江苏省常州市2013-2014学年七年级数学下学期期末学业水平监测试题
2014-2015学年江苏省常州市七年级上学期期末数学试卷(解析版)
第 5 页(共 19 页)
25. (6 分)如图,直线 BC 与 MN 相交于点 O,AO⊥BC,OE 平分∠BON,若∠ EON=20°,求∠AOM 的度数.
第 4 页(共 19 页)
26. (7 分)已知关于 m 的方程 n=3 的解. (1)求 m、n 的值;
的解也是关于 x 的方程 2(x﹣3)﹣
(2)已知线段 AB=m,在直线 AB 上取一点 P,恰好使 求线段 AQ 的长.
第 1 页(共 19 页)
9. (2 分)如图所示的图形是由边长为 1 的正方形按照某种规律排列组成的,观 察图形,推测第 n 个图形中,正方形的个数为 .
10. (2 分)如图,直线 L⊥n,作一条直线,使它与直线 L、n 围成的直角三角形 的面积是 6,且这个直角三角形的一条直角边为 3,则这样的直线最多可以作 条.
四、解答题(第 22 题 6 分,第 23 题 4 分,第 24 题 4 分,第 25 题 6 分,第 26 题 7 分,共 27 分) 22. (6 分)某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、 乙两木工组,甲组每天修理桌凳 16 套,乙组每天修理桌凳比甲多 8 套,甲组单 独修完这些桌凳比乙组单独修完多用 20 天,问该中学库存多少套桌凳? 23. (4 分) (1)由大小相同的小立方块搭成的几何体如图 1,请在图 2 的方格中
时,代数式 3x+1 的值与代数式 2(3﹣x)的值互为相反
5. (2 分)将一刻度尺如图所示放在数轴上(数轴的单位长度是 1cm) ,刻度尺 上的“0cm”和“15cm”分别对应数轴上的﹣3.6 和 x,则 x= .
6. (2 分)如图是一个数值转换机.若输入数﹣2,则输出数是
7. (2 分)对于有理数 a、b,规定一种新运算:a⊕b=a•b+b,则方程(x﹣4)⊕ 3=6 的解为 .
常州市初一下学期数学期末试卷带答案
7.以下列各组线段为边,能组成三角形的是()
A.1cm,2cm,4cmB.2cm,3cm,5cm
C.5cm,6cm,12cmD.4cm,6cm,8cm
8.下列各式中,计算结果为x2﹣1的是( )
A. B.
C. D.
9.如图,已知直线 ∥ , , ,则 ()
一、选择题
1.B
解析:B
【分析】
先判断三边长是否能构成三角形,再判断是否是等腰三角形.
【详解】
上述选项中,A、C、D不能构成三角形,错误
B中,满足三角形三边长关系,且有2边相等,是等腰三角形,正确
故选:B.
【点睛】
本题考查的等腰三角形的性质和三角形三边长的关系,注意在判断等腰三角形的时候,一定要先满足三边长能构成三角形.
(4)问题2:将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是.
27.如图所示,点B,E分别在AC,DF上,BD,CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.
28.因式分解:
(1) ;
(2) .
【参考答案】***试卷处理标记,请不要删除
…… ……
(1)请直接写出(a+b)4=__________;
(2)利用上面的规律计算:
①24+4×23+6×22+4×2+1=__________;
②36-6×35+15×34-20×33+15×32-6×3+1=________.
24.如图,已知AB∥CD,∠1=∠2,求证:AE∥DF.
江苏省常州市2013-2014学年高二下学期期末学业水平监测数学理试题 Word版含答案(苏教版)
2013-2014学年江苏省常州市高二(下)期末数学试卷(理科)一、填空题(本大题共14题,每小题5分,共70分)1.已知复数z1=1+i,z2=m﹣i(m∈R,i是虚数单位),若z1•z2为纯虚数,则m=_________.2.二项式(x﹣)6的展开式中第5项的二项式系数为_________.(用数字作答)3.若随机变量X~B(3,),则P(X=2)=_________.4.计算:+=_________.(用数字作答)5.抛掷一颗质地均匀的骰子,设A表示事件“正面向上的数字为奇数”、B表示事件“正面向上的数字大于3”,则P(A|B)=_________.6.用0,1,2,3四个数字,组成没有重复数字的四位数,则其中偶数的个数为_________.7.已知函数f(x)=sin(2x﹣),那么f′()的值是_________.8.记n!=1×2×…n(n∈N*),则1!+2!+3!+…+2014!的末位数字是_________.0 1 3的方差是_________.10.已知在等比数列{a n}中,若m+2n+p=s+2t+r,m,n,p,s,t,r∈N*,则a m•a n2•a p=a s•a t2•a r.类比此结论,可得到等差数列{b n}的一个正确命题,该命题为:在等差数列{b n}中,若m+2n+p=s+2t+r,m,n,p,s,t,r∈N*,则_________.11.设正四棱锥的侧棱长为3,则其体积的最大值为_________.12.已知甲、乙两人投篮投中的概率分别为和,若两人各投2次,则两人投中次数相等的概率为_________.13.已知函数f(x)的导函数f′(x)是二次函数,且f′(x)=0的两根为0和2,若函数f(x)在开区间(2m﹣3,)上存在最大值和最小值,则实数m的取值范围为_________.14.某宿舍的5位同学每人写一张明信片并放在一个不透明的箱子中,每人从中任意取出一张,记一个“恰当”为有一位同学取到的明信片不是自己写的,用ξ表示“恰当”的个数,则随机变量ξ的数学期望是_________.二、解答题(本大题共6小题,共80分)15.(12分)某小组有4名男生,3名女生.(1)若从男,女生中各选1人主持节目,有多少种不同的选法?(2)若从男,女生中各选2人,组成一个小合唱队,要求站成一排且2名女生不相邻,共有多少种不同的排法?16.(12分)设(2x﹣1)5=a0+a1x+a2x2+a3x3+a4x4+a5x5求:(1)a0+a1+a2+a3+a4(2)(a0+a2+a4)2﹣(a1+a3+a5)2.17.(12分)已知函数f(x)=(x>﹣1).(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)求f(x)的最小值.18.(14分)在1,2,3,…,9这9个自然数中,任取3个不同的数.(1)求这3个数中恰有2个是奇数的概率;(2)设X为所取3个数中奇数的个数,求随机变量X的概率分布及数学期望.19.(15分)已知数列{a n}的首项a1=1,设T n=a1+a2+a3+…+a n+a n+1(n∈N*).(1)若数列{a n}是等差数列,且公差d=2,求T n;(2)若数列{a n}是等比数列,且公比q=2.①求T n;②用数学归纳法证明:T n>n2+2n(n∈N*,n≥2).20.(15分)已知函数f(x)=x2﹣alnx,a∈R.(1)若a=2,求函数f(x)的极小值;(2)讨论函数f(x)的单调性;(3)若方程f(x)=0在区间[,e]上有且只有一个解,求实数a的取值范围.三、选做题(在21、22、23、24题中只能选做1题,每小题10分)【选修4-1:几何证明选讲】21.(10分)如图,AB为圆O的直径,BC与圆O相切于点B,D为圆O上的一点,AD∥OC,连接CD.求证:CD为圆O的切线.【选修4-2:矩阵与变换】22.已知矩阵A=,向量=,求矩阵A的逆矩阵,及使得A=成立的向量.【选修4-4:坐标系及参数方程】23.在极坐标系中,已知圆C的圆心为C(2,),半径为1,求圆C的极坐标方程.【选修4-5:不等式选讲】24.求函数y=+的最大值.二、解答题(本大题共6小题,共80分)15.解:(1)完成这是事情可分为两步进行:第一步,从4名男生中选1名男生,有4种选法,第二步,从3名女生中选1名女生,有3种选法,根据分步计数原理,共有4×3=12种选法答:有12种不同的选法;(2)完成这是事情可分为四步进行:第一步第一步,从4名男生中选2名男生,有=6种选法,第二步,从3名女生中选2名女生,有=3种选法,第三步,将选取的2名男生排成一排,有=2种排法,第四步,在2名男生之间及两端共3个位置选2个排2个女生,有=6,根据分步计数原理,不同的排法种数为6×3×2×6=216答:有216种不同的排法.16.