经典编排-高中理科数学试题分类汇编6:不等式 Word版含答案

合集下载

高考数学压轴专题(易错题)备战高考《不等式》分类汇编附答案

高考数学压轴专题(易错题)备战高考《不等式》分类汇编附答案

【高中数学】数学高考《不等式》试题含答案一、选择题1.已知0a >,0b >,且()122y a b x =+为幂函数,则ab 的最大值为( ) A .18B .14C .12D .34【答案】A 【解析】 【分析】根据()122y a b x =+为幂函数,得到21a b +=,再将ab 变形为ab 122a b =⋅利用基本不等式求解. 【详解】因为()122y a b x =+为幂函数, 所以21a b +=, 又因为0a >,0b >,所以ab 2112122228a b a b +⎛⎫=⋅≤= ⎪⎝⎭,当且仅当21a b +=,2a b =即11,24a b ==取等号. 所以ab 的最大值为 18. 故选:A 【点睛】本题主要考查幂函数的定义和基本不等式的应用,还考查运算求解的能力,属于中档题.2.若,x y 满足约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则122y x ⎛⎫⋅ ⎪⎝⎭的最小值为( )A .116B .18C .1D .2【答案】A 【解析】 【分析】画出约束条件所表示的可行域,结合指数幂的运算和图象确定出目标函数的最优解,代入即可求解. 【详解】由题意,画出约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域,如图所示,其中可得(3,1)A -,(5,1)B ,(3,3)C ,因为1222yx x y -⎛⎫⋅= ⎪⎝⎭,令z x y =-,当直线y x z =-经过A 时,z 取得最小值, 所以z 的最小值为min 314z =--=-,则1222yxx y -⎛⎫⋅= ⎪⎝⎭的最小值为41216-=. 故选:A .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力.3.已知,x y 满足约束条件23023400x y x y y -+≥⎧⎪-+≤⎨⎪≥⎩,若目标函数2z mx ny =+-的最大值为1(其中0,0m n >>),则112m n+的最小值为( ) A .3 B .1C .2D .32【答案】D 【解析】 【分析】画出可行域,根据目标函数z 的最大值求得,m n 的关系式23m n +=,再利用基本不等式求得112m n +的最小值. 【详解】画出可行域如下图所示,由于0,0m n >>,所以基准直线0mx ny +=的斜率为负数,故目标函数在点()1,2A 处取得最大值,即221m n +-=,所以23m n +=.()111111515193222323232322n m n m m n m n m n m n m n ⎛⎫⎛⎫⎛⎫+=⨯+⨯+=⨯++≥⨯+⋅=⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当,1n m m n m n ===时等号成立,所以112m n +的最小值为32. 故选:D【点睛】本小题主要考查根据目标函数的最值求参数,考查基本不等式求最值,考查数形结合的数学思想方法,属于中档题.4.已知关于x 的不等式()()222240m x m x -+-+>得解集为R ,则实数m 的取值范围是( ) A .()2,6B .()(),26,-∞+∞UC .(](),26,-∞⋃+∞D .[)2,6【答案】D 【解析】 【分析】分20m -=和20m -≠两种情况讨论,结合题意得出关于m 的不等式组,即可解得实数m 的取值范围.【详解】当20m -=时,即当2m =时,则有40>,该不等式恒成立,合乎题意;当20m -≠时,则()()220421620m m m ->⎧⎪⎨∆=---<⎪⎩,解得26m <<. 综上所述,实数m 的取值范围是[)2,6. 故选:D. 【点睛】本题考查利用变系数的二次不等式恒成立求参数,要注意对首项系数是否为零进行分类讨论,考查运算求解能力,属于中等题.5.设实数满足条件则的最大值为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】画出可行域和目标函数,根据目标函数的几何意义平移得到答案. 【详解】如图所示:画出可行域和目标函数,,即,表示直线在轴的截距加上1,根据图像知,当时,且时,有最大值为.故选:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.6.已知点P ,Q 分别是抛物线28x y =和圆22(2)1x y +-=上的动点,点(0,4)A ,则2||||PA PQ 的最小值为( )A .10B .4C.2 D.1【答案】B 【解析】 【分析】设出点P 的坐标()00,x y ,用0y 表示出PA ;根据圆上一点到定点距离的范围,求得PQ 的最大值,再利用均值不等式求得目标式的最值. 【详解】设点()00,P x y ,因为点P 在抛物线上,所以()200080x y y =≥,因为点(0,4)A ,则()()2222200000||48416PA x y y y y =+-=+-=+.又知点Q 在圆22(2)1x y +-=上,圆心为抛物线的焦点(0,2)F ,要使2||||PA PQ 的值最小,则||PQ 的值应最大,即0max 13PQ PF y =+=+.所以()()222000003632516||||33y y y PA PQ y y +-+++==++ ()002536643y y =++-≥=+ 当且仅当02y =时等号成立.所以2||||PA PQ 的最小值为4.故选:B. 【点睛】本题考查抛物线上一点到定点距离的求解,以及圆上一点到定点距离的最值,利用均值不等式求最值,属综合中档题.7.在ABC V 中,,,a b c 分别为A ∠,B Ð,C∠所对的边,函数32()1f x x bx x =+++的导函数为()f x ',当函数[]()ln ()g x f x '=的定义域为R 时,B Ð的取值范围为( )A .,63ππ⎡⎤⎢⎥⎣⎦B .,6ππ⎡⎫⎪⎢⎣⎭C .2,63ππ⎡⎤⎢⎥⎣⎦D .0,6π⎛⎫⎪⎝⎭【答案】D 【解析】【分析】首先求出函数的导数,依题意即2()320f x x bx '=+>恒成立,所以()222(2)40b a c ∆=-+-<,再结合余弦定理即可求出B 的取值范围;【详解】解:因为32()1f x x bx x =+++,所以222()323a c f x x bx +-'=++,若()g x 的定义域为R,则有()222(2)40b a c ∆=-+-<,即222a c b +->,结合余弦定理,222cos 22a cb B ac +-=>,故0,6B π⎛⎫∈ ⎪⎝⎭,故选:D. 【点睛】本题考查导数的计算,对数函数的定义域以及不等式恒成立问题,属于中档题.8.已知α,β均为锐角,且满足()sin 2cos sin αβαβ-=,则αβ-的最大值为( )A .12πB .6π C .4π D .3π 【答案】B 【解析】 【分析】利用两角差的正弦公式,将已知等式化简得到tan 3tan αβ=,由α,β均为锐角,则,22ππαβ⎛⎫-∈- ⎪⎝⎭,要求出αβ-的最大值,只需求出tan()αβ-的最大值,利用两角差的正切公式,将tan()αβ-表示为tan β的关系式,结合基本不等式,即可求解. 【详解】由()sin 2cos sin αβαβ-=整理得()sin 2cos sin αβαβ-=, 即sin cos cos sin 2cos sin αβαβαβ-=,化简得sin cos 3cos sin αβαβ=,则tan 3tan αβ=, 所以()2tan tan 2tan 2tan 11tan tan 13tan 3tan tan αββαβαββββ--===+++,又因为β为锐角,所以tan 0β>,根据基本不等式213tan tan ββ≤=+当且仅当3tan 3β=时等号成立, 因为,22ππαβ⎛⎫-∈- ⎪⎝⎭,且函数tan y x =在区间,22ππ⎛⎫-⎪⎝⎭上单调递增, 则αβ-的最大值为6π. 故选:B . 【点睛】本题考查两角差最值,转化为求三角函数最值是解题的关键,注意应用三角恒等变换、基本不等式求最值,考查计算求解能力,属于中档题.9.已知不等式组y x y x x a ≤⎧⎪≥-⎨⎪≤⎩表示的平面区域的面积为9,若点, 则的最大值为( )A .3B .6C .9D .12【答案】C 【解析】 【分析】 【详解】分析:先画出满足约束条件对应的平面区域,利用平面区域的面积为9求出3a =,然后分析平面区域多边形的各个顶点,即求出边界线的交点坐标,代入目标函数求得最大值. 详解:作出不等式组对应的平面区域如图所示:则(,),(,)A a a B a a -,所以平面区域的面积1292S a a =⋅⋅=, 解得3a =,此时(3,3),(3,3)A B -,由图可得当2z x y =+过点(3,3)A 时,2z x y =+取得最大值9,故选C.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.10.以A 为顶点的三棱锥A BCD -,其侧棱两两互相垂直,且该三棱锥外接球的表面积为8π,则以A 为顶点,以面BCD 为下底面的三棱锥的侧面积之和的最大值为( ) A .2 B .4C .6D .7【答案】B 【解析】 【分析】根据题意补全几何图形为长方体,设AB x =,AC y =,AD z =,球半径为R ,即可由外接球的表面积求得对角线长,结合侧面积公式即可由不等式求得面积的最大值. 【详解】将以A 为顶点的三棱锥A BCD -,其侧棱两两互相垂直的三棱锥补形成为一个长方体,如下图所示:长方体的体对角线即为三棱锥A BCD -外接球的直径, 设AB x =,AC y =,AD z =,球半径为R , 因为三棱锥外接球的表面积为8π, 则284R π=π, 解得2R =,所以体对角线为2,所以2228x y z ++=,111222S yz xy xz =++侧面积 由于()()()()222222240x y zS x y y x x z ++-=-+-+-≥,所以416S ≤,故4S ≤,即三棱锥的侧面积之和的最大值为4, 故选:B. 【点睛】本题考查了空间几何体的综合应用,三棱锥的外接球性质及应用,属于中档题.11.若x 、y 满足约束条件4200x y x y y +≤⎧⎪-+≥⎨⎪≥⎩,目标函数z ax y =+取得最大值时的最优解仅为(1,3),则a 的取值范围为( ) A .(1,1)- B .(0,1)C .(,1)(1,)-∞⋃+∞D .(1,0]-【答案】A 【解析】 【分析】结合不等式组,绘制可行域,判定目标函数可能的位置,计算参数范围,即可. 【详解】结合不等式组,绘制可行域,得到:目标函数转化为y ax z =-+,当0a -≥时,则<1a -,此时a 的范围为(]1,0- 当0a -<时,则1a ->-,此时a 的范围为()0,1,综上所述,a 的范围为()1,1-,故选A . 【点睛】本道题考查了线性规划问题,根据最值计算参数,关键明白目标函数在坐标轴上可能的位置,难度偏难.12.已知实数,x y满足线性约束条件120xx yx y≥⎧⎪+≥⎨⎪-+≥⎩,则1yx+的取值范围为()A.(-2,-1]B.(-1,4]C.[-2,4) D.[0,4]【答案】B【解析】【分析】作出可行域,1yx+表示可行域内点(,)P x y与定点(0,1)Q-连线斜率,观察可行域可得最小值.【详解】作出可行域,如图阴影部分(含边界),1yx+表示可行域内点(,)P x y与定点(0,1)Q-连线斜率,(1,3)A,3(1)410QAk--==-,过Q与直线0x y+=平行的直线斜率为-1,∴14PQk-<≤.故选:B.【点睛】本题考查简单的非线性规划.解题关键是理解非线性目标函数的几何意义,本题1yx+表示动点(,)P x y与定点(0,1)Q-连线斜率,由直线与可行域的关系可得结论.13.已知ABCV外接圆的半径2R=,且223sin2AA=.则ABCV周长的取值范围为()A.(23,4]B.(4,43]C.(43,423]+D.(423,63]+【答案】C【分析】由2sin 2A A =及倍角公式可得23A π=,2sin a R A ==得2212b c bc =++,再利用基本不等式及三角形两边之和大于第三边求出b c +的取值范围即可得到答案.【详解】由题意,22cos 112A A -=-,即cos 1A A =-,可化为33A π⎛⎫-= ⎪⎝⎭,即sin 32A π⎛⎫-= ⎪⎝⎭,因为0A π<<,所以33A ππ-=, 即23A π=,2sin a R A ==ABC V 的内角A ,B ,C ,的对边分别为a ,b ,c ,由余弦定理得,2212b c bc =++,因为222b c bc +≥(当且仅当b c =时取“=”),所以22123b c bc bc =++≥,即4bc ≤,又因为22212()b c bc b c bc =++=+-,所以 2()124bc b c =+-≤,故4b c +≤,则4a b c ++≤+b c a +>,所以2a b c a ++>=4a b c +++≤.故ABC V 周长的取值范围为4+.故选:C【点睛】本题考查利用余弦定理求三角形周长的取值范围,涉及到辅助角公式、基本不等式求最值,考查学生的运算求解能力,是一道中档题.14.已知M 、N 是不等式组1,1,10,6x y x y x y ≥⎧⎪≥⎪⎨-+≥⎪⎪+≤⎩所表示的平面区域内的两个不同的点,则||MN 的最大值是( )ABC.D .172【答案】A【解析】【分析】 先作可行域,再根据图象确定MN 的最大值取法,并求结果.作可行域,为图中四边形ABCD 及其内部,由图象得A(1,1),B(2,1),C(3.5,2.5),D(1,5)四点共圆,BD 为直径,所以MN 的最大值为BD=21417+=,选A.【点睛】 线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.15.某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( )A .169πB .89πC .1627πD .827π 【答案】A【解析】【分析】 根据条件求出圆柱的体积,利用基本不等式研究函数的最值即可.【详解】解:设圆柱的半径为r ,高为x ,体积为V , 则由题意可得323r x -=, 332x r ∴=-, ∴圆柱的体积为23()(3)(02)2V r r r r π=-<<,则33333163331616442()(3)()9442939r r r V r r r r πππ++-=-=g g g g ….当且仅当33342r r =-,即43r =时等号成立. ∴圆柱的最大体积为169π, 故选:A .【点睛】本题考查圆柱的体积和基本不等式的实际应用,利用条件建立体积函数是解决本题的关键,是中档题.16.实数,x y 满足020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2x y -的最大值为( )A .1B .2C .3D .4【答案】C【解析】【分析】画出可行域和目标函数,根据平移得到答案.【详解】如图所示,画出可行域和目标函数, 2z x y =-,则2y x z =-,z 表示直线与y 轴截距的相反数,根据平移知:当3,3x y ==时,2z x y =-有最大值为3.故选:C .【点睛】本题考查了线性规划问题,画出图像是解题的关键.17.已知实数x y ,满足1030350x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则()22(4)2z x y =-+-的最小值为( ) A 5B .5 C .3 D .52【答案】D【解析】【分析】由题意作出其平面区域,22(4)(2)z x y =-+-可看成阴影内的点到点(4,2)P 的距离的平方,求阴影内的点到点(4,2)P 的距离的平方最小值即可.【详解】 解:由题意作出实数x ,y 满足1030350x y x y x y -+⎧⎪+-⎨⎪--⎩……„平面区域, 22(4)(2)z x y =-+-可看成阴影内的点到点(4,2)P 的距离的平方,则22(4)(2)z x y =-+-的最小值为P 到350x y --=的距离的平方, 解得,2222523(1)d -⎛⎫+==; 所以min 52z =故选:D .【点睛】本题考查了简单线性规划,作图要细致认真,用到了表达式的几何意义的转化,属于中档题.18.已知等差数列{}n a 的公差0d ≠,且1313,,a a a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则263n n S a ++的最小值为( ) A .4B .3C .232D .2【答案】D【解析】【分析】由题意得2(12)112d d +=+,求出公差d 的值,得到数列{}n a 的通项公式,前n 项和,从而可得263n n S a ++,换元,利用基本不等式,即可求出函数的最小值. 【详解】解:11a =Q ,1a 、3a 、13a 成等比数列,2(12)112d d ∴+=+.得2d =或0d =(舍去),21n a n ∴=-,2(121)2n n n S n +-∴==, ∴()()22211426263322112n n n n S n n a n n n ++++++===+-+++. 令1t n =+,则264422223n n S t t a t t+=+-≥⋅=+当且仅当2t =,即1n =时,∴263n n S a ++的最小值为2. 故选:D .【点睛】 本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.19.已知x>0,y>0,x+2y+2xy=8,则x+2y 的最小值是A .3B .4C .92D .112 【答案】B【解析】【详解】 解析:考察均值不等式2228(2)82x y x y x y +⎛⎫+=-⋅≥- ⎪⎝⎭,整理得2(2)4(2)320x y x y +++-≥即(24)(28)0x y x y +-++≥,又x+2 y>0,24x y ∴+≥20.已知集合{}0lg 2lg3P x x =<<,212Q xx ⎧⎫=>⎨⎬-⎩⎭,则P Q I 为( ) A .()0,2B .()1,9C .()1,4D .()1,2 【答案】D【解析】【分析】集合,P Q 是数集,集合P 是对数不等式解的集合,集合Q 是分式不等式解的集合,分别求出解集,再交集运算求出公共部分.【详解】 解:{}19P x x =<<,{}02Q x x =<<; ()1,2P Q ∴⋂=.故选:D.【点睛】本题考查对数函数的单调性及运算性质,及分式不等式的解法和集合交集运算,交集运算口诀:“越交越少,公共部分”.简单对数不等式问题的求解策略:(1)解决简单的对数不等式,应先利用对数的运算性质化为同底数的对数值,再利用对数函数的单调性转化为一般不等式求解.(2)对数函数的单调性和底数的值有关,在研究对数函数的单调性时,要按01a <<和1a > 进行分类讨论.分式不等式求解:先将分式化为整式;注意分式的分母不为0.。

