未知;A 选项代值判定;B 选项由解析式可知;C 选项由()f x 的单调递减区间在32,2,22k k k Z ππππ⎛⎫++∈ ⎪⎝⎭上化简可得;D 选项由()f x 的对称中心为(),0,k k Z π∈化简可得. 【详解】 由题可知2T ππω==,解得2ω=,即()sin 26f x M x π⎛⎫=+ ⎪⎝⎭当0x =时,()0sin 20sin 662Mf M M ππ⎛⎫=⨯+== ⎪⎝⎭,故选项A 错误; 因为()sin 26f x M x π⎛⎫=+⎪⎝⎭,所以最大值为M ,故选项B 正确; 由解析式可知()f x 在3222,262k x k k Z πππππ+≤+≤+∈ 即2,63x k k ππππ⎡⎤∈++⎢⎥⎣⎦上单调递减,当0k =时,选项C 正确; 由解析式可知()f x 的对称中心的横坐标满足26x k ππ+=,即212k x ππ=- 当1k =时,512x π=,对称中心为5,012π⎛⎫⎪⎝⎭,故选项D 正确.故选:BCD 【点睛】本题考查()()sin f x A x =+ωϕ型三角函数的性质,其中涉及最值、对称轴、对称中心,属于较难题.3.在ABC 中,a ,b ,c 分别为A ∠,B ,C ∠的对边,下列叙述正确的是( ) A .若sin sin a bB A=,则ABC 为等腰三角形 B .若cos cos a bB A=,则ABC 为等腰三角形 C .若tan A tan tan 0B C ++<,则ABC 为钝角三角形 D .若sin cos a b C c B =+,则4C π∠=【答案】ACD 【分析】多项选择题,一个一个选项验证:对于A :利用正弦定理判断sin sin A B =,在三角形中只能A=B ,即可判断; 对于B :∵由正弦定理得 sin 2sin 2A B =,可以判断∴ABC 为等腰三角形或直角三角形;对于C :利用三角函数化简得tan A tan tan B C ++sin sin sin =cos cos cos A B CA B C,利用sin 0,sin 0,sin 0,A B C >>>判断cos cos cos A B C 、、必有一个小于0,即可判断; 对于D :利用正弦定理判断得cos sin C C =求出角C . 【详解】对于A :∵由正弦定理得:sin sin a bA B=,而sin sin a b B A =,∴sin sin A B =, ∵A+B+C=π,∴只能A=B ,即ABC 为等腰三角形,故A 正确;对于B :∵由正弦定理得:sin sin a bA B=, ∴若cos cos a bB A=可化为sin cos sin cos A A B B =,即sin 2sin 2A B =, ∴22A B =或22A B π+=∴ABC 为等腰三角形或直角三角形,故B 错误; 对于C :∵A+B+C=π,∴()()()()sin sin sin cos cos cos A B C C A B C C ππ+=-=+=-=,, ∴tan A tan tan B C ++sin sin sin =cos cos cos A B CA B C++sin cos sin cos sin =cos cos cos A B B A CA B C ++sin sin =cos cos cos C CA B C+11=sin cos cos cos C A B C ⎛⎫+ ⎪⎝⎭cos cos cos =sin cos cos cos C A B C A B C +⎛⎫ ⎪⎝⎭ sin sin sin =cos cos cos A B CA B C.∵tan A tan tan 0B C ++<而sin 0,sin 0,sin 0,A B C >>> ∴cos cos cos A B C 、、必有一个小于0,∴ABC 为钝角三角形. 故C 正确;对于D :∵sin cos a b C c B =+,∴由正弦定理得:sin sin sin sin cos A B A C B =+, 即sin cos sin cos sin sin sin cos B C C B B C C B +=+ ∴cos sin C C = ∵()0,C π∈∴4C π.故D 正确. 故选:ACD 【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考: (1)从题目给出的条件,边角关系来选择; (2)从式子结构来选择.4.已知函数()()cos 2f x A x b ϕ=++(0A >,0ϕπ<<)的部分图像如图所示,则( )A .2A =B .点7,112π⎛⎫⎪⎝⎭是()f x 图像的一个对称中心 C .6π=ϕ D .直线3x π=是()f x 图像的一条对称轴【答案】ABD 【分析】由图知函数最大值为3,最小值为1-,且函数图像与y 轴的交点为()0,2,进而待定系数得()2cos 213f x x π⎛⎫=++ ⎪⎝⎭,再整体换元讨论B,D 选项即可.【详解】因为0A >,所以31A b A b +=⎧⎨-+=-⎩,解得21A b =⎧⎨=⎩,故A 正确;()02cos 12f ϕ=+=,则1cos 2ϕ=.又0ϕπ<<,所以3πϕ=,故C 错误;()2cos 213f x x π⎛⎫=++ ⎪⎝⎭,令23x k ππ+=,k ∈Z ,解得62πk πx =-+,k ∈Z , 所以()f x 图像的对称轴方程为62πk πx =-+, 令1k =,则3x π=,D 正确;令232x k πππ+=+,k ∈Z ,解得122k x ππ=+,k ∈Z , 令1k =,则712x π=且7112f π⎛⎫= ⎪⎝⎭,故B 正确. 故选:ABD【点睛】本题考查三角函数图像求解析式,三角函数的对称轴,对称中心等,考查运算求解能力,是中档题.解题的过程中,需要注意形如()()sin 0y A x B A ωϕ=++>,()()cos 0y A x B A ωϕ=++>,max min ,y A B y A B =+=-+,ϕ的求解通常采用待定系数法求解.5.已知函数()2sin()05,||2f x x πωϕωϕ⎛⎫=+<<< ⎪⎝⎭,且对任意x ∈R ,()12f x f π⎛⎫≤ ⎪⎝⎭恒成立,3y f x π⎛⎫=+⎪⎝⎭为奇函数,则下列说法正确的是( ) A .函数()f x 的图象关于原点对称 B .函数()f x 的最小正周期为π C .函数()f x 的图象关于直线2x π=对称D .函数()f x 的单调递增区间为5,()1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z 【答案】BD 【分析】由()12f x f π⎛⎫≤ ⎪⎝⎭恒成立可得212f π⎛⎫=± ⎪⎝⎭,即()122k k ωππϕπ+=+∈Z ,由3y f x π⎛⎫=+ ⎪⎝⎭为奇函数可得()3k k ωπϕπ''+=∈Z ,即可求出2n 2)3(si f x x π⎛⎫=+⎪⎝⎭,再根据正弦函数的性质分别判断即可. 【详解】因为对任意x ∈R ,()12f x f π⎛⎫≤ ⎪⎝⎭恒成立,所以2sin 21212f πωπϕ⎛⎫⎛⎫=+=± ⎪⎪⎝⎭⎝⎭, 即sin 112ωπϕ⎛⎫+=±⎪⎝⎭,得()122k k ωππϕπ+=+∈Z ①. 2sin 2sin 333f x x x ππωπωϕωϕ⎡⎤⎛⎫⎛⎫⎛⎫+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,因为3y f x π⎛⎫=+ ⎪⎝⎭为奇函数,所以()3k k ωπϕπ''+=∈Z ②.由①②可得()(),3122k k k k ωπωπππ''-=--∈Z ,即()(42,)k k k k ω''=--∈Z .又05ω<<,所以1k k '-=,2ω=, 则(2,)33k k k k ππϕππ=+=-'∈'Z ,得3πϕ=,所以2n 2)3(si f x x π⎛⎫=+⎪⎝⎭, 由于(0)30f =≠,故()f x 的图象不关于原点对称,所以A 不正确; ()f x 的最小正周期22T ππ==,所以B 正确; 2sin 22sin 2sin 3222333f ππππππ⎛⎫⎛⎫⎛⎫=⨯+=+=-=-≠± ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以C 不正确;令222232k x k πππππ-≤+≤+,k ∈Z ,得51212k x k ππππ-≤≤+,k ∈Z , 故函数() f x 的单调递增区间为5,()1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ,所以D 正确. 故选:BD. 【点睛】关键点睛:本题考查正弦型函数的性质,解题的关键是:(1)根据“对任意x ∈R ,()12f x f π⎛⎫≤ ⎪⎝⎭恒成立”得到“212f π⎛⎫=± ⎪⎝⎭”;(2)得到“2sin 33f x x πωπωϕ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭”后,能根据“3y f x π⎛⎫=+⎪⎝⎭为奇函数”得到“()3k k ωπϕπ''+=∈Z ”.6.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,下列说法正确的是( )A .函数()y f x =的周期为πB .函数()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦单调递减 C .函数()y f x =的图象关于直线512x π=-对称 D .该图象向右平移6π个单位可得2sin 2y x =的图象【答案】ACD 【分析】先根据图像求出()y f x =的解析式,再分别验证A 、B 、C 、D 是否正确. 对于A :利用周期公式求周期;对于B :利用复合函数“同增异减”求单调区间; 对于C :计算512f π⎛-⎫⎪⎝⎭,看512x π=-是否经过顶点; 对于D :利用“左加右减”判断. 【详解】由图像可知:A =2,周期24,2312T T ππππω⎛⎫=-=∴==⎪⎝⎭; 由=2sin 2212122f ππϕπϕ⎧⎛⎫⎛⎫⨯+= ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎪<⎪⎩解得:3πϕ=故函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭对于A :4312T πππ⎛⎫=-= ⎪⎝⎭,故A 正确; 对于B :当236x ππ-≤≤- 时203x ππ-≤+≤,所以()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦上不单调.故B 错误; 对于C :当512x π=-时255s 2121232in f πππ⎛⎫⎛⎫=-=- ⎪ ⎭⎝-⎪⎭+⎝⨯,即直线512x π=-是()y f x =的一条对称轴.故C 正确;对于D :()y f x =向右平移6π个单位得到2sin 222sin 263y x x ππ⎛⎫=-⨯+= ⎪⎝⎭,故D 正确. 故选:ACD 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.7.对于函数()sin cos 2sin cos f x x x x x =++,下列结论正确的是( )A .把函数f (x )的图象上的各点的横坐标变为原来的12倍,纵坐标不变,得到函数g (x )的图象,则π是函数y =g (x )的一个周期B .对123,,2x x ππ⎛⎫∀∈ ⎪⎝⎭,若12x x <,则()()12f x f x <C .对,44x f x f x ππ⎛⎫⎛⎫∀∈-=+ ⎪ ⎪⎝⎭⎝⎭R 成立D .当且仅当,4x k k Z ππ=+∈时,f (x )1【答案】AC 【分析】根据三角函数的变换规则化简即可判断A ;令sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,()21f t t t =+-,判断函数的单调性,即可判断B ;代入直接利用诱导公式化简即可;首先求出()f t 的最大值,从而得到x 的取值; 【详解】解:因为()2()sin cos 2sin cos sin cos sin cos 1f x x x x x x x x x =++=+++-,令sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,所以t ⎡∈⎣,所以()21f t t t =+-,对于A :将()sin cos 2sin cos f x x x x x =++图象上的各点的横坐标变为原来的12倍,则()sin 2cos 22sin 2cos 2g x x x x x =++,所以()()()()()sin 2cos22sin 2cos2g x x x x x πππππ+=++++++()sin 2cos22sin 2cos2x x x x g x =++=,所以π是函数y =g (x )的一个周期,故A 正确;对于B :因为3,2x ππ⎛⎫∈ ⎪⎝⎭,所以57,444x πππ⎛⎫+∈ ⎪⎝⎭,则)14t x π⎛⎫⎡=+∈- ⎪⎣⎝⎭在5,4ππ⎛⎫ ⎪⎝⎭上单调递减,在53,42ππ⎛⎫⎪⎝⎭上单调递增, 又()2215124f t t t t ⎛⎫=+-=+- ⎪⎝⎭,对称轴为12t =-,开口向上,函数()21f t t t =+-在)1⎡-⎣上单调递减, 所以函数()f x 在5,4ππ⎛⎫ ⎪⎝⎭上单调递增,在53,42ππ⎛⎫⎪⎝⎭上单调递减, 故B 错误; 对于C :sin c 4os 2sin cos 4444f x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=----⎪ ⎪ ⎪ ⎪ ⎪⎝+⎝⎭⎝⎭⎭⎝⎭+⎝⎭sin c 4os 2sin cos 4444f x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝+⎝⎭⎝⎭⎭⎝⎭+⎝⎭c 2424242sin os 2sin cos 4x x x x ππππππππ⎥++⎡⎤⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-------- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦⎣⎦4444sin cos 2sin cos 4x x x x f x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----=- ⎪ ⎪ ⎪ ⎪ ⎪=⎝⎭⎝⎭⎝⎭⎝⎭⎝+⎭+,故C 正确;因为()2215124f t t t t ⎛⎫=+-=+- ⎪⎝⎭,t ⎡∈⎣,当t =时()f t 取得最大值()max 1f t =,令4t x π⎛⎫=+= ⎪⎝⎭sin 14x π⎛⎫+= ⎪⎝⎭,所以2,42x k k Z πππ+=+∈,解得2,4x k k Z ππ=+∈,即当2,4x k k Z ππ=+∈时,函数()f x1,故D 错误;故选:AC 【点睛】本题考查三角函数的综合应用,解答的关键是换元令sin cos t x x =+,将函数转化为二次函数;8.