磁化率的测定(实验报告) zh

合集下载

实验十六 磁化率的测定

实验十六  磁化率的测定

络合物的磁化率测定1.实验目的及要求1)掌握古埃(Gouy)法测定磁化率的原理和方法。

2)通过测定一些络合物的磁化率,求算未成对电子数和判断这些分子的配键类型。

2.实验原理1)磁化率物质在外磁场作用下,物质会被磁化产生一附加磁场。

物质的磁感应强度等于(16.1)式中B0为外磁场的磁感应强度;B′为附加磁感应强度;H为外磁场强度;μ0为真空磁导率,其数值等于4π×10-7N/A2。

物质的磁化可用磁化强度M来描述,M也是矢量,它与磁场强度成正比。

(16.2)式中Z为物质的体积磁化率。

在化学上常用质量磁化率χm或摩尔磁化率χM来表示物质的磁性质。

(16.3)(16.4)式中ρ、M分别是物质的密度和摩尔质量。

2)分子磁矩与磁化率物质的磁性与组成物质的原子,离子或分子的微观结构有关,当原子、离子或分子的两个自旋状态电子数不相等,即有未成对电子时,物质就具有永久磁矩。

由于热运动,永久磁矩的指向各个方向的机会相同,所以该磁矩的统计值等于零。

在外磁场作用下,具有永久磁矩的原子,离子或分子除了其永久磁矩会顺着外磁场的方向排列。

(其磁化方向与外磁场相同,磁化强度与外磁场强度成正比),表观为顺磁性外,还由于它内部的电子轨道运动有感应的磁矩,其方向与外磁场相反,表观为逆磁性,此类物质的摩尔磁化率χM是摩尔顺磁化率χ顺和摩尔逆磁化率χ逆的和。

对于顺磁性物质,χ顺>>∣χ逆∣,可作近似处理,χM=χ顺。

对于逆磁性物质,则只有χ逆,所以它的χM=χ逆。

第三种情况是物质被磁化的强度与外磁场强度不存在正比关系,而是随着外磁场强度的增加而剧烈增加,当外磁场消失后,它们的附加磁场,并不立即随之消失,这种物质称为铁磁性物质。

磁化率是物质的宏观性质,分子磁矩是物质的微观性质,用统计力学的方法可以得到摩尔顺磁化率χ顺和分子永久磁矩μm间的关系(16.6)式中N0为阿佛加德罗常数;K为波尔兹曼常数;T为绝对温度。

物质的摩尔顺磁磁化率与热力学温度成反比这一关素,称为居里定律,是居里首先在实验中发现,C为居里常数。

磁化率的测定实验报告记录(华南师范大学物化实验)

磁化率的测定实验报告记录(华南师范大学物化实验)

磁化率的测定实验报告记录(华南师范大学物化实验)————————————————————————————————作者:————————————————————————————————日期:磁化率的测定一、实验目的(1)掌握古埃磁天平测定物质磁化率的实验原理和技术。

(2)通过对一些配位化合物磁化率的测定,计算中心离子的不成对电子数,并判断d电子的排布情况和配位体场的强弱。

二、实验原理2.1物质的磁性物质在磁场中被磁化,在外磁场强度H的作用下,产生附加磁场。

该物质内部的磁感应强度B为:B=H+4πI=H+4πκH (1)式中,I称为体积磁化强度,物理意义是单位体积的磁矩。

式中κ=I/H称为物质的体积磁化率。

I和κ分别除以物质的密度ρ可以得到σ和χ,σ=I/ρ称为克磁化强度;χ=κ/ρ称为克磁化率或比磁化率。

χm=κM/ρ称为摩尔磁化率(M是物质的摩尔质量)。

这些数据都可以从实验测得,是宏观磁性质。

在顺磁、反磁性研究中常用到χ和χm,铁磁性研究中常用到I、σ。

不少文献中按宏观磁性质,把物质分成反磁性物质。

顺磁性物质和铁磁性物质以及亚铁磁性物质、反铁磁性物质积累。

其中,顺磁性物质χm>0而反磁性物质的χm<0。

2.1古埃法测定磁化率古埃法是一种简便的测量方法,主要用在顺磁测量。

简单的装置包括磁场和测力装置两部分。

调节电流大小,磁头间距离大小,可以控制磁场强度大小。

测力装置可以用分析天平。

为了测量不同温度的数据,要使用变温、恒温和测温装置。

样品放在一个长圆柱形玻璃管内,悬挂在磁场中,样品管下端在磁极中央处,另一端则在磁场强度为零处。

样品在磁场中受到一个作用力。

dF=κHAdH (2)式中,A表示圆柱玻璃管的截面积。

样品在空气中称量,必须考虑空气修正,即dF=(κ-κ0HAdH)(3)κ0表示空气的体积磁化率,整个样品的受力是积分问题:(4)因H0H,且忽略κ0,则(5)式中,F可以通过样品在有磁场和无磁场的两次称量的质量差来求出。

磁化率的测定

磁化率的测定


n 8.06 m 1 1
(17)
因而可求出样品分子中未成对电子数n。
m样 标 m标
m样 m管 m标 m管

M样 m样
三、实验步骤:
1、主要仪器:MB-1A型磁天平
2、实验步骤: (1)测量空管在加磁场前后的质量变化△W管值; (3)测量莫尔盐在加磁场前后质量变化△W标值 (分别测加0.2T和0.3T时质量变化值); (4)按以上步骤测定样品的摩尔磁化率。
温度:28.0℃
K4Fe(CN)6. 3H2O CuSO4.5H2 O
FeSO4.7H2O
10.1042 10.1276 10.1560 13.00
10.3319 10.3314 10.3307 12.20
10.7420 10.7448 10.7484 12.80
样品质量(g)
△m1(0.20-0T) △m2(0.30-OT)
(2)装样口,样品高度约为12㎝(先装莫尔盐);
3、注意事项:
(1)粉末样品在管中的装填要均匀;
(2)测定时样品管的底部正好处于磁极的中
心线上,即磁场强度最强处; (3)避免空气对流; (4)防止铁磁性物质的混入,不可使用含铁、 镍的角匙或镊子。
四、实验数据1:零点:270mg
空管 摩尔质量M OT 0.20T 0.30T 样 品 高 度 ( cm ) 7.4333 7.4330 7.4327 10.7427 10.7584 10.772 13.80 莫尔盐
样品质量(g)
△m1(0.20-0T) △m2(0.30-OT)
S
?
Z
dZ
N
m
χ 沿管方向的磁场梯度。
:质量磁化率:m样品的质量;H为磁场强度;Z

磁化率测定(实验报告)

磁化率测定(实验报告)

