2017届二轮 数列 专题卷(全国通用)
【数学】2017年高考真题——全国Ⅱ卷(理)(精校解析版)
2017年普通高等学校招生全国统一考试(全国Ⅱ卷)理科数学一、选择题1.(2017·全国Ⅱ理,1)3+i1+i 等于( )A .1+2iB .1-2iC .2+iD .2-i2.(2017·全国Ⅱ理,2)设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B 等于( ) A .{1,-3} B .{1,0} C .{1,3}D .{1,5}3.(2017·全国Ⅱ理,3)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏 B .3盏 C .5盏D .9盏4.(2017·全国Ⅱ理,4)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π5.(2017·全国Ⅱ理,5)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0,则z =2x +y 的最小值是( )A .-15B .-9C .1D .96.(2017·全国Ⅱ理,6)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( ) A .12种 B .18种 C .24种D .36种7.(2017·全国Ⅱ理,7)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( ) A .乙可以知道四人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩8.(2017·全国Ⅱ理,8)执行下面的程序框图,如果输入的a =-1,则输出的S 等于( )A .2B .3C .4D .59.(2017·全国Ⅱ理,9)若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则C 的离心率为( ) A .2 B . 3 C . 2D .23310.(2017·全国Ⅱ理,10)已知直三棱柱ABCA 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( ) A.32B.155C.105D.3311.(2017·全国Ⅱ理,11)若x =-2是函数f (x )=(x 2+ax -1)e x-1的极值点,则f (x )的极小值为( ) A .-1B .-2e -3C .5e -3D .112.(2017·全国Ⅱ理,12)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小值是( ) A .-2 B .-32C .-43D .-1二、填空题13.(2017·全国Ⅱ理,13)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX =________.14.(2017·全国Ⅱ理,14)函数f (x )=sin 2x +3cos x -34⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最大值是________. 15.(2017·全国Ⅱ理,15)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k =1n1S k =________.16.(2017·全国Ⅱ理,16)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________. 三、解答题17.(2017·全国Ⅱ理,17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin(A +C )=8sin 2B 2.(1)求cos B ;(2)若a +c =6,△ABC 面积为2,求b .18.(2017·全国Ⅱ理,18)淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率直方图如下:(1)设两种养殖方法的箱产量相互独立,记A表示事件:旧养殖法的箱产量低于50 kg,新养殖法的箱产量不低于50 kg,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)19.(2017·全国Ⅱ理,19)如图,四棱锥P ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角MABD 的余弦值.20.(2017·全国Ⅱ理,20)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →=2NM →. (1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .21.(2017·全国Ⅱ理,21)已知函数f (x )=ax 2-ax -x ln x ,且f (x )≥0. (1)求a ;(2)证明:f (x )存在唯一的极大值点x 0,且e -2<f (x 0)<2-2.22.(2017·全国Ⅱ理,22)[选修4—4:坐标系与参数方程]在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值.23.(2017·全国Ⅱ理,23)[选修4—5:不等式选讲]已知a >0,b >0,a 3+b 3=2,证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.参考答案一、选择题 1.【答案】D【解析】3+i 1+i =(3+i )(1-i )(1+i )(1-i )=3-3i +i +12=2-i.2.【答案】C【解析】∵A ∩B ={1},∴1∈B . ∴1-4+m =0,即m =3.∴B ={x |x 2-4x +3=0}={1,3}.故选C. 3.【答案】B【解析】设塔的顶层的灯数为a 1,七层塔的总灯数为S 7,公比为q , 则由题意知S 7=381,q =2,∴S 7=a 1(1-q 7)1-q =a 1(1-27)1-2=381,解得a 1=3.故选B.4.【答案】B【解析】方法一 (割补法)由几何体的三视图可知,该几何体是一个圆柱截去上面虚线部分所得,如图所示.将圆柱补全,并将圆柱从点A 处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V =π×32×4+π×32×6×12=63π.故选B.方法二 (估值法)由题意知,12V 圆柱<V 几何体<V 圆柱,又V 圆柱=π×32×10=90π,∴45π<V 几何体<90π.观察选项可知只有63π符合.故选B. 5.【答案】A【解析】不等式组表示的可行域如图中阴影部分所示.将目标函数z =2x +y 化为y =-2x +z ,作出直线y =-2x ,并平移该直线知,当直线y = -2x +z 经过点A (-6,-3)时,z 有最小值,且z min =2×(-6)-3=-15.故选A. 6.【答案】D【解析】由题意可得,其中1人必须完成2项工作,其他2人各完成1项工作,可得安排方式为C 13·C 24·A 22=36(种),或列式为C 13·C 24·C 12=3×4×32×2=36(种).故选D. 7.【答案】D【解析】由甲说:“我还是不知道我的成绩”可推知甲看到乙、丙的成绩为“1个优秀,1个良好”.乙看丙的成绩,结合甲的说法,丙为“优秀”时,乙为“良好”;丙为“良好”时,乙为“优秀”,可得乙可以知道自己的成绩.丁看甲的成绩,结合甲的说法,甲为“优秀”时,丁为“良好”;甲为“良好”时,丁为“优秀”,可得丁可以知道自己的成绩. 8.【答案】B【解析】当K =1时,S =0+(-1)×1=-1,a =1,执行K =K +1后,K =2; 当K =2时,S =-1+1×2=1,a =-1,执行K =K +1后,K =3; 当K =3时,S =1+(-1)×3=-2,a =1,执行K =K +1后,K =4; 当K =4时,S =-2+1×4=2,a =-1,执行K =K +1后,K =5; 当K =5时,S =2+(-1)×5=-3,a =1,执行K =K +1后,K =6;当K =6时,S =-3+1×6=3,执行K =K +1后,K =7>6,输出S =3.结束循环. 故选B. 9.【答案】A【解析】设双曲线的一条渐近线方程为y =b a x ,圆的圆心为(2,0),半径为2,由弦长为2得出圆心到渐近线的距离为22-12= 3. 根据点到直线的距离公式,得|2b |a 2+b2=3,解得b 2=3a 2.所以C 的离心率e =ca =c 2a 2=1+b 2a2=2. 故选A. 10.【答案】C【解析】方法一 将直三棱柱ABC -A 1B 1C 1补形为直四棱柱ABCD -A 1B 1C 1D 1,如图①所示,连接AD 1,B 1D 1,BD .由题意知∠ABC =120°,AB =2,BC =CC 1=1, 所以AD 1=BC 1=2,AB 1=5,∠DAB =60°.在△ABD 中,由余弦定理知BD 2=22+12-2×2×1×cos 60°=3,所以BD =3,所以B 1D 1= 3. 又AB 1与AD 1所成的角即为AB 1与BC 1所成的角θ,所以cos θ=AB 21+AD 21-B 1D 212×AB 1×AD 1=5+2-32×5×2=105.故选C.方法二 以B 1为坐标原点,B 1C 1所在的直线为x 轴,垂直于B 1C 1的直线为y 轴,BB 1所在的直线为z 轴建立空间直角坐标系,如图②所示.由已知条件知B 1(0,0,0),B (0,0,1),C 1(1,0,0),A (-1,3,1),则BC 1→=(1,0,-1),AB 1→=(1,-3,-1). 所以cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→||BC 1→|=25×2=105.所以异面直线AB 1与BC 1所成的角的余弦值为105. 故选C.11.【答案】A【解析】函数f (x )=(x 2+ax -1)e x -1, 则f ′(x )=(2x +a )e x -1+(x 2+ax -1)·e x -1 =e x -1·[x 2+(a +2)x +a -1]. 由x =-2是函数f (x )的极值点,得f ′(-2)=e -3·(4-2a -4+a -1)=(-a -1)e -3=0, 所以a =-1.所以f (x )=(x 2-x -1)e x -1, f ′(x )=e x -1·(x 2+x -2).由e x -1>0恒成立,得当x =-2或x =1时,f ′(x )=0,且x <-2时,f ′(x )>0; 当-2<x <1时,f ′(x )<0; 当x >1时,f ′(x )>0.所以x =1是函数f (x )的极小值点. 所以函数f (x )的极小值为f (1)=-1. 故选A. 12.【答案】B【解析】方法一 (解析法)建立坐标系如图①所示,则A ,B ,C 三点的坐标分别为A (0,3), B (-1,0),C (1,0).设P 点的坐标为(x ,y ), 则P A →=(-x ,3-y ),PB →=(-1-x ,-y ), PC →=(1-x ,-y ),∴P A →·(PB →+PC →)=(-x ,3-y )·(-2x ,-2y )=2(x 2+y 2-3y )=2[x 2+⎝⎛⎭⎫y -322-34]≥2×⎝⎛⎭⎫-34=-32. 当且仅当x =0,y =32时,P A →·(PB →+PC →)取得最小值,最小值为-32. 故选B.方法二 (几何法)如图②所示,PB →+PC →=2PD →(D 为BC 的中点),则P A →·(PB →+PC →)=2P A →·PD →.要使P A →·PD →最小,则P A →与PD →方向相反,即点P 在线段AD 上,则(2P A →·PD →)min =-2|P A →||PD →|,问题转化为求|P A →||PD →|的最大值.又|P A →|+|PD →|=|AD →|=2×32=3, ∴|P A →||PD →|≤⎝ ⎛⎭⎪⎫|P A →|+|PD →|22=⎝⎛⎭⎫322=34, ∴[P A →·(PB →+PC →)]min =(2P A →·PD →)min =-2×34=-32. 故选B.二、填空题13.【答案】1.96【解析】由题意得X ~B (100,0.02),∴DX =100×0.02×(1-0.02)=1.96.14.【答案】1【解析】f (x )=1-cos 2x +3cos x -34=-⎝⎛⎭⎫cos x -322+1. ∵x ∈[0,π2],∴cos x ∈[0,1], ∴当cos x =32时,f (x )取得最大值,最大值为1. 15.【答案】2n n +1【解析】 设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧ a 3=a 1+2d =3,S 4=4a 1+4×32d =10,得⎩⎪⎨⎪⎧a 1=1,d =1. ∴S n =n ×1+n (n -1)2×1=n (n +1)2, 1S n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1. ∴∑k =1n 1S k =1S 1+1S 2+1S 3+…+1S n =2⎝⎛⎭⎫1-12+12-13+13-14+…+1n -1n +1 =2⎝⎛⎭⎫1-1n +1=2n n +1.16.【答案】6【解析】如图,不妨设点M 位于第一象限内,抛物线C 的准线交x 轴于点A ,过点M 作准线的垂线,垂足为点B ,交y 轴于点P ,∴PM ∥OF .由题意知,F (2,0),|FO |=|AO |=2.∵点M 为FN 的中点,PM ∥OF ,∴|MP |=12|FO |=1.又|BP |=|AO |=2,∴|MB |=|MP |+|BP |=3.由抛物线的定义知|MF |=|MB |=3,故|FN |=2|MF |=6.三、解答题17.解 (1)由题设及A +B +C =π,得sin B =8sin 2B 2, 故sin B =4(1-cos B ).上式两边平方,整理得17cos 2B -32cos B +15=0,解得cos B =1(舍去)或cos B =1517. 故cos B =1517. (2)由cos B =1517,得sin B =817, 故S △ABC =12ac sin B =417ac . 又S △ABC =2,则ac =172. 由余弦定理及a +c =6,得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos B )=36-2×172×⎝⎛⎭⎫1+1517=4. 所以b =2.18.解 (1)记B 表示事件“旧养殖法的箱产量低于50 kg”,C 表示事件“新养殖法的箱产量不低于50 kg”.