已知函数()1cos cos 632f x x x ππ⎛⎫⎛⎫=+-+⎪ ⎪⎝⎭⎝⎭,则以下说法中正确的是( ) A .()f x 的最小正周期为π B .()f x 在7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减 C .51,62π⎛⎫⎪⎝⎭是()f x 的一个对称中心 D .()f x 的最大值为12【答案】ABC 【分析】利用三角恒等变换思想化简()11sin 2232f x x π⎛⎫=++ ⎪⎝⎭,利用正弦型函数的周期公式可判断A 选项的正误,利用正弦型函数的单调性可判断B 选项的正误,利用正弦型函数的对称性可判断C 选项的正误,利用正弦型函数的有界性可判断D 选项的正误. 【详解】cos cos sin 3266x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 所以,()1111cos cos cos sin sin 2632662232f x x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+=+++=++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.对于A 选项,函数()f x 的最小正周期为22T ππ==,A 选项正确; 对于B 选项,当7,1212x ππ⎡⎤∈⎢⎥⎣⎦时,32232x πππ≤+≤, 此时,函数()f x 在7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减,B 选项正确; 对于C 选项,5151111sin 2sin 262632222f ππππ⎛⎫⎛⎫=⨯++=+= ⎪ ⎪⎝⎭⎝⎭, 所以,51,62π⎛⎫ ⎪⎝⎭是()f x 的一个对称中心,C 选项正确; 对于D 选项,()max 111122f x =⨯+=,D 选项错误. 故选:ABC.【点睛】 方法点睛:求较为复杂的三角函数的单调区间时,首先化简成()sin y A ωx φ=+形式,再求()sin y A ωx φ=+的单调区间,只需把x ωϕ+看作一个整体代入sin y x =的相应单调区间内即可,注意要先把ω化为正数.9.下列结论正确的是( )A .在三角形ABC 中,若AB >,则sin sin A B >B .在锐角三角形ABC 中,不等式2220b c a +->恒成立C .若sin 2sin 2A B =,则三角形ABC 为等腰三角形D .在锐角三角形ABC 中,sin sin cos cos A B A B +>+【答案】ABD【分析】 由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,利用锐角△ABC 这个条件,可得2A B π+>,结合三角函数的单调性比较sin A 与cos B 大小即可判断D .【详解】 ABC 中,A B a b >⇔>,由sin sin a b A B=,得sin sin A B >,A 正确; 在锐角三角形ABC 中,222222cos 0,02b c a A b c a bc+-=>∴+->,B 正确; ABC 中,若sin 2sin 2A B =,则22A B =或22180A B ︒+=,即A B =或90A B ︒+=,ABC 为等腰三角形或直角三角形,C 错误;在锐角三角形ABC 中,2A B π+>,022A B ππ∴>>->,sin sin 2A B π⎛⎫∴>- ⎪⎝⎭,即sin cos A B >,同理:sin cos B A > sin sin cos cos A B A B ∴+>+,D 正确.故选:ABD.【点睛】关键点睛:本题考查正弦定理,余弦定理,正弦函数的性质,诱导公式等,学会公式的灵活应用是解答本题的关键.10.如图,已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的图象与x 轴交于点A ,B ,若7OB OA =,图象的一个最高点42,33D ⎛⎫ ⎪⎝⎭,则下列说法正确的是( )A .4πϕ=-B .()f x 的最小正周期为4C .()f x 一个单调增区间为24,33⎛⎫- ⎪⎝⎭ D .()f x 图象的一个对称中心为5,03⎛⎫- ⎪⎝⎭【答案】BCD【分析】先利用7OB OA =设0OA x =,得到点A 处坐标,结合周期公式解得选项A 错误,再利用最高点42,33D ⎛⎫⎪⎝⎭解出0x 得到周期,求得解析式,并利用代入验证法判断单调区间和对称中心,即判断选项BCD 正确.【详解】 由7OB OA =,设0OA x =,则07OB x =,06AB x =,选项A 中,点A ()0,0x 处,()0sin 0x ωϕ+=,则00x ωϕ+=,即0x ϕω=-,0612262T x AB ϕπωω-==⋅==,解得6πϕ=-,A 错误; 选项B 中,依题意0004343D x x x x =+==,得013x =,故1,03A ⎛⎫ ⎪⎝⎭, 最小正周期414433T ⎛⎫=-= ⎪⎝⎭,B 正确; 选项C 中,由24T πω==,得2πω=,结合最高点42,33D ⎛⎫ ⎪⎝⎭,知43A =,即()4sin 326f x x ππ⎛⎫=- ⎪⎝⎭,当24,33x ⎛⎫∈- ⎪⎝⎭时,,2622x ππππ⎛⎫-∈- ⎪⎝⎭,故24,33⎛⎫- ⎪⎝⎭是()f x 的一个单调增区间,C 正确;选项D 中,53x =-时()5454sin sin 0332363f πππ⎡⎤⎛⎫⎛⎫-=⨯--=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故5,03⎛⎫- ⎪⎝⎭是()f x 图象的一个对称中心,D 正确.故选:BCD.【点睛】思路点睛:解决三角函数()sin y A ωx φ=+的图象性质,通常利用正弦函数的图象性质,采用整体代入法进行求解,或者带入验证.。
人教版高三数学第二学期三角函数与解三角形多选题单元 易错题难题检测试题

人教版高三数学第二学期三角函数与解三角形多选题单元 易错题难题检测试题一、三角函数与解三角形多选题1.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且2a =,sin 2sin B C =,有以下四个命题中正确的是( )A .满足条件的ABC 不可能是直角三角形B .ABC 面积的最大值为43C .当A =2C 时,ABC 的周长为2+D .当A =2C 时,若O 为ABC 的内心,则AOB 【答案】BCD 【分析】对于A ,利用勾股定理的逆定理判断;对于B ,利用圆的方程和三角形的面积公式可得答案; 对于C ,利用正弦定理和三角函数恒等变形公式可得答案对于D ,由已知条件可得ABC 为直角三角形,从而可求出三角形的内切圆半径,从而可得AOB 的面积 【详解】对于A ,因为sin 2sin B C =,所以由正弦定理得,2b c =,若b 是直角三角形的斜边,则有222a c b +=,即2244c c +=,得c =,所以A 错误; 对于B ,以BC 的中点为坐标原点,BC 所在的直线为x 轴,建立平面直角坐标系,则(1,),(1,0)B C -,设(,)A m n ,因为2b c ==, 化简得22516()39m n ++=,所以点A 在以5,03⎛⎫- ⎪⎝⎭为圆心,43为半径的圆上运动, 所以ABC 面积的最大值为1442233⨯⨯=,所以B 正确; 对于C ,由A =2C ,可得3B C π=-,由sin 2sin B C =得2b c =,由正弦定理得,sin sin b cB C=,即2sin(3)sin c c C C π=-,所以sin32sin C C =,化简得2sin cos 22cos sin 2sin C C C C C +=, 因为sin 0C ≠,所以化简得23cos 4C =,因为2b c =,所以B C >,所以cos 2C =,则1sin 2C =,所以sin 2sin 1B C ==,所以2B π=,6C π=,3A π=,因为2a =,所以c b ==, 所以ABC的周长为2+,所以C 正确; 对于D ,由C 可知,ABC 为直角三角形,且2B π=,6C π=,3A π=,c b ==, 所以ABC的内切圆半径为1212r ⎛=+= ⎝⎭, 所以AOB的面积为111122333cr ⎛=⨯-= ⎝⎭所以D 正确, 故选:BCD 【点睛】此题考查三角形的正弦定理和面积公式的运用,考查三角函数的恒等变换,考查转化能力和计算能力,属于难题.2.设函数()2sin 1xf x x x π=-+,则( ) A .()43f x ≤B .()5f x x ≤C .曲线()y f x =存在对称轴D .曲线()y f x =存在对称中心【答案】ABC 【分析】 通过()22sin sin 11324x xf x x x x ππ==-+⎛⎫-+⎪⎝⎭可发现函数()y f x =具有对称轴及最大值,再利用函数对称中心的特点去分析()y f x =是否具有对称中心,再将()5f x x ≤化为32sin 555x x x x π≤-+,通过数形结合判断是否成立.【详解】函数解析式可化为:()22sin sin 11324x xf x x x x ππ==-+⎛⎫-+⎪⎝⎭,因为函数sin y x =π的图象关于直线12x =对称,且函数21324y x ⎛⎫=-+ ⎪⎝⎭的图象也关于直线12x =对称,故曲线()y f x =也关于直线12x =对称,选项C 正确; 当12x =时,函数sin y x =π取得最大值1,此时21324y x ⎛⎫=-+ ⎪⎝⎭取得最小值34,故()14334f x ≤=,选项A 正确; 若()5f x x ≤,则32sin 555x x x x π≤-+,令()32555g x x x x =-+,则()()221510553210g x x x x x '=-+=-+>恒成立,则()g x 在R 上递增,又()00g =,所以当0x <时,()00g <;当0x >时,()0g x >; 作出sin x π和32555x x x -+的图象如图所示:由图象可知32sin 555x x x x π≤-+成立,即()5f x x ≤,选项B 正确;对于D 选项,若存在一点(),a b 使得()f x 关于点(),a b 对称,则()()2f a x f a x b -++=,通过分析发现()()f a x f a x -++不可能为常数,故选项D 错误. 故选:ABC. 【点睛】本题考查函数的综合应用,涉及函数的单调性与最值、对称轴于对称中心、函数与不等式等知识点,难度较大. 对于复杂函数问题一定要化繁为简,利用熟悉的函数模型去分析,再综合考虑,注意数形结合、合理变形转化.3.ABC 中,2BC =,BC 边上的中线2AD =,则下列说法正确的有( ) A .AB AC →→⋅为定值B .2210AC AB +=C .co 415s A << D .BAD ∠的最大值为30【答案】ABD 【分析】A 利用向量的加减法及向量的数量积公式运算即可,B 根据余弦定理及角的互补运算即可求值,C 利用余弦定理及基本不等式求出cos A 范围即可,D 根据余弦定理及基本不等式求出cos BAD ∠的最小值即可. 【详解】 对于A ,22413AB AC AD DB AD DB AD DB →→→→→→→→⎛⎫⎛⎫⋅=+-=-=-= ⎪⎪⎝⎭⎝⎭,AB AC →→∴⋅为定值,A 正确; 对于B ,cos cos ADC ADB∠=-∠2222222cos 2cos AC AB AD DC AD DC ADC AD DB AD DB ADB ∴+=+-⋅⋅∠++-⋅⋅∠2222AD DB DC =++ 2221110=⨯++=,故B 正确;对于C ,由余弦定理及基本不等式得224242122b c bc cosA bc bc bc+--=≥=-(当且仅当b c =时,等号成立),由A 选项知cos 3bc A =,22cos cos 1133cos AA A∴≥-=-, 解得3cos 5A ≥,故C 错误; 对于D,2222213cos 4442c c BAD c c c +-+∠==≥=(当且仅当c =立),因为BAD ABD ∠<∠, 所以(0,)2BAD π∠∈,又cos BAD ∠≥BAD ∠的最大值30,D 选项正确. 故选:ABD 【点睛】本题主要考查了向量的数量积运算,余弦定理,基本不等式,考查了推理能力,属于难题.4.已知函数()()sin f x x ωϕ=+(其中,0>ω,||2ϕπ<),08f π⎛⎫-= ⎪⎝⎭,3()8f x f π⎛⎫≤ ⎪⎝⎭恒成立,且()f x 在区间,1224ππ⎛⎫- ⎪⎝⎭上单调,则下列说法正确的是( )A .存在ϕ,使得()f x 是偶函数B .3(0)4f f π⎛⎫=⎪⎝⎭C .ω是奇数D .ω的最大值为3【答案】BCD 【分析】 根据3()8f x f π⎛⎫≤⎪⎝⎭得到21k ω=+,根据单调区间得到3ω≤,得到1ω=或3ω=,故CD 正确,代入验证知()f x 不可能为偶函数,A 错误,计算得到B 正确,得到答案. 【详解】08f π⎛⎫-= ⎪⎝⎭,3()8f x f π⎛⎫≤ ⎪⎝⎭,则3188242k T πππ⎛⎫⎛⎫--==+ ⎪ ⎪⎝⎭⎝⎭,k ∈N , 故221T k π=+,21k ω=+,k ∈N , 08f π⎛⎫-= ⎪⎝⎭,则()s n 08i f x πωϕ⎛⎫=+= ⎪⎭-⎝,故8k πωϕπ+=-,8k ϕπωπ=+,k Z ∈,当,1224x ππ⎛⎫∈-⎪⎝⎭时,,246x k k ωπωπωϕππ⎛⎫+∈++ ⎪⎝⎭,k Z ∈,()f x 在区间,1224ππ⎛⎫-⎪⎝⎭上单调,故241282T πππ⎛⎫--=≤ ⎪⎝⎭,故4T π≥,即8ω≤,0243ωππ<≤,故62ωππ≤,故3ω≤,综上所述:1ω=或3ω=,故CD 正确;1ω=或3ω=,故8k ϕππ=+或38k ϕππ=+,k Z ∈,()f x 不可能为偶函数,A 错误;当1ω=时,(0)sin sin 8f k πϕπ⎛⎫==+⎪⎝⎭,33sin sin 4488f k k ππππππ⎛⎫⎛⎫⎛⎫=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故3(0)4f f π⎛⎫= ⎪⎝⎭; 当3ω=时,3(0)sin sin 8f k πϕπ⎛⎫==+⎪⎝⎭, 393sin sin 4488f k k ππππππ⎛⎫⎛⎫⎛⎫=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故3(0)4f f π⎛⎫= ⎪⎝⎭, 综上所述:3(0)4f f π⎛⎫= ⎪⎝⎭,B 正确;故选:BCD.