磁化率的测定1.实验目的1.1测定物质的摩尔磁化率,推算分子磁矩,估计分子内未成对电子数,判断分子配键的类型。

1.2掌握古埃(Gouy)磁天平测定磁化率的原理和方法。

2.实验原理2.1摩尔磁化率和分子磁矩物质在外磁场H0作用下,由于电子等带电体的运动,会被磁化而感应出一个附加磁场H'。

物质被磁化的程度用磁化率χ表示,它与附加磁场强度和外磁场强度的比值有关:χ为无因次量,称为物质的体积磁化率,简称磁化率,表示单位体积内磁场强度的变化,反映了物质被磁化的难易程度。

化学上常用摩尔磁化率χm表示磁化程度,它与χ的关系为式中M、ρ分别为物质的摩尔质量与密度。

χm的单位为m3·mol -1。

物质在外磁场作用下的磁化现象有三种:第一种,物质的原子、离子或分子中没有自旋未成对的电子,即它的分子磁矩,µm=0。

当它受到外磁场作用时,内部会产生感应的“分子电流”,相应产生一种与外磁场方向相反的感应磁矩。

如同线圈在磁场中产生感生电流,这一电流的附加磁场方向与外磁场相反。

这种物质称为反磁性物质,如Hg, Cu, Bi等。

它的χm称为反磁磁化率,用χ反表示,且χ反<0。

第二种,物质的原子、离子或分子中存在自旋未成对的电子,它的电子角动量总和不等于零,分子磁矩µm≠0。

这些杂乱取向的分子磁矩在受到外磁场作用时,其方向总是趋向于与外磁场同方向,这种物质称为顺磁性物质,如Mn,Cr, Pt等,表现出的顺磁磁化率用χ顺表示。

但它在外磁场作用下也会产生反向的感应磁矩,因此它的χm是顺磁磁化率χ顺。

与反磁磁化率χ反之和。

因|χ顺|»|χ反|,所以对于顺磁性物质,可以认为χm=χ顺,其值大于零,即χm>0。

第三种,物质被磁化的强度随着外磁场强度的增加而剧烈增强,而且在外磁场消失后其磁性并不消失。

这种物质称为铁磁性物质。

对于顺磁性物质而言,摩尔顺磁磁化率与分子磁矩µm关系可由居里-郎之万公式表示:式中L为阿伏加德罗常数(6.022 ×1023mol-1),、k为玻尔兹曼常数(1.3806×10-23J·K-1),µ0为真空磁导率(4π×10-7N·A-2,T为热力学温度。

磁化率的测定

磁化率的测定

实验一磁化率的测定【实验目的】①掌握古埃(Gouy)磁天平测定物质磁化率的实验原理和技术。

②通过对一些配位化合物磁化率的测定,计算中心离子的不成对电子数,并判断d 电子的排布情况和配位体场的强弱。

【实验原理】(1)物质的磁性物质在磁场中被磁化,在外磁场强度H的作用下产生附加磁场,该物质内部的磁感应强度B为:B=H+4πI=H+4πκH①式中,I称为体积磁化强度,物理意义是单位体积的磁矩。

式中的κ=I/H称为物质的体积磁化率。

I和κ分别除以物质的密度ρ可以得到σ和χ,σ=I/ρ称为克磁化强度;χ=κ/ρ称为克磁化率或比磁化率。

χm=κM/ρ称为摩尔磁化率(M是物质的摩尔质量)。

这些数据都可以从实验测得,是宏观磁性物质。

在顺磁、反磁性研究中常用到χ和χm,铁磁性研究中常用到I、σ。

不少文献中按宏观磁性物质,把物质分成反磁性物质、顺磁性物质和铁磁性物质以及亚铁磁性物质、反铁磁性物质几类。

其中,顺磁性物质的χm>0而反磁性物质的χm <0。

(2)古埃法(Gouy)测定磁化率古埃法是一种简便的测量方法,主要用在顺磁测量。

简单的装置包括磁场和测力装置两部分。

调节电流大小,磁头间距离大小,可以控制磁场强度大小。

测力装置可以用分析天平。

为了测量不同温度的数据,要使用变温、恒温和测温装置。

样品放在一个长圆柱形玻璃管内,悬挂在磁场中,样品管下端在磁极中央处,另一端则在磁场强度为零处。

样品在磁场中受到一个作用力。

d F=κHA d H式中,A表示圆柱玻璃管的截面积。

样品在空气中称量,必须考虑空气修正,即d F=(κ-κ0)Ha d Hκ0表示空气的体积磁化率,整个样品的受力是积分问题:F =∫(κ-κ0)HA d H =1/2(κ-κ0)A (H 2-H 02) ②因H 0<<H ,且忽略κ0,则F =1/2κAH 2 ③式中,F 可以通过样品在有磁场和无磁场的两次称量的质量差来求出。

F =(△m 样-△m 空) g ④式中,△m 样为样品管加样品在有磁场和无磁场时的质量差;△m 空为空样品管在有场和无磁场时的质量差;g 为重力加速度。

磁化率的测定

磁化率的测定

磁化率的测定一.实验目的:用古埃磁天平测定硫酸亚铁、亚铁氰化钾和铁氰化钾的磁化率,并计算其不成对电子数。

二.实验原理:古埃(Gouy)磁天平的特点是结构简单,灵敏度高。

用古埃磁天平法测量物质的磁化率,从而可求得永久磁矩和未成对电子数,这对研究物质结构具有重要意义。

用古埃磁天平测定物质的磁化率时,将装有样品的圆柱形玻璃管悬挂在分析天平的一个臂上,使样品底部处于电磁铁两极的中心,即处于磁场强度最大的区域,样品的顶端离磁场中心较远,磁场强度很弱,整个样品处于一个非均匀的磁场中。

由于沿样品轴心方向z 存在一磁场梯度z H ∂∂,故样品沿z 方向受到磁力dF 的作用 dz zH AH dF ∂∂=κ 式中:κ——体积磁化率A ——柱形样品的截面积对顺磁性物质,作用力指向场强最大的方向,反磁性物质则指向场强最弱的方向中。

若不考虑样品管周围介质和的影响,积分得到作用在整个样品管上的力为:A H F 221κ= 当样品受到磁场的作用力时,天平的另一臂上加减砝码使之平衡,设ΔW 为施加磁场前后的质量差,则W g A H F ∆==221κ 式中:g 为重力加速度。

又样品质量hA m ρ=, ρ、h 为柱形样品管的密度和高度。

由于质量磁化率g x 和摩尔磁化率M x 的定义,ρκ=g x ρκM x M ⋅= 因此可得: 22mH Whg x g ∆=22mHWhgM x M ∆= 一般用已知磁化率的物质校正磁天平。

当待测样品和校正用样品在同一样品管中的填装高度相同并且在同一场强下进行测量,由可得待测样品的摩尔磁化率为:22101021,2,M m m W W W W x x g M ⋅⋅∆-∆∆-∆⋅= 0W ∆、2W ∆、1W ∆——分别为空样品管、待测样品、校正样品施加磁场前后的质量变化;2m 、1m ——待测样品和校正样品的质量;2M ——待测样品的摩尔质量。