解:当x=1时,a5x5+a4x4+a3x3+a2x2+a1x+a0=a5+a4+a3+a2+a1+a0=1;当x=﹣1时,a5x5+a4x4+a3x3+a2x2+a1x+a0=﹣a5+a4﹣a3+a2﹣a1x+a0=﹣243;(1)∵a5=25=32∴a0+a1+a2+a3+a4=1﹣32=﹣31(2)∵(a0+a2+a4)2﹣(a1+a3+a5)2.=(a5+a4+a3+a2+a1+a0)(﹣a5+a4﹣a3+a2﹣a1+a0)=1×(﹣243)=﹣24317.解:(1)∵f(x)=,∴f′(x)=,∴f′(1)=,∵f(1)=,∴曲线y=f(x)在点(1,f(1))处的切线方程为ex﹣4y+e=0;(2)令f′(x)=0,可得x=0,x∈(﹣1,0)时,f′(x)<0,函数单调递减,x∈(0,+∞)时,f′(x)>0,函数单调递增,∴x=0时,f(x)的最小值为1.18.解:(1)记“3个数中恰有2个是奇数”为事件A,从9个自然数中,任取3个不同的数,共会出现=84种等可能的结果,其中3个数中恰有2个是奇数的结果有=40种,故这3个数中恰有2个是奇数的概率P(A)=.(2)由题意得X的取值范围为0,1,2,3,P(X=0)=,P(X=1)==,P(X=2)=,P(X=3)=,∴随机变量X的分布列为:X 0 1 2 3PEX==.19.解:(1)由题意得,a n=2n﹣1,∵=,T n=a1+a2+a3+…+a n+a n+1,∴T n=a n+1+a n+…+a2+a1=a n+1+a n+…+a2+a1,…2分∴2T n=(a1+a n+1)+(a2+a n)+…+(a n+a2)+(a n+1+a1),=(a1+a n+1)(++…++)=(1+2n+1)2n,∴T n=(n+1)•2n…4分(2)①由题得,a n=2n﹣1,T n=a1+a2+…+a n+a n+1=+2+22+…+2n﹣1+2n=(1+2)n=3n…7分②证明:(i)当n=2时,T2=32=9,22+2×2=8,T2>8,不等式成立,…9分(ii)假设n=k(k∈N,k≥2)时,不等式成立,即3k>k2+2k,…10分当n=k+1时,3k+1=3•3k>3(k2+2k)…11分∵3(k2+2k)﹣[(k+1)2+2(k+1)]=2k2+2k﹣3,∵k≥2,∴2k2+2k﹣3>2k﹣3>0,∴3k+1>(k+1)2+2(k+1).即当n=k+1时,不等式也成立…14分根据(i)(ii)可知,对任意n∈N*(n≥2),不等式成立…15分20.解:(1)a=2时,f(x)=x2﹣2lnx,x>0,∴f′(x)=,令f′(x)>0,解得:x>1,x<﹣1(舍),令f′(x)<0,解得:0<x<1,∴f(x)在(0,1)递减,在(1,+∞)递增,∴x=1时,f(x)取到极小值f(1)=1,(2)∵f′(x)=,x>0,①a≤0时,f′(x)>0,f(x)在(0,+∞)递增,②a>0时,令f′(x)>0,解得:x>,x<﹣(舍),令f′(x)<0,解得:0<x<,∴f(x)在(0,)递减,在(,+∞)递增;综上:a≤0时,f(x)在(0,+∞)递增a>0时,f(x)在(0,)递减,在(,+∞)递增;(3)由题意得:方程a=在区间[,e]上有且只有一个解,令g(x)=,则g′(x)=,令g′(x)=0,解得:x=,∴g(x)在(,)上递减,在(,e)递增,又g()=<g(e)=e2,∴方程a=在区间[,e]上有且只有一个解时,有<a≤e2,或a=2e,∴实数a的取值范围时:{a|<a≤e2或a=2e}.三、选做题(在21、22、23、24题中只能选做1题,每小题10分)【选修4-1:几何证明选讲】21.证明:连接OD,∵AD∥OC,∴∠A=∠COB,∠ADO=∠COD,∵OA=OD,∴∠A=∠ADO,∴∠COB=∠COD,在△COB和△COD中,OB=OD,∠COB=∠COD,OC=OC,∴△COB≌△COD(SAS),∴∠ODC=∠OBC,∵BC与⊙O相切于点B,∴OB⊥BC,∴∠OBC=90°,∴∠ODC=90°,即OD⊥CD,∴CD是⊙O的切线.22.解:矩阵的行列式为=﹣2,∴矩阵A的逆矩阵A﹣1=,∴=A﹣1=.23.解:在圆C上任意取一点P(ρ,θ),在△POC中,由余弦定理可得CP2=OC2+OP2﹣2OC•OP•cos∠POC,即1=4+ρ2﹣2×2×ρcos(θ﹣),化简可得ρ2﹣4ρcos(θ﹣)+3=0.当O、P、C共线时,此方程也成立,故圆C的极坐标方程为ρ2﹣4ρcos(θ﹣)+3=0.24.解:由柯西不等式可得y2=(+)2≤[12+()2](1+x+1﹣x)=6,当且仅当=,即x=﹣时取等号,∵y≥0,∴x=﹣时,y的最大值为.。
江苏省常州西藏民族中学13—14学年下学期七年级期末联考数学试题(无答案)
江苏省常州西藏民族中学13—14学年下学期七年级期末联考数学试题注意事项:1.全卷共2页,三大题,满分100分,考试时间为90分钟。
2.答卷前,考生务必将自己的学校名、姓名、考试号写在答题纸相应的位置上。
3.所有答案必须在答题纸上作答。
选择题必须用2B 铅笔把答题纸上对应题目的答案标号涂黑,非选择题用黑色墨水钢笔或签字笔将答案写在答题纸规定的地方,试卷上答题无效。
一、选择题(本大题共12小题,每小题3分,共36分)1.如图,直线AB ∥CD ,AF 交CD 于点E ,∠CEF=140°,则∠A 等于( )A .35°B .40°C .45°D .50°2.16的值为( ) (第1题图)A .2±B .2C .4D .4±3.在平面直角坐标系中,点P (2,3)在( )A .第一象限B .第二象限C .第二象限D .第二象限4.下列四个实数中,是无理数的为( )A .0BC .2-D .275. 下列调查中,适宜采用全面调查方式的是( )A .对全国中学生心理健康现状的调查B .对我国首架大型民用飞机零部件的检查C .对我市市民实施低碳生活情况的调查D .对市场上的冰淇淋质量的调查 6.二元一次方程组x y 22x y 1+=⎧⎨-=⎩的解是( ) A .x 0y 2=⎧⎨=⎩ B .x 2y 0=⎧⎨=⎩ C .x 1y 1=-⎧⎨=-⎩ D . x 1y 1=⎧⎨=⎩7.不等式组x 1042x 0>-⎧⎨-≥⎩①②的解集在数轴上表示为( )8.在平面直角坐标系中,将点A 向右平移2个单位长度后得到点A′(3,2),则点A 的坐标是( )A. (3,4)B. (3,0)C. (1,2)D. (5,2)9. 设a 、b 、c 表示三种不同物体的质量,用天枰称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是( )A .c b a <<B .b c a <<C .c a b <<D .b a c <<10. 若|x+2|+3-y =0,则xy 的值为( ) A. -8B. 6C. 5D. -611. 下列说法中正确的个数是( )(1) 16的平方根是±4 (2)平方根等于它本身的数是0和1(3)-3是 9的平方根 (4)25的算术平方根是5A .1B .2C .3D .412.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,•如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,•就是3219,423.x y x y +=⎧⎨+=⎩类似地,图2所示的算筹图我们可以表述为( )图1 图2A .2114327x y x y +=⎧⎨+=⎩ B .2114322x y x y +=⎧⎨+=⎩ C .3219423x y x y +=⎧⎨+=⎩ D .264327x y x y +=⎧⎨+=⎩二、填空题(本大题共6小题,每小题3分,共18分)13.∠α =80度,则α的补角为 度。
2013-2014学年江苏省常州市初中毕业、升学模拟调研测试数学试题及答案