【点睛】本题考查了三角函数的性质和参数的计算,难度较大,意在考查学生的计算能力和综合应用能力.5.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且::4:5:6a b c =,则下列结论正确的是( )A .sin :sin :sin 4:5:6ABC = B .ABC 是钝角三角形C .ABC 的最大内角是最小内角的2倍D .若6c =,则ABC【答案】ACD 【分析】由正弦定理可判断A ;由余弦定理可判断B ;由余弦定理和二倍角公式可判断C ;由正弦定理可判断D. 【详解】解:由::4:5:6a b c =,可设4a x =,5b x =,6c x =,()0x >, 根据正弦定理可知sin :sin :sin 4:5:6A B C =,选项A 描述准确;由c 为最大边,可得2222221625361cos 022458a b c x x x C ab x x +-+-===>⋅⋅,即C 为锐角,选项B 描述不准确;2222222536163cos 22564b c a x x x A bc x x +-+-===⋅⋅,291cos 22cos 121cos 168A A C =-=⨯-==, 由2A ,C ()0,π∈,可得2A C =,选项C 描述准确;若6c =,可得2sin c R C===,ABC,选项D 描述准确. 故选:ACD. 【点睛】本题考查三角形的正弦定理和余弦定理,二倍角公式,考查化简运算能力,属于中档题.6.设函数()sin 6f x M x πω⎛⎫=+ ⎪⎝⎭(0,0)M ω>>的周期是π,则下列叙述正确的有( )A .()f x 的图象过点10,2⎛⎫ ⎪⎝⎭B .()f x 的最大值为MC .()f x 在区间2,63ππ⎡⎤⎢⎥⎣⎦上单调递减D .5,012π⎛⎫⎪⎝⎭是()f x 的一个对称中心 【答案】BCD 【分析】已知只有周期的条件,只能求出ω,其中M 未知;A 选项代值判定;B 选项由解析式可知;C 选项由()f x 的单调递减区间在32,2,22k k k Z ππππ⎛⎫++∈ ⎪⎝⎭上化简可得;D 选项由()f x 的对称中心为(),0,k k Z π∈化简可得. 【详解】 由题可知2T ππω==,解得2ω=,即()sin 26f x M x π⎛⎫=+ ⎪⎝⎭当0x =时,()0sin 20sin 662M f M M ππ⎛⎫=⨯+== ⎪⎝⎭,故选项A 错误; 因为()sin 26f x M x π⎛⎫=+ ⎪⎝⎭,所以最大值为M ,故选项B 正确;由解析式可知()f x 在3222,262k x k k Z πππππ+≤+≤+∈ 即2,63x k k ππππ⎡⎤∈++⎢⎥⎣⎦上单调递减,当0k =时,选项C 正确; 由解析式可知()f x 的对称中心的横坐标满足26x k ππ+=,即212k x ππ=- 当1k =时,512x π=,对称中心为5,012π⎛⎫⎪⎝⎭,故选项D 正确. 故选:BCD 【点睛】本题考查()()sin f x A x =+ωϕ型三角函数的性质,其中涉及最值、对称轴、对称中心,属于较难题.7.已知函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图像如图所示,则下列关于函数()f x 的说法中正确的是( )A .函数()f x 最靠近原点的零点为3π-B .函数()f x 的图像在y 3C .函数56f x π⎛⎫-⎪⎝⎭是偶函数 D .函数()f x 在72,3ππ⎛⎫⎪⎝⎭上单调递增 【答案】ABC 【分析】首先根据图象求函数的解析式,利用零点,以及函数的性质,整体代入的方法判断选项. 【详解】根据函数()()cos f x A x ωϕ=+的部分图像知,2A =, 设()f x 的最小正周期为T ,则24362T πππ=-=,∴2T π=,21T πω==. ∵2cos 266f ππϕ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,且2πϕ<,∴6πϕ=-, 故()2cos 6f x x π⎛⎫=- ⎪⎝⎭. 令()2cos 06f x x π⎛⎫=-= ⎪⎝⎭,得62x k πππ-=+,k Z ∈, 即23x k ππ=+,k Z ∈,因此函数()f x 最靠近原点的零点为3π-,故A 正确; 由()02cos 36f π⎛⎫=-= ⎪⎝⎭()f x 的图像在y 3B 正确; 由()52cos 2cos 6f x x x ππ⎛⎫-=-=- ⎪⎝⎭,因此函数56f x π⎛⎫-⎪⎝⎭是偶函数,故C 正确; 令226k x k ππππ-≤-≤,k Z ∈,得52266k x k ππππ-≤≤+,k Z ∈,此时函数()f x 单调递增,于是函数()f x 在132,6ππ⎛⎫ ⎪⎝⎭上单调递增,在137,63ππ⎛⎫⎪⎝⎭上单调递减,故D 不正确. 故选:ABC . 【点睛】思路点睛:本题考查()sin y A ωx φ=+的解析式和性质的判断,可以整体代入验证的方法判断函数性质:(1)对于函数()sin y A ωx φ=+,其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此判断直线0x x =或点()0,0x 是否是函数的对称轴和对称中心时,可通过验证()0f x 的值进行判断;(2)判断某区间是否是函数的单调区间时,也可以求x ωϕ+的范围,验证此区间是否是函数sin y x =的增或减区间.8.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知()()(::5:)4:6b c c a a b +++=,下列结论正确的是( )A .::7:5:3sinA sinB sinC = B .0AB AC ⋅>C .若6c =,则ABC 的面积是D .若8+=b c ,则ABC 【答案】ACD 【分析】先利用已知条件设4,5,6b c k c a k a b k +=+=+=,进而得到3.5, 2.5, 1.5a k b c k ===,利用正弦定理可判定选项A ;利用向量的数量积公式可判断选项B ;利用余弦定理和三角形的面积公式可判定选项C ;利用余弦定理和正弦定理可判断选项D. 【详解】依题意,设4,5,6b c k c a k a b k +=+=+=, 所以 3.5, 2.5, 1.5a k b c k ===,由正弦定理得:::::7:5:3sinA sinB sinC a b c ==, 故选项A 正确;222222cos 22b c a b c a AB AC bc A bc bc +-+-⋅==⨯=222222.5 1.5 3.515028k k +-==-<,故选项B 不正确; 若6c =,则4k =, 所以14,10a b ==,所以222106141cos 21062A +-==-⨯⨯,所以3sin A =, 故ABC 的面积是:113sin 610153222bc A =⨯⨯⨯=; 故选项C 正确;若8+=b c ,则2k =, 所以7,5,3a b c ===,所以2225371cos 2532A +-==-⨯⨯,所以3sin 2A =, 则利用正弦定理得:ABC 的外接圆半径是:1732sin a A ⨯=, 故选项D 正确; 故选:ACD. 【点睛】关键点睛:本题主要考查正余弦定理以及三角形面积公式. 利用已知条件设4,5,6b c k c a k a b k +=+=+=,再利用正余弦定理以及三角形面积公式求解是解决本题的关键.9.已知函数()()()2sin 0,0f x x ωϕωϕπ=+><<的部分图象如图所示,则下列说法正确的是( )A .23ϕπ=B .()f x 的最小正周期为πC .()f x 的图象关于直线12x π=对称D .()f x 的图象关于点5,06π⎛⎫⎪⎝⎭对称【答案】BCD【分析】利用图象,把(代入求ϕ,利用周期求出2ω=,从而2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,研究对称轴和对称中心.【详解】由图可知2sin ϕ=sin ϕ=,根据图象可知0x =在()f x 的单调递增区间上,又0ϕπ<<,所以3πϕ=,A 项错误; 因为()2sin 3f x x πω⎛⎫=+⎪⎝⎭,所以结合图像,由五点法得33ωπππ+=,解得2ω=,则()f x 的最小正周期2T ππω==,B 项正确; 将12x π=代入2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,得2sin 21263f πππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象关于直线12x π=对称,C 项正确﹔ 将56x π=代入可得552sin 0633f πππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以点5,06π⎛⎫ ⎪⎝⎭是()f x 图象的一个对称中心,D 项正确.故选:BCD.【点睛】求三角函数解析式的方法:(1)求A 通常用最大值或最小值;(2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.10.已知函数()26f x x π⎛⎫=- ⎪⎝⎭,则下列结论正确的是( ) A .函数()f x 的最小正周期为πB .函数()f xC .函数()f x 的图象关于点,012π⎛⎫ ⎪⎝⎭对称 D .函数()f x 的图象关于直线712x π=对称 【答案】BD【分析】首先要熟悉()26g x x π⎛⎫=- ⎪⎝⎭的图象和性质,将()26g x x π⎛⎫=- ⎪⎝⎭在x 轴下方的图象沿x 轴翻折(x 轴上方的图象不变),可以得到函数()f x 的图象,并判断选项.【详解】由题意,将()26g x x π⎛⎫=- ⎪⎝⎭在x 轴下方的图象沿x 轴翻折(x 轴上方的图象不变),可以得到函数()f x 的图象,故函数()f x 的最小正周期为2π,故A 错误;函数()f x B 正确;函数()f x 的图象是由()26g x x π⎛⎫=- ⎪⎝⎭在x 轴下方的图象沿x 轴翻折(x 轴上方的图象不变),所以不是中心对称图形,故C 错误; 由7012f π⎛⎫= ⎪⎝⎭知D 正确, 故选:BD .【点睛】思路点睛:要判断函数()f x 的性质,需先了解函数()26g x x π⎛⎫=- ⎪⎝⎭的性质,并且知道函数()26g x x π⎛⎫=- ⎪⎝⎭在x 轴下方的图象沿x 轴翻折(x 轴上方的图象不变),可以得到函数()f x 的图象,函数的周期变为原来的一半,()g x 的对称轴和对称中心都是函数()f x 的对称轴.。
高三数学易错三角函数与解三角形多选题 易错题难题测试综合卷检测试卷

高三数学易错三角函数与解三角形多选题 易错题难题测试综合卷检测试卷一、三角函数与解三角形多选题1.ABC 中,2BC =,BC 边上的中线2AD =,则下列说法正确的有( )A .AB AC →→⋅为定值B .2210AC AB += C .co 415s A << D .BAD ∠的最大值为30【答案】ABD 【分析】A 利用向量的加减法及向量的数量积公式运算即可,B 根据余弦定理及角的互补运算即可求值,C 利用余弦定理及基本不等式求出cos A 范围即可,D 根据余弦定理及基本不等式求出cos BAD ∠的最小值即可. 【详解】 对于A ,22413AB AC AD DB AD DB AD DB →→→→→→→→⎛⎫⎛⎫⋅=+-=-=-= ⎪⎪⎝⎭⎝⎭,AB AC →→∴⋅为定值,A 正确; 对于B ,cos cos ADC ADB∠=-∠2222222cos 2cos AC AB AD DC AD DC ADC AD DB AD DB ADB ∴+=+-⋅⋅∠++-⋅⋅∠2222AD DB DC =++ 2221110=⨯++=,故B 正确;对于C ,由余弦定理及基本不等式得224242122b c bc cosA bc bc bc+--=≥=-(当且仅当b c =时,等号成立),由A 选项知cos 3bc A =,22cos cos 1133cos AA A∴≥-=-, 解得3cos 5A ≥,故C 错误; 对于D,2222213cos 44c c BAD c c +-+∠==≥=(当且仅当c =立),因为BAD ABD ∠<∠, 所以(0,)2BAD π∠∈,又cos BAD ∠≥BAD ∠的最大值30,D 选项正确. 故选:ABD 【点睛】本题主要考查了向量的数量积运算,余弦定理,基本不等式,考查了推理能力,属于难题.2.在ABC ∆中,角,,A B C 所对边分别为,,a b c .已知():():()4:5:6b c c a a b +++=,下列结论正确的是( ) A .::7:5:3a b c = B .0AC AB ⋅<C .753A B C == D .若8+=b c ,则ABC ∆面积是4【答案】ABD 【分析】设4,5,6(0)b c k c a k a b k k +=+=+=>,求出a ,b ,c 的值,可得A ;由正弦定理,sin :sin :sin ::7:5:3A B C a b c ==,可判定C ,由余弦定理1cos 2A =-,cos 0AC AB bc A ⋅=<,可判定B ;由8+=b c ,结合A 结论,可计算b ,c , 1sin 2ABC S bc A ∆=,可判定D【详解】设4,5,6(0)b c k c a k a b k k +=+=+=>,则753,,222a kb kc k === ,故 ::7:5:3a b c =,即A 选项正确;又222222259491444cos 5322222k k kb c a A bc k k +-+-===-⨯⨯,故cos 0AC AB bc A ⋅=<,B 选项正确;由正弦定理,sin :sin :sin ::7:5:3A B C a b c ==,C 选项错误;若8+=b c ,则2k =,故5,3,120ob c A ===,所以1sin 2ABC S bc A ∆==,D 选项正确 故选:ABD 【点睛】本题考查了正弦定理、余弦定理的综合应用,考查了学生综合分析,转化划归,数学运算能力,属于较难题3.(多选题)已知22tan 2tan 10x y --=,则下列式子成立的是( ) A .22sin 2sin 1y x =+ B .22sin 2sin 1y x =-- C .22sin 2sin 1y x =-D .22sin 12cos y x =-【答案】CD 【分析】对原式进行切化弦,整理可得:222222sin cos 2sin cos cos cos x y y x y x ⋅-⋅=⋅,结合因式分解代数式变形可得选项. 