2020年青岛李沧中考一模数学真题
〖汇总3套试卷〗青岛市2020年中考数学第一次联考试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列各式计算正确的是( )A.633-=B.1236⨯=C.3535+=D.1025÷=【答案】B【解析】A选项中,∵63、不是同类二次根式,不能合并,∴本选项错误;B选项中,∵123=36=6⨯,∴本选项正确;C选项中,∵35=35⨯,而不是等于3+5,∴本选项错误;D选项中,∵10102=5÷≠,∴本选项错误;故选B.2.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度【答案】C【解析】根据图像,结合行程问题的数量关系逐项分析可得出答案.【详解】从图象来看,小明在第40分钟时开始休息,第60分钟时结束休息,故休息用了20分钟,A正确;小明休息前爬山的平均速度为:28007040=(米/分),B正确;小明在上述过程中所走的路程为3800米,C错误;小明休息前爬山的平均速度为:70米/分,大于休息后爬山的平均速度:380028002510060-=-米/分,D正确.故选C.考点:函数的图象、行程问题.3.把不等式组24030xx-≥⎧⎨->⎩的解集表示在数轴上,正确的是()A .B .C .D .【答案】A【解析】分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可.【详解】2x40 30x-≥⎧⎨-⎩①>②由①,得x≥2,由②,得x<1,所以不等式组的解集是:2≤x<1.不等式组的解集在数轴上表示为:.故选A.【点睛】本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD•AC D.AD AB AB BC=【答案】D【解析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【详解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴AC ABAB AD=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、ADAB=ABBC不能判定△ADB∽△ABC,故此选项符合题意.故选D.【点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.5.如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是()A.B.C.D.【答案】C【解析】根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题.【详解】解:由题意可得,y=308x⨯=240x,当x=40时,y=6,故选C.【点睛】本题考查了反比例函数的图象,根据题意列出函数解析式是解决此题的关键.6.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )A.该班总人数为50 B.步行人数为30C.乘车人数是骑车人数的2.5倍D.骑车人数占20%【答案】B【解析】根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例.【详解】A 、总人数是:25÷50%=50(人),故A 正确;B 、步行的人数是:50×30%=15(人),故B 错误;C 、乘车人数是骑车人数倍数是:50%÷20%=2.5,故C 正确;D 、骑车人数所占的比例是:1-50%-30%=20%,故D 正确.由于该题选择错误的,故选B .【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.7.二次函数y=ax 2+bx+c 的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b 与反比例函数y=c x在同一平面直角坐标系中的图象可能是( )A .B .C .D .【答案】C【解析】试题分析:∵二次函数图象开口方向向下,∴a <0,∵对称轴为直线2b x a=->0,∴b >0,∵与y 轴的正半轴相交,∴c >0,∴y ax b =+的图象经过第一、二、四象限,反比例函数c y x=图象在第一三象限,只有C 选项图象符合.故选C .考点:1.二次函数的图象;2.一次函数的图象;3.反比例函数的图象.8.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是( )A.B. C. D.【答案】D【解析】A选项:∠1+∠2=360°-90°×2=180°;B选项:∵∠2+∠3=90°,∠3+∠4=90°,∴∠2=∠4,∵∠1+∠4=180°,∴∠1+∠2=180°;C选项:∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,∵∠1+∠EFC=180°,∴∠1+∠2=180°;D选项:∠1和∠2不一定互补.故选D.点睛:本题主要掌握平行线的性质与判定定理,关键在于通过角度之间的转化得出∠1和∠2的互补关系. 9.如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为()A .(2,23)B .(﹣2,4)C .(﹣2,22)D .(﹣2,23)【答案】D 【解析】分析:作BC ⊥x 轴于C ,如图,根据等边三角形的性质得4,2,60OA OB AC OC BOA ====∠=,则易得A 点坐标和O 点坐标,再利用勾股定理计算出224223BC =-=,然后根据第二象限点的坐标特征可写出B 点坐标;由旋转的性质得60,AOA BOB OA OB OA OB ∠'=∠'==='=',则点A′与点B 重合,于是可得点A′的坐标.详解:作BC ⊥x 轴于C ,如图,∵△OAB 是边长为4的等边三角形∴4,2,60OA OB AC OC BOA ====∠=,∴A 点坐标为(−4,0),O 点坐标为(0,0),在Rt △BOC 中,224223BC =-=,∴B 点坐标为(2,23)-;∵△OAB 按顺时针方向旋转60,得到△OA′B′,∴60,AOA BOB OA OB OA OB ∠'=∠'==='=',∴点A′与点B 重合,即点A′的坐标为(2,3)-,故选D.点睛:考查图形的旋转,等边三角形的性质.求解时,注意等边三角形三线合一的性质.10.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a ,b 对应的密文为a +2b ,2a -b ,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是( )A .3,-1B .1,-3C .-3,1D .-1,3【答案】A【解析】根据题意可得方程组2127a b a b +=⎧⎨-=⎩,再解方程组即可. 【详解】由题意得:2127a b a b +=⎧⎨-=⎩, 解得:31a b =⎧⎨=-⎩, 故选A .二、填空题(本题包括8个小题)11.不等式组20262x x ->⎧⎨->⎩①②的解是________. 【答案】x >4【解析】分别解出不等式组中的每一个不等式,然后根据同大取大得出不等式组的解集.【详解】由①得:x >2;由②得 :x >4;∴此不等式组的解集为x >4;故答案为x >4.【点睛】考查了解一元一次不等式组,一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.如图,在平面直角坐标系xOy 中,点A 的坐标为A(1,0),等腰直角三角形ABC 的边AB 在x 轴的正半轴上,∠ABC=90°,点B 在点A 的右侧,点C 在第一象限。
2020年山东省青岛市李沧区中考数学一模试卷
2020 年山东省青岛市李沧区中考数学一模试卷一、选择题(本大题共8 小题,共 24.0 分)1. -2020 的绝对值是 ()A. -2020B. 2020C. 2.下列手机手势解锁图案中,是轴对称图形的是 A. B. C.1- 2020( )D.D.1 20203. 2020 春节期间,一场突如其来的新冠肺炎疫情牵动着全国人民的心,因疫情发展迅速,全国口罩防护用品销售量暴涨、供应紧张,国有疫,我有责,在特殊时期,某集团紧急启动了应急响应机制,取消了工人休假,与疫情救灾相关的口罩、防护服生产线连续 24 小时运转,将援驰武汉的往武汉,其中 120 万用科学记数法表示为 A. 120 ×10 4 B. 12 ×10 54.下列运算正确的是 ( )A. 2??+ 3??= 25??C. 2 3 6?? ×?? = ??120 万片口罩和 8 万防护服第一时间发()C. 1.2 ×10 6D. 1.2 ×10 7B.22 2(??+ 2??) = ?? + 4??D. 2 3= -??36(-???? ) ??? :? :? :? :5. 如图,四边形 ABCD 内接于圆,并有 ????????????????= 45 6 5 ,则 ∠ ??的度数为 ( ) : :A. 90°B. 95°C. 99°D. 100 °6. 如图,点 A B 的坐标分别为 (-3,1) , (-1, -2) ,若将线段 AB 平移至 ???? 的位置,,1 1 点 ??, ??的坐标分别为 (??,4) , (3, ??),则 ??+ ??的值为 ( )1 1A.2B.3C.4D.57.如图,对折矩形纸片 ABCD ,使 AB 与 BC 重合,得到折痕 EF ,然后把 △??????再对折到 △??????,使点 A 落在EF 上的点 G 处,若 ????= 2,则 HG 的长度为 ( )二次函数2与一次函数 ??= ????+ ??在同一坐标系中的大致图象可能是( )8.??= ????A. B.C. D.二、填空题(本大题共 6 小题,共 18.0 分)9.计算:√18+√121-1= ______.-( )√2310.射击比赛中,某队员10 次射击成绩如图所示,则该队员的成绩的中位数是______环.11.随着市民环保意识的日渐增强,文明、绿色的环保祭扫方式(鲜花祭奠、网络祭奠等 )正成为一种趋势,清明节期间,我区某花店用4000 元购买了若干花束,很快就售完了,接着又用4500 元购买了第二批花束.已知第二次购买的花束的数量是第一批所购花束的数量的 1.5 倍,且每束花的进价比第一批的进价少 5 元.若设第一批所购花束的数量为x 束,则可列方程为______.12.如图,分别以正三角形的三个顶点为圆心,边长为半径画弧,三段弧围成的图形成为莱洛三角形.若正三角形边长为6cm,则该莱洛三角形的面积为2.______????13.如图,在 ?ABCD 中, ????= 3 ,????= 5 ,∠ ??与∠ ??的平分线 AE,BF 相交于点 N,点 M 为线段 CD 的中点,连接 MN ,则 MN 的长度为 ______.14.如图,是由 22 个边长为 1 厘米的小正方体拼成的立体图形,该图中由两个小正方体组成的长方体的个数为______.15.某宾馆有若干间标准房,当标准房的价格为 200 元时,每天入住的房间数为 60 间.经市场调查表明,该馆每间标准房的价格在170 ~240元之间 (含 170 元, 240 元 )浮动时,每天入住的房间数??(间 ) 与每间标准房的价格??(元) 的数据如下表:??(元 )190200210220??(间 )65605550(1)根据所给数据在坐标系中描出相应的点,并画出图象.(2) 求 y 关于 x 的函数表达式,并写出自变量x 的取值范围.(3)设客房的日营业额为 ??(元 ). 若不考虑其他因素,问宾馆标准房的价格定为多少元时,客房的日营业额最大?最大为多少元?四、解答题(本大题共9 小题,共72.0 分)16.已知:直线 l 及 l 上两点 A, B.求作: ????△??????,使点 C 在直线 l 的上方,∠??????= 90°,且 ????= ????.22??-??17. (1)?? +??化简: (- 2??)÷;????(2)2??+ ?? - 1的函数与 x 轴有两个交点,且与y 轴交于正半若二次函数 ??= 2?? -轴,求 m 的取值范围.18.每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水 ?珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取 10 名学生的竞赛成绩 (百分制 ) 进行整理、描述和分析 (成绩得分用 x 表示,共分成四组:??.80 ≤ ??< 85 ;??.85 ≤ ??< 90 ; ??90. ≤ ??< 95;??.95 ≤ ??< 100) ,下面给出了部分信息:七年级 10 名学生的竞赛成绩是: 99,80,99,86,99,96,90, 100,89, 82八年级10 名学生的竞赛成绩在 C 组中的数据是:94, 90, 94八年级抽取的学生竞赛成绩扇形统计图七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数b92中位数9394众数99100方差5250.4根据以上信息,解答下列问题:(1)直接写出上述图表中 a, b 的值;(2)根据以上数据,你认为该校七、八年级学生掌握防溺水安全知识较好?请说明理由 ( 一条理由即可 ) ;(3)该校七、八年级共 720 人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀 (??≥ 90) 的学生人数是多少?19. 将图中的 A 型、 B 型、 C 型矩形纸片分别放在 3 个盒子中,盒子的形状、大小、质地都相同,再将这 3 个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出 1 个盒子,求摸出的盒子中是 A 型矩形纸片的概率;(2)搅匀后先从中摸出 1 个盒子 (不放回 ),再从余下的两个盒子中摸出一个盒子,求2 次摸出的盒子的纸片能拼成一个新矩形的概率( 不重叠无缝隙拼接 ) .20. 小明利用刚学过的测量知识来测量学校内一棵古树的高度.一天下午,他和学习小组的同学带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部 B,如图所示.于是他们先在古树周围的空地上选择一点D,并在点 D 处安装了测量器 DC ,测得古树的顶端 A 的仰角为 45°;再在 BD的延长线上确定一点 G,使????= 5米,并在 G 处的地面上水平放置了一个小平面镜,小明沿着 BG 方向移动,当移动到点 F 时,他刚好在小平面镜内看到这棵古树的顶端 A 的像,此时,测得 ????=2米,小明眼睛与地面的距离????= 1.6米,测量器的高度 ????= 0.5米.已知点 F 、G、D、B 在同一水平直线上,且 EF、CD、AB 均垂直于 FB ,求这棵古树的高度 ????(.小平面镜的大小忽略不计 )21. 为了参加西部博览会,资阳市计划印制一批宣传册.该宣传册每本共10页,由A、B 两种彩页构成.已知 A 种彩页制版费300 元/ 张, B 种彩页制版费 200元/ 张,共计 2400 元. (注:彩页制版费与印数无关)(1)每本宣传册 A、 B 两种彩页各有多少张?(2)据了解, A 种彩页印刷费 2.5元/ 张, B 种彩页印刷费 1.5 元/ 张,这批宣传册的制版费与印刷费的和不超过 30900 元.如果按到资阳展台处的参观者人手一册发放宣传册,预计最多能发给多少位参观者?22.如图,D是△??????的边AB的中点,????//????,????//????,AC与DE相交于点F,连接 AB, CD.(1)求证: ????= ????;(2)当△??????满足什么条件时,四边形 ADCE 是菱形?请说明理由.23.【模型介绍】古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸同侧的两个军营 A, ??他.总是先去 A 营,再到河边饮马,之后,再巡查 B营.如图①,他时常想,怎么走才能使每天走的路程之和最短呢?大数学家海伦曾用轴对称的方法巧妙地解决了这个问题.如图②,作点 B 关于直线 l 的对称点 ??,′连结 ????与′直线 l 交于点 P,连接 PB,则????+ ????的和最小.请你在下列的阅读、理解、应用的过程中,完成解答.理由:如图③,在直线 l 上另取任一点 ??,′连结 ????,′????,′??′,??′∵直线 l 是点 B, ??的′对称轴,点 P, ??在′l 上,∴????= ______, ?? ′=??______,∴????+ ????= ????+ ????=′______.在△????′中??,′∵????<′????+′??′,??′∴????+ ????< ????+ ??′,??即′????+ ????最小.【归纳总结】在解决上述问题的过程中,我们利用轴对称变换,把点A,B 在直线同侧的问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决 (其中点 P 为 ????与′l 的交点,即 A,P,??三′点共线).由此,可拓展为“求定直线上一动点与直线同侧两定点的距离和的最小值”问题的数学模型.【模型应用】(1)如图④,正方形 ABCD 的边长为 4,E 为 AB 的中点,F 是 AC 上一动点.求 ????+ ????的最小值.解析:解决这个问题,可借助上面的模型,由正方形对称性可知,点B与D关于直线 AC 对称,连结 DE 交 AC 于点 F ,则 ????+ ????的最小值就是线段ED 的长度,则 ????+ ????的最小值是______.(2) 如图⑤,圆柱形玻璃杯,高为14cm,底面周长为16cm,在杯内离杯底3cm 的点 C 处有一滴蜂蜜,此时一只蚂蚁正好在外壁,离杯上沿4cm 与蜂蜜相对的点 A 处,则蚂蚁到达蜂蜜的最短路程为______cm.(3) 如图⑥,在边长为 2 的菱形 ABCD 中,∠ ??????= 60 °,将△??????沿射线 BD 的方向平移,得到△??′??,′分??别′连接 ??′,???′,???′,??则??′+????′的??最小值为______.24.如图,已知 ????△??????,∠??????= 90°,∠??????= 30°,斜边 ????= 8????,将 ????△??????绕点 O 顺时针旋转 60°,得到△??????,连接 ????点. M 从点 D 出发,沿 DB 方向匀速行动,速度为 1????/??;同时,点 N 从点 O 出发,沿 OC 方向匀速运动,速度为 2????/??;当一个点停止运动,另一个点也停止运动.连接AM,MN ,MN 交 CD 于点 ??设.运动时间为 ??(??)(0< ??< 4) ,解答下列问题:(1)当 t 为何值时, OM 平分∠ ???????(2) 设四边形2AMNO 的面积为 ??(????),求 S 与 t 的函教关系式;(3)在运动过程中,当∠ ??????= 45 °时,求四边形 AMNO 的面积;(4) 在运动过程中,是否存在某一时刻t,使点 P 为线段 CD 的中点?若存在,求出t的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:根据绝对值的概念可知:| - 2020| = 2020 ,故选: B.根据绝对值的定义直接进行计算.本题考查了绝对值.解题的关键是掌握绝对值的概念,注意掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是0.2.【答案】A【解析】解: A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选: A.直接根据轴对称图形的概念求解.此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【答案】C【解析】解: 120 万= 1.2 ×10 6,故选: C.科学记数法的表示形式为??×10 ??的形式,其中 1 ≤ |??|< 10 ,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥ 10 时, n 是正数;当原数的绝对值< 1时, n 是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为??×10 ??的形式,其中1≤|??|< 10, n 为整数,表示时关键要正确确定 a 的值以及n 的值.4.【答案】D【解析】【分析】此题主要考查了合并同类项以及完全平方公式、积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.直接利用合并同类项法则以及完全平方公式、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.【解答】解: A、2??+ 3??= 5??,故此选项错误;222B、 (??+ 2??) = ?? + 4????+4??,故此选项错误;2· 35 ,故此选项错误;C、?? ?? = ??2336D 、(-???? )= -?? ??,正确.故选: D.5.【答案】C【解析】解:连接OA、 OB、 OC、OD ,∵????:????:????:????= 4:5:6:5,∴∠ ??????:∠ ??????:∠ ??????:∠ ??????= 4: 5: 6:5,设∠??????、∠??????、∠??????、∠??????的度数分别为4x、 5x、6x、5x,则4??+ 5??+ 6??+ 5??= 360°,解得, ??= 18°,∴∠ ??????的度数 +∠ ??????的度数 = 6 ×18 °+ 5 ×18 °= 198 °,1∴∠ ??的度数为 198 °×2 = 99 °,故选: C.连接 OA、OB、OC、OD ,根据圆心角和弧之间的关系定理得到∠??????:∠??????:∠??????:∠??????= 4 :5:6:5,列方程求出∠ ??????的度数 +∠ ??????的度数,根据圆周角定理解答即可.本题考查的是圆内接四边形的性质、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.6.【答案】A【解析】解:∵点 A、B 的坐标分别是为 (-3,1), (-1,-2),若将线段 AB 平移至 ??1??1的位置, ??1 (??,4) , ??(3,1??),∴线段 AB 向右平移了 4 个单位,向上平移了 3 个单位,∴??= 1,??= 1,∴??+ ??= 2,故选: A.由已知得出线段 AB 向右平移了 4 个单位,向上平移了3个单位,即可得出结果;本题考查坐标与图形变化- 平移,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.7.【答案】B【解析】解:如图,连接AG ,∵对折矩形 ABCD 的纸片,使 AB 与 DC 重合,∴????= ????, ????⊥????,∴????= ????,∵把△??????再对折到△??????,∴????= ????= 2,∠ ??????= ∠ ??????,∠ ??????= ∠ ??????=90 °,∴????= ????= ????,∴△??????是等边三角形,∴∠ ??????=60 °,∴∠ ??????=30 °,在 ????△??????中, ????= ????tan ∠??????= 2√3.3故选: B.由折叠的性质可得 ????= ????= ????,可得△ ??????是等边三角形,即可求∠??????= 60°,即可求解.本题考查了翻折变换,矩形的性质,证明△??????是等边三角形是本题的关键.8.【答案】D【分析】本题主要考查一次函数和二次函数的图象,解题的关键是熟练掌握二次函数的图象和一次函数的图象与系数之间的关系.由一次函数 ??= ????+ ??可知,一次函数的图象与x 轴交于点 (-1,0),即可排除 A、B,然后根据二次函数的开口方向,与y 轴的交点以及一次函数经过的象限,与y 轴的交点可对相关图象进行判断.【解答】解:由一次函数 ??= ????+ ??可知,一次函数的图象与x 轴交于点 (-1,0),排除 A、B;当 ??> 0时,二次函数开口向上,一次函数经过一、三、四象限,当??< 0 时,二次函数开口向下,一次函数经过二、三、四象限,排除C;故选: D.9.【答案】√61812【解析】解:原式 = √+√-322=3+√6-3=√6 .故答案为√6.利用二次根式的除法法则和负整数指数幂的意义计算.本题考查了二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.10.【答案】9【解析】解:由题意,可得该队员10 次射击成绩 ( 单位:环 ) 为: 6,7,8,8,9,9,9,9, 10, 10,第 5与第 6 个数据都是9,所以中位数是: (9 + 9) ÷2 = 9.故答案为: 9.根据条形统计图得出该队员10 次射击成绩,再利用中位数的定义解答即可.本题考查的是条形统计图和中位数.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.将一组数据按照从小到大(或从大到小 ) 的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4000450011.【答案】??-1.5??= 5【解析】解:设第一批所购花束的数量为x 束,则第二次所购花束的数量为 1.5??束,40004500由题意,得??- 1.5?? =5.40004500故答案是:??- 1.5?? =5.设第一批所购花束的数量为x 束,则第二次所购花束的数量为 1.5??束,根据“第一批花的进价 - 第二批花的进价 = 5元”列出方程.本题主要考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.12.【答案】(18??- 18√3)∵????⊥????,∴????= ????= 3 , ????= √3????= 3√3 ,1∴△??????的面积为2 ????????= 9 √3,2??60??? ×6== 6??,扇形 ??????360∴莱洛三角形的面积??= 3 ×6??- 2 ×9√3 = (18?? -218 √3)????,故答案为: (18?? - 18√3).图中三角形的面积是由三块相同的扇形叠加而成,其面积= 三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.13.【答案】3.5【解析】解:∵四边形 ABCD 是平行四边形,∴????//????,∴∠ ??????= ∠ ??????,∠ ??????= ∠ ??????,∵∠ ??与∠ ??的平分线 AE, BF 相交于点 N,∴∠ ??????= ∠ ??????,∠ ??????= ∠ ??????,∴∠ ??????= ∠ ??????,∠ ??????= ∠ ??????,∴????= ????, ????= ????,∴????= ????= ????,∴四边形 ABEF 是平行四边形,∵????= ????,∴平行四边形ABEF 是菱形,∴????= ????,连接 EF,交 EF 于 G,∴????= ????= ????= ????= 3 ,∵??是 DC 的中点,1∴????= 2????= 1.5 ,????= ????= ????- ????= 5 -3= 2,∴????= 1.5 + 2 = 3.5,故答案为: 3.5 .根据平行四边形的性质得出????//????,进而利用角平分线的定义和等腰三角形的判定得出 ????= ????, ????= ????,进而得出四边形 ABEF 是菱形,利用三角形中位线定理解答即可.此题考查平行四边形的性质,关键是根据平行四边形的性质解答.14.【答案】40【解析】解: 13 + 13 + 14 = 40( 个).由两个小正方体组成的长方体,可以分为上下位,左右位,前后位三种,分别数出它们的个数,再相加即可求解.考查了认识立体图形,规律型:图形的变化类,关键是分类讨论,做到不重复不遗漏.15.【答案】解:(1)如图所示:(2) 设 ??= ????+ ??,将 (200,60) 、 (220,50) 代入,得: { 200??+ ??= 60,220??+ ??= 501??= -解得{2,1∴??= - 2 ??+ 160(170≤??≤240);(3)?? =112????= ??(- 2 ??+ 160) =- 2?? + 160??,??∴对称轴为直线 ??= - 2??= 160,1∵??= - 2 <0,∴在 170 ≤ ??≤ 240范围内, w 随 x 的增大而减小,∴当 ??= 170时, w由最大值,最大值为 12750 元.【解析】 (1) 描点、连线即可得;(2)待定系数法求解可得;(3)由营业额 = 入住房间数量×房价得出函数解析式,再利用二次函数的性质求解可得.此题主要考查了二次函数的应用以及待定系数法求一次函数解析式以及二次函数最值问题,由营业额 = 入住房间数量×房价得出函数解析式及二次函数的性质是解题关键.16.【答案】解:如图,所以 ????△??????即为所求.【解析】作 AB 的垂直平分线交 AB 于点 O,再以 AB 的中点 O 为圆心, OA 长为半径画弧交AB 的垂直平分线于点 C,此时 ????= ????,进而可作出 ????△??????.本题考查了作图 - 复杂作图、等腰直角三角形,解决本题的关键是掌握线段垂直平分线的性质.22??-??222?? +???? +?? -2??????(??-??);17.??- 2??)÷??=??×??-??=??-??= ??-??(2)∵函数与 x 轴有两个交点,且与 y 轴交于正半轴,∴△>0且??- 1 > 0,即△=(-1) 2 - 4×2×(?? - 1) > 0且??> 1,解得: 1 < ??< 9.8【解析】 (1) 按照分式的乘除法化简即可求解;(2)由题意得:△>0且 ?? - 1 > 0 ,即可求解.本题考查的是分式的乘除法和抛物线与坐标轴的交点的内容,其中 (2) ,确定△>0和?? -1 > 0是解题的关键.18.【答案】解:(1)?? = (1 - 20% - 10% -310) ×100 = 40,1七年级的平均数 ??= 10 (99 + 80 + 99 + 86 + 99 + 96 + 90+ 100+89+82)=92;(2) 八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92 分,但八年级的中位数和众数均高于七年级.(3) 八年级的优秀人数有:10 ×(1 - 20% - 10%) = 7( 人 ) ,6+7则720 ×20= 468(人 ) ,答:参加此次竞赛活动成绩优秀(??≥ 90) 的学生人数是468 人.【解析】 (1)用整体1 减去其它所占的百分比即可求出a;根据平均数的计算公式即可求出 b;(2)根据八年级的中位数和众数均高于七年级于是得到八年级学生掌握防溺水安全知识较好;(3)利用样本估计总体思想求解可得.本题考查读扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19.【答案】解:(1)搅匀后从中摸出 1 个盒子有 3 种等可能结果,1所以摸出的盒子中是 A 型矩形纸片的概率为3;(2)画树状图如下:由树状图知共有 6 种等可能结果,其中2 次摸出的盒子的纸片能拼成一个新矩形的有4种结果,所以 2 次摸出的盒子的纸片能拼成一个新矩形的概率为4 = 2.6 3【解析】 (1) 直接利用概率公式计算可得;(2) 画树状图得出所有等可能结果,从中找打 2 次摸出的盒子的纸片能拼成一个新矩形的结果数,利用概率公式计算可得.此题考查了列表法或树状图法求概率.用到的知识点为:概率 = 所求情况数与总情况数之比.【答案】解:如图,过点 C 作 ????⊥????于点 H ,20.则 ????= ????,????= ????= 0.5 . 在 ????△??????中, ∠??????= 45°, ∴????= ????= ????,∴????= ????+ ????= ????+ 0.5 . ∵????⊥????, ????⊥????,∴∠ ??????= ∠ ??????= 90 °.由题意,易知 ∠??????= ∠??????,∴△?????? ∽△??????,????????1.6 2,∴????=即????+0.5=???? 5+????解之,得 ????= 17.5 ,∴????= 17.5 + 0.5 = 18(??) . ∴这棵古树的高 AB 为 18m .【解析】过点 C 作 ????⊥????于点 H ,则????= ????,????= ????= 0.5.解 ????△ ??????,得出 ????=????= ????,那么 ????= ????+ ????= ????+ 0.5.再证明 △?????? ∽△??????,根据相似三角形对应边成比例求出 ????= 17.5 ,进而求出 AB 即可.本题考查了解直角三角形的应用 - 仰角俯角问题,相似三角形的应用,解题的关键是正确的构造直角三角形并选择正确的边角关系解直角三角形,难度一般.21.【答案】 解: (1) 设每本宣传册 A 、 B 两种彩页各有x , y 张,??+ ??= 10{300??+ 200??= 2400,解得: {??= 4,??= 6答:每本宣传册 A 、 B 两种彩页各有 4和 6张;(2) 设最多能发给 a 位参观者,可得: 2.5 ×4??+ 1.5 ×6??+ 2400 ≤ 30900 ,解得: ??≤ 1500 ,答:最多能发给1500 位参观者.A Bx y22.【答案】(1)证明:∵????//????,????//????,∴四边形 BCED 是平行四边形,∴????= ????,∵??是△??????的边 AB 的中点,∴????= ????,∴????= ????;(2)解:当△??????满足△??????是直角三角形,∠ ??????= 90 °时,四边形 ADCE 是菱形;理由如下:由 (1) 得: ????//????, ????= ????,∴四边形 ADCE 是平行四边形,∵∠ ??????= 90 °, D 是△??????的边 AB 的中点,1∴????= 2 ????= ????,∴四边形 ADCE 是菱形.【解析】 (1) 证四边形 BCED 是平行四边形,得出 ????= ????,证????= ????,即可得出 ????= ????;(2) 证四边形 ADCE 是平行四边形,由直角三角形斜边上的中线性质得出1????= ????=2 ????,即可得出结论.本题考查了菱形的判定、平行四边形的判定与性质、直角三角形斜边上的中线性质等知识;熟练掌握菱形的判定和直角三角形斜边上的中线性质是解题的关键.23.【答案】????′??′??????′ ′2√5 17 2√3【解析】【模型介绍】解:理由:如图③ ,在直线l上另取任一点??,′连结????,′????,′??′,??′∵直线 l 是点 B, ??的′对称轴,点P,??在′ l 上,∴????= ????,′?? ′=???? ′,?? ′∴????+ ????= ????+ ????=′????.′在△????′中??,′∵????<′????+′??′,??′∴????+ ????< ????+ ?? ′,??即′????+ ????最小.故答案为: ????,′??′,??????′;′【模型应用】解: (1) 连接 DE 交 AC 于 F,如图④所示:则 ????+ ????有最小值;∵四边形 ABCD 是正方形,∴????= ????= 4 ,∠ ??????=90 °, ????= ????,∴????+ ????= ????+ ????= ????,∵??为 AB 的中点,∴????= ????= 2 ,2222= 2√5 ,∴????= √ ????+ ????= √4+ 2即 ????+ ????的最小值为 2√5 ;故答案为: 2 √5 ;(2) 把图⑤的半个侧面展开为矩形EFGH ,如图⑤ - 1所示:作点A关于EH的对称点 ??,′连接EH P,作 ????⊥ ????于D,则 ??′=??????,??′交??于?? ′=??????= 4, ????= ????= 3 ,蚂蚁到达蜂蜜的最短路程为????+ ??????+′????= ?? ′,??∵????= 14 ,--∴????= ????????= 14 - 3 = 11 ,∴?? ′=???? ′+????? ═,15又∵圆柱形玻璃杯底面周长为16,∴????