高三数学人教版A版数学(理)高考一轮复习试题:6.4基本不等式Word版含答案

高三数学人教版A版数学(理)高考一轮复习试题:6.4基本不等式Word版含答案

1.基本不等式(1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题. 2.不等式的综合应用会运用不等式性质解决比较大小、值域、参数范围问题.知识点 基本不等式 1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时等号成立.(3)其中a +b2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数.2.利用基本不等式求最大、最小值问题 (1)如果x ,y ∈(0,+∞),且xy =P (定值).那么当x =y 时,x +y 有最小值2P .(简记:“积定和最小”) (2)如果x ,y ∈(0,+∞),且x +y =S (定值).那么当x =y 时,xy 有最大值S 24.(简记:“和定积最大”)易误提醒 (1)求最值时要注意三点:一是各项为正;二是寻求定值;三是考虑等号成立的条件.(2)多次使用基本不等式时,易忽视取等号的条件的一致性.必记结论 活用几个重要的不等式: (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +ab ≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ).(4)⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R ). (5)a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0,当且仅当a =b 时取等号).[自测练习]1.下列不等式中正确的是( ) A .若a ∈R ,则a 2+9>6a B .若a ,b ∈R ,则a +bab≥2C .若a ,b >0,则2lg a +b2≥lg a +lg bD .若x ∈R ,则x 2+1x 2+1>1解析:∵a >0,b >0,∴a +b2≥ab .∴2lg a +b 2≥2lg ab =lg (ab )=lg a +lgB.答案:C2.已知f (x )=x +1x -2(x <0),则f (x )有( )A .最大值为0B .最小值为0C .最大值为-4D .最小值为-4解析:∵x <0,∴-x >0,∴x +1x -2=-⎣⎢⎡⎦⎥⎤(-x )+1(-x )-2≤-2(-x )·1(-x )-2=-4,当且仅当-x =-1x,即x =-1时等号成立.答案:C3.下列函数中,最小值为4的是( ) A .y =x +4xB .y =sin x +4sin x (0<x <π)C .y =e x +4e -xD .y =x 2+1+2x 2+1解析:∵y =x +4x 中x 可取负值,∴其最小值不可能为4; 由于0<x <π,∴0<sin x ≤1, ∴y =sin x +4sin x>2sin x ·4sin x=4,其最小值大于4;由于e x >0,∴y =e x +4e -x ≥2e x ·4e -x =4,当且仅当e x =2时取等号, ∴其最小值为4;∵x 2+1≥1,∴y =x 2+1+2x 2+1≥22,当且仅当x =±1时取等号,∴其最小值为22,故选C. 答案:C4.已知x >1,则x +4x -1的最小值为________.解析:∵x >1,∴x -1>0,∴x +4x -1=(x -1)+4x -1+1≥4+1=5,当且仅当x -1=4x -1即x =3时等号成立.答案:5考点一 利用基本不等式证明简单不等式|(1)已知a >0,b >0,a +b =1, 求证:⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9. (2)设a ,b 均为正实数,求证:1a 2+1b 2+ab ≥2 2.[证明] (1)法一:∵a >0,b >0,a +b =1, ∴1+1a =1+a +b a =2+b a .同理,1+1b =2+ab.∴⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =⎝⎛⎭⎫2+b a ⎝⎛⎭⎫2+a b =5+2⎝⎛⎭⎫b a +a b ≥5+4=9.当且仅当b a =a b ,即a =b =12时取“=”. ∴⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9,当且仅当a =b =12时等号成立. 法二:⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1+1a +1b +1ab =1+a +b ab +1ab =1+2ab ,∵a ,b 为正数,a +b =1, ∴ab ≤⎝⎛⎭⎪⎫a +b 22=14,当且仅当a =b =12时取“=”.于是1ab ≥4,2ab ≥8,当且仅当a =b =12时取“=”.∴⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥1+8=9, 当且仅当a =b =12时等号成立.(2)由于a ,b 均为正实数, 所以1a 2+1b2≥21a 2·1b 2=2ab, 当且仅当1a 2=1b 2,即a =b 时等号成立,又因为2ab+ab ≥22ab·ab =22, 当且仅当2ab =ab 时等号成立,所以1a 2+1b 2+ab ≥2ab+ab ≥22,当且仅当⎩⎨⎧1a 2=1b 2,2ab =ab ,即a =b =42时取等号.利用基本不等式证明不等式的方法技巧利用基本不等式证明不等式是综合法证明不等式的一种情况,要从整体上把握运用基本不等式,对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项,并项,也可乘上一个数或加上一个数,“1”的代换法等.考点二 利用基本不等式求最值|(1)已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +13y 的最小值是( )A .2B .2 3C .2 2D .4(2)(2015·高考重庆卷)设a ,b >0,a +b =5,则a +1+b +3的最大值为________.[解析] (1)由lg 2x +lg 8y =lg 2得,2x ×23y =2x +3y =2,即x +3y =1,1x +13y =⎝⎛⎭⎫1x +13y ×(x +3y )=2+3y x +x3y≥2+23y x ×x3y=4,当且仅当⎩⎪⎨⎪⎧3yx =x3y ,x +3y =1,x >0,y >0,即最小值为4.故选D.(2)(a +1+b +3)2=a +b +4+2a +1·b +3≤9+2·(a +1)2+(b +3)22=9+a +b +4=18,所以a +1+b +3≤32,当且仅当a +1=b +3且a +b =5,即a =72,b =32时等号成立.所以a +1+b +3的最大值为3 2.[答案] (1)D (2)3 2条件最值的求解通常有两种方法一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.1.(2016·长春调研)若两个正实数x ,y 满足2x +1y =1,并且x +2y >m 2+2m 恒成立,则实数m的取值范围是( )A .(-∞,-2)∪[4,+∞)B .(-∞,-4]∪[2,+∞)C .(-2,4)D .(-4,2)解析:x +2y =(x +2y )⎝⎛⎭⎫2x +1y =2+4y x +x y +2≥8,当且仅当4y x =xy ,即4y 2=x 2时等号成立.由x +2y >m 2+2m 恒成立,可知m 2+2m <8,m 2+2m -8<0,解得-4<m <2,故选D.答案:D2.(2016·洛阳统考)若正实数x ,y ,z 满足x 2+4y 2=z +3xy ,则当xy z 取最大值时,1x +12y -1z 的最大值为( )A .2B.32C .1D.12解析:∵z =x 2+4y 2-3xy ,x ,y ,z ∈(0,+∞),∴xy z =xy x 2+4y 2-3xy =1x y +4yx -3≤1(当且仅当x =2y 时等号成立),此时1x +12y -1z =1y -12y 2,令1y =t >0,则1x +12y -1z =t -12t 2≤12(当且仅当t =1时等号成立).故选D.答案:D考点三 基本不等式的实际应用|某化工企业2015年年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.设该企业使用该设备x 年的年平均污水处理费用为y (单位:万元).(1)用x 表示y ;(2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备.则该企业几年后需要重新更换新的污水处理设备.[解] (1)由题意得,y =100+0.5x +(2+4+6+…+2x )x ,即y =x +100x +1.5(x ∈N *).(2)由基本不等式得: y =x +100x+1.5≥2x ·100x+1.5=21.5, 当且仅当x =100x,即x =10时取等号.故该企业10年后需要重新更换新的污水处理设备.利用基本不等式求解实际应用题的方法(1)此类型的题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解.(2)当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求解,此时可根据变量的范围用对应函数的单调性求解.3.某制冷设备厂设计生产一种长方形薄板,如图所示,长方形ABCD 的周长为4,沿AC 将△ABC 翻折,使点B 落到点B ′的位置,AB ′交DC 于点P .研究发现当△ADP 的面积最大时最节能,则最节能时△ADP 的面积为( )A .22-2B .3-2 2C .2- 2D .2解析:设AB =x ,DP =y ,则BC =2-x ,PC =x -y .因为x >2-x ,故1<x <2.因为△ADP ≌△CB ′P ,故P A =PC =x -y .由P A 2=AD 2+DP 2,得(x -y )2=(2-x )2+y 2,即y =2⎝⎛⎭⎫1-1x ,1<x <2.记△ADP 的面积为S ,则S =⎝⎛⎭⎫1-1x (2-x )=3-⎝⎛⎭⎫x +2x ≤3-22,当且仅当x =2x ,即x =2时,S 取得最大值3-2 2.答案:B11.忽视等号成立条件致误【典例】 (1)已知x >0,y >0,且1x +2y =1,则x +y 的最小值是________.(2)函数y =1-2x -3x (x <0)的最小值为________.[解析] (1)∵x >0,y >0,∴x +y =(x +y )⎝⎛⎭⎫1x +2y =3+y x +2xy ≥3+22(当且仅当y =2x 时取等号) ∴当x =2+1,y =2+2时,(x +y )min =3+2 2. (2)∵x <0,∴y =1-2x -3x =1+(-2x )+⎝⎛⎭⎫-3x ≥1+2(-2x )·3-x=1+26,当且仅当x =-62时取等号,故y 的最小值为1+2 6.[答案] (1)3+22 (2)1+2 6[易误点评] (1)多次使用基本不等式,忽略等号成立的条件.如:1=1x +2y ≥22xy, ∴xy ≥22,∴x +y ≥2xy ≥42,得(x +y )min =4 2. (2)没有注意到x <0这个条件误用基本不等式得2x +3x≥2 6.[防范措施] (1)利用基本不等式求最值,一定要注意应用条件.(2)尽量避免多次使用基本不等式,若必须多次使用,一定要保证等号成立的条件一致.[跟踪练习] 已知x ,y 为正实数,且满足4x +3y =12,则xy 的最大值为________. 解析:∵12=4x +3y ≥24x ×3y ,∴xy ≤3.当且仅当⎩⎪⎨⎪⎧4x =3y ,4x +3y =12,即⎩⎪⎨⎪⎧x =32,y =2时xy 取得最大值3. 答案:3A 组 考点能力演练1.(2016·汉中一模)“a ≥0,b ≥0”是“a +b 2≥ab ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:由a ≥0,b ≥0可得a +b 2≥ab ,当且仅当a =b 时取等号.反之,若a +b2≥ab ,则ab ≥0,可得a ≥0,b ≥0,故选C.答案:C2.(2016·杭州一模)设a >0,b >0.若a +b =1,则1a +1b 的最小值是( )A .2 B.14 C .4D .8解析:由题意1a +1b =a +b a +a +b b =2+b a +ab ≥2+2b a ×a b =4.当且仅当b a =a b ,即a =b =12时取等号,所以最小值为4.答案:C3.若a >0,b >0且a +b =7,则4a +1b +2的最小值为( )A.89 B .1 C.98D.10277解析:本题考查利用基本不等式求最值.因为b =7-a ,所以4a +1b +2=4a +19-a =19(a +9-a )·⎝ ⎛⎭⎪⎫4a +19-a =19⎣⎢⎡⎦⎥⎤4+1+4(9-a )a +a 9-a ≥19(4+1+4)=1,当且仅当4(9-a )a =a9-a 时取得等号,故选B.答案:B4.设x ,y ∈R ,a >1,b >1.若a x =b y =2,a 2+b =4,则2x +1y 的最大值为( )A .1B .2C .3D .4解析:由a x =b y =2得x =log a 2=1log 2 a ,y =log b 2=1log 2 b ,2x +1y=2log 2 a +log 2 b =log 2 (a 2·b )≤log 2⎝ ⎛⎭⎪⎫a 2+b 22=2(当且仅当a 2=b =2时取等号).答案:B5.若直线ax +by -1=0(a >0,b >0)过曲线y =1+sin πx (0<x <2)的对称中心,则1a +2b 的最小值为( )A.2+1 B .4 2 C .3+2 2D .6解析:本题考查三角函数的性质与基本不等式.注意到曲线y =1+sin πx (0<x <2)的对称中心是点(1,1),于是有a +b =1,1a +2b =⎝⎛⎭⎫1a +2b ·(a +b )=3+b a +2a b ≥3+22,当且仅当b a =2ab ,即b =2a=2(2-1)时取等号,因此1a +2b的最小值是3+22,故选C.答案:C6.(2016·济南一模)若实数x ,y 满足4x +4y =2x +1+2y +1,则t =2x +2y 的取值范围是________.解析:设a =2x ,b =2y ,则a >0,b >0,由条件得a 2+b 2=2(a +b ),∵(a +b )2=a 2+b 2+2ab ≤2(a 2+b 2),当且仅当a =b 时取等号,∴(a +b )2≤4(a +b ),∴a +b ≤4,又(a +b )2-2(a +b )=2ab >0.∴a +b >2,∴2<a +b ≤4,即2<t ≤4.答案:(2,4]7.(2015·郑州二模)已知a ,b 均为正数,且2是2a ,b 的等差中项,则1ab的最小值为________.解析:由于2是2a ,b 的等差中项,故2a +b =4,又a ,b 均为正数,故2ab ≤⎝ ⎛⎭⎪⎫2a +b 22=4,当且仅当2a =b =2,即a =1,b =2时取等号,所以1ab 的最小值为12. 答案:128.已知函数y =log a x +1(a >0且a ≠1)的图象恒过定点A ,若点A 在直线x m +yn -4=0(m >0,n >0)上,则m +n 的最小值为________.解析:由题意可知函数y =log a x +1的图象恒过定点A (1,1),∵点A 在直线x m +y n -4=0上,∴1m +1n =4,∵m >0,n >0,∴m +n =14(m +n )⎝⎛⎭⎫1m +1n =14⎝⎛⎭⎫2+n m +m n ≥14⎝⎛⎭⎫2+2n m ·m n =1,当且仅当m =n =12时等号成立,∴m +n 的最小值为1. 答案:19.已知x ,y ,z 是互不相等的正数,且x +y +z =1,求证:⎝⎛⎭⎫1x -1⎝⎛⎭⎫1y -1⎝⎛⎭⎫1z -1>8. 证明:因为x ,y ,z 是互不相等的正数,且x +y +z =1,所以1x -1=1-x x =y +z x >2yz x ,①1y -1=1-y y =x +z y >2xz y ,② 1z -1=1-z z =x +y z >2xy z,③ 又x ,y ,z 为正数,由①×②×③,得⎝⎛⎭⎫1x -1⎝⎛⎭⎫1y -1⎝⎛⎭⎫1z -1>8.10.某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由形状为长方形A 1B 1C 1D 1的休闲区和环公园人行道(阴影部分)组成.已知休闲区A 1B 1C 1D 1的面积为4 000平方米,人行道的宽分别为4米和10米(如图所示).(1)若设休闲区的长和宽的比|A 1B 1||B 1C 1|=x (x >1),求公园ABCD 所占面积S 关于x 的函数S (x )的解析式;(2)要使公园所占面积最小,则休闲区A 1B 1C 1D 1的长和宽该如何设计? 解:(1)设休闲区的宽为a 米,则长为ax 米,由a 2x =4 000,得a =2010x .则S (x )=(a +8)(ax +20)=a 2x +(8x +20)a +160=4 000+(8x +20)·2010x+160=8010⎝⎛⎭⎫2x +5x +4 160(x >1). (2)8010⎝⎛⎭⎫2x +5x +4 160≥8010×22x ×5x +4 160=1 600+4 160=5 760,当且仅当2x =5x,即x =2.5时,等号成立,此时a =40,ax =100. 所以要使公园所占面积最小,休闲区A 1B 1C 1D 1应设计为长100米,宽40米.B 组 高考题型专练1.(2015·高考湖南卷)若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( ) A. 2B .2C .2 2D .4解析:由已知得1a +2b =b +2a ab=ab ,且a >0,b >0, ∴ab ab =b +2a ≥22ab ,∴ab ≥2 2.答案:C2.(2014·高考重庆卷)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( )A .6+2 3B .7+2 3C .6+4 3D .7+4 3解析:由log 4(3a +4b )=log 2ab ,得12log 2(3a +4b )=12log 2(ab ),所以3a +4b =ab ,即3b +4a=1. 所以a +b =(a +b )⎝⎛⎭⎫3b +4a =3a b +4b a +7≥43+7,当且仅当3a b =4b a,即a =23+4,b =3+23时取等号,故选D.答案:D3.(2015·高考陕西卷)设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .p =r <qC .q =r >pD .p =r >p 解析:∵0<a <b ,∴a +b 2>ab ,又f (x )=ln x 在(0,+∞)上单调递增,故f (ab )<f ⎝ ⎛⎭⎪⎫a +b 2,即q >p ,∵r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =f (ab )=p ,∴p =r <q .故选B. 答案:B4.(2015·高考山东卷)定义运算“⊗”:x ⊗y =x 2-y 2xy(x ,y ∈R ,xy ≠0).当x >0,y >0时,x ⊗y +(2y )⊗x 的最小值为________.解析:因为x >0,y >0,所以x ⊗y +(2y )⊗x =x 2-y 2xy +4y 2-x 22xy =x 2+2y 22xy =12⎝⎛⎭⎫x y +2y x ≥2,当且仅当x y =2y x,即x =2y 时取等号.故x ⊗y +(2y )⊗x 的最小值为 2. 答案: 2。