【详解】∵22tan 2tan 10x y --=,2222sin sin 210cos cos x yx y-⋅-=, 整理得222222sin cos 2sin cos cos cos x y y x y x ⋅-⋅=⋅,∴()()()22222221cos 1sin sin cos cos sin cos x x y x y y x ---⋅=+, 即22222221cos sin sin cos sin cos cos x y y x y x x --+⋅-⋅=, 即222sin 12cos 2sin 1y x x =-=-,∴C 、D 正确. 故选:CD 【点睛】此题考查三角函数的化简变形,根据弦切关系因式分解,结合平方关系变形.4.已知函数()f x 的定义域为D ,若对于任意()()()a b c D f a f b f c ∈,,,,,分别为某个三角形的边长,则称()f x 为“三角形函数”,其中为“三角形函数”的函数是( ) A .()4sin f x x =- B .()22sin 10cos 13f x x x =-++C .()tan 2xf x = D .()sin 20,34f x x x ππ⎛⎫⎡⎤=++∈ ⎪⎢⎥⎝⎭⎣⎦【答案】AD 【分析】结合三角形的性质有:两边之差小于第三边,得若()f x 为 “三角形函数”则()()()max min min f x f x f x <-恒成立,即()()max min 2f x f x <恒成立即可,根据条件求出函数的最大值和最小值,进行判断即可. 【详解】解:①()4sin f x x =-,则()max 415f x =+=,()min 413f x =-= 则()()max min 2f x f x <恒成立,则A 满足条件②()22532cos 10cos 112cos 22f x x x x ⎛⎫=++=+= ⎪⎝⎭当0,2x π⎡⎤∈⎢⎥⎣⎦时,0cos 1x ≤≤∴当cos 0x =时,函数()f x 取得最小值()min 11f x =,当cos 1x =时,函数()f x 取得最大值,()max 23f x =则()()max min 2f x f x <不恒成立,则B 不满足条件 ③()()()tan,00,2xf x =∈-∞⋃+∞,则不满足条件()()max min 2f x f x <恒成立,故C不是④()sin 2233f x x π⎛⎫=++ ⎪⎝⎭0,4x π⎡⎤∈⎢⎥⎣⎦,52,336x πππ⎡⎤∴+∈⎢⎥⎣⎦,则()max sin231232f x π=+=+,()min 51sin232362f x π=+=+ 则()min 2143f x =+,则()()max min 2f x f x <恒成立,故D 满足条件 故选AD 【点睛】本题考查了三角形的性质及“三角形函数”的概念,根据条件转化为()()max min 2f x f x <恒成立是解决本题的关键,综合性较强,有一定的难度.5.已知函数()()()2sin 0,0f x x ωϕωϕπ=+><<的部分图象如图所示,则下列说法正确的是( )A .23ϕπ=B .()f x 的最小正周期为πC .()f x 的图象关于直线12x π=对称D .()f x 的图象关于点5,06π⎛⎫⎪⎝⎭对称 【答案】BCD 【分析】利用图象,把(3代入求ϕ,利用周期求出2ω=,从而2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,研究对称轴和对称中心. 【详解】由图可知2sin 3ϕ=3sin ϕ=,根据图象可知0x =在()f x 的单调递增区间上,又0ϕπ<<,所以3πϕ=,A 项错误;因为()2sin 3f x x πω⎛⎫=+ ⎪⎝⎭,所以结合图像,由五点法得33ωπππ+=,解得2ω=,则()f x 的最小正周期2T ππω==,B 项正确;将12x π=代入2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,得2sin 21263f πππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象关于直线12x π=对称,C 项正确﹔将56x π=代入可得552sin 0633f πππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以点5,06π⎛⎫ ⎪⎝⎭是()f x 图象的一个对称中心,D 项正确. 故选:BCD. 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.6.已知函数()26f x x π⎛⎫=- ⎪⎝⎭,则下列结论正确的是( )A .函数()f x 的最小正周期为πB .函数()f xC .函数()f x 的图象关于点,012π⎛⎫⎪⎝⎭对称 D .函数()f x 的图象关于直线712x π=对称 【答案】BD 【分析】首先要熟悉()26g x x π⎛⎫=- ⎪⎝⎭的图象和性质,将()26g x x π⎛⎫=- ⎪⎝⎭在x 轴下方的图象沿x 轴翻折(x 轴上方的图象不变),可以得到函数()f x 的图象,并判断选项. 【详解】由题意,将()26g x x π⎛⎫=- ⎪⎝⎭在x 轴下方的图象沿x 轴翻折(x 轴上方的图象不变),可以得到函数()f x 的图象,故函数()f x 的最小正周期为2π,故A 错误;函数()f x B 正确;函数()f x 的图象是由()26g x x π⎛⎫=- ⎪⎝⎭在x 轴下方的图象沿x 轴翻折(x 轴上方的图象不变),所以不是中心对称图形,故C 错误; 由7012f π⎛⎫=⎪⎝⎭知D 正确, 故选:BD . 【点睛】思路点睛:要判断函数()f x 的性质,需先了解函数()26g x x π⎛⎫=- ⎪⎝⎭的性质,并且知道函数()26g x x π⎛⎫=- ⎪⎝⎭在x 轴下方的图象沿x 轴翻折(x 轴上方的图象不变),可以得到函数()f x 的图象,函数的周期变为原来的一半,()g x 的对称轴和对称中心都是函数()f x 的对称轴.7.在ABC 中,下列说法正确的是( ) A .若A B >,则sin sin A B > B .若2C π>,则222sin sin sin C A B >+C .若sin cos A B <,则ABC 为钝角三角形D .存在ABC 满足cos cos 0A B +≤ 【答案】ABC 【分析】根据大角对大边,以及正弦定理,判断选项A ;利用余弦定理和正弦定理边角互化,判断选项B ;结合诱导公式,以及三角函数的单调性判断CD. 【详解】 A.A B >,a b ∴>,根据正弦定理sin sin a bA B=,可知sin sin A B >,故A 正确; B.2C π>,222cos 02a b c C ab +-∴=<,即222a b c +<,由正弦定理边角互化可知222sin sin sin C A B >+,故B 正确;C.当02A π<<时,sin cos cos cos 2A B A B π⎛⎫<⇔-<⎪⎝⎭,即22A B A B ππ->⇒+<,即2C π>,则ABC 为钝角三角形,若2A π>,sin cos cos cos 2A B A B π⎛⎫<⇔-< ⎪⎝⎭,即22A B A B ππ->⇒>+成立,A 是钝角,当2A π=是,sin cos A B >,所以综上可知:若sin cos A B <,则ABC 为钝角三角形,故C 正确;D.A B A B ππ+<⇒<-,0,0A B πππ<<<-<,()cos cos cos A B B π∴>-=-,即cos cos 0A B +>,故D 不正确. 故选:ABC 【点睛】关键点点睛:本题考查判断三角形的形状,关键知识点是正弦定理和余弦定理,判断三角形形状,以及诱导公式和三角函数的单调性.8.已知函数()()sin 22sin cos 644f x x x x x πππ⎛⎫⎛⎫⎛⎫=--++∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭R ,现给出下列四个命题,其中正确的是( ) A .函数()f x 的最小正周期为2πB .函数()f xC .函数()f x 在,44ππ⎡⎤-⎢⎥⎣⎦上单调递增 D .将函数()f x 的图象向左平移512π个单位长度,得到的函数解析式为()()2g x x =【答案】BD 【分析】首先利用三角恒等变形化简函数()23f x x π⎛⎫=- ⎪⎝⎭,再根据函数的性质依次判断选项,AB 选项根据解析式直接判断,C 选项可以先求23x π-的范围,再判断函数的单调性,D 选项根据平移规律直接求解平移后的解析式. 【详解】()12cos 2sin 222f x x x x π⎛⎫=--+ ⎪⎝⎭132cos 2cos 22cos 22222x x x x x =--=-23x π⎫⎛=- ⎪⎝⎭,函数()f x 的周期22T ππ==,故A 不正确;B.B 正确; C.,44x ππ⎡⎤∈-⎢⎥⎣⎦时,52,366x πππ⎡⎤-∈-⎢⎥⎣⎦,当52,362x πππ⎡⎤-∈--⎢⎥⎣⎦时函数单调递减,即,412x ππ⎡⎤∈--⎢⎥⎣⎦时函数单调递减,,124x ππ⎡⎤∈-⎢⎥⎣⎦时,函数单调递增,故C 不正确; D. ()23f x x π⎛⎫=-⎪⎝⎭向左平移512π个单位长度,得到()52221232g x x x x πππ⎡⎤⎛⎫⎛⎫=+-=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故D 正确. 故选:BD 【点睛】思路点睛:本题考查()sin y A ωx φ=+的解析式和性质的判断,可以整体代入验证的方法判断函数性质:(1)对于函数()sin y A ωx φ=+,其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此判断直线0x x =或点()0,0x 是否是函数的对称轴和对称中心时,可通过验证()0f x 的值进行判断;(2)判断某区间是否是函数的单调区间时,也可以求x ωϕ+的范围,验证此区间是否是函数sin y x =的增或减区间.二、数列多选题9.已知数列{}n a 的前n 项和为n S ,11a =,()1*11,221,21n n n a n ka k N a n k --+=⎧=∈⎨+=+⎩.则下列选项正确的为( ) A .614a =B .数列{}()*213k a k N-+∈是以2为公比的等比数列C .对于任意的*k N ∈,1223k k a +=-D .1000n S >的最小正整数n 的值为15 【答案】ABD 【分析】根据题设的递推关系可得2212121,21k k k k a a a a -+=-=-,从而可得22222k k a a +-=,由此可得{}2k a 的通项和{}21k a -的通项,从而可逐项判断正误.【详解】由题设可得2212121,21k k k k a a a a -+=-=-, 因为11a =,211a a -=,故2112a a =+=,所以22212121,12k k k k a a a a +++--==,所以22222k k a a +-=, 所以()222222k k a a ++=+,因为2240a +=≠,故220k a +≠,所以222222k k a a ++=+,所以{}22k a +为等比数列,所以12242k k a -+=⨯即1222k k a +=-,故416214a =-=,故A 对,C 错. 又112122123k k k a ++-=--=-,故12132k k a +-+=,所以2121323k k a a +-+=+,即{}()*213k a k N -+∈是以2为公比的等比数列,故B 正确.()()141214117711S a a a a a a a =+++=++++++()()2381357911132722323237981a a a a a a a =+++++++=⨯-+-++-+=,15141598150914901000S S a =+=+=>,故1000n S >的最小正整数n 的值为15,故D 正确. 故选:ABD. 【点睛】方法点睛:题设中给出的是混合递推关系,因此需要考虑奇数项的递推关系和偶数项的递推关系,另外讨论D 是否成立时注意先考虑14S 的值.10.已知数列{}n a ,下列结论正确的有( ) A .若12a =,11n n a a n +++=,则20211a =.B .若11132n n a a a ++=,=,则71457a =C .若12nn S =3+,则数列{}n a 是等比数列 D .若11212n n n a a a a ++=,=()*n N ∈,则15215a = 【答案】AB 【分析】直接利用叠加法可判断选项A ,从而判断,利用构造新数列可求出B,D 中数列的通项公式,可判断,选项C 求出数列的前3项从而可判断. 【详解】选项A. 由11n n a a n +=++,即11n n a a n +-=+ 则()()()()19191818120207121a a a a a a a a a a =-+-+-++-+20191822211=+++++=故A 正确.选项B. 由132n n a a +=+,得()1311n n a a +=++,所以数列{}1n a +是以112a +=为首项,3为公比的等比数列.则1123n n a -+=⨯,即1231n n a -=⨯-,所以672311457a =⨯-=,故B 正确.选项C. 由12nn S =3+,可得当1n =时,11722a =+=3当2n =时,得2211193622a S S ⎛⎫⎛⎫=-=+-+= ⎪ ⎪⎝⎭⎝⎭, 当3n =时,得332112791822a S S ⎛⎫⎛⎫=-=+-+= ⎪ ⎪⎝⎭⎝⎭,显然2213a a a ≠,所以数列{}n a 不是等比数列,故C 错误.选项D. 由122nn n a a a +=+,可得11112n n a a +-= 所以数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,12为公差的等差数列. 所以()1111122n n n a +=+-=,则1511826a ==,即1518a =,故D 错误. 故选:AB 【点睛】关键点睛:本题考查利用递推关系求数列的通项公式,解答的关键是掌握求数列通项公式的常见方法,由叠加法可得()()()()19191818120207121a a a a a a a a a a =-+-+-++-+,利用构造新数列()1311n n a a +=++,11112n n a a +-=解决问题,属于中档题.。
专题01 解三角形劣构性解答题突破A辑(解析版)