由题意知,P (A )=P (BC )=P (B )P (C ).旧养殖法的箱产量低于50 kg 的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62,故P (B )的估计值为0.62.新养殖法的箱产量不低于50 kg 的频率为(0.068+0.046+0.010+0.008)×5=0.66,故P (C )的估计值为0.66.因此,事件A 的概率估计值为0.62×0.66=0.409 2.(2)根据箱产量的频率分布直方图得列联表K 2=200×(62×66-34×38)2100×100×96×104≈15.705. 由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50 kg 的直方图面积为(0.004+0.020+0.044)×5=0.34<0.5,箱产量低于55 kg 的直方图面积为(0.004+0.020+0.044+0.068)×5=0.68>0.5, 故新养殖法箱产量的中位数的估计值为50+0.5-0.340.068≈52.35 (kg). 19.(1)证明 取P A 的中点F ,连接EF ,BF .因为E 是PD 的中点,所以EF ∥AD ,EF =12AD . 由∠BAD =∠ABC =90°,得BC ∥AD ,又BC =12AD , 所以EF BC ,四边形BCEF 是平行四边形,CE ∥BF ,又BF ⊂平面P AB ,CE ⊄平面P AB ,故CE ∥平面P AB .(2)解 由已知得BA ⊥AD ,以A 为坐标原点,AB →的方向为x 轴正方向,|AB →|为单位长度,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (1,0,0),C (1,1,0),P (0,1,3),PC →=(1,0,-3),AB →=(1,0,0).设M (x ,y ,z )(0<x <1),则BM →=(x -1,y ,z ),PM →=(x ,y -1,z -3).因为BM 与底面ABCD 所成的角为45°,而n =(0,0,1)是底面ABCD 的法向量,所以|cos 〈BM →,n 〉|=sin 45°, |z |(x -1)2+y 2+z 2=22, 即(x -1)2+y 2-z 2=0.①又M 在棱PC 上,设PM →=λPC →,则x =λ,y =1,z =3-3λ.②由①②解得⎩⎨⎧x =1+22,y =1,z =-62(舍去)或⎩⎨⎧ x =1-22,y =1,z =62, 所以M ⎝⎛⎭⎫1-22,1,62,从而AM →=⎝⎛⎭⎫1-22,1,62. 设m =(x 0,y 0,z 0)是平面ABM 的法向量,则⎩⎪⎨⎪⎧ m ·AM →=0,m ·AB →=0,即⎩⎨⎧(2-2)x 0+2y 0+6z 0=0,x 0=0, 所以可取m =(0,-6,2).于是cos 〈m ,n 〉=m ·n |m ||n |=105. 所以二面角MABD 的余弦值为105. 20.解 (1)设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP →=(x -x 0,y ),NM →=(0,y 0).由NP →= 2 NM →,得x 0=x ,y 0=22y , 因为M (x 0,y 0)在C 上,所以x 22+y 22=1. 因此点P 的轨迹方程为x 2+y 2=2.(2)由题意知F (-1,0).设Q (-3,t ),P (m ,n ),则OQ →=(-3,t ),PF →=(-1-m ,-n ),OQ →·PF →=3+3m -tn ,OP →=(m ,n ),PQ →=(-3-m ,t -n ),由OP →·PQ →=1,得-3m -m 2+tn -n 2=1,又由(1)知m 2+n 2=2,故3+3m -tn =0,所以OQ →·PF →=0,即OQ →⊥PF →,又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .21.(1)解 f (x )的定义域为(0,+∞),设g (x )=ax -a -ln x ,则f (x )=xg (x ),f (x )≥0等价于g (x )≥0,因为g (1)=0,g (x )≥0,故g ′(1)=0,而g ′(x )=a -1x,g ′(1)=a -1,得a =1. 若a =1,则g ′(x )=1-1x. 当0<x <1时,g ′(x )<0,g (x )单调递减;当x >1时,g ′(x )>0,g (x )单调递增,所以x =1是g (x )的极小值点,故g (x )≥g (1)=0.综上,a =1.(2)证明 由(1)知f (x )=x 2-x -x ln x ,f ′(x )=2x -2-ln x ,设h (x )=2x -2-ln x ,则h ′(x )=2-1x. 当x ∈⎝⎛⎭⎫0,12时,h ′(x )<0, 当x ∈⎝⎛⎭⎫12,+∞时,h ′(x )>0. 所以h (x )在⎝⎛⎭⎫0,12上单调递减,在⎝⎛⎭⎫12,+∞上单调递增. 又h (e -2)>0,h ⎝⎛⎭⎫12<0,h (1)=0,所以h (x )在⎝⎛⎭⎫0,12上有唯一零点x 0,在⎣⎡⎭⎫12,+∞上有唯一零点1,当x ∈(0,x 0)时,h (x )>0; 当x ∈(x 0,1)时,h (x )<0;当x ∈(1,+∞)时,h (x )>0.因为f ′(x )=h (x ),所以x =x 0是f (x )的唯一极大值点.由f ′(x 0)=0,得ln x 0=2(x 0-1),故f (x 0)=x 0(1-x 0).由x 0∈⎝⎛⎭⎫0,12,得f (x 0)<14. 因为x =x 0是f (x )在(0,1)上的最大值点,由e -1∈(0,1),f ′(e -1)≠0,得f (x 0)>f (e -1)=e -2.所以e -2<f (x 0)<2-2.22.解 (1)设点P 的极坐标为(ρ,θ)(ρ>0),点M 的极坐标为(ρ1,θ)(ρ1>0),由题设知, |OP |=ρ,|OM |=ρ1=4cos θ. 由|OM |·|OP |=16,得C 2的极坐标方程ρ=4cos θ(ρ>0). 所以C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0).(2)设点B 的极坐标为(ρB ,α)(ρB >0).由题设知|OA |=2,ρB =4cos α.于是△OAB 的面积S =12|OA |·ρB ·sin ∠AOB =4cos α⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3 =4cos α⎪⎪⎪⎪12sin α-32cos α =|sin 2α-3cos 2α-3|=2⎪⎪⎪⎪sin ⎝⎛⎭⎫2α-π3-32≤2+ 3. 当2α-π3=-π2,即α=-π12时,S 取得最大值2+3, 所以△OAB 面积的最大值为2+ 3.23.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 4+b 4-2a 2b 2)=4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b )≤2+3(a +b )24 (a +b ) =2+3(a +b )34, 所以(a +b )3≤8,因此a +b ≤2.。
2017年普通高等学校招生全国统一考试 理科数学 (全国II卷) 试题
2017年普通高等学校招生全国统一考试 理科数学(Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31i i+=+( ) A .12i + B .12i - C .2i + D .2i - 2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =I ,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,53.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π5.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩8.执行右面的程序框图,如果输入的1a =-,则输出的S =( ) A .2 B .3 C .4 D .59. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+= 所截得的弦长为2,则C 的离心率为( )A .2B .3C .2D .2310. 已知直三棱柱111C C AB -A B 中,C 120∠AB =o,2AB =,1C CC 1B ==,则11. 异面直线1AB 与1C B 所成角的余弦值为( ) A .3 B .15 C .10D .3 11.若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -D.112.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是( )A.2-B.32-C. 43- D.1-二、填空题:本题共4小题,每小题5分,共20分。
2017全国高考Ⅱ卷-理科数学(含答案)
弘德中学高三数学期末备考(五)理科数学一、选择题:本题共12小题,每小题5分,共60分.1.(5分)(2017•新课标Ⅱ)=()A.1+2i B.1﹣2i C.2+i D.2﹣i2.(5分)(2017•新课标Ⅱ)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3} B.{1,0} C.{1,3} D.{1,5}3.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏4.(5分)(2017•新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π5.(5分)(2017•新课标Ⅱ)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.96.(5分)(2017•新课标Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种7.(5分)(2017•新课标Ⅱ)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩 B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩8.(5分)(2017•新课标Ⅱ)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2 B.3 C.4 D.59.(5分)(2017•新课标Ⅱ)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2 B.C.D.10.(5分)(2017•新课标Ⅱ)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.11.(5分)(2017•新课标Ⅱ)若x=﹣2是函数f(x)=(x2+ax﹣1)ex﹣1的极值点,则f(x)的极小值为()A.﹣1 B.﹣2e﹣3 C.5e﹣3 D.112.(5分)(2017•新课标Ⅱ)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣C.﹣D.﹣1三、填空题:本题共4小题,每小题5分,共20分.13.(5分)(2017•新课标Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX=.14.(5分)(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是.15.(5分)(2017•新课标Ⅱ)等差数列{an}的前n项和为Sn,a3=3,S4=10,则=.16.(5分)(2017•新课标Ⅱ)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|=.三、解答题:共70分.17.(12分)(2017•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC面积为2,求b.18.(12分)(2017•新课标Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg 旧养殖法新养殖法).附:P(K2≥k)0.050 0.010 0.001K 3.841 6.635 10.828K2=.19.(12分)(2017•新课标Ⅱ)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.20.(12分)(2017•新课标Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M做x 轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.21.(12分)(2017•新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.(二)选考题:共10分.22.(10分)(2017•新课标Ⅱ)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.参考答案一、选择题1.【解答】解:===2﹣i,故选D.2.【解答】解:集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则1∈A且1∈B,可得1﹣4+m=0,解得m=3,即有B={x|x2﹣4x+3=0}={1,3}.故选:C.3.【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.4.【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10﹣•π•32×6=63π,故选:B.5.【解答】解:x、y满足约束条件的可行域如图:z=2x+y 经过可行域的A时,目标函数取得最小值,由解得A(﹣6,﹣3),则z=2x+y 的最小值是:﹣15.故选:A.6.【解答】解:4项工作分成3组,可得:=6,安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:6×=36种.故选:D.7.【解答】解:四人所知只有自己看到,老师所说及最后甲说话,甲不知自己的成绩→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩)→乙看到了丙的成绩,知自己的成绩→丁看到甲、丁中也为一优一良,丁知自己的成绩,故选:D.8.