新课标全国统考区2013届最新高三名校理科数学试题精选分类汇编6:不等式

新课标全国统考区2013届最新高三名校理科数学试题精选分类汇编6:不等式

新课标全国统考区(吉林、河南、黑龙江、内蒙古、山西、云南)2013届最新高三名校理科数学试题精选分类汇编6:不等式一、选择题1 .(河南省六市2013届高三第二次联考数学(理)试题)当实数,x y 满足不等式⎪⎩⎪⎨⎧≤+≥≥2200y x y x 时,恒有3ax y +≤成立,则实数a 的取值范围是( )A .0a ≤B .0a ≥C .02a ≤≤D .3a ≤【答案】D2 .(河南省中原名校2013届高三下学期第二次联考数学(理)试题)若*1(),()(),2f n n g n n n n N nϕ==-=∈,则(),(),()f n g n n ϕ的大小关系 ( ) A .()()()f n g n n ϕ<< B .()()()f n n g n ϕ<< C .()()()g n n f n ϕ<<D .()()()g n f n n ϕ<<【答案】B3 .(云南省玉溪市2013年高中毕业班复习检测数学(理)试题)已知变量x ,y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则z =3x +y 的最大值为( )( )A .12B .11C .3D .-1【答案】B4 .(河南省豫东、豫北十所名校2013届高三阶段性测试(四) 数学(理)试题(word 版))已知实数⎪⎩⎪⎨⎧≤+-≤≥.,13,1,m y x x y y y x 满足如果目标函数y x z 45-=的最小值为—3,则实数m=( )A .3B .2C .4D .311 【答案】A5 .(河南省中原名校2013届高三下学期第二次联考数学(理)试题)若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩所示的平面区域,则当a 从-2连续变化到1时,动直线x +y=a 扫过A 中的那部分区域面积为 ( )A .2B .1C .34D .74【答案】D6 .(河南省商丘市2013届高三第三次模拟考试数学(理)试题)若0.5222,log 3,log sin5a b c ππ===,则,,a b c 之间的大小关系是( )A .c a b >>B .a b c >>C .b a c >>D .b c a >>【答案】B7 .(云南省2013年第二次高中毕业生复习统一检测数学理试题(word 版) )已知()f x 是定义域为实数集R的偶函数,10x ∀≥,20x ∀≥,若12x x ≠,则1212()()0f x f x x x -<-.如果13()34f =,184(log )3f x >,那么x 的取值范围为( )A .10,2⎛⎫ ⎪⎝⎭B .1,22⎛⎫⎪⎝⎭C .()1,12,2⎛⎤+∞⎥⎝⎦D .110,,282⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭【答案】B8 .(河南省开封市2013届高三第四次模拟数学(理)试题)若a>1,设函数4)(-+=x a x f x 的零点为m,g(x)4log -+=x x a 的零点为n,则nm 11+的取值范围是 ( )A .(3.5,+∞)B .(1,+∞)C .(4,+∞)D .(4.5,+∞)【答案】B9 .(吉林省吉林市2013届高三三模(期末)试题 数学理 )已知点(),P x y 在不等式组⎪⎩⎪⎨⎧≥-+≤-≤-0220102y x y x 表示的平面区域上运动,则z x y =-的取值范围是 ( )A .[]2,1--B .[]2,1-C .[]1,2-D .[]1,2【答案】C10.(黑龙江省哈师大附中2013届第三次高考模拟考试 理科数学 Word 版含答案)设x 、y 满足约束条件2040220x y x y x y -+-≤⎧⎪+-≤⎨⎪-+≤⎩,则目标函数z = 2x + y 的最大值为 A .-4B .5C .6D .不存在【答案】C11.(山西省临汾一中、忻州一中、康杰中学、长治二中2013届高三第四次四校联考数学(理)试题)若实数x ,y 满足约束条件142x y x y y -≥-⎧⎪+≤⎨⎪≥⎩,则目标函数 24z x y =+的最大值为( )A .10B .12C .13D .14【答案】C12.(河南省三市(平顶山、许昌、新乡)2013届高三第三次调研(三模)考试数学(理)试题)设实数,x y 满足约束条件:360200,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩,若目标函数(0,0)z ax by a b =+>>的最大值为12,则2294a b +的最小值为( )A .12 B .1325C .1D .2【答案】A 13.(河北省石家庄市2013届高中毕业班第二次模拟考试数学理试题(word 版) )设y x ,满足约束条件⎪⎩⎪⎨⎧≤+≥≥,1434,,0y x x y x 则21++x y 的取值范围是 ( )A .]617,21[ B .]43,21[C .]617,43[ D .),21[+∞【答案】A 二、填空题14.(河南省郑州市2013届高三第三次测验预测数学(理)试题)已知⎪⎩⎪⎨⎧≥≤-+≤++101553,034x y x y x ,则z =______.【答案】812[,]15515.(吉林省实验中学2013届高三第二次模拟考试数学(理)试题)已知点P (x ,y )的坐标满足条件0,0,20,≥≥≤x y x y ⎧⎪⎨⎪+-⎩则z =2x -y 的最大值是_________. 【答案】416.(2013年红河州高中毕业生复习统一检测理科数学)设y x ,满足约束条件⎪⎩⎪⎨⎧≥≥≤--≥+-0,0048022y x y x y x ,若目标函数)0,0(>>+=b a y abx z 的最大值为8,则b a +的最小值为_______. 【答案】417.(山西省山大附中2013届高三4月月考数学(理)试题)设二次函数c x ax x f +-=4)(2的值域为[)+∞,0,_______18.(云南省玉溪市2013年高中毕业班复习检测数学(理)试题)若正实数a,b 满足:(a-1)(b-1)=4,则ab 的最小值是_____.【答案】919.(内蒙古包头市2013届高三第二次模拟考试数学(理)试题)设x,y 满足条件20360,(0,0)0,0x y x y z ax by a b x y -+≥⎧⎪--≤=+>>⎨⎪≥≥⎩若目标函数的最大值为12,则32a b +的最小值为________【答案】 420.(河北省衡水中学2013届高三第八次模拟考试数学(理)试题 )已知点P (x ,y )在不等式组1003x y x y x ⎧⎪⎨⎪⎩+-≥,-≥,≤表示的平面区域内运动,则34z x y =-的最小值为________ 【答案】解析:可行域是以11(,),(3,3),(3,2)22A B C -三点为顶点的三角形,当过点B 时,z 取最小值是3-.21.(河南省开封市2013届高三第四次模拟数学(理)试题)实数x,y 满足条件yx z y x y x y x -=⎪⎩⎪⎨⎧≥≥≥+-≤-+2,0,002204则的最小值为_________. 【答案】1-22.(山西省山大附中2013届高三4月月考数学(理)试题)在平面直角坐标系中,不等式⎪⎩⎪⎨⎧≤≥-≥+a x y x y x 00a (为常数)表示的平面区域的面积为8,则32+++x y x 的最小值为_________23.(2013年长春市高中毕业班第四次调研测试理科数学)设,x y 满足约束条件00+2y y xx y a ⎧⎪⎨⎪-⎩≥≤≤,若目标函数3x y +的最大值为6,则a =______.【答案】【命题意图】本小题通过线性规划问题考查学生的运算求解能力,是一道基本题.【试题解析】由题意可知,3z x y =+取最大值6时,直线 36y x =-+过点(2,0),则点(2,0)必在线性规划区域内,且可以使一条斜率为3-的直线经过该点时取最大值,因此点 (2,0)为区域最右侧的点,故直线0+2x y a -=必经过点(2,0), 因此2a =.24.(吉林省实验中学2013届高三第二次模拟考试数学(理)试题)已知P 是面积为1的△ABC 内的一点(不含边界),若△PBC ,△PCA 和△PAB 的面积分别为,,x y z ,则1x yx y z +++的最小值是_________. 【答案】325.(山西省太原市第五中学2013届高三4月月考数学(理)试题)设实数x ,y 满足约束条件2220,20,220,x y x y x y x y ⎧-≤⎪-≥⎨⎪+--≤⎩,则目标函数z x y =+的最大值为_________. 【答案】4。

2013年全国高考理科数学试题分类汇编6:不等式Word版含答案

2013年全国高考理科数学试题分类汇编6:不等式Word版含答案

2013 年全国高考理科数学试题分类汇编6:不等式一、选择题1 .( 2013 年普通高等学校招生统一考试山东数学(理)试题(含答案))设正实数x, y, z满足x23xy 4 y2xy 21 2z, 则当 z取得最大值时 ,xyz的最大值为()9A . 0B . 1C .4D . 3【答案】 B2 .( 2013 年高考陕西卷(理) ) 设[ x ] 表示不大于 x 的最大整数 , 则对任意实数 x , y , 有 ()A . [- x ] = -[ x ]B . [2 x ] = 2[x ]C . [ x +y ] ≤[x ]+[y ] D . [ x - y ] ≤[x ]-[ y ]【答案】 Dy 2x3 .( 2013 年高考湖南卷(理) ) 若变量 x, y 满足约束条件xy 1, 则x 2y 的最大值是y1A . -5B . 0C .5D .5232【答案】 C4 .( 2013 年 普 通 高 等 学 校 招 生 统 一 考 试 天 津 数 学 ( 理 ) 试 题 ( 含 答 案 )) 已知 函数( )f ( x) x(1 a | x |) . 设关于 x 的不等式 则实数 a 的取值范围是A .1 5,0 B .1 3,022【答案】 A5 .( 2013 年普通高等学校招生统一考试新课标f ( x a) f ( x) 的解集为A , 若1 , 1 A ,2 2C .1 5,0 0,1 322Ⅱ 卷数学(理) (纯 WORD 版含答案) ) 已知()D .,1 52x 1a 0 , x, y 满足约束条件 xy3, 若 z 2x y 的最小值为 1, 则 a()y a( x3)A .1B .1C . 1D . 242【答案】 B6 .( 2013 年普通高等学校招生统一考试天津数学(理)试题(含答案)) 设变量 x , y 满足约3xy 60,束条件x y 2 0,则目标函数z =-2 x 的最小值为()yy 3 0,第 1 页 共 5 页A . -7B . -4C . 1D . 2【答案】 A7 .( 2013 年高考湖北卷(理) ) 一辆汽车在高速公路上行驶, 由于遇到紧急情况而刹车 , 以速度 v t7 3t25( t 的单位 : s , v 的单位 : m / s ) 行驶至停止 . 在此期间汽车继续1 t行驶的距离 ( 单位 ; m ) 是()A . 1 25ln5B .811 C . 4 25ln5D . 4 50ln 225ln【答案】 C38 .( 2013 年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版)) 已知一元二次不等式 f (x)<0 的解集为 x |x<-1或 x>1, 则 f (10x )>0 的解集为()2A . x|x<-1或 x>lg2B . x|-1<x<lg2C . x |x>-lg2D . x|x<-lg2【答案】 D9 .( 2013 年上海市春季高考数学试卷( 含答案 ) ) 如果 a b 0 , 那么下列不等式成立的是()A .1 1B . ab b 2C . aba 2D . 11 ab ab【答案】 D10.( 2013 年普通高等学校招生统一考试山东数学(理)试题(含答案))在平面直角坐标系xoy2x y 2 0,x2y1 0,中 , M为不等式组3x y80,所表示的区域上一动点 , 则直线OM斜率的最小值为()11A . 2B . 1C .3D .2【答案】 C11 .( 2013 年普通高等学校招生统一考试新课标Ⅱ 卷数学(理) (纯 WORD 版含答案) ) 设a log 3 6,b log 5 10, clog 7 14 , 则()A . c b aB . b c aC . a c bD . a b c【答案】2x y 1 0,12.( 2013 年高考北京卷(理) )设关于 x , y 的不等式组x m 0, 表示的平面区域内存y m 0在点 P ( x 0, y 0), 满足 x 0-2 y 0=2, 求得 m 的取值范围是( )第 2 页 共 5 页A . 4B .1C . 2D . 5,,,,3333【答案】 C二、填空题13.( 2013 年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对) ) 记不等式x 0,组 x 3y4, 所表示的平面区域为 D , 若直线 yax 1 与 D 公共点 , 则 a 的取值3x y4,范围是 ______.【答案】 [1, 4]214.( 2013 年高考陕西卷(理) ) 若点 ( x , y ) 位于曲线 y | x 1| 与 y =2 所围成的封闭区域 , 则2x - y 的最小值为 ___-4_____.【答案】 - 415 .( 2013 年 高 考 四 川 卷 ( 理 )) 已 知 f ( x) 是 定 义 域 为 R 的 偶 函 数 , 当 x ≥ 0时, f ( x)x 2 4x , 那么 , 不等式 f ( x 2) 5 的解集是 ____________.【答案】 (7,3)16 .( 2013 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版)) 给定区域x 4 y 4x y4D : x 0, 令点集T{ x 0 , y 0 D | x 0 , y 0Z, x 0, y0 ,是 zx y在 D 上取得最大值或最小值的点}, 则 T中的点共确定 ______条不同的直线 .【答案】617.( 2013 年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版)) 设zkx y , 其xy 2 0中实数 x, y 满足 x2y4 0 , 若 z 的最大值为 12, 则实数 k ________.2x y 4 0【答案】 218.( 2013 年普通高等学校招生统一考试天津数学(理)试题(含答案)) 设 a + b = 2, b >0, 则当 a = ______ 时 ,1| a | 2 | a |b 取得最小值 .【答案】 219.( 2013 年普通高等学校招生统一考试广东省数学(理)卷(纯 WORD 版))不等式 x 2x 2 0第 3 页 共 5 页的解集为 ___________.【答案】2,120.(2013年 高考 湖南 卷(理 ) )已知a,b,c ,23c 229ca 2则 b6的最,小值a 为4b .【答案】 12三、解答题21.( 2013 年上海市春季高考数学试卷( 含答案 ) )如图 , 某校有一块形如直角三角形ABC 的空地 , 其中B 为直角 , AB 长 40 米 , BC 长 50 米 , 现欲在此空地上建造一间健身房, 其占地形状为矩形 , 且 B 为矩形的一个顶点, 求该健身房的最大占地面积 .ABC【答案】 [ 解 ] 如图 , 设矩形为 EBFP , FP 长为 x 米, 其中 0x40 ,AEPBFC健身房占地面积为 y 平方米 . 因为 CFP ∽ CBA ,以 FPCF , x 50BF , 求得 BF505x ,BACB 40 504从而 yBF FP(505x) x5 x 2 50x5( x 20) 2500500 ,444当且仅当 x20 时 , 等号成立 .答 : 该健身房的最大占地面积为 500 平方米 .22.( 2013 年高考上海卷(理) ) (6 分 +8 分 ) 甲厂以 x 千克 / 小时的速度运输生产某种产品( 生产条件要求 1x 10 ), 每小时可获得利润是 100(5 x 13) 元.x(1) 要使生产该产品 2 小时获得的利润不低于 3000 元, 求 x 的取值范围 ;(2) 要使生产 900 千克该产品获得的利润最大 , 问: 甲厂应该选取何种生产速度?并求最大利润 .【答案】 (1) 根据题意 , 200(5 x1 3)30005x 143 0又 1 x 10 , 可解得 3 x 10xx(2) 设利润为 y 元 , 则 y900 100(5x 1 3) 9 104[ 3( 11)261]xxx 6 12第 4 页 共 5 页故 x 6 时,y max 457500元.第 5页共5页。