2021年高考数学压轴必刷题(第三辑)专题01解三角形劣构性解答题突破A 辑1()cos cos sin A c B b C a A +=,②()cos2cos22sin sin sin A B C B C -=-,③()2cos cos b c A a C -=这三个条件中任选一个,补充到下面问题中,并解答问题.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且______. (1)求A ;(2)若2a =,b c +=ABC 的面积. 注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)3A π=;(2(1)方案一:若选①.()2sin cos sin cos sin A C B B C A +=,()2sin sin A C B A +=,2sin sin A A A =, 又(0,)A π∈,所以sin 0A ≠,所以tan A =,所以3A π=. 方案二:若选②.由已知及倍角公式得()()()2212sin 12sin 2sin sin sin A B C B C ---=-,所以2222sin 2sin 2sin sin 2sin B A C B C -=-, 所以222sin sin sin sin sin B C A C B +-=, 由正弦定理得222b c a bc +-=,由余弦定理得2221cos 22b c a A bc +-==,又(0,)A π∈,所以3A π=. 方案三:若选③.由已知及正弦定理得()2sin sin cos sin cos B C A A C -=, 所以2sin cos sin()sin B A A C B =+=, 因为(0,)B π∈,所以sin 0B ≠,所以1cos 2A =, 又(0,)A π∈,所以3A π=. (2)由余弦定理2222cos a b c bc A =+-,2a =,3A π=,得224b c bc =+-, 即()234b c bc +-=.因为b c +=2bc =,所以1sin 22ABCSbc A ==.2.在①22()3a b c ab +=+,②sin cos a A a C =-,③(2)sin (2)sin 2sin a b A b a B c C -+-=,这三个条件中任选一个,补充在下列问题中,并解答.已知ABC 的内角,,A B C 的对边分别为,,a b c ,c =_____.(1)求C ∠;(2)求ABC 周长的最大值.【答案】(1)答案见解析,3C π=;(2)最大值为 (1)选①,把22()3a b c ab +=+,整理得222a b c ab +-=,由余弦定理得2221cos 222a b c ab C ab ab +-===,因为(0,)C π∈,所以3C π=.选②,因为sin cos a A a C =-,由正弦定理,可得sin sin sin cos A C A A C -,因为(0,)A π∈,则sin 0A ≠cos 1C C -=,可得1sin 62C π⎛⎫-= ⎪⎝⎭, 又0C π<<,所以5666C πππ-<-<,故66C ππ-=,即3C π=. 选③,因为(2)sin (2)sin 2sin a b A b a B c C -+-=,由正弦定理得:2(2)(2)2a b a b a b c -+-=,即222a b c ab+-=,所以2221cos 22a b c C ab +-==,因为0C π<<,所以3C π=.(2)由(1)可知,3C π=,在ABC 中,由余弦定理得222cos 3a b ab C +-=,即223a b ab +-=,所以223()()334a b a b ab ++-=≤,当且仅当a b =时取等号,所以a b +≤a b c ++≤即ABC 周长的最大值为 3.在①sinsin 2B Cc a C +=;②2cos cos co (s )A b C c B a +=;③()22sin sin sin sin sin B C A B C -=-中任选一个,补充在横线上,并回答下面问题.在△ABC 中,已知内角,,A B C 所对的边分别为,,a b c 若1)c b =,______. (1)求C 的值;(2)若△ABC 的面积为3,求b 的值. 【答案】(1)4π;(2)2. 选① (1)sinsin sin sin sin cos sin sin 222B C A Ac a C c a C C A C π+-=⇒=⇒= 0,sin 0C C π<<∴≠cos2sin 222A A A cos ∴=,0,cos 02AA π<<∴≠ 1sin 223A A π∴=⇒=21)sin 1)sin sin 1)sin()3c b C B C C π=⇒=⇒=- 化简得sin cos 4C C C π=⇒=(2) 21sin 1)324ABCScb A b === 2b ∴=选②2cos cos cos 2cos sin cos sin cos sin ()()A b C c B a A B C C B A +=⇒+=2cos si )n s (in ,A B C A ∴+=2cos sin sin ,A A A ∴= 0,sin 0A A π<<∴≠1cos 23A A π∴=⇒= 21)sin 1)sin sin 1)sin()3c b C B C C π=⇒=⇒=- 化简得sin cos 4C C C π=⇒=(2) 21sin 1)32ABCScb A b === 2b ∴=选③()22222sin sin sin sin sin sin sin sin sin sin B C A B C B C A B C -=-⇒+=+222b c a bc +=+ ,1cos 2A ∴=0,A π<<3A π∴=21)sin 1)sin sin 1)sin()3c b C B C C π=⇒=⇒=- 化简得sin cos 4C C C π=⇒=(2) 21sin 1)32ABCScb A b === 2b ∴=4.如图,在ABC 中,D 是BC 上的点,4,3AB BD C π===,再从条件①、条件②这两个条件中选择一个作为已知,求:(1)角B 的大小; (2)ACD △的面积.条件①:AD 3AC =.【答案】(1)6B π=,具体选择见解析;(2. 选择条件①:解:(1)在ABD △中4,AB BD AD === 由余弦定理,得222cos 2AB BD AD B AB BD +-=⋅==因为0B π<<, 所以6B π=.(2)由(1)知,6B π=,因为3C π=,所以2BAC π∠=.所以ABC 为直角三角形. 所以3AC =,6BC =.又因为4BD =,所以2CD =.所以1sin 2ACDSAC CD C =⋅⋅1322=⨯⨯=. 选择条件②:解:(1)在ABC 中,3,AC AB ==3C π=. 由正弦定理sin sin AC AB B C =,得1sin 2B =. 由题可知 BC π<<=03, 所以6B π=.(2)由(1)知,6B π=,因为3C π=,所以2BAC π∠=.所以ABC 为直角三角形, 得6BC =.又因为4BD =,所以2CD =.所以1sin 2ACDSAC CD C =⋅⋅1322=⨯⨯=. 5.在ABC 中,3cos 5A =,a =再从条件①、条件②这两个条件中选择一个作为已知.求: (Ⅰ)c 的值;(Ⅱ)sin C 和ABC 的面积.条件①:π4B =;条件②:5b =. 【答案】(Ⅰ)7c =;(Ⅱ)sin C =14ABCS=选①:π4B =,sin B =cos B =(Ⅰ)由3cos 5A =,则4sin 5A =,()sin sin sin cos cos sin C A B A B A B =+=+=在ABC 中,由正弦定理sin sin a cA C=,即4510=,解得7c =,(Ⅱ)由(Ⅰ)可得sin C =11sin 714222ABCSac B ==⨯⨯=. 选②:5b =(Ⅰ)在ABC 中,由余弦定理可得2222cos a b c bc A =+-,即233225255c c =+-⨯⨯, 解得7c =或1c =-(舍去). 在ABC 中,由正弦定理sin sin a cA C=,解得sin C =11sin 5142210ABCSab C ==⨯⨯=.6()cos cos sin C a B b A c C +=,②sinsin 2A Ba c A +=,③()()2sin 2sin 2sin ab A b a Bc C -+-=这三个条件中任选一个,补充在下列问题中,并解答.已知ABC 的角A ,B ,C 对边分别为,,a b c ,c =___________.(1)求C ∠; (2)求ABC 周长的范围.【答案】条件选择见解析;(1)3π;(2)(. 解:(1)选①: 由正弦定理得()3cosC sinAcosB sinBcosA sinCsinC +=()A B sinCsinC +=因为0sinC tanC ≠∴=, 因为()03C C ππ∈∴=,,选②:由正弦定理得2CsinAsinsinCsinA π-=,因为02222c C CsinA cos sinC sin cos ≠∴==, 因为02Ccos ≠,所以122C sin =,因为()03C C ππ∈∴=,,选③:因为()()2sin 2sin 2sin a b A b a B c C -+-=,所以()()2222a b a b a b c -+-=,即222a b c ab +-=,所以2221cos 22a b c C ab +-==,因为0C π<<,所以3C π=;(2)由(1)可知:3C π=, 在ABC 中,由余弦定理得222cos 3a b ab C +-=,即223a b ab +-=,所以()()223334a b a b ab ++-=≤,所以a b +≤a b =时等号成立,所以a b c ++≤ABC 周长的最大值为又因为a b c +>=ABC 周长的取值范围为(7.已知ABC ,满足2a b =, ,求ABC 的面积 (1)3A π=(2)cos 7B =. 注:如果选择多个条件分别解答,按第一个解答计分【答案】若选(1),ABC S =△;若选(2),ABCS若选(1),由余弦定理得:2222cos a b c bc A =+-, 即2174222=+-⨯⨯⨯c c ,2230c c --=,解得3c =或1c =-(舍去).所以11sin 232222ABC S bc A ==⨯⨯⨯=△. 若选(2)由余弦定理得:2222cos b a c ac B =+-,即24727=+-⨯c c ,即230c -+=,解得c =此时222a b c =+,即2A π=,所以11222△==⨯=ABC S bc 8.已知有条件①()2cos cos b c A a C -=,条件①25cos cos 24A A π⎛⎫++=⎪⎝⎭;请在上述两个条件中任选一个,补充在下面题目中,然后解答补充完整的题目.在锐角ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,a =5b c +=,且满足______.(2)求ABC 的面积.(注:如果选择多个条件分别解答,按第一个解答计分.)【答案】条件选择见解析;(1)3A π=;(2 (1)选择条件①()2cos cos b c A a C -=,法1:由正弦定理得()2sin sin cos sin cos B C A A C -=,所以()2sin cos sin sin B A A C B =+=, 因为sin 0B ≠, 所以1cos 2A =,又π0,2A ⎛⎫∈ ⎪⎝⎭,所以3A π=,法2:由余弦定理得()222222222b c a a b c b c abc ab+-+--=, 化简得222b c a bc +-=,则2221cos 22b c a A bc +-==,又π0,2A ⎛⎫∈ ⎪⎝⎭,所以3A π=.选择条件②25cos cos 24A A π⎛⎫++=⎪⎝⎭,因为cos sin 2A A π⎛⎫+=-⎪⎝⎭,所以25sin cos 4A A +=,因为22sin cos 1A A +=,所以251cos cos 4A A -+=, 化简得21cos 02A ⎛⎫-= ⎪⎝⎭,解得1cos 2A =,又()0,A π∈,所以3A π=.(2)由余弦定理2222cos3a b c bc π=+-,得()273b c bc =+-,所以()2763b c bc bc +-=⇒=,于是ABC 的面积11sin 622S bc A ==⨯=9.在cossin 2B Ca B +=,sin 3cos Bb A =这两个条件中任选一个,补充在下面问题中,然后解答补充完整的题.在ABC 中,6,cos BC B ==. (1)求AC 的长;【答案】条件选择见解析;(1)4AC =;(2). 选择①(1cos sin sin 2B CB A B +=, 又sin 0B ≠,sin 2AA π-=,2sin cos 222A A A=,∴cos 22A =, 即26A π=,3A π=,由cos 3=B可得sin 3B ==,根据正弦定理sin sin BC ACA B== 4AC ∴=.(2)1sin sin()sin cos cos sin 23236C A B A B A B =+=+=+⨯=,11sin 46226S AC BC C =⋅⋅=⨯⨯⨯= 选择②(1sin 3cos B b A =sin 3sin cos A B B A =, 又sin 0B ≠,∴sin cos AA=tan A = ∴3A π=,又sin 3B == 结合正弦定理sin sin BC ACA B=,23=4AC ∴=.(2)1sin sin()sin cos cos sin 23236C A B A B A B =+=+=+⨯=,11sin 4622S AC BC C =⋅⋅=⨯⨯= 10.现给出两个条件:①22cos c a B =,②()2cos cos b A C =,从中选出一个条件补充在下面的问题中,并以此为依据求解问题.在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,______. (1)求A ; (2)若31a ,求ABC 周长的最大值.【答案】(1)6π;(2)1.若选择条件①22cos c a B =.(1)由余弦定理可得22222cos 22a c b c a B a ac+-==⋅,整理得222c b a +-=,可得222cos 2b c A bc a +===-. 因为()0,A π∈,所以6A π=.(2)由余弦定理2222cos a b c bc A =+-,得)222122b c bc =+-⋅,即()(22242b c b c bc -+=+-,亦即(()(224bc b c =+--,因为()24b c bc +≤,当且仅当b c =时取等号,所以()((()22424b c b c ++--≤⨯,解得b c +≤当且仅当b c ==.