= 8 ,2222,∴?? ′=??√ ?? ′+????? = √ 15 + 8= 17(????)故答案为:17;(3)∵在边长为 2 的菱形 ABCD 中,∠ ??????=60 °,∴????= ????= 2 ,∠ ??????= 30 °,∵将△??????沿射线 BD 的方向平移得到△?? ′ ??,′ ?? ′∴?? ′ =??????=′ 1 ,?? ′ ?? ′,//????∵四边形 ABCD 是菱形,∴????= ????= ????= 2 , ????//????,∴?? ′=???? ′,??∴?? ′+??? ′的??最小值 = ?? ′+??? ′的??最小值, ∵点 ??在′过点 A 且平行于BD 的定直线 l 上,∴作点 D 关于定直线 l 的对称点 E ,连接 CE 交定直线 l 于 ??,′如图 ⑥ 所示:则 CE 的长度即为 ??′+????′的??最小值, ∵∠ ?? ′=????∠??????= 30 °, ????= 2,1∴∠ ??????= 60 °, ????= ????= 2 ????= 1,∴????= 2, ∴????= ????,作 ????⊥????于 G ,则 ????= ????,∵∠ ??????= ∠ ??????+∠′??????= 90 °+ 30 °= 120 °,1∴∠ ??= ∠ ??????= 30 °, ∴????= 2 ????= 1 , ????= √3????= √3 ,∴????= 2????= 2 √3 . 故答案为: 2 √3 .【模型介绍】由轴对称的性质和三角形的三边关系即可得出答案;【模型应用】 (1) 连接 DE 交 AC 于 F ,则 ????+ ????有最小值,由正方形的性质得出 ????=????= 4 ,∠ ??????= 90 °, ????= ????,则 ????+ ????= ????+ ????= ????,由勾股定理求出 DE即可;(2) 由侧面展开图和轴对称的性质以及勾股定理即可得出答案;(3) 由菱形的性质得到 ????= 2 , ∠ ??????= 30 °,由平移的性质得到?? ′=??????=′ 2 ,?? ′ ?? ′,//????证四边形 ?? ′ ??是′平????行四边形, 得 ?? ′=???? ′,??得?? ′+??? ′的??最小值 = ?? ′+???? ′的??最小值,由平移的性质得到点 ??在′过点 A 且平行于 BD 的定直线 l 上,作点 D 关于定直线 l E CE 交定直线 l 于 ??,′则 CE的长度即为 ??′+????′的??最小值, 的对称点 ,连接求得 ????= ????,得到 ∠??= ∠??????= 30°,于是得到结论. 本题是四边形综合题目,考查了轴对称- 最短路线问题,正方形的性质,菱形的性质,矩形的判定和性质,勾股定理,平行四边形的判定与性质,含30°角的直角三角形的性质,圆柱的侧面展开图, 等腰三角形的判定与性质, 平移的性质等知识; 本题综合性强,正确作出图形是解题的关键.24.【答案】 解:,,,斜边????= 8,(1) ∵????△??????∠ ??????= 90° ∠ ??????= 30 °∴∠ ??????= 60 °, 1????= 4 ,,????=222 4 2= 4 32????= √ ????- ???? =√8√∠ ??????= ∠ ??????在 △??????和 △??????中, { ????= ????,∠ ??????= ∠ ?????? ∴△?????? ≌△??????(??????), ∴????= ????= 4 ,4∴??= 2 = 2(??),∴当 t 为 2s 时, OM 平分 ∠ ??????;(2) 过点 A 作 ????⊥ ????于 E ,过点 N 作 ????⊥????于 F ,如图 1 所示:∵∠ ??????= ∠ ??????= 60 °,∴????= ??????????60= 4°×√23= 2√3, ????= ???????????60= ° 2??×√3= √3??,2∵????= ????+ ????= 4 + ??,1 1 1 1∴??= ??△ ??????+ ??△ ??????= 2 ?????????+ 2 ?????????= 2 (4 + ??)×2 √3+ 2 (4 + ??)×√3??=√3 2√3??+ 4√3;??+ 32(3) 当 ∠ ??????= 45 °时,则 △??????为等腰直角三角形, ∴????= ????, ∵∠ ??????= 60 °, ∴∠ ??????= 30 °,1∴????= 2 ????= 2,∴????= ????- ????= 4 - 2= 2,∴????= 2+ ??,∴2 + ??= 2 √3,∴??= 2√3 - 2,√3 2√32+ 3√3(2 √3 -∴??= 2 ?? + 3 √3??+ 4 √3 = 2 (2√3- 2)2) + 4√3= 6√3+ 6;(4) 存在某一时刻 t ,使点 P 为线段 CD 的中点,理由如下:过点 N 作 ????⊥????于 Q ,如图 2 所示:∵??为线段 CD 的中点,1∴????= 2 ????= 2 √3,∵∠ ??????= 60 °,∴∠ ??????= 30 °, ????= ???????????60= 2??°×√23= √3??,1∴????= 2 ????= ??,∴????= ????- ????= 4 - ??,∵??=1 1?????????=(4 + ??)×√3??,△ ??????221 1 12 ??×2√3 + 2 (2 √3 + √3??)(4- ??)+ 2 ×??× √3??,11√3 + √3??)(4-11(4 + ??)×√3??,∴ ??×2√3 +(2 ??)+ ×??×√3??=2 2 222整理得: ?? = 8, ∴??= 2 √2, 即存在 ??=时,使点 P 为线段 CD 的中点. 2√2??【解析】 (1) 当 OM 平分 ∠??????时,即 ∠??????= ∠??????,由 ASA 证得 △??????≌△??????,得出 ????= ????= 4,即可得出结果;(2) 过点 A 作 ????⊥ ????于 E ,过点 N 作 ????⊥????于 F ,求出 ????= 2√3 ,,????=????= √3?? 4 + ??,由 ??= ??+ ??= 1 ?????????+ 1?????????,即可得出结果;2 2△ ?????? △ ??????(3) 当 ∠ ??????= 45 °时, △??????为等腰直角三角形,得出????= ????,求出 ????= 2+??,则2+ ??= 2√3 ,得出 ??= 2√3 - 2 ,代入 (2) 的 S 与 t 的函教关系式即可得出结果;(4) 过1点 N 作????⊥????于 Q ,求出 ????= 2 ????= 2 √3 ,????= √3??, ????= ??, ????= 4 -??,由??1?????????,??= ?? + ?? + ??1?????????+ 1(????+ ????)?= =2△ ?????? 2△ ?????? △ ?????? 梯形 ????????△ ?????? 21????+ 2 ?????????,代入即可得出结果.本题是四边形综合题,主要考查了角平分线的性质、全等三角形的判定与性质、勾股定理、等腰直角三角形的判定与性质、三角函数、三角形面积的计算、梯形面积的计算等知识;熟练掌握三角函数定义与三角形面积的计算是解题的关键.。
山东省青岛市2019-2020学年中考一诊数学试题含解析
山东省青岛市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若a+|a|=0,则()222a a -+等于( ) A .2﹣2a B .2a ﹣2 C .﹣2 D .2 2.平面上直线a 、c 与b 相交(数据如图),当直线c 绕点O 旋转某一角度时与a 平行,则旋转的最小度数是( )A .60°B .50°C .40°D .30°3.下列实数中,为无理数的是( )A .13B .2C .﹣5D .0.31564.函数y =ax+b 与y =bx+a 的图象在同一坐标系内的大致位置是( )A .B .C .D .5.下列方程有实数根的是( )A .420x +=B 221x -=-C .x+2x−1=0D .111x x x =-- 6.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是( )已知:如图,在ABC V 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且DE //BC ,DF//AC , 求证:ADE V ∽DBF V .证明:①又DF//AC Q ,DE //BC Q ②,A BDF ∠∠∴=③,ADE B ∠∠∴=④,ADE ∴V ∽DBF V .A .③②④①B .②④①③C .③①④②D .②③④①7.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是( )A .众数是90B .中位数是90C .平均数是90D .极差是158.下列图形中,属于中心对称图形的是( )A .B .C .D .9.若关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 的值是( )A .1B .-1C .1或-1D .1210.如图,△ABC 中,∠ACB=90°,∠A=30°,AB=1.点P 是斜边AB 上一点.过点P 作PQ ⊥AB ,垂足为P ,交边AC (或边CB )于点Q ,设AP=x ,△APQ 的面积为y ,则y 与x 之间的函数图象大致为( )A .B .C .D .11.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±3 12.如图,已知11(,)3A y ,2(3,)B y 为反比例函数1y x=图象上的两点,动点(,0)P x 在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A .1(,0)3B .4(,0)3C .8(,0)3D .10(,0)3二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.分解因式:24xy x -=____14.将2.05×10﹣3用小数表示为__.15.若x ,y 为实数,y =22441x x -+-+,则4y ﹣3x 的平方根是____. 16.分解因式:2363m m -+=__________.17.如图,正方形ABCD 的边长为2,分别以A 、D 为圆心,2为半径画弧BD 、AC ,则图中阴影部分的面积为_____.18.如图,点E 是正方形ABCD 的边CD 上一点,以A 为圆心,AB 为半径的弧与BE 交于点F ,则∠EFD =_____°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,矩形ABCD 绕点C 顺时针旋转90°后得到矩形CEFG ,连接DG 交EF 于H ,连接AF交DG于M;(1)求证:AM=FM;(2)若∠AMD=a.求证:DGAF=cosα.20.(6分)如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,).(1)求抛物线的表达式.(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发,沿BC边以1cm/s 的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;②当S取时,在抛物线上是否存在点R,使得以点P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.21.(6分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,过点D作⊙O的切线DE 交AC于点E,交AB延长线于点F.(1)求证:BD=CD;(2)求证:DC2=CE•AC;(3)当AC=5,BC=6时,求DF的长.22.(8分)某校组织学生去9km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.己知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少?23.(8分)求不等式组()7153x3x134x x⎧+≥+⎪⎨-->⎪⎩的整数解.24.(10分)如图,对称轴为直线x=72的抛物线经过点A(6,0)和B(0,4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;(3)①当四边形OEAF的面积为24时,请判断OEAF是否为菱形?②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.25.(10分)随着地铁和共享单车的发展,“地铁+单车”已经成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间1y(单位:分钟)是关于x的一次函数,其关系如下表:地铁站 A B C D EX(千米) 8 9 10 11.5 131y (分钟) 18 20 22 25 28(1)求1y 关于x 的函数表达式;李华骑单车的时间2y (单位:分钟)也受x 的影响,其关系可以用221y x 11x 782=-+来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.26.(12分)已知:二次函数C 1:y 1=ax 2+2ax+a ﹣1(a≠0)把二次函数C 1的表达式化成y =a(x ﹣h)2+b(a≠0)的形式,并写出顶点坐标;已知二次函数C 1的图象经过点A(﹣3,1).①求a 的值;②点B 在二次函数C 1的图象上,点A ,B 关于对称轴对称,连接AB .二次函数C 2:y 2=kx 2+kx(k≠0)的图象,与线段AB 只有一个交点,求k 的取值范围.27.(12分)某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实每月生产量与计划量相比情况如下表(增加为正,减少为负)生产量最多的一天比生产量最少的一天多生产多少辆?半年内总生产量是多少?比计划多了还是少了,增加或减少多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】直接利用二次根式的性质化简得出答案.【详解】∵a+|a|=0,∴|a|=-a,则a≤0,故原式=2-a-a=2-2a.故选A.【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.2.C【解析】【分析】先根据平角的定义求出∠1的度数,再由平行线的性质即可得出结论.【详解】解:∵∠1=180°﹣100°=80°,a∥c,∴∠α=180°﹣80°﹣60°=40°.故选:C.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.3.B【解析】【分析】根据无理数的定义解答即可.【详解】选项A、13是分数,是有理数;选项B2是无理数;选项C、﹣5为有理数;选项D、0.3156是有理数;故选B.【点睛】本题考查了无理数的判定,熟知无理数是无限不循环小数是解决问题的关键.4.B【解析】【分析】根据a 、b 的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案.【详解】分四种情况:①当a >0,b >0时,y=ax+b 的图象经过第一、二、三象限,y=bx+a 的图象经过第一、二、三象限,无选项符合;②当a >0,b <0时,y=ax+b 的图象经过第一、三、四象限;y=bx+a 的图象经过第一、二、四象限,B 选项符合;③当a <0,b >0时,y=ax+b 的图象经过第一、二、四象限;y=bx+a 的图象经过第一、三、四象限,B 选项符合;④当a <0,b <0时,y=ax+b 的图象经过第二、三、四象限;y=bx+a 的图象经过第二、三、四象限,无选项符合.故选B .【点睛】此题考查一次函数的图象,关键是根据一次函数y=kx+b 的图象有四种情况:①当k >0,b >0,函数y=kx+b 的图象经过第一、二、三象限;②当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限.5.C【解析】分析:根据方程解的定义,一一判断即可解决问题;详解:A .∵x 4>0,∴x 4+2=0无解;故本选项不符合题意;B 22x -≥022x -=﹣1无解,故本选项不符合题意;C .∵x 2+2x ﹣1=0,△=8=4=12>0,方程有实数根,故本选项符合题意;D .解分式方程1x x -=11x -,可得x=1,经检验x=1是分式方程的增根,故本选项不符合题意. 故选C .点睛:本题考查了无理方程、根的判别式、高次方程、分式方程等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【分析】根据平行线的性质可得到两组对应角相等,易得解题步骤;【详解】证明:DE //BC Q ②,ADE B ∠∠∴=④,①又DF//AC Q ,A BDF ∠∠∴=③,ADE ∴V ∽DBF V .故选B .【点睛】本题考查了相似三角形的判定与性质;关键是证明三角形相似.7.C【解析】【分析】由统计图中提供的数据,根据众数、中位数、平均数、极差的定义分别列出算式,求出答案:【详解】解:∵90出现了5次,出现的次数最多,∴众数是90;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;极差是:95﹣80=1.∴错误的是C .故选C .8.B【解析】【分析】A 、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.【详解】A 、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;B 、将此图形绕中心点旋转180度与原图重合,所以这个图形是中心对称图形;C 、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;D 、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.本题考查了轴对称与中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.9.B【解析】【分析】根据一元二次方程的解的定义把x=0代入方程()22110a x x a -++-=得到关于a 的一元二次方程,然后解此方程即可【详解】把x=0代入方程()22110a x x a -++-=得210a -=,解得a=±1. ∵原方程是一元二次方程,所以 10a -≠,所以1a ≠,故1a =-故答案为B【点睛】本题考查了一元二次方程的解的定义:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解.10.D【解析】解:当点Q 在AC 上时,∵∠A=30°,AP=x ,∴PQ=xtan30°=,∴y=×AP×PQ=×x×=x 2;当点Q 在BC 上时,如下图所示:∵AP=x ,AB=1,∠A=30°,∴BP=1﹣x ,∠B=60°,∴PQ=BP•tan60°=(1﹣x ),∴ =AP•PQ= = ,∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.故选D .点睛:本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q 在BC 上这种情况. 11.B【解析】解:由题意得:x ﹣2≥0,2﹣x≥0,解得:x=2,∴y=1,则y x =9,9的算术平方根是1.故选B . 12.D【解析】【分析】求出AB 的坐标,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入求出直线AB 的解析式,根据三角形的三边关系定理得出在△ABP 中,|AP-BP|<AB ,延长AB 交x 轴于P′,当P 在P′点时,PA-PB=AB ,此时线段AP 与线段BP 之差达到最大,求出直线AB 于x 轴的交点坐标即可.【详解】Q 把11(,)3Ay ,2(3,)B y 代入反比例函数1y x = ,得:13y =,213y =, 11(,3),(3,)33A B ∴, Q 在ABP ∆中,由三角形的三边关系定理得:AP BP AB -<,∴延长AB 交x 轴于P',当P 在P'点时,PA PB AB -=,即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y kx b =+,把A ,B 的坐标代入得:133133k b k b ⎧=+⎪⎪⎨⎪=+⎪⎩, 解得:101,3k b =-=, 1215x ->∴直线AB 的解析式是103y x =-+, 当0y =时,103x =,即10(,0)3P , 故选D.【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x(y+2)(y-2)【解析】【分析】原式提取x ,再利用平方差公式分解即可.【详解】原式=x (y 2-4)=x (y+2)(y-2),故答案为x (y+2)(y-2).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.0.1【解析】试题解析:原式=2.05×10-3=0.1. 【点睛】本题考查了科学记数法-原数,用科学记数法表示的数还原成原数时,n >0时,n 是几,小数点就向右移几位;n <0时,n 是几,小数点就向左移几位.15.【解析】同时成立,∴224040x x ⎧-≥⎨-≥⎩ 故只有x 2﹣4=0,即x=±2, 又∵x ﹣2≠0,∴x=﹣2,y=12x -=﹣14, 4y ﹣3x=﹣1﹣(﹣6)=5,∴4y ﹣3x 的平方根是故答案:16.3(m-1)2【解析】试题分析:根据因式分解的方法,先提公因式,再根据完全平方公式分解因式即可,即3m 2-6m+3=3(m 2-2m+1)=3(m-1)2.故答案为:3(m-1)2点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).17.23π 【解析】【分析】过点F作FE⊥AD于点E,则AE=12AD=12AF,故∠AFE=∠BAF=30°,再根据勾股定理求出EF的长,由S弓形AF=S扇形ADF-S△ADF可得出其面积,再根据S阴影=2(S扇形BAF-S弓形AF)即可得出结论【详解】如图所示,过点F作FE⊥AD于点E,∵正方形ABCD的边长为2,∴AE=12AD=12AF=1,∴∠AFE=∠BAF=30°,∴EF=3.∴S弓形AF=S扇形ADF-S△ADF=60412233 36023ππ⨯-⨯⨯=-,∴ S阴影=2(S扇形BAF-S弓形AF)=2×[304233603ππ⨯⎛⎫--⎪⎝⎭]=2×(12333ππ-+)=2233π-.【点睛】本题考查了扇形的面积公式和长方形性质的应用,关键是根据图形的对称性分析,主要考查学生的计算能力.18.45【解析】【分析】由四边形ABCD为正方形及半径相等得到AB=AF=AD,∠ABD=∠ADB=45°,利用等边对等角得到两对角相等,由四边形ABFD的内角和为360度,得到四个角之和为270,利用等量代换得到∠ABF+∠ADF=135°,进而确定出∠1+∠2=45°,由∠EFD为三角形DEF的外角,利用外角性质即可求出∠EFD 的度数.【详解】∵正方形ABCD,AF,AB,AD为圆A半径,∴AB=AF=AD,∠ABD=∠ADB=45°,∴∠ABF=∠AFB,∠AFD=∠ADF,∵四边形ABFD内角和为360°,∠BAD=90°,∴∠ABF+∠AFB+∠AFD+∠ADF=270°,∴∠ABF+∠ADF=135°,∵∠ABD=∠ADB=45°,即∠ABD+∠ADB=90°,∴∠1+∠2=135°−90°=45°,∵∠EFD为△DEF的外角,∴∠EFD=∠1+∠2=45°.故答案为45【点睛】此题考查了切线的性质,四边形的内角和,等腰三角形的性质,以及正方形的性质,熟练掌握性质是解本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)见解析.【解析】【分析】(1)由旋转性质可知:AD=FG,DC=CG,可得∠CGD=45°,可求∠FGH=∠FHG=45°,则HF=FG=AD,所以可证△ADM≌△MHF,结论可得.(2)作FN⊥DG垂足为N,且MF=FG,可得HN=GN,且DM=MH,可证2MN=DG,由第一问可得2MF=AF,由cosα=cos∠FMG=MNMF,代入可证结论成立【详解】(1)由旋转性质可知:CD=CG且∠DCG=90°,∴∠DGC=45°从而∠DGF=45°,∵∠EFG=90°,∴HF=FG=AD又由旋转可知,AD∥EF,∴∠DAM=∠HFM,又∵∠DMA=∠HMF,∴△ADM≌△FHM∴AM=FM(2)作FN⊥DG垂足为N∵△ADM≌△MFH∴DM=MH,AM=MF=12AF∵FH=FG,FN⊥HG∴HN=NG∵DG=DM+HM+HN+NG=2(MH+HN)∴MN=12DG∵cos∠FMG=MN MF∴cos∠AMD=2=2MN DG MF AF∴DGAF=cosα【点睛】本题考查旋转的性质,矩形的性质,全等三角形的判定,三角函数,关键是构造直角三角形.20.(1)抛物线的解析式为:;(2)①S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;②存在.R点的坐标是(3,﹣);(3)M的坐标为(1,﹣).【解析】试题分析:(1)设抛物线的解析式是y=ax2+bx+c,求出A、B、D的坐标代入即可;(2)①由勾股定理即可求出;②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形,求出P、Q的坐标,再分为两种种情况:A、B、C即可根据平行四边形的性质求出R的坐标;(3)A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,求出直线BD的解析式,把抛物线的对称轴x=1代入即可求出M的坐标.试题解析:(1)设抛物线的解析式是y=ax2+bx+c,∵正方形的边长2,∴B的坐标(2,﹣2)A点的坐标是(0,﹣2),把A(0,﹣2),B(2,﹣2),D(4,﹣)代入得:,解得a=,b=﹣,c=﹣2,∴抛物线的解析式为:,答:抛物线的解析式为:;(2)①由图象知:PB=2﹣2t,BQ=t,∴S=PQ2=PB2+BQ2,=(2﹣2t)2+t2,即S=5t2﹣8t+4(0≤t≤1).答:S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形.∵S=5t2﹣8t+4(0≤t≤1),∴当S=时,5t2﹣8t+4=,得20t2﹣32t+11=0,解得t=,t=(不合题意,舍去),此时点P的坐标为(1,﹣2),Q点的坐标为(2,﹣),若R点存在,分情况讨论:(i)假设R在BQ的右边,如图所示,这时QR=PB,RQ∥PB,则R的横坐标为3,R的纵坐标为﹣,即R(3,﹣),代入,左右两边相等,∴这时存在R(3,﹣)满足题意;(ii)假设R在QB的左边时,这时PR=QB,PR∥QB,则R(1,﹣)代入,,左右不相等,∴R不在抛物线上.(1分)综上所述,存点一点R(3,﹣)满足题意.答:存在,R点的坐标是(3,﹣);(3)如图,M′B=M′A,∵A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M, 理由是:∵MA=MB,若M不为L与DB的交点,则三点B、M、D构成三角形,∴|MB|﹣|MD|<|DB|,即M到D、A的距离之差为|DB|时,差值最大,设直线BD的解析式是y=kx+b,把B、D的坐标代入得:,解得:k=,b=﹣,∴y=x﹣,抛物线的对称轴是x=1,把x=1代入得:y=﹣∴M的坐标为(1,﹣);答:M的坐标为(1,﹣).考点:二次函数综合题.21.(1)详见解析;(2)详见解析;(3)DF=607.【解析】【分析】(1)先判断出AD⊥BC,即可得出结论;(2)先判断出OD∥AC,进而判断出∠CED=∠ODE,判断出△CDE∽△CAD,即可得出结论;(3)先求出OD,再求出CD=3,进而求出CE,AE,DE,再判断出DF ODEF AE=,即可得出结论.【详解】(1)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD;(2)连接OD,∵DE是⊙O的切线,∴∠ODE=90°,由(1)知,BD=CD,∵OA=OB,∴OD∥AC,∴∠CED=∠ODE=90°=∠ADC,∵∠C=∠C,∴△CDE∽△CAD,∴CD CE AC CD=,∴CD2=CE•AC;(3)∵AB=AC=5,由(1)知,∠ADB=90°,OA=OB,∴OD=12AB=52,由(1)知,CD=12BC=3,由(2)知,CD2=CE•AC,∵AC=5,∴CE=295 CDAC=,∴AE=AC-CE=5-95=165,在Rt△CDE中,根据勾股定理得,12 5 =,由(2)知,OD∥AC,∴DF OD EF AE=,∴52121655 DFDF+=,∴DF=607.【点睛】此题是圆的综合题,主要考查了圆的性质,等腰三角形的性质,相似三角形的判断和性质,勾股定理,判断出△CDE∽△CAD是解本题的关键.22.自行车的速度是12km/h,公共汽车的速度是1km/h.【解析】【分析】设自行车的速度为xkm/h,则公共汽车的速度为3xkm/h,根据题意得:99132x x-=,解分式方程即可.【详解】解:设自行车的速度为xkm/h,则公共汽车的速度为3xkm/h,根据题意得:99132x x-=,解得:x=12,经检验,x=12是原分式方程的解,∴3x=1.答:自行车的速度是12km/h,公共汽车的速度是1km/h.【点睛】本题考核知识点:列分式方程解应用题.解题关键点:找出相等关系,列出方程. 23.-1,-1,0,1,1【解析】分析:先求出不等式组的解集,然后求出整数解.详解:()715331?34x x x x ⎧+≥+⎪⎨-->⎪⎩①②, 由不等式①,得:x≥﹣1,由不等式②,得:x <3,故原不等式组的解集是﹣1≤x <3, ∴不等式组71533134x x x x +≥+⎧⎪-⎨-⎪⎩()>的整数解是:﹣1、﹣1、0、1、1. 点睛:本题考查了解一元一次不等式的整数解,解答本题的关键是明确解一元一次不等式组的方法. 24.(1)抛物线解析式为22725()326y x =--,顶点为;(2)274()252S x =--+,1<x <1;(3)①四边形OEAF 是菱形;②不存在,理由见解析【解析】【分析】(1)已知了抛物线的对称轴解析式,可用顶点式二次函数通式来设抛物线,然后将A 、B 两点坐标代入求解即可.(2)平行四边形的面积为三角形OEA 面积的2倍,因此可根据E 点的横坐标,用抛物线的解析式求出E 点的纵坐标,那么E 点纵坐标的绝对值即为△OAE 的高,由此可根据三角形的面积公式得出△AOE 的面积与x 的函数关系式进而可得出S 与x 的函数关系式.(3)①将S=24代入S ,x 的函数关系式中求出x 的值,即可得出E 点的坐标和OE ,OA 的长;如果平行四边形OEAF 是菱形,则需满足平行四边形相邻两边的长相等,据此可判断出四边形OEAF 是否为菱形.②如果四边形OEAF 是正方形,那么三角形OEA 应该是等腰直角三角形,即E 点的坐标为(3,﹣3)将其代入抛物线的解析式中即可判断出是否存在符合条件的E 点.【详解】(1)由抛物线的对称轴是72x =,可设解析式为27()2y a x k =-+. 把A 、B 两点坐标代入上式,得227(6)0,2{7(0) 4.2a k a k -+=-+=解之,得225,.36a k ==- 故抛物线解析式为22725()326y x =--,顶点为725(,).26- (2)∵点(,)E x y 在抛物线上,位于第四象限,且坐标适合22725()326y x =--, ∴y<0,即-y>0,-y 表示点E 到OA 的距离.∵OA 是OEAF Y 的对角线, ∴2172264()2522OAE S S OA y y x ==⨯⨯⋅=-=--+V . 因为抛物线与x 轴的两个交点是(1,0)的(1,0),所以,自变量x 的取值范围是1<x <1.(3)①根据题意,当S = 24时,即274()25242x --+=. 化简,得271().24x -=解之,得123, 4.x x == 故所求的点E 有两个,分别为E 1(3,-4),E 2(4,-4).点E 1(3,-4)满足OE = AE ,所以OEAF Y 是菱形;点E 2(4,-4)不满足OE = AE ,所以OEAF Y 不是菱形.②当OA ⊥EF ,且OA = EF 时,OEAF Y 是正方形,此时点E 的坐标只能是(3,-3).而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E ,使OEAF Y 为正方形.25. (1) y 1=2x +2;(2) 选择在B 站出地铁,最短时间为39.5分钟.【解析】【分析】(1)根据表格中的数据,运用待定系数法,即可求得y1关于x 的函数表达式;(2)设李华从文化宫回到家所需的时间为y ,则y=y 1+y 2=12x 2-9x+80,根据二次函数的性质,即可得出最短时间. 【详解】(1)设y 1=kx+b,将(8,18),(9,20),代入 y 1=kx+b,得:818,920.k b k b +=⎧⎨+=⎩解得2,2.k b =⎧⎨=⎩所以y 1关于x 的函数解析式为y 1=2x+2.(2)设李华从文化宫回到家所需的时间为y,则y=y 1+y 2=2x+2+12x 2-11x+78=12x 2-9x+80=12(x-9)2+39.5. 所以当x=9时,y 取得最小值,最小值为39.5,答:李华应选择在B 站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x的取值范围.26.(1)y1=a(x+1)2﹣1,顶点为(﹣1,﹣1);(2)①12;②k的取值范围是16≤k≤12或k=﹣1.【解析】【分析】(1)化成顶点式即可求得;(2)①把点A(﹣3,1)代入二次函数C1:y1=ax2+2ax+a﹣1即可求得a的值;②根据对称的性质得出B的坐标,然后分两种情况讨论即可求得;【详解】(1)y1=ax2+2ax+a﹣1=a(x+1)2﹣1,∴顶点为(﹣1,﹣1);(2)①∵二次函数C1的图象经过点A(﹣3,1),∴a(﹣3+1)2﹣1=1,∴a=12;②∵A(﹣3,1),对称轴为直线x=﹣1,∴B(1,1),当k>0时,二次函数C2:y2=kx2+kx(k≠0)的图象经过A(﹣3,1)时,1=9k﹣3k,解得k=16,二次函数C2:y2=kx2+kx(k≠0)的图象经过B(1,1)时,1=k+k,解得k=12,∴16≤k≤12,当k<0时,∵二次函数C2:y2=kx2+kx=k(x+12)2﹣14k,∴﹣14k=1,∴k=﹣1,综上,二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,k的取值范围是16≤k≤12或k=﹣1.【点睛】本题考查了二次函数和系数的关系,二次函数的最值问题,轴对称的性质等,分类讨论是解题的关键.27.(1)生产量最多的一天比生产量最少的一天多生产9辆;(2)半年内总生产量是121辆.比计划多了1辆.【解析】(1)由表格可知,四月生产最多为:20+4=24;六月最少为:20-5=15,两者相减即可求解;(2)把每月的生产量加起来即可,然后与计划相比较.【详解】(1)+4-(-5)=9(辆)答:生产量最多的一天比生产量最少的一天多生产9辆.(2)20×6+[+3+(-2)+(-1)+(+4)+(+2)+(-5)]=120+(+1)=121(辆),因为121>120 121-120=1(辆)答:半年内总生产量是121辆.比计划多了1辆.【点睛】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,此题主要考查有理数的加减运算法则.。
2020年山东省青岛市数学一模试卷与详细解析
同一坐标系做出曲线 、 的图象:
由图可知,当 点为 与 轴的交点 , 点为双曲线的下顶点 时, 最小为1.