常州市2013-2014学年初中毕业、升学模拟调研测试2014.4数 学 试 题注意事项:1.本试卷满分为120分,考试时间为120分钟.2.学生在答题过程中不能使用任何型号的计算器和其它计算工具;若试题计算没有要求取近似值,则计算结果取精确值(保留根号与π). 3.请将答案按对应的题号全部填写在答题纸上,在本试卷上答题无效.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给的四个选项中,只有一个选项是正确的)1.下列各式中,与2是同类二次根式的是 A .4B .8C .12D .242.已知四边形ABCD 是平行四边形,下列结论中不正确...的是 A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC =90º时,它是矩形D .当AC =BD 时,它是正方形3.若两圆的半径分别为5 cm 和3 cm ,圆心距为2 cm ,则两圆的位置关系是A .内切B .外切C .内含D .相交4.下列各点中,在函数xy 12-=的图象上的点是 A .(3,4) B .(-2,-6)C .(-2,6)D .(-3,-4)5.为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表:关于这15名学生所捐款的数额,下列说法正确的是A .众数是100B .平均数是30C .极差是20D .中位数是206.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连结AC 、AD 、BD , 若︒=∠35CAB ,则ADC ∠的度数为A .35°B .55°C .65°D .70°7.把二次函数c bx ax y ++=2的图像向左平移4个单位或向右平移1个单位后都会经过原点,则二次函数图像的对称轴与x 轴的交点是A .(-2.5,0)B .(2.5,0)C .(-1.5,0)D .(1.5,0)第6题图8.如图,矩形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙由点A (2,0)同时出发,沿矩形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2014次相遇地点的坐标是 .A (2,0) .B (-1,1).C (-2,1).D (-1,-1)二、填空题(本大题共9小题,第9小题4分,其余8小题每小题2分,共20分)9. 计算:=-22 ▲,= ▲ ,=⨯22 ▲ ,=÷22 ▲ .10.函数23-=x y 中自变量x 的取值范围是 ▲ ,当x =1时,y = ▲ . 11.若关于x 的方程x 2-5x -3k =0的一个根是-3,则k = ▲ ,另一个根是 ▲ . 12.在△ABC 中,若AB =AC =5,BC =8,则sinB = ▲ .13.如图,在Rt ABC ∆中,90C ∠=︒,AC =5cm , BC =12cm ,以BC 边所在的直线为轴,将ABC ∆旋转一周得到的圆锥侧面积是 ▲ .14.如图,任意四边形ABCD 各边中点分别是E 、F 、G 、H ,若对角线AC 、BD 的长都为10 cm ,则四边形EFGH 的周长是 ▲ cm .15.如图,在□ABCD 中,AB =3,AD =4,∠ABC =60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 ▲ . 16.已知二次函数c bx ax y ++=2中,函数y 与自变量x 的部分对应值如下表:若1()A m y ,,2(1)B m y +,两点都在该函数的图象上,当m = ▲ 时,1y =2y .17.已知点A (0,-4),B (8,0)和C (a,-a ),若过点C 的圆的圆心是线段AB 的中点,则这个圆的半径的最小值等于 ▲ .DAB CDEFGH第14题图A BC第13题图三、解答题(本大题共有11小题,共84分.请在答题卡指定区域内作答,解答时 应写出必要的文字说明、证明过程或演算步骤)18.化简(每题4分) ⑴︒+-45sin 1821⑵ 145tan 230tan 3-19.解方程(每题5分) ⑴ )3(7)3(+=+x x x ⑵ 0652=-+x x20.(本小题满分7分) 甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.⑴ 请将甲校成绩统计表和图2的统计图补充完整;⑵ 经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.乙校成绩条形统计图分数图2乙校成绩扇形统计图图1甲校成绩统计表21.(本小题满分8分)小颖为学校联欢会设计了一个“配紫色”的游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,游戏者同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,那么红色和蓝色在一起配成了紫色,游戏者获胜.求游戏者获胜的概率.(用列表法或树状图)22.(本小题满分6分)已知:如图,□ABCD 中,∠BCD 的平分线交AB 于E ,交DA 的延长线于F . 求证:AE =AF .23.(本小题满分7分)如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,P 为边AC 上一个点(可以包括点C 但不包括点A ),以P 为圆心P A 为半径作⊙P 交AB 于点D ,过点D 作⊙P 的切线交边BC 于点E . 试猜想BE 与DE 的数量关系,并说明理由.A 盘B 盘ABCDEFABCE24.(本小题满分6分)如图所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平线夹角为θ1,且在水平线上的射影AF 为140cm .现已测量出屋顶斜面与水平面夹角为θ2,并已知tan θ1≈1.1,tan θ2≈0.4.如果安装工人已确定支架AB 高为25cm ,求支架CD 的高(结果精确到1cm )?25.(本小题满分6分)某五金店购进一批数量足够多的Q 型节能电灯,进价为35元/只,以50元/只销售,每天销售20只.市场调研发现:若每只每降1元,则每天销售数量比原来多3只.现商店决定对Q 型节能电灯进行降价促销活动,每只降价x 元(x 为正整数).在促销期间,商店要想每天获得最大销售利润,每只应降价多少元?每天最大销售毛利润为多少?(注:每只节能灯的销售毛利润指每只节能灯的销售价与进货价的差)26.(本小题满分8分)对于平面直角坐标系中的任意两点A (a,b ),B (c,d ),我们把|a -c |+|b -d |叫做A 、B 两点之间的直角距离,记作d (A ,B )⑴ 已知O 为坐标原点,①若点P 坐标为(-1,2),则d (O,P )=_____________; ②若Q (x,y )在第一象限,且满足d (O,Q )=2,请写出x 与y 之间满足的关系式,并在平面直角坐标系内画出符合条件的点Q 组成的图形.⑵ 设M 是一定点,N 是直线y =mx +n 上的动点,我们把d (M,N )的最小值叫做M 到直线y =mx +n 的直角距离,试求点M (2,-1)到直线y =x +3的直角距离.DCBA A BC EF Dθ 1 θ227.(本小题满分8分)已知,如图,四边形ABCD 中,∠BAD =∠BCD =90°,M 为BD 的中点,AB =AD ,BD=CD =2.⑴ 取AC 中点E ,连接ME ,求证:ME ⊥AC ;⑵ 在⑴的条件下,过点M 作CD 的垂线l,垂足为F ,并交AC 于点G ,试说明:△MEG 是等腰直角三角形.28.(本小题满分10分)如图,在平面直角坐标系中, 点A 为二次函数142-+-=x x y 图象的顶点,图象与y 轴交于点C ,过点A 并与AC 垂直的直线记为BD ,点B 、D 分别为直线与y 轴和 x 轴的交点,点E 是二次函数图象上与点C 关于对称轴对称的点,将一块三角板的直角顶点放在A 点,绕点A 旋转,三角板的两直角边分别与线段OD 和线段OB 相交于点P 、Q 两点.⑴ 点A 的坐标为____________,点C 的坐标为_____________. ⑵ 求直线BD 的表达式.⑶ 在三角板旋转过程中,平面上是否存在点R ,使得以D 、E 、P 、R 为顶点的四边形为菱形,若存在,直接写出P 、Q 、R 的坐标;若不存在请说明理由.备用图 ABCDM常州市2013-2014学年初中毕业、升学模拟调研测试数学参考答案 2014.4一、选择题二、填空题18.⑴︒+-45sin 1821⑵ 145tan 230tan 3-=222322+- --------------- 3分 =112333-⨯⨯------------ 3分=22- ----------------------------- 4分=1 ------------------- 4分19.)3(7)3(+=+x x x⑵ 0652=-+x xx (x+3)-7(x+3)=0 ----------------------- 1分(x+3)(x-7)=0 ----------------------------- 3分 449252=⎪⎭⎫ ⎝⎛+x ---------------- 2分7;321=-=x x ------------------------ 5分--- 2725±=+x ---------------------- 3分 6;121-==x x ------------------ 5分3 及画图正确 --------------------------------------------------------------------------------------- 3分 ⑵ 甲校的平均分=8.3分,中位数是:7分, ------------------------------------------- 5分22.