【解答】解:执行程序框图,有S=0,k=1,a=﹣1,代入循环,第一次满足循环,S=﹣1,a=1,k=2;满足条件,第二次满足循环,S=1,a=﹣1,k=3;满足条件,第三次满足循环,S=﹣2,a=1,k=4;满足条件,第四次满足循环,S=2,a=﹣1,k=5;满足条件,第五次满足循环,S=﹣3,a=1,k=6;满足条件,第六次满足循环,S=3,a=﹣1,k=7;7≤6不成立,退出循环输出,S=3;故选:B.9.【解答】解:双曲线C:﹣=1(a>0,b>0)的一条渐近线不妨为:bx+ay=0,圆(x﹣2)2+y2=4的圆心(2,0),半径为:2,双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,可得圆心到直线的距离为:=,解得:,可得e2=4,即e=2.故选:A.10.【解答】解:如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN=AB1=,NP=BC1=;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ=AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)=7,∴AC=,∴MQ=;在△MQP中,MP==;在△PMN中,由余弦定理得cos∠MNP===﹣;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.11.【解答】解:函数f(x)=(x2+ax﹣1)e x﹣1,可得f′(x)=(2x+a)e x﹣1+(x2+ax﹣1)e x﹣1,x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,可得:﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)e x﹣1+(x2﹣x﹣1)e x﹣1,=(x2+x﹣2)e x﹣1,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选:A.12.【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P(x,y),则=(﹣x,﹣y),=(﹣1﹣x,﹣y),=(1﹣x,﹣y),则•(+)=2x2﹣2y+2y2=2[x2+(y﹣)2﹣]∴当x=0,y=时,取得最小值2×(﹣)=﹣,故选:B三、填空题13.【解答】解:由题意可知,该事件满足独立重复试验,是一个二项分布模型,其中,p=0.02,n=100,则DX=npq=np(1﹣p)=100×0.02×0.98=1.96.故答案为:1.96.14.【解答】解:f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈[0,1],则f(t)=﹣t2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:115.【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.16.【解答】解:抛物线C:y2=8x的焦点F(2,0),M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,可知M的横坐标为:1,则M的纵坐标为:,|FN|=2|FM|=2=6.故答案为:6.三、解答题17.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,∵S△ABC=ac•sinB=2,∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.18.【解答】解:(1)记B表示事件“旧养殖法的箱产量低于50kg”,C表示事件“新养殖法的箱产量不低于50kg”,由P(A)=P(BC)=P(B)P(C),则旧养殖法的箱产量低于50kg:(0.012+0.014+0.024+0.034+0.040)×5=0.62,故P(B)的估计值0.62,新养殖法的箱产量不低于50kg:(0.068+0.046+0.010+0.008)×5=0.66,故P(C)的估计值为,则事件A的概率估计值为P(A)=P(B)P(C)=0.62×0.66=0.4092;∴A发生的概率为0.4092;(2)2×2列联表:箱产量<50kg 箱产量≥50kg 总计旧养殖法62 38 100新养殖法34 66 100总计96 104 200则K2=≈15.705,由15.705>6.635,∴有99%的把握认为箱产量与养殖方法有关;(3)由题意可知:方法一:=5×(37.5×0.004+42.5×0.020+47.5×0.044+52.5×0.068+57.5×0.046+62.5×0.010+67.5×0.008),=5×10.47,=52.35(kg).新养殖法箱产量的中位数的估计值52.35(kg)方法二:由新养殖法的箱产量频率分布直方图中,箱产量低于50kg的直方图的面积:(0.004+0.020+0.044)×5=0.034,箱产量低于55kg的直方图面积为:(0.004+0.020+0.044+0.068)×5=0.68>0.5,故新养殖法产量的中位数的估计值为:50+≈52.35(kg),新养殖法箱产量的中位数的估计值52.35(kg).19.【解答】(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF AD,AB=BC=AD,∠BAD=∠ABC=90°,∴BC∥AD,∴BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CF⊄平面PAB,∴直线CE∥平面PAB;(2)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.取AD的中点O,M在底面ABCD上的射影N在OC上,设AD=2,则AB=BC=1,OP=,∴∠PCO=60°,直线BM与底面ABCD所成角为45°,可得:BN=MN,CN=MN,BC=1,可得:1+BN2=BN2,BN=,MN=,作NQ⊥AB于Q,连接MQ,所以∠MQN就是二面角M﹣AB﹣D的平面角,MQ==,二面角M﹣AB﹣D的余弦值为:=.20.【解答】解:(1)设M(x0,y0),由题意可得N(x0,0),设P(x,y),由点P满足=.可得(x﹣x0,y)=(0,y0),可得x﹣x0=0,y=y0,即有x0=x,y0=,代入椭圆方程+y2=1,可得+=1,即有点P的轨迹方程为圆x2+y2=2;(2)证明:设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),•=1,可得(cosα,sinα)•(﹣3﹣cosα,m﹣sinα)=1,即为﹣3cosα﹣2cos2α+msinα﹣2sin2α=1,解得m=,即有Q(﹣3,),椭圆+y2=1的左焦点F(﹣1,0),由k OQ=﹣,k PF=,由k OQ•k PF=﹣1,可得过点P且垂直于OQ的直线l过C的左焦点F.21.【解答】(1)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,因为h′(x)=a﹣,且当0<x<时h′(x)<0、当x>时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;(2)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,令t′(x)=0,解得:x=,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,且不妨设f′(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,所以f(x0)=﹣x0﹣x0lnx0=﹣x0+2x0﹣2=x0﹣,由x0<可知f(x0)<(x0﹣)max=﹣+=;由f′()<0可知x0<<,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,所以f(x0)>f()=;综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.(二)选考题22.【解答】解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,∴y0=,∵|OM||OP|=16,∴=16,即(x2+y2)(1+)=16,∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x﹣2)2+y2=4(x≠0),∴点P的轨迹C2的直角坐标方程:(x﹣2)2+y2=4(x≠0).(2)点A的直角坐标为A(1,),显然点A在曲线C2上,|OA|=2,∴曲线C2的圆心(2,0)到弦OA的距离d==,∴△AOB的最大面积S=|OA|•(2+)=2+.[选修4-5:不等式选讲]23.【解答】证明:(1)由柯西不等式得:(a+b)(a5+b5)≥(+)2=(a3+b3)2≥4,当且仅当=,即a=b=1时取等号,(2)∵a3+b3=2,∴(a+b)(a2﹣ab+b2)=2,∴(a+b)[(a+b)2﹣3ab]=2,∴(a+b)3﹣3ab(a+b)=2,∴=ab,由均值不等式可得:=ab≤()2,∴(a+b)3﹣2≤,∴(a+b)3≤2,∴a+b≤2,当且仅当a=b=1时等号成立.。
2017年高考理科数学全国2卷-含答案
输出S K=K+1a =a S =S +a ∙K 是否输入a S =0,K =1结束K ≤6开始2017年普通高等学校招生全国统一考试理科数学(全国2卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?"意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏 4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96。
安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的1a =-,则输出的S =() A .2 B .3 C .4 D .59。
2017全国2卷理科数学与答案
2017年普通高等学校招生全国统一考试(Ⅱ卷)逐题解析理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
【题目1】(2017·新课标全国Ⅱ卷理1)1。
31ii+=+( ) A .12i + B .12i - C .2i + D .2i -【命题意图】本题主要考查复数的四则运算及共轭复数的概念,意在考查学生的运算能力。
【解析】解法一:常规解法()()()()3134221112i i i ii i i i +-+-===-++- 解法二:对十法31i i ++可以拆成两组分式数3111,运算的结果应为a bi +形式,223111211a ⨯+⨯==+(分子十字相乘,分母为底层数字平方和),221131111b ⨯-⨯==-+(分子对位之积差,分母为底层数字平方和).解法三:分离常数法()()1132121121111i i i i i i i i i+-+++==+=+=-++++ 解法四:参数法()()()()3331311a b ia bi i a bi i i ab a b i a b i -=⎧+=+⇒+=++⇒+=-++⇒⎨+=+⎩,解得21a b =⎧⎨=-⎩故321ii i+=-+ 【知识拓展】复数属于新课标必考点,考复数的四则运算的年份较多,复数考点有五:1。
复数的 几何意义(2016年);2.复数的四则运算;3。
复数的相等的充要条件;4.复数的分类及共轭复数; 5。
复数的模【题目2】(2017·新课标全国Ⅱ卷理2)2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5【命题意图】本题主要考查一元二次方程的解法及集合的基本运算,以考查考生的运算能力为目 的。
【解析】解法一:常规解法∵ {}1AB = ∴ 1是方程240x x m -+=的一个根,即3m =,∴ {}2430B x x x =-+=故 {}1,3B = 解法二:韦达定理法 ∵ {}1AB = ∴ 1是方程240x x m -+=的一个根,∴ 利用伟大定理可知:114x +=,解得:13x =,故 {}1,3B =解法三:排除法∵集合B 中的元素必是方程方程240x x m -+=的根,∴ 124x x +=,从四个选项A ﹑B ﹑C ﹑D 看只有C 选项满足题意.【知识拓展】集合属于新课标必考点,属于函数范畴,常与解方程﹑求定义域和值域﹑数集意义 相结合,集合考点有二:1。
【新课标】高三数学二轮精品专题卷_数列