故选: .
【点睛】
本题考查了双曲线方程的求法和三角函数的图象变换.同时考查了利用数形结合解决问题的能力.属于中档题.
8.A
【解析】
【分析】
利用 次独立重复试验中事件 恰好发生 次概率计算公式能求出该参赛者答完三道题后至少答对两道题的概率.
A. B. C. D.
7.在同一直角坐标系下,已知双曲线 的离心率为 ,双曲线 的一个焦点到一条渐近线的距离为2,函数 的图象向右平移 单位后得到曲线 ,点 , 分别在双曲线 的下支和曲线 上,则线段 长度的最小值为()
A.2B. C. D.1
8.某单位举行诗词大会比赛,给每位参赛者设计了“保留题型”、“升级题型”、“创新题型”三类题型,每类题型均指定一道题让参赛者回答.已知某位参赛者答对每道题的概率均为 ,且各次答对与否相互独立,则该参赛者答完三道题后至少答对两道题的概率()
18.在 中, , , 分别为内角 , , 的对边, .
(1)求角 ;
(2)若 , 为 中点,在下列两个条件中任选一个,求 的长度.
条件①: 的面积 且 ;
条件②: .
19.在如图所示的四棱锥 中,四边形 为平行四边形, 为边长为2的等边三角形, ,点 , 分别为 , 的中点, 是异面直线 和 的公垂线.
【详解】
解:某单位举行诗词大会比赛,给每位参赛者设计了“保留题型”、“升级题型”、“创新题型”三类题型,
每类题型均指定一道题让参赛者回答.某位参赛者答对每道题的概率均为 ,且各次答对与否相互独立,
则该参赛者答完三道题后至少答对两道题的概率:
.
青岛市2020年中考数学模拟试题及答案
注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。
2.考生必须把答案写在答题卡上,在试卷上答题一律无效。
考试结束后,本试卷和答题卡一并交回。
3.本试卷满分120分,考试时间120分钟。
一、选择题(本题共12小题。
每小题3分,共36分。
在每小题给出的四个选项中,只有一项是正确的。
)1.5的相反数是( )A .55B .﹣5C .﹣55 D .52.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约亿千克,这个数用科学记数法应表示为( ) A .×1011 B .×1010C .×1011D .×10103.某区“引进人才”招聘考试分笔试和面试.其中笔试按60%、面试按40%计算加权平均数作为总成绩.吴老师笔试成绩为90分.面试成绩为85分,那么吴老师的总成绩为( )分. A .85B .86C .87D .884. 若以A ,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限5. 图①是由五个完全相同的小正方体组成的立方体图形,将图①中的一个小正方体改变位置后如图②,则三视图发生改变的是( )A. 主视图B. 俯视图C. 左视图D. 主视图、俯视图和左视图都改变 6.如图,已知∠ABC =∠DCB ,添加以下条件,不能判定△ABC ≌△DCB 的是( )A .∠A =∠DB .∠ACB =∠DBC C .AC =DBD .AB =DC7. 若反比例函数y =(k ≠0)的图象经过点P (2,﹣3),则该函数的图象不经过的点是( ) A .(3,﹣2)B .(1,﹣6)C .(﹣1,6)D .(﹣1,﹣6)8.若圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为( ) A .30πcm2B .60πcm2C .48πcm2D .80πcm29.将1.2.3三个数字随机生成的点的坐标列成下表.如果每个点出现的可能性相等,那么从中任意取一点,这个点在函数y=x 图象上的概率是( )A.0.3B.0.5C.31 D.3210.如图1,点P 从矩形ABCD 的顶点A 出发沿A →B →C 以2cm /s 的速度匀速运动到点C ,图2是点P 运动时,△APD 的面积y (cm 2)随运动时间x (s )变化而变化的函数关系图象,则矩形ABCD 的面积为( )A .36B .48C .32D .2411.如图,AB 是⊙O 的直径,M 、N 是弧AB (异于A 、B )上两点,C 是弧MN 上一动点,∠ACB 的角平分线交⊙O 于点D ,∠BAC 的平分线交CD 于点E .当点C 从点M 运动到点N 时,则C 、E 两点的运动路径长的比是( ) A .2 B .2C .23 D .2512. 函数y=4x-1和y=x-1在第一象限内的图象如图,点P 是y=4x-1的图象上一动点,PC ⊥x 轴于点C ,交y=x-1的图象于点A ,PD ⊥y 轴于D ,交y=x-1的图象于点B ,给出如下4个结论:①△ ODB 与△OCA 的面积相等; ②线段PA 与PB 始终相等;③四边形PAOB 的面积大小不会发生变化; ④3CA=AP .其中正确的结论是( )A.①②③B.①②④C.②③④D.①③④二、填空题(本题共6小题,满分18分。
2020年青岛市数学中考第一次模拟试题及答案
18.如图,在平行四边形 ABCD 中,连接 BD,且 BD=CD,过点 A 作 AM⊥BD 于点
M,过点 D 作 DN⊥AB 于点 N,且 DN= 3 2 ,在 DB 的延长线上取一点 P,满足∠ABD
=∠MAP+∠PAB,则 AP=_____.
19.如图,在矩形 ABCD 中,AB=3,AD=5,点 E 在 DC 上,将矩形 ABCD 沿 AE 折叠,点 D
25.已知抛物线 y=ax2﹣ 1 x+c 经过 A(﹣2,0),B(0,2)两点,动点 P,Q 同时从原点出发 3
均以 1 个单位/秒的速度运动,动点 P 沿 x 轴正方向运动,动点 Q 沿 y 轴正方向运动,连接 PQ,设运动时间为 t 秒 (1)求抛物线的解析式;
(2)当 BQ= 1 AP 时,求 t 的值; 3
为相反数,可直接求解.
9.A
解析:A 【解析】
考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角 形的判定与性质
7.B
解析:B 【解析】
【分析】
由题意可知 A= 1 (1 1 ) ,再将括号中两项通分并利用同分母分式的减法法则计算, x 1 x 1
再用分式的乘法法则计算即可得到结果.
【详解】
解:A=
1 1 x 1
由上述①、②、③可得 CD=BE、DF=EH=CE,CF=CD-DF, ∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确; ∵AB=AH,∠BAE=45°, ∴△ABH 不是等边三角形, ∴AB≠BH, ∴即 AB≠HF,故⑤错误; 综上所述,结论正确的是①②③④共 4 个. 故选 C. 【点睛】
∴延长 AB 交 x 轴于 P′,当 P 在 P′点时,PA-PB=AB,
2020-2021学年山东省青岛市市中考数学一模试卷及答案解析
山东省青岛市中考数学一模试卷一、选择题(共8小题,每小题3分,满分24分)1.﹣6的相反数是()A.6 B.﹣6 C.﹣D.2.下列图案中,是轴对称图形但不是中心对称图形的有()A.1个B.2个C.3个D.4个3.直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是()A.r<6 B.r=6 C.r>6 D.r≥64.如图所示的几何体的俯视图是()A.B.C.D.5.从青岛到济南有南线和北线两条高速公路,南线全长400千米,北线全长320千米.甲、乙两辆客车分别有南线和北线从青岛同时驶往济南,已知客车甲在南线高速公路上行驶的平均速度比客车乙在北线高速公路上快20千米/小时,两车恰好同时到达济南.若设客车乙从青岛到济南的平均速度是x千米/小时,则根据题意可得方程()A . =B . =C . +20=D . =6.如图,在平行四边形ABCD 中,E 是CD 上的一点,DE :EC=2:3,连接AE 、BE 、BD ,且AE 、BD 交于点F ,则S △DEF :S △EBF :S △ABF =( )A .2:5:25B .4:9:25C .2:3:5D .4:10:257.在同一直角坐标系中,函数y=kx 2﹣k 和y=kx+k (k ≠0)的图象大致是( ) A . B . C . D .8.如图,正方形ABCD 中,AB=6,点E 在边CD 上,且CD=3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF .下列结论:①△ABG ≌△AFG ;②BG=GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是( )A .1B .2C .3D .4二、填空题(共6小题,每小题3分,满分18分)9.计算:﹣ +(π﹣3)0+= .10.2014年,青岛市全年全市实现生产总值(GDP)8692.1亿,这个数用科学记数法表示为.11.如图,正方形网格中的每一个小正方形的边长都是1,△AOB的三个顶点都在格点上,以O 为坐标原点,建立如图平面直角坐标系,若把△AOB绕着点O顺时针旋转90°,得到△A1OB1,则点B旋转后的对应点B1的坐标为.12.如图,是抛物线y=ax2+bx+c(a≠0)图象的一部分.已知抛物线的对称轴为x=2,它与x轴的一个交点是(﹣1,0).则抛物线与x轴的另一个交点是;a+b+c 0(填“<或=或>”)13.如图,在方格纸中,以每个小方格的边长为单位1,△ABC和△EPD的顶点均在格点上,请你提供一个符合条件的点P,使△ABC与以E、P、D为顶点的三角形相似,则点P所在的格点坐标可以是.14.如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n 的面积为S n,则S n= .(用含n的式子表示)三、解答题(共10小题,满分78分)15.作图题用圆规、直尺作图,不写作法,但要保留作图痕迹.如图,已知△ABC,求作其外接圆的圆心.16.(1)化简:(1+)•(2)已知A(﹣4,﹣2)和B(a,4)是反比例函数y=的图象上的两点,求k值和点B的坐标.17.2011年北京春季房地产展示交易会期间,某公司对参加本次房交会的消费者的年收入和打算购买住房面积这两项内容进行了随机调查,共发放100份问卷,并全部收回.统计相关数据后,制成了如下的统计表和统计图:消费者年收入统计表年收入(万元) 4.8 6 9 12 24被调查的消费者数(人)10 50 30 9 1请你根据以上信息,回答下列问题:(1)补全统计表和统计图;(2)打算购买住房面积小于100平方米的消费者人数占被调查人数的百分比为;(3)求被调查的消费者平均每人年收入为多少万元?18.在一次促销活动中,某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成16份),并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得50元、30元、20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券10元.(1)求每转动一次转盘所获购物券金额的平均数;(2)如果你在该商场消费125元,你会选择转转盘还是直接获得购物券?说明理由.19.如图,数学课外活动小组测电视塔AB的高度,他们在点C处测得塔顶B的仰角为45°,自C点沿AC方向前进40米到达点E,在点E处测得B的仰角为37°(A、C、E三点在一条直线上).求电视塔的高度h.(结果精确到0.1米,参考数据:sin37°≈,cos37°≈,tan37°≈)20.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y 件和销售该品牌玩具获得利润w元,并把化简后的结果填写在表格中:销售单价(元)x销售量y(件)销售玩具获得利润w(元)(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.21.如图,在Rt△ABC中,∠ACB=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE,与AC相交于点F.(1)求证:△ADE≌△CDE;(2)若∠B=30°,判断并证明四边形ADCE的形状.22.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地之间的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.23.如图1,四边形ABCD中,AB∥CD,AB=a,CD=b(a≠b),点E、F分别是AD、BC上的点,且EF∥AB,设EF到CD、AB的距离分别为d1、d2.[初步尝试]小亮同学在对这一图形进行研究时,发现如下事实:(1)当=时,有EF=;(2)当=时,有EF=.该同学思考研究(2)的过程如下:作DG∥BC,交AB于G,作DM⊥AB于点M,交EF于点N.显然HF=CD=b,AG=AB﹣CD=a﹣b.易证,△DEH∽△DAG,可得=,即,=而由=,得==,代入上式,则=.解得EH=(a﹣b)∴EF=EH+HF=b+(a﹣b)=[类比发现]沿用上述图形和已知条件,请自主完成进一步的研究发现:当=时,EF= ;当=时,EF= ;当=时,EF= ;当=时,EF= .(其中m、n均为正整数,下同)[推广证明]当=时,EF= ;请证明你的结论.[实际应用]请结合所给情景,创设一个需要采用下面的全部信息求解的问题.[情景]如图2,有一块四边形耕地ABCD,AD∥BC,AD=100米,BC=300米,AB=500米,在AB上取点E,使AE=200米,以点E处为起点开挖平行于两底的水渠EF,与CD边相交于点F.[问题]?(提问即可,不必求解)24.如图,在四边形ABCD中,AB⊥BC,CD⊥BC,AB=2,BC=CD=4,AC、BD交于点O,在线段BC上,动点M以每秒1个单位长度的速度从点C出发向点B做匀速运动,同时动点N从点B出发向点C做匀速运动,当点M、N其中一点停止运动时,另一点也停止运动,分别过点M、N做BC的垂线,分别交AC、BD于点E、F,连接EF.若运动时间为x秒,在运动过程中四边形EMNF 总为矩形(点M、N重合除外).(1)求点N的运动速度;(2)当x为多少时,矩形EMNF为正方形?(3)当x为多少时,矩形EMNF的面积S最大?并求出最大值.山东省青岛市中考数学一模试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.﹣6的相反数是()A.6 B.﹣6 C.﹣D.【考点】相反数.【分析】根据只有符号不同的两数叫做互为相反数解答.【解答】解:实数﹣6的相反数是6.故选A.【点评】本题考查了实数的性质,熟记相反数的定义是解题的关键.2.下列图案中,是轴对称图形但不是中心对称图形的有()A.1个B.2个C.3个D.4个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形,是轴对称图形但也是中心对称图形;第二个图形,是轴对称图形,不是中心对称图形;第三个图形,不是轴对称图形,是中心对称图形;第四个图形,是轴对称图形,也是中心对称图形.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是()A.r<6 B.r=6 C.r>6 D.r≥6【考点】直线与圆的位置关系.【专题】探究型.【分析】直接根据直线与圆的位置关系进行判断即可.【解答】解:∵直线l与半径为r的⊙O相交,且点O到直线l的距离d=6,∴r>6.故选C.【点评】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.直线l和⊙O相交⇔d<r4.如图所示的几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看是一个有直径的圆环,故选:D.【点评】本题考查了简单组合体的三视图,从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.5.从青岛到济南有南线和北线两条高速公路,南线全长400千米,北线全长320千米.甲、乙两辆客车分别有南线和北线从青岛同时驶往济南,已知客车甲在南线高速公路上行驶的平均速度比客车乙在北线高速公路上快20千米/小时,两车恰好同时到达济南.若设客车乙从青岛到济南的平均速度是x千米/小时,则根据题意可得方程()A.= B.=C.+20=D.=【考点】由实际问题抽象出分式方程.【分析】设客车乙从青岛到济南的平均速度是x千米/小时,则客车甲从青岛到济南的平均速度是(x+20)千米/小时,根据题意可得,甲走400千米跟乙走320千米所用的时间相等,据此列方程即可.【解答】解:设客车乙从青岛到济南的平均速度是x千米/小时,则客车甲从青岛到济南的平均速度是(x+20)千米/小时,由题意得,=.故选B.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.6.如图,在平行四边形ABCD 中,E 是CD 上的一点,DE :EC=2:3,连接AE 、BE 、BD ,且AE 、BD 交于点F ,则S △DEF :S △EBF :S △ABF =( )A .2:5:25B .4:9:25C .2:3:5D .4:10:25【考点】相似三角形的判定与性质;三角形的面积;平行四边形的性质.【专题】计算题;压轴题.【分析】根据平行四边形的性质求出DC=AB ,DC ∥AB ,求出DE :AB=2:5,根据相似三角形的判定推出△DEF ∽△BAF ,求出△DEF 和△ABF 的面积比,根据三角形的面积公式求出△DEF 和△EBF 的面积比,即可求出答案.【解答】解:根据图形知:△DEF 的边DF 和△BFE 的边BF 上的高相等,并设这个高为h , ∵四边形ABCD 是平行四边形,∴DC=AB ,DC ∥AB ,∵DE :EC=2:3,∴DE :AB=2:5,∵DC ∥AB ,∴△DEF ∽△BAF ,∴==, ==,∴====∴S △DEF :S △EBF :S △ABF =4:10:25,故选D .【点评】本题考查了相似三角形的性质和判定,三角形的面积,平行四边形的性质的应用,关键是求出和的值,注意:相似三角形的面积比等于相似比的平方,若两三角形不相似,求面积比应根据三角形的面积公式求.7.在同一直角坐标系中,函数y=kx 2﹣k 和y=kx+k (k ≠0)的图象大致是( ) A . B . C . D .【考点】二次函数的图象;一次函数的图象.【分析】可先根据一次函数的图象判断k 的符号,再判断二次函数图象与实际是否相符,判断正误.【解答】解:A 、由一次函数y=kx+k 的图象可得:k >0,此时二次函数y=kx 2﹣kx 的图象应该开口向上,错误;B、由一次函数y=kx+k图象可知,k>0,此时二次函数y=kx2﹣kx的图象顶点应在y轴的负半轴,错误;C、由一次函数y=kx+k可知,y随x增大而减小时,直线与y轴交于负半轴,错误;D、正确.故选:D.【点评】本题考查的是一次函数和二次函数的图象,应该熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标.8.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是()A.1 B.2 C.3 D.4【考点】翻折变换(折叠问题);全等三角形的判定与性质;勾股定理.【专题】几何综合题;压轴题.【分析】根据翻折变换的性质和正方形的性质可证Rt△ABG≌Rt△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;由于S△FGC =S△GCE﹣S△FEC,求得面积比较即可.【解答】解:①正确.理由:∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正确.理由:EF=DE=CD=2,设BG=FG=x,则CG=6﹣x.在直角△ECG中,根据勾股定理,得(6﹣x)2+42=(x+2)2,解得x=3.∴BG=3=6﹣3=GC;③正确.理由:∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG;∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°﹣∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④错误.理由:=GC•CE=×3×4=6∵S△GCE∵GF=3,EF=2,△GFC和△FCE等高,∴S△GFC :S△FCE=3:2,∴S△GFC=×6=≠3.故④不正确.∴正确的个数有3个.故选:C.【点评】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.二、填空题(共6小题,每小题3分,满分18分)9.计算:﹣+(π﹣3)0+= ﹣2 .【考点】实数的运算;零指数幂.【分析】分别根据数的开方法则及0指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=﹣6+1+3=﹣2.故答案为:﹣2.【点评】本题考查的是实数的运算,熟知数的开方法则及0指数幂的运算法则是解答此题的关键.10.2014年,青岛市全年全市实现生产总值(GDP)8692.1亿,这个数用科学记数法表示为8.6921×1011.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将8692.1亿用科学记数法表示为:8.6921×1011.故答案为:8.6921×1011.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.如图,正方形网格中的每一个小正方形的边长都是1,△AOB的三个顶点都在格点上,以O 为坐标原点,建立如图平面直角坐标系,若把△AOB绕着点O顺时针旋转90°,得到△A1OB1,则点B旋转后的对应点B1的坐标为(4,2).【考点】坐标与图形变化-旋转.【分析】作BC⊥y轴,B1D⊥x轴,根据△BOC≌△B1OD,求出OD、B1D的长,得到答案.【解答】解:如图,作BC⊥y轴,B1D⊥x轴,由题意得,△BOC≌△B1OD,∴OD=OC=4,B1D=BC=2,∴点B1的坐标为:(4,2),故答案为:(4,2).【点评】本题考查的是旋转的旋转和三角形全等的性质,正确理解旋转的旋转中心、旋转角和旋转分析是解题的关键.12.如图,是抛物线y=ax2+bx+c(a≠0)图象的一部分.已知抛物线的对称轴为x=2,它与x轴的一个交点是(﹣1,0).则抛物线与x轴的另一个交点是(5,0);a+b+c <0(填“<或=或>”)【考点】二次函数图象与系数的关系.【分析】根据抛物线的对称轴为x=2,它与x轴的一个交点是(﹣1,0),求出另一个交点;根据x=1时,y<0,确定a+b+c的符号.【解答】解:∵对称轴为x=2,它与x轴的一个交点是(﹣1,0),∴另一个交点为(5,0),∵当x=1时,y<0,∴a+b+c<0.故答案为:(5,0);<.【点评】本题考查的是二次函数图象与系数的关系,灵活运用抛物线的对称性和抛物线上点的特点是解题的关键.13.如图,在方格纸中,以每个小方格的边长为单位1,△ABC和△EPD的顶点均在格点上,请你提供一个符合条件的点P,使△ABC与以E、P、D为顶点的三角形相似,则点P所在的格点坐标可以是(3,6).【考点】相似三角形的判定;坐标与图形性质.【分析】利用∠PDE=90°,=可判断△PDE∽△BAC,根据相似比计算出PD,从而得到一个符合条件的点P的坐标.【解答】解:AB=3,AC=4,∠BAC=90°,DE=4,若∠PDE=90°,=时,△PDE∽△BAC,即=,解得PD=6,此时P点坐标为(3,6),所以当点P坐标为(3,6)时,使△ABC与以E、P、D为顶点的三角形相似.故答案为(3,6).【点评】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似.也考查了坐标与图形性质.14.如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n 的面积为S n,则S n= .(用含n的式子表示)【考点】相似三角形的判定与性质.【专题】压轴题;规律型.【分析】由n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,即可求得△B1C1M n的面积,又由B n C n∥B1C1,即可得△B n C n M n ∽△B1C1M n,然后利用相似三角形的面积比等于相似比的平方,求得答案.【解答】解:∵n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,∴S1=×B1C1×B1M1=×1×=,S△B1C1M2=×B1C1×B1M2=×1×=,S△B1C1M3=×B1C1×B1M3=×1×=,S△B1C1M4=×B1C1×B1M4=×1×=,S△B1C1Mn=×B1C1×B1M n=×1×=,∵B n C n∥B1C1,∴△B n C n M n∽△B1C1M n,∴S△BnCnMn :S△B1C1Mn=()2=()2,即S n:=,∴S n=.故答案为:.【点评】此题考查了相似三角形的判定与性质、正方形的性质以及直角三角形面积的公式.此题难度较大,注意掌握相似三角形面积的比等于相似比的平方定理的应用是解此题的关键.三、解答题(共10小题,满分78分)15.作图题用圆规、直尺作图,不写作法,但要保留作图痕迹.如图,已知△ABC,求作其外接圆的圆心.【考点】作图—复杂作图;三角形的外接圆与外心.【专题】作图题.【分析】先分别作BC和AB的垂直平分线l、l′,直线l与l′相交于点O,然后以点O为圆心,OA 为半径作⊙O即可.【解答】解:如图,点O为所求.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.16.(1)化简:(1+)•(2)已知A(﹣4,﹣2)和B(a,4)是反比例函数y=的图象上的两点,求k值和点B的坐标.【考点】反比例函数图象上点的坐标特征;分式的混合运算.【分析】(1)先算括号里面的,再算乘法即可;(2)先根据点A在反比例函数y=的图象上求出k的值,再把点B(a,4)代入求出a的值即可.【解答】解:(1)原式=•=;(2)∵A(﹣4,﹣2)和B(a,4)是反比例函数y=的图象上的两点,∴﹣2=,解得k=8,∴反比例函数的解析式为y=,∴4=,解得a=2.【点评】本题考查的是分式的化简求值,熟知分式混和运算的法则是解答此题的关键.17.2011年北京春季房地产展示交易会期间,某公司对参加本次房交会的消费者的年收入和打算购买住房面积这两项内容进行了随机调查,共发放100份问卷,并全部收回.统计相关数据后,制成了如下的统计表和统计图:消费者年收入统计表年收入(万元) 4.8 6 9 12 24被调查的消费者数(人)10 50 30 9 1请你根据以上信息,回答下列问题:(1)补全统计表和统计图;(2)打算购买住房面积小于100平方米的消费者人数占被调查人数的百分比为52% ;(3)求被调查的消费者平均每人年收入为多少万元?【考点】频数(率)分布直方图;统计表;算术平均数.【专题】计算题;图表型.【分析】(1)被调查的100人减去其他收入的人数即可得到年收入在6万元的人数;(2)用小于100的人数除以总人数即可得到小于100平米的所占比例;(3)用加权平均数计算即可.【解答】解:(1)100﹣10﹣30﹣9﹣1=50人,∴年收入为6万元的有50人;如图;(2)由统计图可知打算购买住房面积小于100平方米的消费者人数为52人,∴52÷100=52%;(3)=7.5(万元).故被调查的消费者平均每人年收入为7.5万元.【点评】本题考查了条形统计图的相关知识,解题的关键是根据条形统计图求出除去年收入在6万元以下的人数.18.在一次促销活动中,某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成16份),并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得50元、30元、20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券10元.(1)求每转动一次转盘所获购物券金额的平均数;(2)如果你在该商场消费125元,你会选择转转盘还是直接获得购物券?说明理由.【考点】概率的意义.【专题】计算题.【分析】游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.【解答】解:(1)50×+30×+20×=11.875(元);(2)∵11.875元>10元,∴选择转转盘.【点评】关键是得到转一次转盘得到奖券的平均金额.19.如图,数学课外活动小组测电视塔AB的高度,他们在点C处测得塔顶B的仰角为45°,自C点沿AC方向前进40米到达点E,在点E处测得B的仰角为37°(A、C、E三点在一条直线上).求电视塔的高度h.(结果精确到0.1米,参考数据:sin37°≈,cos37°≈,tan37°≈)【考点】解直角三角形的应用-仰角俯角问题.【分析】在Rt△ACB中,得到AC=AB=h,在Rt△AEB中,根据=tan37°,求出h即可.【解答】解:在Rt△ACB中,AC=AB=h,在Rt△AEB中,=tan37°,解得,≈,即h≈120.0米.【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.20.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y 件和销售该品牌玩具获得利润w元,并把化简后的结果填写在表格中:销售单价(元)x销售量y(件)1000﹣10x销售玩具获得利润w(元)﹣10x2+1300x﹣30000(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.【考点】一元二次方程的应用.【专题】销售问题.【分析】(1)由销售单价每涨1元,就会少售出10件玩具得y=600﹣(x﹣40)×10=1000﹣10x,利润=(1000﹣10x)(x﹣30)=﹣10x2+1300x﹣30000;(2)令﹣10x2+1300x﹣30000=10000,求出x的值即可;【解答】解:(1)销售单价(元)x销售量y(件)1000﹣10x销售玩具获得利润w(元)﹣10x2+1300x﹣30000(2)﹣10x2+1300x﹣30000=10000,解之得:x1=50 x2=80,答:玩具销售单价为50元或80元时,可获得10000元销售利润.【点评】本题主要考查了一元二次方程的应用,解答本题的关键是得出W与x的函数关系.21.如图,在Rt△ABC中,∠ACB=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE,与AC相交于点F.(1)求证:△ADE≌△CDE;(2)若∠B=30°,判断并证明四边形ADCE的形状.【考点】全等三角形的判定与性质;菱形的判定.【分析】(1)根据直角三角形的性质和等边三角形的性质得到AE=EC,AD=CD,由全等三角形的判定定理SSS即可证得.(2)根据菱形的判定定理四条边相等的四边形是菱形证得.【解答】解:(1)∵E是AB中点,∠ACB=90°∴AE=EC,∵AD=CD,在△ADE与△CDE中,,∴△ADE≌△CDE;(2)∵∠B=30°,∴∠BAC=60°,∴△ACE是等边三角形,∴AE=CE=AC,∵AC=AD=CD,∴AD=DC=CE=EA,∴四边形ADCE是菱形.【点评】本题考查了等边三角形的性质,直角三角形的性质,全等三角形的判定与性质,熟记定理是解题的关键.22.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地之间的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.【考点】一次函数的应用.【分析】(1)x=0时甲的y值即为A、B两地的距离;(2)根据图象求出甲、乙两人的速度,再利用相遇问题求出相遇时间,然后求出乙的路程即可得到点M的坐标以及实际意义;(3)分相遇前和相遇后两种情况求出x的值,再求出最后两人都到达B地前两人相距3千米的时间,然后写出两个取值范围即可.【解答】解:(1)x=0时,甲距离B地30千米,所以,A、B两地的距离为30千米;(2)由图可知,甲的速度:30÷2=15千米/时,乙的速度:30÷1=30千米/时,30÷(15+30)=,×30=20千米,所以,点M的坐标为(,20),表示小时后两车相遇,此时距离B地20千米;(3)设x小时时,甲、乙两人相距3km,①若是相遇前,则15x+30x=30﹣3,解得x=,②若是相遇后,则15x+30x=30+3,解得x=,③若是到达B地前,则15x﹣30(x﹣1)=3,解得x=,所以,当≤x≤或≤x≤2时,甲、乙两人能够用无线对讲机保持联系.【点评】本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,难点在于(3)要分情况讨论.23.如图1,四边形ABCD中,AB∥CD,AB=a,CD=b(a≠b),点E、F分别是AD、BC上的点,且EF∥AB,设EF到CD、AB的距离分别为d1、d2.[初步尝试]小亮同学在对这一图形进行研究时,发现如下事实:(1)当=时,有EF=;(2)当=时,有EF=.该同学思考研究(2)的过程如下:作DG∥BC,交AB于G,作DM⊥AB于点M,交EF于点N.显然HF=CD=b,AG=AB﹣CD=a﹣b.易证,△DEH∽△DAG,可得=,即,=而由=,得==,代入上式,则=.解得EH=(a﹣b)∴EF=EH+HF=b+(a﹣b)=[类比发现]沿用上述图形和已知条件,请自主完成进一步的研究发现:当=时,EF= ;当=时,EF= ;当=时,EF= ;当=时,EF= .(其中m、n均为正整数,下同)[推广证明]。
2019-2020青岛市中考数学第一次模拟试题(及答案)