三.仪器与试剂:古埃磁天平一套(由自动加码分析天平和磁场强度大于3000G 的永久磁铁组成)也可采用电磁铁;样品管(内径约6mm 的玻璃管)3支。

磁化率的测定(实验报告)

磁化率的测定(实验报告)

磁化率的测定之五兆芳芳创作测定物质的摩尔磁化率,推算份子磁矩,估量份子内未成对电子数,判断份子配键的类型.掌握古埃(Gouy)磁天平测定磁化率的原理和办法.2.实验原理摩尔磁化率和份子磁矩物质在外磁场H0作用下,由于电子等带电体的运动,会被磁化而感应出一个附加磁场H'.物质被磁化的程度用磁化率χ暗示,它与附加磁场强度和外磁场强度的比值有关:χ为无因次量,称为物质的体积磁化率,简称磁化率,暗示单位体积内磁场强度的变更,反应了物质被磁化的难易程度.化学上经常使用摩尔磁化率χm暗示磁化程度,它与χ的关系为式中M、ρ辨别为物质的摩尔质量与密度.χm的单位为m3·mol -1.物质在外磁场作用下的磁化现象有三种:第一种,物质的原子、离子或份子中没有自旋未成对的电子,即它的份子磁矩,µm=0.当它受到外磁场作用时,内部会产生感应的“份子电流”,相应产生一种与外磁场标的目的相反的感应磁矩.如同线圈在磁场中产生感生电流,这一电流的附加磁场标的目的与外磁场相反.这种物质称为反磁性物质,如Hg,Cu,Bi等.它的χm称为反磁磁化率,用χ反暗示,且χ反<0.第二种,物质的原子、离子或份子中存在自旋未成对的电子,它的电子角动量总和不等于零,份子磁矩µm≠0.这些杂乱取向的份子磁矩在受到外磁场作用时,其标的目的总是趋向于与外磁场同标的目的,这种物质称为顺磁性物质,如Mn,Cr,Pt等,表示出的顺磁磁化率用χ顺暗示.但它在外磁场作用下也会产生反向的感应磁矩,因此它的χm是顺磁磁化率χ顺.与反磁磁化率χ反之和.因|χ顺|»|χ反|,所以对于顺磁性物质,可以认为χm=χ顺,其值大于零,即χm>0.第三种,物质被磁化的强度随着外磁场强度的增加而剧烈增强,并且在外磁场消失后其磁性其实不必失.这种物质称为铁磁性物质.对于顺磁性物质而言,摩尔顺磁磁化率与份子磁矩µm关系可由居里-郎之万公式暗示:式中L为阿伏加德罗常数(6.022 ×1023mol-1),、k为玻尔兹曼常数(1.3806×10-23J·K-1),µ0为真空磁导率(4π×10-7N·A-2,T为热力学温度.式((2-136)可作为由实验测定磁化率来研究物质内部结构的依据.份子磁矩由份子内未配对电子数n决定,其关系如下:式中µB为玻尔磁子,是磁矩的自然单位.µB=9.274 ×10-24J·T-1(T 为磁感应强度的单位,即特斯拉).求得n值后可以进一步判断有关络合物份子的配键类型.例如,Fe2+离子在自由离子状态下的外层电子结构为3d64s04p0.如以它作为中心离子与6个H20配位体形成[Fe(H20)6]2+络离子,是电价络合物.其中Fe2+离子仍然保持原自由离子状态下的电子层结构,此时n=4.如下图所示:如果Fe2+离子与6个CN-离子配位体形成[Fe(CN)6]4-络离子,则是共价络合物.这时其中Fe2+离子的外电子层结构产生变更,n=0.见图2-64所示:显然,其中6个空轨道形成d2sp3的6个杂化轨道,它们能接受6个CN-离子中的6对孤对电子,形成共价配键.摩尔磁化率的测定本实验用古埃磁天平测定物质的摩尔磁化率χm,测定原理如图2所示.一个截面积为A的样品管,装入高度为h、质量为m的样品后,放入非均匀磁场中.样品管底部位于磁场强度最大之处,即磁极中心线上,此处磁场强度为H.样品最高处磁场强度为零.前已述及,对于顺磁性物质,此时产生的附加磁场与原磁场同向,即物质内磁场强度增大,在磁场中受到吸引力.设χ0为空气的体积磁化率,可以证明,样品管内样品受到的力为:考虑到ρ=m/hA,而χ0值很小,相应的项可以疏忽,可得在磁天平法中利用精度为0.1mg的电子天平直接丈量F值.设△m0为空样品管在有磁场和无磁场时的称量值的变更,△m为装样品后在有磁场和无磁场时的称量值的变更,则式中、g为重力加快度(·s-2).可得磁场强度H可由特斯拉计或CT5高斯计丈量.应该注意,高斯计丈量的实际上是磁感应强度B,单位为T(特斯拉),1T=104高斯.磁场强度H可由B =µ0H关系式计较得到,H的单位为A·m-1.也可用已知磁化率的莫尔氏盐标定.莫尔氏盐的摩尔磁化率B与热力学m温度T的关系为:式中M为莫尔氏盐的摩尔质量(kg·mol-1).3.实验步调励磁电源开关,电流表,打开电子天平的电源,并按下“清零”按钮,毫特斯拉计表头调零,然后调节磁场强度约为100mT,查抄霍尔探头是否在磁场最强处,并固定其位置,使试管尽可能在两磁头中间(磁场最强处);3.2取一支清洁、枯燥的空样品管,悬挂在天平一端的挂钩上,使样品管的底部在磁极中心连线上,准确称量空样品管;3.3慢慢调节磁场强度为300(mT),等电子天平读数稳定之后,读取电子天平的读数;3.4慢慢调节磁场强度读数至350(mT),读取电子天平的读数;3.5慢慢调节磁场强度读数高至400(mT),等30秒,然后下降至350(mT),读取电子天平的读数;3.6将磁场强度读数降至300(mT),读取电子天平的读数;3.7再将磁场强度读数调至最小,读取电子天平的读数;3.8取下样品管,装入莫尔氏盐(在装填时要不竭将样品管底部敲击木垫,使样品粉末填实),直到样品高度至试管标识表记标帜处,依照上面的步调辨别丈量其在0(mT)、300(mT)、350(mT)时候电子天平的读数;(注:上述调节电流由小到大、再由大到小的测定办法,是为了抵消实验时磁场剩磁现象的影响.)3.9样品的摩尔磁化率测定用标定磁场强度的样品管辨别装入样品1亚铁氰化钾K4[Fe(CN)6]·3H20和样品2硫酸亚铁FeS04·7H20,按上述相同的步调丈量其在0(mT)、300(mT)、350(mT)时候电子天平的读数.4.数据记实与处理数据表:室温o C称量m/g磁场强度/mT 0 300 350 400 350 300 0 空管/莫尔盐/亚铁氰化钾/硫酸亚铁/由上表数据辨别计较样品管及样品在无磁场时的质量(m)和在不合磁场强度下的质量变更(△m):磁化强度/mT 空管△m/g 莫尔盐△m/g 亚铁氰化钾△m/g 硫酸亚铁△m/g 0300350χm、份子磁矩μ并预算其不成对电子数n按照求莫尔盐的摩尔磁化率:温度T=(24.9+273.15)KM 莫尔盐硫酸亚铁=278.02 g/mol M 六氰合铁(II )酸钾=422.39 g/molχm =L μ0μm 2/3kTL=6.022 ×1023mol -1,k=1.3806×10-23J·K -1,µ0=4π×10-7N·A -2,µB =9.274 ×10-24J·T -1莫尔氏盐的摩尔磁化率Bm χ π411095009⨯+⨯-T =××10-3×10-7m 3/mol -1①当H=0.3T,m 标 = 3.0373g,m 样品1=2.5326g,m 样品2χ样1=111-m -样品样品空管标准空管空管样品空管标标m M m m m m x ⨯∆∆∆∆++= ×10-9m 3/mol -1因为χ样1小于0,所以μm 不存在,则n=0χ样2=222-m -样品样品空管标准空管空管样品空管标标m M m m m m x ⨯∆∆∆∆++×10-8m 3/mol -1 μm ×10-23J·T -1②当H=0.35T,m’标=3.0891g,m 样品1=2.5357g,m 样品2χ样1=111-m -样品样品空管标准空管空管样品空管标标m M m m m m x ⨯∆∆∆∆++×10-9m 3/mol -1μm 因为χ样1小于0,所以μm 不存在,则n=0χ样2=222-m -样品样品空管标准空管空管样品空管标标m M m m m m x ⨯∆∆∆∆++=×10-8m 3/mol -1 μm ×10-23J·T -1 这个是Fe 2+,配合上6个CN -,sd 2p 3杂化Fe 自己带26个电子[Ar]3s 2 2d 8 3p 0失去两个电子,[Ar]2d 8,按能量最小散布,以及CN -强配体,为0 2 2 2 2,故有0对孤对电子,所以在0.3T 和3.5T 中,所测得的亚铁氰化钾的孤对电子数较为准确;FeSO 4*7H 2O 的成单电子数为4,顺磁性.显然,实验中所测的数据明显偏小,可能的原因为:机械不稳定,调整的磁场不稳定;装样品时不均匀,测出来的数据禁绝确;标定空管时,标定出来的数据禁绝确.5.误差阐发实验所得结果与文献值比较合适,但仍是存在一定的误差,造成误差的可能原因及需注意的事项有:1、由于实验实际操纵时所使用的仪器已经没有玻璃门,故称量时应尽量不要有大动作的走动,或太多人围不雅、说话等,应该尽量保持整个称量进程是在没有太多搅扰磁场的因素的情况下进行.2、样品管一定要洁净.ΔW 空管=W 空管(H=H)-W 空管(H=0)>0时标明样品管不洁净,应改换.装在样品管内的样品要均匀紧密、上下一致、端面平整、高度丈量准确.样品管的底部要位于磁极极缝的中心,与两磁极两端距离相等.3、由于样品都是研磨完后一段时间才开始丈量的,不排除样品会产生相应的吸水和失水,致使份子量会产生变更,使最后所计较出来的结果存在误差.4、丈量样品高度h 的误差严重影响实验的精度,这从摩尔磁化率的计较公式 22()MaF E M W W gh WH χ∆-∆=可以看出来.而由于最上面的那些样品粉末不克不及压紧压平,丈量高度h 的误差仍是比较大的.5、装样不紧密也会带来较大误差——推导22()MaF E M W W gh WH χ∆-∆=公式时用到了密度ρ,最后表示在高度h 中.“装样不紧密”也就是说实际堆密度比理论密度小,这样高度h就会比理论值偏大,即便很准确地丈量出高度h,它仍是比理论值有一个正的绝对误差.6、励磁电流不克不及每次都准确地定在同一位置,只能说是包管大概在这个位置邻近,因此实际上磁场强度并不是每次都是一致的.所以,励磁电流的变更应平稳、迟缓,调节电流时不宜用力过大.加上或去掉磁场时,勿改动永磁体在磁极架上的凹凸位置及磁极间矩,使样品管处于两磁极的中心位置,尽量使磁场强度前后比较一致.7、读数时最好自始至终由同一团体来读数,以削减由于大家读数时因时间距离不合所造成的误差.每次称量最好先停十秒,待磁场比较稳定时才读数,可削减误差.。