证明:∵CF 平分∠BCD ∴∠BCE=∠DCE , ∵平行四边形ABCD ∴AB ∥DE ,AD ∥BC∴∠F=∠BCE ,∠AEF=∠DCE∴∠F=∠AEF --------------------------------------------------- 4分∴AE=AF , ----------------------------------------------------- 6分23.猜想:BE=DE --------------------------------1分证明: 连接PD . ∵DE 切⊙O 于D .∴PD ⊥DE . -------------------------------------------------------------------------------------------------- 2分 ∴∠BDE+∠PDA=90°. ------------------------------------------------------------------------------------ 3分 ∵∠C=90°.∴∠B+∠A=90°. ------------------------------------------------------------------------------------------ 4分 ∵PD=PA .∴∠PDA=∠A .--------------------------------------------------------------------------------------------------------- 5分 ∴∠B=∠BDE . -------------------------------------------------------------------------------------------- 6分∴BE=DE ; ------------------------------------------------------------------------------------------------- 7分24.矩形ABEF 中,AF=BE=140,AB=EF=25. -------------------------------------------------- 1分 Rt △DAF 中:∠DAF =θ1,DF =AF tan θ1 ≈154 -------------------------------------------------------------------- 3分 Rt △CBE 中:∠CBE =θ2,CE =BE tan θ2 ≈56 --------------------------------------------------------------------- 4分 DE=DF+EF=154+25=179, --------------------------------------------------------------------------- 5分 DC=DE-CE=179-56=123.答:支架CD 的高为123cm. ------------------------------------------------------------------------ 6分25.每天的销售毛利润W=(50-35-x )(20+3x )=-3x 2+25x+300 ---------------------- 2分 ∴ 图象对称轴为625=x ------------------------------------------------------------------------- 3分 ∵x 为正整数,x=4或5且62554625-<- ------------------------------------------------- 5分∴x=4时,W 取得最大值,最大销售毛利润为352元 ------------------------------------- 6分26.⑴ ①3 ----------------------------------------------------------------------------------------------------- 2分;画图正确 --------------------------------------------------------------------------------------------- 5分 ⑵ d(M,N)=∣x-2∣+∣x+4∣………7分, d 最小=6 -------------------------------------------- 8分 27. ⑴ 理由正确 ----------------------------------------------------------------------------------------- 3分⑵ △MEG 是等腰直角三角形理由正确 --------------------------------------------------------- 8分 28. ⑴ 点A 的坐标为(2,3),点C 的坐标为(0,-1) ---------------------------------------------------- 2分 ⑵ 直线BD 的表达式为:421+-=x y ------------------------------------------------------ 4分 ⑶ P 1(8-17,0),Q 1(0,31723+-),R 1(4-17,-1); P 2(847,0),Q 2(0,125),R 2(,849,-1) (以上各点分别1分) -------------------------------------- 10分。
【初中数学】江苏省常州市2013-2014学年第二学期期末考试八年级数学试卷(解析版) 苏科版
江苏省常州市2013-2014学年第二学期期末考试八年级数学试卷参考答案与试题解析一、填空题(共10小题,每小题2分,共计20分)1.(2分)为了了解全班同学课外阅读的情况,对全班每个同学进行调查,这次调查采用的方式是全面调查,其中,总体是全班同学课外阅读的情况.2.(2分)当x≠2时,分式有意义;当x>2时,分式的值为正数.时,分式有意义;时,分式3.(2分)(2013•南京联合体一模)若式子有意义,则实数x的取值范围是x≥1.4.(2分)若反比例函数y=的图象经过A(1,2),B(2,a)两点,则k=2,a=1.y=的图象经过a=5.(2分)(2013•苏州)方程=的解为x=2.6.(2分)(2013•上海)某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为40%.则报名参加甲组和丙组的人数之和占所有报名人数的百分比为7.(2分)如图,A、B是函数y=的图象上关于原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积记为S,则S=4.的比例的面积等于S=8.(2分)(2011•绍兴)若点A(1,y1)、B(2,y2)是双曲线y=上的点,则y1>y2(填“>”,“<”或“=”).y=中9.(2分)已知是正整数,则实数n的最大值为11.10.(2分)(2013•河南)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为或3.AC==5,BE=;的长为或故答案为:或二、单项选择题(共6小题,每小题3分,共18分)=33,原式计算错误,故本选项错误;与=≠,原式计算错误,故本选项错误;12.(3分)反比例函数(m为常数)当x<0时,y随x的增大而增大,则m的取D反比例函数(.13.