2019-2020青岛市中考数学第一次模拟试题(及答案)一、选择题1.若一个凸多边形的内角和为720°,则这个多边形的边数为( ) A .4B .5C .6D .72.通过如下尺规作图,能确定点D 是BC 边中点的是( )A .B .C .D .3.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是( ) A .中位数B .平均数C .众数D .方差4.如图,在ABC V 中,90ACB ∠=︒,分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若34B ∠=︒,则BDC ∠的度数是( )A .68︒B .112︒C .124︒D .146︒5.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形 6.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是( ) A .94B .95分C .95.5分D .96分 7.下列运算正确的是( ) A .23a a a += B .()2236a a =C .623a a a ÷=D .34a a a ⋅=8.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).A .B .C .D .9.如图,矩形纸片ABCD 中,4AB =,6BC =,将ABC V 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A .35B .53C .73D .5410.下列计算正确的是( ) A .a 2•a=a 2 B .a 6÷a 2=a 3 C .a 2b ﹣2ba 2=﹣a 2bD .(﹣32a )3=﹣398a11.如图,⊙C 过原点,且与两坐标轴分别交于点A 、点B ,点A 的坐标为(0,3),M是第三象限内»OB上一点,∠BMO=120°,则⊙C 的半径长为( )A .6B .5C .3D .3212.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm二、填空题13.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为_____.14.中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为.15.不等式组125x ax x->⎧⎨->-⎩有3个整数解,则a的取值范围是_____.16.在函数3yx=-的图象上有三个点(﹣2,y1),(﹣1,y2),(12,y3),则y1,y2,y3的大小关系为_____.17.已知扇形AOB的半径为4cm,圆心角∠AOB的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm18.如图,一束平行太阳光线照射到正五边形上,则∠1= ______.19.已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是_____.20.已知(a-4)(a-2)=3,则(a-4)2+(a-2)2的值为__________.三、解答题21.计算:219(34)02cos452-︒⎛⎫-+--⎪⎝⎭.22.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛.23.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:232212+=+(),善于思考的小明进行了以下探索: 设()2a b 2m n 2+=+(其中a b m n 、、、均为整数),则有22a b 2m 2n 2mn 2+=++.∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a b 2+的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题: 当a b m n 、、、均为正整数时,若()2a b 3m n 3+=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( +3)2;(3)若()2433a m n +=+,且ab m n 、、、均为正整数,求a 的值.24.修建隧道可以方便出行.如图:A ,B 两地被大山阻隔,由A 地到B 地需要爬坡到山顶C 地,再下坡到B 地.若打通穿山隧道,建成直达A ,B 两地的公路,可以缩短从A 地到B 地的路程.已知:从A 到C 坡面的坡度1:3i =,从B 到C 坡面的坡角45CBA ∠=︒,42BC =公里.(1)求隧道打通后从A 到B 的总路程是多少公里?(结果保留根号)(2)求隧道打通后与打通前相比,从A 地到B 地的路程约缩短多少公里?(结果精确到0.012 1.414≈3 1.732)25.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,O 为AB 上一点,经过点A ,D 的⊙O 分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G . (1)求证:BC 是⊙O 的切线;(2)设AB =x ,AF =y ,试用含x ,y 的代数式表示线段AD 的长; (3)若BE =8,sinB =513,求DG 的长,【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键. 2.A解析:A【解析】【分析】作线段BC的垂直平分线可得线段BC的中点.【详解】作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选A.【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.3.A解析:A【解析】【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【详解】去掉一个最高分和一个最低分对中位数没有影响,故选A.【点睛】考查了统计量的选择,解题的关键是了解中位数的定义.4.B解析:B【解析】【分析】根据题意可知DE是AC的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性质即可求出∠CDA的度数.【详解】解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DCE=∠A,∵∠ACB=90°,∠B=34°,∴∠A=56°,∴∠CDA=∠DCE+∠A=112°,故选B.【点睛】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.5.B解析:B【解析】【分析】根据菱形的性质逐项进行判断即可得答案.【详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形,菱形对角线垂直但不一定相等,故选B.【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.6.B解析:B【解析】【分析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,则该同学这6次成绩的中位数是:=95分;故选:B.【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.D解析:D【解析】【分析】【详解】解:A、a+a2不能再进行计算,故错误;B、(3a)2=9a2,故错误;C、a6÷a2=a4,故错误;D、a·a3=a4,正确;故选:D.【点睛】本题考查整式的加减法;积的乘方;同底数幂的乘法;同底数幂的除法.8.C解析:C【解析】从上面看,看到两个圆形,故选C.9.B解析:B【解析】【分析】由折叠的性质得到AE=AB,∠E=∠B=90°,易证Rt△AEF≌Rt△CDF,即可得到结论EF=DF;易得FC=FA,设FA=x,则FC=x,FD=6-x,在Rt△CDF中利用勾股定理得到关于x的方程x2=42+(6-x)2,解方程求出x即可.【详解】∵矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,∴AE=AB,∠E=∠B=90°,又∵四边形ABCD为矩形,∴AB=CD,∴AE=DC,而∠AFE=∠DFC,∵在△AEF 与△CDF 中,AFE CFD E DAE CD ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AEF ≌△CDF (AAS ), ∴EF=DF ;∵四边形ABCD 为矩形, ∴AD=BC=6,CD=AB=4, ∵Rt △AEF ≌Rt △CDF , ∴FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中,CF 2=CD 2+DF 2,即x 2=42+(6-x )2,解得x =133, 则FD =6-x=53. 故选B . 【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理.10.C解析:C 【解析】 【分析】根据同底数幂的乘法运算可判断A ;根据同底数幂的除法运算可判断B ;根据合并同类项可判断选项C ;根据分式的乘方可判断选项D. 【详解】A 、原式=a 3,不符合题意;B 、原式=a 4,不符合题意;C 、原式=-a 2b ,符合题意;D 、原式=-278a,不符合题意, 故选C . 【点睛】此题考查了分式的乘除法,合并同类项,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键.11.C解析:C 【解析】 【分析】先根据圆内接四边形的性质求出∠OAB的度数,由圆周角定理可知∠AOB=90°,故可得出∠ABO的度数,根据直角三角形的性质即可得出AB的长,进而得出结论.【详解】解:∵四边形ABMO是圆内接四边形,∠BMO=120°,∴∠BAO=60°,∵∠AOB=90°,∴AB是⊙C的直径,∴∠ABO=90°-∠BAO=90°-60°=30°,∵点A的坐标为(0,3),∴OA=3,∴AB=2OA=6,∴⊙C的半径长=3,故选:C【点睛】本题考查的是圆内接四边形的性质、圆周角定理及直角三角形的性质,熟知圆内接四边形对角互补的性质是解答此题的关键.12.C解析:C【解析】【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故选C.【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.二、填空题13.60°【解析】试题解析:∵∠ACB=90°∠ABC=30°∴∠A=90°-30°=60°∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上∴AC=A′C∴△A′AC是等边三角形∴∠ACA解析:60°【解析】试题解析:∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,∴AC=A′C,∴△A′AC是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故答案为60°.14.6×106【解析】【分析】【详解】将9600000用科学记数法表示为96×106故答案为96×106解析:6×106.【解析】【分析】【详解】将9600000用科学记数法表示为9.6×106.故答案为9.6×106.15.﹣2≤a<﹣1【解析】【分析】先解不等式组确定不等式组的解集(利用含a的式子表示)根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a的不等式从而求出a的范围【详解】解不等式x﹣a>0得解析:﹣2≤a<﹣1.【解析】【分析】先解不等式组确定不等式组的解集(利用含a的式子表示),根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解不等式x﹣a>0,得:x>a,解不等式1﹣x>2x﹣5,得:x<2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、 0、1,则﹣2≤a<﹣1,故答案为:﹣2≤a<﹣1.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.y2>y1>y3【解析】【分析】根据图象上的点(xy)的横纵坐标的积是定值k可得xy=k据此解答即可【详解】解:∵函数y=-的图象上有三个点(-2y1)(-1y2)(y3)∴-2y1=-y2=y3=解析:y2>y1>y3.【解析】【分析】根据图象上的点(x,y)的横纵坐标的积是定值k,可得xy=k,据此解答即可.【详解】解:∵函数y=-3x的图象上有三个点(-2,y1),(-1,y2),(12,y3),∴-2y1=-y2=12y3=-3,∴y1=1.5,y2=3,y3=-6,∴y2>y1>y3.故答案为y2>y1>y3.【点睛】本题考查了反比例函数的图象上点的坐标特征.解题时注意:图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.17.1【解析】试题分析:根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长和弧长公式可设圆锥的底面圆的半径为rcm根据题意得2πr=解得r=1故答案为:1点睛:本题考查了圆锥的计算:圆锥的侧面解析:1【解析】试题分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式,可设圆锥的底面圆的半径为rcm,根据题意得2πr=904180π⨯,解得r=1.故答案为:1.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.18.30°【解析】【分析】【详解】解:∵AB//CD∴∠BAC+∠ACD=180°即∠1+∠EAC+∠ACD=180°∵五边形是正五边形∴∠EAC=108°∵∠ACD=42°∴∠1=180°-42°-1解析:30°.【解析】【分析】【详解】解:∵AB//CD,∴∠BAC+∠ACD=180°,即∠1+∠EAC+∠ACD=180°,∵五边形是正五边形,∴∠EAC=108°,∵∠ACD=42°,∴∠1=180°-42°-108°=30°故答案为:30°.19.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主解析:4【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6,∴这组数据的中位数为352+=4,故答案为:4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键.20.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=解析:10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体,利用完全平方公式求解.【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=[(a﹣4)-(a﹣2)]2+2(a﹣4)(a﹣2)=(-2)2+2×3=10故答案为10【点睛】本题考查了完全平方公式:(a±b)2=a2±2ab+b2求解,整体思想的运用使运算更加简便.三、解答题21.1【解析】【分析】直接利用零指数幂的性质以及特殊角的三角函数值和负指数幂的性质分别化简得出答案.【详解】解:原式=4﹣3+12=2﹣1=1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.22.(1) 25 ; (2) 这组初赛成绩数据的平均数是1.61.;众数是1.65;中位数是1.60;(3)初赛成绩为1.65 m 的运动员能进入复赛.【解析】【分析】【详解】试题分析:(1)、用整体1减去其它所占的百分比,即可求出a 的值;(2)、根据平均数、众数和中位数的定义分别进行解答即可;(3)、根据中位数的意义可直接判断出能否进入复赛.试题解析:(1)、根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%; 则a 的值是25;(2)、观察条形统计图得: 1.502 1.554 1.605 1.656 1.70324563x ⨯+⨯+⨯+⨯+⨯=++++=1.61; ∵在这组数据中,1.65出现了6次,出现的次数最多, ∴这组数据的众数是1.65; 将这组数据从小到大排列为,其中处于中间的两个数都是1.60, 则这组数据的中位数是1.60.(3)、能; ∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m >1.60m , ∴能进入复赛考点:(1)、众数;(2)、扇形统计图;(3)、条形统计图;(4)、加权平均数;(5)、中位数23.(1)22m 3n +,2mn ;(2)4,2,1,1(答案不唯一);(3)a =7或a =13.【解析】【分析】【详解】(1)∵2(a m +=+,∴2232a m n +=++,∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13.24.(1)隧道打通后从A 到B 的总路程是4)公里;(2)隧道打通后与打通前相比,从A 地到B 地的路程约缩短2.73公里.【解析】【分析】(1)过点C 作CD ⊥AB 于点D ,利用锐角三角函数的定义求出CD 及AD 的长,进而可得出结论.(2)由坡度可以得出A ∠的度数,从而得出AC 的长,根据AC CB AB +-即可得出缩短的距离.【详解】(1)作CD AB ⊥于点D ,在Rt BCD ∆中,∵45CBA ∠=︒,42BC =, ∴4CD BD ==.在Rt ACD ∆中, ∵1:3CD i AD==, ∴343AD CD ==, ∴()434AB =+公里.答:隧道打通后从A 到B 的总路程是()434+公里.(2)在Rt ACD ∆中,∵3CD i AD==, ∴30A ∠=︒,∴2248AC CD ==⨯=, ∴842AC CB +=+∵434AB =,∴842434 2.73AC CB AB +-=+≈(公里).答:隧道打通后与打通前相比,从A 地到B 地的路程约缩短2.73公里.【点睛】本题考查的是解直角三角形的应用-坡度问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记坡度和锐角三角函数的定义.25.(1)证明见解析;xy 3013 【解析】【分析】(1)连接OD ,由AD 为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD 与AC 平行,得到OD 与BC 垂直,即可得证; (2)连接DF ,由(1)得到BC 为圆O 的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD 与三角形ADF 相似,由相似得比例,即可表示出AD ;(3)连接EF ,设圆的半径为r ,由sinB 的值,利用锐角三角函数定义求出r 的值,由直径所对的圆周角为直角,得到EF 与BC 平行,得到sin ∠AEF=sinB ,进而求出DG 的长即可.【详解】(1)如图,连接OD ,∵AD 为∠BAC 的角平分线,∴∠BAD=∠CAD ,∵OA=OD ,∴∠ODA=∠OAD ,∴∠ODA=∠CAD ,∴OD ∥AC ,∵∠C=90°,∴∠ODC=90°,∴OD ⊥BC ,∴BC 为圆O 的切线;(2)连接DF ,由(1)知BC 为圆O 的切线,∴∠FDC=∠DAF ,∴∠CDA=∠CFD ,∴∠AFD=∠ADB ,∵∠BAD=∠DAF ,∴△ABD ∽△ADF , ∴AB AD AD AF=,即AD 2=AB•AF=xy ,则;(3)连接EF ,在Rt △BOD 中,sinB=513OD OB =, 设圆的半径为r ,可得5813r r =+, 解得:r=5,∴AE=10,AB=18,∵AE 是直径,∴∠AFE=∠C=90°,∴EF ∥BC ,∴∠AEF=∠B ,∴sin∠AEF=513 AFAE=,∴AF=AE•sin∠AEF=10×513=50 13,∵AF∥OD,∴501013513AG AFDG OD===,即DG=1323AD,∴AD=503013·181313AB AF=⨯=,则DG=133033013 23⨯=.【点睛】圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.。
2020年山东省青岛市李沧区中考数学一模试卷 (含答案解析)
2020年山东省青岛市李沧区中考数学一模试卷一、选择题(本大题共8小题,共24.0分)1. 1.−15的绝对值是()A. 5B. 15C. −15D. −52.下列手机屏幕手势解锁图案中,是轴对称图形的是()A. B. C. D.3.商务部发布数据显示,2019年春节黄金同期间,全国商品市场保持平稳较快增长.除夕至正月初六,全国零售和餐饮企业实现销售额约10050亿元、把10050亿这个数字用科学记数法表示为()A. 1.0050×104B. 1.0050×109C. 1.0050×1012D. 1.0050×10134.下列运算正确的是()A. 2a+3a=5a2B. (a+2b)2=a2+4b2C. a2⋅a3=a6D. (−ab2)3=−a3b65.如图,四边形ABCD是半圆的内接四边形,AB是直径,DC⏜=CB⏜.若∠C=110°,则∠ABC的度数等于()A. 55°B. 60°C. 65°D. 70°6.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A. 2B. 3C. 4D. 57.如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CB1的长为()A. 3√5cmB. 2√10cmC. 8cmD. 10cm8.在同一坐标系内,一次函数y=ax+1与二次函数y=ax2的图象可能是()A. B. C. D.二、填空题(本大题共6小题,共18.0分)9.计算:√24+√12√3−(−12)−2=______.10.某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是______环.11.某小区购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,求银杏树和玉兰树的单价.设银杏树的单价为x元,可列方程为______.12.如图,△ABC是等边三角形,AB=2,分别以A,B,C为圆心,以2为半径作弧,则图中阴影部分的面积是______.13.如图,在平行四边形ABCD中,AB=6cm,∠BCD的平分线交AD于点E,则线段DE的长度是______ cm.14.如果将棱长相等的小正方体按如图的方式摆放,从上到下依次为第一层,第二层,第三层,…,那么第10层的小正方体的个数是______ .三、解答题(本大题共10小题,共78.0分)15.如图,∠AOB=45°,点M,N在边OA上,,点P是边OB上的点.(1)利用直尺和圆规在图1确定点P,使得PM=PN;(2)设OM=x,ON=x+4.①若x=0时,使P,M,N构成等腰三角形的点P有_______个;②若使P,M,N构成等腰三角形的点P恰好有三个,则x的值是______________.16.如图所示,二次函数y=−2x2+4x+m的图象与x轴的一个交点为A(3,0),另一个交点为B.且与y轴交于点C.(1)求m的值及点B的坐标;(2)求△ABC的面积;(3)该二次函数图象上有一点D(x,y),使S△ABD=S△ABC,请求出D点的坐标.17.每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水⋅珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x< 85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82;八年级10名学生的竞赛成绩在C组中的数据是:94,90,94,七、八年级抽取的学生竞赛成绩统计表根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共720人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≥90)的学生人数是多少?18.将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).19.在一次数学测验活动中,小明到操场测量旗杆AB的高度.他手拿一支铅笔MN,边观察边移动(铅笔MN始终与地面垂直).如示意图,当小明移动到D点时,眼睛C与铅笔、旗杆的顶端M、A共线,同时,眼睛C与它们的底端N、B也恰好共线.此时,测得DB=50m,小明的眼睛C到铅笔的距离为0.65m,铅笔MN的长为0.16m,请你帮助小明计算出旗杆AB的高度(结果精确到0.1m).20.小明与小红开展读书比赛.小明找出了一本以前已读完84页的古典名著打算继续往下读,小红上个周末恰好刚买了同一版本的这本名著,不过还没开始读.于是,两人开始了读书比赛.第5天结束时,小明还领先小红24页,此时两人所读到位置的页码之和为424.已知两人各自每天所读页数相同.(1)小明、小红每人每天各读多少页?(2)已知这本名著有488页,问:从第6天起,小明至少平均每天要比原来多读几页,才能确保第10天结束时还不被小红超过?(答案取整数)21.如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点C作CE//AB,过点B作BE//CD,CE、BE相交于点E.求证:四边形BECD为菱形.22.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W,求W与x之间的函数表达式(利润=收入−成本);并求出售价为多少元时获得最大利润,最大利润是多少?23.唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望峰火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题我们称之为“饮马问题”.如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河旁边的C点饮马后再到B点宿营.请问怎样走才能使总的路程最短?某课题组在探究这一问题时抽象出数学模型:直线l同旁有两个定点A、B,在直线l上存在点P,使得PA+PB的值最小.解法:作点A关于直线l的对称点A′,连接A′B,则A′B与直线l的交点即为P,且PA+PB的最小值为线段A′B的长.(1)根据上面的描述,在备用图中画出解决“饮马问题”的图形;(2)利用轴对称作图解决“饮马问题”的依据是______.(3)应用:①如图2,已知∠AOB=30°,其内部有一点P,OP=12,在∠AOB的两边分别有C、D两点(不同于点O),使△PCD的周长最小,请画出草图,并求出△PCD周长的最小值;②如图3,点A(4,2),点B(1,6)在第一象限,在x轴、y轴上是否存在点D、点C,使得四边形ABCD的周长最小?若存在,请画出草图,并求其最小周长;若不存在,请说明理由.24.(1)如图1,△ABC中,∠ACB=90°,以△ABC三边为斜边分别作等腰直角三角形①,②,③,它们的面积分别为S1,S2,S3,则S3=______(用S1,S2表示);(2)如图2,△ABC中,∠ACB=90°,AC=BC=6√2,点D,E在AB上运动,且保持AD<AE,∠DCE=45°,将△ACD绕点C顺时针旋转90°得到△BCF.①求证:ED=EF;②当AD=4时,EF的长度是______;③如图3,过点D,E分别作AC,BC的垂线交于点O,垂足为Q,P.随着AD长度的改变,矩形CPOQ的面积是否定值?若是定值,请求出该值;若不是定值,请说明理由.-------- 答案与解析 --------1.答案:B解析:根据绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0即可求解.【详解】解:根据负数的绝对值是它的相反数,得|−15|=15.故选:B.本题考查了绝对值的定义和性质,解题的关键是掌握绝对值的求法.2.答案:A解析:解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.根据轴对称图形的概念对各选项分析判断即可得解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.答案:C解析:解:将10050亿用科学记数法表示为:1.0050×1012.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.答案:D解析:此题主要考查了合并同类项以及完全平方公式、积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.直接利用合并同类项法则以及完全平方公式、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.解:A、2a+3a=5a,故此选项错误;B、(a+2b)2=a2+4ab+4b2,故此选项错误;C、a2⋅a3=a5,故此选项错误;D、(−ab2)3=−a3b6,正确.故选:D.5.答案:A解析:本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.连接AC,根据圆内接四边形的性质求出∠DAB,根据圆周角定理求出∠ACB、∠CAB,计算即可.解:连接AC,∵四边形ABCD是半圆的内接四边形,∴∠DAB=180°−∠C=70°,∵DC⏜=CB⏜,∴∠CAB=1∠DAB=35°,2∵AB是直径,∴∠ACB=90°,∴∠ABC=90°−∠CAB=55°,故选:A.解析:解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.直接利用平移中点的变化规律求解即可.本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.7.答案:B解析:解:∵∠AB1E=∠B=90°,∠BAB1=90°,∴四边形ABEB1为矩形,又∵AB=AB1,∴四边形ABEB1为正方形,∴BE=AB=6cm,∴EC=BC−BE=2cm,∴CB1=√62+22=2√10cm.故选:B.根据翻折变换的性质可以证明四边形ABEB1为正方形,得到BE=AB,根据EC=BC−BE计算得到EC,再根据勾股定理可求答案.本题考查的是翻折变换、矩形和正方形的判定和性质,掌握翻折变换的性质和矩形和正方形的判定定理和性质定理是解题的关键.8.答案:B解析:解:当a>0时,一次函数y=ax+1过第一、二、三象限,二次函数图象开口向上,排除A,当a<0时,一次函数y=ax+1过第一、二、四象限,二次函数图象开口向下,排除C,D.根据当a>0时,一次函数y=ax+1过第一、二、三象限,二次函数图象开口向上,当a<0时,一次函数y=ax+1过第一、二、四象限,二次函数图象开口向下,可求解.本题考查了一次函数的图象,二次函数的图象,利用函数图象解决问题是本题的关键.9.答案:2√2−2解析:【试题解析】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.根据二次根式的除法法则和负整数指数的意义计算.解:原式=√243+√123−4=2√2+2−4=2√2−2.故答案为2√2−2.10.答案:8解析:本题考查了中位数的求法及条形统计图.将题图中的数据先按照从小到大的顺序排列,11个数据的中位数由第6个数据决定,故中位数是8.解:把数据从小到大排列,最中间的射击成绩为8环,故11名成员射击成绩的中位数为8环.故答案为8.11.答案:12000x +90001.5x=150解析:本题考查由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.设银杏树的单价为x元,则玉兰树的单价为1.5x元,根据“某小区购买了银杏树和玉兰树共150棵”列出方程即可.解:设银杏树的单价为x元,则玉兰树的单价为1.5x元,根据题意,得12000x +90001.5x=150.故答案为12000x +90001.5x=150.12.答案:2π−3√3解析:解:∵正△ABC的边长为2,∴△ABC的面积为12×2×√3=√3,扇形ABC的面积为60⋅π×22360=23π,则图中阴影部分的面积=3×(23π−√3)=2π−3√3,故答案为:2π−3√3.根据等边三角形的面积公式求出正△ABC的面积,根据扇形的面积公式S=nπR2360求出扇形的面积,求差得到答案.本题考查的是等边三角形的性质和扇形的面积计算,掌握扇形的面积公式S=nπR2360是解题的关键.13.答案:6解析:解:∵四边形ABCD是平行四边形,∴AD//BC,DC=AB=6cm,∴∠DEC=∠BCE,又CE平分∠BCD,∴∠BCE=∠DCE,∴∠DCE=∠DEC,∴DE=DC=6cm,故答案为:6.由平行四边形的性质及角平分线可得∠DCE=∠DEC,得出DE=DC,即可求解.本题主要考查平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出DE=DC是解决问题的关键.14.答案:55解析:本题是对图形变化规律的考查,仔细观察图形,得到各层的正方体的个数等于连续自然数的和,然后求出第n层的个数的表达式是解题的关键.根据图形计算出前几层的正方体的个数,从而得到第n层的个数为1+2+3+⋯+n,再根据求和公式求出表达式,然后把n=10代入进行计算即可得解.解:观察不难发现,第一层有1个正方体,第二层有3个,3=1+2;第三层有6个,6=1+2+3,第四层有10个,10=1+2+3+4,第五层有15个,15=1+2+3+4+5,…,第n层有:1+2+3+⋯+n=12n(n+1),当n=10时,12n(n+1)=12×10×(10+1)=55.故答案是:55.15.答案:解:(1)如图,点P为所求的点;(2)①3②x=0或x=4√2−4或4<x<4√2解析:本题考查了等腰三角形的性质与判定、画线段的垂直平分线和数形结合的知识点,解题的关键是熟练掌握已知一边,作等腰三角形的画法.(1)根据垂直平分线的画法进行作图,即可解答;(2)①分三种情况讨论:先确定特殊位置时成立的x值;②如图1,当M与O重合时,即x=0时,点P恰好有三个;如图2,构建腰长为4的等腰直角△OMC,和半径为4的⊙M,发现M在点D的位置时,满足条件;如图3,根据等腰三角形三种情况的画法:分别以M、N为圆心,以MN为半径画弧,与OB的交点就是满足条件的点P,再以MN为底边的等腰三角形,通过画图发现,无论x取何值,以MN为底边的等腰三角形都存在一个,所以只要满足以MN为腰的三角形有两个即可.