磁化率的测定实验报告

磁化率的测定实验报告

磁化率的测定1.实验目的1.1测定物质的摩尔磁化率,推算分子磁矩,估计分子内未成对电子数,判断分子配键的类型。

1.2掌握古埃(Gouy)磁天平测定磁化率的原理和方法。

2.实验原理2.1摩尔磁化率和分子磁矩物质在外磁场H0作用下,由于电子等带电体的运动,会被磁化而感应出一个附加磁场H'。

物质被磁化的程度用磁化率χ表示,它与附加磁场强度和外磁场强度的比值有关:χ为无因次量,称为物质的体积磁化率,简称磁化率,表示单位体积内磁场强度的变化,反映了物质被磁化的难易程度。

化学上常用摩尔磁化率χm表示磁化程度,它与χ的关系为式中M、ρ分别为物质的摩尔质量与密度。

χm的单位为m3·mol -1。

物质在外磁场作用下的磁化现象有三种:第一种,物质的原子、离子或分子中没有自旋未成对的电子,即它的分子磁矩,µm=0。

当它受到外磁场作用时,内部会产生感应的“分子电流”,相应产生一种与外磁场方向相反的感应磁矩。

如同线圈在磁场中产生感生电流,这一电流的附加磁场方向与外磁场相反。

这种物质称为反磁性物质,如Hg,Cu,Bi等。

它的χm称为反磁磁化率,用χ反表示,且χ反<0。

第二种,物质的原子、离子或分子中存在自旋未成对的电子,它的电子角动量总和不等于零,分子磁矩µm≠0。

这些杂乱取向的分子磁矩在受到外磁场作用时,其方向总是趋向于与外磁场同方向,这种物质称为顺磁性物质,如Mn,Cr,Pt等,表现出的顺磁磁化率用χ顺表示。

但它在外磁场作用下也会产生反向的感应磁矩,因此它的χm是顺磁磁化率χ顺。

与反磁磁化率χ=χ顺,其值大于零,即χm>0。

反之和。

因|χ顺|»|χ反|,所以对于顺磁性物质,可以认为χm第三种,物质被磁化的强度随着外磁场强度的增加而剧烈增强,而且在外磁场消失后其磁性并不消失。

这种物质称为铁磁性物质。

对于顺磁性物质而言,摩尔顺磁磁化率与分子磁矩µm关系可由居里-郎之万公式表示:式中L为阿伏加德罗常数(6.022 ×1023mol-1),、k为玻尔兹曼常数(1.3806×10-23J·K-1),µ0为真空磁导率(4π×10-7N·A-2,T为热力学温度。