绝密★启用前高三数学二轮精品专题卷: 数列考试范围:数列(1)选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一个等差数列的前4项是a ,2x ,b ,x ,则ab 等于( ) A .21B .31C .3D .22.已知数列{}n a 的前n项和n n S n 32+-=,若8021=++n n a a ,则n的值等于( ) A .5B .4C .3D .23.已知公差不为0的等差数列{}n a 满足431,,a a a 成等比数列,n S 为{}n a 的前n 项和,则3523S S S S --的值为( ) A .2 B .3 C .51 D .4 4.已知数列{}n a 是首项为41=a 的等比数列,且3512,,4a a a -成等差数列,则其公比q 等于( ) A .1B .1-C .1或1-D .25.已知等差数列{}n a 的前n 项和为n S ,且满足13434=-S S ,则数列{}n a 的公差是 ( ) A .21B .31C .2D .36.(理)对于数列{}n a ,“21,,++n n n a a a (n =1,2,3,…)成等差数列”是“221+++=n n n a a a ”的 ( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件(文)在等比数列{}n a 中,“42a a >”是“86a a >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.设数列{}n a 是以2为首项,1为公差的等差数列,{}n b 是以1为首项,2为公比的等比数列,则10321b b b b a a a a +⋯+++等于( ) A .1033 B .1034C .2057D .20588.对等差数列{}n a 中,首项01=a 公差0≠d ,其前n 项和为n S ,如果9S a k =,那么=k( ) A .36B .37C .38D .399.已知“*”表示一种运算,定义如下关系: ①1*1=a ②)*(3*)1(a n a n =+(n ∈N *)则=a n *( ) A .23-nB .13+nC .13-nD .n 310.如果等比数列{}n a 的首项01>a ,公比0>q ,前n 项和为n S ,那么44a S 与66a S的大小为 ( ) A .6644a S a S ≤B .6644a S a S > C .6644a S a S < D .6644a S a S =二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上) 11.已知等差数列{}n a 中,13,1595==a S ,则11S = . 12.已知等比数列{}n a 中,311=a ,且有27644a a a =,则=3a . 13.定义“等积数列”,在一个数列中,如果每一项与它的后一项的积都为同一个常数,那么这个数列叫做等积数列,这个常数叫做该数列的公积.已知数列{}n a 是等积数列且21=a ,前21项的和等于62,则这个数列的公积等于 .14.已知数列{}n a 满足2)1(1++=+n n a n na ,且21=a ,则数列{}n a 的通项公式是 . 15.设数列{}n a ,{}n b 都是正项等比数列,n S ,n T 分别为数列}{n a lg 与}{n b lg 的前n 项和,且12+=n nT S n n ,则=55log a b .(1)解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分12分)已知点),(n n x n P 在函数x y 2=的图象上. (1)求数列{}n x 的前n 项和n S ; (2)设nn x y n n 1lg lg ++=,求数列{}n y 的前n 项和n T . ][来源: ]17.(本小题满分12分) 在数列{}n a 中,531=a ,112--=n n a a (n ≥2,n ∈N *),数列{}nb 满足:11-=n n a b (n ∈N *). (1)求证:数列{}n b 是等差数列;(2)试求数列{}n a 中的最小项和最大项,并说明你的理由.18.(本小题满分12分)数列{}n a 的前n 项和记为n S ,t a =1,点),(1+n n a S 在直线12+=x y 上,n ∈N *. (1)当实数t 为何值时,数列{}n a 是等比数列?(2)在(1)的结论下,设13log +=n n a b ,n T 是数列}{11+⋅n n b b 的前n 项和,求2011T 的值.[来源:金太阳新课标资源网]19.(本小题满分12分)已知数列{}n a 中,132112132,1++=+⋯+++=n n a n na a a a a (n ∈N *). (1)证明数列{})2(≥n na n 为等比数列;[来源: ](2)求数列{}n a n 2的前n 项和n T .[来源:金太阳新课标资源网 ]20.(本小题满分13分)宏伟机器制造有限公司从2012年起,若不改善生产环境,按现状生产,每月收入为70万元,同时将受到环保部门的处罚,第一个月罚3万元,以后每月递增2万元的处罚.如果从2012年一月起投资400万元增加回收净化设备以改善生产环境(改造设备时间不计).按测算,新设备投产后的月收入与时间的关系如图所示.(1)设)(n f 表示投资改造后的前n 个月的总收入,请写出)(n f 的函数关系式;(2)试问:经过多少个月,投资开始见效,也就是说,投资改造后的月累计纯收入多于不改造时的月累计纯收入?21.(本小题满分14分)(理)已知a 为实数,数列{}n a 满足a a =1,当2≥n 时,⎩⎨⎧≤--=----)4(5)4(41111n n n n n a a a a a >.(1)当200=a 时,填写下列表格;(2)当n 200(3)令nnn a b )2(-=,n n b b b T +⋯++=21,求证:当351<<a 时,有335a T n -<. (文)已知数列{}n a 满足11=a ,且n n n a a 221+=-(n ≥2且n ∈N *). (1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项之和n S ,求n S ,并证明:322-n S nn >.2012届专题卷数学专题十一答案及解析1.【命题立意】本题以等差数列的定义立意,主要考查等差数列定义,中项公式,或者性质.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)建立3个字母的方程;(2)把a ,b 用x 表示.【答案】C 【解析】依题意得222x a x b x b x⎧+=+⎪⎪⎨⎪=+⎪⎩,所以2232x a b b x ⎧=-+⎪⎪⎨⎪=⎪⎩,即2133b a b b =-+=,于是有3=a b .2.【命题立意】本题主要考查数列中n S 与n a 的关系,通项公式的求法以及解方程思想.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)利用n S 求n a 的方法)2(1≥-=-n S S a n n n ;(2)利用通项公式求数列 的项;(3)解方程的思想方法.【答案】A 【解析】由23n S n n =-+可得42n a n =-,因此12[42(1)][42(2)]n n a a n n ++=-+-+,即(1)20n n -=,解得5=n ,故选A .3.【命题立意】本题以等差数列立意,主要考查等差数列与等比数列基本量的运算.【思路点拨】解答本题需要掌握以下关键知识点:(1)等差数列的通项公式(2)等比数列的定义(3)n S 与n a 的关系.【答案】A 【解析】设{}n a 的公差为d ,则依题意有4123a a a ⋅=,即2111(2)(3)a d a a d +=⋅+,整理得2140a d d +=,由于0≠d ,所以14a d =-.故323534522S S a dS S a a d--===-+-. 4.【命题立意】本题以等比数列的立意,主要考查数列基本量的观点和方法.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)建立方程;(2)求解方程,取舍值.【答案】C 【解析】依题意有513242a a a =-,即42111242a q a a q =-,整理得4220q q +-=,解得221(2q q ==-舍去),所以1=q 或1-=q .5.【命题立意】本题以等差数列的立意,主要考查数列基本量的观点和方法.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)建立方程,求公差;(2)解方程.【答案】C 【解析】由34143SS -=,即433412S S -=得12341233()4()12a a a a a a a +++-++=,即2326()4312a a a +-⋅=,所以326612a a -=,即126=d ,所以2=d .6.(理)【命题立意】本题以等差数列的立意,主要考查充要条件.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)推理证明;(2)原命题,逆命题. 【答案】C 【解析】显然,如数列12,,n n n a a a ++(n =1,2,3,…)成等差数列,则121n n n n a a a a +++-=-,得212n n n a a a +++=;反之,也成立.应为充要条件. (文)【命题立意】本题以等比数列、不等式的立意,主要考查充要条件.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)用基本量转化不等关系;(2)推理和证明.[来源:金太阳新课标资源网]【答案】C 【解析】C .由24a a >得222a a q >,所以201q <<,由68a a >得266a a q >,所以201q <<,因此“24a a >”是“68a a >”的充要条件.7.【命题立意】本题以等差数列与等比数列立意,考查等差数列与等比数列的通项公式、前n 项和公式. 【思路点拨】解答本题要熟练掌握下列关键知识点:(1)等差数列与等比数列的通项公式;(2)等差数列与等比数列的前n 项和公式.【答案】A 【解析】由已知可得11,2n n n a n b -=+=,于是11221n n n b a a --==+,因此12101929(21)(21)(21)(1222)10b b b a a a +++=++++++=+++++ 101210103312-=+=-.8.【命题立意】本题以等差数列立意,主要考查等差数列的性质、通项公式.【思路点拨】解答本题需要掌握以下关键的知识点:(1)等差数列的基本性质;(2)等差数列的通项公式.【答案】B 【解析】因为95113799(4)3636S a a d d a d a ==+==+=,所以37=k . 9.【命题立意】本题主要考查新颖情景的信息转换,等比数列通项.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)把新颖情景转化为数列的递推关系;(2)应用等比通项公式.【答案】C 【解析】设*n n a a =,于是有111,3n n a a a +==,则数列{}n a 是等比数列,所以,得1113*--===n n n q a a a n .10.【命题立意】本题主要考查等比数列的通项,前n 项和公式,比较大小.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)转化为基本量首项1a 和公比q ;(2)对公比q 分类处理.【答案】C 【解析】当01q <≠时,有466411354611(1)(1)(1)(1)S S a q a q a a a q q a q q ---=---255110(1)q qq q q ---==<-;当1=q 时,有6446460S S a a -=-<.综合以上,应当选C . 11.【命题立意】本题以等差数列立意,主要考查等差数列的性质与求和.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)等差数列的性质21(21)n n S n a -=-;(2)等差数列前n 项和公式.【答案】88【解析】由53515S a ==得33a =,又913a =,所以3911116a a a a +=+=,于是1111111()11168822a a S +⨯===. 12.【命题立意】本题以等比数列立意,考查等比数列的基本性质、等比数列的基本量运算.【思路点拨】解答本题要掌握以下几个关键的知识点:(1)等比数列的基本性质;(2)整体运算的思想方法.【答案】61【解析】由等比数列的性质可得2465a a a =,于是22574a a =,若设公比为q ,则2472514a q a ==,于是212q =,故231111326a a q ==⋅=.13.【命题立意】本题主要考查新定义的数列:“等积数列”,求和等知识.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)分项数为偶数和奇数的情况进行计算;(2)应用分类处理的方法.【答案】8【解析】设这个等积数列的公积为m ,由于21=a ,所以22ma =,于是这个数列各项依次为:2,,2,,2,,222m m m,由于前21项的和等于62,所以21110622m ⨯+⨯=,解得8=m . 14.【命题立意】本题主要考查累加法求数列通项公式、裂项相消法求数列和等知识.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)合理地堆递推关系式进行转化;(2)利用累加法求数列的通项公式;(3)利用裂项相消法求数列和.【答案】24-=n a n 【解析】将()112n n na n a +=++的两边同除以()1n n +,得()1211n n a a n n n n +=+++,令n n ab n=,有:()122n n b b n n +=++,且21=b ,从而()11111121122411n n n k k b b b k k kk n --==⎛⎫=+=+-=- ⎪++⎝⎭∑∑,故42n n a nb n ==-. 15.【命题立意】本题主要考查等比数列中项性质,对数换底公式.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)应用等比数列中项性质;(2)应用对数换底公式.【答案】199【解析】由题意知99129559912955lg()lg lg lg()lg lg S a a a a a T b b b b b ⋅===⋅ 559log 19b a ==. 16.【命题立意】本题主要考查等比数列定义和通项,等比、等差数列前n 项和和对数运算.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)应用点在曲线上,等比数列定义;(2)应用等比、等差数列前n 项和公式.【答案】(1)由题意,得2nn x =,(3分)所以()23121222222 2.12n n n n S +-=+++⋅⋅⋅+==--(6分)(1)因为11lg 2lglg 2lg n n n n y n n n++=+=+,(8分)所以12n n T y y y =++⋅⋅⋅+)1lg2lg ()23lg 2lg 2()12lg 2(lg nn n +++⋯++++=(10分) )1lg 23lg 12(lg 2lg )21(nn n ++⋯++++⋯++=)12312lg(22lg )1(n n n n +⋅⋯⋅⋅++=)1lg(22lg )1(+++=n n n .(12分)17.【命题立意】本题主要考查数列的递推关系,等差数列的判断,以及数列最大、最小项的探求. 【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)针对1n n b b --进行计算;(2)构造函数,获知函数的单调性,据此探求数列{}n a 中的最大项与最小项. 【答案】(1)∵112n n a a -=-,∴111111121n n n n n a b a a a ---===----,而1111n n b a --=-,(3分)∴11111111n n n n n a b b a a -----=-=--(n ∈N +).故数列{}n b 是首项为251111-=-=a b ,公差为1的等差数列.(6分) (1)依题意有n n b a 11=-,而5.31)1(25-=-+-=⋅n n b n ,所以5.311-=-n a n (8分)函数5.31-=x y 在x<3.5时,y <0,在)5.3,(-∞上也为减函数.