解:(1)见答案;(2)①若x=0时,使P,M,N构成等腰三角形的点P有3个,故答案为3;②如图1,当M与O重合时,即x=0时,点P恰好有三个;如图2,以M为圆心,以4为半径画圆,当⊙M与OB相切时,设切点为C,⊙M与OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴OM=4√2,当M与D重合时,即x=OM−DM=4√2−4时,同理可知:点P恰好有三个;如图3,取OM=4,以M为圆心,以OM为半径画圆,则⊙M与OB除了O外只有一个交点,此时x=4,即以∠PMN为顶角,MN为腰,符合条件的点P 有一个,以N圆心,以MN为半径画圆,与直线OB相离,说明此时以∠PNM为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM为底边的符合条件的点P;点M沿OA运动,到M1时,发现⊙M1与直线OB有一个交点;∴当4<x<4√2时,圆M在移动过程中,则会与OB除了O外有两个交点,满足点P恰好有三个;综上所述,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是:x=0或x=4√2−4或4<x<4√2.故答案为x=0或x=4√2−4或4<x<4√2.16.答案:解:(1)∵函数过A(3,0),∴−18+12+m=0,∴m=6,∴该函数解析式为:y=−2x2+4x+6,∴当−2x2+4x+6=0时,x1=−1,x2=3,∴点B的坐标为(−1,0);(2)当x=0时,y=6,则C点坐标为(0,6),=12;∴S△ABC=4×62(3)∵S△ABD=S△ABC=12,∴S△ABD=4×|ℎ|=12,2∴|ℎ|=6,①当ℎ=6时:−2x2+4x+6=6,解得:x1=0,x2=2∴D点坐标为(0,6)或(2,6);②当ℎ=−6时:−2x2+4x+6=−6,解得:x1=1+√7,x2=1−√7∴D点坐标为(1+√7,−6)、(1−√7,−6);∴D点坐标为(2,6)、(1+√7,−6)、(1−√7,−6).解析:(1)直接将点A的坐标代入到二次函数的解析式即可求出m的值,写出二次函数的解析式,求出y=0时x的值即可点B的坐标;(2)计算当x=0时y的值,根据三角形的面积公式可得;(3)因为S△ABD=S△ABC,则根据同底等高的两个三角形的面积相等,所以只要高与OC的长相等即可,因此要计算y=6和y=−6时对应的点即可.本题考查了利用待定系数法求二次函数的解析式和抛物线与两坐标轴的交点,待定系数法就是将已知的点代入解析式中列方程或方程组求解,对于抛物线与x轴的交点,令y=0代入即可,抛物线与y轴的交点,令x=0代入即可.)×100=40,17.答案:解:(1)a=(1−20%−10%−310∵八年级10名学生的竞赛成绩的中位数是第5和第6个数据的平均数,∴b=94+94=94;2∵在七年级10名学生的竞赛成绩中99出现的次数最多,∴c=99;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的中位数和众数均高于七年级.=468人,(3)参加此次竞赛活动成绩优秀(x≥90)的学生人数=720×1320答:参加此次竞赛活动成绩优秀(x≥90)的学生人数是468人.解析:本题考查扇形统计图,平均数、中位数、众数、方差,用样本估计总体,属于中档题.(1)用整体1减去其它所占的百分比即可求出a;根据中位数、众数的定义即可求出b,c;(2)根据八年级的中位数和众数均高于七年级,于是得到八年级学生掌握防溺水安全知识较好;(3)利用样本估计总体思想求解可得.18.答案:解:(1)搅匀后从中摸出1个盒子有3种等可能结果,;所以摸出的盒子中是A型矩形纸片的概率为13(2)画树状图如下:由树状图知共有6种等可能结果,其中2次摸出的盒子的纸片能拼成一个新矩形的有4种结果, 所以2次摸出的盒子的纸片能拼成一个新矩形的概率为46=23.解析:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.(1)直接利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中找打2次摸出的盒子的纸片能拼成一个新矩形的结果数,利用概率公式计算可得.19.答案:解:过点C 作CF ⊥AB ,垂足为F ,交MN 于点E .则CF =DB =50,CE =0.65,∵MN//AB ,∴△CMN∽△CAB .∴CE CF =MNAB ,∴AB =MN⋅CFCE =0.16×500.65≈12.3.∴旗杆AB 的高度约为12.3米.解析:本题考查的是相似三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.过点C 作CF ⊥AB ,垂足为F ,交MN 于点E ,再根据MN//AB 可得出△CMN∽△CAB ,由相似三角形的对应边成比例即可求出AB 的长.20.答案:(1)解:设小明每天读书x 页,小红每天读书y 页.由题意得{84+5x −5y =24,84+5x +5y =424.解得{x =28,y =40. 答:小明每天读书28页,小红每天读书40页.(2)解:设小明平均每天要比原来多读m 页,由题意得84+28×5+5(28+m)≥40×10.解得m ≥7.2.答:小明至少平均每天要比原来多读8页,才能确保第10天结束时不被小红超过.解析:此题考查了二元一次方程组的应用,一元一次不等式的应用,审清题意找到等量关系及不等关系是关键.(1)设小明每天读书x 页,小红每天读书y 页,由题意得{84+5x −5y =2484+5x +5y =424,解出方程组即可得到答案;(2)设小明平均每天要比原来多读m 页,由题意得84+28×5+5(28+m)≥40×10,解出不等式即可得到答案.21.答案:证明:∵BE//CD ,CE//AB ,∴四边形BDCE 是平行四边形.∵∠ACB =90°,CD 是AB 边上的中线,∴CD =BD ,∴平行四边形BDCE 是菱形.解析:本题考查了直角三角形上的中线,平行四边形的判定,菱形的判定的应用,能正确运用定理进行推理是解此题的关键.根据平行四边形的判定得出四边形是平行四边形,根据直角三角形上的中线得出CD =BD ,根据菱形的判定得出即可.22.答案:解:(1)设y =kx +b ,将(50,100)、(60,80)代入,得:{50k +b =10060k +b =80, 解得:{k =−2b =200, ∴y =−2x +200 (40≤x ≤80);(2)W =(x −40)(−2x +200)=−2x 2+280x −8000=−2(x −70)2+1800,∴当x =70时,W 取得最大值为1800,答:W与x之间的函数表达式为W=−2x2+280x−8000,售价为70元时获得最大利润,最大利润是1800元.解析:【试题解析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况.本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及二次函数的性质.23.答案:(1)如图所示:(2)利用轴对称作图解决“饮马问题”的依据是两点之间线段最短,故答案为:两点之间线段最短;(3)①分别作P关于OA、OB的对称点M、N,连接MN,交OA、OB于C、D,则△PCD的周长最小,连接OM、ON,由轴对称的性质可知,OM=OP=12,ON=OP=12,CP=CM,DP=DN,∠MON=2∠AOB=60°,∴△MON为等边三角形,∴MN=12,∴△PCD的周长=PC+CD+DC=CM+CD+DN=MN=12;②点A关于x轴的对称点F的坐标为(4,−2),点B关于y轴的对称点E的坐标为(−1,6),连接EF交x轴、y轴于点D、点C,则四边形ABCD的周长最小,根据轴对称的性质可知,BC=BE,DA=DF,∴BC+CD=AD=EC+CD+DF=EF=√52+82=√89,AB=√32+42=5,∴四边形ABCD的周长的最小值为√89+5.解析:解:(1)如图所示:(2)利用轴对称作图解决“饮马问题”的依据是两点之间线段最短,故答案为:两点之间线段最短;(3)①分别作P关于OA、OB的对称点M、N,连接MN,交OA、OB于C、D,则△PCD的周长最小,连接OM、ON,由轴对称的性质可知,OM=OP=12,ON=OP=12,CP=CM,DP=DN,∠MON=2∠AOB=60°,∴△MON为等边三角形,∴MN=12,∴△PCD的周长=PC+CD+DC=CM+CD+DN=MN=12;②点A关于x轴的对称点F的坐标为(4,−2),点B关于y轴的对称点E 的坐标为(−1,6),连接EF交x轴、y轴于点D、点C,则四边形ABCD的周长最小,根据轴对称的性质可知,BC=BE,DA=DF,∴BC+CD=AD=EC+CD+DF=EF=√52+82=√89,AB=√32+42=5,∴四边形ABCD的周长的最小值为√89+5.(1)根据轴对称的性质作出图形;(2)根据两点之间线段最短解答;(3)①分别作P关于OA、OB的对称点M、N,根据轴对称的性质得到△PCD,根据等边三角形的判定定理和性质定理解答;②求出点A关于x轴的对称点F的坐标、点B关于y轴的对称点E的坐标,连接EF交x轴、y轴于点D、点C,根据勾股定理、轴对称的性质计算即可.本题考查的是轴对称的性质−最短路径问题,掌握轴对称的性质、等边三角形的判定和性质是解题的关键.24.答案:(1)S1+S2;(2)①证明:∵∠ACB=90°,∠DCE=45°,∴∠ACD+∠BCE=45°,由旋转可得∠ACD=∠BCF,CD=CF,∴∠BCF+∠BCE=45°,即∠ECF=45°=∠ECD,又∵CE=CE,∴△CDE≌△CFE,∴ED=EF;②5;③矩形CPOQ的面积是否定值.由①,②得AD2+BE2=DE2,即S△ADQ+S△BEP=S△DEO,则矩形CPOQ的面积与△ABC的面积保持相等,×(6√2)2=36,由题可得,△ABC的面积=12因此矩形CPOQ的面积是定值36.解析:解:(1)由△ABC中,∠ACB=90°,可得AC2+BC2=AB2,∴14AC2+14BC2=14AB2∵等腰直角三角形①,②,③的面积分别为14AC2,14BC2,14AB2,∴S1+S2=S3;故答案为:S1+S2;(2)①见答案;②由勾股定理可得,AB=12,由旋转可得AD=BF=4,∠A=∠CBF=45°,∠EBF=45°+45°=90°,设DE=EF=x,则BE=8−x,∴BE2+BF2=EF2,即(8−x)2+42=x2,解得x=5,∴EF=5,故答案为:5;③见答案.(1)由勾股定理即可得到AC2+BC2=AB2,再根据等腰直角三角形①,②,③的面积分别为14AC2,1 4BC2,14AB2,即可得到S1+S2=S3;(2)①依据SAS判定△CDE≌△CFE,即可得到ED=EF;②由旋转可得AD=BF=4,∠A=∠CBF= 45°,∠EBF=45°+45°=90°,设DE=EF=x,则BE=8−x,依据勾股定理可得BE2+BF2=EF2,即(8−x)2+42=x2,求得x的值即可;③由①,②得AD2+BE2=DE2,即S△ADQ+S△BEP=S△DEO,则矩形CPOQ的面积与△ABC的面积保持相等,据此可得矩形CPOQ的面积是定值36.本题属于四边形综合题,主要考查了勾股定理,等腰三角形的性质,旋转的性质,全等三角形的判定与性质和勾股定理等知识的综合运用,依据勾股定理列方程求解是解题的关键.解题时注意:全等三角形的对应边相等.。
2023年山东省青岛市李沧区中考数学一模试卷【答案版】
2023年山东省青岛市李沧区中考数学一模试卷一、选择题(本大题共7小题,每小题3分,共24分)1.随着电子技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积0.00000065mm2,0.00000065用科学记数法表示为()A.6.5×107B.6.5×10﹣6C.6.5×10﹣8D.6.5×10﹣72.绝对值为12023的数是()A.﹣2023B.12023C.−12023D.±120233.如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的有()A.2个B.3个C.4个D.5个4.如图,点A,B的坐标分别为(﹣3,1),(﹣1,﹣2),若将线段AB平移至A1B1的位置,点A1,B1的坐标分别为(a,4),(3,b),则a+b的值为()A.2B.3C.4D.55.如图,△ABC内接于⊙O,AB是⊙O的直径,直线AE是⊙O的切线,CD平分∠ACB,若∠CAE=21°,则∠BFC的度数为()A.66°B.111°C.114°D.119°6.如图,过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE 、CF ,若AB =2√3,∠DCF =30°,则EF 的长为( )A .4B .6C .√3D .2√37.用24块棱长分别为3cm ,4cm ,5cm 的长方体积木搭成的大长方体表面积最小是( ) A .808cm 2B .900cm 2C .960cm 2D .768cm 2二、选择题(本大题共2小题,每小题4分,共8分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中有2-3个是正确的.每小题选对得4分;漏选得1分,不选、选错或选出的标号超过一个的不得分. 8.下列运算正确的有( ) A .a 2•a 3=a 5 B .a 2+2a =3a 3 C .(a 2)3=a 5D .√273−(12)−2=−19.已知抛物线y =ax 2+bx +c 交x 轴于点B (1,0)和点A ,交y 轴负半轴于点C ,且AO =2CO .下列选项正确的是( )A .2b +2c =﹣1B .a =12 C .a+2b c>0D .4ac +2b +1=0二、填空题(本大题共6小题,每小题3分,共18分) 10.分解因式:4m 3n ﹣16mn 3= .11.一个不透明的口袋中装有若干个红球,小明又放入10个黑球,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程后发现,摸到黑球的频率稳定在0.4左右,则估计口袋中红球的数量为 个.12.关于x 的一元二次方程x 2+(m ﹣2)x +m +1=0有两个相等的实数根,则m 的值是 .13.为了了解某班学生每天使用零花钱数(单位:元)的情况,小王随机调查了15名同学,结果如下表:则这15名同学每天使用零花钱的众数和中位数分别是.14.如图在Rt△ABC中,∠ACB=90°,∠B=30°,BC=2√3,以点C为圆心,AC的长为半径画弧交AB于点D,交BC于点E,以点E为圆心,CE的长为半径画弧,交AB于点F,交弧AE于点G,则图中阴影部分的面积为.15.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列选项说法正确的有.(填序号)①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若AEAB =23,则S△EDH=13S△CFH.三、作图题(本题满分4分)用直尺圆规作图,不写做法,保留做题痕迹16.已知∠AOB的OA边上有一点P,求作⊙O,使它过点P并且与∠AOB的两边相切.四、解答题(本大题共9小题,共66分)17.(1)计算:(a−b 2a )÷a2+2ab+b2a.(2)解不等式组:{6−2x≥41+2x3>x−1.18.(6分)小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘指针指向的数字之积为奇数时,小明获胜;数字之积为偶数时,小刚获胜(若指针恰好指在等分线上时重新转动转盘).(1)分别求出小明和小刚获胜的概率(用列表法或树形图);(2)这个游戏规则是否公平?说明理由.19.(6分)某校组织了一次“创文创卫”安全知识竞赛,现从七、八年级各随机抽取100名同学的竞赛得分(满分100分),分为5个组(x表示得分,x取整数)A组:x≥90;B组:80≤x<90;C组:70≤x<80;D组:60≤x<70;E组:0≤x<60,将得分进行统计,得到如下信息:①100名七年级学生中B组得分从高到低排列,排在最后的10个得分是82,82,81,81,81,81,80,80,80,80;②七、八年级得分的平均数、中位数、众数如表;③100名七年级学生得分条形统计图如图;④100名八年级学生得分扇形统计图如图.请你根据以上信息,回答下列问题:(1)根据以上信息填空:a=,b=,并补全条形统计图;(2)根据以上数据分析,你认为该校七、八年级中哪个年级的安全知识掌握得更好?并说明理由;(3)若该校有七年级学生800名,八年级学生1000名.若得分在90分及其以上为优秀,请估计该校七、八年级竞赛成绩为优秀的学生人数.20.(6分)数学兴趣小组的成员在观察点A测得观察点B在A的正北方向,古树C在A的东北方向;在B处测得C在B的南偏东63.5°的方向上,古树D在B的北偏东53°的方向上,已知D在C正北方向上,即CD∥AB,AC=50√2米,求古树C、D之间的距离.(结果保留到0.1米,参考数据:√2≈1.41,sin63.5°≈0.89,cos63.5°≈0.45,tan63.5°≈2.00,sin53°≈0.80,cos53°≈0.60,tan53°≈1.32)21.(6分)定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3,则BN=;(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且EC>DE≥BD,连接AD,AE分别交FG于点M,N,求证:点M,N是线段FG的勾股分割点;(3)如图3,已知点M,N是线段AB的勾股分割点,MN>AM≥BN,四边形AMDC,四边形MNFE 和四边形NBHG均是正方形,点P在边EF上,试探究S△ACN,S△APB,S△MBH的数量关系.S△ACN=;S△MBH=;S△APB=;S△ACN,S△APB,S△MBH的数量关系是.22.如图,直线y1=﹣x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式−x+4>kx的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.23.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)△ABC满足什么条件时,四边形ADCF是矩形?并证明你的结论.24.(10分)如图①是我区的某蔬菜基地的种植棚,它一定意义上带动了我区的经济发展.其截面为图②所示的轴对称图形,点A,B在以O为顶点的抛物线上,BC⊥AB,AD⊥AB,BC=AD,点G在直线BC上,点E在直线AD上,FH∥AB.当以O为原点建立如图③所示的坐标系时,抛物线过点P(−2,−12 ).(1)求抛物线的解析式.(2)若点O到地面距离为5米,记BC+AB+AD=p,当p最大时,求棚的跨度AB长.(3)在(2)的条件下,E点纵坐标为1−√2,F(2,1),为了使该棚更加牢固安全,需要把直线EF,GH向下平移到与抛物线相切的位置处焊接,求EF向下平移的距离.25.(10分)已知矩形ABCD中,AC是对角线,AB=3cm,BC=4cm,点P为边AD上的一个动点,动点P从点A出发沿AD边向点D运动,速度是1cm/s,点Q为边C上的一个动点,动点Q从点C出发沿CA边向点A运动,速度是1cm/s,EF是过点Q的直线,分别交BC、CD于点E,F,且运动过程中始终保持EF⊥AC于Q;P、Q两点同时出发,设运动时间为t秒,且(0≤t≤95),解答下列问题:(1)连接PE,t为何值时,四边形ABEP是平行四边形?(2)连接EP、PF,设四边形PECF的面积为y cm2,求y关于t的函数关系式;(3)请从选择以下任意一题作答,我选(若同时作答①和②,按①解答计分).①连接BP,是否存在某一时刻t,使点E在∠BPD平分线上时,若存在,求t的值,若不存在,请说明理由.②是否存在某一时刻t,使点F在PE垂直平分线上,若存在,求t的值,若不存在,请说明理由.2023年山东省青岛市李沧区中考数学一模试卷参考答案与试题解析一、选择题(本大题共7小题,每小题3分,共24分)1.随着电子技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积0.00000065mm2,0.00000065用科学记数法表示为()A.6.5×107B.6.5×10﹣6C.6.5×10﹣8D.6.5×10﹣7解:0.00000065=6.5×10﹣7.故选:D.2.绝对值为12023的数是()A.﹣2023B.12023C.−12023D.±12023解:绝对值为12023的数是±12023.故选:D.3.如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的有()A.2个B.3个C.4个D.5个解:中国银行标志:既是轴对称图形又是中心对称图形,符合题意;中国工商银行标志:既是轴对称图形又是中心对称图形,符合题意;中国人民银行标志:是轴对称图形,不是中心对称图形,不符合题意;中国农业银行标志:是轴对称图形,不是中心对称图形,不符合题意;中国建设银行标志:不是轴对称图形,也不是中心对称图形,不符合题意;故选:A.4.如图,点A,B的坐标分别为(﹣3,1),(﹣1,﹣2),若将线段AB平移至A1B1的位置,点A1,B1的坐标分别为(a,4),(3,b),则a+b的值为()解:∵点A、B的坐标分别是为(﹣3,1),(﹣1,﹣2),若将线段AB平移至A1B1的位置,A1(a,4),B1(3,b),∴线段AB向右平移了4个单位,向上平移了3个单位,∴a=1,b=1,∴a+b=2,故选:A.5.如图,△ABC内接于⊙O,AB是⊙O的直径,直线AE是⊙O的切线,CD平分∠ACB,若∠CAE=21°,则∠BFC的度数为()A.66°B.111°C.114°D.119°解:∵AB是圆的直径,∴∠ACB=90°,又∵CD平分∠ACB,∴∠ACD=12∠ACB=45°.∵直线AE是⊙O的切线,AB是圆的直径.∴∠BAE=90°,即∠BAC+∠CAE=90°,∴∠BAC=90°﹣∠CAE=90°﹣21°=69°,∴∠BFC=∠BAC+∠ACD=69°+45°=114°.故选:C.6.如图,过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF,若AB=2√3,∠DCF=30°,则EF的长为()解:∵矩形对边AD ∥BC , ∴∠ACB =∠DAC , ∵O 是AC 的中点, ∴AO =CO ,在△AOF 和△COE 中,{∠FAO =∠OCEAO =CO ∠AOF =∠EOC, ∴△AOF ≌△COE (ASA ), ∴OE =OF , 又∵EF ⊥AC ,∴四边形AECF 是菱形, ∵∠DCF =30°,∴∠ECF =90°﹣30°=60°, ∴△CEF 是等边三角形, ∴EF =CF , ∵AB =2√3, ∴CD =AB =2√3, ∵∠DCF =30°, ∴CF =2√3÷√32=4,∴EF =4, 故选:A .7.用24块棱长分别为3cm ,4cm ,5cm 的长方体积木搭成的大长方体表面积最小是( ) A .808cm 2B .900cm 2C .960cm 2D .768cm 2解:根据搭成的长方体表面积最小的要求,遵循把较大面重叠在一起的原则,进行如下搭建: 将三块长方体按4cm ,5cm 面重叠得出一个大长方体,此时三条棱长为4cm ,5cm ,9cm .再用两个大长方体(即6个小长方体)按5cm ,9cm 面重叠,可得棱长为5cm ,8cm ,9cm 的大长方体. 再用两个大长方体(即12个小长方体)按8cm ,9cm 面重叠,可得棱长为8cm ,9cm ,10cm 的大长方体.再用两个大长方体(即24个小长方体)按9cm ,10cm 面重叠,可得棱长为9cm ,10cm ,16cm 的大长方体.此时大长方体的表面积为:2×(9×10+9×16+10×16)=788(cm 2). 将两块块长方体按4cm ,5cm 面重叠得出一个大长方体,此时三条棱长为4cm ,5cm ,6cm .再用三个大长方体(即6个小长方体)按5cm ,6cm 面重叠,可得棱长为5cm ,6cm ,12cm 的大长方体. 再用两个大长方体(即12个小长方体)按6cm ,12cm 面重叠,可得棱长为6cm ,12cm ,10cm 的大长方体.再用两个大长方体(即24个小长方体)按10cm ,12cm 面重叠,可得棱长为10cm ,12cm ,12cm 的大长方体.此时大长方体的表面积为:2×(12×10+12×10+12×12)=768(cm 2). 因为768<788,所以搭成大长方体表面积的最小值为768cm 2.故选:D .二、选择题(本大题共2小题,每小题4分,共8分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中有2-3个是正确的.每小题选对得4分;漏选得1分,不选、选错或选出的标号超过一个的不得分.8.下列运算正确的有( )A .a 2•a 3=a 5B .a 2+2a =3a 3C .(a 2)3=a 5D .√273−(12)−2=−1 解:A 、a 2•a 3=a 5,故A 符合题意;B 、a 2与2a 不属于同类项,不能合并,故B 不符合题意;C 、(a 2)3=a 6,故C 不符合题意;D 、√273−(12)−2=3−4=−1,故D 符合题意;故选:AD .9.已知抛物线y =ax 2+bx +c 交x 轴于点B (1,0)和点A ,交y 轴负半轴于点C ,且AO =2CO .下列选项正确的是( )A .2b +2c =﹣1B .a =12C .a+2b c >0D .4ac +2b +1=0 解:由抛物线的位置可知,a >0,b >0,c <0,因此<0,故C 不正确;抛物线y =ax 2+bx +c 过点B (1,0),因此有a +b +c =0,抛物线与y 轴的交点C (0,c ),∵OA =2OC ,∴点A (2c ,0),代入抛物线关系式得,4ac 2+2bc +c =0,即4ac +2b +1=0,因此D 正确;∵点A (2c ,0),B (1,0),∴对称轴x =−b 2a =2c+12,即4ac +2a +2b =0, 所以﹣2a +1=0,解得a =12,因此B 正确;∵a +b +c =0,a =12,∴b +c =﹣a ,即2b +2c =﹣1,因此A 正确;故选:ABD .二、填空题(本大题共6小题,每小题3分,共18分)10.分解因式:4m 3n ﹣16mn 3= 4mn (m +2n )(m ﹣2n ) .解:4m 3n ﹣16mn 3=4mn (m 2﹣4n 2)=4mn (m +2n )(m ﹣2n ).11.一个不透明的口袋中装有若干个红球,小明又放入10个黑球,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程后发现,摸到黑球的频率稳定在0.4左右,则估计口袋中红球的数量为 15 个.解:∵不断重复这一过程后发现,摸到黑球的频率稳定在0.4左右,∴估计摸到黑球的概率为0.4,设袋中红球的个数为x ,根据题意,得:1010+x =0.4,解得x =15,经检验x =15是分式方程的解,所以袋中红球的个数约为15,故答案为:15.12.关于x 的一元二次方程x 2+(m ﹣2)x +m +1=0有两个相等的实数根,则m 的值是 0或8 .解:∵关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,∴Δ=(m﹣2)2﹣4(m+1)=0,即m2﹣8m=0,解得m=0或m=8.故答案为:0或8.13.为了了解某班学生每天使用零花钱数(单位:元)的情况,小王随机调查了15名同学,结果如下表:则这15名同学每天使用零花钱的众数和中位数分别是2,3.解:零花钱数出现的次数最多的是2,因而众数是2;15个数据大小处于中间位置的是第8位,是3,因而中位数是3.故答案为:2,3.14.如图在Rt△ABC中,∠ACB=90°,∠B=30°,BC=2√3,以点C为圆心,AC的长为半径画弧交AB于点D,交BC于点E,以点E为圆心,CE的长为半径画弧,交AB于点F,交弧AE于点G,则图中阴影部分的面积为2π3.解:如图,连接GC,GE,在Rt△ACB中,∠ACB=90°,∠B=30°,BC=2√3,∴AC=BC•tan30°=2,∠A=60°,∴AB=2AC=4,∵CG=CE=EG=CA=2,AC=CD=2,∴△ECG≌△ACD,且△ECG和△ACD都是等边三角形,∴∠GCE=∠ACD=60°,∴∠ACG =∠GCD =∠DCB =30°,∴S 阴=S 扇形GCD +(S 扇形CEG ﹣S △CEG )+S △ABC ﹣S 扇形DCE ﹣S △ACD=S 扇形GCD +S 扇形CEG ﹣S △CEG +S △ABC ﹣S 扇形DCE ﹣S △ACD=S 扇形CEG ﹣2S △CEG +S △ABC =60π×22360−2×12×2×√3+12×2√3×2=2π3. 故答案为:2π3.15.如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作EF ∥AD ,与AC 、DC 分别交于点G ,F ,H 为CG 的中点,连接DE ,EH ,DH ,FH .下列选项说法正确的有 ①②③④ .(填序号) ①EG =DF ;②∠AEH +∠ADH =180°;③△EHF ≌△DHC ;④若AE AB =23,则S △EDH =13S △CFH .解:①∵四边形ABCD 为正方形,EF ∥AD ,∴EF =AD =CD ,∠ACD =45°,∠GFC =90°,∴△CFG 为等腰直角三角形,∴GF =FC ,∵EG =EF ﹣GF ,DF =CD ﹣FC ,∴EG =DF ,故①正确;②∵△CFG 为等腰直角三角形,H 为CG 的中点,∴FH =CH ,∠GFH =12∠GFC =45°=∠HCD ,在△EHF 和△DHC 中,{EF =CD∠EFH =∠DCH FH =CH,∴△EHF ≌△DHC (SAS ),∴∠HEF =∠HDC ,∴∠AEH +∠ADH =∠AEF +∠HEF +∠ADF ﹣∠HDC =∠AEF +∠ADF =180°,故②正确;③∵△CFG 为等腰直角三角形,H 为CG 的中点,∴FH =CH ,∠GFH =12∠GFC =45°=∠HCD ,在△EHF 和△DHC 中,{EF =CD∠EFH =∠DCH FH =CH,∴△EHF ≌△DHC (SAS ),故③正确;④∵AE AB =23, ∴AE =2BE ,∵△CFG 为等腰直角三角形,H 为CG 的中点,∴FH =GH ,∠FHG =90°,∵∠EGH =∠FHG +∠HFG =90°+∠HFG =∠HFD ,在△EGH 和△DFH 中,{EG =DF∠EGH =∠HFD GH =FH,∴△EGH ≌△DFH (SAS ),∴∠EHG =∠DHF ,EH =DH ,∠DHE =∠EHG +∠DHG =∠DHF +∠DHG =∠FHG =90°,∴△EHD 为等腰直角三角形,过H 点作HM 垂直于CD 于M 点,如图所示:设HM =x ,则DM =5x ,DH =√26x ,CD =6x ,则S △DHC =12×HM ×CD =3x 2,S △EDH =12×DH 2=13x 2, ∵DF :CF =2:1,∴S △FHC =13S △DHC =x 2∴S △EDH =13S △CFH ,故④正确;故答案为:①②③④.三、作图题(本题满分4分)用直尺圆规作图,不写做法,保留做题痕迹16.已知∠AOB 的OA 边上有一点P ,求作⊙O ,使它过点P 并且与∠AOB 的两边相切.解:①作∠AOB 的平分线OM .②作PN ⊥OA 交OM 于O ′.③以O ′为圆心,O ′P 为半径作⊙O ′.⊙O ′即为所求.四、解答题(本大题共9小题,共66分)17.(1)计算:(a −b 2a )÷a 2+2ab+b 2a . (2)解不等式组:{6−2x ≥41+2x 3>x −1.解:(1)原式=a 2−b 2a •a (a+b)2=(a+b)(a−b)a •a (a+b)2 =a−b a+b ; (2){6−2x ≥4①1+2x 3>x −1②, 解不等式①,得x ≤1,解不等式②,得x <4,所以不等式组的解集是x ≤1.18.(6分)小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘指针指向的数字之积为奇数时,小明获胜;数字之积为偶数时,小刚获胜(若指针恰好指在等分线上时重新转动转盘).(1)分别求出小明和小刚获胜的概率(用列表法或树形图);(2)这个游戏规则是否公平?说明理由.解:(1)画树状图得:∵共有12种等可能的结果,数字之积为奇数的有4种情况,数字之积为偶数的有8种情况,∴P(小明获胜)=412=13,P(小刚获胜)=812=23;(2)这个游戏规则不公平.理由:∵P(小明获胜)≠P(小刚获胜),∴这个游戏规则不公平.19.(6分)某校组织了一次“创文创卫”安全知识竞赛,现从七、八年级各随机抽取100名同学的竞赛得分(满分100分),分为5个组(x表示得分,x取整数)A组:x≥90;B组:80≤x<90;C组:70≤x<80;D组:60≤x<70;E组:0≤x<60,将得分进行统计,得到如下信息:①100名七年级学生中B组得分从高到低排列,排在最后的10个得分是82,82,81,81,81,81,80,80,80,80;②七、八年级得分的平均数、中位数、众数如表;③100名七年级学生得分条形统计图如图;④100名八年级学生得分扇形统计图如图.请你根据以上信息,回答下列问题:(1)根据以上信息填空:a=10,b=80,并补全条形统计图;(2)根据以上数据分析,你认为该校七、八年级中哪个年级的安全知识掌握得更好?并说明理由;(3)若该校有七年级学生800名,八年级学生1000名.若得分在90分及其以上为优秀,请估计该校七、八年级竞赛成绩为优秀的学生人数.解:(1)a =100﹣(40+25+18+7)=10,七年级B 组人数为100﹣(14+28+13+6)=39,则b =80+802=80, 补全图形如下:故答案为:10,80;(2)七年级更好,理由如下:由表格数据知,七、八年级成绩的平均数相等,而七年级成绩的中位数大于八年级,所以七年级高分人数多于八年级;(3)800×14100+1000×10%=212(人), 答:估计该校七、八年级竞赛成绩为优秀的学生有212人.20.