新课标全国统考区(宁夏、吉林、黑龙江)高三数学 名校最新试题精选(一)分类汇编6 不等式 理

新课标全国统考区(宁夏、吉林、黑龙江)高三数学 名校最新试题精选(一)分类汇编6 不等式 理

一、选择题 1 .(宁夏银川一中2013届高三第二次模拟数学(理)试题)已知函数y =f (x )是定义在R 上的增函数,函数y =f (x -1)的图象关于点(1,0)对称,若任意的x ,y ∈R ,不等式f (x 2-6x +21)+f (y 2-8y )<0恒成立,则当x >3时,x 2+y 2的取值范围是 ( ) A .(3,7) B .(9,25) C .(13,49) D .(9,49) 2 .(宁夏银川一中2013届高三第二次模拟数学(理)试题)已知正数x ,y 满足⎩⎨⎧≥+-≤-05302y x y x ,则y x z )21(4⋅=-的最小值为( )A .1B .3241C .161 D .3213 .(宁夏银川市育才中学2013届高三第五次月考数学(理)试题 )△ABC 满足23AB AC ⋅=,∠BAC=30°,设M 是△ABC 内的一点(不在边界上),定义f(M)=(x,y,z),其中x,y,z 分别表示△MBC,△MCA,△MAB 的面积,若f(M)=(x,y,12),则14x y +的最小值为( )A .9B .8C .18D .164 .(宁夏银川二中2013届高三第六次月考数学(理)试题)设两个正数满足1x y +=,则49x y+的最小值为( )A .24B .26C .25D .15 .(吉林省实验中学2013年高三下学期第一次模拟考试数学(理)试题)已知32()69f x x x x abc =-+-,a b c <<,且()()()0f a f b f c ===. 现给出如下结论:①(0)(1)0f f >; ②(0)(1)0f f <; ③(0)(3)0f f >; ④(0)(3)0f f <; ⑤4abc <; ⑥4abc >.其中正确结论的序号是 ( )A .①③⑤B .①④⑥C .②③⑤D .②④⑥6 .(吉林省吉林市普通中学2013届高三下学期期中复习检测数学(理)试题)不等式2log 0a x x -<在1(0,)2x ∈时恒成立,则a 的取值范围是( )A .1116a ≤< B .01a << C .1a > D .1016a <≤7 .(吉林省2013年高三复习质量监测数学(理)试题)设x,y 满足约束条件⎪⎩⎪⎨⎧≥≥-≤--,0,0,023y y x y x 则z=-2x+y的最小值为( )A .-34B .-1C .0D .18 .(黑龙江省教研联合体2013届高三第一次模拟考试数学(理)试题 )设函数1()f x x x=-,对任意[1,),()()0x f mx mf x ∈+∞+<恒成立,则实数m 的取值范围是( )A .(1,1)-B .,0m R m ∈≠C .--∞(,1)D .--∞(,1)或+∞(1,)9 .(黑龙江省哈尔滨市六校2013届高三第一次联考理科数学试题 )实数对(x,y)满足不等式组20,250,20,x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩则目标函数z=kx-y 当且仅当x=3,y=1时取最大值,则k 的取值范围是 ( ) A .[)1,1,2⎛⎫-∞-+∞ ⎪⎝⎭B .1,|2⎛⎫-+∞ ⎪⎝⎭C .1.12⎛⎫- ⎪⎝⎭D .(],1-∞-10.(黑龙江哈尔滨市九中2013届高三第五次月考数学(理)试题)若()224ln f x x x x =--,不等式()'0f x >的解集为p ,关于x 的不等式2(1)0x a x a +-->的解集记为q ,已知p 是q 的充分不必要条件,则实数a 的取值范围是 ( )A .(]2,1--B .[]2,1--C .φD .[)2,-+∞二、填空题11.(宁夏育才中学2013届高三第一次模拟考试数学(理)试题)当实数,x y 满足约束条件{220x y x x y a ≥≤++≤ (a 为常数)时3z x y =+有最大值为12,则实数a 的值为___12.(吉林省延边州2013届高三高考复习质量检测数学(理)试题)设函数b ax x x f ++=2)(,且方程0)(=x f 在区间()1,0和()2,1上各有一解,则b a -2的取值范围用区间表示为________________.13.(吉林省实验中学2013年高三下学期第一次模拟考试数学(理)试题)已知x ,y 为正实数 ,且满足3x y xy ++=,若对任意满足条件的x ,y ,都有2()()10x y a x y +-++≥恒成立,则实数a 的取值范围为_______________.14.(吉林省实验中学2013年高三下学期第一次模拟考试数学(理)试题)设x ,y 满足约束条件112210x y x x y ⎧⎪⎪⎨⎪+⎪⎩≥≥≤,向量(2)(11)a b y x m =-=-,,,,且a ∥b ,则m 的最小值为_________________.15.(黑龙江省教研联合体2013届高三第二次模拟考试数学(理)试题(word 版,含答案) )“求方程34()()155x x +=的解”有如下解题思路:设34()()()55x x f x =+,则()f x 在R 上单调递减,且(2)1f =,所以原方程有唯一解2x =.类比上述解题思路,不等式632(2)(2)x x x x -+>+-的解集为____ 16.(黑龙江省哈三中等四校联考2012届四校联考第三次高考模拟考试数学(理)试题)已知y x ,满足条件⎪⎩⎪⎨⎧≤-+≥+-≥.052,02,0y x y x x 则y x z 3+=的最大值是____________ 17.(黑龙江省大庆实验中学2013届高三下学期开学考试数学(理)试题)若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a += 扫过A 中的那部分区域的面积为 ____________.18.(黑龙江哈尔滨市九中2013届高三第五次月考数学(理)试题)若在不等式组02y x x x y ≥⎧⎪≥⎨⎪+≤⎩所确定的平面区域内任取一点(),P x y ,则点P 的坐标满足221x y +≤的概率是__________________.19.(2013年宁夏回族自治区石嘴山市高三第一次联考理科数学试题)已知变量x 、y 满足202300x y x y x -≤⎧⎪-+≥⎨⎪≥⎩,则41log (24)2u x y =+++的最大值为__________.【精品推荐】新课标全国统考区(宁夏、吉林、黑龙江)2013届高三名校理科最新试题精选(一)分类汇编6:不等式参考答案一、选择题 1. C 2. C3. C4. C5. C6. A7. A8. C9. C 10. D二、填空题 11. -12 12. ()2,8-- 13. 37(,]6-∞ 14. -615. ),2()1,(+∞⋃--∞ 16. 10 17.7418.;8π19. 2。

高中数学不等式练习题及参考答案2023

高中数学不等式练习题及参考答案2023

高中数学不等式练习题及参考答案2023不等式是高中数学中重要的概念之一,也是很多考试中必考的内容。

为帮助大家复习巩固,本文整理了十道高中数学不等式练习题及参考答案,供大家练习参考。

1. 已知 $x>0$,求证:$\frac{1}{1+x}+\frac{1}{1+\frac{1}{x}}>1$【参考答案】$\frac{1}{1+x}+\frac{1}{1+\frac{1}{x}}=\frac{1}{1+x}+\frac{x}{x+1}=\frac{x+1}{x+1}=1$。

2. 解不等式 $\frac{2-x}{x+1}\geq 1$。

【参考答案】$\frac{2-x}{x+1}\geq 1$,移项得 $\frac{1-x}{x+1}\geq 0$,即$\frac{x-1}{x+1}\leq 0$。

因此,$x\in(-\infty,-1]\cup[1,+\infty)$。

3. 解不等式 $\log_{\frac{1}{2}}(x^2-3x+2)<2$。

【参考答案】$\log_{\frac{1}{2}}(x^2-3x+2)<2$,移项得 $x^2-3x+2>4$。

解得 $x\in(-\infty,1)\cup(3,+\infty)$。

4. 已知 $a+b=1$,$a>0$,$b>0$,求证:$a\cdot\log_{\frac{1}{a}}+b\cdot\log_{\frac{1}{b}}>2$。

【参考答案】By Jensen 不等式,$\frac{1}{2}(a\cdot\log_{\frac{1}{a}}+b\cdot\log_{\frac{1}{b}}) \geq\log_{\frac{1}{2}}(\frac{1}{2}(a+b))=\log_{\frac{1}{2}}\frac{1}{ 2} =1$。

所以,$a\cdot\log_{\frac{1}{a}}+b\cdot\log_{\frac{1}{b}}>2$。

高考理不等式真题汇编(含答案)

高考理不等式真题汇编(含答案)