故当n =3时,取最小值,13-=a ;(10分)函数5.31-=x y ,在x >3.5时,y >0,在),,5.3(+∞上为减函数.故当n =4时,5.311-+=n a n 取最大值3.(12分) 18.【命题立意】本题主要考查前n 项和与通项的关系,等比数列,对数知识,裂项求前n 项和. 【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)应用前n 项和与通项的关系;(2)应用裂项方法,求数列前n 项和.【答案】(1)由题意得121n n a S +=+,121n n a S -=+(2)n ≥,(2分)两式相减,得)2(3,211≥==-++n a a a a a n n n n n 即,所以,当2≥n 时,{}n a 是等比数列,(4分)要使1≥n 时,{}n a 是等比数列,则只需31212=+=tt a a ,从而得出1=t .(6分) (2)由(1)得知13n n a -=,31log n n b a n +==,(8分)11111(1)1n n b b n n n n +==-⋅++,(10分) 201112201120121111111(1)()()22320112012T b b b b =+⋅⋅⋅+=-+-+⋅⋅⋅+-20112012=.(12分) 19.【命题立意】本题主要考查等比数列的定义、通项,数列的求和.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)应用等比数列的定义证明,等比数列通项;(2)应用错位相减法,等比数列前n 项和公式. 【答案】(1)因为)(21321321*+∈+=+⋅⋅⋅+++N n a n na a a a n n ,所以)2(2)1(321321≥=-+⋅⋅⋅+++-n a na n a a a n n ,(3分) 两式相减得n n n a na n na 2211-+=+,所以)2(3)1(1≥=++n na a n n n ,因此,数列{}n na 从第二项起,是以2为首项,以3为公比的等比数列.(6分) (2)由(1)知)2(322≥⋅=-n na n n ,故⎪⎩⎪⎨⎧≥⋅==-2,321,12n nn a n n ;于是当2≥n 时,2232-⋅=n n n a n ,所以,当2≥n 时,2103236341-⋅+⋅⋅⋅+⋅+⋅+=n n n T ,(9分)121323)1(23433--⋅+⋅-+⋅⋅⋅+⋅+=∴n n n n n T ,两式相减得)2(3)21(211≥-+=-n n T n n ,又111==a T 也满足上式,所以)(3)21(211*-∈-==N n n T n n .(12分) 20.【命题立意】本题主要考查数列的实际应用,等差数列和常数数列,以及不等式的有关推理和运算.考查学生的综合解题能力.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)将实际问题数列化,进行翻译转化之;(2)分类列出不等式,研究不等式的解.【答案】(1)设i a 表示第i 个月的收入,则由图得1011=a ,1095=a ,且数列{}n a 的前五项是公差为2的等差数列,第六项开始是常数列,(2分)所以)(n f =2100(5),(5)(5)[(5)(4)](5),n n n g n g g n ⎧+≤⎨+-->⎩(4分)即)(n f =2100(5),10920(5).n n n n n ⎧+≤⎨->⎩(6分)(2)不改造时的第n 个月累计纯收入:268n S n n =-;(8分)投资改造后的第n 个月累计纯收入:当n ≤5时,纯收入为2n +100n -400,由2n +100n -400>268n S n n =-,解得n >-8+264,由-8+264>-8+256=8,得n >8,即前5个月不效.(10分)当n >5时,纯收入400)20109(--n ,由400)20109(--n >268n S n n =-,得2414200n n +->,解得578.n而n =9适合上述不等式.所以,必须经过8个月后,即第9个月才见效.(13分)21.(理)【命题立意】本题主要考查分段数列,前n 项和,通项,等比数列,分类求前n 项和,不等式证明.【思路点拨】解答本题需要掌握以下几个关键的知识点: (1)应用已知关系填表;(2)分类求前200项和,前50项是等差数列,后面的奇数项均为1,偶数项均为4. (3)奇偶性分析法,求和,放大获得不等式证明. 【解析】(1)(4分)(2)当200=a 时,由题意知数列{}n a 的前50项构成首项为200,公差为4-的等差数列,从第51项开始,奇数项均为1,偶数项均为4.(6分)从而200(200+196+192++4)(1+4++1+4)S =⋅⋅⋅+⋅⋅⋅共50项共150项,∴2005475S =.(8分)(3)当351<<a 时,易知()5n a n a a n ⎧=⎨-⎩为奇数(为偶数),∴()()252()2n nn nan a b a n ⎧-⎪⎪==⎨--⎪⎪⎩为奇数为偶数(10分)①当k n 2=(k ∈N *)时,124212555222222n k a a a a a a T b b b ---=+++=-+-++-+ 321242555()()222222k k a a a a a a ----=-+++++++ 151112444531111341144k kka a a ⎡⎤⎡⎤-⎛⎫⎛⎫--⎢⎥⎢⎥ ⎪ ⎪⎡⎤⎝⎭⎝⎭-⎢⎥⎢⎥⎛⎫⎣⎦⎣⎦=-+=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦--∵10114k ⎡⎤⎛⎫<-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,∴531531343k a a ⎡⎤--⎛⎫-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,(12分)②当12-=k n (k ∈N *)时,1221234212342125522222555532222223n k k k k aa a a a Tb b b a a a a a a a -----=+++=-+-++-----<-+-++-+<综上,有533n aT -<.(14分) (文)【命题立意】本题主要考查数列通项,前n 项和的探求,等差数列,等比数列,错位相减法求数列前n 项和.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)构造等差数列,求通项;2)应用错位相减法,求数列前n 项和.(3)恰当缩小,获得所要证明的不等式.【解析】(1)122(2,n n n a a n -=+≥ 且n ∈N *),11122n n n n a a --∴=+,即11122n n n n a a ---=(2n ≥,且n ∈N *),(3分)所以,数列{}2n n a是等差数列,公差1=d ,首项21,(5分)于是111(1)(1)1,2222n n a n d n n =+-=+-⋅=-1()22n n a n ∴=-⋅.(7分)(2)1231351222()22222n n S n =⋅+⋅+⋅++-⋅① 234113512222()22222n n S n +∴=⋅+⋅+⋅++-⋅ ②(9分)①-②得23111222()22n n n S n +-=++++--⋅ 23112222()212n n n +=++++--⋅- 12(12)1()21(32)23,122n n n n n +-=--⋅-=-⋅--(12分) (23)23(23)2,n n n S n n =-⋅+>-⋅2 3.2nnS n ∴>-(14分)。
(完整版)2017全国二卷理科数学高考真题及答案
2017年普通高等学校招生全国统一考试理科数学(全国2卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有() A .12种 B .18种 C .24种 D .36种7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的1a =-,则输出的S =()A .2B .3C .4D .59.若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为()A .2B .3C .2D .23310.已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为()输出S K=K+1a =a S =S +a ∙K 是否输入a S =0,K =1结束K ≤6开始ABCD11.若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.1 12.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是() A.2- B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。
2017年高考理科数学全国Ⅱ卷及答案
2017年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31i i+=+( ) A .12i + B .12i - C .2i + D .2i - 2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B = ,则B =( ) A .{}1,3- B .{}1,0 C .{}1,3 D .{}1,53.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏4.如图,网格纸上小正方形的边长为1,学 科&网粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π5.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种7.甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩8.执行右面的程序框图,如果输入的1a =-,则输出的S =( )A .2B .3C .4D .59.若双曲线C :22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2B .3C .2D .23310.已知直三棱柱111C C AB -A B 中,C 120∠AB = ,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A .32B .155C .105D .33 11.若2x =-是函数21`()(1)x f x x ax e-=+-的极值点,则()f x 的极小值为( ) A.1- B.32e -- C.35e - D.112.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+ 的最小值是( )A.2-B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。
2017年高考(全国新课标)数学(文)大二轮复习(检测)专题整合突破专题四数列2-4-2a含答案
一、选择题1.[2016·重庆测试]在数列{a n}中,若a1=2,且对任意正整数m,k,总有a m+k=a m+a k,则{a n}的前n项和S n=( ) A.n(3n-1)B。
错误!C.n(n+1) D。
错误!答案C解析依题意得a n+1=a n+a1,即有a n+1-a n=a1=2,所以数列{a n}是以2为首项、2为公差的等差数列,a n=2+2(n-1)=2n,S n =错误!=n(n+1),选C.2.[2016·郑州质检]正项等比数列{a n}中的a1、a4031是函数f (x)=错误!x3-4x2+6x-3的极值点,则log 错误!a2016=( )A.1 B.2C。
2 D.-1答案A解析因为f′(x)=x2-8x+6,且a1、a4031是方程x2-8x+6=0的两根,所以a1·a4031=a2,2016=6,即a2016=6,所以log错误!a2016=1,故选A。
3.[2016·太原一模]已知数列{a n}的通项公式为a n=(-1)n(2n -1)·cos错误!+1(n∈N*),其前n项和为S n,则S60=() A.-30 B.-60C.90 D.120答案D解析由题意可得,当n=4k-3(k∈N*)时,a n=a4k-3=1;当n =4k-2(k∈N*)时,a n=a4k-2=6-8k;当n=4k-1(k∈N*)时,a n=a4k-1=1;当n=4k(k∈N*)时,a n=a4k=8k。
∴a4k-3+a4k-2+a4k-1+a4k =8,∴S60=8×15=120。
故选D.4.某年“十一”期间,北京十家重点公园举行免费游园活动,北海公园免费开放一天,早晨6时30分有2人进入公园,接下来的第一个30分钟内有4人进去1人出来,第二个30分钟内有8人进去2人出来,第三个30分钟内有16人进去3人出来,第四个30分钟内有32人进去4人出来……按照这种规律进行下去,到上午11时30分公园内的人数是()A.211-47 B.212-57C.213-68 D.214-80答案B解析由题意,可知从早晨6时30分开始,接下来的每个30分钟内进入的人数构成以4为首项,2为公比的等比数列,出来的人数构成以1为首项,1为公差的等差数列,记第n个30分钟内进入公园的人数为a n,第n个30分钟内出来的人数为b n则a n=4×2n-1,b n =n,则上午11时30分公园内的人数为S=2+错误!-错误!=212-57。
2017年高考理科数学全国2卷-含答案
输出S K=K+1a =a S =S +a ∙K 是否输入a S =0,K =1结束K ≤6开始2017年普通高等学校招生全国统一考试理科数学(全国2卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2。
设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53。
我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏 4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7。
甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则() A .乙可以知道四人的成绩 B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 8。