所以1a b c ++≤,即ABC 周长的最大值为1若选择条件②()2cos cos b A C =.(1)由条件得2cos cos cos b A C A =,由正弦定理得)()2sin cos sin cos sin cos B A A C C A A C B =+=+=.因为sin 0B ≠,所以cos A =, 因为()0,A π∈,所以6A π=.(2)由余弦定理2222cos a b c bc A =+-,得)22212b c bc =+-,即()(22242b c b c bc -+=+-,亦即(()(224bc b c =+--,因为()24b c bc +≤,当且仅当b c =时取等号,所以()((()22424b c b c ++--≤⨯,解得b c +≤当且仅当b c ==.所以1a b c ++≤,即ABC 周长的最大值为1 11.在①π6A ∠=,②3ABDS ,③1cos 2ABD ∠=-三个条件中任选一个,补充在以下问题的横线上,并解答.问题:在平面四边形ABCD 中,已知1AB BC CD ===,AD =,且满足________. (1)求sin BDC ∠的值; (2)求平面四边形ABCD 的面积.注:如果选择多个条件分别解答,按照第一个解答计分.【答案】(1(2(1)选①可知:在ABD △中,1,6AD AB A π==∠=,由余弦定理有213cos416BD π=+-=-=,所以1BD =,所以1BD BC CD ===, 所以3BDC π∠=,所以sin BDC ∠=选②可知:在ABD △中,1,4ABDAD AB S ===,所以1331sin 2ABDS A, 解得1sin 2A =,又0A π<<,所以6A π=或56π,当6Aπ=时,213cos4162BD π=+-=-=,所以1BD BC CD ===,所以3BDC π∠=,所以sin BDC ∠=当56Aπ=时,2513cos 76BD π=+-==,所以BD =而1BC CD ==,不满足2+>BC CD BD ==56A π=不成立, 综上得:sinBDC ∠=如选③:在ABD △中,11,cos 2AD AB ABD ==∠=-,又0ABD π<∠<,所以23ABD π∠=,由正弦定理得2sin sin 3ADAB ADB π=∠1sin sin 3ADB =∠,所以1sin 2ADB ∠=,又ADB ABD ∠<∠,所以6ADB π∠=,所以6ADB BAD π∠=∠=,所以1BD AB ==,所以1BD BC CD ===,所以3BDC π∠=,所以sin BDC ∠=(2)由(1)得111sin 23DBCSπ=⨯⨯⨯=11sin 26ABDS π=⨯=所以平面四边形ABCD 的面积为+DBC ABDS S S====12.在①sin sin sin sin A C A Bb a c--=+,②2cos cos cos c C a B b A =+这两个条件中任选一个,补充在下面问题中的横线上,并解答.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c , . (1)求角C ;(2)若c =a b +=ABC 的面积. 注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)3C π=;(2(1)若选①: 由正弦定理得a c a bb a c--=+, 所以222a c ab b -=-,由余弦定理得2222cos c a b ab C =+-, 解得1cos 2C =, 因为()0,C π∈,所以3C π=.若选②:由正弦定理得sin cos sin cos 2sin cos A B B A C C +=, 即sin()2sin cos A B C C +=, 即sin 2sin cos C C C =,因为()0,C π∈,所以sin 0C ≠,所以1cos 2C =,所以3C π=.(2)由余弦定理得2222cos c a b ab C =+-, 得225a b ab =+-,即25()3a b ab =+-,解得2ab =,则ABC 的面积11sin 222ABCSab C ==⨯=故ABC 13.在b a =①2sin tan b A a B =②,()()sin sin sin a c A c A B b B -++=③这三个条件中任选一个,补充在下面的横线上,并加以解答.已知ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,满足______. (1)求角B ;(2)若2a c b +=,且ABC ∆外接圆的直径为2,求ABC ∆的面积.【答案】选择见解析;(1)3B π=;(2 1()选①,由正弦定理得sinsin B A =sin 0A ≠,cos 1B B -=,即1sin 62B π⎛⎫-= ⎪⎝⎭,0B π<<,5666B πππ∴-<-<,66B ππ∴-=,3B π∴=;选②,2sin tan b A a B =,sin 2sin cos a Bb A B =,由正弦定理可得sin 2sin sin sin cos BB A A B=⋅,sin 0A ≠,1cos 2B ∴=,(0,)B π∈,3B π∴=选③,sin()sin()sin A B C C π+=-=,由已知结合正弦定理可得()22a c a cb -+=,222a cb ac ∴+-=,2221cos 222a cb ac B ac ac +-∴===, (0,)B π∈,3B π∴=.2()设ABC 的外接圆半径为R ,则1R =,2sin b R B ==,由余弦定理得()22222cos33b ac ac a c ac π=+-=+-,即3123ac =-,所以3ac =,所以ABC的面积为:1sin 2S ac B == 14.在△ABC 中,sin cos()6b A a B π=-. (1)求B ; (2)若5c =,.求a . 从①7b =,②4Cπ这两个条件中任选一个,补充在上面问题中并作答. 【答案】(1)3π(2)7b =时,8a =;4Cπ时,535a (1)因为sin cos()6b A a B π=-,sin sin a bA B =,所以sin sin sin cos()6B A A B π.又因为sin 0A ≠,所以sin cos()6BBπ,即31sin cos sin 2B B B . 所以sin()03B π.又因为2333B πππ-<-<,所以03B π,所以3B π=.(2)若选①7b =,则在△ABC 中,由余弦定理2222cos b a c ac B =+-, 得25240a a --=,解得8a =或3a =-(舍).所以8a =. 若选②4Cπ,则62sin sin()sin cos cos sin3434A B C ππππ,由正弦定理sin sin a cA C=, 622,解得535a . 所以535a. 15.①在函数1π()sin()(0,||)22f x x ωϕωϕ=+><的图像向右平移π12个单位长度得到()g x 的图像,()g x 的图像关于原点对称,②向量11(3sin,cos ),(cos ,),02224m x x n x ωωωω==>,()f x m n =⋅; ③函数π1()cos sin()(0)2264f x x x ωωω=+->这三个条件中任选一个,补充在下面问题中,并解答.已知_______,函数()f x 图像的相邻两条对称轴之间的距离为π2.(1)求π()6f 的值;(2)求函数()f x 在[0,π]上的单调递减区间. 注:如果选择多个条件分别解答,按第一个解答计分. 【答案】(1)π1()62f =;(2)π2,π63⎡⎤⎢⎥⎣⎦. (1)选择条件①:依题意,()f x 相邻两对称轴之间距离为π2,则周期为π,从而2ω=, 从而1()sin(2)2f x x ϕ=+,1π()sin(2)26g x x ϕ=+-,又()g x 的图像关于原点对称,则(0)0g =,由π||2ϕ<知π6ϕ=, 从而1π()sin(2)26f x x =+,π1()62f = 选择条件②: 依题意,31()sin cos cos 2224f x m n x x x ωωω=⋅=+即有:11π()cos =sin()426f x x x x ωωω=++ 又因为()f x 相邻两对称轴之间距离为π2,则周期为π,从而2ω=, 从而1π()sin(2)26f x x =+,π1()62f =选择条件③: 依题意,π1()cossin()2264f x x x ωω=+-即有:11()cos(cos )222224f x x x x ωωω=+-化简得:211()cos (cos )22224f x x x x ωωω=+-即有:11π()cos =sin()426f x x x x ωωω=++ 又因为()f x 相邻两对称轴之间距离为π2,则周期为π,从而2ω=, 从而1π()sin(2)26f x x =+,π1()62f =(2)1π()sin(2)26f x x =+,则其单调递减区间为ππ32π22ππ,262k x k k Z +≤+≤+∈,解得π2π,ππ,63x k k k Z ⎡⎤∈++∈⎢⎥⎣⎦,令0k =,得π2,π63x ⎡⎤∈⎢⎥⎣⎦, 从而()f x 在[]0,π上的单调递减区间为π2,π63⎡⎤⎢⎥⎣⎦.16.请从①6,sin()2b B π=-=42a c b +=+=,中,并解决问题.问题:在ABC 中,角、、A B C 所对的边分别为a b c 、、,已知sin sin sin c a c bB A C--=+ (1)求a ;(2)求ABC 的面积.(注:如果选择条件①和条件②分别解答,按第一个解答计分.) 【答案】选择条件①:(1)(2;选择条件②:(1)(2) 选择条件①:(1)sin sin sin c a c bB AC --=+, ∴由正弦定理可得:c a c bb a c--=+,整理可得:222b c a bc +-=,根据余弦定理可知22201cos ,6022b c a A A bc +==∴=- ABC中,6,sin()2b B π=-=即cos B =,则0,2B π⎛⎫∈ ⎪⎝⎭,所以3sin 4B =,由正弦定理得6sin 23sin 4b Aa B===(2)因为133sin sin()sin cos cos sin 248C A B A B A B =+=+=⨯=11sin 622ABCSab C ==⨯=选择条件②:(1)sin sin sin c a c bB AC --=+, ∴由正弦定理可得:c a c bb a c--=+,整理可得:222b c a bc +-=,又2b =,4a c +=+(()224424a a a ∴+---=+;化简整理可得:()(26444a a c =+--==(2)由(1)知222+=a b c ,故三角形为直角三角形,122ABCS∴=⨯⨯综上所述:ABCa S ==17.已知,,abc 分别为ABC 内角,,A B C 的对边,若ABC 是锐角三角形,需要同时满足下列四个条件中的三个: ①3A π=②13a = ③15c = ④1sin 3C =(1)条件①④能否同时满足,请说明理由;(2)以上四个条件,请在满足三角形有解的所有组合中任选一组,并求出对应的ABC 的面积.【答案】(1)不能,理由见解析;(2)同时满足①②③, 解:(1)ABC 不能同时满足①,④. 理由如下: 若ABC 同时满足①,④, 则在锐角ABC 中,11sin 32C =<,所以06C π<< 又因为3A π=,所以32A C ππ<+<所以2B π>,这与ABC 是锐角三角形矛盾所以ABC 不能同时满足①,④.(2)因为ABC 需同时满足三个条件,由(1)知不能同时满足①④,故只能同时满足①②③或②③④ 若同时满足②③④,因为c a >,所以C A >,则6A C π<<,则2B π>这与ABC 是锐角三角形矛盾.故ABC 不能同时满足②③④,只能同时满足①②③.因为2222cos a b c bc A =+-, 所以222113152152b b =+-⨯⨯⨯, 解得8b =或7b =.当7b =时,22271315cos 02713C +-=<⨯⨯,所以C 为钝角,与题意不符合,所以8b =.所以ABC 的面积1sin 2S bc A == 18.在ABC 中,1sin()1,sin 3C A B -==.(1)求sin A 的值;(2)若①AC =;②BC =请从以上两个条件中任选一个,求ABC 的面积.注:如果选择多种方案分别解答,那么按第一种方案解答计分.【答案】(1)32) (1)由(,)2πππ-∈-⇒-=C A C A .又21sin sin()sin(2)cos 212sin 23π=+=+==-=B A C A A A .因为(0,)sin π∈⇒=A A .(2)选①:由正弦定理可得sin ==ABC B.且sin sin()cos 2π=+===C A A .故11sin 22=⨯⨯=⨯=S BC AC C .选②:由正弦定理可得==AC且sin sin()cos 2π=+===C A A .故11sin22=⨯⨯=⨯=S BC AC C.19.在ABC中,a,b,c分别是角A,B,C的对边,3Bπ=,3a=.(1)若4Aπ=,求b;(2)若______,求c的值及ABC的面积.请从①b=sin2sinC A=,这两个条件中任选一个,将问题(2)补充完整,并作答.注意,只需选择其中的一种情况作答即可,如果选择两种情况作答,以第一种情况的解答计分.【答案】(1;(2)选①:4,ABCc S==6c=;ABCS =.(1)由3Bπ=,3a=,4Aπ=,由正弦定理可得sin sinb aB A=,则3b==(2)若选①:由余弦定理可得2222cosb c a ac B=+-,即21139232c c=+-⨯⨯,整理可得2340c c=--,解得4c=,-1c=(舍去),∴11sin3422ABCS ac B==⨯⨯=选②:sin2sinC A=,可得2c a=,3a=∴6c=∴11sin6322ABCS ac B==⨯⨯=20.在①()1cos C b B+=sin cosC a c B=-这两个条件中任选一个作为已知条件,补充到下面的横线上并作答.ABC的内角A、B、C的对边分别为a、b、c,已知______.(1)求C;(2)若7c=,13a b+=,求ABC的面积.