磁化率实验报告

磁化率实验报告

华南师范大学实验报告基础化学实验结构化学实验学生姓名:学号:年级班级:专业:实验项目:磁化率的测定实验时间:实验评分:一、【实验目的】1.掌握古埃(Gouy)磁天平测定物质磁化率的实验原理和技术。

2.通过对一些配位化合物磁化率的测定,计算中心离子的不成对电子数.并判断d电子的排布情况和配位体场的强弱。

二、【实验原理】(1)物质的磁性物质在磁场中被磁化,在外磁场强度H(A·m-1)的作用下,产生附加磁场。

这时该物质内部的磁感应强度B为:B=H+4πI= H+4πκH (1) 式中,I称为体积磁化强度,物理意义是单位体积的磁矩。

式中κ=I/H称为物质的体积磁化率。

I和κ分别除以物质的密度ρ可以得到σ和χ,σ=I/ρ称为克磁化强度;χ=κ/ρ称为克磁化率或比磁化率。

χm=Κm/ρ称为摩尔磁化率。

这些数据是宏观磁化率。

在顺磁、反磁性研究中常用到χ和χm,帖磁性研究中常用到I、σ。

不少文献中按宏观磁性质,把物质分成反磁性物质、顺磁性物质和铁磁性物质以及亚铁磁性物质、反磁性物质几类。

其中,χm<0,这类物质称为反磁性物质;χm>0,这类物质称为顺磁性物质。

(2)古埃法(Gouy)测定磁化率古埃法是一种简便的测量方法,主要用在顺磁测量。

简单的装置包括磁场和测力装置两部分。

调节电流大小,磁头间距离大小,可以控制磁场强度大小。

测力装置可以用分析天平。

为了测量不同温度的数据,要使用变温、恒温和测温装置。

样品放在一个长圆柱形玻璃管内,悬挂在磁场中,样品管下端在磁极中央处,另一端则在磁场为零处。

样品在磁场中受到一个作用力。

df=κHAdH式中,A表示圆柱玻璃管的截面积。

样品在空气中称重,必须考虑空气修正,即dF=(κ-κ)HAdHκ0表示空气的体积磁化率,整个样品的受力是积分问题:F=)()(21d )(202000H H A H HA HH --=-⎰κκκκ (2) 因H 0<<H,且可忽略κ0,则F=221AH κ (3) 式中,F 可以通过样品在有磁场和无磁场的两次称量的质量差来求出。

磁化率的测定实验报告

磁化率的测定实验报告

磁化率的测定实验报告一、实验目的。

本实验旨在通过测定不同材料的磁化率,探究材料在外加磁场下的磁化特性,并通过实验数据的分析,掌握磁化率的测定方法。

二、实验原理。

磁化率是描述材料在外界磁场作用下磁化程度的物理量,通常用符号χ表示。

在外界磁场作用下,材料会产生磁化,其磁化强度与外界磁场强度成正比,即M=χH,其中M为材料的磁化强度,H为外界磁场强度。

根据这一关系,可以通过测定材料在不同外界磁场下的磁化强度,从而计算出磁化率。

三、实验仪器与材料。

1. 电磁铁。

2. 磁场强度计。

3. 不同材料样品(如铁、铜、铝等)。

4. 电源。

5. 实验台。

四、实验步骤。

1. 将电磁铁置于实验台上,并接通电源,调节电流大小,使得电磁铁产生不同的磁场强度。

2. 将磁场强度计放置在电磁铁产生的磁场中,测定不同磁场强度下的磁场强度值。

3. 将不同材料样品放置在电磁铁产生的磁场中,测定不同磁场强度下材料的磁化强度。

4. 根据实验数据,计算出不同材料的磁化率。

五、实验数据与分析。

通过实验测得不同材料在不同磁场强度下的磁化强度数据,利用公式M=χH,可以计算出不同材料的磁化率。

通过数据分析,可以发现不同材料的磁化率大小不同,反映了材料在外界磁场下的磁化特性。

例如,铁具有较大的磁化率,表明其在外界磁场下容易被磁化,而铜、铝等非磁性材料的磁化率较小。

六、实验结论。

通过本实验的测定与分析,我们掌握了磁化率的测定方法,并了解了不同材料在外界磁场下的磁化特性。

磁化率的大小反映了材料对外界磁场的响应程度,对于材料的选用与应用具有一定的指导意义。

七、实验总结。

本实验通过测定不同材料的磁化率,深入了解了材料在外界磁场下的磁化特性,为进一步研究材料的磁性质提供了重要的实验基础。

同时,实验过程中我们也发现了一些问题,如在测定过程中需注意排除外界干扰因素,提高测量精度等。

八、参考文献。

1. 王明. 固体物理学. 北京,高等教育出版社,2008.2. 张三,李四. 材料科学导论. 上海,上海科学技术出版社,2010.九、致谢。

磁化率实验报告

磁化率实验报告

磁化率实验报告一、实验目的本实验旨在通过测量物质的磁化率,了解物质的磁性特征,掌握古埃(Gouy)法测量磁化率的原理和实验方法,探究物质的结构与磁性之间的关系。

二、实验原理1、磁化率的定义物质在外磁场作用下被磁化的程度用磁化率(χ)来表示。

磁化率是无量纲的物理量,其大小反映了物质被磁化的难易程度。

2、古埃法测量磁化率的原理古埃法是一种常用的测量磁化率的方法。

将样品制成圆柱形,置于两个磁极之间,使样品柱的轴线与磁场方向平行。

在磁场中,样品会被磁化产生附加磁场,从而影响磁极间的磁场分布。

通过测量无样品时和有样品时磁极间的磁场强度变化,可以计算出样品的磁化率。

3、磁化强度(M)与磁场强度(H)的关系M =χH4、磁矩(μ)与磁化率(χ)的关系μ =χVm (其中 Vm 为摩尔体积)三、实验仪器与试剂1、仪器古埃磁天平、特斯拉计、电子天平、软质玻璃样品管、装样工具等。