(3分)某同学随机将一枚硬币抛向空中20次,有12次出现反面,那么正面出现的频率正面出现的频率:=0.415.(3分)(2008•鄂州)已知,则a的取值范围是()解:由已知,本题考查了二次根式的意义与化简.二次根式时,=a 时,=16.(3分)如图,等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在正比例函数y=x的图象上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若函数y=的图象与△ABC有交点,则k的取值范围是()解答:的中点的坐标为(,)三、解答题(17题8分,18题4分,共12分)17.(8分)计算:(1)2+3﹣;(2)(+3)(﹣3).+64=4()18.(4分)(2013•广州)先化简,再求值:,其中.==x+y=1+22四、解答题(19题、21题、22题、23题每题8分;20题、24题、25题每题6分,共50分)19.(8分)(2013•天河区一模)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?依题意得﹣=1020.(6分)(2013•汕头)从三个代数式:①a2﹣2ab+b2,②3a﹣3b,③a2﹣b2中任意选两个代数式构造分式,然后进行化简,并求出当a=6,b=3时该分式的值.构造出分式,==.21.(8分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DB;(2)若AB⊥AC,试判断四边形AFCD的形状,并证明你的结论.22.(8分)水产公司有一种海产品共518千克,为寻求合适的销售价格,进行了3天试销,y(千克)与销售价格x (元/千克)之间的关系,现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的关系式,并补全表格;(2)在试销3天后,公司决定将这种海产品的销售价格定为15元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?即为所需要的天数.(故函数解析式为y==8023.(8分)(2009•邵阳)阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:==;(一)=(二)==(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:=(四)(1)请用不同的方法化简.①参照(三)式得=();②参照(四)式得=()(2)化简:.)==++24.(6分)如图,在平面直角坐标系中,一次函数y=2x+b(b<0)的图象与坐标轴交于A、B两点,与函数y=(x>0)的图象交于D点,过点D作DC⊥x轴,垂足为点C,连接OD、BC,已知四边形OBCD是平行四边形.(1)如果b=﹣1,求k的值;(2)求k(用含b的代数式表示k).(OA=AC=OA=,bb bx=,OA=AC=OA=,b点坐标为(﹣bb25.(6分)在平面直角坐标系中xOy中,点A与原点O重合,点B(4,0),点E、(0,2),过点E作平行于x轴的直线l,点C、D在直线上运动(点C在点D的左侧),CD=4,连接BC,过点A作关于直线BC的对称点A′,连接AC、A′C.(1)当A′,D两点重合时,则AC=4;(2)当A′,D两点不重合时,若以点A′、C、B、D为顶点的四边形是正方形,求点C的坐标.解答:AB=2。
2018-2019年江苏省常州市七年级下期末联考数学考试试题(有答案)
常州市教育学会学业水平监测七年级数学试题一、选择题(本大题共8小题)1.下列计算中,正确的是()A. B. C. D.2.下列图形中,由,能得到的是()A. B.C. D.3.不等式组的解集在数轴上表示正确的是A.B.C.D.4.下列各组线段能组成一个三角形的是A. 4cm,6cm,11cmB. 3cm,4cm,5cmC. 4cm,5cm,1cmD. 2cm,3cm,6cm5.若方程组的解满足,则a的值是()A. 6B. 7C. 8D. 96.下列命题是真命题的是()A. 同旁内角相等,两直线平行B. 若,则C. 如果,那么D. 平行于同一直线的两直线平行7.《九章算术》中有这样的问题:只闻隔壁人分银,不知多少银和人;每人6两少6两,每人半斤多半斤;试问各位善算者,多少人分多少银注:这里的斤是指市斤,1市斤两设共有x人,y两银子,下列方程组中正确的是()A. B. C. D.8.若关于x的不等式组所有整数解的和是10,则m的取值范围是()A. B. C. D.二、填空题(本大题共8小题)9.计算:.10.分解因式:.11.生物具有遗传多样性,遗传信息大多储存在DNA分子上一个DNA分子的直径约为,这个直径用科学记数法可表示为________cm.12.写出命题“互为倒数的两个数乘积为1”的逆命题:_______________________________________.13.若,,则.14.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案需8根火材棒,图案需15根火柴棒,,按此规律,图案需________________根火材棒.15.已知,则n的值是________________.16.如图,已知,,,则________________.三、计算题(本大题共4小题)17.计算:;.18.分解因式:;.19.解方程组和不等式组:20.求代数式的值,其中,,.21.22.23.24.25.26.四、解答题(本大题共5小题)27.如图,已知点E在AB上,CE平分,求证:.28.为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗已知2棵A种树苗和3棵B种树苗共需270元,3棵A种树苗和6棵B种树苗共需480元.、B两种树苗的单价分别是多少元该小区计划购进两种树苗共28棵,总费用不超过1550元,问最多可以购进A种树苗多少棵29.如图,从四边形ABCD的纸片中只剪一刀,剪去一个三角形,剩余的部分是几边形请画出示意图,并在图形下方写上剩余部分多边形的内角和.30.已知关于x、y的方程组求代数式的值;若,,求k的取值范围;若,请直接写出两组x,y的值.31.如图,直线,垂足为O,直线PQ经过点O,且点B在直线l上,位于点O下方,点C在直线PQ上运动连接BC过点C作,交直线MN于点A,连接点A、C与点O都不重合.小明经过画图、度量发现:在中,始终有一个角与相等,这个角是________________;当时,在图中画出示意图并证明;探索和之间的数量关系,并说明理由.常州市教育学会学业水平监测2018.6七年级数学试题答案和解析【答案】1. A2. C3. B4. B5. C6. D7. D8. A9.10.11.12. 如果两个数的乘积为1,那么这两个数互为倒数13. 2214.15. 516.17. 解:原式;原式.18. 解:原式;原式.19. 解:,,得:,将代入,得:,解得:,方程组的解为;,解不等式,得:;解不等式,得:,不等式组的解集为.20. 解:原式,当,,时,原式.21. 证明:平分,,又,,.22. 解:设A种树苗单价为x元,B种树苗单价为y元,根据题意,得,解方程组,得,答:A种树苗单价为60元,B中树苗单为50元.设购进A种树苗m棵,则购进B种树苗棵,根据题意,得,解不等式,得,因为m为整数,所以m的最大值是15,答:最多可以购进A种树苗15棵.23. 解:如图,剩余的部分是三角形,其内角和为,如图,剩余的部分是四边形,其内角和为,如图,剩余的部分是五边形,其内角和为.24. 解:,,得,,把代入,得,,,,,;,,,解得;,.25. 解:如图所示:,,,,,,.如图,设BC与OA相交于点E,在和中,,,又,,;如图,,,在四边形ABCO中,,即和互补,和的数量关系是相等或互补.【解析】1. 【分析】本题主要考查同底数幂的乘法,合并同类项,幂的乘方,同底数数幂的除法掌握法则是解题的关键根据同底数幂的乘法:底数不变,指数相加;合并同类项:把同类项的系数相加,字母和字母的指数不变;幂的乘方:底数不变,指数相乘;同底数幂的除法:底数不变,指数相减是解题的关键.【解答】解:,故A正确;B.,故B错误;C.,故C错误;D.,故D错误.故选A.2. 【分析】此题考查的是平行线的性质,根据两直线平行,同位角相等结合对顶角相等易得答案.【解答】解:由,能得到,故不合题意;B.由,根据两直线平行,内错角相等能得到,故不合题意;C.如图:,,又,.故C合题意;D.观察图形与为同旁内角,由,不能得到,故不合题意.故选C.3. 