【答案】(1)3π;(2)(1)选择条件①:()1cos sin C b B +=,由正弦定理可得()1cos sin sin C B C B +=,sin 0B ≠,1cos C C ∴+=,cos 1C C -=,即2sin 16C π⎛⎫-= ⎪⎝⎭,所以,1sin 62C π⎛⎫-= ⎪⎝⎭, 0C π<<,则5666C πππ-<-<,66C ππ∴-=,解得3C π=; 选择条件②:3sin cos 3b C a c B =-,由正弦定理得sin sin sin cos 3B C A C B =-, ()()sin sin sin sin cos cos sin A B C B C B C B C π=-+=+=+⎡⎤⎣⎦,∴上式可化简为sin sin cos 3B C B C =,sin 0B ≠,cos tan C C C =⇒=0C π<<,3C π∴=; (2)由余弦定理2222cos c a b ab C =+-,可得2249a b ab +-=,又由13a b +=,则()2349a b ab +-=,()249403a b ab +-∴==,因此,ABC 的面积为12sin ABCS ab C ==21.在ABC 中,3A π=,b = (Ⅰ)B 的大小; (Ⅱ)ABC 的面积 .条件①:222b a c =+; 条件②:cos sin a B b A =. 注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(Ⅰ)4B π=若选择条件①:222b a c =+.(Ⅰ)因为222b a c =+,由余弦定理222cos 22a cb B ac +-==, 因为()0,B π∈,所以4B π=.(Ⅱ)由正弦定理sin sin a b A B=,得sin sin b Aa B===又因为()sin sin sin cos cos sin C A B A B A B =+=+12222=+⨯4=,所以11sin 22ABC S ab C ===△. 若选择条件②:cos sin a B b A =. (Ⅰ)由正弦定理sin sin a bA B=,得sin sin a B b A =. 又因为cos sin a B b A =,所以sin cos B B =, 又因为()0,B π∈,所以4B π=.(Ⅱ)由正弦定理sin sin a b A B=,得sin sin b Aa B===又因为()sin sin sin cos cos sin C A B A B A B =+=+12222=+⨯4=,所以11sin 22ABC S ab C ===△. 22.在锐角ABC中,a =,________, (1)求角A ;(2)求ABC 的周长l 的范围.注:在①cos,sin ,cos ,sin 2222A A A A m n ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,且12m n ⋅=-,②cos (2)cos A b c a C -=,③11()cos cos ,()344f x x x f A π⎛⎫=--= ⎪⎝⎭这三个条件中任选一个,补充在上面问题中并对其进行求解.【答案】条件选择见解析,(1)3A π=;(2)(6+. (1)若选①,因为cos ,sin ,cos ,sin 2222A A A A m n ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,且12m n ⋅=-, 所以221cossin 222A A -+=-,即1cos 2A =, 因为0,2A π⎛⎫∈ ⎪⎝⎭,所以3A π=. 若选②,因为cos (2)cos A b c a C -=,2cos cos cos b A a C c A =+, 所以2sin cos sin cos sin cos sin()sin B A A C C A A C B =+=+=, 因为sin 0B ≠,所以1cos 2A =. 又因为0,2A π⎛⎫∈ ⎪⎝⎭,所以3A π=.若选③,11()cos cos 24f x x x x ⎛⎫=- ⎪ ⎪⎝⎭21111cos 2sin 21cos sin 242224x x x x x +=-=⨯-111cos 22sin 22226x x x π⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭. 因为1()4f A =,所以1sin 262A π⎛⎫+= ⎪⎝⎭.又因为0,2A π⎛⎫∈ ⎪⎝⎭,72,666A πππ⎛⎫+∈ ⎪⎝⎭, 所以5266ππ+=A ,3A π=. (2)因为3A π=,所以23B C π+=,23C B π=-.4sin sin b CB C ===,所以4sin b B =,24sin 3c B π⎛⎫=- ⎪⎝⎭.214sin 4sin 4sin 4sin 32l B B B B B π⎫⎛⎫=-++=+++⎪ ⎪⎪⎝⎭⎝⎭6B π⎛⎫=++ ⎪⎝⎭因为锐角ABC 且3A π=,所以,62B ππ⎛⎫∈ ⎪⎝⎭所以2,633B πππ⎛⎫+∈ ⎪⎝⎭sin 16B π⎛⎫<+≤ ⎪⎝⎭,故(6l ∈+.23.在①cos cos 2cos c A a C b B +=,②222a c b ac +-=,③22cos 3cos 02BB -=这三个条件中任选一个,补充在下面问题中,并解答.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足______. (1)求角B 的大小;(2)若b =ABC 面积的最大值. 【答案】条件选择见解析(1)3π;(2)4. 解:若选条件①:(1)因为cos cos 2cos c A a C b B +=,由正弦定理,得sin cos cos sin 2sin cos C A C A B B +=,即()sin 2sin cos A C B B +=.在ABC 中,A B C π++=,得()()sin sin sin A C B B π+=-=. 即sin 2sin cos B B B =,又()0,B π∈,所以1cos 2B =,所以3B π=. (2)因为b =2222232cos 2b a c ac B a c ac ac ac ac ==+-=+-≥-=(当且仅当a c =时等号成立),结合三角形的面积公式得到11sin 322ABCSac B =≤⨯=,. 若选条件②:(1)结合余弦定理得到2221cos 22a cb B ac +-==,又()0,B π∈,所以3B π=.(2)由b =2222232cos 2b a c ac B a c ac ac ac ac ==+-=+-≥-=(当且仅当a c =时等号成立),结合三角形的面积公式得到11sin 322ABCSac B =≤⨯=. 若选条件③: (1)因为22cos3cos 02BB -=,所以 1cos 3cos 0B B +-=,所以1cos 2B =. 又()0,B π∈,所以3B π=.(2)由b =2222232cos 2b a c ac B a c ac ac ac ac ==+-=+-≥-=(当且仅当a c =时等号成立),结合三角形的面积公式得到11sin 322ABCSac B =≤⨯=. 24.已知ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,2b =,2242c a c +-=-. (1)求A 的值;(2)从①a B =,②()1sin 2B C -=两个条件中选一个作为已知条件,求sin C 的值. 【答案】(1)23π;(2)答案见解析. (1)由2b =,2242c a c +-=-,∴22222421cos 22242b c a c a c A bc c c +-+--====-⋅,又因为0A π<<,所以23A π=. (2)选择①作为己知条件.在ABC中,由a B =,以及正弦定理sin sin a b A B=,2sin sin 3B =,解得21sin 2B =, 由23A π=,得B 为锐角, 所以4B π=,因为在ABC 中,A B C π++=,所以()sin sin sin cos cos sin C A B A B A B =+=+=22sincos cos sin 3434ππππ+,所以sin C =. 选择②作为已知条件,因为在ABC △中,A B C π++=,所以()1sin sin 232B C C π⎛⎫-=-=⎪⎝⎭, 所以2236C k πππ-=+或()52k 6k Z ππ+∈,所以12C π=,故sin 4C =. 25.在①22()3a b c ab +=+,①sin cos a A a C =-,①(2)sin (2)sin 2sin a b A b a B c C -+-=,这三个条件中任选一个,补充在下列问题中,并解答.已知ABC 的内角,,A B C 的对边分别为,,a b c,c =_____.(1)求C ∠;(2)求ABC 周长的最大值.注:如果选择多个条件分别解答,按第一个解答计分. 【答案】(1)条件选择见解析,3C π=;(2)最大值为 (1)选①,把22()3a b c ab +=+,整理得222a b c ab +-=,由余弦定理得2221cos 222a b c ab C ab ab +-===,因为(0,)C π∈,所以3C π=.选②,因为sin cos a A a C =-,由正弦定理,可得sin sin sin cos A C A A C -,因为(0,)A π∈,则sin 0A ≠cos 1C C -=, 可得1sin 62C π⎛⎫-= ⎪⎝⎭, 又0C π<<,所以5666C πππ-<-<,故66C ππ-=,即3C π=. 选③,因为(2)sin (2)sin 2sin a b A b a B c C -+-=,由正弦定理得:2(2)(2)2a b a b a b c -+-=,即222a b c ab +-=,所以2221cos 22a b c C ab +-==,因为0C π<<,所以3C π=. (2)由(1)可知,3C π=, 在ABC 中,由余弦定理得222cos 3a b ab C +-=,即223a b ab +-=,所以223()()334a b a b ab ++-=≤,当且仅当a b =时取等号,所以a b +≤a b c ++≤即ABC 周长的最大值为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列梳理与解三角形难点突破副标题一、选择题(本大题共9小题,共45.0分)1.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A. 12种B. 18种C. 24种D. 36种【答案】D【解析】【分析】本题考查排列组合的实际应用,注意分组方法以及排列方法的区别,考查计算能力.把工作分成3组,然后安排工作方式即可.【解答】解:4项工作分成3组,可得:C42=6,安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:6×A33=36种.故选:D.2.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为()A. 48B. 72C. 90D. 96【答案】D【解析】【分析】本题考查排列和计数原理的实际应用,注意优先考虑特殊元素,属于中档题.根据题意,分两种情况讨论选出参加竞赛的4人,①选出的4人没有甲,②选出的4人有甲,分别求出每一种情况下的参赛方案种数,由分类计数原理计算可得答案.【解答】解:根据题意,从5名学生中选出4名分别参加竞赛,分两种情况讨论:①选出的4人没有甲,即选出其他4人即可,有A44=24种参赛方案;②选出的4人有甲,由于甲不能参加生物竞赛,则甲有3种选法,在剩余4人中任选3人,参加剩下的三科竞赛,有A43=24种参赛方案,则此时共有3×24=72种参赛方案;则有24+72=96种不同的参赛方案.故选D.3.甲、乙、丙等6人排成一排,且甲、乙均在丙的同侧,则不同的排法共有()种(用数字作答).A. 720B. 480C. 144D. 360【答案】B【解析】【分析】本题考查排列、组合及简单计数问题,考查学生的计算能力,比较基础.甲、乙、丙等六位同学进行全排,再利用甲、乙均在丙的同侧占总数的46=23,即可得出结论.【解答】解:甲、乙、丙等六位同学进行全排可得A66=720种,∵甲乙丙的顺序为甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种,∴甲、乙均在丙的同侧,有4种,∴甲、乙均在丙的同侧占总数的46=23,∴不同的排法种数共有23×720=480种.故选B.4.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A. 60种B. 70种C. 75种D. 150种【答案】C【解析】【分析】本题考查分步计数原理的应用,注意区分排列、组合的不同.根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C51=5种选法,则不同的选法共有15×5=75种.故选C.5.有5位学生和2位老师并坐一排合影,若教师不能坐在两端,且要坐在一起,则有多少种不同坐法()A. 7!种B. 240种C. 480种D. 960种【答案】D【解析】【分析】本题考查排列、组合的运用,关键在于掌握常见的问题的处理方法,如相邻问题用捆绑法,不相邻问题用插空法,属于基础题.先排5位学生,由排列公式可得其坐法数目,要求2位教师坐在一起,用捆绑法,插入到5个学生符合要求的4个空位中,易得其有2A41种坐法,由分步计数原理计算可得答案.【解答】解:先排5位学生,有A55种坐法,2位教师坐在一起,将其看成一个整体,可以交换位置,有2种坐法,将这个“整体”插在5个学生的空位中,又由教师不能坐在两端,则有4个空位可选,则共有2A55A41=960种坐法.故选D.6.某企业有4个分厂,新培训了一批6名技术人员,将这6名技术人员分配到各分厂,要求每个分厂至少1人,则不同的分配方案种数为()A. 1080B. 480C. 1560D. 300【答案】C【解析】【分析】本题考查组合知识的运用,属于基础题.先把6名技术人员分成4组,每组至少一人,再把这4个组的人分给4个分厂,利用乘法原理,即可得出结论.【解答】解:先把6名技术人员分成4组,每组至少一人,若4个组的人数按3、1、1、1分配,则不同的分配方案有C63=20种不同的方法,若4个组的人数为2、2、1、1分配,则不同的分配方案有C62C422!·C212!=45种不同的方法,故所有的分组方法共有20+45=65种,再把4个组的人分给4个分厂,不同的方法有65×A44=1560种.故选C.7.设有编号为1,2,3,4,5的五个茶杯和编号为1,2,3,4,5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有()A. 30种B. 31种C. 32种D. 36种【答案】B【解析】【分析】本题主要考查组合的实际应用.本题主要是分类的时候要做到不重不漏,避免出错,属于中档题.至少有两个杯盖和茶杯的编号相同的盖法分为五个全同,四个相同,三个相同以及两个相同分别求出即可求出结论.