执行右面的程序框图,如果输入的1a =-,则输出的S =() A .2 B .3 C .4 D .59.若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为()A .2B .3C .2D .23310.已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为()ABCD11.若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A 。
2017理科数学全国二卷试题及答案
2017年普通高等学校招生全国统一考试理科数学(n )3 i 1. rr (A. 1 2i点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共 挂了 381盏灯,且相邻两层中的下一层灯数是上一层灯数的 2倍,则塔的 顶层共有灯( ) A. 1 盏 B .3 盏 C .5 盏 D .9盏4. 如图,网格纸上小正方形的边长为 1,粗实线画出的 是某几何体的三视图,该几何体由一平面将一圆柱截去 一部分后所得,则该几何体的体积为( )A . 90B . 63C . 42D. 362x 3y 3 0 2x 3y 3 05. 设x , y 满足约束条件y 3 0 ,则z 2x y 的最小值是( )A. 15 B .9 C . 1D. 9、选择题:本题共12小题,每小题5分,共 60分。
在每小题给出的四个选项中, 只有一项是符合题目要求的。
1 2i2.设集合1,2,4x x 2 4x1,01,则1,31,53.我国古代数学名著《算法统宗》 中有如下问题: “远望巍巍塔七层,红光6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有(A. 12 种B. 18 种C. 24 种D. 36 种7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩. 根据以上信息,贝V ()A.乙可以知道四人的成绩.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩.乙、丁可以知道自己的成绩8.执行右面的程序框图,如果输入的1,则输出的SA. 2 B . 32 20壬19.若双曲线C:a2 b2( a 0, b的一条渐近线被圆4所截得的弦长为2,则C的离心率为(A. 2 ^.3 310.已知直二棱柱C1 1C1中, C 120°, 线1与C1所成角的余弦值为()15 A. B . 2 , C C C1 1,则异面直10C.2 x 1'11.若x 2是函数f(x) (X ax 1)e 的极值点,贝y f(x)的极小值为(D.1uuu uuu 12.已知ABC 是边长为2的等边三角形,P 为平面内一点,则PA (PB 最小值是( )D. 1二、填空题:本题共 4小题,每小题5分,共20分。
(完整版)2017新课标全国卷2高考理科数学试题及答案解析,推荐文档
WORD 格式整理一、选择题(本大题共 12 小题,共 60.0 分)1.已知z=(m+3)+(m-1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是()A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3)2.已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=()A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}3.已知向量=(1,m),=(3,-2),且(+)⊥,则m=()A.-8B.-6C.6D.84.圆x2+y2-2x-8y+13=0 的圆心到直线ax+y-1=0 的距离为1,则a=()A.-B.-C.D.25.如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.96.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π7.若将函数y=2sin2x 的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x= -(k∈Z)B.x= +(k∈Z)C.x= - (k∈Z)D.x= + (k∈Z)- 8. 中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的 x=2,n=2,依次输入的 a 为 2,2,5,则输出的 s=( )A.7B.12C.17D.349. 若 cos (-α)= ,则 sin2α=()A. B. C.- D.-10. 从区间[0,1]随机抽取 2n 个数 x 1,x 2,…,x n ,y 1,y 2,…,y n 构成 n个数对(x 1,y 1),(x 2,y 2)…(x n ,y n ),其中两数的平方和小于 1 的数对共有 m 个,则用随机模拟的方法得到的圆周率 π 的近似值为( ) A. B. C. D.11. 已知 F 1,F 2 是双曲线 E : =1 的左、右焦点,点 M 在E 上,MF 1 与x 轴垂直,sin∠MF 2F 1= ,则 E 的离心率为( )A.B.C.D.212. 已知函数 f (x )(x∈R)满足 f (-x )=2-f (x ),若函数 y=与 y=f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则 (x i +y i )=( )A.0B.mC.2mD.4m二、填空题(本大题共 4 小题,共 20.0 分)13. △ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,若 cosA=,cosC= ,a=1,则 b= .14. α,β 是两个平面,m ,n 是两条直线,有下列四个命题:①如果 m⊥n,m⊥α,n∥β,那么 α⊥β. ②如果 m⊥α,n∥α,那么 m⊥n. ③如果 α∥β,m ⊂α,那么 m∥β.④如果 m∥n,α∥β,那么 m 与 α 所成的角和 n 与 β 所成的角相等. 其中正确的命题是 (填序号)15. 有三张卡片,分别写有 1 和 2,1 和 3,2 和 3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是 2”,乙看了丙的卡片后说:“我与丙的卡片上相同 的数字不是 1”,丙说:“我的卡片上的数字之和不是 5”,则甲的卡片上的数字是 . 16.若直线 y=kx+b 是曲线 y=lnx+2 的切线,也是曲线 y=ln (x+1)的切线,则 b=.WORD 格式整理三、解答题(本大题共 8 小题,共 94.0 分)17. S n 为等差数列{a n }的前 n 项和,且 a 1=1,S 7=28,记 b n =[lga n ],其中[x]表示不超过 x 的最 大整数,如[0.9]=0,[lg99]=1. (Ⅰ)求 b 1,b 11,b 101;(Ⅱ)求数列{b n }的前 1000 项和.18. 某保险的基本保费为 a (单位:元),继续购买该保险的投保人成为续保人,续保人本年度的保费与其上年度出险次数的关联如下: 上年度出险次数 保费 设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数1234≥5概率 0.30 0.15 0.20 0.20 0.10 0.05 (Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出 60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值.19. 如图,菱形 ABCD 的对角线 AC 与 BD 交于点O ,AB=5,AC=6,点 E ,F 分别在 AD ,CD 上,AE=CF= ,EF 交于 BD 于点 M ,将△DEF 沿 EF 折到△D′EF 的位置,OD′= .(Ⅰ)证明:D′H⊥平面 ABCD ;(Ⅱ)求二面角 B-D′A -C 的正弦值.0 1 2 3 4 ≥5 0.85aa1.25a1.5a1.75a2a+20.已知椭圆 E:=1 的焦点在x 轴上,A 是E 的左顶点,斜率为k(k>0)的直线交 E 于A,M 两点,点 N 在 E 上,MA⊥NA.(Ⅰ)当 t=4,|AM|=|AN|时,求△AMN 的面积;(Ⅱ)当 2|AM|=|AN|时,求 k 的取值范围.21.(Ⅰ)讨论函数f(x)=e x的单调性,并证明当x>0 时,(x-2)e x+x+2>0;(Ⅱ)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数 h(a)的值域.22.如图,在正方形 ABCD 中,E,G 分别在边 DA,DC 上(不与端点重合),且DE=DG,过 D 点作DF⊥CE,垂足为 F.(Ⅰ)证明:B,C,G,F 四点共圆;(Ⅱ)若 AB=1,E 为 DA 的中点,求四边形 BCGF 的面积.23.在直角坐标系 xOy 中,圆 C 的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求 C 的极坐标方程;(Ⅱ)直线l 的参数方程是(t 为参数),l 与C 交与A,B 两点,|AB|= ,求l 的斜率.WORD 格式整理24.已知函数 f(x)=|x- |+|x+ |,M 为不等式 f(x)<2 的解集.(Ⅰ)求 M;(Ⅱ)证明:当 a,b∈M 时,|a+b|<|1+ab|.2016年全国统一高考数学试卷(新课标Ⅱ)(理科)答案和解析【答案】1.A2.C3.D4.A5.B6.C7.B8.C9.D 10.C 11.A 12.B13.14.②③④15.1和316.1-ln217.解:(Ⅰ)S n为等差数列{a n}的前 n 项和,且 a1=1,S7=28,7a4=28.可得 a4=4,则公差 d=1.a n=n,b n=[lgn],则 b1=[lg1]=0,b11=[lg11]=1, b101=[lg101]=2.(Ⅱ)由(Ⅰ)可知:b1=b2=b3=…=b9=0,b10=b11=b12=…=b99=1.b100=b101=b102=b103=…=b999=2,b10,00=3.数列{b n}的前 1000 项和为:9×0+90×1+900×2+3=1893.18.解:(Ⅰ)∵某保险的基本保费为 a(单位:元),上年度出险次数大于等于 2 时,续保人本年度的保费高于基本保费,∴由该险种一续保人一年内出险次数与相应概率统计表得:一续保人本年度的保费高于基本保费的概率:p1=1-0.30-0.15=0.55.(Ⅱ)设事件 A 表示“一续保人本年度的保费高于基本保费”,事件 B 表示“一续保人本年度的保费比基本保费高出60%”,由题意 P(A)=0.55,P(AB)=0.10+0.05=0.15,由题意得若一续保人本年度的保费高于基本保费,则其保费比基本保费高出 60%的概率:p2=P(B|A)= = = .(Ⅲ)由题意,续保人本年度的平均保费与基本保费的比值为:=1.23,∴续保人本年度的平均保费与基本保费的比值为1.23.19.(Ⅰ)证明:∵ABCD 是菱形,∴AD=DC,又 AE=CF= ,∴,则EF∥AC,又由 ABCD 是菱形,得AC⊥BD,则EF⊥BD,∴EF⊥DH,则EF⊥D′H,∵AC=6,∴AO=3,又 AB=5,AO⊥OB,∴OB=4,∴OH=,则DH=D′H=3,∴|OD′|2=|OH|2+|D′H|2,则D′H⊥OH,又OH∩EF=H,∴D′H⊥平面 ABCD;(Ⅱ)解:以 H 为坐标原点,建立如图所示空间直角坐标系,∵AB=5,AC=6,∴B(5,0,0),C(1,3,0),D′(0,0,3),A(1,-3,0),,,设平面ABD′的一个法向量为,由,得,取x=3,得y=-4,z=5.∴.同理可求得平面设二面角二面角AD′C 的一个法向量B-D′A-C 的平面角为θ,,则|cosθ|=.∴二面角B-D′A-C 的正弦值为sinθ=.20.解:(Ⅰ)t=4 时,椭圆E 的方程为+=1,A(-2,0),直线 AM 的方程为 y=k(x+2),代入椭圆方程,整理可得(3+4k2)x2+16k2x+16k2-12=0,解得 x=-2 或 x=- ,则|AM|= •|2- |= •,由AN⊥AM,可得|AN|=•= •,由|AM|=|AN|,k>0,可得•= •,WORD 格式整理整理可得(k-1)(4k2-k+4)=0,由4k2-k+4=0 无实根,可得k=1,即有△AMN的面积为|AM|2= (•)2= ;(Ⅱ)直线AM 的方程为y=k(x+),代入椭圆方程,可得(3+tk2)x2+2t k2x+t2k2-3t=0,解得x=- 或x=-,即有|AM|= •|- |= •,|AN|═•= •,由2|AM|=|AN|,可得2 •= •,整理得t= ,由椭圆的焦点在x 轴上,则t>3,即有>3,即有<0,可得<k<2,即k 的取值范围是(,2).21.解:(1)证明:f(x)=f'(x)=e x()=∵当x∈(-∞,-2)∪(-2,+∞)时,f'(x)>0∴f(x)在(-∞,-2)和(-2,+∞)上单调递增∴x>0 时,>f(0)=-1即(x-2)e x+x+2>0(2)g'(x)= =a∈[0,1]由(1)知,当x>0 时,f(x)=的值域为(-1,+∞),只有一解使得,t∈[0,2]当x∈(0,t)时,g'(x)<0,g(x)单调减;当x∈(t,+∞),g'(x)>0,g(x)单调增;h(a)===记k(t)=,在t∈(0,2]时,k'(t)= >0,故 k(t)单调递增,所以 h(a)=k(t)∈(, ].22.(Ⅰ)证明:∵DF⊥CE,∴Rt△DFC∽Rt△EDC,∴=,∵DE=DG,CD=BC,∴=,又∵∠GDF=∠DEF=∠BCF,∴△GDF∽△BCF,∴∠CFB=∠DFG,∴∠GFB=∠GFC+∠CFB=∠GFC+∠DFG=∠DFC=90°,∴∠GFB+∠GCB=180°,∴B,C,G,F 四点共圆.(Ⅱ)∵E 为 AD 中点,AB=1,∴DG=CG=DE= ,∴在Rt△DFC中,GF= CD=GC,连接 GB,Rt△BCG≌Rt△BFG,∴S 四边形BCGF=2S△BCG=2× ×1× = .23.解:(Ⅰ)∵圆 C 的方程为(x+6)2+y2=25,∴x2+y2+12x+11=0,∵ρ2=x2+y2,x=ρcosα,y=ρsinα,∴C 的极坐标方程为ρ2+12ρcosα+11=0.(Ⅱ)∵直线l 的参数方程是(t 为参数),∴直线 l 的一般方程y=tanα•x,∵l与C 交与A,B 两点,|AB|= ,圆C 的圆心C(-6,0),半径r=5,∴圆心C(-6,0)到直线距离d== ,解得 tan2α=,∴tanα=±=±.∴l的斜率k=±.24.