(6分)数学兴趣小组的成员在观察点A 测得观察点B 在A 的正北方向,古树C 在A 的东北方向;在B 处测得C 在B 的南偏东63.5°的方向上,古树D 在B 的北偏东53°的方向上,已知D 在C 正北方向上,即CD ∥AB ,AC =50√2米,求古树C 、D 之间的距离.(结果保留到0.1米,参考数据:√2≈1.41,sin63.5°≈0.89,cos63.5°≈0.45,tan63.5°≈2.00,sin53°≈0.80,cos53°≈0.60,tan53°≈1.32)解:过B作BE⊥CD于E,过C作CF⊥AB于F,则四边形BFCE是矩形,∴BE=CF,CE=BF,∵∠CAF=45°,∠AFC=90°,∴CF=AF=√22AC=50,∵∠CBF=63.5°,∴BF=CE=CFtan63.5°≈502=25(米),∵CD∥AB,∴∠D=53°,∵∠BED=90°,∴DE=BEtan53°≈501.32≈37.9(米),∴CD=CE+DE=62.9(米),答:古树C、D之间的距离约为62.9米.21.(6分)定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3,则BN=√5或√13;(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且EC>DE≥BD,连接AD,AE分别交FG于点M,N,求证:点M,N是线段FG的勾股分割点;(3)如图3,已知点M,N是线段AB的勾股分割点,MN>AM≥BN,四边形AMDC,四边形MNFE 和四边形NBHG均是正方形,点P在边EF上,试探究S△ACN,S△APB,S△MBH的数量关系.S△ACN=12•(AM+MN)•AM;S△MBH=12(MN+BN)•BN;S△APB=12(AM+MN+BN)•MN;S△ACN,S△APB,S△MBH的数量关系是S△APB=S△ACN+S△MBH.解:(1)分两种情况:①当MN为最长线段时,∵点M、N是线段AB的勾股分割点,∴BN=√MN2−AM2=√32−22=√5;②当BN为最大线段时,∵点M、N是线段AB的勾股分割点,∴BN=√MN2+AM2=√32+22=√13;综上所述:BN的长为√5或√13.(2)证明∵点F、M、N、G分别是AB、AD、AE、AC边上的中点,∴FM、MN、NG分别是△ABD、△ADE、△AEC的中位线,∴BD=2FM,DE=2MN,EC=2NG,∵点D,E是线段BC的勾股分割点,且EC>DE>BD,∴EC2=DE2+DB2,∴4NG2=4MN2+4FM2,∴NG2=MN2+FM2,∴点M,N是线段FG的勾股分割点.(3)∵四边形AMDC,四边形MNFE和四边形NBHG均是正方形,∴S△ACN=12(AM+MN)•AC=12(AM+MN)•AM=12•AM2+12MN•AM,S△MBH=12•(MN+BN)•BH=12•(MN+BN)•BN=12•BN2+12•MN•BN,S △P AB =12•(AM +NM +BN )•FN =12•(AM +MN +BN )•MN =12⋅MN 2+12•MN •AM +12•MN •BN , ∴S △APB =S △ACN +S △MBH ,故答案为S △APB =S △ACN +S △MBH . 22.如图,直线y 1=﹣x +4,y 2=34x +b 都与双曲线y =k x 交于点A (1,m ),这两条直线分别与x 轴交于B ,C 两点.(1)求y 与x 之间的函数关系式;(2)直接写出当x >0时,不等式−x +4>k x 的解集;(3)若点P 在x 轴上,连接AP 把△ABC 的面积分成1:3两部分,求此时点P 的坐标.解:(1)把A (1,m )代入y 1=﹣x +4,可得m =﹣1+4=3,∴A (1,3),把A (1,3)代入双曲线y =k x ,可得k =1×3=3,∴y 与x 之间的函数关系式为:y =3x ;(2)解{y =3x y =−x +4得{x =1y =3或{x =3y =1, ∴直线y 1=﹣x +4与双曲线y =k x 交于点A (1,3)和(3,1),由图象可知,当x >0时,不等式−x +4>k x 的解集为:1<x <3;(3)y 1=﹣x +4,令y =0,则x =4,∴点B 的坐标为(4,0),把A (1,3)代入y 2=34x +b ,可得3=34+b , ∴b =94,∴y 2=34x +94,令y =0,则x =﹣3,即C (﹣3,0),∴BC =7,∵AP 把△ABC 的面积分成1:3两部分,∴CP =14BC =74,或BP =14BC =74,∴OP =3−74=54,或OP =4−74=94,∴P (−54,0)或(94,0). 23.如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF .(1)求证:AF =DC ;(2)△ABC 满足什么条件时,四边形ADCF 是矩形?并证明你的结论.(1)证明:∵AF ∥BC ,∴∠AFE =∠DBE ,∵E 为AD 的中点,∴AE =DE ,在△AFE 和△DBE 中{∠AFE =∠DBE∠AEF =∠DEB AE =DE,∴△AFE ≌△DBE (AAS ),∴AF =BD ,又AD 为中线,∴BD =CD ,∴AF =CD ;(2)△ABC 是等腰三角形,即AC =AB ,∵AF =CD ,且AF ∥CD ,∴四边形ADCF 为平行四边形,当AC =AB 时,∵AD 为BC 边上的中线,在△ADC 与△ADB 中{AC =ABDC =DB AD =AD,∴△ADC ≌△ADB (SSS )∴∠ADC =∠ADB =90°,∴四边形ADCF 为矩形.24.(10分)如图①是我区的某蔬菜基地的种植棚,它一定意义上带动了我区的经济发展.其截面为图②所示的轴对称图形,点A ,B 在以O 为顶点的抛物线上,BC ⊥AB ,AD ⊥AB ,BC =AD ,点G 在直线BC 上,点E 在直线AD 上,FH ∥AB .当以O 为原点建立如图③所示的坐标系时,抛物线过点P(−2,−12).(1)求抛物线的解析式.(2)若点O 到地面距离为5米,记BC +AB +AD =p ,当p 最大时,求棚的跨度AB 长.(3)在(2)的条件下,E 点纵坐标为1−√2,F (2,1),为了使该棚更加牢固安全,需要把直线EF ,GH 向下平移到与抛物线相切的位置处焊接,求EF 向下平移的距离.解:(1)根据图③所示坐标系,设抛物线解析式为y =ax 2,把P (﹣2,−12)代入解析式得:−12=4a ,解得a =−18,∴抛物线解析式为y =−18x 2;(2)设AB =2m (m >0),则A (m ,−18m 2),∴A 到x 轴的距离为18m 2米,∵点O到地面距离为5米,∴AD=BC=5−18m2,∴p=BC+AB+AD=2(5−18m2)+2m=−14m2+2m+10=−14(m﹣4)2+14,∵−14<0,∴当m=4时,p最大,最大值为14,∴当p最大时,棚的跨度AB长为8米;(3)由(2)知,点E坐标为(4,1−√2),设直线EF的解析式为y=kx+b(k≠0),把E,F坐标代入解析式得:{4k+b=1−√22k+b=1,解得{k=−√2 2b=1+√2,∴直线EF的解析式为y=−√22x+1+√2,设EF向下平移n个单位长度,所得解析式为y=−√22x+1+√2−n,∵EF平移后与抛物线相切,∴−18x2=−√22x+1+√2−n,整理得:x2﹣4√2x+8+8√2−8n=0,∴Δ=(﹣4√2)2﹣4×(8+8√2−8n)=0,解得n=√2,∴EF向下平移的距离为√2米.25.(10分)已知矩形ABCD中,AC是对角线,AB=3cm,BC=4cm,点P为边AD上的一个动点,动点P从点A出发沿AD边向点D运动,速度是1cm/s,点Q为边C上的一个动点,动点Q从点C出发沿CA边向点A运动,速度是1cm/s,EF是过点Q的直线,分别交BC、CD于点E,F,且运动过程中始终保持EF⊥AC于Q;P、Q两点同时出发,设运动时间为t秒,且(0≤t≤95),解答下列问题:(1)连接PE,t为何值时,四边形ABEP是平行四边形?(2)连接EP、PF,设四边形PECF的面积为y cm2,求y关于t的函数关系式;(3)请从选择以下任意一题作答,我选①(若同时作答①和②,按①解答计分).①连接BP,是否存在某一时刻t,使点E在∠BPD平分线上时,若存在,求t的值,若不存在,请说明理由.②是否存在某一时刻t ,使点F 在PE 垂直平分线上,若存在,求t 的值,若不存在,请说明理由.解:(1)∵四边形ABCD 是矩形,∴∠B =∠BCD =∠D =90°,AD =BC =4,CD =AB =3,AD ∥BC ,∴AC =√AB 2+BC 2=5,∵EF ⊥AC ,∴∠CQE =90°=∠B ,又∵∠ECQ =∠ACB ,∴△ECQ ∽△ACB ,∴CQ BC =CE AC ,即t 4=CE 5, 解得:CE =54t ,∴BE =BC ﹣CE =4−54t ,当AP =BE 时,四边形ABEP 是平行四边形,t =4−54t ,解得:t =169,∴t =169时,四边形ABEP 是平行四边形; (2):同(1)得:△ECQ ∽△CFQ ,∴△CFQ ∽△ACB ,∴CF AC =CQ AB ,即CF 5=t 3, 解得:CF =53t ,∴DF =CD ﹣CF =3−53t ,∴四边形PECF 的面积=梯形CDPE 的面积﹣△PFD 的面积,=12(54t +4−t)×3−12×(3−53t)×(4−t)=−56t 2+12516t ,即y =−56t 2+12524t ;(3)①连接BP ,如图:当点E 在∠BPD 平分线上时,∠BPE =∠EPD , ∵∠PEB =∠EPD ,∴∠BPE =∠PEB ,∴BP =PE ,由(1)知BE =4−54t ,∴BP =4−54t ,在Rt △BAP 中,AB 2+AP 2=BP 2,即t 2+9=(4−54t )2,解得t =80−4√3379或t =80+4√3379(不合题意), ∴t =80−4√3379,使点E 在∠BPD 平分线上; ②当点F 在PE 垂直平分线上时,PF =EF , 由(2)知CF =53t ,DF =3−53t ,CE =54t ,BP =4﹣t ,∴PF 2=EF 2,∴(4﹣t )2+(3−53t )2=(54t )2+(53t )2, 解得t =43或−1003, ∵0≤t ≤95,∴t =43, ∴存在t ,当t =43或t =80−4√3379时,点F 在PE 垂直平分线上.。
2020年山东省青岛市李沧区中考数学模拟试卷(6月份)(含答案解析)
2020年山东省青岛市李沧区中考数学模拟试卷(6月份)一、选择题(本大题共8小题,共24.0分)1.(−0.7)2的平方根是()A. −0.7B. ±0.7C. 0.7D. 0.492.一种登革热病毒的直径约为0.00000005m,数据0.00000005m可用科学记数法表示为()A. 5×10−7mB. 5×10−8mC. 0.5×10−7mD. −5×108m3.下列交通标志中,是轴对称图形但不是中心对称图形的是()A. B. C. D.4.如图,已知A(2,1),现将A点绕原点O逆时针旋转90°得到A1,则A1的坐标是()A. (−1,2)B. (2,−1)C. (1,−2)D. (−2,1)5.一种饮料有大盒、小盒两种包装,已知5大盒、4小盒共装148瓶,2大盒、5小盒共装100瓶,则大盒与小盒每盒各装多少瓶?设大盒每盒装x瓶,小盒每盒装y瓶,则可列方程组()A. {5x+4y=1482x+5y=100B. {4x+5y=1482x+5y=100C. {5x+4y=1485x+2y=100D. {4x+5y=1485x+2y=1006.在反比例函数y=1−2mx的图象上有两点A(x1,y1)(x2,y2),当x2>x1>0时,有y2>y1,则m的取值范围是()A. m<0B. m>0C. m<12D. m>127.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A. 80°B. 160°C. 80°或20°D. 80°或100°8.二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数y=cx的图象可能是()A.B.C.D.二、填空题(本大题共6小题,共18.0分)9.计算:√24+√12√3−(−12)−2=______.10.一个材质均匀的正方体的六个面上分别标有字母A、B、C,其展开图如图所示随机抛掷此正方体,A面朝上的概率是______.11.如图,AB是⊙O的直径,BT是⊙O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是______.12.如图,矩形ABCD中,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=8,DC=6,则BE的长为______.13.小明推铅球的出手高度为1.6m,离手3m时达到最大高度2.5m,在如图所示的直角坐标系中,铅球的落点与小明的距离为________.14.△OA1B1,△B1A2B2,△B2A3B3…均为等腰直角三角形,依次如图方式放置,点A1、A2、A3和B1、B2、B3分别在直线y=x+2和x轴上,则A n的坐标为______ .三、解答题(本大题共10小题,共78.0分)15.如图,已知△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹).(1)作菱形AMNP,使点M、N、P在边AB、BC、CA上;(2)当∠A=60°,AB=8,AC=6时,求菱形AMNP的面积.16. 解不等式组{2x −4≥3(x −2)4x >x−72;17. 某校为了解七、八年级学生英语听力训练情况(七、八年级学生人数相同),某周从这两个年级学生中分别随机抽查了30名同学,调查了他们周一至周五的听力训练情况,根据调查情况得到如下统计图表:周一至周五英语听力训练人数统计表年级参加英语听力训练人数周一周二 周三 周四 周五 七年级 15 20 a 30 30 八年级 20 24 26 30 30 合计3544516060(1)填空:a =______;(2)根据上述统计图表完成下表中的相关统计量:(3)请你利用上述统计图表对七、八年级英语听力训练情况写出两条合理的评价;(4)请你结合周一至周五英语听力训练人数统计表,估计该校七、八年级共480名学生中周一至周五平均每天有多少人进行英语听力训练.18. 有三张正面分别标有数字−3,1,3的不透明卡片.它们除数字外都相同,现将它们背面朝上,洗匀后从三张卡片中随机地抽取一张,放回卡片洗匀后,再从三张卡片中随机地抽取一张.试用列表或画树状图的方法,求两次抽取的卡片上的数字之积为负数的概率.19. 如图,在自东向西的公路l 上有一检查站A ,在观测点B 的南偏西53°方向,检查站一工作人员家住在与观测点B 的距离为7132km ,位于点B 南偏西76°方向的点C 处,求工作人员家到检查站的距离AC.(参考数据:sin76°≈2425,cos76°≈625,tan76°≈4,sin53°≈35,tan53°≈43)20.现有一工程由甲工程队单独完成这工程,刚好如期完成,若由乙工程队单独完成此项工程,则要比规定工期多用6天,现先由甲乙两队合做3天,余下的工程再由乙队单独完成,也正好如期完成.(1)求该工程规定的工期天数;(2)若甲工程队每天的费用为0.5万元,乙工程队每天的费用为0.4万元,该工程总预算不超过3.9万元,问甲工程认至少要工作几天?21.如图,在▱ABCD中,对角线AC,BD相交于点O,点E、F分别在边AD,BC上,且DE=BF,连接OE,OF.求证:OE=OF.22.某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y(千克)与销售单价x(元)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?23.如图①,矩形ABCD中,AB=a,BC=6,E、F分别是AB、CD的中点(1)求证:四边形AECF是平行四边形;(2)是否存在a的值使得四边形AECF为菱形,若存在求出a的值,若不存在说明理由;(3)如图②,点P是线段AF上一动点且∠APB=90°①求证:PC=BC;②直接写出a的取值范围.24.已知在△ABC中,AB=AC,AD⊥BC于点D,且AD=BC=8厘米,直线PM从点C出发沿CB方向匀速运动,速度为1厘米/秒,运动过程中始终保持PM⊥BC,直线PM交BC于点P,交AC于点M,过点P作PQ⊥AB于点Q,交AD于点N,连接QM,设运动时间是t秒(0<t<4).(1)在运动过程中,不论t取何值时,总有△BQP∽△CPM,为什么?(2)求当QM//BC时t的值(3)设四边形ANPM的面积为S(厘米 2),求出S与t的函数关系式;是否存在某一时刻t,使S 的值最大?若存在,求出t的值;若不存在,请说明理由.【答案与解析】1.答案:B解析:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根.解:∵(−0.7)2=0.49,又∵(±0.7)2=0.49,∴0.49的平方根是±0.7,即(−0.7)2的平方根是±0.7.故选B.2.答案:B解析:本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.00000005=5×10−8.故选B.3.答案:A解析:。
青岛市2020年中考数学模拟试卷(一)(有答案)
山东省青岛市2020年中考数学模拟试卷(一)(解析版)一、选择题(共8小题,每小题3分,满分24分)1.﹣0.2的倒数等于()A.0.2B.﹣5C.﹣ D.52.如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A.B.C.D.3.2020年某市加大财政支农力度,为了响应中央号召,全市农业支出累计约达到53200万元,其中53200万元用科学记数法可表示为()A.5.23×104元 B.5.23×107元 C.523×108元D.5.23×108元4.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是()A.96,94.5B.96,95C.95,94.5D.95,955.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有()A.18个B.15个C.12个D.10个6.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(b,a)C.(﹣b,a)D.(b,﹣a)7.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4D.10+10(1+x)+10(1+x)2=36.48.如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x的函数图象可能为()A.B.C.D.二、填空题(本题满分21分,共有6道小题,每小题3分)9.计算:(﹣1)2﹣×(2013﹣π)0+()﹣1=.10.将正面分别标有数字1,2,3,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,两张卡片组成的数恰好为“12”的概率是.11.王师傅检修一条长600米的自来水的管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务.设王师傅原计划每小时检修管道x米,依题意列方程是.12.如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB=.13.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,则∠DHO=度.14.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最小是个.15.作图题用圆规、直尺作图,不写作法,但要保留作图痕迹.在一块三角形废料上,要裁下一个半圆形的材料,使直径在线段BC上,并且要尽可能的充分利用好原三角形废料,请画出这个半圆形.三、解答题(共9题,74分)16.(8分)计算(1)求一次函数y=﹣2x+2和y=x=1的交点坐标.(2)化简:(﹣)•.17.(6分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)18.(6分)某商场设定了一个可以自由转动的转盘(转盘被等分成16个扇形),并规定:顾客在商场消费每满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄和蓝色区域,顾客就可以分别获得50元、30元和10元的购物券.如果顾客不愿意转转盘,则可以直接获得购物券15元.(1)转动一次转盘,获得50元、30元、10元购物券的概率分别是多少?(2)如果有一名顾客在商场消费了200元,通过计算说明转转盘和直接获得购物券,哪种方式对这位顾客更合算?19.(6分)如图1,圆规两脚形成的角α称为圆规的张角.一个圆规两脚均为12cm,最大张sin15°≈0.26,角150°,你能否画出一个半径为20cm的圆?请借助图2说明理由.(参考数据:cos15°≈0.97,tan15°≈0.27,sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)20.(8分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.21.(8分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC于E,过点C作AB的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:BF=CF.(2)当三角形ABC满足什么条件时,四边形BDCF为菱形并说明理由.22.(10分)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.23.(10分)阅读材料,回答问题:小明学完了“锐角三角函数”的相关知识后,通过研究发现:如图1,在Rt△ABC中,如果∠C=90°,∠A=30°,BC=a=1,AC=b=,AB=c=2,那么==2.通过上网查阅资料,他又知“sin90°=1”,因此他得到“在含30°角的直角三角形中,存在着==的关系.”这个关系对于一般三角形还适用吗?为此他做了如下的探究:(1)如图2,在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c.请判断此时“==”的关系是否成立?(2)完成上术探究后,他又想“对于任意的锐角△ABC,上述关系还成立吗?”因此他又继续进行了如下的探究:如图3,在锐角△ABC中,BC=a,AC=b,AB=c.过点C作CD⊥AB于D.∵在Rt△ABC和Rt△BDC中,∠ADC=∠BDC=90°,∴sinA=,sinB=.∴∴=,=.=.=.同理,过点A作AH⊥BC于H,可证∴==的.请将上面的过程补充完整.(3)运用上述结论解答问题①如图4,在△ABC中,如果∠B=60°,∠C=45°,AB=2,那么AC=.②在锐角△ABC中,若∠B=30°,AB=2,AC=2,求S△ABC.24.(12分)已知:矩形ABCD,DA=3cm,DC=4cm,点M从点A出发沿AB向终点B运动,点N从点C出发沿CA向终点A运动,点M、N同时出发,且运动的速度均为1cm/秒,当其中一个点到达终点时,另一点即停止运动.设运动的时间为t秒.(1)当点N运动1秒时,求线段DN的长;(2)试求出多边形DAMN的面积S与t的函数关系式;(3)t为何值时,D,N,M三点共线?(4)t为何值时,以△DAN的一边所在直线为对称轴翻折△DAN,翻折前后的两个三角形所组成的四边形为菱形?2020年山东省青岛市中考数学模拟试卷(一)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.﹣0.2的倒数等于()A.0.2B.﹣5C.﹣ D.5【分析】根据倒数的意义,乘积是1的两个数互为倒数,0没有倒数,求一个数的倒数,把这个数的分子和分母掉换位置即可.【解答】解:﹣0.2的倒数等于﹣5,故选B【点评】此题考查的目的是理解倒数的意义,掌握求倒数的方法及应用,明确:1的倒数是1,0没有倒数.2.如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A.B.C.D.【分析】由主视图的定义可得.【解答】解:这个几何体的主视图是,故选:D【点评】本题主要考查简单几何体的三视图,熟练掌握三视图的定义是解题的关键.3.2020年某市加大财政支农力度,为了响应中央号召,全市农业支出累计约达到53200万元,其中53200万元用科学记数法可表示为()A.5.23×104元 B.5.23×107元 C.523×108元D.5.23×108元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:53200万=5.23×108,故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是()A.96,94.5B.96,95C.95,94.5D.95,95【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中96是出现次数最多的,故众数是96;而将这组数据从小到大的顺序排列(90,91,94,95,96,96),处于中间位置的那个数是94、95,那么由中位数的定义可知,这组数据的中位数是(94+95)÷2=94.5.故这组数据的众数和中位数分别是96,94.5.故选:A.【点评】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有()A.18个B.15个C.12个D.10个【分析】小明共摸了100次,其中20次摸到黑球,则有80次摸到白球;摸到黑球与摸到白球的次数之比为1:4,由此可估计口袋中黑球和白球个数之比为1:4;即可计算出白球数.=12(个).【解答】解:3故选:C.【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.6.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(b,a)C.(﹣b,a)D.(b,﹣a)【分析】根据旋转前后的三角形全等及所在象限符号的特点可得所求点的坐标.【解答】解:∵△AOB≌△A′OB′,∴A′B′=AB=b,OB′=OB=a,∵A′在第二象限,∴A′坐标为(﹣b,a),故选C.【点评】考查点的旋转问题;用到的知识点为:旋转前后图形的形状不变.7.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4D.10+10(1+x)+10(1+x)2=36.4【分析】等量关系为:一月份利润+一月份的利润×(1+增长率)+一月份的利润×(1+增长率)2=34.6,把相关数值代入计算即可.【解答】解:设二、三月份的月增长率是x,依题意有10+10(1+x)+10(1+x)2=36.4,故选D.【点评】主要考查一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x的函数图象可能为()A.B.C.D.【分析】本题需先设正方形的边长为m,然后得出y与x、m是二次函数关系,从而得出函数的图象.【解答】解:设正方形的边长为m,则m>0,∵AE=x,∴DH=x,∴AH=m﹣x,∵EH2=AE2+AH2,∴y=x2+(m﹣x)2,y=x2+x2﹣2mx+m2,y=2x2﹣2mx+m2,=2[(x﹣m)2+],=2(x﹣m)2+m2,∴y与x的函数图象是A.故选A.【点评】本题主要考查了二次函数的图象和性质,在解题时要能根据几何图形求出解析式,得出函数的图象.二、填空题(本题满分21分,共有6道小题,每小题3分)9.计算:(﹣1)2﹣×(2013﹣π)0+()﹣1=2.【分析】直接利用绝对值的性质以及特殊角的三角函数值和二次根式的性质化简求出答案.【解答】解:(﹣1)2﹣×(2013﹣π)0+()﹣1=1﹣2×1+3=2,故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.10.将正面分别标有数字1,2,3,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,两张卡片组成的数恰好为“12”的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两张卡片组成的数恰好为“12”的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,两张卡片组成的数恰好为“12”的只有1种情况,∴两张卡片组成的数恰好为“12”的概率是:.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.王师傅检修一条长600米的自来水的管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务.设王师傅原计划每小时检修管道x米,依题意列方程是﹣=2.【分析】设王师傅原计划每小时检修管道x米,根据在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,列方程即可.【解答】解:设王师傅原计划每小时检修管道x米,由题意得,故答案为﹣﹣=2.=2.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,找出等量关系,列出方程.12.如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB=45°.【分析】连接OA,OB.根据正方形的性质,得∠AOB=90°再根据圆周角定理,即可求解.OB.【解答】解:连接OA,根据正方形的性质,得∠AOB=90°.再根据圆周角定理,得∠APB=45°,故答案为:45°.【点评】此题主要考查了圆周角定理,综合运用了正方形的性质以及圆周角定理是解答此题的关键.13.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,则∠DHO=25度.【分析】根据菱形的对角线互相平分可得OD=OB,再根据直角三角形斜边上的中线等于斜边的一半可得OH=OB,然后根据等边对等角求出∠OHB=∠OBH,根据两直线平行,内错角相等求出∠OBH=∠ODC,然后根据等角的余角相等解答即可.【解答】解:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO=故答案为:25.=25°,【点评】本题考查了菱形的对角线互相垂直平分的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及等角的余角相等,熟记各性质并理清图中角度的关系是解题的关键.14.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最小是5个.【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【解答】解:由题中所给出的主视图知物体共2列,且都是最高两层;由左视图知共行,所以小正方体的个数最少的几何体为:第一列第一行2个小正方体,第一列第二行2个小正方体,第二列第三行1个小正方体,其余位置没有小正方体.即组成这个几何体的小正方体的个数最少为:2+2+1=5个.故答案为:5.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.15.作图题用圆规、直尺作图,不写作法,但要保留作图痕迹.在一块三角形废料上,要裁下一个半圆形的材料,使直径在线段BC上,并且要尽可能的充分利用好原三角形废料,请画出这个半圆形.【分析】如图作∠BAC的平分线AM交BC于O,作ON⊥AB于D,以O为圆心,OD为半径画半圆即可.【解答】解:如图作∠BAC的平分线AM交BC于O,作ON⊥AB于D,以O为圆心,OD为半径画半圆即可.半圆O即为所求.【点评】本题考查作图﹣应用与设计,角平分线的性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.三、解答题(共9题,74分)16.(8分)计算(1)求一次函数y=﹣2x+2和y=x=1的交点坐标.(2)化简:(﹣)•.可得到两直线的交点坐标;【分析】(1)通过解方程组(2)先把括号内通分后进行同分母的减法运算,然后把分子因式分解后约分即可.【解答】解:(1)解方程组得,所以一次函数y=﹣2x+2和y=x﹣1的交点坐标为(1,0);(2)原式==••=a+3.【点评】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了分式的混合运算.17.(6分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了200名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)【分析】(1)通过对比条形统计图和扇形统计图可知:学习态度层级为A级的有50人,占部分八年级学生的25%,即可求得总人数;(2)由(1)可知:C级人数为:200﹣120﹣50=30人,将图1补充完整即可;(3)各个扇形的圆心角的度数=360°×该部分占总体的百分比,所以可以先求出:360°×(1﹣25%﹣60%)=54°;(4)从扇形统计图可知,达标人数占得百分比为:25%+60%=85%,再估计该市近20000名初中生中达标的学习态度就很容易了.【解答】解:(1)50÷25%=200(人);故答案为:200;(2)C级人数:200﹣120﹣50=30(人).条形统计图如图所示:(3)C所占圆心角度数=360°×(1﹣25%﹣60%)=54°.(4)20000×(25%+60%)=17000(名).答:估计该市初中生中大约有17000名学生学习态度达标.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(6分)某商场设定了一个可以自由转动的转盘(转盘被等分成16个扇形),并规定:顾客在商场消费每满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄和蓝色区域,顾客就可以分别获得50元、30元和10元的购物券.