【解答】解:假设相同的盖和杯5个全部都是,那么只有一种,假设相同的盖和杯有4个,那么有0种,假设相同的盖和杯3个,那么就有C 53×1=10种;假设相同的盖和杯2个,那么就有C 52×2=20种;所以:1+10+20=31种.故选B.8.锐角△ABC中,内角A,B,C的对边分别为a,b,c,且满足(a−b)(sinA+sinB)=(c−b)sinC,若a=√3,则b2+c2的取值范围是()A. B. C. D.【答案】A【解析】【分析】本题考查正弦定理,余弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.由已知利用正弦定理可得b2+c2−a2=bc,再利用余弦定理可得cos A,进而可求A,利用正弦定理,三角函数恒等变换的应用化简可得b2+c2=4+2sin(2B−π6),利用B的范围,可求2B−π6的范围,利用正弦函数的图象和性质可求其范围.【解答】解:∵(a−b)(sinA+sinB)=(c−b)sinC,由正弦定理可得:(a−b)(a+b)=(c−b)c,化为b2+c2−a2=bc.由余弦定理可得:cosA=b2+c2−a22bc =bc2bc=12,∴A为锐角,可得A=π3,∵a=√3,∴由正弦定理可得:b sinB =csin (2π3−B)=√3√32=2,∴可得:b 2+c 2=(2sinB)2+[2sin(2π3−B)]2 =3+2sin 2B +√3sin2B =4+2sin(2B −π6), ∵B ∈(π6,π2),可得:2B −π6∈(π6,5π6),∴sin (2B −π6)∈(12,1],可得:b 2+c 2=4+2sin(2B −π6)∈(5,6]. 故选A .9. 已知△ABC 的三个内角A ,B ,C 的对应边分别为a ,b ,c ,且三角形面积为S ,若S =14a 2.则使得sin 2B +sin 2C =msinB ⋅sinC 成立的实数m 的最大值是( ) A. 2 B. 2√2C. √3D. 2√3【答案】B【解析】【分析】利用正弦定理将角化边得出b 2+c 2=bcm ,根据面积公式得出a 2=2bcsinA ,代入余弦定理即可得出m 关于A 的式子,利用三角恒等变换求出m 的最值.本题考查了正弦定理,余弦定理在三角形中的应用,考查了三角恒等变换的应用,考查了运算求解能力和转化思想,属于中档题. 【解答】解:∵sin 2B +sin 2C =msinBsinC , ∴b 2+c 2=bcm , ∵S △ABC =14a 2=12bcsinA ,∴a 2=2bcsinA ,∵由余弦定理可得:a 2=b 2+c 2−2bccosA , ∴2bcsinA =b 2+c 2−2bccosA ,∴2bc(sinA +cosA)=b 2+c 2=bcm ,可得:m =2(sinA +cosA)=2√2sin (A +π4), ∴当sin (A +π4)=1,即A =π4时,m 取得最大值2√2. 故选:B .二、填空题(本大题共5小题,共25.0分)10. 某校选定甲、乙、丙、丁、戊共5名教师去3个边远学校支教,每学校至少1人,其中甲和乙必须在同一学校,甲和丙一定在不同学校,则不同的选派方案共有______ 种. 【答案】30【解析】【分析】本题考查了分类加法和分步乘法计数原理,关键是分类,属于中档题.甲和乙同校,甲和丙不同校,所以有2,2,1和3,1,1两种分配方案,再根据计数原理计算结果. 【解答】解:因为甲和乙同校,甲和丙不同校,所以有2,2,1和3,1,1两种分配方案, ①2,2,1方案:甲、乙为一组,从余下3人选出2人组成一组,然后排列,共有:C 32A 33=18种;②3,1,1方案:在丁、戊中选出1人,与甲乙组成一组,然后排列,共有:C 21A 33=12种;所以,选派方案共有18+12=30种. 故答案为30.11. 某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位中至少有3个连在一起,则不同的停放方法有______ 种. 【答案】96【解析】【分析】本题考查排列组合知识的运用,考查插空法,考查学生的计算能力,属于中档题. 先进行捆绑再进行插空即可得出结果. 【解答】解:把3个空位捆绑在一起,当作一个元素,第一步,在剩余的4个车位中选3个车位进行排列,有C 43A 33种;第二步,把捆绑在一起的3个空位进行插空(注意:插在另外一个空位的左边或右边只能算一种情况),有A 41种,根据分步乘法计数原理,不同的停放方法有C 43A 33A 41=96种.12. 把编号为1,2,3,4,5,6,7的7张电影票分给甲、乙、丙、丁、戊五个人,每人至少一张,至多分两张,且分得的两张票必须是连号,那么不同分法种数为______ . 【答案】1200【解析】【分析】本题考查排列、组合的应用,关键是正确将7张电影票分成5组,属于中档题.根据题意,分2步进行分析:先将7张电影票分成5组,其中2组每组2张,其余三组每组1张,由列举法可得分组方法数目,再将分好的5组全排列,对应甲、乙、丙、丁、戊五个人,由排列数公式计算可得其情况数目,进而由分步计数原理计算可得答案. 【解析】解:根据题意,将7张电影票分给五个人,每人至少一张,至多分两张, 则其中2人2张,其他3人各1张,则需要先将7张电影票分成5组,其中2组每组2张,其余三组每组1张,有①12、34、5、6、7;②12、3、45、6、7;③12、3、4、56、7;④12、3、4、5、67;⑤1、23、45、6、7;⑥1、23、4、56、7;⑦1、23、4、5、67;⑧1、2、34、56、7,⑨1、2、34、5、67;⑩1、2、3、45、67; 共10种情况;再将分好的5组全排列,对应甲、乙、丙、丁、戊五个人,有A 55=120种情况; 则不同分法有10×120=1200种; 故答案为:1200.13. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________. 【答案】21132113【解析】【分析】本题考查正弦定理的运用,同时考查两角和的正弦公式,以及同角的平方关系的运用,考查运算能力,属于中档题.运用同角的平方关系可得sin A,sin C,再由两角和的正弦公式,可得sin B,运用正弦定理可得b=asinBsinA,代入计算即可得到所求值.【解答】解:由cosA=45,cosC=513,且A,B,C∈(0,π),可得:sinA=√1−cos2A=√1−1625=35,sinC=√1−cos2C=√1−25169=1213,sinB=sin(A+C)=sinAcosC+cosAsinC=35×513+45×1213=6365,由正弦定理可得b=asinBsinA =1×636535=2113.故答案为2113.14.△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=______.【答案】【解析】【分析】本题主要考查了正弦定理和两角和的正弦公式,属于基础题.根据正弦定理和两角和的正弦公式计算即可.【解答】解:∵2bcosB=acosC+ccosA,由正弦定理可得,2cosBsinB=sinAcosC+sinCcosA=sin(A+C)=sinB.∵sinB≠0,∴cosB=12.∵0<B<π,.故答案为.三、解答题(本大题共6小题,共72.0分)15.已知a,b,c分别是△ABC内角A,B,C的对边,且满足(b−c)2=a2−bc.(1)求角A的大小;(2)若a=3,sinC=2sinB,求△ABC的面积.【答案】解:(1)∵(b−c)2=a2−bc,可得:b2+c2−a2=bc,∴由余弦定理可得:cosA=b2+c2−a22bc =bc2bc=12,又∵A∈(0,π),∴A=π3;(2)由sinC=2sinB及正弦定理可得c=2b,∵a=3,A=π3,∴由余弦定理可得a2=b2+c2−2bccosA=b2+c2−bc=3b2,∴解得:b=√3,c=2√3,∴S△ABC=12 bcsinA=12×√3×2√3×√32=3√32.【解析】本题主要考查正余弦定理在解三角形中的应用,考查三角形面积公式,属于中档题.(1)由已知等式可得b2+c2−a2=bc,由余弦定理可得cosA=12,结合范围A∈(0,π),即可求得A的值;(2)由sinC=2sinB及正弦定理可得c=2b,又a=3,A=π3,由余弦定理可解得b,c 的值,利用三角形面积公式即可得解.16.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(acos B+bcos A)=c.(1)求角C的大小;(2)若c=√7,△ABC的面积为3√32,求△ABC的周长.【答案】解:(1)已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,∵sinC≠0,sin(A+B)=sinC,∴cosC=12,又0<C<π,∴C=π3;(2)由余弦定理得7=a2+b2−2ab·12,∴(a+b)2−3ab=7,∵S=12absinC=√34ab=3√32,∴ab=6,∴(a+b)2−18=7,∴a+b=5,∴△ABC的周长为5+√7.【解析】此题考查了正弦、余弦定理,三角形的面积公式,以及三角函数的恒等变形,熟练掌握定理及公式是解本题的关键.(1)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sin C不为0求出cos C的值,即可确定出C的度数;(2)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出a+b的值,即可求△ABC 的周长.17. 在ΔABC 中,a 2+c 2=b 2+√2ac .(Ⅰ)求∠B 的大小;(Ⅱ)求√2cosA +cosC 的最大值.【答案】解:(Ⅰ)∵在△ABC 中,a 2+c 2=b 2+√2ac . ∴a 2+c 2−b 2=√2ac . ∴由余弦定理得cosB =a 2+c 2−b 22ac=√2ac 2ac=√22, 又因为B ∈(0,π), ∴B =π4; (Ⅱ)由(Ⅰ)得:C =3π4−A ,∴√2cosA +cosC =√2cosA +cos (3π4−A)=√2cosA −√22cosA +√22sinA =√22cosA +√22sinA =sin (A +π4). ∵A ∈(0,3π4),∴A +π4∈(π4,π), 故当A +π4=π2时,sin (A +π4)取最大值1,即√2cosA +cosC 的最大值为1.【解析】本题考查的知识点是余弦定理,和差角公式,正弦型函数的图象性质,属于中档题.(Ⅰ)由已知根据余弦定理,可得cosB =√22,进而得到答案;(Ⅱ)由(Ⅰ)得:C =3π4−A ,结合正弦型函数的图象和性质,可得√2cosA +cosC 的最大值.18. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin (A +C)=8sin 2B2.(1)求cos B ;(2)若a +c =6,△ABC 的面积为2,求b . 【答案】解:(1)∵sin (A +C)=8sin 2B2,,∴sinB =4(1−cosB), ∵sin 2B +cos 2B =1,∴16(1−cosB)2+cos 2B =1, ∴17cos 2B −32cosB +15=0, ∴(17cosB −15)(cosB −1)=0, ∵B 为三角形内角,则cosB ≠1,∴cosB=1517.(2)由(1)可得,∵S△ABC=12ac·sinB=2,∴ac=172,∴由余弦定理可得b2=a2+c2−2ac·cosB=a2+c2−2×172×1517=a2+c2−15=(a+c)2−2ac−15=36−17−15=4,∴b=2.【解析】本题考查了三角形的内角和定理,降幂公式,三角形的面积公式,余弦定理,属于中档题.(1)利用三角形的内角和定理可知A+C=π−B,再利用诱导公式化简sin(A+C),利用降幂公式化简8sin2B2,结合sin2B+cos2B=1,求出cos B.(2)由(1)可得sinB=817,利用三角形面积公式求出ac的值,再利用余弦定理变形即可求出b.19.△ABC中,角A,B,C所对边分别是a,b,c,且.(1)求的值;(2)若a=√3,求△ABC面积的最大值.【答案】解:(1)sin2B+C2+cos2A=sin2π−A2+2cos2A−1=cos2A2+2cos2A−1=1+cosA2+2cos2A−1=1+1 32+2×19−1=−19.(2)在△ABC中,cosA=13,可得:sinA=√1−19=2√23,由余弦定理可得a2=b2+c2−2bccosA=b2+c2−23bc≥2bc−23bc=43bc,即有bc ≤34a 2=94,当且仅当b =c =32时,取得等号, 则△ABC 面积S =12bcsinA ≤12×94×2√23=3√24, 即有b =c =32时,△ABC 的面积取得最大值3√24.【解析】本题考查三角函数的化简和求值,注意运用诱导公式和二倍角公式,考查三角形的余弦定理和面积公式,以及基本不等式的运用,属于中档题.(1)利用诱导公式及二倍角的余弦公式对式子化简,代入即可得到所求值; (2)运用余弦定理和面积公式,结合基本不等式,即可得到最大值.20. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知向量m⃗⃗ =(cosA,cosB),n ⃗ =(a,2c −b),且m ⃗⃗⃗ //n ⃗ .(Ⅰ)求角A 的大小;(Ⅱ)求sinB +sinC 的最大值并判断此时△ABC 的形状.【答案】解:(Ⅰ)∵m⃗⃗⃗ //n ⃗ ,∴acos B −(2c −b)cos A =0, 在△ABC 中,由正弦定理得sin A cos B −(2sin C −sin B)cos A =0, 所以sin A cos B −2sin C cos A +sin B cos A =0, 即sin A cos B +sin B cos A =2sin C cos A , 所以sin (A +B)=2sin C cos A .又A +B +C =π,所以sin C =2sin C cos A ,) 因为0<C <π,所以sin C >0,所以cos A =12,又0<A <π,所以A =π3.(Ⅱ)由已知sinC +sinB =sinB +sin (π−B −A)=sinB +sin (2π3−B) =sinB +√32cosB +12sinB =√3sin (B +π6)≤√3.当B +π6=π2,B =π3.则△ABC 为正三角形时sinA +sinB 的最大值是√3.【解析】(I)利用数量积运算性质、正弦定理、和差公式即可得出. (II)利用和差公式、三角函数的单调性即可得出.本题考查了数量积运算性质、正弦定理、和差公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.。