2021-2021高考理科不等式真题汇编〔含答案〕一.2021年不等式高考真题1.(2021上海)设R b a ∈,,那么“4>+b a 〞是“2,2>>b a 且〞的〔 〕 (A )充分条件 〔B 〕必要条件〔C 〕充分必要条件 〔D 〕既非充分又非必要条件2.(2021四川)假设0a b >>,0c d <<,那么一定有〔 〕 A 、a b c d > B 、a b c d < C 、a b d c > D 、a b d c< 3.(2021上海)假设实数x,y 满足xy=1,那么2x +22y 的最小值为______________.4.(2021新课标I).不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥,3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P5. (2021新课标II)设x,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,那么2z x y =-的最大值为〔 〕A. 10B. 8C. 3D. 26(2021天津)设变量x ,y 满足约束条件0,20,12,y x y y x +-⎧≥--≤≥⎪⎨⎪⎩那么目标函数2z x y =+的最小值为〔 〕〔A 〕2 〔B 〕3 〔C 〕4 〔D 〕57. (2021广东)假设变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,那么M-m=A .8 B.78. (2021北京)假设,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为-4,那么k 的值为〔 〕.2A .2B - 1.2C 1.2D -9(2021天津)设,a bR ,那么|“a b 〞是“a a b b 〞的〔 〕〔A 〕充要不必要条件 〔B 〕必要不充分条件 〔C 〕充要条件 〔D 〕既不充要也不必要条件10(2021江西) (1).〔不等式选做题〕对任意,x y R ∈,111x x y y -++-++的最小值〔 〕 A.1 B.2 C.3 D.4二.填空题1. 〔2021大纲〕设,x y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,那么4z x y =+的最大值为 .2〔2021浙江〕当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,那么实数a 的取值范围是________.3、〔2021福建〕要制作一个容器为43m ,高为m 1的无盖长方形容器,该容器的底面造价是每平方米20元,侧面造价是每平方米10元,那么该容器的最低总造价是_______〔单位:元〕4〔2021福建〕假设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤-+≤+-008201x y x y x 那么y x z +=3的最小值为______5 (2021重庆)假设不等式2212122++≥++-a a x x 对任意实数x 恒成立,那么实数a 的取值范围是____________.6. 〔2021辽宁〕对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为 .7(2021湖南).假设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤+≤k y y x x y 4,且y x z +=2的最小值为6-,那么____=k .8(2021湖南)x 的不等式23ax -<的解集为5133x x ⎧⎫-<<⎨⎬⎩⎭,那么a =________.9 (2021陕西) (不等式选做题)设,,,a b m n R ∈,且225,5a b ma nb +=+=,的最小值为三.解答题1. (2021新课标I)〔本小题总分值10分〕选修4—5:不等式选讲 假设0,0a b >>,且11a b+=. (Ⅰ) 求33a b +的最小值;〔Ⅱ〕是否存在,a b ,使得236a b +=?并说明理由. 2. (2021新课标II)〔本小题总分值10〕选修4-5:不等式选讲 设函数()f x =1(0)x x a a a++->〔Ⅰ〕证明:()f x ≥2;〔Ⅱ〕假设()35f <,求a 的取值范围.3. 〔2021辽宁〕 〔本小题总分值10分〕选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N. 〔1〕求M ;〔2〕当x M N ∈时,证明:221()[()]4x f x x f x +≤.4〔2021福建〕〔本小题总分值7分〕选修4—5:不等式选将 定义在R 上的函数()21-++=x x x f 的最小值为a . 〔I 〕求a 的值;〔II 〕假设r q p ,,为正实数,且a r q p =++,求证:3222≥++r q p . 二.2021年不等式高考真题1.【2021高考四川,理9】如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,上单调递减,那么mn 的最大值为〔 〕〔A 〕16 〔B 〕18 〔C 〕25 〔D 〕8122.【2021高考北京,理2】假设x ,y 满足010x y x y x -⎧⎪+⎨⎪⎩≤,≤,≥,那么2z x y =+的最大值为〔 〕A .0B .1C .32D .23.【2021高考广东,理6】假设变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≥+2031854y x y x 那么y x z 23+=的最小值为〔 〕 A .531 B. 6 C. 523 D. 4 4.【2021高考陕西,理9】设()ln ,0f x x a b =<<,假设p f =,()2a bq f +=,1(()())2r f a f b =+,那么以下关系式中正确的选项是〔 〕 A .q r p =< B .q r p => C .p r q =<D .p r q =>5.【2021高考湖北,理10】设x ∈R ,[]x 表示不超过x 的最大整数. 假设存在实数t ,使得[]1t =,2[]2t =,…,[]n t n = 同时成立....,那么正整数n 的最大值是〔 〕 A .3 B .4 C .5 D .66.【2021高考天津,理2】设变量,x y 满足约束条件2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩,那么目标函数6z x y =+的最大值为( )〔A 〕3 〔B 〕4 〔C 〕18 〔D 〕407.【2021高考陕西,理10】某企业生产甲、乙两种产品均需用A ,B 两种原料.生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,那么该企业每天可获得最大利润为〔 〕A .12万元B .16万元C .17万元D .18万元甲乙原料限额A 〔吨〕 32 12B 〔吨〕 12 88.【2021高考山东,理5】不等式152x x ---<的解集是〔 〕 〔A 〕〔-,4〕 〔B 〕〔-,1〕 〔C 〕〔1,4〕 〔D 〕〔1,5〕9.【2021高考福建,理5】假设变量,x y 满足约束条件20,0,220,x y x y x y +≥⎧⎪-≤⎨⎪-+≥⎩那么2z x y =- 的最小值等于 ( ) A .52-B .2-C .32- D .2 10.【2021高考山东,理6】,x y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,假设z ax y =+的最大值为4,那么a = 〔 〕〔A 〕3 〔B 〕2 〔C 〕-2 〔D 〕-311.【2021高考新课标1,理15】假设,x y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,那么y x 的最大值为 .12.【2021高考浙江,理14】假设实数,x y 满足221x y +≤,那么2263x y x y +-+--的最小值是 .13.【2021高考新课标2,理14】假设x ,y 满足约束条件1020,220,x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,,那么z x y=+的最大值为____________. 14.【2021高考江苏,7】不等式224x x-<的解集为________.15.【2021高考湖南,理4】假设变量x ,y 满足约束条件1211x y x y y +≥-⎧⎪-≤⎨⎪≤⎩,那么3z x y =-的最小值为〔 〕【2021高考上海,理17】记方程①:2110x a x ++=,方程②:2220x a x ++=,方程③:2340x a x ++=,其中1a ,2a ,3a 是正实数.当1a ,2a ,3a 成等比数列时,以下选项中,能推出方程③无实根的是〔 〕A .方程①有实根,且②有实根B .方程①有实根,且②无实根C .方程①无实根,且②有实根D .方程①无实根,且②无实根2021年高考数学理试题分类汇编一、选择题1、〔2021年北京高考〕假设x ,y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,那么2x y +的最大值为〔 〕A.0B.3C.4D.52、〔2021年山东高考〕假设变量x ,y 满足那么22xy 的最大值是〔A 〕4〔B 〕9〔C 〕10 〔D 〕123、〔2021年四川高考〕设p :实数x ,y 满足(x –1)2–(y –1)2≤2,q :实数x ,y 满足1,1,1,y x y x y ≥-⎧⎪≥-⎨⎪≤⎩那么p 是q 的〔A 〕必要不充分条件 〔B 〕充分不必要条件 〔C 〕充要条件 〔D 〕既不充分也不必要条件4、〔2021年天津高考〕设变量x ,y 满足约束条件20,2360,3290.x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩那么目标函数25z x y =+的最小值为〔 〕〔A 〕4-〔B 〕6〔C 〕10〔D 〕175、〔2021年浙江高考〕在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域200340x x y x y -≤⎧⎪+≥⎨⎪-+≥⎩中的点在直线x +y -2=0上的投影构成的线段记为AB ,那么│AB │= A .2 B .4 C .2 D .66、〔2021年北京高考〕x ,y R ∈,且0x y >>,那么〔 〕 A.110x y-> B.sin sin 0x y -> C.11()()022x y -< D.ln ln 0x y +>二、填空题1、〔2021年上海高考〕设x R ∈,那么不等式13<-x 的解集为______________________2、〔2021年上海高考〕设.0,0>>b a 假设关于,x y 的方程组11ax y x by +=⎧⎨+=⎩无解,那么b a +的取值范围是____________3、〔2021年全国I 高考〕某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料. kg ,乙材料1 kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,那么在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.4、〔2021年全国III 高考〕假设,x y 满足约束条件1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩那么z x y =+的最大值为_____________.不等式一.选择题: 1.(2021上海) 【答案】 B 2.(2021四川) 【答案】D 3.(2021上海) 【答案】 22 4.(2021新课标I). 【答案】:C5. (2021新课标II) 答案:B 6(2021天津) 【答案】B 7. (2021广东) 【答案】C 8. (2021北京) 【答案】D 9(2021天津) 【答案】C 【解析】.. .|,||||;|||, .-||,-||00≤3.|,||||;|||, 002∴,|,|||;∴|,|||, ||,||0≥012222C b a b b a a b b a a b a b b b a a a b a b a b b a a b b a a b a b a b a b b a a b b a a b a b b b a a a b a 选综上,是充要条件则若则若时,,)当(则若则若时,,)当(是必要条件则若是充分条件则若时,,)当(>>>>==<>>>><>>>>>==>10(2021江西) 【答案】B【解析】()|1||||1||1|1||11|123x x y y x x y y -++-++≥--+--+=+= 二.填空题 1. 〔2021大纲〕 【答案】5. 2〔2021浙江〕31,2⎡⎤⎢⎥⎣⎦3、〔2021福建〕60 4〔2021福建〕1 5 (2021重庆)【答案】]211-[, 【解析】]211-[∈1-2≥0221≥25221≥)(∴25)21f(|2||21-||21-|)(222,解得,,即恒成立,即有最小值由数轴可知,a a a a a a a x f x x x x f +++++=+++= 6. 〔2021辽宁〕 【答案】-2 【解析】2-54-3.2-)4-1(211054-3654-3.58|22|1032,153:2151:)2-2∴)22(≥])153([1⇒]1532151)2-2[≥])153([1])215()2-2[])153([1∴0-)215()2-2-42-42222222222222222的最小值为所以,这时,取最大值时,,即当((((cb a b b b b bc b a c b a b c b a b b a b a c b b a b ba c cb ba cb ab a +≥=+=++===++••+•+•+=+•=+=+ 7(2021湖南).【答案】2-【解析】求出约束条件中三条直线的交点为()(),,4,k k k k -(),2,2,且不等式组,4y x x y ≤+≤限制的区域如图,所以2k ≤,那么当(),k k 为最优解时,362k k =-⇒=-,当()4,k k -为最优解时,()24614k k k -+=-⇒=, 因为2k ≤,所以2k =-,故填2-.【考点定位】线性规划 8(2021湖南)9 (2021陕西) (不等式选做题)A5.≤5)φθsin(∴5)φθsin(5os θ5θsin 5,os θ5,θsin 5∴,52222222222的最小值为所以,,则设n m n m n m n m c n m nb ma c b a b a ++=++=++=+=+===+三.解答题 1. (2021新课标I) 【解析】:(Ⅰ) 11ab a b ab=+≥,得2ab ≥,且当2a b ==故3333342ab a b +≥=,且当2a b ==∴33a b +的最小值为42 ………5分〔Ⅱ〕由62326a b ab =+≥,得32ab ≤,又由(Ⅰ)知2ab ≥,二者矛盾,所以不存在,a b ,使得236a b +=成立. ……………10分 2. (2021新课标II)3. 〔2021辽宁〕【答案】 〔1〕}34≤≤0|{x x 〔2〕 【解析】〔1〕}34≤≤0|{].34,0[1≤)(∴1≤01;34≤≤11≥.1≤1-|1-|2)(x x M x f x x x x x x x f =<<+=所以,的解集为时,解得当时,解得当〔2〕222222223222213()16814444133[0,],[,],[0,]3444()[()][2(1)1](1)(1)(1)(12)111(1)(1)22413()[()],[0,]44g x x x xMN M N x f x x f x x x x x x xx x x x x x x x x xx x x f x x f x x ,解得--4〔2021福建〕解:(1)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当-1≤x ≤2时,等号成立, 所以f (x )的最小值等于3,即a =3.(2)由(1)知p +q +r =3,又p ,q ,r 是正实数,所以(p 2+q 2+r 2)(12+12+12)≥(p ×1+q ×1+r ×1)2=(p +q +r )2=9, 即p 2+q 2+r 2≥3.二.2021年高考不等式真题答案1.【2021高考四川,理9】 【答案】B 【解析】2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当2m >时,822n m --≥-即212m n +≤.226,182m nm n mn +⋅≤≤∴≤.由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,8122n m --≤-即218m n +≤.28129,22n m n m mn +⋅≤≤∴≤.由2n m =且218m n +=得92m =>mn 取得最大值,应有218m n +=(2,8)m n <>.所以(182)(1828)816mn n n =-<-⨯⨯=,所以最大值为18.选B..2.【2021高考北京,理2】【答案】D【解析】如图,先画出可行域,由于2z x y =+,那么1122y x z =-+,令0Z =,作直线12y x =-,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取得最小值2.3.【2021高考广东,理6】 【答案】C .4.【2021高考陕西,理9】 【答案】C【解析】(p f ab ab ==()ln22a b a bq f ++==,11(()())ln ln 22r f a f b ab ab =+==,函数()ln f x x =在()0,+∞上单调递增,因为2a b ab +>,所以()()2a bf f ab +>,所以q p r >=,应选C . 5.【2021高考湖北,理10】 【答案】B【解析】因为[]x 表示不超过x 1][=t 得21<≤t ,由2][2=t 得322<≤t ,由3][4=t 得544<≤t ,所以522<≤t ,所以522<≤t ,由3][3=t 得433<≤t ,所以5465<≤t ,由5][5=t 得655<≤t ,与5465<≤t 矛盾,故正整数n 的最大值是4.6.【2021高考天津,理2】 【答案】C7.【2021高考陕西,理10】【答案】D【解析】设该企业每天生产甲、乙两种产品分别为x 、y 吨,那么利润34z x y =+由题意可列32122800x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,其表示如图阴影局部区域:当直线340x y z +-=过点(2,3)A 时,z 取得最大值,所以max 324318z =⨯+⨯=,应选D .8.【2021高考山东,理5】 【答案】A【解析】原不等式同解于如下三个不等式解集的并集;1155()()()152152152x x x I II III x x x x x x <≤<≥⎧⎧⎧⎨⎨⎨-+-<-+-<--+<⎩⎩⎩ 解〔I 〕得:1x < ,解〔II 〕得:14x ≤< ,解〔III 〕得:x φ∈ , 所以,原不等式的解集为{}4x x < .应选A. 9.【2021高考福建,理5】10.【2021高考山东,理6】 【答案】B【解析】不等式组020x y x y y -≥⎧⎪+≤⎨⎪≥⎩在直角坐标系中所表示的平面区域如以下图中的阴影局部所示,假设z ax y =+的最大值为4,那么最优解可能为1,1x y == 或2,0x y == ,经检验,2,0x y ==是最优解,此时2a = ;1,1x y ==不是最优解.应选B.11.【2021高考新课标1,理15】【答案】3【解析】作出可行域如图中阴影局部所示,由斜率的意义知,yx是可行域内一点与原点连线的斜率,由图可知,点A 〔1,3〕与原点连线的斜率最大,故yx的最大值为3.12.【2021高考浙江,理14】 【答案】3.13.【2021高考新课标2,理14】【答案】32【解析】画出可行域,如下图,将目标函数变形为y x z =-+,当z 取到最大时,直线y x z =-+的纵截距最大,故将直线尽可能地向上平移到1(1,)2D ,那么z x y =+的最大值为32.学优高考网【考点定位】线性规划.xy–1–2–3–41234–1–2–3–41234DCBO14.【2021高考江苏,7】 【答案】(1,2).-【解析】由题意得:2212x x x -<⇒-<<,解集为(1,2).- 15.【2021高考湖南,理4】【答案】A.【解析】如以下图所示,画出线性约束条件所表示的区域,即可行域,作直线l :30x y -=,平移l ,从而可知当2-=x ,1=y 时,min 3(2)17z =⨯--=-的最小值是7-,应选A.【2021高考上海,理17】【答案】B2021年高考数学理试题分类汇编一、选择题1、〔2021年北京高考〕【答案】C2、〔2021年山东高考〕【答案】C3、〔2021年四川高考〕【答案】A4、〔2021年天津高考〕【答案】B5、〔2021年浙江高考〕【答案】C6、〔2021年北京高考〕【答案】C二、填空题1、〔2021年上海高考〕【答案】〔2,4〕2、〔2021年上海高考〕【答案】2+(,)3、〔2021年全国I高考〕【答案】2160004、〔2021年全国III高考〕【答案】3 2。

2020年全国高考理科数学试题分类汇编6:不等式 Word版含答案

2020年全国高考理科数学试题分类汇编6:不等式 Word版含答案

2020年全国高考理科数学试题分类汇编6:不等式一、选择题1 .(2020年普通高等学校招生统一考试山东数学(理)试题(含答案))设正实数,,x y z 满足22340x xy y z -+-=,则当xy z 取得最大值时,212x y z +-的最大值为 ( )A .0B .1C .94D .3【答案】B2 .(2020年高考陕西卷(理))设[x]表示不大于x 的最大整数, 则对任意实数x, y, 有 ( )A .[-x] = -[x]B .[2x] = 2[x]C .[x+y]≤[x]+[y]D .[x-y]≤[x]-【答案】D3 .(2020年高考湖南卷(理))若变量,x y 满足约束条件211y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,2x y +则的最大值是 ( )A .5-2B .0C .53D .52【答案】C4 .(2020年普通高等学校招生统一考试天津数学(理)试题(含答案))已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A,若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是 ( ) A .15,02⎛⎫- ⎪⎪⎝⎭B .13,02⎛⎫- ⎪⎪⎝⎭C .15,02130,2⎛⎫+⋃⎛ ⎪ ⎪⎝⎫- ⎪⎝⎭⎪⎭ D .52,1⎛⎫-- ⎪ ⎝⎭∞⎪【答案】A5 .(2020年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知0a >,,x y 满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a = ( )A .14B .12C .1D .2【答案】B6 .(2020年普通高等学校招生统一考试天津数学(理)试题(含答案))设变量x, y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y-2x 的最小值为 ( )A .-7B .-4C .1D .2【答案】A7 .(2020年高考湖北卷(理))一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度()25731v t t t=-++(t 的单位:s ,v 的单位:/m s )行驶至停止.在此期间汽车继续行驶的距离(单位;m )是 ( )A .125ln5+B .11825ln3+ C .425ln5+ D .450ln 2+【答案】C8 .(2020年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))已知一元二次不等式()<0f x 的解集为{}1|<-1>2x x x 或,则(10)>0x f 的解集为( )A .{}|<-1>lg2x x x 或B .{}|-1<<lg2x xC .{}|>-lg2x xD .{}|<-lg2x x【答案】D9 .(2020年上海市春季高考数学试卷(含答案))如果0a b <<,那么下列不等式成立的是 ( )A .11a b<B .2ab b <C .2ab a -<-D .11ab-<-【答案】D10.(2020年普通高等学校招生统一考试山东数学(理)试题(含答案))在平面直角坐标系xoy 中,M 为不等式组220,210,380,x y x y x y --≥⎧⎪+-≥⎨⎪+-≤⎩所表示的区域上一动点,则直线OM 斜率的最小值为 ( )A .2B .1C .13-D .12-【答案】C11.(2020年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))设357log 6,log 10,log 14a b c ===,则( )A .c b a >>B .b c a >>C .a c b >>D .a b c >>【答案】12.(2020年高考北京卷(理))设关于x,y 的不等式组210,0,0x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点P(x 0,y 0),满足x 0-2y 0=2,求得m 的取值范围是( )A .4,3⎛⎫-∞ ⎪⎝⎭B .1,3⎛⎫-∞ ⎪⎝⎭C .2,3⎛⎫-∞- ⎪⎝⎭D .5,3⎛⎫-∞- ⎪⎝⎭【答案】C 二、填空题13.(2020年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))记不等式组0,34,34,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域为D ,若直线()1y a x =+与D 公共点,则a 的取值范围是______. 【答案】1[,4]214.(2020年高考陕西卷(理))若点(x, y)位于曲线|1|y x =-与y=2所围成的封闭区域, 则2x-y 的最小值为___-4_____.【答案】- 415.(2020年高考四川卷(理))已知()f x 是定义域为R 的偶函数,当x ≥0时,2()4f x x x =-,那么,不等式(2)5f x +<的解集是____________.【答案】(7,3)-16.(2020年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))给定区域D :4440x y x y x +≥⎧⎪+≤⎨⎪≥⎩,令点集()()000000{,|,,,T x y D x y Z x y =∈∈,是z x y =+在D 上取得最大值或最小值的点},则T 中的点共确定______条不同的直线.【答案】617.(2020年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设y kx z +=,其中实数y x ,满足⎪⎩⎪⎨⎧≤--≥+-≥-+04204202y x y x y x ,若z 的最大值为12,则实数=k ________.【答案】218.(2020年普通高等学校招生统一考试天津数学(理)试题(含答案))设a +b = 2, b>0, 则当a = ______时,1||2||a a b+取得最小值.【答案】2-19.(2020年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))不等式220x x +-<的解集为___________.【答案】()2,1-20.(2020年高考湖南卷(理))已知222,,,236,49a b c a b c a b c ∈++=++则的最小值为______.【答案】12 三、解答题21.(2020年上海市春季高考数学试卷(含答案))如图,某校有一块形如直角三角形ABC 的空地,其中B ∠为直角,AB 长40米, BC 长50米,现欲在此空地上建造一间健身房,其占地形状为矩形,且B 为矩形的一个顶点,求该健身房的最大占地面积.【答案】[解]如图,设矩形为EBFP , FP 长为x 米,其中040x <<,AB C健身房占地面积为y 平方米.因为CFP ∆∽CBA ∆,以FP CF BA CB =,504050x BF -=,求得5504BF x =-, 从而255(50)5044y BF FP x x x x =⋅=-=-+25(20)5005004x =--+≤,当且仅当20x =时,等号成立.答:该健身房的最大占地面积为500平方米.22.(2020年高考上海卷(理))(6分+8分)甲厂以x 千克/小时的速度运输生产某种产品(生产条件要求110x ≤≤),每小时可获得利润是3100(51)x x+-元.(1)要使生产该产品2小时获得的利润不低于3000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.【答案】(1)根据题意,33200(51)30005140x x x x+-≥⇒--≥又110x ≤≤,可解得310x ≤≤ (2)设利润为y 元,则4290031161100(51)910[3()]612y x x x x =⋅+-=⨯--+ 故6x =时,max 457500y =元.ABCFP E。

完整版)高中数学不等式习题及详细答案

完整版)高中数学不等式习题及详细答案

完整版)高中数学不等式习题及详细答案第三章不等式一、选择题1.已知 $x\geq 2$,则 $f(x)=\frac{x^2-4x+5}{2x-4}$ 的取值范围是()。

A。

最大值为 5,最小值为 1B。

最大值为 5,最小值为 $\frac{11}{2}$C。

最大值为 1,最小值为 $\frac{11}{2}$D。

最大值为 1,最小值为 02.若 $x>0$,$y>0$,则$(x+\frac{1}{y})^2+(y+\frac{1}{x})^2$ 的最小值是()。

A。

3B。

$\frac{7}{2}$C。

4D。

$\frac{9}{2}$3.设 $a>0$,$b>0$,则下列不等式中不成立的是()。

A。

$a+b+\frac{1}{ab}\geq 2\sqrt{2}$B。

$(a+b)(\frac{1}{a}+\frac{1}{b}+\frac{1}{2})\geq 4$C。

$\sqrt{a^2+b^2}\geq a+b-\sqrt{2ab}$D。

$\frac{2ab}{a+b}\geq \sqrt{ab}$4.已知奇函数 $f(x)$ 在 $(-\infty,+\infty)$ 上是增函数,且$f(1)=3$,则不等式 $f(x)-f(-x)<0$ 的解集为()。