解:(I)当x<时,不等式f(x)<2 可化为:-x-x- <2,解得:x>-1,WORD 格式整理∴-1<x<,当≤x≤时,不等式f(x)<2 可化为:-x+x+ =1<2,此时不等式恒成立,∴≤x≤,当x>时,不等式 f(x)<2 可化为:- +x+x+ <2,解得:x<1,∴<x<1,综上可得:M=(-1,1);证明:(Ⅱ)当 a,b∈M 时,(a2-1)(b2-1)>0,即a2b2+1>a2+b2,即a2b2+1+2ab>a2+b2+2ab,即(ab+1)2>(a+b)2,即|a+b|<|1+ab|.【解析】1. 解:z=(m+3)+(m-1)i 在复平面内对应的点在第四象限,可得:,解得-3<m<1.故选:A.利用复数对应点所在象限,列出不等式组求解即可.本题考查复数的几何意义,考查计算能力.2. 解:∵ 集合 A={1,2,3}, B={x|(x+1)(x-2)<0,x∈Z}={0,1},∴A∪B={0,1,2,3}.故选:C.先求出集合 A,B,由此利用并集的定义能求出A∪B 的值.本题考查并集的求法,是基础题,解题时要认真审题,注意并集定义的合理运用.3. 解:∵向量=(1,m),=(3,-2),∴+=(4,m-2),又∵(+ )⊥,∴12-2(m-2)=0,解得:m=8,故选:D.求出向量+的坐标,根据向量垂直的充要条件,构造关于m 的方程,解得答案.本题考查的知识点是向量垂直的充要条件,难度不大,属于基础题.4. 解:圆 x2+y2-2x-8y+13=0 的圆心坐标为:(1,4),故圆心到直线ax+y-1=0 的距离d==1,3解得:a= , 故选:A .求出圆心坐标,代入点到直线距离方程,解得答案.本题考查的知识点是圆的一般方程,点到直线的距离公式,难度中档.5. 解:从 E 到F ,每条东西向的街道被分成 2 段,每条南北向的街道被分成 2 段, 从 E 到F 最短的走法,无论怎样走,一定包括 4 段,其中 2 段方向相同,另 2 段方向相同,每种最短走法,即是从 4 段中选出 2 段走东向的,选出 2 段走北向的,故共有 C 2=4 6 种走法.同理从 F 到G ,最短的走法,有 C 1=3 种走法. ∴小明到老年公寓可以选择的最短路径条数为 6×3=18 种走法. 故选:B .从 E 到 F 最短的走法,无论怎样走,一定包括 4 段,其中 2 段方向相同,另 2 段方向相同,每种最短走法,即是从 4 段中选出 2 段走东向的,选出 2 段走北向的,由组合数可得最短的走法,同理从 F 到G ,最短的走法,有 C 3 1=3 种走法,利用乘法原理可得结论.本题考查排列组合的简单应用,得出组成矩形的条件和最短走法是解决问题的关键,属基础题 6. 解:由三视图知,空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是 4,圆锥的高是 2 ,∴在轴截面中圆锥的母线长是=4,∴圆锥的侧面积是 π×2×4=8π,下面是一个圆柱,圆柱的底面直径是 4,圆柱的高是 4, ∴圆柱表现出来的表面积是 π×22+2π×2×4=20π ∴空间组合体的表面积是 28π, 故选:C .空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是 4,圆锥的高是 2 ,在轴截面 中圆锥的母线长使用勾股定理做出的,写出表面积,下面是一个圆柱,圆柱的底面直径是 4,圆柱的高是 4,做出圆柱的表面积,注意不包括重合的平面.本题考查由三视图求表面积,本题的图形结构比较简单,易错点可能是两个几何体重叠的部分忘记去掉,求表面积就有这样的弊端. 7. 解:将函数 y=2sin2x 的图象向左平移个单位长度,得到 y=2sin2(x+)=2sin (2x+),由 2x+=kπ+(k∈Z)得:x= +(k∈Z), 即平移后的图象的对称轴方程为 x= +(k∈Z),故选:B .利用函数 y= A sin ( ωx + φ)( A >0, ω>0)的图象的变换及正弦函数的对称性可得答 案.本题考查函数 yy= A sin ( ωx + φ)( A >0, ω>0)的图象的变换规律的应用及正弦函数的对称性质,属于中档题.8. 解:∵输入的 x=2,n=2,当输入的 a 为 2 时,S=2,k=1,不满足退出循环的条件;WORD 格式整理当再次输入的 a 为2 时,S=6,k=2,不满足退出循环的条件;当输入的 a 为5 时,S=17,k=3,满足退出循环的条件;故输出的 S 值为17,故选:C根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量 S 的值,模拟程序的运行过程,可得答案.本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.9. 解:∵cos(-α)= ,∴sin2α=cos(-2α)=cos2(-α)=2cos2(-α)-1=2×-1=- ,故选:D.利用诱导公式化sin2α=cos(-2α),再利用二倍角的余弦可得答案.本题考查三角函数的恒等变换及化简求值,熟练掌握诱导公式化与二倍角的余弦是关键,属于中档题.10. 解:由题意,,∴π=.故选:C.以面积为测度,建立方程,即可求出圆周率π 的近似值.古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.11.解:设|MF1|=x,则|MF2|=2a+x,∵MF1与 x 轴垂直,∴(2a+x)2=x2+4c2,∴x=∵sin∠MF2F1= ,∴3x=2a+x,∴x=a,∴=a,∴a=b,∴c=a,∴e==.故选:A.设|MF1|=x,则|MF2|=2a+x,利用勾股定理,求出 x= ,利用sin∠MF2F1= ,求得 x=a,可得=a,求出 a=b ,即可得出结论.专业技术参考资料本题考查双曲线的定义与方程,考查双曲线的性质,考查学生分析解决问题的能力,比较基础.12. 解:函数 f(x)(x∈R)满足 f(-x)=2-f(x),即为 f(x)+f(-x)=2,可得 f(x)关于点(0,1)对称,函数y=,即y=1+的图象关于点(0,1)对称,即有(x1,y1)为交点,即有(-x1,2-y1)也为交点,(x2,y2)为交点,即有(-x2,2-y2)也为交点,…则有(x i+y i)=(x1+y1)+(x2+y2)+…+(x m+y m)= [(x1+y1)+(-x1+2-y1)+(x2+y2)+(-x2+2-y2)+…+(x m+y m)+(-x m+2-y m)]=m.故选 B.由条件可得f(x)+f(-x)=2,即有f(x)关于点(0,1)对称,又函数y=,即y=1+的图象关于点(0,1)对称,即有(x1,y1)为交点,即有(-x1,2-y1)也为交点,计算即可得到所求和.本题考查抽象函数的运用:求和,考查函数的对称性的运用,以及化简整理的运算能力,属于中档题.13.解:由cosA=,cosC= ,可得sinA= = =,sinC= = = ,sinB=sin(A+C)=sinAcosC+cosAsinC= ×+×=,由正弦定理可得b== =.故答案为:.运用同角的平方关系可得 sinA,sinC,再由诱导公式和两角和的正弦公式,可得 sinB,运用正弦定理可得b=,代入计算即可得到所求值.本题考查正弦定理的运用,同时考查两角和的正弦公式和诱导公式,以及同角的平方关系的运用,考查运算能力,属于中档题.高中数学试卷第 12 页,共 15 页WORD 格式整理 专业技术参考资料14. 解:①如果 m⊥n,m⊥α,n∥β,那么 α∥β,故错误;②如果 n∥α,则存在直线 l ⊂α,使 n∥l,由 m⊥α,可得 m⊥l,那么 m⊥n.故正确;③如果 α∥β,m ⊂α,那么 m 与 β 无公共点,则 m∥β.故正确④如果 m∥n,α∥β,那么 m ,n 与α 所成的角和 m ,n 与β 所成的角均相等.故正确;故答案为:②③④根据空间直线与平面的位置关系的判定方法及几何特征,分析判断各个结论的真假,可得答案. 本题以命题的真假判断与应用为载体,考查了空间直线与平面的位置关系,难度中档.15. 解:根据丙的说法知,丙的卡片上写着 1 和 2,或 1 和 3;(1) 若丙的卡片上写着 1 和 2,根据乙的说法知,乙的卡片上写着 2 和 3;∴根据甲的说法知,甲的卡片上写着 1 和 3;(2) 若丙的卡片上写着 1 和 3,根据乙的说法知,乙的卡片上写着 2 和 3;又甲说,“我与乙的卡片上相同的数字不是 2”;∴甲的卡片上写的数字不是 1 和 2,这与已知矛盾;∴甲的卡片上的数字是 1 和3. 故答案为:1 和 3.可先根据丙的说法推出丙的卡片上写着 1 和 2,或 1 和 3,分别讨论这两种情况,根据甲和乙的说法可分别推出甲和乙卡片上的数字,这样便可判断出甲卡片上的数字是多少.考查进行简单的合情推理的能力,以及分类讨论得到解题思想,做这类题注意找出解题的突破口.16. 解:设 y=kx+b 与 y=lnx+2 和 y=ln (x+1)的切点分别为(x 1,kx 1+b )、(x 2,kx 2+b );由导数的几何意义可得 k= =,得 x 1=x 2+1 再由切点也在各自的曲线上,可得联立上述式子解得; 从 而 kx 1+b=lnx 1+2 得 出 b=1-ln2. 先设切点,然后利用切点来寻找切线斜率的联系,以及对应的函数值,综合联立求解即可本题考查了导数的几何意义,体现了方程思想,对学生综合计算能力有一定要求,中档题17.17.(Ⅰ)利用已知条件求出等差数列的公差,求出通项公式,然后求解 b 1,b 11,b 101;(Ⅱ)找出数列的规律,然后求数列{b n }的前 1000 项和.本题考查数列的性质,数列求和,考查分析问题解决问题的能力,以及计算能力.18.18.(Ⅰ)上年度出险次数大于等于 2 时,续保人本年度的保费高于基本保费,由此利用该险种一续保人一年内出险次数与相应概率统计表根据对立事件概率计算公式能求出一续保人本年度的保费高于基本保费的概率.(Ⅱ)设事件 A 表示“一续保人本年度的保费高于基本保费”,事件 B 表示“一续保人本年度的保费比基本保费高出 60%”,由题意求出 P (A ),P(AB ),由此利用条件概率能求出若一续保人本年度的保费高于基本保费,则其保费比基本保费高出 60%的概率.(Ⅲ)由题意,能求出续保人本年度的平均保费与基本保费的比值.本题考查概率的求法,是中档题,解题时要认真审题,注意对立事件概率计算公式、条件概率计算公式的合理运用.19.19.(Ⅰ)由底面 ABCD 为菱形,可得 AD=CD,结合 AE=CF 可得EF∥AC,再由 ABCD 是菱形,得AC⊥BD,进一步得到EF⊥BD,由EF⊥DH,可得EF⊥D′H,然后求解直角三角形得D′H⊥OH,再由线面垂直的判定得D′H⊥平面 ABCD;(Ⅱ)以 H 为坐标原点,建立如图所示空间直角坐标系,由已知求得所用点的坐标,得到的坐标,分别求出平面ABD′与平面AD′C的一个法向量,设二面角二面角B- D′A-C 的平面角为θ,求出|cosθ|.则二面角 B-D′A-C 的正弦值可求.本题考查线面垂直的判定,考查了二面角的平面角的求法,训练了利用平面的法向量求解二面角问题,体现了数学转化思想方法,是中档题.20.20.(Ⅰ)求出 t=4 时,椭圆方程和顶点 A,设出直线 AM 的方程,代入椭圆方程,求交点 M,运用弦长公式求得|AM|,由垂直的条件可得|AN|,再由|AM|=|AN|,解得 k=1,运用三角形的面积公式可得△AMN的面积;(Ⅱ)直线AM 的方程为y=k(x+ ),代入椭圆方程,求得交点M,可得|AM|,|AN|,再由2|AM|=|AN|,求得t,再由椭圆的性质可得t>3,解不等式即可得到所求范围.本题考查椭圆的方程的运用,考查直线方程和椭圆方程联立,求交点,以及弦长公式的运用,考查化简整理的运算能力,属于中档题.21.21.从导数作为切入点探求函数的单调性,通过函数单调性来求得函数的值域,利用复合函数的求导公式进行求导,然后逐步分析即可该题考查了导数在函数单调性上的应用,重点是掌握复合函数的求导,以及导数代表的意义,计算量较大,中档题.22.22.(Ⅰ)证明 B,C,G,F 四点共圆可证明四边形 BCGF 对角互补,由已知条件可知∠BCD=90°,因此问题可转化为证明∠GFB=90°;(Ⅱ)在Rt△DFC中,GF= CD=GC,因此可得△GFB≌△GCB,则S 四边形BCGF=2S△BCG,据此解答.本题考查四点共圆的判断,主要根据对角互补进行判断,注意三角形相似和全等性质的应用.23.(Ⅰ)把圆 C 的标准方程化为一般方程,由此利用ρ2=x2+y2,x=ρcosα,y=ρsinα,能求出圆C 的极坐标方程.(Ⅱ)由直线 l 的参数方程求出直线 l 的一般方程,再求出圆心到直线距离,由此能求出直线 l 的斜率.本题考查圆的极坐标方程的求法,考查直线的斜率的求法,是中档题,解题时要认真审题,注意点到直线公式、圆的性质的合理运用.24.(I)分当x<时,当≤x≤时,当x>时三种情况,分别求解不等式,综合可得答案;高中数学试卷第 14 页,共 15 页WORD 格式整理(Ⅱ)当a,b∈M时,(a2-1)(b2-1)>0,即a2b2+1>a2+b2,配方后,可证得结论.本题考查的知识点是绝对值不等式的解法,不等式的证明,难度中档.专业技术参考资料“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
2017年普通高等学校招生全国统一考试数学试题理(全国卷2,含答案)
绝密★启用前2017年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+( ) A .12i + B .12i - C .2i + D .2i -2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,53。
我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?"意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏4。
如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π5。
设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .96。
安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( ) A .12种 B .18种 C .24种 D .36种7。
甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的1a =-,则输出的S =( )A .2B .3C .4D .59.若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2 BCD10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列2017.02一、选择、填空题1、(红色七校2017届高三第二次联考)已知{}n a 是公比为q 的等比数列,n S 是{}n a 的前n 项和,且369S S =,若正数,a b 满足:24q a b +=,则2112a b +--的最小值为( ).A .2BC .52D .12、(红色七校2017届高三第二次联考)已知数列{}n a 的前n 项和21n S n n =++,则135a a a ++= ;3、(江西省师大附中、临川一中2017届高三1月联考)已知数列{}n a 、{}n b 满足2log ,n n b a n N +=∈,其中{}n b 是等差数列,且920094a a =,则=++++2017321.....b b b b ( )A.2017B.4034C. 2log 2017D.201724、(新余市2017高三上学期期末考试)已知等比数列{a n }中,a n +1=36,a n +3=m ,a n +5=4,则圆锥曲线+=1的离心率为( )A.B .C .或D .5、(新余市2017高三上学期期末考试)若等差数列{a n }的前7项和S 7=21,且a 2=﹣1,则a 6= 7 .6、(江西省重点中学协作体2017届高三下学期第一次联考)等差数列{}n a 的前n 项和为n S ,若公差,0>d 0))((5958<--S S S S ,则( )A .78||||a a >B .78||||a a <C .78||||a a =D .70a =7、(江西省重点中学协作体2017届高三下学期第一次联考)已知等比数列{}n a 满足:1611=a ,12573-=a a a ,则______3=a . 8、(江西师范大学附属中学2017届高三12月月考)在等差数列{}n a 中,已知386a a +=,则2163a a +的值为( )A.24B.18C.16D.12 9、(赣中南五校2017届高三下学期第一次联考)等差数列的前项和分别为,( )A .63B .45C .36D .2710、(南昌市三校(南昌一中、南昌十中、南铁一中)2017届高三第四次联考)等比数列{}n a 的前n 项和为n S ,已知2532a a a =,且4a 与72a 的等差中项为54,则5S =( ) A .29 B .31 C .33 D .3611、(九江市十校2017届高三第一次联考)已知等比数列{}n a 的首项为1a ,公比为q ,满足1()10a q -<且0q >,则 A.{}n a 的各项均为正数 B.{}n a 的各项均为负数C.{}n a 为递增数列D.{}n a 为递减数列12、(九江市十校2017届高三第一次联考)已知各项不为0的等差数列{}n a 满足2478230a a a -+=,数列{}n b 是等比数列,且77b a =,则3711b b b 等于A. B. 2 C.4 D. 8二、解答题1、(赣州市2017届高三上学期期末考试)已知数列{}n a 是各项均不为0的等差数列,n S 为其前n 项和,且对任意正整数n 都有221n n a S -=学科网. (1)求数列{}n a 的通项公式; (2)若数列1{}nn b a -是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .2、(吉安市2017届高三上学期期末考试)已知{a n },{b n }为两个数列,其中{a n }是等差数列且前n 项和为S n 又a 3=6,a 9=18. (1)求数列{a n }的通项公式;(2)若数列{b n }满足a 1b 1+a 2b 2+…+a n b n =(2n ﹣3)S n ,求数列{b n }的通项公式.3、(景德镇市2017届高三上学期期末考试)已知等比数列{a n }的公比q >1,a 1=1,且a 1,2a 2﹣1,a 3成等差数列. (1)求数列{a n }的通项公式; (2)设a n •b n =,求数列{b n }的前n 项的和T n .4、(上饶市2017届高三第一次模拟考试)已知等差数列{}n a 中,n S 是数列{}n a 的前n 项和,已知29a =,565S =. (1)求数列{}n a 的通项公式; (2)设数列1n S n ⎧⎫⎨⎬-⎩⎭的前n 项和为n T ,求n T .5、(江西师范大学附属中学2017届高三12月月考)已知等差数列{}n a 的公差0d ≠,410a =.(Ⅰ)若3610a a a ,,成等比数列,求数列{}n a 的通项公式;(Ⅱ)记数列{}n a 的前n 项和为n S ,若当且仅当8=n 时,n S 取到最大值,求公差d 的取值范围.6、(赣吉抚七校2017届高三阶段性教学质量监测考试(二))等差数列{}n a 中,已知2580 33n a a a a >++=,,且1232 5 13a a a +++,,构成等比数列{}n b 的前三项.(1)求数列{}{} n n a b ,的通项公式; (2)记1nn na cb =+,求数列{}n c 的前n 项和n T.7、(南昌市八一中学2017届高三2月测试)已知数列{}n a 的前n 项和2*3,4n n n S n N +=∈. (1)求数列{}n a 的通项公式; (2{}n b 的前n 项和.8、(南昌市三校(南昌一中、南昌十中、南铁一中)2017届高三第四次联考)在等比数列{}n a 中,11a =,且2a 是1a 与31a -的等差中项. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足*(1)1,()(1)n n n n a b n N n n ++=∈+.求数列{}n b 的前n 项和n S .9、(九江市十校2017届高三第一次联考)已知数列{}n a 的前n 项和为n S ,且1,,n n a S 是等差数列.(1)求数列{}n a 的通项公式;(2)若2log n n b a =,设n n n c a b =⋅,求数列{}n c 的前n 项和为n T .参考答案一、选择、填空题1、A2、193、A4、【解答】解:∵等比数列{a n }中,a n +1=36,a n +3=m ,a n +5=4,∴m 2=36×4, ∴m=±12.m=﹣12,该圆锥曲线的方程为: =1,为焦点在y 轴上的双曲线,其中a 2=3,b 2=12,∴c 2=a 2+b 2=15,离心率e=.m=﹣2,该圆锥曲线的方程为:=1,为焦点在x 轴上的椭圆,其中a 2=12,b 2=3,∴c 2=a 2﹣b 2=9,离心率e=.故选C .5、【解答】解:由等差数列{a n }的性质可得:a 1+a 7=a 2+a 6.∴S 7=21==,且a 2=﹣1,则a 6=7. 故答案为:7.6、B7、418、D 9、D 10、B 11、【答案】D【解析】由等比数列{}n a 的通项公式11n n a a q -=⋅,知111111(1)n n n n n a a a q a q a q q --+-=⋅-⋅=⋅-,由1()10a q -<且0q >知,11(1)0n a q q -⋅-<,即10n n a a +-<,所以数列{}n a 为递减数列,故选D. 12、【答案】D【解析】等差数列{}n a 中,484886873()2224a a a a a a a a +=++=+=,则277420a a -=,且70a ≠,所以72a =,又772b a ==,故等比数列{}n b 中,3371178b b b b ==,故选D.二、解答题1、(1)(方法1)设等差数列{}n a 的公差为d ,则在221n n a S -=中,令1,2n n ==学科网,得:211223a S a S ⎧=⎨=⎩,即211211()33a a a d a d⎧=⎪⎨+=+⎪⎩………………………………1分解得11,2a d ==………………………………………………………………………………3分 所以21n a n =-………………………………………………………………………………4分 又21n a n =-时,2n S n =满足21n n a S -=(不检验,应扣1分)所以21n a n =-………………………………………………………………………………5分 (方法2)因为数列{}n a 是各项均不为0的等差数列, 所以121(21)()(21)2(21)22n nn n n a a n a S n a --⋅+-⋅===-⋅……………………………2分又221n n a S -=所以2121()(21)2(21)(21)22n n n n a a n a n a a n -+⋅-⋅-===⋅-…………………………5分所以21n a n =-………………………………………………………………………………6分(2)113n nn b a -+=,1113(21)3n n n n b a n --+=⋅=+⋅…………………………………………7分 123)12(37353-⋅+++⋅+⋅+=n n n T , n n n n n T 3)12(3)12(3735333132⋅++⋅-++⋅+⋅+⋅=- ………………………8分n n n n T 3)12(3232323212+-⋅++⋅+⋅+=-- ……………………………………9分13(13)32(21)32313n n n n n --=+⋅-+=-⋅-………………………………………………11分所以n n n T 3⋅=……………………………………………………………………………12分2、【解答】解:(1)设{a n }的公差为d ,∵a 3=6,a 9=18∴,解得a 1=2,d=2,∴a n =2+2(n ﹣1)=2n . (2)S n ==n 2+n ,当n=1时,a 1b 1=﹣S 1=﹣a 1,∴b 1=﹣1. 当n ≥2时,∵a 1b 1+a 2b 2+…+a n b n =(2n ﹣3)S n =n (n +1)(2n ﹣3), ∴a 1b 1+a 2b 2+…+a n ﹣1b n ﹣1=(2n ﹣5)S n ﹣1=n (n ﹣1)(2n ﹣5), ∴a n b n =n (n +1)(2n ﹣3)﹣n (n ﹣1)(2n ﹣5)=2n (3n ﹣4), ∴b n ==3n ﹣4,显然当n=1时,上式仍成立, ∴b n =3n ﹣4.3、【解答】解:(1)∵a 1,2a 2﹣1,a 3成等差数列.∴2(2a 2﹣1)=a 1+a 3,∴4q ﹣2=1+q 2,q >1,解得q=3,又a 1=1, ∴a n =3n ﹣1. (2)a n •b n =,∴b n ==3. ∴数列{b n }的前n 项的和T n =3+…+=3=.4、解:(1)设等差数列的首项为1a ,公差为d ,因为29a =,565S =,所以119,54565,2a d da +=⎧⎪⎨⨯+=⎪⎩得15,4,a d =⎧⎨=⎩∴41n a n =+. (2)∵15a =,41n a n =+,∴21()(541)2322n n n a a n n S n n +++===+, ∴21122n S n n n =-+111()21n n =-+, ∴12111111111(1)()()1222231n n T S S S n n n ⎡⎤=+++=-+-++-⎢⎥---+⎣⎦ (22)nn =+. 5、(I )∵{}n a 为等差数列,且公差为0d ≠,∴3410a a d d =-=-,642102a a d d =+=+,1046106a a d d =+=+, 由3610,,a a a 成等比数列得23106a a a =,即2(10)(106)(102)d d d -+=+, 整理得210100d d -=,解得1d =或0d =(舍去) ∴数列{}n a 的通项公式为6n a n =+. (II )由题意,⎩⎨⎧<>0098a a ,即⎩⎨⎧<+=+=>+=+=05105041044948d d a a d d a a ,解得225-<<-d6、解:(1)设等差数列{}n a 的公差为d ,则由已知得25833a a a ++=,即511a =. 又()()()2114211231135d d d -+-+=-+,解得2d =或28d =-(舍), 1543a a d =-=,()1121n a a n d n =+-=+.……………………4分又11222 5 510b a b a =+==+=,,∴2q =,∴152n n b -=⨯.……………………6分 (2)1211152n n n n a n c b -+=+=+⋅, ∴0213572152525252n n n T n -+=+++++⋅⋅⋅⋅…, 213521125252522n n n T n +=++++⋅⋅⋅….…………………………………………8分 两式相减得021113222211252222522n n n n T n -+⎡⎤=++++-+⎢⎥⋅⎣⎦…,125252n n n T n -+=+-⋅.……………………12分 7、解:(1)当1n =时,111a S ==;当2n ≥时,()()22113131442n n n n n n n n a S S --+-++=-=-=因为11a =也适合上式,因此,数列{}n a 的通项公式为12n n a +=………5分 (2)由(1)知,12n n a +=记数列{}n b 的前n 项和为n T记,则22n A n+=,{}nb 的前n ……12分 8、(1)设等比数列{}n a 的公比为q ,2a 是1a 与13-a 的等差中项,即有23121a a a =-+,即为q q 2112=-+,解得2=q , 即有1112--==n n n q a a ;.............5分(2)()()()⎪⎭⎫ ⎝⎛+-+=++=+++=-1112111111n n n n a n n a n n b n n n n ,数列{}n b 的前n 项和()11211121211113121211222112n +-=+-+--=⎪⎭⎫ ⎝⎛+-++-+-+++++=-n n n n S n n n ......12分9、【解析】(1)由1,,n n a S 是等差数列知21n n a S =+…①, 当1n =时,1121a a =+,则11a =;………… 2分当2n ≥时,1121n n a S --=+…②,①-②得122n n n a a a --=,即12n n a a -=;………… 4分 故数列{}n a 是首项为1,公比为2的等比数列,所以12n n a -=. ………… 6分 (2)2log 1n n b a n ==-,1(1)2n n n n c a b n -=⋅=-⋅,………… 8分2310122232(1)2n n T n -=+⨯+⨯+⨯++-⋅ …③ 23420122232(1)2n n T n =+⨯+⨯+⨯++-⋅ …④③-④得2312222(1)2n n n T n --=++++--⋅22(1)212n n n -=--⋅- (2)22n n =-⋅-(2)22n n T n ∴=-⋅+. ………… 12分。