2、试剂莫尔盐((NH₄)₂Fe(SO₄)₂·6H₂O)、亚铁氰化钾K₄Fe(CN)₆·3H₂O 、未知样品。

四、实验步骤1、仪器准备(1)调节磁天平底座水平,使悬线与磁场方向垂直。

(2)用特斯拉计测量磁场强度,确保磁场稳定。

2、样品管的处理(1)将空样品管用去离子水洗净,烘干。

(2)测量空样品管的质量 m₁。

3、装样(1)用分析天平准确称取一定量的莫尔盐,装入样品管中,使样品高度约为 15cm ,轻轻敲击使样品填实,测量样品和样品管的总质量m₂。

(2)同样方法分别称取亚铁氰化钾和未知样品进行装样。

4、测量(1)将装有莫尔盐的样品管悬挂在磁天平的挂钩上,调节样品管位置,使其处于磁场中心。

(2)测量无磁场时样品管的质量 m₃,然后接通磁场,待示数稳定后,测量有磁场时样品管的质量 m₄。

(3)按照同样的方法测量亚铁氰化钾和未知样品在无磁场和有磁场时的质量。

5、数据记录与处理(1)记录实验过程中的各项质量数据。

(2)根据公式计算各样品的磁化率。

磁化率测定的实验报告

磁化率测定的实验报告

磁化率测定的实验报告一、实验目的1、掌握古埃(Gouy)法测定磁化率的原理和方法。

2、测定物质的摩尔磁化率,推算分子磁矩,估计分子内未成对电子数,判断分子的配键类型。

二、实验原理1、磁化率物质在外磁场作用下被磁化的程度用磁化率来表示。

磁化率是一个无量纲的量,它反映了物质被磁化的难易程度。

物质的磁化率可以分为顺磁性、抗磁性和铁磁性三种类型。

顺磁性物质的分子中存在未成对电子,这些电子在外磁场作用下会产生顺磁矩,使物质表现出顺磁性。

顺磁性物质的磁化率为正值,且数值较小。

抗磁性物质的分子中不存在未成对电子,在外磁场作用下会产生与外磁场方向相反的诱导磁矩,使物质表现出抗磁性。

抗磁性物质的磁化率为负值,且数值很小。

铁磁性物质在较强的外磁场作用下能被强烈磁化,其磁化率很大,并且与外磁场强度有关。

2、古埃法测定磁化率本实验采用古埃法测定物质的磁化率。

将样品装在一个圆柱形的玻璃管中,悬挂在两磁极之间,使样品管的轴线与磁场方向平行。

在不均匀磁场中,样品受到一个作用力,这个作用力可以通过测量样品管在磁场中的重量变化来确定。

设样品管的横截面积为 S,样品的高度为 l,样品的质量为 m,磁场强度为 H,磁场梯度为 dH/dz,则样品所受到的作用力为:F =(m/ρ)·(dM/dz)其中,ρ 为样品的密度,M 为样品的磁化强度。

磁化强度 M 与磁化率χ 之间的关系为:M =χH将 M =χH 代入上式,可得:F =(m/ρ)·χ·(dH/dz)当样品管在磁场中时,会受到一个向上的力,使得样品管的重量减轻。

测量样品管在有磁场和无磁场时的重量变化ΔW,即可计算出磁化率χ。

三、实验仪器和试剂1、仪器古埃磁天平(包括磁场、磁极、样品管支架、电光天平)、软质玻璃样品管、研钵、角匙、小漏斗。

2、试剂莫尔氏盐((NH₄)₂SO₄·FeSO₄·6H₂O),分析纯;FeSO₄·7H₂O,分析纯;K₄Fe(CN)₆·3H₂O,分析纯。

实验-磁化率测定

实验-磁化率测定

磁化率的测定实验报告1. 实验目的1.1 掌握古埃(Gouy)法测定磁化率的原理和方法。

1.2 测定三种络合物的磁化率,求算未成对电子数,判断其配键类型。

2. 实验原理 2.1 磁化率物质在外磁场中,会被磁化并感生一附加磁场,其磁场强度 H ′ 与外磁场强度 H 之和称为该物质的磁感应强度 B ,即B = H + H′ (1)H ′与H 方向相同的叫顺磁性物质,相反的叫反磁性物质。

还有一类物质如铁、钴、镍及其合金,H ′比H 大得多(H ′ / H )高达10 4,而且附加磁场在外磁场消失后并不立即消失,这类物质称为铁磁性物质。

物质的磁化可用磁化强度I 来描述,H ′ =4πI 。

对于非铁磁性物质,I 与外磁场强度H 成正比I = KH (2)式中,K 为物质的单位体积磁化率(简称磁化率),是物质的一种宏观磁性质。

在化学中常用 单位质量磁化率m χ或摩尔磁化率M χ表示物质的磁性质,它的定义是ρχ/m K = (3)ρχ/MK M = (4)式中,ρ和M 分别是物质的密度和摩尔质量。

由于K 是无量纲的量,所以m χ和M χ的单位分别是cm 3•g -1和cm 3•mol -1 。

磁感应强度 SI 单位是特[斯拉](T),而过去习惯使用的单位是高斯(G),1T=104G 。

2.2 分子磁矩与磁化率物质的磁性与组成它的原子、离子或分子的微观结构有关,在反磁性物质中,由于电子自旋已配对,故无永久磁矩。

但是内部电子的轨道运动,在外磁场作用下产生的拉摩进动,会感生出一个与外磁场方向相反的诱导磁矩,所以表示出反磁性。

其M χ就等于反磁化率反χ,且M χ< 0。

在顺磁性物质中,存在自旋未配对电子,所以具有永久磁矩。

在外磁场中,永久磁矩顺着外磁场方向排列, 产生顺磁性。

顺磁性物质的摩尔磁化率M χ是摩尔顺磁化率与摩尔反磁化率之和,即反顺χχχ+=M (5)通常顺χ比反χ大约1~3个数量级,所以这类物质总表现出顺磁性,其0>M χ。

磁化率的测定实验报告

磁化率的测定实验报告

一、实验目的1. 理解并掌握古埃磁天平测定物质磁化率的实验原理。

2. 学会使用古埃磁天平进行实验操作,提高实验技能。

3. 通过测定不同物质的磁化率,了解其磁性质,为后续研究提供数据支持。

二、实验原理磁化率是指物质在外加磁场作用下,其磁化程度的大小。

磁化率分为顺磁化率和抗磁化率。

顺磁化率表示物质在外加磁场作用下,磁矩增强的程度;抗磁化率表示物质在外加磁场作用下,磁矩减弱的程度。

本实验采用古埃磁天平测定物质的磁化率。

古埃磁天平是一种利用磁力平衡原理的精密仪器,通过比较待测物质和已知磁化率物质的磁力,计算出待测物质的磁化率。

三、实验仪器与试剂1. 实验仪器:古埃磁天平、电子天平、磁铁、砝码、样品管、样品(如FeSO4·7H2O、CoCl2·6H2O等)。

2. 实验试剂:蒸馏水。

四、实验步骤1. 将样品管洗净、烘干,并用电子天平称量其质量,记录为m1。

2. 将样品管放入古埃磁天平的样品盘,调整天平平衡。

3. 将磁铁放在样品管上方,调整磁铁位置,使天平失去平衡。

4. 读取天平指针的读数,记录为m2。

5. 将样品管放入样品盘中,调整磁铁位置,使天平恢复平衡。

6. 读取天平指针的读数,记录为m3。

7. 重复步骤4-6,共进行3次实验,取平均值。

8. 计算样品的磁化率。

五、实验数据与结果1. 样品管质量:m1 = 5.0000 g2. 空管电流:I0 = 0.0150 A3. 装入样品后的电流:I1 = 0.0290 A4. 重复实验的电流值:I2 = 0.0290 A,I3 = 0.0290 A5. 样品磁化率:χ = (I1 - I0) / (m1 10^-3) = 0.0140六、实验结果分析根据实验结果,样品的磁化率为0.0140,说明该样品具有顺磁性。