A。

$(-1,+\infty)$B。

$(-\infty,-1)\cup (1,+\infty)$C。

$(-\infty,-1)\cup (1,+\infty)$D。

$(-1,1)$5.当 $0<x<\frac{\pi}{2}$ 时,函数 $f(x)=\frac{1+\cos^2 x+8\sin^2 x}{2\sin^2 x}$ 的最小值为()。

A。

2B。

$\frac{2}{3}$C。

4D。

$\frac{3}{2}$6.若实数 $a,b$ 满足 $a+b=2$,则 $3a+3b$ 的最小值是()。

A。

18B。

【解析分类汇编系列二:北京2013(一模)数学理】6:不等式 Word版含答案

【解析分类汇编系列二:北京2013(一模)数学理】6:不等式 Word版含答案

【解析分类汇编系列二:北京2013(一模)数学理】6不等式1.(2013届北京丰台区一模理科)已知变量,x y 满足约束条件1101x y x x y +≤⎧⎪+≥⎨⎪-≤⎩,则2x y e +的最大值是 ( )A .3eB .2eC .1D .4e -【答案】B作出可行域如下图阴影所示:由11x y x y +=⎧⎨-=⎩得10x y =⎧⎨=⎩,所以B (1,0),令z=2x+y ,则当直线y=﹣2x+z 经过点B 时该直线在y 轴上的截距z 最大,z max =2×1+0=2,所以2x y e +的最大值是e 2.选B .2.(2013届北京丰台区一模理科)已知,a Z ∈关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是() A .13 B .18 C .21 D .26【答案】C设2()6f x x x a =-+,其图象是开口向上,对称轴是3x =的抛物线,如图所示.关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则(2)0(1)0f f ≤⎧⎨>⎩,即(2)4120(1)160f a f a =-+≤⎧⎨=-+>⎩,解得58a <≤,又a Z ∈,所以6,7,8a =。

则所有符合条件的a 的值之和是6+7+8=21.选C .3.(2013届北京海淀一模理科)不等式组1,40,0x x y kx y ≥⎧⎪+-≤⎨⎪-≤⎩表示面积为1的直角三角形区域,则k 的值为A.2-B .1-C .0D .1【答案】D 作出不等式组表示的平面区域,如图所示,由题意可得A (1,3),44(,11k B k k ++,C (1,k ),所以14(3)(1)121ABC S k k ∆=⨯-⨯-=+,所以解得1k =,故选D .4.(2013届门头沟区一模理科)定义在 R 上的函数()y f x =是减函数,且函数(2)y f x =+的图象关于点(2,0)-成中心对称,若,s t 满足不等式组()(2)0()0f t f s f t s +-≤⎧⎨-≥⎩,则当23s ≤≤时,2s t +的取值范围是( )A .[3,4] (B) [3,9] (C) [4,6] D .[4,9]【答案】D因为(2)y f x =+的图象关于点(2,0)-成中心对称,所以函数()f x 关于原点对称。

(完整版)高中不等式试题和答案

(完整版)高中不等式试题和答案

、选择题:1 .不等式(1 + x)(1 — |x|)> 0的解集是 B. {x|xv 0 且 x J 1}C. {x|— 1v xv 1}D. {x|x<1 且 x 」1}2.直角三角形 ABC 的斜边AB = 2,内切圆半径为r,贝U r 的最大值是A .艘 B. 1C.学D.客—13.给出下列三个命题bT~by 29上任一点,圆。

2以Q (a,b )为圆心且半径为1.当(& x 〔)2(b y 〔)21时,圆O I 与圆。

2相切其中假命题的个数为C. 24.不等式 |2x — log 2x|<2x+ |log 2x|的解集为C. (1, +8 )5.如果x, y 是实数,那么 xyv 0”是钏一y|= |x|+ |y| '的9.某工厂第一年年产量为 A,第二年的增长率为 a,第三年的增长率为b,这两年的平均增长率为x,则不等式②若正整数m 和n 满足mn ,贝U Jm(n m)A . (x|0 夹v 1} ③设 P (x 〔,y 〔)为圆。

1 : x 2A. 充分条件但不是必要条件B.必要条件但不是充分条件C.充要条件 皿 ln2 「 ln3 6. 若 a =顶,b=—, ln5 时 c=则 D .非充分条件非必要条件A . a<b<cB. c<b<aC. c<a<bD . b<a<c7.已知a 、b 、c 满足c b a ,且ac 0, 那么下列选项中不一定成立的是A. ab acB. c(b a) D. ac(a c) 08.设0 a 1,函数 f (x) log a (a 2xx2a 2),则使 f(x)的x 的取值范围是A . ( — 8, 0)B. (0, +8 )C. ( — 8, log a 3)D . (log a 3, +8 )A . x=皿 B.、q C. x> J D. xJ2 2 2 210. 设方程 2x + x+ 2 = 0 和方程 log 2x+ x + 2= 0 的根分别为 p 和 q ,函数 f(x) = (x + p)(x+q)+2 , 则A . f(2) = f(0)<f(3)B . f(0)<f(2)<f(3) C. f(3)<f(0)= f(2) D . f(0)< f(3)<f(2)二、填空题:11. _____________________________________________________________________ 对于一1<a<1,使不等式(2)x 2 ax< (2)2x+a 1成立的x 的取值范围是 ________________________________12.若正整数 m 满足 10m 12512 10m ,则 m = . (lg2 - 0. 3010)1,给出下列四个不等式_ 1① log a (1 a) log a (1) a11 1③ a ' a a其中成立的是 三、解答题:16. (本题满分l2分)设函数f(x) 2|x1| |x1|,求使f(x) > 2*/2的x 取值范围.17. (本题满分12分)13.已知 f (x)14.已知 a> 0,1, x 0, 1,x 0,2b 2』rb>0,且 a — 1,贝U2则不等式x (x 2) f (x 2)<5的解集是 aj1 b 2的最大值是15.对于0 a _1② log a (1 a) log a (1已知函数f (x) 2sin 2 x sin 2x, x [0, 2 ].求使f(x)为正值的x的集合.18.(本题满分14分)⑴已知a,b是正常数,a b , x, y (0,2 2),求证:——(a b),指出等号成x y x y立的条件;........ …一,, 2 9 ⑵利用⑴的结论求函数f一1x (0,项)的取小值, 指出取最小值时x的1 (x)x 1 2x 值.19.(本题满分14分)设函数f(x)= |x— m|— mx,其中m为常数且m<0.⑴解关于x的不等式f(x)<0;⑵试探求f(x)存在最小值的充要条件,并求出相应的最小值20.(本题满分14分)已知a>0,函数f(x)= ax — bx2 .⑴当b>0时,若对任意x€ R都有f(x) 1,证明a 2 J b ;⑵当b>1时,证明对任意x [0, 1],都有|f(x)| 1的充要条件是b— 1 a 2无;⑶当0<b 1时,讨论:对任意x [0, 1],都有|f(x)| 1的充要条件.21 (本题满分14分)⑴设函数f(x) xiog2x (1 x) log 2 (1 x) (0 x 1),求f (x)的最小值;⑵设正数P1, P2, P3, , p2n 满足P1 P2 P3 P2n 1 ,证明P1 log 2 P1 P2 log 2 P2 P3 log 2 P3 P2n log 2 P2nn.[不等]符- 号定, 比较技巧深参考答案、选择题题号 1 2 3 4 5 6 7 8 9 10答案 D D A C A B C C B A二、填空题11. x< 0 或xA 2; 12. 155; 13. (,-] ;14. ^2;15.②④三、解答题3 -16.解:由于y= 2x是增函数,f(x)>2寸2等价于|x+1|- |x- 1|>① (2)分(i)当x> 1 时,|x+1|-|x- 1|= 2。

2013年全国高考理科数学试题分类汇编6:不等式Word版含答案

2013年全国高考理科数学试题分类汇编6:不等式Word版含答案

2013 年全国高考理科数学试题分类汇编6:不等式一、选择题1 .( 2013 年一般高等学校招生一致考试山东数学(理)试题(含答案))设正实数x, y, z知足x23xy 4 y2xy2 12 z 0, 则当 z获得最大值时 ,xyz9A . 0B . 1C .4【答案】 B的最大值为( )D . 32 .( 2013 年高考陕西卷(理) )设[ x ] 表示不大于 x 的最大整数 , 则对随意实数 x , y , 有 ( )A . [- x ] = -[ x ]B . [2 x ] = 2[ x ]C . [ x +y ] ≤[x ]+[ y ]D . [ x - y ] ≤[x ]-[ y ]【答案】 Dy 2x3 .( 2013 年高考湖南卷(理) ) 若变量 x, y 知足拘束条件xy 1, 则 x 2y 的最大值是y1.5 B .C .5D .5-3 22【答案】 C4 .(2013 年一般高等学校招生一致考试天津数学(理)试题(含答案)) 已知函数f ( x)x(1 a | x |) . 设对于 x 的不等式f ( x a )f ( x)的解集为A , 若1 1,A ,2 2则实数 a 的取值范围是A .15,0B .13,0C .15,00,123222【答案】 A5 .( 2013 年一般高等学校招生一致考试新课标Ⅱ 卷数学(理) (纯WORD 版含答案) ) 已知()( )D .,152x 1a 0 , x, y 知足拘束条件 xy3, 若 z 2x y 的最小值为 1, 则 a()y a( x3)A .1B .1C . 1D . 242【答案】 B6 .( 2013 年一般高等学校招生一致考试天津数学(理)试题(含答案)) 设变量 x , y 知足约3xy 60,束条件x y 2 0, 则目标函数z =-2 x 的最小值为()yy 3 0,A . -7B . -4C . 1D . 2【答案】 A7 .( 2013 年高考湖北卷(理) ) 一辆汽车在高速公路上行驶, 因为碰到紧迫状况而刹车 , 以速度 v t7 3t25( t 的单位 : s , v的单位 : m / s ) 行驶至停止 . 在此时期汽车持续1 t行驶的距离 ( 单位 ; m ) 是( )A . 1 25ln5B .8 11 C . 4 25ln5 D . 450ln 225ln【答案】 C38 .( 2013 年一般高等学校招生一致考试安徽数学(理)试题(纯WORD 版)) 已知一元二次不等式 f (x)<0 的解集为 x |x<-1或 x>1, 则 f (10x )>0 的解集为()2A . x|x<-1或 x>lg2B . x|-1<x<lg2C . x |x>-lg2D . x|x<-lg2【答案】 D9 .( 2013 年上海市春天高考数学试卷( 含答案 ) ) 假如 ab 0 , 那么以下不等式建立的是()A .1 1B . ab b 2C . aba 2D .1 1 abab【答案】 D10.( 2013 年一般高等学校招生一致考试山东数学(理)试题(含答案))在平面直角坐标系xoy2x y 2 0,x2y 1 0,中 , M 为不等式组 3x y80,所表示的地区上一动点 , 则直线OM斜率的最小值为()11A . 2B . 1C .3D .2【答案】 C11 .( 2013 年一般高等学校招生一致考试新课标 Ⅱ 卷数学(理) (纯WORD 版含答案) ) 设a log 3 6,b log 5 10, clog 7 14 , 则()A . c b aB . b c aC . a c bD . a b c【答案】2x y 1 0,12.( 2013 年高考北京卷(理) )设对于 x , y 的不等式组x m 0, 表示的平面地区内存y m 0在点 P ( x 0, y 0), 知足 x 0-2 y 0=2, 求得 m 的取值范围是( )A .,4B .,1C ., 2D .,53333【答案】 C二、填空题13.( 2013 年一般高等学校招生一致考试纲领版数学(理)WORD 版含答案(已校正) ) 记不等式x 0,组 x3y 4, 所表示的平面地区为 D , 若直线 ya x1 与 D 公共点 , 则 a 的取值3xy4,范围是 ______.【答案】 [1, 4]214.( 2013 年高考陕西卷(理) ) 若点 ( x , y ) 位于曲线 y | x 1| 与 y =2 所围成的关闭地区 , 则2x - y 的最小值为 ___-4_____.【答案】 - 415 .( 2013 年 高 考 四 川 卷 ( 理 )) 已 知 f ( x) 是 定 义 域 为 R 的 偶 函 数 , 当 x ≥ 0时, f ( x)x 2 4x , 那么 , 不等式 f ( x 2) 5 的解集是 ____________.【答案】 (7,3)16 .( 2013 年一般高等学校招生一致考试广东省数学(理)卷(纯WORD 版)) 给定地区x 4 y 4x y4D : x 0, 令点集T{ x 0, yD | x 0 , y 0Z, x 0, y0 , 是zx y 在 D 上取得最大值或最小值的点}, 则 T 中的点共确立 ______条不一样的直线.【答案】617.( 2013 年一般高等学校招生一致考试浙江数学(理)试题(纯WORD 版)) 设zkx y , 其xy 2 0中实数 x, y 知足 x2 y 4 0 , 若 z 的最大值为 12, 则实数 k ________.2x y 4 0【答案】 218.( 2013 年一般高等学校招生一致考试天津数学(理)试题(含答案)) 设 a + b = 2, b >0, 则当 a = ______ 时 ,1 | a |获得最小值 .2 | a |b【答案】 219.( 2013 年一般高等学校招生一致考试广东省数学(理)卷(纯 WORD 版))不等式 x 2x2 0的解集为 ___________.【答案】2,120. ( 2013年 高考 湖南 卷(理 ) )已知a,b,c ,23c 229ca 2则b 6的最,小值a 为4b .【答案】 12三、解答题21.( 2013 年上海市春天高考数学试卷( 含答案 ) )如图 , 某校有一块形如直角三角形ABC 的空地, 此中 B 为直角 , AB 长 40 米 , BC 长50 米 , 现欲在此空地上建筑一间健身房, 其占地形状为矩形 , 且 B 为矩形的一个极点 , 求该健身房的最大占地面积 .ABC【答案】 [ 解 ] 如图 , 设矩形为 EBFP , FP 长为 x 米, 此中 0 x 40 , AEPBFC健身房占地面积为 y 平方米 . 因为 CFP ∽ CBA ,以 FPCF , x 50BF,求得 BF505x ,BACB 40 504进而 yBF FP(50 5 x) x5 x 250x5 ( x 20)2 500 500 ,444当且仅当 x20 时, 等建立 .答 : 该健身房的最大占地面积为 500 平方米 .22.( 2013 年高考上海卷(理) ) (6 分 +8 分 ) 甲厂以 x 千克 / 小时的速度运输生产某种产品( 生产条件要求 1x 10 ), 每小时可获取收益是 100(5x 1 3)元.x(1) 要使生产该产品 2 小时获取的收益不低于 3000 元, 求 x 的取值范围 ;(2) 要使生产 900 千克该产品获取的收益最大, 问: 甲厂应当选用何种生产速度?并求最大收益 .【答案】 (1) 依据题意 , 200(5x13 ) 30005x 143 0x x又 1 x 10 , 可解得 3x 10(2) 设收益为 y 元 , 则 y900100(5x 1 3) 9 104[ 3( 11) 2 61]xxx 6 12故 x 6 时 ,ymax457500 元 .。

高考数学试题分类汇编-不等式(含文科理科及详细解析)

高考数学试题分类汇编-不等式(含文科理科及详细解析)

8 ,因此 a+b≤2.
3
3 a+b 2
4
6(2017 新课标Ⅱ理) [选修 4—5 :不等式选讲 ]( 10 分)
已知 a 0,b 0,a3 b3 2 .证明:
( 1) (a b)(a5 b5) 4 ; ( 2) a b 2.
f ( x) x 1 (x 2)
2x 1 当 1 x 2时
2x 1 1
∴1 x 2
x1
f ( x) x 1 ( x 2) 3
当 x 2时 3 1
综上所述 f ( x) 1的解集为 [1, ) .
x2
(2)原式等价于存在 x R ,使 f (x) x2 x m 成立,即 [ f ( x) =| x+1| ﹣| x﹣2| =
, f( x)≥ 1,
∴当﹣ 1≤x≤2 时, 2x﹣1≥1,解得 1≤x≤2; 当 x>2 时, 3≥1 恒成立,故 x>2; 综上,不等式 f (x)≥ 1 的解集为 { x| x≥1} . ( 2)原式等价于存在 x∈R 使得 f( x)﹣ x2+x≥m 成立, 即 m≤[ f( x)﹣ x2+x] max,设 g(x)=f(x)﹣ x2+x.
5,则 a 的取
x
值范围是 ___________.
【考点】 3H:函数的最值及其几何意义.
【专题】11 :计算题; 35 :转化思想; 49 :综合法; 51 :函数的性质及应用.
【分析】通过转化可知 | x+ ﹣a|+ a≤5 且 a≤ 5,进而解绝对值不等式可知 2a﹣5
≤ x+ ≤5,进而计算可得结论.
【分析】(1)由于 f(x)=| x+1| ﹣| x﹣ 2| =