【分析】本题主要考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,再表示在数轴上即可判断.【解答】解:,解不等式,得,解不等式,刘,所以不等式组的解集为,不等式组的解集在数轴上表示如下:.故选B.4. 【分析】此题考查了三角形的三边关系判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,逐一进行分析即可.【解答】解:,不能组成三角形,故不合题意;B.,能组成三角形,故合题意;C.,不能组成三角形,故不合题意;D.,不能组成三角形,故不合题意;故选B.5. 【分析】此题考查的是二元一次方程组的解法以及二元一次方程组的解和一元一次方程的解法,利用加减消元法解方程组,将x,y的值用含a的代数式表示,将其代入,转化为关于a的一元一次方程求解即可.【解答】解:,,得:,解得:,,得:,解得:,,,解得:.故选C.6. 【分析】本题主要考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理利用平行线的判定定理,绝对值的性质,有理数的乘方进行判断即可.【解答】解:同旁内角互补,两直线平行,故A错误;B.若,则,则B错误;C.如果,,则,故C错误;D.平行于同一直线的两直线平行,故D正确.故选D.7. 【分析】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组根据题意“每人6两少6两,每人半斤多半斤”可以列出相应的方程组,从而得出答案【解答】解:根据题意得:.故选D.8. 【分析】本题主要考查了一元一次不等式组的整数解,是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于m的不等式组,要借助数轴做出正确的取舍首先确定不等式组的解集,先利用含m的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的范围.【解答】解:,由得;由得;故原不等式组的解集为.又因为不等式组的所有整数解的和是,由此可以得到.故选A.9. 【分析】此题考查的是多项式乘多项式用其中一个多项式中的每一项去乘另一个多项式的每一项,再把所得的积相加即可.【解答】解:.故答案为.10. 【分析】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键直接提取公因式xy进而分解因式得出即可.【解答】解:.故答案为.11. 【分析】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数绝对值小于1的正数也可以利用科学记数法表示,一般形式为与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:.故答案为.12. 【分析】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理根据逆命题的概念,交换原命题的题设与结论即可的出原命题的逆命题.【解答】解:命题“互为倒数的两个数乘积为1”的逆命题为如果两个数的乘积为1,那么这两个数互为倒数.故答案为如果两个数的乘积为1,那么这两个数互为倒数.13. 【分析】此题考查的是完全平方公式的灵活应用以及代数式的求值将已知条件中的两边平方,利用完全平方公式变形后整体代入即可求出的值.【解答】解:,,,,.故答案为22.14. 【分析】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化根据图案、、中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒根,令可得答案.【解答】解:图案需火柴棒:8根;图案需火柴棒:根;图案需火柴棒:根;图案n需火柴棒:根.故答案为.15. 【分析】此题考查的是幂的乘方法则的逆用以及同底数幂的乘法法则将已知条件逆用幂的乘法法则变形后根据等式性质即可求解.【解答】解:,,,,解得:.故答案为5.16. 【分析】本题考查了三角形外角性质,平行线的性质的应用,解此题的关键是求出的度数,注意:两直线平行,同位角相等延长ED交BC于F,根据平行线的性质求出,求出,根据三角形外角性质得出,代入求出即可.【解答】解:延长ED交AC于F,如图所示:,,,,,.故答案为.17. 此题考查的是实数的运算以及整式的混合运算熟练掌握相关的运算性质和运算法则是关键.根据零指数幂的性质、实数绝对值的性质以及负整数指数幂的性质化简即可;先根据完全平方公式和平方差公式进行去括号运算,再合并同类项即可.18. 此题主要考查了提公因式法与公式法的综合运用,关键是掌握分解因式的步骤,先提公因式,后用公式法.首先提公因式5m,再利用平方差进行分解即可;首先提公因式3b,再利用完全平方公式进行分解即可.19. 此题考查的是二元一次方程组的解法以及一元一次不等式组的解法熟练掌握解答步骤是关键.利用加减消元法即可求解;先分别求出每个不等式的解集,再找出它们解集的公共部分即可.20. 本题主要考查整式的化简求值掌握法则是解题的关键先根据单项式乘多项式的法则计算,再合并同类项,然后提公因式2y,最后把x、y、z的值代入化简后的代数式计算即可.21. 此题考查的是角平分线的定义以及平行线的判定方法根据角平分线定义可得,结合已知条件利用等量代换得到,利用内错角相等,两直线平行可得答案.22. 本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:找准等量关系,列出二元一次方程组;根据总费用不超过1550元,列出关于m的一元一次不等式.设购进A种树苗每棵需要x元,B种树苗每棵需要y元,根据“购进2棵A种树苗与3棵B 种树苗共需270元;购进3棵A种树苗与6棵B种树苗共需480元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;设购进A种树苗m棵,则购进B种树苗棵,根据总费用不超过1550元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,即可得最多可以购进A种树苗的棵数.23. 此题考查的是图形的裁剪与多边形的内角和定理注意分情况讨论过四边形的两个顶点剪一刀,剩余图形为三角形;故其中一个顶点和一条边剪一刀,剩余图形为四边形;过四边形的两边剪一刀,剩余图形为五边形,利用多边形内角和定理分别求其内角和即可.24. 此题考查了解二元一次方程组,一元一次不等式组的解法,同底数幂的乘法解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.先解方程组求出x、y的值,然后根据同底数幂的乘法计算,最后代入计算即可;根据,,列出不等式组,解不等式组求出k的取值范围即可;由,即可得x、y的值.25. 【分析】此题考查的是平行线的判定和性质以及三角形内角和定理的应用通过观察图形结合已知条件联想相关的几何定理找出各角间的关系是关键.通过观察和动手操作易得答案;根据平行线的性质可得,结合已知条件易得,根据同旁内角互补,两直线平行可得答案;分情况讨论根据三角形内角和结合角的和差关系可得答案.【解答】解:经过画图、度量发现:在中,始终有一个角与相等,这个角是.故答案为;见答案;见答案.。
2013-2014学年七年级上期末考试数学试题