结合样品的化学性质,可以推断其可能含有未成对电子。

七、实验总结通过本次实验,我们掌握了古埃磁天平测定物质磁化率的原理和操作方法,提高了实验技能。

实验三十 磁 化 率 的 测 定

实验三十  磁 化 率 的 测 定

实验三十 磁 化 率 的 测 定一、实验目的1.掌握古埃(Gouy )法磁天平测定物质磁化率的基本原理和实验方法;2.通过对一些络合物磁化率的测定,推算其不成对电子数,判断这些分子的配键类型。

二、基本原理物质中的分子是一种复杂的电磁体系,它们在外加磁场的作用下,会发生磁化,从而表现出一些宏观性质。

我们通过这些性质来研究分子的微观结构。

置于外磁场中的物质,在外磁场的作用下会感应出一个附加的磁场。

这时物质的磁感应强度B 等于外加磁场强度H 与附加磁场强度/H 之和。

I H H H B π4/+=+= (30-1)I 为物质的磁化强度,它与外磁场强度H 的关系为:H x I = (30-2)x 为物质的单位体积磁化率,是单位体积内磁场强度的变化。

化学上常用单位质量磁化率m X 和摩尔磁化率M X 来表示。

它们的定义是: dx X m = (30-3) dx M X M X m M ⋅=⋅= (30-4) 式中d 是物质的密度,M 为分子量。

由于x 是无量纲的量。

故m X 和M X 的单位分别为厘米3/克和厘米3/摩尔。

物质的磁性可分为三种,即铁磁性,逆磁性和顺磁性。

铁磁性是指物质在较低外磁场中就能达到饱和的磁化,磁性随外磁场的强度的增加而急剧增大。

在外磁场去掉后,磁性并不消失,呈现滞后现象。

逆磁性物质被磁化后所感应出的磁场强度与外加的磁场强度方向相反。

存在于所有的物质当中。

对于逆磁性物质来讲,其物质中的分子或原子的电子都已配对,所以本身没有永久磁矩,但在外磁场的作用下,由于电子的拉磨进动产生了一个与外磁场方向相反的诱导磁矩。

逆磁化率0X 可表示为:∑-=i i r mc Ne X 22206 (30-5)式中m 为电子的质量,e 为电子电荷,c 为光速,r i 为电子i 离核的距离,N 为阿伏伽德罗常数。

逆磁性质的x <0 ,数量级在10-6~10-3左右。

顺磁性是指物质被磁化后,所产生的磁感应强度方向与外加的磁场强度相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁化率的测定武汉大学化学与分子科学学院 化学基地班专业摘要:本实验对磁介质在磁场中的磁化现象进行了探讨,通过逐渐增加样品管内样品高度及改变励磁电流强度探究磁化率测定的最佳样品高度和最佳磁场强度。

并通过对一些物质的磁化率的测定,求出未成对电子数并判断络合物中央离子的电子结构和成键类型。

此外,加强了对古埃法测定磁化率原理和技术的理解及熟练了磁天平的使用。

关键词:磁化率 古埃法 未成对电子前言: 磁化率是各种物质都普遍具有的属性。

考察组成物质的分子未成对电子的情况。

如果分子中的电子都是成对电子,则这些电子对的轨道磁矩对外加磁场表现出“抗磁性”或“反磁性”,该物质的磁化率将是一个负值,其数量级约10-5~10-6emu 。

但是如果分子中还存在非成对电子,那么这些非成对电子产生的磁矩会转向外磁场方向,并且这种效应比产生“抗磁性”的楞次定律效应强很多,完全掩盖了成对电子的“抗磁性”而表现出“顺磁性”,其磁化率是正值,数量级约10-2~10-5emu 。

原子核的自旋磁矩也会产生顺磁效应,不过核顺磁磁化率只有约10-10emu ,一般不予考虑。

上述的顺磁性和抗磁性均为弱磁性,其相应的磁化率都远小于1;还有一种“铁磁性”,其磁化率远大于1——被称为强磁性。

弱磁性和强磁性还有一个显著区别是:弱磁性物质的磁化率基本上不随磁场强度而变化,强磁性物质的磁化率却随磁场强度而剧烈变化。

[1]可见,测量磁化率可以区分物质的磁性类型,还可以检测外界条件改变时磁性的转变;测定顺磁性物质的磁化率,有助于计算出每个分子中的非成对电子数,从而推测出该物质分子的配位场电子结构。

前面的实验中我们不经检验直接就使样品高度为7cm,励磁电流为3A ,这次实验我们就要通过逐渐增加样品管内样品高度及改变电流强度探究磁化率测定的最佳样品高度和最佳磁场强度。

1.理论准备与实验操作1.1仪器与试剂古埃磁天平(包括磁场元件,电光天平,励磁电源等) 软质玻璃样品管1支装样品工具(研钵、角匙)一套 (NH 4)2SO 4·FeSO 4·6H 2O (分析纯) K 4Fe(CN)6·3H 2O (分析纯)1.2实验原理 [1] [2]物质的磁性可以用磁导率μ或者磁化率χ表示。

对于均匀的各向同性磁介质,磁场强度H 、磁感应强度B 、感生磁场强度'H 和磁化强度M均平行,所以它们之间的一些运算可以用各自的模H 、B 、H’、M 来代替,因此有下列各式(基于CGSM 电磁单位制):μ=B/H ,χ=M/HB =H+H’ =H+ 4πM =H+ 4πχH∴ μ=1+ 4πχ上述磁化率χ是体积磁化率,有时还会使用到质量磁化率χm 和摩尔磁化率χM ,它们与体积磁化率χ之间的换算关系为:χm =χ/ρ ,χM =Ma·χ/ρ=Ma·χm其中ρ是密度,Ma 是分子量它们的单位:B 、H 、M 、H’ 均为Gauss ,因此μ、χ是无量纲量,有时为表明是在CGSM 电磁单位制下的物理量,也可加上后缀“emu”;ρ取g/cm 3、Ma 取g/mol ,则χm 与χM 的单位分别为cm 3/g 和cm 3/mol 。

如引言中所述,顺磁性物质中非成对电子产生的磁矩会转向外磁场方向,并且这种效应比产生“抗磁性”的楞次定律效应强很多,因此完全掩盖了成对电子的“抗磁性”而表现出“顺磁性”,其磁化率是正值,数量级约10-2~10-5emu ,相比之下“抗磁性”磁化率的数量级约10-5~10-6emu 。

所以顺磁磁矩的模μP >>抗磁磁矩的模μD ,顺磁分子的总磁矩大小μ≈μP 。

对于外磁场中的顺磁性物质,虽然其分子的磁矩会尽量顺着磁场方向取向,但是热运动会扰乱这种取向。

当达到热力学平衡时,平均磁矩随外磁场的增大而增大,随温度的升高而减小,且满足波尔兹曼分布:222p p (1)33HJ J g HKT KTμβμ+==式中K 为玻尔兹曼常数,T 为绝对温度摩尔磁化率χM 是单位磁场强度下每一摩尔物质的平均磁矩,A M N Hμχ=。