如果顾客不愿意转转盘,则可以直接获得购物券15元.(1)转动一次转盘,获得50元、30元、10元购物券的概率分别是多少?(2)如果有一名顾客在商场消费了200元,通过计算说明转转盘和直接获得购物券,哪种方式对这位顾客更合算?【分析】(1)由转盘被等分成16个扇形,红色扇形有1个,黄色扇形有3个,蓝色扇形有5个,直接利用概率公式求解即可求得答案;(2)首先求得转转盘获得购物券的平均值,再与15元比较,即可知哪种方式对这位顾客更合算.【解答】解:(1)∵转盘被等分成16个扇形,红色扇形有1个,黄色扇形有3个,蓝色扇形有5个,∴P(获得50元购物券)=,P(获得30元购物券)=,P(获得10元购物券)=;(2)转转盘:×50+×30+×10=<15,∴直接获得购物券的方式对这位顾客更合算.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.(6分)如图1,圆规两脚形成的角α称为圆规的张角.一个圆规两脚均为12cm,最大张sin15°≈0.26,角150°,你能否画出一个半径为20cm的圆?请借助图2说明理由.(参考数据:cos15°≈0.97,tan15°≈0.27,sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)【分析】先根据等腰三角形的性质求出∠B的度数,过点A作AD⊥BC于点D,根据锐角三角函数的定义可求出BD的长,故可得出结论.【解答】解:∵△ABC是等腰三角形,∠A=150°,∴∠B=∠C==15°,过点A作AD⊥BC于点D,∴BD=AB•cos∠B≈12×0.97≈11.6cm,∴BC≈23.2>20cm,∴能画出一个半径为20cm的圆.【点评】本题考查的是解直角三角形的应用,熟知锐角三角函数的定义是解答此题的关键.20.(8分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【分析】(1)设直拍球拍每副x元,横拍球每副y元,根据题意列出二元一次方程组,解方程组即可;(2)设购买直拍球拍m副,根据题意列出不等式,解不等式求出m的范围,根据题意列出费用关于m的一次函数,根据一次函数的性质解答即可.【解答】解:(1)设直拍球拍每副x元,横拍球每副y元,由题意得,,解得,,答:直拍球拍每副220元,横拍球每副260元;(2)设购买直拍球拍m副,则购买横拍球(40﹣m)副,由题意得,m≤3(40﹣m),解得,m≤30,设买40副球拍所需的费用为w,则w=(220+20)m+(260+20)(40﹣m)=﹣40m+11200,∵﹣40<0,∴w随m的增大而减小,∴当m=30时,w取最小值,最小值为﹣40×30+11200=10000(元).答:购买直拍球拍30副,则购买横拍球10副时,费用最少.【点评】本题考查的是列二元一次方程组、一元一次不等式解实际问题,正确列出二元一次方程组和一元一次不等式并正确解出方程组和不等式是解题的关键.21.(8分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC于E,过点C作AB的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:BF=CF.(2)当三角形ABC满足什么条件时,四边形BDCF为菱形并说明理由.【分析】(1)求出四边形ADFC是平行四边形,推出CF=AD=BD,根据平行四边形的判定得出四边形BDCF是平行四边形,求CD=BD,进而可证明BF=CF;(2)当AC=BC时,四边形BCFD为菱形,根据菱形的判定得出即可;【解答】解:(1)证明:DE⊥BC,∠ACB=90°,∴∠BED=∠ACB,∴DF∥AC,∵CF∥AB,∴四边形ADFC是平行四边形,∴AD=CF,∵D为AB的中点,∴AD=BD,∴BD=CF,∵BD∥CF,∴四边形BDCF是平行四边形,∴CD=BF,∴BF=CF;(2)当AC=BC时,四边形BDCF为菱形,∵∠ACB=90°,D为AB的中点,∴DC=BD,∵四边形BDCF是平行四边形,∴四边形BDCF是菱形.【点评】本题考查了平行四边形的判定和性质,菱形的判定,直角三角形的性质的应用,能熟记菱形的性质和判定定理是解此题的关键.22.(10分)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.【分析】(1)设y=kx+b,则由图象可求得k,b,从而得出y与x之间的函数关系式,并写出x的取值范围100≤x≤180;(2)设公司第一年获利W万元,则可表示出W=﹣(x﹣180)2﹣60≤﹣60,则第一年公司亏损了,当产品售价定为180元/件时,亏损最小,最小亏损为60万元;(3)假设两年共盈利1340万元,则﹣x2+36x﹣1800﹣60=1340,解得x的值,根据100≤x ≤180,则x=160时,公司两年共盈利达1340万元.【解答】解:(1)设y=kx+b,则由图象知:解得k=﹣∴y=﹣,,b=30,x+30,100≤x≤180;(2)设公司第一年获利W万元,则W=(x﹣60)y﹣1500=﹣x2+36x﹣3300=﹣(x﹣180)2﹣60≤﹣60,∴第一年公司亏损了,当产品售价定为180元/件时,亏损最小,最小亏损为60万元;(3)若两年共盈利1340万元,因为第一年亏损60万元,第二年盈利的为(x﹣60)y=﹣x2+36x﹣1800,则﹣x2+36x﹣1800﹣60=1340,解得x1=200,x2=160,∵100≤x≤180,∴x=160,∴每件产品的定价定为160元时,公司两年共盈利达1340万元.【点评】本题是一道一次函数的综合题,考查了二次函数的应用,还考查了用待定系数法求一次函数的解析式.23.(10分)阅读材料,回答问题:小明学完了“锐角三角函数”的相关知识后,通过研究发现:如图1,在Rt△ABC中,如果∠C=90°,∠A=30°,BC=a=1,AC=b=,AB=c=2,那么==2.通过上网查阅资料,他又知“sin90°=1”,因此他得到“在含30°角的直角三角形中,存在着==的关系.”这个关系对于一般三角形还适用吗?为此他做了如下的探究:(1)如图2,在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c.请判断此时“==”的关系是否成立?(2)完成上术探究后,他又想“对于任意的锐角△ABC,上述关系还成立吗?”因此他又继续进行了如下的探究:如图3,在锐角△ABC中,BC=a,AC=b,AB=c.过点C作CD⊥AB于D.∵在Rt△ABC和Rt△BDC中,∠ADC=∠BDC=90°,∴sinA=∴∴,sinB=.=CD.=CD,=.同理,过点A作AH⊥BC于H,可证=.。
【2020精品中考数学提分卷】山东省青岛市李沧区初三一模数学学科试卷+答案
2020年山东省青岛市李沧区中考数学一模试卷一、选择题(本题满分24分,共有8题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的,每小题选对得分:不选、远错或选出的标号超过一个的不得分.1.(3分)|﹣5|的相反数是()A.﹣5 B.5 C.D.﹣2.(3分)为丰富国民精神文化生活,提升文化素养,全国各地陆续开展全民阅读活动.现在的图书馆不单是人们学习知识的地方,更是成为人们休闲的好去处.下列图书馆标志的图形中不是轴对称图形的是()A.B.C.D.(3分)在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通3.过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A.16个B.15个C.13个D.12个4.(3分)如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是()A.30,28 B.26,26 C.31,30 D.26,225.(3分)如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()A.2πB.πC.D.6.(3分)现代互联网技术的广泛应用,促进快递行业高速发展,据调查,我市某家快递公司,今年3月份与5月份完成投递的快递总件数分别为6.3万件和8万件.设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是()A.6.3(1+2x)=8B.6.3(1+x)=8C.6.3(1+x)2=8D.6.3+6.3(1+x)+6.3(1+x)2=87.(3分)如图,AB是⊙O的直径,DB、DE分别切⊙O于点B、C,若∠ACE=25°,则∠D 的度数是()A.50°B.55°C.60°D.65°8.(3分)在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)计算:()0+﹣tan60°=.10.(3分)2019年3月5日,第十三届全国人民代表大会第二次会议在北京人民大会堂开幕,国务院总理李克强作政府工作报告指出,回顾2018年工作,三大攻坚战开局良好,精准脱贫有力推进,农村贫困人口减少1386万,易地扶贫搬迁280万人,1386万用科学记数法可表示为.11.(3分)如图,在平面直角坐标系xOy中,点A,P分别在x轴、y轴上,∠APO=30°.先将线段PA沿y轴翻折得到线段PB,再将线段PA绕点P顺时针旋转30°得到线段PC,连接BC.若点A的坐标为(﹣1,0),则线段BC的长为.12.(3分)如图,在同一平面直角坐标系中,函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是.13.(3分)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD 上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则△EFG的面积为.14.(3分)如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点A n 的坐标为().三、作图题(本题满分4分,用圆规、直尺作图,不写作法,但要保留作图痕迹.)15.(4分)如图,已知∠AOB及边OB上一点P求作⊙M,使⊙M与边OA、OB相切,且其中一个切点为点P四、解答题(本题满分74分,共有9道小题)16.(8分)(1)解不等式组:(2)化简:(1﹣)÷17.(6分)某中学学生会发同学们就餐时剩余饭菜较多,浪费重,于是准备在校内倡导“光盘行动”让同学们珍惜粮食,为了让同学私理解这次话动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图(1)这次被调查的同学共有人(2)补全条形统计图,并在图上标明相应的数据(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校4800名学生一餐浪费的食物可供多少人食用一餐.18.(6分)某商场为了吸引顾客,设立一个可自由转动的转盘,(如图,3个数字所在的扇形面积相等)并规定,顾客每购满100元商品,可转动两次转盘,转盘停止后,看指针指向的数.(如果指针指向分界线,则重新转动转盘,直到指针指向数为止)获奖方法是:①指针两次都指向3,顾客可获得90元购物券,②指针只有一次指向3,顾客可得36元购物券,③指针两次都不指向3,顾客只能获得18元购物券;若顾客不愿转动转盘,则可直接获得30元购物券(1)试用树状图或列表法给出两次转动转盘指针所有可能指向的结果;(2)请分别求顾客获得90元,36元,18元购物券的概率;(3)你认为转动转盘和直接获得购物券哪种方式更合算?试说明理由.19.(6分)若商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式动扶梯,如图所示,已知原阶梯式自动扶梯AB长为10m,扶梯AB的坡度i为1:.改造后的斜坡式动扶梯的坡角∠ACB为15°,请你计算改造后的斜坡式自动扶梯AC的长度.(结果精确到0.1m.参考数据:sin15°≈0.26,cos15°≈0.97,tan l5°≈0.27)20.(8分)某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?21.(8分)已知:如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB 交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形AGBD是矩形,则四边形BEDF是什么特殊四边形?请证明你的结论22.(10分)为了有力推进精准贫改策,某街道实施产业扶贫,帮助贫困户承包了荒山种植某品种葡萄,到了收获季节,已知该葡萄的成本价为8元/千克,投入市场销售时,调查市场行情,发现该葡萄销售不会亏本,且每天售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种葡萄定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘葡萄4500千克,该品种葡萄的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批葡萄?请说明理由.23.(10分)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将0.化为分数形式,由于0.=0.777…,设x=0.777…,①得10x=7.777…,②②﹣①得9x=7,解得x=,于是得0.=.同理可得0.==,1.=1+0.=1+=根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)【类比应用】(1)0.=,4.=;(2)将0.化为分数形式,写出推导过程;【迁移提升】(3)0.=,2.0=;(注:0.2=0.225225…,2.0=2.01818…)【拓展发现】(4)①试比较0.与1的大小:0.1(填“>”“<”或“=”)②若已知0.1428=,则2.8571=.24.(12分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动过点P作PD⊥AC于点D(点P不与点A,B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,当1<t<2时,求S与t之同的函数关系式;(4)是否存在某一时刻t,使线段PQ的垂直平分线经过△ABC一边中点,如果存在请求出t的值,如果不存在请说明理由.2020年山东省青岛市李沧区中考数学一模试卷参考答案与试题解析一、选择题(本题满分24分,共有8题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的,每小题选对得分:不选、远错或选出的标号超过一个的不得分.1.(3分)|﹣5|的相反数是()A.﹣5 B.5 C.D.﹣【解答】解:根据绝对值的定义,∴︳﹣5︳=5,根据相反数的定义,∴5的相反数是﹣5.故选:A.2.(3分)为丰富国民精神文化生活,提升文化素养,全国各地陆续开展全民阅读活动.现在的图书馆不单是人们学习知识的地方,更是成为人们休闲的好去处.下列图书馆标志的图形中不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形;B、不是轴对称图形;C、是轴对称图形;D、是轴对称图形.故选:B.(3分)在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通3.过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A.16个B.15个C.13个D.12个【解答】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴=,解得:x=12,经检验x=12是原方程的根,故白球的个数为12个.故选:D.4.(3分)如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是()A.30,28 B.26,26 C.31,30 D.26,22【解答】解:由图可知,把7个数据从小到大排列为22,22,23,26,28,30,31,中位数是第4位数,第4位是26,所以中位数是26.平均数是(22×2+23+26+28+30+31)÷7=26,所以平均数是26.故选:B.5.(3分)如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()A.2πB.πC.D.【解答】解:连接OA、OC,∵∠B=135°,∴∠D=180°﹣135°=45°,∴∠AOC=90°,则的长==π.故选:B.6.(3分)现代互联网技术的广泛应用,促进快递行业高速发展,据调查,我市某家快递公司,今年3月份与5月份完成投递的快递总件数分别为6.3万件和8万件.设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是()A.6.3(1+2x)=8B.6.3(1+x)=8C.6.3(1+x)2=8D.6.3+6.3(1+x)+6.3(1+x)2=8【解答】解:设该快递公司这两个月投递总件数的月平均增长率为x,根据题意,得:6.3(1+x)2=8,故选:C.7.(3分)如图,AB是⊙O的直径,DB、DE分别切⊙O于点B、C,若∠ACE=25°,则∠D 的度数是()A.50°B.55°C.60°D.65°【解答】解:连接BC,∵DB、DE分别切⊙O于点B、C,∴BD=DC,∵∠ACE=25°,∴∠ABC=25°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠DBC=∠DCB=90°﹣25°=65°,∴∠D=50°.故选:A.8.(3分)在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.【解答】解:A、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b <0,故本选项正确;B、由抛物线可知,a>0,由直线可知,a<0,故本选项错误;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a>0,由直线可知,a<0,故本选项错误.故选:A.二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)计算:()0+﹣tan60°=1+.【解答】解:原式=1+2﹣=1+故答案为1+.10.(3分)2019年3月5日,第十三届全国人民代表大会第二次会议在北京人民大会堂开幕,国务院总理李克强作政府工作报告指出,回顾2018年工作,三大攻坚战开局良好,精准脱贫有力推进,农村贫困人口减少1386万,易地扶贫搬迁280万人,1386万用科学记数法可表示为 1.386×106.【解答】解:1386万=1.386×106.故答案为:1.386×106.11.(3分)如图,在平面直角坐标系xOy中,点A,P分别在x轴、y轴上,∠APO=30°.先将线段PA沿y轴翻折得到线段PB,再将线段PA绕点P顺时针旋转30°得到线段PC,连接BC.若点A的坐标为(﹣1,0),则线段BC的长为2.【解答】解:∵∠APO=∠BPO=30°,∴∠APB=60°,∵PA=PC=PB,∠APC=30°,∴∠BPC=90°,∴△PBC是等腰直角三角形,∵OA=1,∠APO=30°,∴PA=2OA=2,∴BC=PC=2,故答案为2.12.(3分)如图,在同一平面直角坐标系中,函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是﹣3<x<0,x>2 .【解答】解:∵函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点∴以﹣3和2为大小的分界点,﹣3<x<0,x>2是y1函数图象都在y2函数图象的上方,∴y1>y2故答案为:﹣3<x<0,x>2.13.(3分)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD 上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则△EFG的面积为.【解答】解:作EH⊥BD于H,由折叠的性质可知,EG=EA,由题意得,BD=DG+BG=8,∵四边形ABCD是菱形,∴AD=AB,∠ABD=∠CBD=∠ABC=60°,∴△ABD为等边三角形,∴AB=BD=8,设BE=x,则EG=AE=8﹣x,在Rt△EHB中,BH=x,EH=x,在Rt△EHG中,EG2=EH2+GH2,即(8﹣x)2=(x)2+(6﹣x)2,解得,x=,即BE=,∴AE=同法可得AF=,∴S△EFG=S△EFA=•AE•AF=.故答案为.14.(3分)如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点A n 的坐标为(2n﹣1,0 ).【解答】解:∵直线l为y=x,点A1(1,0),A1B1⊥x轴,∴当x=1时,y=,即B1(1,),∴tan∠A1OB1=,∴∠A1OB1=60°,∠A1B1O=30°,∴OB1=2OA1=2,∵以原点O为圆心,OB1长为半径画圆弧交x轴于点A2,∴A2(2,0),同理可得,A3(4,0),A4(8,0),…,∴点A n的坐标为(2n﹣1,0),故答案为:2n﹣1,0.三、作图题(本题满分4分,用圆规、直尺作图,不写作法,但要保留作图痕迹.)15.(4分)如图,已知∠AOB及边OB上一点P求作⊙M,使⊙M与边OA、OB相切,且其中一个切点为点P【解答】作法:如图,1、作∠AOB的平分线OE,2、过点P作射线OB的垂线PD,3、PD与OE的交点即为点M,4、以点M为圆心、MP为半径作圆,则⊙M即为所求.四、解答题(本题满分74分,共有9道小题)16.(8分)(1)解不等式组:(2)化简:(1﹣)÷【解答】解:(1),由不等式①,得x>3,由不等式②,得x>1,故原不等式组的解集是x>3;(2)(1﹣)÷===.17.(6分)某中学学生会发同学们就餐时剩余饭菜较多,浪费重,于是准备在校内倡导“光盘行动”让同学们珍惜粮食,为了让同学私理解这次话动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图(1)这次被调查的同学共有1000 人(2)补全条形统计图,并在图上标明相应的数据(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校4800名学生一餐浪费的食物可供多少人食用一餐.【解答】解:(1)这次被调查的同学共有600÷60%=1000(人),故答案为:1000;(2)剩少量人数为1000﹣(600+150+50)=200(人),补全图形如下:(3)4800×=240(人),答:该校4800名学生一餐浪费的食物可供240人食用一餐.18.(6分)某商场为了吸引顾客,设立一个可自由转动的转盘,(如图,3个数字所在的扇形面积相等)并规定,顾客每购满100元商品,可转动两次转盘,转盘停止后,看指针指向的数.(如果指针指向分界线,则重新转动转盘,直到指针指向数为止)获奖方法是:①指针两次都指向3,顾客可获得90元购物券,②指针只有一次指向3,顾客可得36元购物券,③指针两次都不指向3,顾客只能获得18元购物券;若顾客不愿转动转盘,则可直接获得30元购物券(1)试用树状图或列表法给出两次转动转盘指针所有可能指向的结果;(2)请分别求顾客获得90元,36元,18元购物券的概率;(3)你认为转动转盘和直接获得购物券哪种方式更合算?试说明理由.【解答】解:(1)如下表:1 2 31 (1,1)(2,1)(3,1)2 (1,2)(2,2)(3,2)3 (1,3)(2,3)(3,3)(2)P(获得90元)=,P(获得36元)=,P(获得18元)=;(3)转动转盘合算,每转动两次转盘所获得购物券金额的平均数为:×90+×36+×18=34>30,所以转动转盘合算.19.(6分)若商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式动扶梯,如图所示,已知原阶梯式自动扶梯AB长为10m,扶梯AB的坡度i为1:.改造后的斜坡式动扶梯的坡角∠ACB为15°,请你计算改造后的斜坡式自动扶梯AC的长度.(结果精确到0.1m.参考数据:sin15°≈0.26,cos15°≈0.97,tan l5°≈0.27)【解答】解:∵扶梯AB的坡度i为1:,∴AD:DB=1:即DB=AD.在Rt△ADB中,∵AD2+DB2=AB2,∴AD2+3AD2=102解得AD=±5.因为﹣5不合题意,所以AD=5.在Rt△ACD中,sin∠ACD=,∴AC=≈≈19.2(m)答:改造后的自动扶梯AC的长约为19.2m.20.(8分)某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?【解答】解:(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料,根据题意,得=,解得x=120.经检验,x=120是所列方程的解.当x=120时,x+30=150.答:A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)设购进A型机器人a台,则购进B型机器人(20﹣a)台,根据题意,得150a+120(20﹣a)≥2800,解得a≥.∵a是整数,∴a≥14.答:至少购进A型机器人14台.21.(8分)已知:如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB 交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形AGBD是矩形,则四边形BEDF是什么特殊四边形?请证明你的结论【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠BAD=∠C,AD=CB,AB=CD,∵点E,F分别是AB,CD的中点,∴AE=AB,CF=CD,∴AE=CF.在△ADE和△CBF中,∴△ADE≌△CBF(SAS).(2)四边形BEDF是菱形,理由如下:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵点E、F分别是AB、CD的中点,∴BE=AB,DF=CD.∴BE=DF,BE∥DF,∴四边形BEDF是平行四边形,∵四边形AGBD是矩形,∴∠ADB=90°,在Rt△ADB中,∵E为AB的中点,∴AE=BE=DE,∴平行四边形BEDF是菱形.22.(10分)为了有力推进精准贫改策,某街道实施产业扶贫,帮助贫困户承包了荒山种植某品种葡萄,到了收获季节,已知该葡萄的成本价为8元/千克,投入市场销售时,调查市场行情,发现该葡萄销售不会亏本,且每天售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种葡萄定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘葡萄4500千克,该品种葡萄的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批葡萄?请说明理由.【解答】解:(1)设y与x的函数关系式为y=kx+b,将(10,200)、(15,150)代入,得:,解得:,∴y与x的函数关系式为y=﹣10x+300(8≤x≤30);(2)设每天销售获得的利润为w,则w=(x﹣8)y=(x﹣8)(﹣10x+300)=﹣10(x﹣19)2+1210,∵8≤x≤30,∴当x=19时,w取得最大值,最大值为1210;(3)由(2)知,当获得最大利润时,定价为19元/千克,则每天的销售量为y=﹣10×19+300=110千克,∵保质期为40天,∴总销售量为40×110=4400,又∵4400<4500,∴不能销售完这批葡萄.23.(10分)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将0.化为分数形式,由于0.=0.777…,设x=0.777…,①得10x=7.777…,②②﹣①得9x=7,解得x=,于是得0.=.同理可得0.==,1.=1+0.=1+=根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)【类比应用】(1)0.=,4.=;(2)将0.化为分数形式,写出推导过程;【迁移提升】(3)0.=,2.0=;(注:0.2=0.225225…,2.0=2.01818…)【拓展发现】(4)①试比较0.与1的大小:0.=1(填“>”“<”或“=”)②若已知0.1428=,则2.8571=.【解答】解:(1)0.=,4.=4+0.=4+=故答案为:;(2)设x=0.272727…,①∴100x=27.272727…,②②﹣①得:99x=27解得:x=∴x=∴0.=(3)0.=∵0.=0.181818…=∴0.0181818…=∴2.0=2+0.0=2+故答案为:;(4)①0.=故答案为:=②∵0.1428=∴等号两边同时乘以1000得:714.8571=∴2.8571=714.8571﹣712=故答案为:24.(12分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动过点P作PD⊥AC于点D(点P不与点A,B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,当1<t<2时,求S与t之同的函数关系式;(4)是否存在某一时刻t,使线段PQ的垂直平分线经过△ABC一边中点,如果存在请求出t的值,如果不存在请说明理由.【解答】解:(1)在Rt△ABC中,∠A=30°,AB=4,∴AC=2,∵PD⊥AC,∴∠ADP=∠CDP=90°,在Rt△ADP中,AP=2t,∴DP=t,AD=AP cos A=2t×=t,∴DC=AC﹣AD=2﹣t(0<t<2);(2)在Rt△PDQ中,∵∠DPC=∠DPQ=60°,∴∠PQD=30°=∠A,∴PA=PQ,∵PD⊥AC,∴AD=DQ,∵点Q和点C重合,∴AD+DQ=AC,∴2×t=2,∴t=1;(3)当1<t<2时,如图2,CQ=AQ﹣AC=2AD﹣AC=2t﹣2=2(t﹣1),在Rt△CEQ中,∠CQE=30°,∴CE=CQ•tan∠CQE=2(t﹣1)×=2(t﹣1),∴S=S△PDQ﹣S△ECQ=×t×t﹣×2(t﹣1)×2(t﹣1)=﹣t2+4t﹣2,(4)当PQ的垂直平分线过AB的中点F时,如图3,∴∠PGF=90°,PG=PQ=AP=t,AF=AB=2,∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG=2t,∴AP+PF=2t+2t=2,∴t=;当PQ的垂直平分线过AC的中点M时,如图4,∴∠QMN=90°,AN=AC=,QM=PQ=AP=t,在Rt△NMQ中,NQ==t,∵AN+NQ=AQ,∴+t=2t,∴t=,当PQ的垂直平分线过BC的中点时,如图5,∴BF=BC=1,PE=PQ=t,∠H=30°,∵∠ABC=60°,∴∠BFH=30°=∠H,∴BH=BF=1,在Rt△PEH中,PH=2PE=2t,∴AH=AP+PH=AB+BH,∴2t+2t=5,∴t=,即当线段PQ的垂直平分线经过△ABC一边中点时,t的值为秒或秒或秒.。
2020年山东省青岛市中考数学模拟试卷(一)(有答案)