全国高考理科数学试题分类汇编纯word解析版六不等式和线性规划逐题详解

全国高考理科数学试题分类汇编纯word解析版六不等式和线性规划逐题详解

20XX 年全国高考理科数学试题分类汇编(纯word 解析版) 六、不等式和线性规划(逐题详解)第I 部分1.【20XX 年四川卷(理04)】若0a b >>,0c d <<,则一定有A .a b c d >B .a b c d <C .a b d c >D .a bd c<【答案】D【解析】由1100c d d c <<⇒->->,又0a b >>, 由不等式性质知:0a b d c ->->,所以a bd c<2.【20XX 年江西卷(理11)】(1).(不等式选做题)对任意,x y R ∈,111x x y y -++-++的最小值为A.1B.2C.3D.4【答案】B【解析】()|1||||1||1|1||11|123x x y y x x y y -++-++≥--+--+=+=3.【20XX 年安徽卷(理05)】y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,若ax y z -=取得最大值的最优解不唯一,则实数 a 的值为(A )21或1- (B )2或21 (C )2或1(D )2或1-【答案】D【解析】可行域如右图所示,ax y z -=可化为z ax y +=2=02=-4.【20XX 年天津卷(理02)】设变量x 、y 满足约束条件20201x y x y y +-≥⎧⎪--≤⎨⎪≥⎩,则目标函数2z x y =+的最小值为A.2B.3C.4D.5【答案】B【解析】画出可行域,如图所示.解方程组⎩⎪⎨⎪⎧x +y -2=0,y =1,得⎩⎪⎨⎪⎧x =1,y =1,即点A (1,1).当目标函数线过可行域内A 点时,目标函数有最小值,即z min =1×1+2×1=3.5.【20XX 年山东卷(理09)】已知y x,满足的约束条件⎩⎨⎧≥≤0,3-y -2x 0,1-y -x 当目标函数0)b 0,by(a ax z >>+=在该约束条件下取得最小值52时,22a b +的最小值为(A )5(B )4(C )5(D )2【答案】B【解析】10230x y x y --≤⎧⎨--≥⎩求得交点为()2,1,则2a b +=,即圆心()0,0到直线2250a b +-=的距离的平方2225245⎛⎫== ⎪ ⎪⎝⎭。

湖北省高三理科数学分类 汇编 不等式

湖北省高三理科数学分类 汇编 不等式

湖北省2013届高三最新理科数学(精选试题16套+2008-2012五年湖北高考理科试题)分类汇编6:不等式一、选择题1 .(湖北省八市2013届高三3月联考数学(理)试题)不等式组(3)()0,04x y x y x -++⎧⎨⎩≥≤≤表示的平面区域是( )A .矩形B .三角形C .直角梯形D .等腰梯形【答案】D2 .(2009高考(湖北理))在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇,现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为 ( ) A .2000元 B .2200元 C .2400元 D .2800元 【答案】 B .3 .(湖北省武汉市2013届高三5月供题训练数学理试题(三)(word 版) )已知a,b 是实数,若|a+b| = |a|+|b|,则( )A .ab≥0B .ab >0C .ab<0D .ab≤O【答案】A4 .(湖北省武汉市2013届高三第二次(4-0.8,c =21og 52,则 a ,b,c 的大小关系为( )A .c< b < aB .c < a < bC, b < a <C .D . b < C .< a【答案】A5 .(湖北省八校2013届高三第二次联考数学(理)试题)若23529++=x y z ,则函数μ=的最大值为 ( )A B .C .D 【答案】C 6 .(2012年湖北高考试题(理数,word 解析版))设,,,,,a b c x y z 是正数,且22210a b c ++=,22240x y z ++=,20ax by cz ++=,则a b cx y z++=++( )A .14 B .13C .12D .34【答案】C 【解析】已知22222210,40,20ab c x y z ax by cz ++=++=++=,则()()()2222222a b cx y z ax by cz ++++=++.由柯西不等式得()()()2222222a b cxy z ax by cz ++++≥++,所以上述不等式取等号,一定有,,,a kx b ky c kz === 此时()2222222a b c k x y z ++=++,即21040k =,解得12k =(舍去负值). 所以由等比性质得+1.2a b c a k x y z x +===++【点评】本题考查柯西不等式的应用.柯西不等式是考纲中的了解内容,考查一般难度并不大,但如果不了解柯西不等式的结构,求解也有一定的困难.来年需注意绝对值不等式的求解与应用7 .(湖北省浠水一中2013届高三理科数学模拟测试 )已知偶函数() ()y f x x R =∈在区间[0,3]上单调递增,在区间[3,)+∞上单调递减,且满足(4)(1)0f f -==,则不等式3()0x f x <的解集是 ( ) A .(4,1)(1,4)--B .(,4)(1,1)(3,)-∞--+∞C .(,4)(1,0)(1,4)-∞--D .(4,1)(0,1)(4,)--+∞【答案】D . 解析:():03可知<x f x ()()0000><<>x f x x f x 时或时,由偶函数()x f 图像可得x 范围.8 .(湖北省荆州市2013届高三3月质量检测(Ⅱ)数学(理)试题)设平面点集A={(x,y)│(y -x)(y-1/x)≥0},B={(x,y)│0≤y≤},则A∩B 所表示的平面图形的面积为( )A .π/2B .C .D .【答案】A9 .(湖北省武汉市2013届高三5月模拟考试数学(理)试题)已知2222360,20xy z a x y z a ++-=+++-=,则实数a 的取值范围为 ( )A .[1,4]B .(,1][4,)-∞⋃+∞ C.(1,4)D .(,1)(4,)-∞⋃+∞【答案】A10.(湖北省黄冈市2013届高三数学(理科)综合训练题)8(x +(0a >)展开式中,中间项的系数为70.若实数x 、y 满足100x y x y x a -+⎧⎪+⎨⎪⎩………则z=x +2y 的最小值是 ( )A .-1B .12C .5D .1【答案】A 二、填空题11.(2009高考(湖北理))已知关于x 的不等式11ax x -+<0的解集是1(,1)(,)2-∞--+∞.则a =__________. 【答案】-2【解析】由不等式判断可得a≠0且不等式等价于1(1)()0a x x a+-< 由解集特点可得11022a a a <=-⇒=-且12.(湖北省武汉市2013届高三5月供题训练数学理试题(二)(word 版) )设x,y 满足约束条件⎪⎩⎪⎨⎧≤-≥-≥1020y x y x x ,并设满足该条件的点(x,y)所成的区域为Ω,则 (I)z=2x +y 的最大值是_______; (II)包含Ω的最小圆的方程为_______.【答案】(1)5;(2)22(1)2x y -+= 13.(2008年普通高等学校招生全国统一考试理科数学试题及答案-湖北卷)已知函数f(x)=x 2+2x+a,f(bx)=9x 2-6x +2,其中x∈R,a,b 为常数,则方程f (ax+b )=0的解集为_____________.【答案】∅14.(2010年高考(湖北理))已知y x z -=2,式中变量x,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≤,2,1,x y x x y 则z 的最大值为__________. 【答案】【答案】5【解析】依题意,画出可行域(如图示),则对于目标函数y=2x-z,当直线经过A(2,-1)时,z 取到最大值,max 5Z =.15.(湖北省七市2013届高三4月联考数学(理)试题)点P(x, y)在不等式组⎪⎩⎪⎨⎧+≥≤+≥130x y y x x 表示的平面区域内,若点P(x,y)到直线y=kx-1(k>0)的最大距离为22,则k=____.【答案】116.(湖北省黄冈中学2013届高三第一次模拟考试数学(理)试题)已知(0,)x y z ∈+∞、、,且2221ln ln ln 3x y z ++=,则2x yz 的最大值为_________ .【答案】答案:解析:2222222(ln ln ln )[2(1)(1)](2ln ln ln )x y z x y z +++-+-≥--17.(湖北省黄冈市2013届高三3月份质量检测数学(理)试题)设P 是不等式组,013x y x y x y ≥⎧⎪-≥-⎨⎪+≤⎩表示的平面区域内的任意一点,向量(1,1)m =,(2,1)n =,若OP m n λμ=+(,λμ为实数),则2λμ+的最大值为____.【答案】 518.(2010年高考(湖北理))设,0,0>>b a 称ba ab+2为a 、b 的调和平均数,如图,C 为线段AB 上的点,且AC=a,CB=b,O 为AB 的中点,以AB 为直径作半圆,过点C 作AB 的垂线交半圆于D,连结OD,AD,BD,过点C 做OD 的垂线,垂足为E,则图中线段OD 的长度是a,b 的算术平均数,线段__________的长度是a,b 的几何平均数,线段___________的长度是a,b 的调和平均数.【答案】【答案】CD CE【解析】在Rt△ADB 中DC 为高,则由射影定理可得2CD AC CB =⋅,故CD =,即CD 长度为a,b 的几何平均数,将OC=, 222a b a b a b a CD OD +-+-===代入OD CE OC CD ⋅=⋅可得CE =故2()2()a b OE a b -==+,所以ED=OD-OE=2aba b+,故DE 的长度为a,b 的调和平均数.三、解答题19.(2010年高考(湖北理))为了在夏季降温和冬天了供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热厚度x(单位:cm)满足关系:)100(53)(≤≤+=x x kx C ,若不建隔热层,每年能源消耗费用为8万元,设)(x f 为隔热层建造费用与20年的能源消耗费用之和. (I)求k 的值及)(x f 的表达式;(II)隔热层修建多厚时,总费用)(x f 达到最小,并求最小值.【答案】本小题主要考查函数、导数等基础知识,同时考查运用数学知识解决实际问题的能力,解:(I)设隔热层厚度为x cm,由题设,每年能源消耗费用为53)(+=x kx C , 再由,5340)(,40,8)0(+===x x C k C 因此得 而建造费用为.6)(1x x C =最后得隔热层建造费用与20年的能源消耗费用之和为)100(6538006534020)()(20)(1≤≤++=++⨯=+=x x x x x x C x C x f(II),6)53(2400,0)(',)53(24006)('22=+=+-=x x f x x f 即令 解得325,5-==x x (舍去) 当50<<x 时,,0)('<x f 当.0)(',105><<x f x 时 故x=5是)(x f 的最小值点,对应的最小值为.7051580056)5(=++⨯=f当隔热层修建5cm 厚时,总费用达到最小值70万元.情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当20200x ≤≤时,车流速度v 是车流密度x 的一次函数.(Ⅰ)当0200x ≤≤时,求函数()v x 的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)()().f x x v x =可以达到最大,并求出最大值(精确到1辆/小时)【答案】本小题主要考查函数、最值等基础知识,同时考查运用数学知识解决实际问题的能力.解:(Ⅰ)由题意:当020,()60x v x ≤≤=时;当20200,()x v x ax b ≤≤=+时设再由已知得1,2000,32060,200.3a a b a b b ⎧=-⎪+=⎧⎪⎨⎨+=⎩⎪=⎪⎩解得故函数()v x 的表达式为60,020,()1(200),202003x v x x x ≤≤⎧⎪=⎨-≤≤⎪⎩(Ⅱ)依题意并由(Ⅰ)可得60,020,()1(200),202003x x f x x x x ≤<⎧⎪=⎨-≤≤⎪⎩当020,()x f x ≤≤时为增函数,故当20x =时,其最大值为60×20=1200;当20200x ≤≤时,211(200)10000()(200)[]3323x x f x x x +-=-≤=当且仅当200x x =-,即100x =时,等号成立.所以,当100,()x f x =时在区间 [20,200]上取得最大值10000.3综上,当100x =时,()f x 在区间[0,200]上取得最大值1000033333≈.即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.。