又由顺磁分子的总磁矩大小μ≈μP ,得22P P (1)3A A M MN N J J g C H KT Tμβχχ+≈===,N A 为阿佛加德罗常数,C 为居里常数。

在多原子分子中,顺磁磁矩几乎完全由电子自旋运动产生的自旋磁矩提供:P P S μμ≈=式中n 为分子中的未成对电子数于是,222P P P P (2)333A SA A A M MN N N N n n H KT KT KTμμμβχχ+≈==≈=∴ 23(2)M A KTn n N χβ+=由此可从摩尔磁化率χM 得到分子的未成对电子数n 。

式中N A =6.022E23 mol -1,K=1.381E-16 erg/K ,β=9.274E -21 erg /Gauss 用古依法测弱磁性样品的磁化率,一般需采用大体积的均匀截面细长棒状样品,使其一端受磁场H 的磁化,另一端处于可忽略的磁场H 0中(H>>H 0≈0),测量样品在这一非均匀场中受到的力,即可计算出χM 。

[1]设此梯度场中沿样品轴心方向Z 存在一磁场梯度zH∂∂,则磁场作用于样品的力:21()2HHHH f AHdz AHdz H A zz χχχχ∂∂=-==∂∂⎰⎰0 A 为样品柱截面积,H 为磁场强度,空气的磁化率χ0≈0用古依磁天平分别测出空管(Empty )和加样管(Full )在无/有(Magnetic )磁场条件下的视重质量,依次为W E / W E M ,W F / W F M ,显然有空管受磁场的作用力 f 1 =(W E M -W E )·g =ΔW E ·g 样品+空管受磁场的作用力 f 2 =(W F M -W F )·g =ΔW F ·g 样品实际质量W =W F -W Eg W W A H f f E F )(21212∆-∆==-χ 又由ρχχa M M =和hA WV W ==ρ,上式变形为2)(2WH ghM W W a E F M ∆-∆=χ 其中ΔW F 、ΔW E 、W 如上定义,g =981dyn/g ;h 为样品高度(cm),Ma 为样品式量(g/mol)。

H 是磁场最强处的磁场强度大小,可以用高斯计测得,也可用标准物质标定出——本实验用莫尔盐(NH 4)2SO 4·FeSO 4·6H 2O 作为标准物质。

由χM =Ma·χm 和莫尔盐69500101m T χ-=⨯+,推得其摩尔磁化率与温度的关系为61019500-⨯+=T M aM χ。

1.3实验步骤研细样品至粉末状。

测定(NH 4)2SO 4·FeSO 4·6H 2O 的相关数据:取一只空样品管,使励磁电流从小到大,依次测量其在H=0、100mT 、150mT 、200mT 、240mT 时的视重质量。

向该样品管中匀实的装入样品粉末约5cm ,记下准确的高度值;仿照上述测空样品管的步骤,依次测5个磁场强度值时的视重质量。

以1cm 左右为间隔依次增加样品高度至9cm ,按上述步骤测定。

测定K 4Fe(CN)6·3H 2O 的相关数据:另取一只空样品管,仿照测(NH 4)2SO 4·FeSO 4·6H 2O 的步骤,将样品改为K 4Fe(CN)6·3H 2O 测定并记录有关数据。

测定完毕,将管内样品倒入相应回收瓶并清洗样品管,关闭仪器电源,整理台面。

1.4注意事项1)操作中电流调节要缓慢,且应≤3A,如果因为需要调节到大于3A 时,注意不要再该状态时关闭电源,以免造成仪器损坏。

其中实验选择240mT 而没有等距离的取250mT 就是因为实验过程中发现250mT 时电流会超过3A 。

同时要注意电流稳定后方可称量;2)样品管底部要与磁极中心线齐平; 3)称量时样品管要处于两个磁极的中间; 4)样品要研细、填实。

2.数据处理过程及结果2.1数据处理2.1.1原始数据列表2.1.2 数据处理过程1.计算莫尔氏盐磁化率 由69500101m T χ-=⨯+算得摩尔氏盐的质量磁化率为31.81*10-6cm 3/g χM =0.01247 cm 3/mol2.由莫尔氏盐求出铁氰化钾磁化率再由 2)(2WH ghM W W aE F M ∆-∆=χ求得 莫尔尔莫尔铁氰化钾莫尔铁氰化钾铁氰化钾莫尔铁氰化钾铁氰化钾h M W W △h M W W △χ∙∙∙∙∙∙=盐盐盐Mχ列表如下:2.2.与理论摩尔磁化率比较以找出最佳样品高度及最佳磁场强度先求出理论摩尔磁化率:查文献知铁氰化钾的未成对电子数为n=1,代入公式222P P P P (2)333A SA A A M MN N N N n n H KT KT KTμμμβχχ+≈==≈=得χM =0.0.0126 cm 3/mol 与实验结果比较都相差较大,但在磁场强度较大的时候及样品高度为7cm 左右的时候较之其他更接近理论结果。

由此验证了励磁电流为3A ,样品高度为7cm 左右为测量磁化率的最佳条件。

3.对结果及其误差等问题的讨论3.1不同磁场强度H 下样品的摩尔磁化率χM 不同不同励磁电流I (因而不同磁场强度H )下测得的摩尔磁化率χM 并不相同。

因为2p p 3HKTμμ=这一关系式是经典电磁理论的统计力学结果,它把磁矩取向视为可以连续变化的;但是基于量子力学理论,磁矩取向是量子化的而不能连续改变,上述p μ对HT的线性关系只是在P H KTμ<<1条件下的一阶近似。

磁场强度H 足够大时,必须考虑HT 的高阶修正项如243p p p 33345HH KTK T μμ=-+……。

所以A M N Hμχ=只是在p μ的一阶近似下表现为不随H 改变的常数;当高阶修正项不能忽略时,摩尔磁化率χM 表现为随磁场强度H (因而也随励磁电流I )改变的量。

3.2不同样品高度h 下样品的摩尔磁化率χM 不同在沿样品管轴线的垂直方面受到磁力的作用,这个磁力并不均等,而是存在一定的梯度,为保证样品位于有足够梯度变化的磁场中,以减少测量的相对误差。

而磁场中心到磁极上沿大概7cm ,因此要使样品高度保持在7cm 左右。

3.3实验误差的来源:从实验结果看,只要仪器显示磁场强度在200~300mT 也即励磁电流约为2.5~3A,样品高度为7cm 左右时结果较之其他更接近理论,但仍有较大误差。

分析实验中造成误差的因素,实验理论公式的推导中用到一些近似,例如忽略顺磁性物质逆磁磁化率的影响,忽略样品柱远离磁场一端的磁化率等等,这些都不足以带来显著的误差。

相关文档
最新文档