2019年山东省青岛市中考数学模拟试卷(一)题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.√2的相反数是()A. 1√2B. −√2 C. −1√2D. √22.既是轴对称图形又是中心对称图形的是()A. 等腰梯形B. 菱形C. 平行四边形D. 等边三角形3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A. 38×104B. 3.8×104C. 3.8×105D. 0.38×1064.计算(−4m2)·(3m+2)的结果是()A. −12m3+8m2B. 12m3−8m2C. −12m3−8m2D. 12m3+8m25.如图,在Rt△ABC中,∠A=90°,BC=4,以BC的中点O为圆心分别与AB,AC相切于D、E两点,则DE⏜的长为()A. √2π4B. π2C. √2π2D. √2π6.如图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(−1,0),AC=2.将Rt△ABC先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是()A. (2,2)B. (1,2)C. (−1,2)D. (2,−1)7.如图,△ABC中,AB=AC,AD=DE,∠BAD=18°,∠EDC=12°,则∠DAE的度数是()A. 52°B. 58°C. 60°D. 62°8.已知函数y=−(x−m)(x−n)(其中m<n)的图象如图的所示,则一次函数y=mx+n与反比例函数y=m+nx图象可能是()A. B.C. D.二、填空题(本大题共6小题,共18.0分)9.计算:√32−√8=______.√210.一元二次方程2x2+bx+1=0有两个相等的实数根,则b=______.11.学校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班的平均得分是______分.12.如图,正五边形ABCDE为内接于⊙O的,则∠ABD=________.13.如图,将正方形ABCD沿EF折叠,使得AD的中点落在点C处,若正方形边长为2,则折痕EF的长为______.14. 从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为______. 三、计算题(本大题共1小题,共8.0分) 15. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.四、解答题(本大题共9小题,共70.0分) 16. 已知,∠α求作:∠AOB =2∠α.(保留作图痕迹,不写作法)17. 甲、乙两个人进行游戏:在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲得1分;否则乙得1分.这是个公平的游戏吗?请说明理由;若不公平,请你修改规则使该游戏对双方公平.18. 青岛市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据绘成如下表格.请回答下列问题:时间第一天 7:00—8:00 第二天 7:00—8:00 第三天 7:00—8:00 第四天 7:00—8:00 第五天7:00—8:00 需要租用自 行车却未租 到车的人数1500 1200 1300 1300 1200(1)表格中的五个数据(人数)的中位数是多少⊕(2)由随机抽样估计,平均每天在7:00−8:00需要租用公共自行车的人数是多少⊕19.如图,方特欢乐园中有飞越极限、恐龙危机、海螺湾三处游乐设施,分别记为A,B,C.已知AB=1400米,AC=1000米,B点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.(1)求△ABC的面积.(2)景区规划在恐龙危机和海螺湾的中点D处修建一个游客休息中心,并修建观景栈道AD,试求A,D间的距离.(结果精确到0.1米)(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,cos60.7°≈0.49,sin66.1°≈0.91,cos66.1°≈0.41,√2≈1.414)20.某地发生了地震,某地需550顶帐蓬解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,并且加工生产240顶帐蓬甲工厂比乙工厂少用4天.①求甲、乙两个工厂每天分别可加工生产多少顶帐蓬?②若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批救灾帐蓬的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天?21.如图,平行四边形ABCD的对角线AC、BD相交于点O,E,F在AC上,且AE=CF,EF=BD.求证:四边形EBFD是矩形.22.某文具店购进一批单价为10元的学生用品,如果以单价12元售出,那么一个月内可售200件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少10件,当售价提高多少元时,可在一个月内获得最大的利润?最大利润是多少23.如图,一个3×2的矩形(即长为3,宽为2)可以用两种不同方式分割成3或6个边长是正整数的小正方形,即:小正方形的个数最多是6个,最少是3个.(1)一个5×2的矩形用不同的方式分割后,小正方形的个数可以是______个,最少是______个;(2)一个7×2的矩形用不同的方式分割后,小正方形的个数最多是______个,最少是______个;(3)一个(2n+1)×2的矩形用不同的方式分割后,小正方形的个数最多是______个;最少是______个.(n是正整数)24.如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,D、E、F分别是AC、BC、AB的中点,连接DE.点P从点D出发,沿DE方向匀速运动;同时,点Q从点E 出发,沿EB方向匀速运动,两者速度均为1cm/s;当其中一点停止运动时,另外一点也停止运动.连接PQ、PF,设运动时间为ts(0<t<4).解答下列问题:(1)当t为何值时,△EPQ为等腰三角形?(2)如图①,设四边形PFBQ的面积为ycm2,求y与t之间的函数关系式;(3)当t为何值时,四边形PFBQ的面积与△ABC的面积之比为2:5?(4)如图②,连接FQ,是否存在某一时刻,使得PF与QF互相垂直?若存在,求出此时t的值;若不存,请说明理由.答案和解析1.【答案】B【解析】解:√2的相反数是−√2,故选:B.根据只有符号不同的两个数互为相反数,可得一个数的相反数.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.【答案】B【解析】解:轴对称图形有:等腰梯形,菱形,等边三角形;中心对称图形有菱形,平行四边形;∴既是轴对称图形又是中心对称图形的式菱形,故选B.根据轴对称图形和中心对称图形的定义判断即可.本题主要考查对中心对称图形和轴对称图形的理解和掌握,能正确判断一个图形是否是中心对称图形和轴对称图形是解此题的关键.3.【答案】C【解析】解:380000=3.8×105故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】【分析】本题主要单项式乘以多项式的法则和单项式乘以单项式的法则.掌握相关法则是解题的关键.【解答】解:(−4m2)·(3m+2)=(−4m2)×3m+(−4m2)×2=−12m3−8m2.故选C.5.【答案】C【解析】解:连接OE、OD,设半径为r,∵⊙O分别与AB,AC相切于D,E两点,∴OE⊥AC,OD⊥AB,∵O是BC的中点,∴OD是中位线,∴OD=AE=1AC,2∴AC=2r,同理可知:AB=2r,∴AB=AC,∴∠B=45°,∵BC=4,∴由勾股定理可知AB=2√2,∴r=√2,∴DE⏜=90π×√2180=√22π,故选:C.连接OE、OD,由切线的性质可知OE⊥AC,OD⊥AB,由于O是BC的中点,从而可知OD是中位线,所以可知∠B=45°,从而可知半径r的值,最后利用弧长公式即可求出答案.本题考查切线的性质,解题的关键是连接OE、OD后利用中位线的性质求出半径r的值,本题属于中等题型.6.【答案】A【解析】解:∵点C的坐标为(−1,0),AC=2,∴点A的坐标为(−3,0),如图所示,将Rt△ABC先绕点C顺时针旋转90°,则点A′的坐标为(−1,2),再向右平移3个单位长度,则变换后点A′的对应点坐标为(2,2),故选:A.根据旋转变换的性质得到旋转变换后点A的对应点坐标,根据平移的性质解答即可.本题考查的是坐标与图形变化旋转和平移,掌握旋转变换、平移变换的性质是解题的关键.7.【答案】C【解析】【分析】本题主要考查等腰三角形的性质,设∠ADE=x°,则∠B+18°=x°+12°,可用x表示出∠B和∠C,进而可表示出∠DAE和∠DEA,在△ADE中利用三角形内角和可求得x.【解答】解:设∠ADE=x°,且∠BAD=18°,∠EDC=12°,∴∠ADB=180°−∠ADC=180°−(x°+12°)=168°−x°∴∠B=180°−(∠ADB+∠BAD)=180°−(168°−x°+18°)=x°−6°,∵AB=AC,∴∠C=∠B=x°−6°,∴∠DEA=180°−∠DEC=180°−(180°−∠C−∠EDC)=180°−(180°−x°+6°−12°)=x°+6°,∵AD=DE,∴∠DEA=∠DAE=x°+6°,在△ADE中,由三角形内角和定理可得x+x+6+x+6=180,解得x=56,即∠ADE=56°,∴∠DAE=56°+6°=62°.故选C.8.【答案】C【解析】【分析】根据二次函数图象判断出m<−1,n=1,然后求出m+n<0,再根据一次函数与反比例函数图象的性质判断即可.本题考查了二次函数图象,一次函数图象,反比例函数图象,观察二次函数图象判断出m、n的取值是解题的关键.【解答】解:由图可知,m<−1,n=1,所以m+n<0,所以,一次函数y=mx+n经过第二四象限,且与y轴相交于点(0,1),反比例函数y=m+nx的图象位于第二四象限,纵观各选项,只有C选项图形符合.故选C.9.【答案】2【解析】【分析】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.首先化简二次根式,进而求出答案.【解答】解:原式=√2−2√2√2=√2√2=2.故答案为2.10.【答案】±2√2【解析】【分析】本题主要考查了一元二次方程的根的判别式,熟练掌握“当△=0时,方程有两个相等的实数根”是解题的关键.根据方程有两个相等的实数根结合根的判别式即可得出关于b的一元二次方程,解之即可得出结论.【解答】解:∵方程2x2+bx+1=0有两个相等的实数根,∴△=b2−2×4×1=b2−8=0,解得:b=±2√2.故答案为:±2√2.11.【答案】9.1【解析】【分析】此题主要考查了加权平均数以及条形统计图,正确掌握加权平均数求法是解题关键.直接利用条形统计图以及结合加权平均数求法得出答案.【解答】解:该班的平均得分是:120×(5×8+8×9+7×10)=9.1(分).故答案为9.1.12.【答案】72°【解析】【分析】本题考查了圆周角定理,正多边形的性质,熟记定理并作辅助线构造出弧AD所对的圆心角是解题的关键.连接AO、DO,根据正五边形的性质求出∠AOD,再根据同弧所对的圆周角等于圆心角的一半列式计算即可得解.【解答】解:如图,连接AO、DO,∵五边形ABCDE是正五边形,∴∠AOD=25×360°=144°,∴∠ABD=12∠AOD=12×144°=72°;故答案为72°.13.【答案】√5【解析】解:连结CE,过E点作EG⊥CD于G,设BE为x,在Rt△CA′E中,CE=√(2−x)2+(2÷2)2,在Rt△CBE中,CE=√x2+22,√(2−x)2+(2÷2)2=√x2+22,解得x=14∴CG=14,在Rt△CD′F中,CF2=FD′2+CD′2,即CF2=(2−CF)2+(2÷2)2,解得CF=54.∴GF=54−14=1,在Rt△EFG中,EF=√22+12=√5.故答案为:√5.连结CE,过E点作EG⊥CD于G,设BE为x,根据勾股定理在Rt△CA′E中先求出CE,进一步在Rt△CBE中求出CE,列出方程求出x,可得CG,根据勾股定理在Rt△CD′F中求出CF,可求GF,再根据勾股定理在Rt△EFG中求出折痕EF的长.本题考查了翻折变换(折叠问题)、正方形的性质、勾股定理,对综合的分析问题、解决问题的能力提出了较高的要求.14.【答案】24【解析】解:挖去一个棱长为1的小正方体,得到的图形与原图形表面积相等,则表面积是2×2×6=24.故答案为:24.根据几何体表面积的计算公式,从正方体毛坯一角挖去一个小正方体得到的零件的表面积等于原正方体表面积,即可得出答案.此题考查了几何体的表面积,本题有多种解法,一种是把每个面的面积计算出来然后相加,这样比较麻烦,另一种算法就是解答中的这种,这种方法的关键是能想象出得到的图形与原图形表面积相等.15.【答案】解:由①得4x+4+3>x解得x>−73,由②得3x−12≤2x−10,解得x≤2,∴不等式组的解集为−73<x≤2.∴正整数解是1,2.【解析】本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.16.【答案】解:如图,∠AOB为所求.【解析】利用基本作图(作一个角等于已知)先作出∠AOC=∠α,再作∠COB=∠α,则∠AOB=2∠α.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中数字之和为3,6的情况有5种,∴P(和为3的倍数)=516,∴P(和不为3的倍数)=1−516=1116,∵5≠11∴该游戏不公平,故可以这样修改游戏规则:数字之和为奇数甲获胜,之和为偶数乙获胜.【解析】列表得出所有等可能的情况数,找出之和为6的情况数,即可求出所求的概率,找出数字之和为3的倍数的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.18.【答案】解:(1)表格中5个数据按从小到大的顺序排列为1200,1200,1300,1300,1500,所以中位数是1300.(2)平均每天需要租用自行车却未租到车的人数是(1500+1200+1300+1300+ 1200)÷5=1300,∵YC市首批一次性投放公共自行车700辆供市民租用出行,∴平均每天需要租用公共自行车的人数是1300+700=2000.【解析】本题考查了中位数,平均数以及用样本估计总体.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷总个数.(1)表格中5个数据按从小到大的顺序排列后,中位数应是第3个数据;(2)根据平均数等于数据之和除以总个数求出平均每天需要租用自行车却未租到车的人数,再加上700即可.19.【答案】解:(1)作CE⊥BA于E.在Rt△AEC中,∠CAE=180°−60.7°−66.1°=53.2°,∴CE=AC⋅sin53.2°≈1000×0.8=800米.∴S△ABC=12⋅AB⋅CE=12×1400×800=560000平方米.(2)连接AD,作DF⊥AB于F.,则DF//CE.∵BD=CD,DF//CE,∴BF=EF,∴DF=12CE=400米,∵AE=AC⋅cos53.2°≈600米,∴BE=AB+AE=2000米,∴AF=12EB−AE=400米,在Rt△ADF中,AD=√AF2+DF2=400√2≈565.6米,答:A,D间的距离为565.6m.【解析】(1)作CE⊥BA于E.在Rt△ACE中,求出CE即可解决问题;(2)接AD,作DF⊥AB于F.,则DF//CE.首先求出DF、AF,再在Rt△ADF中求出AD 即可.本题考查解直角三角形−方向角问题,勾股定理、三角形的中位线定理等知识,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.20.【答案】解:①设乙工厂每天可加工生产x顶帐篷,则甲工厂每天可加工生产1.5x顶帐篷,根据题意得:240 x −2401.5x=4,解得:x=20,经检验x=20是原方程的解,则甲工厂每天可加工生产1.5×20=30(顶),答:甲、乙两个工厂每天分别可加工生产30顶和20顶帐篷;②设甲工厂加工生产y天,根据题意得3y+2.4×550−30y20≤60解得:y≥10,则至少应安排甲工厂加工生产10天.答:至少应安排甲工厂加工生产10天.【解析】本题考查了分式方程的应用和一元一次不等式的应用有关知识.①先设乙工厂每天可加工生产x顶帐篷,则甲工厂每天可加工生产1.5x顶帐篷,根据加工生产240顶帐篷甲工厂比乙工厂少用4天列出方程,求出x的值,再进行检验即可求出答案;②设甲工厂加工生产y天,根据加工生产总成本不高于60万元,列出不等式,求出不等式的解集即可.21.【答案】证明:∵平行四边形ABCD,∴AB=CD,AB//CD,∴∠BAE=∠DCF,∠ABO=∠CDO,在△ABE与△CDF中{AB=DC∠BAE=∠DCF AE=CF,∴△ABE≌△CDF(SAS),∴BE=DF,∠BAE=∠CDF,∴∠ABO−∠BAE=∠CDO−∠CDF,即∠EBO=∠DFO,∴BE//DF,∴四边形EBDF是平行四边形,∵EF=BD,∴平行四边形EBDF是矩形.【解析】根据矩形的判定和平行四边形的性质证明即可.此题考查矩形的判定,关键是根据全等三角形的判定得出△ABE≌△CDF.22.【答案】解:设销售单价提高x元,销售利润为y元,根据题意可得:y=(x+2)(200−10x)=−10x2+180x+400=−10(x−9)2+1210,∵−10<0,∴x=9时,y有最大值,最大值为1210,答:当售价提高9元时,可在一个月内获得最大的利润,最大利润是1210元.【解析】直接利用总利润=销量×每件利润,进而得出关系式求出答案.此题主要考查了二次函数的应用,正确得出函数关系式是解题关键.23.【答案】(1)10;4;(2)14;5;(3)4n+2;n+2.【解析】解:(1)一个5×2的矩形最少可分成4个正方形,最多可分成10个正方形;(2)一个7×2的矩形最少可分成5个正方形,最多可分成14个正方形;(3)第一个图形:是一个3×2的矩形,最少可分成1+2个正方形,最多可分成1×4+2个正方形;第二个图形:是一个5×2的矩形,最少可分成2+2个正方形,最多可分成2×4+2个正方形;第三个图形:是一个7×2的矩形,最少可分成3+2个正方形,最多可分成3×4+2个正方形;…第n个图形:是一个(2n+1)×2的矩形,最多可分成n×4+2=4n+2个正方形,最少可分成n+2个正方形.故答案为:(1)10;4;(2)14;5;(3)4n+2;n+2.【分析】(1)一个5×2的矩形最少可分成4个正方形,最多可分成10个正方形;(2)一个7×2的矩形最少可分成5个正方形,最多可分成14个正方形;(3)根据上述结果找出其中的规律,然后用含字母n的式子表示这一规律即可.本题主要考查的是探究图形的变化规律,找出图形的变化规律是解题的关键.24.【答案】解:(1)∠C=90°,AC=6cm,BC=8cm,∴AB=10cm,由题意得:DP=EQ=t,∵D为AC的中点,E为BC的中点,∴DE=12AB=5cm,当EP=EQ时,5−t=t,t=52,即当t=52时,△EPQ为等腰三角形;(2)如图②,过P作PH⊥BC于H,连接PE,sin∠PEH=PHPE=DCDE,∴PH5−t =35,∴PH=3(5−t)5,设△DCE中,DE边上的高为h,1 2×3×4=12×5ℎ,ℎ=125,∴y=S△PEF+S△EFB−S△EQP,=12×125PE+12×125FB−12EQ⋅PH,=65(5−t)+65×5−12t ⋅3(5−t)5,=3t 210−2710t +12;(3)∵S 四边形PFBQS △ABC=25,∴5S 四边形PFBQ =2S △ABC , ∴5(3t 210−2710t +12)=2×12×6×8,t 2−9t +8=0, t 1=1,t 2=8(舍);(4)如图③,过P 作PG ⊥AB 于G ,过Q 作QH ⊥AB 于H ,过D 作DM ⊥AB 于M , 由(3)知:PG =DM =125,Rt △ADM 中,∵AD =3, ∴AM =√32−(125)2=95,∴FG =5−95−t =165−t ,Rt △QHB 中,BQ =4−t , sin ∠B =QH4−t =610, ∴QH =3(4−t)5,∴BH =4(4−t)5,∴FH =5−BH =9+4t 5,∵PF ⊥FQ ,易得△PGF∽△FHQ , ∴PG GF=FH QH,∴PG ⋅QH =FH ⋅GF , ∴125⋅3(4−t)5=(165−t)⋅9+4t 5,4t 2−11t =0, t 1=0(舍),t 2=114.∴当t =114时,PF 与QF 互相垂直.【解析】(1)根据EP =EQ 列方程可得t 的值;(2)如图②,作辅助线,构建高线PH ,先根据三角函数或相似表示PH 的长,利用面积法求h 的值,最后利用面积差可得y 与t 的关系式;(3)根据已知得:5S 四边形PFBQ =2S △ABC ,代入列一元二次方程解出可得t 的值,并根据0<t <4这一取值进行取舍;(4)如图③,作辅助线,构建直角三角形,证明△PGF∽△FHQ,列比例式可得t的值.本题是动点型综合题,解题关键是掌握动点运动过程中的图形形状、图形面积的表示方法.所考查的知识点涉及到勾股定理、相似三角形的判定与性质、三角形中位线定理、解方程(包括一元一次方程和一元二次方程)等,有一定的难度.注意题中求时间t的方法:最终都是转化为一元一次方程或一元二次方程求解,属于中考压轴题.。
青岛市2020年中考数学一模考试试卷C卷
青岛市2020年中考数学一模考试试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)若二次函数y=x2-2x+k的图象经过点(-1,y1),(3,y2),则y1与y2的大小关系为()A . y1>y2B . y1=y2C . y1<y2D . 不能确定2. (2分)已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,0)、(x1 , 0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a-2b+c=0;②a<b<0;③2a+c>0;④2a-b+1>0.其中正确结论的个数是()个A . 1B . 2C . 3D . 43. (2分)如图,记以Rt△ABC三边为直径的半圆面积分别为S1 , S2 , S3 ,Rt△ABC面积为S.则它们之间的关系为()A . S=S1B . S1=S2+S3C . S=S1+S2D . S=S1+S2+S34. (2分)已知正方形ABCD,E是CD的中点,P是BC边上的一点,下列条件中不能推出△ABP与△ECP相似的是()A . ∠APB=∠EPCB . ∠APE=90°C . P是BC的中点D . BP︰BC=2︰35. (2分)(2018·达州) 平面直角坐标系中,点P的坐标为(m,n),则向量可以用点P的坐标表示为=(m,n);已知 =(x1 , y1), =(x2 , y2),若x1x2+y1y2=0,则与互相垂直.下面四组向量:① =(3,﹣9), =(1,﹣);② =(2,π0), =(2﹣1 ,﹣1);③=(cos30°,tan45°), =(sin30°,tan45°);④ =( +2,), =(﹣2,).其中互相垂直的组有()A . 1组B . 2组C . 3组D . 4组6. (2分)将矩形纸片ABCD按如图所示的方式折叠.恰好得到菱形AECF.若AD=,则菱形AECF的面积为()A . 1B . 2C . 2D . 12二、填空题 (共12题;共12分)7. (1分) (2020七上·江都期末) 若,则 =________.8. (1分) (2017八下·黑龙江期末) 已知三个数1,,2,请再添上一个数,使它们构成一个比例式,满足这样条件的数是________.9. (1分)(2017·河源模拟) 若两个相似三角形的周长比为2:3,则它们的面积比是________.10. (1分)顶角为36°的等腰三角形被称为黄金三角形,在∠A=36°的△ABC中,AB=AC,BD是∠ABC的角平分线,交AC于D,若AC=4cm,则BC=________cm.11. (1分) (2019九上·新蔡期中) 如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP 为直角三角形时,∠A=________°.12. (1分) (2019九上·湖州月考) 如图,抛物线(m为常数)交y轴于点A,与x 轴的一个交点在2和3之间,顶点为B.①抛物线与直线有且只有一个交点;②若点、点、点在该函数图象上,则;③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为;④点A关于直线的对称点为C,点D、E分别在x轴和y轴上,当时,四边形BCDE周长的最小值为.其中正确判断的序号是________13. (1分)如图,⊙O的半径为2.C1是函数y=x2的图象,C2是函数y=﹣x2的图象,则阴影部分的面积是________.14. (1分)(2017·奉贤模拟) 计算:(2 +6 )﹣3 =________.15. (1分) (2017九上·虎林期中) 如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为________.16. (1分)如图,有A、B两艘船在大海中航行,B船在A船的正东方向,且两船保持20海里的距离,某一时刻这两艘船同时测得在A的东北方向,B的北偏东15°方向有另一艘船C,那么此时船C与船B的距离是________ 海里.(结果保留根号)17. (1分) (2020八上·来宾期末) 对于任意实数m,n,定义一种运算m※n=mn-m-n+3,等式的右边是通常的加减和乘法运算。
青岛市2020版中考数学一模试卷D卷
青岛市2020版中考数学一模试卷D卷姓名:________ 班级:________ 成绩:________一、选择题. (共10题;共20分)1. (2分)许多人由于粗心,经常造成水龙头“滴水”或“流水”不断.根据测定,一般情况下一个水龙头“滴水”1个小时可以流掉3.5千克水.若1年按365天计算,这个水龙头1年可以流掉()千克水.(用科学计数法表示,保留3个有效数字)A . 3.1×104B . 0.31×105C . 3.06×104D . 3.07×1042. (2分)实数a,b,c在数轴上对应的点如图所示,下列式子中正确的是()A . ﹣a<b<cB . ab<acC . ﹣a+b>﹣a+cD . |a﹣b|<|a﹣c|3. (2分)四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为()A .B .C .D . 14. (2分) (2020九上·建湖期末) 一组数据1,2,8,5,3,9,5,4,5,4的众数、中位数分别为()A . 4.5、5B . 5、4.5C . 5、4D . 5、56. (2分)下列几何体的主视图、左视图、俯视图都相同的是()A .B .C .D .7. (2分)在等腰三角形、圆、长方形、正方形、直角三角形中,一定是轴对称图形的有()个A . 1B . 2C . 3D . 48. (2分)(2019·大同模拟) 将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()A . y=x2+3x+6B . y=x2+3xC . y=x2﹣5x+10D . y=x2﹣5x+49. (2分) (2015七下·威远期中) 将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有﹣个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式为()A . 8(x﹣1)<5x+12<8B . 0<5x+12<8xC . 0<5x+12﹣8(x﹣1)<8D . 8x<5x+12<810. (2分)方程|2x-1|=b有两个不相等的实数根,则b的取值范围是()A . b>1B . b<1C . 0<b<1D . 0<b≤1二、填空题 (共6题;共6分)11. (1分)(2020·中山模拟) 分解因式: = ________.12. (1分)(2017·营口模拟) 函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0;其中正确的个数有________个.13. (1分)已知关于x的方程x2﹣6x+m﹣1=0有两个不相等的实数根,则m的取值范围是________14. (1分)正多边形的一个外角是72°,则这个多边形的内角和的度数是________.15. (1分)某校为了发展校园足球运动,组建了校足球队,队员年龄分布如图所示,则这些队员年龄的众数是________16. (1分) (2016八上·东城期末) 如图,Rt△ABC的斜边AB的中垂线MN与AC交于点M,∠A=15°,BM=2,则△AMB的面积为________.三、解答题 (共13题;共141分)17. (5分)(1)计算:+(2)已知(x﹣1)3=﹣64,求x的值.18. (10分) (2020八下·宝安月考) 解不等式并把解集表示在数轴上:(1) 2(x+1)﹣1≥4x+2,(2)﹣2≥﹣19. (5分) (2017八下·定安期末) 先化简,再求值:,其中.20. (5分)(2019·台州模拟) 如图,已知平行四边形ABCD,E为BC的中点,DE⊥AE.求证:AB= AD.21. (10分)(2017·濮阳模拟) 平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,AD交y轴于P点(1)已知点A的坐标是(2,3),求k的值及C点的坐标;(2)在(1)的条件下,若△APO的面积为2,求点D到直线AC的距离.22. (5分) (2017七下·曲阜期中) 某运动员在一场篮球比赛中的技术统计如表所示:技术投中(次)罚球得分个人总得分数据221060注:表中投中次数不包括罚球(只包括2分球和3分球)根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个.23. (15分) (2019八下·温岭期末) 如图如图1,四边形ABCD和四边形BCMD都是菱形,(1)求证:∠M=60°(2)如图2,点E在边AD上,点F在边CM上,连接EF交CD于点H,若AE=MF,求证:EH=HF;(3)如图3,在第(2)小题的条件下,连接BH,若EF⊥CM,AB=3,求BH的长24. (12分) (2019七下·北流期末) 某校在经典朗读活动中,对全校学生用A、B、C、D四个等级进行评价,现从中抽取若干名学生进行调查,绘制出两幅不完整的统计图,请你根据图中的信息解答下列问题:(1)被调查的学生共有________人,图2中A等级所占的圆心角为________度。
山东省青岛市李沧区2019-2020年九年级中考数学模拟试卷(无答案)
2020年山东省青岛市李沧区九年级中考数学模拟试卷题号一二三四总分得分一、选择题(本大题共8小题,共24分)1.下列四个数中,是负数的是()A. |−3|B. −(−3)C. (−3)2D. −√32.如图是由四个相同小正方体摆成的立体图形,它的俯视图是()A.B.C.D.3.学校评选出30名优秀学生,要随机选5名代表参加全市优秀学生表彰会,则学校优秀学生参加全市表彰会的概率是()A. 16B. 512C. 529D. 4294.下列计算正确的是()A. (−3x)3=−27x3B. (x−2)2=x4C. x2÷x−2=x2D. x−1⋅x−2=x25.某校为了丰富校园文化,举行书法比赛,决赛设置了6个获奖名额,共有11名选手进入决赛,选手决赛得分均不相同.若知道某位选手的决赛得分,要判断他能否获奖,只需知道这11名选手决赛得分的()A. 中位数B. 平均数C. 众数D. 方差6.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CDA=()A. 135°B. 125°C. 90°D. 60°7.如图,在△ABC中,AB=AC,∠BAC=110°,△ADE的顶点D在BC上,且∠DAE=90°,AD=AE,则∠BAD−∠EDC的度数为()A. 17.5°B. 12.5°C. 12°D. 10°8.在同一直角坐标系中,函数y=k和y=kx+k的大致图象是()xA. B. C. D.二、填空题(本大题共6小题,共18分))0−2cos60°=______9.计算:(1210.今年“五一”假日全国共接待国内游客1.47亿人次.将数1.47亿用科学记数法表示的结果是______.11.已知一个圆心角为270°、半圆的半径为3m的扇形工件,未滚动前如图所示,A、B两点触地放置,滚动时,先将扇形以B为圆心,作如图所示的无滑动翻转,再使它紧贴地面滚动,当A、B两点再次触地时算一次,则n次滚动以后,圆心O所经过的路线长是______m.(结果用含π的式子表示)12.小刚周日要到距离家5km的体育馆打球,他骑自行车前往体育馆比乘汽车多用10min,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x km/ℎ,根据题意列方程为__________________.13.如图,扇形OAB的圆心角为直角,以OA为边作矩形OAFE,边EF交弧AB于点D,如果图中两个阴影部分面积相等,=______.则OEOB14.如图所示的立体图形由10个棱长为1的正方体木块搭成,这个立体图形的表面积为_________.三、解答题(本大题共10小题,共78分)15.(1)化简(1+1a )÷a2−1a−2a−2a2−2a+1.(2)解不等式组:{x<2x+13x−2(x−1)≤4.16.如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB= 30m.(1)求∠BCD的度数.(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)17.如图,已知AB⊥l于点B,CD⊥l于点D,AB=1,BD=CD=3,点P是线段BD上的一个动点,试确定点P的位置,使PA+PC的值最小,并求出这个最小值.18.某校在艺术节选拔节目过程中,从备选的“街舞”、“爵士”、“民族”、“拉丁”四种类型舞蹈中,选择一种学生最喜爱的舞蹈,为此,随机调查了本校的部分学生,并将调查结果绘制成如下统计图表(每位学生只选择一种类型),根据统计图表的信类型民族拉丁爵士街舞所占百分比a30%b15%(2)将条形统计图补充完整.(3)若该校共有1500名学生,试估计全校喜欢“拉丁舞蹈”的学生人数.19.游客到某景区旅游,经过景区检票口时,共有3个检票通道A、B、C,游客可随机选择其中的一个通过.(1)一名游客经过此检票口时,选择A通道通过的概率是______;(2)两名游客经过此检票口时,求他们选择不同通道通过的概率.(请用“画树状图”或“列表”等方式给出分析过程)20.如图,已知A(m,2),B(2,n)是一次函数y=−x+1的(k≠0)图象的两个交点.图象与反比例函数y=kx(1)求反比例函数的解析式;(2)根据图象,请直接写出关于x的不等式−x+1<k的x解集.21.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)当∠BAE为多少度时,四边形AECF是菱形?请说明理由.22.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,若水位上升3m,则水面CD的宽是10m.(1)建立如图所示的平面直角坐标系,求此抛物线的解析式;(2)当水位在正常水位时,有一艘宽为6m的货船经过这里,船舱上有高出水面3.6m的长方体货物(货物与货船同宽).问:此船能否顺利通过这座拱桥⊕23.问题再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义证明完全平方公式.证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1:这个图形的面积可以表示成:(a+b)2或a2+2ab+b2∴(a+b)2=a2+2ab+b2这就验证了两数和的完全平方公式.(1)类比解决:请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32(2)尝试解决:请你类比上述推导过程,利用图形的几何意义确定:13+23+33=______.(要求写出结论并构造图形写出推证过程).(3)问题拓广:请用上面的表示几何图形面积的方法探究:13+23+33+⋯+n3=______.(直接写出结论即可,不必写出解题过程)24.如图,在矩形ABCD中,AB=CD=4cm,AD=BC=6cm,AE=DE=3cm,点P从点E出发,沿EB方向匀速运动,速度为1cm/s;同时,点Q从点C出发,沿CD方向匀速运动,速度为2cm/s,连接PQ,设运动时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ⊥CD?(2)设四边形PBCQ的面积为y(cm2),求y与t的函数关系式;(3)是否存在某一时刻t,使S四边形PBCQ:S四边形PQDE=22:5?若存在,求出t的值;若不存在,说明理由.(4)是否存在某一时刻t,使A,P,Q三点在同一直线上?若存在,求出t的值;若不存在,说明理由.。