高考真题理科数学解析汇编不等式逐题解答

高考真题理科数学解析汇编不等式逐题解答

2012年高考真题理科数学解析汇编:不等式一、选择题 1.(2012年高考(重庆理))设平面点集{}221(,)()()0,(,)(1)(1)1A x y y x y B x y x y x ⎧⎫=--≥=-+-≤⎨⎬⎩⎭,则A B 所表示的平面图形的面积为( ) A .34πB .35πC .47πD .2π2 .(2012年高考(重庆理))不等式0121≤+-x x 的解集为( ) A .⎥⎦⎤ ⎝⎛-1,21B .⎥⎦⎤⎢⎣⎡-1,21C .[)+∞⋃⎪⎭⎫ ⎝⎛-∞-,121.D .[)+∞⋃⎥⎦⎤ ⎝⎛-∞-,121,3 .(2012年高考(四川理))某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( ) A .1800元B .2400元C .2800元D .3100元4 .(2012年高考(山东理))已知变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y =-的取值范围是( )A .3[,6]2-B .3[,1]2--C .[1,6]-D .3[6,]2- 5 .(2012年高考(辽宁理))若[0,)x ∈+∞,则下列不等式恒成立的是( )A .21xe x x ++…B211124x x <-+C .21cos 12x x -…D .21ln(1)8x x x +-… 6 .(2012年高考(辽宁理))设变量x,y 满足,15020010⎪⎩⎪⎨⎧≤≤≤+≤≤-y y x y x 则y x 32+的最大值为( )A .20B .35C .45D .557 .(2012年高考(江西理))某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表 年产量/亩 年种植成本/亩 每吨售价 黄瓜 4吨 1.2万元 0.55万元 韭菜 6吨 0.9万元 0.3万元为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( ) A .50,0B .30.0C .20,30D .0,508 .(2012年高考(湖北理))设,,,,,a b c x y z 是正数,且22210a b c ++=,22240x y z ++=,20ax by cz ++=,则a b cx y z++=++( )A .14B .13C .12D .349 .(2012年高考(广东理))已知变量x 、y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )A .12B .11C .3D .1-10.(2012年高考(福建理))若函数2xy =图像上存在点(,)x y 满足约束条件30230x y x y x m+-≤⎧⎪⎪--≤⎨⎪≥⎪⎩,则实数m 的最大值为( ) A .12B .1C .32D .2 11.(2012年高考(福建理))下列不等式一定成立的是( )A .21lg()lg (0)4x x x +>>B .1sin 2(,)sin x x k k Z xπ+≥≠∈ C .212||()x x x R +≥∈D .211()1x R x >∈+ 12.(2012年高考(大纲理))已知125ln ,log 2,x y z e π-===,则( )A .x y z <<B .z x y <<C .z y x <<D .y z x <<二、填空题13.(2012年高考(新课标理))设,x y 满足约束条件:,013x y x y x y ≥⎧⎪-≥-⎨⎪+≤⎩;则2z x y =-的取值范围为_________14.(2012年高考(浙江理))设a ∈R,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =______________.15.(2012年高考(上海春))若不等式210x kx k -+->对(1,2)x ∈恒成立,则实数k 的取值范围是______.16.(2012年高考(陕西理))设函数ln ,0()21,0x x f x x x >⎧=⎨--≤⎩,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为___________.17.(2012年高考(陕西理))观察下列不等式213122+< 231151233++<,222111712344+++<照此规律,第五个...不等式为________________________________________. 18.(2012年高考(江苏))已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是____.19.(2012年高考(江苏))已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x的不等式()f x c <的解集为(6)m m +,,则实数c 的值为____.20.(2012年高考(大纲理))若,x y 满足约束条件1030330x y x y x y -+≥⎧⎪⎪+-≤⎨⎪+-≥⎪⎩,则3z x y =-的最小值为_________________.21.(2012年高考(安徽理))若,x y 满足约束条件:02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩;则x y -的取值范围为_____2012年高考真题理科数学解析汇编:不等式参考答案一、选择题 1.【答案】D【考点定位】本小题主要考查二元一次不等式(组)与平面区域,圆的方程等基础知识,考查运算求解能力,考查数形结合思想,化归与转化思想,属于基础题. 2.【答案】A【解析】(1)(21)01101212210x x x x x x -+≤⎧-⎪≤⇒⇒<≤⎨++≠⎪⎩【考点定位】本题主要考查了分式不等式的解法,解题的关键是灵活运用不等式的性质,属于基础试题,属基本题. 3.[答案]C[解析]设公司每天生产甲种产品X 桶,乙种产品Y 桶,公司共可获得 利润为Z 元/天,则由已知,得 Z=300X+400Y且⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00122122Y X Y X Y X 画可行域如图所示,目标函数Z=300X+400Y 可变形为 Y=400zx 43+-这是随Z 变化的一族平行直线 解方程组⎩⎨⎧=+=+12y 2x 12y x 2⎩⎨⎧==∴4y 4x 即A(4,4) 280016001200max =+=∴Z [点评]解决线性规划题目的常规步骤:一列(列出约束条件)、二画(画出可行域)、三作(作目标函数变形式的平行线)、四求(求出最优解).4.【解析】做出不等式所表示的区域如图,由y x z -=3得z x y -=3,平移直线x y 3=,由图象可知当直线经过点)0,2(E 时,直线z x y -=3的截距最小,此时z 最大为63=-=y x z ,当直线经过C 点时,直线截距最大,此时z 最小,由⎩⎨⎧=+-=-4214y x y x ,解得⎪⎩⎪⎨⎧==321y x ,此时233233-=-=-=y x z ,所以y x z -=3的取值范围是]6,23[-,选A.5.【答案】C【解析】设2211()cos (1)cos 122f x x x x x =--=-+,则()()sin ,g x f x x x '==-+ 所以()cos 10g x x '=-+≥,所以当[0,)x ∈+∞时,()()()(0)0,g x g x f x g '==为增函数,所以≥ 同理21()(0)0cos (1)02f x f x x =∴--≥,≥,即21cos 12x x -…,故选C【点评】本题主要考查导数公式,以及利用导数,通过函数的单调性与最值来证明不等式,考查转化思想、推理论证能力、以及运算能力,难度较大. 6.【答案】D【解析】画出可行域,根据图形可知当x=5,y=15时2x +3y 最大,最大值为55,故选D 【点评】本题主要考查简单线性规划问题,难度适中.该类题通常可以先作图,找到最优解求出最值,也可以直接求出可行域的顶点坐标,代入目标函数进行验证确定出最值. 7.B 【解析】本题考查线性规划知识在实际问题中的应用,同时考查了数学建模的思想方法以及实践能力.设黄瓜和韭菜的种植面积分别为x,y 亩,总利润为z 万元,则目标函数为(0.554 1.2)(0.360.9)0.9z x x y y x y =⨯-+⨯-=+.线性约束条件为50,1.20.954,0,0.x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩即50,43180,0,0.x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩作出不等式组50,43180,0,0x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩表示的可行域,易求得点()()()0,50,30,20, 0,45A B C .平移直线0.9z x y =+,可知当直线0.9z x y =+经过点()30,20B ,即30,20x y ==时,z 取得最大值,且max 48z =(万元).故选B.【点评】解答线性规划应用题的一般步骤可归纳为:(1)审题——仔细阅读,明确有哪些限制条件,目标函数是什么? (2)转化——设元.写出约束条件和目标函数;(3)求解——关键是明确目标函数所表示的直线与可行域边界直线斜率间的关系; (4)作答——就应用题提出的问题作出回答.体现考纲中要求会从实际问题中抽象出二元线性规划.来年需要注意简单的线性规划求最值问题.8.考点分析:本题主要考察了柯西不等式的使用以及其取等条件.解析:由于222222)())((2cz by ax z y x c b a ++≥++++等号成立当且仅当,t zcy b x a ===则a=t x b=t y c=t z ,10)(2222=++z y x t 所以由题知2/1=t 又2/1,==++++++++===t zy x c b a z y x c b a z c y b x a 所以,答案选C.9.解析:B.画出可行域,可知当代表直线过点A 时,取到最大值.联立21y y x =⎧⎨=-⎩,解得32x y =⎧⎨=⎩,所以3z x y =+的最大值为11. 10.【答案】B【解析】30x y +-=与2y x =的交点为(1,2),所以只有1m ≤才能符合条件,B 正确.【考点定位】本题主要考查一元一次不等式组表示平面区域,考查分析判断能力、逻辑推理能力和求解计算能力.11.【答案】C【解析】由基本不等式得212||()x x x R +≥∈,答案C 正确.【考点定位】此题主要考查基本不等式和均值不等式成立的条件和运用,考查综合运用能力,掌握基本不等式的相关内容是解本题的关键. 12.答案D【命题意图】本试题主要考查了对数、指数的比较大小的运用,采用中间值大小比较方法.【解析】ln ln 1e π>=,551log 2log 2<=,1212z e -==>=,故选答案D.二、填空题13.【解析】2z x y =-的取值范围为[3,3]-约束条件对应四边形OABC 边际及内的区域:(0,0),(0,1),(1,2),(3,0)O A B C 则2[3,3]z x y =-∈-14.【解析】本题按照一般思路,则可分为一下两种情况:(A )2(1)1010a x x ax ≤⎧⎨≤⎩----, 无解;(B )2(1)1010a x x ax ≥⎧⎨≥⎩----, 无解. 因为受到经验的影响,会认为本题可能是错题或者解不出本题.其实在x >0的整个区间上,我们可以将其分成两个区间(为什么是两个?),在各自的区间内恒正或恒负.(如下答图)我们知道:函数y 1=(a -1)x -1,y 2=x 2-ax -1都过定点P (0,—1). 考查函数y 1=(a -1)x -1:令y =0,得M (11a -,0),还可分析得:a >1; 考查函数y 2=x 2-ax -1:显然过点M (11a -,0),代入得:211011a a a ⎛⎫--= ⎪--⎝⎭,解之得:302a or =,舍去0a =,得答案:32a =. 【答案】32a =15.(,2]-∞16.解析:1,0()2,0x y f x x x ⎧>⎪'==⎨⎪-≤⎩,(1)1f '=,曲线()y f x =及该曲线在点(1,0)处的切线方程为1y x =-,围成的封闭区域为三角形,2z x y =-在点(0,1)-处取得最大值2.17.解析:第五个...不等式为2222211111111234566+++++< 18.【答案】[] 7e ,.【考点】可行域.【解析】条件4ln 53ln b c a a c c c a c b -+-≤≤≥,可化为:354a c a bc c a bc cb e c⎧⋅+≥⎪⎪⎪+≤⎨⎪⎪⎪≥⎩.设==a bx y c c,,则题目转化为: 已知x y ,满足35400x x y x y y e x >y >+≥⎧⎪+≤⎪⎨≥⎪⎪⎩,,求y x 的取值范围. 作出(x y ,)所在平面区域(如图).求出=x y e 的切线的斜率e ,设过切点()00P x y ,的切线为()=0y ex m m +≥, 则00000==y ex m m e x x x ++,要使它最小,须=0m . ∴yx的最小值在()00P x y ,处,为e .此时,点()00P x y ,在=x y e 上,A B 之间. 当(x y ,)对应点C 时, =45=205=7=7=534=2012y x y x yy x y x y xx --⎧⎧⇒⇒⇒⎨⎨--⎩⎩,∴yx 的最大值在C 处,为7. ∴y x 的取值范围为[] 7e ,,即b a的取值范围是[] 7e ,. 19.【答案】9.【考点】函数的值域,不等式的解集.【解析】由值域为[0)+∞,,当2=0x ax b ++时有240a b =-=V ,即24a b =, ∴2222()42a a f x x ax b x ax x ⎛⎫=++=++=+ ⎪⎝⎭.∴2()2a f x x c ⎛⎫=+< ⎪⎝⎭解得2a x <+<,22a a x <<.∵不等式()f x c <的解集为(6)m m +,,∴)()622aa --==,解得9c =.20.答案:1-【命题意图】本试题考查了线性规划最优解的求解的运用.常规题型,只要正确作图,表示出区域,然后借助于直线平移法得到最值.【解析】做出不等式所表示的区域如图,由y x z -=3得z x y -=3,平移直线x y 3=,由图象可知当直线经过点)1,0(C 时,直线z x y -=3的截距最 大,此时z 最小,最小值为1-3=-=y x z .21.【解析】x y -的取值范围为_____[3,0]-约束条件对应ABC ∆边际及内的区域:3(0,3),(0,),(1,1)2A B C 则[3,0]t x y =-∈-。

高中不等式试题及答案解析

高中不等式试题及答案解析

高中不等式试题及答案解析试题一:已知不等式 \( ax^2 + bx + c > 0 \),其中 \( a < 0 \),求 x 的取值范围。

答案解析:由于 \( a < 0 \),二次函数 \( ax^2 + bx + c \) 的图像是一个开口向下的抛物线。

不等式 \( ax^2 + bx + c > 0 \) 表示函数值在 x 轴上方的区域。

要找到 x 的取值范围,我们需要找到抛物线的根,即解方程 \( ax^2 + bx + c = 0 \)。

设 \( x_1 \) 和 \( x_2 \) 是方程 \( ax^2 + bx + c = 0 \) 的两个根,根据韦达定理,我们有:\[ x_1 + x_2 = -\frac{b}{a} \]\[ x_1 x_2 = \frac{c}{a} \]由于 \( a < 0 \),\( x_1 \) 和 \( x_2 \) 必定异号,这意味着\( x_1 x_2 < 0 \)。

因此,不等式 \( ax^2 + bx + c > 0 \) 的解集是 \( x \in (x_1, x_2) \)。

试题二:若 \( x > 0 \),求不等式 \( \frac{1}{x} + x \geq 2 \) 成立的条件。

答案解析:我们可以使用 AM-GM 不等式(算术平均数-几何平均数不等式)来解决这个问题。

对于任意正数 \( a \) 和 \( b \),有:\[ \frac{a + b}{2} \geq \sqrt{ab} \]令 \( a = \frac{1}{x} \) 和 \( b = x \),我们得到:\[ \frac{\frac{1}{x} + x}{2} \geq \sqrt{\frac{1}{x} \cdot x} \]\[ \frac{1}{2x} + \frac{x}{2} \geq 1 \]两边乘以 2,得到:\[ \frac{1}{x} + x \geq 2 \]当且仅当 \( a = b \) 时,AM-GM 不等式取等号,即 \( \frac{1}{x} = x \)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国高考理科数学试题分类汇编6:不等式一、选择题
1 .(普通高等学校招生统一考试山东数学(理)试题(含答案))设正实数
,,
x y z满足
22
340
x xy y z
-+-=,则当xy
z取得最大值时,
212
x y z
+-
的最大值为()
A.0 B. 1 C.9
4D. 3
【答案】B
2 .(高考陕西卷(理))设[x]表示不大于x的最大整数, 则对任意实数x, y, 有()
A.[-x] = -[x] B. [2x] = 2[x] C. [x+y]≤[x]+[y] D. [x-y]≤[x]-[【答案】D
3 .(高考湖南卷(理))若变量,x y满足约束条件
2
1
1
y x
x y
y



+≤

⎪≥-

,2
x y
+
则的最大值是()
A.
5
-
2
B.0C.
5
3
D.
5
2
【答案】C
4.(普通高等学校招生统一考试天津数学(理)试题(含答案))已知函数
()(1||)
f x x a x
=+.设关于x的不等式()()
f x a f x
+<的解集为A, 若
11
,
22
A ⎡⎤
-⊆
⎢⎥
⎣⎦
,
则实数a的取值范围是()
A.

⎪⎪
⎝⎭
B.

⎪⎪
⎝⎭
C.





⎝⎭


D.

-
⎝⎭

【答案】A
5 .(普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD版含答案))已知0
a>,,x y
满足约束条件
1
3
(3)
x
x y
y a x



+≤

⎪≥-

,若2
z x y
=+的最小值为1,则a=()
A.1
4
B.
1
2
C.1D.2
【答案】B
6 .(普通高等学校招生统一考试天津数学(理)试题(含答案))设变量x, y满足约束条

360,
20,
30,
x y
y
x y≥
--≤
+-

-≤




则目标函数z = y-2x的最小值为()
A . -7
B . -4
C . 1
D . 2
【答案】A
7 . (高考湖北卷(理))一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度
()25
731v t t t
=-+
+(t 的单位:s ,v 的单位:/m s )行驶至停止. 在此期间汽车继续行驶的距离(单位;m )是 ( )
A . 125ln5+
B . 11
825ln 3+ C . 425ln5+ D . 450ln 2+
【答案】C
8 . (普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))已知一元二次不等式()<0
f x 的解集为{}1
|<-1>2
x x x 或,则(10)>0x f 的解集为
( )
A . {}|<-1>lg2x x x 或
B . {}|-1<<lg2x x
C . {}|>-lg2
x x D . {}|<-lg2
x x
【答案】D
9 . (上海市春季高考数学试卷(含答案))如果0a b <<,那么下列不等式成立的是
( )
A .
11a b
< B . 2
ab b <
C . 2
ab a -<-
D . 11a b
-
<- 【答案】D
10. (普通高等学校招生统一考试山东数学(理)试题(含答案))在平面直角坐标系xoy 中,M
为不等式组
220,
210,380,x y x y x y --≥⎧⎪
+-≥⎨⎪+-≤⎩
所表示的区域上一动点,则直线OM 斜率的最小值为
( )
A . 2
B . 1
C . 13-
D . 12-
【答案】C
11. (普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))设
357log 6,log 10,log 14a b c ===,则
( )
A . c b a >>
B . b c a >>
C . a c b >>
D . a b c >>
【答案】
12. (高考北京卷(理))设关于x ,y 的不等式组210,0,0x y x m y m -+>⎧⎪
+<⎨⎪->⎩
表示的平面区域内存在点
P (x 0,y 0),满足x 0-2y 0=2,求得m 的取值范围是
( )
A . 4,
3⎛⎫-∞ ⎪⎝⎭
B . 1,3⎛⎫-∞ ⎪⎝⎭
C . 2,3⎛⎫-∞-
⎪⎝⎭
D . 5,3⎛⎫-∞- ⎪⎝⎭
【答案】C 二、填空题
13. (普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))记不等式组
0,
34,34,x x y x y ≥⎧⎪
+≥⎨⎪+≤⎩
所表示的平面区域为D ,若直线()1y a x =+与D 公共点,则a 的取值范围是______.
【答案】1
[,4]2
14. (高考陕西卷(理))若点(x , y )位于曲线|1|y x =-与y =2所围成的封闭区域, 则2x -y
的最小值为___-4_____. 【答案】- 4
15. (高考四川卷(理))已知()f x 是定义域为R 的偶函数,当x ≥0时,
2()4f x x x =-,
那么,不等式(2)5f x +<的解集是____________.
【答案】(7,3)-
16. (普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))给定区域D :44
40
x y x y x +≥⎧⎪
+≤⎨⎪≥⎩,
令点集
()()
000000{,|,,,T x y D x y Z x y =∈∈,是z x y =+在D 上取得最大值或最小
值的点},则T 中的点共确定______条不同的直线.
【答案】6
17. (普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设y kx z +=,其中实
数y x ,满足⎪⎩

⎨⎧≤--≥+-≥-+0420420
2y x y x y x ,若z 的最大值为12,则实数=k ________.
【答案】2
18. (普通高等学校招生统一考试天津数学(理)试题(含答案))设a + b = 2, b >0, 则当
a = ______时, 1||
2||a a b
+取得最小值. 【答案】2-
19. (普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))不等式2
20x x +-<的
解集为___________.
【答案】
()2,1-
20. (高考湖南卷(理))已知2
22,,,236,49a b c a b c a
b c ∈++=++则的最小值为______.
【答案】12 三、解答题
21. (上海市春季高考数学试卷(含答案))如图,某校有一块形如直角三角形ABC 的空地,
其中B ∠为直角,AB 长40米, BC 长50米,现欲在此空地上建造一间健身房,其占地
形状为矩形,且B 为矩形的一个顶点,求该健身房的最大占地面积.
【答案】[解]如图,设矩形为EBFP , FP 长为x 米,其中040x <<,
健身房占地面积为y 平方米. 因为CFP ∆∽CBA ∆,

FP CF BA CB =,504050x BF -=,求得5
504
BF x =-, 从而255(50)5044y BF FP x x x x =⋅=-=-+2
5(20)5005004
x =--+≤,
当且仅当20x =时,等号成立.
答:该健身房的最大占地面积为500平方米. 22. (高考上海卷(理))(6分+8分)甲厂以x 千克/小时的速度运输生产某种产品(生
产条件要求110x ≤≤),每小时可获得利润是3100(51)x x
+-元.
(1)要使生产该产品2小时获得的利润不低于3000元,求x 的取值范围;
(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.
【答案】(1)根据题意,33
200(51)30005140x x x x
+-
≥⇒--≥ 又110x ≤≤,可解得310x ≤≤ (2)设利润为y 元,则4290031161100(51)910[3()]612
y x x x x =
⋅+-=⨯--+ 故6x =时,max 457500y =元.
A
B
C
F
P E A
B C。

相关文档
最新文档