2013-2014学年第一学期期末考试试卷初一数学试题一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填写在答题纸相应的位置上.1.下列各对数中互为相反数的是【】A.-(+3)和+(-3)B.-(-3)和+(-3)C.-(+3)和-3 D.+(-3)和-32.下列各图中,经过折叠能围成一个立方体的是【】3.若x=1是方程2x+m-6 =0的解,则m的值是【】A.-4 B.4 C.-8 D.84.如图,直线AB、CD相交于点O,若∠BOD=40°,OA平分∠COE,则∠AOE的度数是【】A.140°B.80°C.40°D.20°5.若a=b,2b=3c,则a+b-3c等于【】A.0 B.3c C.-3c D.32c6.如果单项式-x a+1y3与12x2y b是同类项,那么a、b的值分别为【】A.a=2,b=3 B.a=1,b=2 C.a=1,b=3 D.a=2,b=27.若a=-a,则实数a在数轴上的对应点一定在【】A.原点左侧B.原点或原点左侧C.原点右侧D.原点或原点右侧8.一列单项式按以下规律排列:x,3x2,5x2,7x,9x2,l1x2,13x,…,则第2014个单项式应是【】A.4029x2B.4029x C.4027x D.4027x29.如图,将长方形纸片ABCD的角C沿着GF折叠,使点C落在长方形内部点E处,若FH平分∠BFE,则∠GFH的度数d是【】A.90°<α< 180°B.00°<α<90°C.α=90°D.α随折痕GF位置的变化而变化10.在数轴上,点A(表示整数a)在原点O的左侧,点B(表示整数b)在原点O的右侧,若a b=2013,且AO=2BO,则a+b的值为【】A.-1242 B.1242 C.671 D.-671二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填在答题纸相对应的位置上.11. 一个数的绝对值等于0.24,则这个数是.12.嫦娥三号“零窗口”发射升空,约112小时后,嫦娥三号将抵达368000km之外的月球附近,试用科学计数法表示这个行程数据.368000km表示为km.13.回收废纸10kg,可产再生纸6kg,某校去年回收废纸a kg,这些废纸可产再生纸▲kg.14.单项式-234xy的系数是,次数是15.如图,线段AB=8,C是DB =1.5,则线段CD 的长等于 .16.如图,AC ⊥BC ,CD ⊥AB ,垂足分别为C 、D ,则∠ACD =∠ . 17.如图是一个简单的数值运算程序框图.如果输入x 的值为-1,那么输出的数值为 .18. 一个城市铁路系统只卖从一站出发到达另一站的单程车票,每一张票都说明起点站和终点站.若原有m 个站点,现在新增设了n 个站点,则必须再印 种不同的车票(结果用含m 、n 的代数式表示).三、解答题:本大题共1l 小题,共76分,把解答过程写在答题纸相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B 铅笔或黑色墨水签字笔.+ 19.(本题满分8分,每小题4分)计算:(1)()()()32224510--÷-⨯;(2)()()311135236⎛⎫⎛⎫-÷---⨯- ⎪ ⎪⎝⎭⎝⎭20.(本题满分8分,每小题4分)先化简,再求值:(1)求3y 2-x 2+(2x -y )-2(x 2+3y 2)的值,其中x =l 、y =-14.(2)求4xy -[(x 2+5xy -y 2)-(3xy -12y 2)]的值,其中x =3、y =-6.21.(本题满分8分,每小题4分)解下列方程: (1)1232x x +=-; (2)12223x x x -+-=-.22.(本题满分5分)已知代数式3a +12与3(a -12). (1)当a 为何值时,这两个代数式的值互为相反数? (2)试比较这两个代数式值的大小(直接写出答案).23.(本题满分6分)已知∠α与∠β互为补角,且∠α比∠β大30°.(1)求∠α、∠β的度数; (2)利用(1)中所求结果,用量角器直接画出∠a ,再用直尺和圆规另作∠AOB ,使∠AOB =∠α.(只保留作图痕迹)24.(本题满分6分)学校图书馆平均每天借出图书50册,如果某天借出53册,就记作+3;如果某天借出40册,就记作-10.上星期图书馆借出图书记录如下:(1)上星期三借出图书多少册? (2)上星期五比上星期四多借出图书24册,求a的值;(3)上星期平均每天借出图书多少册?25.(本题满分6分)已知关于x的方程16(x+2)=2k-13(x-1)的解为x=10.求26k 的值.26.(本题满分6分)附表为天弘服饰店销售的服饰与原价对照表,某日该服饰店举办大拍卖,外套按原价打六折出售,衬衫和裤子按原价打八折出售,服饰共卖出200件,共得48000元,问外套卖出几件?27.(本题满分7分)如图,OC是∠AOB内的一条射线,OD、OE分别平分∠AOB、∠AOC.(1)若∠DOE=45°,求∠BOC的度数;(2)若∠DOE=n°.求∠BOC的度数.28.(本题满分8分)用长度一定的不锈钢材料设计成外观为长方形的框架(如图①、②、③中的一种).请根据以下图案回答下列问题:(题中的不锈钢材料总长度均指各图中所有黑线的长度和,所有横档和竖档分别与AC、AB平行)设竖档AB=xm.(1)如果不锈钢材料总长度为12m.在图①中,当x=2时,长方形框架ABDC的面积为m2;在图②中,当x=a时,长方形框架ABDC的面积为m2(用含a的代数式表示结果);(2)如果不锈钢材料总长度为bm.在图③中,当x=c时,且共有n条竖档,那么长方形框架ABDC的面积是多少?(用含b、c、n的代数式表示结果)29.(本题满分8分)已知:如图,数轴上线段AB=2(单位长度),线段CD=4(单位长度),点A在数轴上表示的数是-10,点C在数轴上表示的数是16.若线段AB以每秒6个单位长度的速度向右匀速运动,同时线段CD以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒.(1)当点B与点C相遇时,点A、点D在数轴上表示的数分别为;(2)当t为何值时,点B刚好与线段CD的中点重合;(3)当运动到BC=8(单位长度)时,求出此时点B在数轴上表示的数.。
2013-2014常州七年级下数学期末统考卷
lm1 2 3 第4题图ABC 常州市教育学会学业水平监测七年级数学试题 2014.6一、填空题(每空2分,共20分)1. 02-)(= ;1-21)(= 2. 一种细菌的直径约为0.000032m ,用科学计数法表示这个数为 m 3. 八边形的内角和等于 °;若它的每内角都相等,则它每个外角等于 ° 4. 如图,一块含30°角的直角三角板ABC (∠C=90°, ∠A=30°)的直角顶点C 放置在直线m 上,且l ∥m , ∠1=70°,则∠2= °;∠3= °5. 已知关于x 、y 的方程组⎩⎨⎧=+=-102153by x ay x 的解是⎩⎨⎧=-=61y x则a= ,b=6. 原命题“等边三角形是锐角三角形”的逆命题是 ,逆命题是 命题(填“真”、“假” )7. 已知22x-1=8,则x= ;若a m =3,a n =2,则a 2m-3n =8. 将(a+b)(c+d)展开后是4个单项式的和;将(a+b)(c+d+e)展开后是6个单项式的和;将(a+b+c)(d+e+f)展开后是9个单项式的和;…;以此类推,将))((321321n n b b b b a a a a +⋅⋅⋅++++⋅⋅⋅+++展开后是 个单项式的和。
9. 不等式组⎩⎨⎧<->+5242a x m x 的解集是-2<x<2,则m+n=10. 已知032=--x x ,则=+-2014423x x二、选择题(下列各题中都给出代号为A 、B 、C 、D 的四个答案,其中有且只有一个是正确的,把正确答案的代号填在( )内,每小题3分,共18分) 11. 下列各式的因式分解中正确的是 ( )A .)(2y x x x xy x -=+- B. )3)(3(92-+=-x x a ax C .4)2(422+-=+-x x x x D. 222)(2b a b ab a -=+-12. 不等式组⎩⎨⎧≤>-411x x 的解集在数轴上的表示应为 ( )13. 甲、乙两人从同一起点沿同一公路骑自行车比赛,两人相向而行,如果甲让乙先骑6m ,则甲骑了6m 就可追上乙;如果甲让乙先骑3s ,则甲骑了4s 还离乙20m. 若设甲的平均速度为x m/s ,乙的平均速度为y m/s ,则依据题意列出方程组为( )A .⎩⎨⎧+=+=2074666y x x y B.⎩⎨⎧-==-2074666y x y x C .⎩⎨⎧-=-=+20344666y y x y x D.⎩⎨⎧+=-=-20344666y y x yx 14. 若关于x 的不等式(a+1)x>a+1的解集是x<1,则a 的取值范围是 ( )A .a<-1 B. a>-1 C. a<1 D. a<015. 如果一个三角形的两个内角的差等于第三个内角,那么这个三角形一定是()A .锐角三角形 B. 直角三角形 C. 钝角三角形 D. 无法确定 16. 已知x 、y 是有理数,则代数式242222+-++xy y x y x 的值一定是 ( )A .非负数 B. 正数 C. 不小于1 D. 不小于2 三、简答题(每题4分,共20分)17.计算: 322)2)(41(x a ax - 18.计算: 2)21()4)(4(x x x --+-19.分解因式:22296y xy y x +-A B C D20.解方程组{52432-=-=+y x y x 21解不等式151)13(21+<--y y y四、解答或证明题(第22.23题每题6分,第24.25题每题7分,共26分) 22.某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽 车的停车费为4元/辆.现在停车场共停了60辆中、小型汽车,这些车共缴纳停车费284元,这个停车场里中、小型汽车现各停了多少辆?23.已知:如图,点D.E 分别在AB.AC 上,点F 在BC 的延长线上,35=∠A ,70,105=∠=∠ADE ACF , 求证:DE//BF.AE D24. 某人计划20天内至少加工400个零件,前5天平均每天加工了33个零件,此后,该工人每天至少需加工多少个零件,才能在规定的时间内完成任务?25.已知:如图,AD 是△ABC 的角平分线,且AD 是△ABC 的高,点E 是BA 延长线一点,BC EG ⊥,垂足为G ,EG交AC 于点F. 求证:;//)1(EG AD AFE E ∠=∠)2(.EABDG C F五、探究、操作与解决问题(第26题6分,第27题10分,共16分) 26.(1)【阅读理解】“a ”的几何意义是:数a 在数轴上对应的点到原点的距离。
2013—2014学年度七年级第二学期期末调研考试数学试题(含答案)
2013—2014学年度七年级第二学期期末调研考试数 学 试 卷(人教版)注意:本试卷共8页,满分为120分,考试时间为120分钟.一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.点到直线的距离是指……………………………………………………………( ) A .从直线外一点到这条直线的垂线 B .从直线外一点到这条直线的垂线段 C .从直线外一点到这条直线的垂线的长 D .从直线外一点到这条直线的垂线段的长2.如图,将直线l 1沿着AB 的方向平移得到直线l 2,若∠1=50°, 则∠2的度数是…………………………………………( ) A .40° B .50° C .90° D .130°3.下列语句中正确的是…………………………………………………………( ) A .-9的平方根是-3 B .9的平方根是3 C .9的算术平方根是±3 D .9的算术平方根是34.下列关于数的说法正确的是……………………………………………………( ) A .有理数都是有限小数 B .无限小数都是无理数 C .无理数都是无限小数 D .有限小数是无理数5.点(-5,1)所在的象限是……………………………………………………( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.将点A (2,1)向左平移2个单位长度得到点A ′,则点A ′的坐标是………( ) A .(0,1) B .(2,-1) C .(4,1) D .(2,3)7.下列调查中,适宜采用全面调查方式的是……………………………………( ) A .对我国首架大陆民用飞机各零部件质量的检查A Bl 1l 212 (2题图)B .调查我市冷饮市场雪糕质量情况C .调查我国网民对某事件的看法D .对我市中学生心理健康现状的调查8.二元一次方程3x +2y =11………………………………………………………( ) A .任何一对有理数都是它的解 B .只有一个解 C .只有两个解 D .有无数个解9.方程组⎩⎨⎧=+=+32y x y x ■,的解为⎩⎨⎧==■y x 2,则被遮盖的两个数分别为…………( )A .1,2B .5,1C .2,3D .2,410.如图是甲、乙两户居民家庭全年支出费用的扇形统计图,根据统计图,下面对食品支出费用判断正确的是…………………………………………………………( )A .甲户比乙户多B .乙户比甲户多C .甲、乙两户一样多D .无法确定哪一户多11.如图,点O 在直线AB 上,OC 为射线,∠1比∠2的3倍少10°,设∠1,∠2的度数分别为x ,y ,那么下列求出这两个角的度数的方程是………………………( )A .⎩⎨⎧-==+10180y x y xB .⎩⎨⎧-==+103180y x y xC .⎩⎨⎧+==+10180y x y x D .⎩⎨⎧-==1031803y x y12.5名学生身高两两不同,把他们按从高到低排列,设前三名的平均身高为a 米,后两名的平均身高为b 米.又前两名的平均身高为c 米,后三名的平均身高为d 米,则………………………………………………………………………………( ) A .2b c +>2b a + B .2b a +>2b c + C .2b c +=2ba +D .以上都不对ABC1 2O (11题图)二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.在同一平面内,已知直线a 、b 、c ,且a ∥b ,b ⊥c ,那么直线a 和c 的位置关系是___________. 14.下列说法中①两点之间,直线最短;②经过直线外一点,能作一条直线与这条直线平行; ③和已知直线垂直的直线有且只有一条;④在平面内过一点有且只有一条直线垂直于已知直线. 正确的是:_______________.(只需填写序号)15.11在两个连续整数a 和b 之间,a <11<b ,那么b a 的立方根是____________. 16.在实数3.14,-36.0,-66,0.13241324…,39 ,-π,32中,无理数的个数是______. 17.一只蚂蚁由(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是_________.18.某空调生产厂家想了解一批空调的质量,把仓库中的空调编上号,然后抽取了编号为5的倍数的空调进行检验.你认为这种调查方式_____________.(填“合适”或“不合适”)19.如图,围棋盘放置在某个平面直角坐标系内,如果白棋②的坐标为(-7,-4),白棋④的坐标为(-6,-8),那么黑棋的坐标应该是_________________.20.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,则买5束鲜花和5个礼盒的总价为________元.(19题图)(20题图)三、解答题(共72分.解答应写出文字说明、证明过程或演算步骤) 21.解下列方程组或不等式(组):(1,2小题各4分,3小题6分, 共14分)(1)⎩⎨⎧-=+=+;62,32y x y x(2)⎩⎨⎧=-=+;2463,247y x y x(3)解不等式组,并把它的解集表示在数轴上:3(1)7251.3x x xx --⎧⎪⎨--<⎪⎩≤, ① ②22.(本题8分)如图,CD 平分∠ACB ,DE ∥BC ,∠AED =80°,求∠EDC 的度数.23.(本题6分)小刘是快餐店的送货员,如果快餐店的位置记为(0,0),现有位置分别是A (100,0),B (150,-50),C (50, 100)三位顾客需要送快餐,小刘带着三位顾客需要的快餐从快餐店出发,依次送货上门服务,然后回到快餐店.请你设计一条合适的送货路线并计算总路程有多长.(画出坐标系后用“箭头”标出)ADB CE24.(本题10分)已知:如图,AD ⊥BC 于D ,EG ⊥BC 于G ,AE =AF .求证:AD 平分∠BAC .25.应用题(本题10分)某校为了解七年级学生体育测试情况,以七年级(1)班学生的体育测试成绩为样本,按A ,B ,C ,D 四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下)(1)请把条形统计图补充完整;(2)样本中D 级的学生人数占全班学生人数的百分比是__________; (3)扇形统计图中A 级所在的扇形的圆心角度数是__________;(4)若该校七年级有500名学生,请你用此样本估计体育测试中A 级和B 级的学生人数约为多少人.(24题图)FE ACBGD3 2 1C BD A 46% 20%24%如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?(1)如图,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON 的度数.(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数.(3)如果(1)中∠BOC=β(β为锐角),其他条件不变,求∠MON的度数.(4)从(1)(2)(3)的结果能看出什么规律?(5)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法,请你模仿(1)~(4),设计一道以线段为背景的计算题,写出其中的规律来?AMBONC2-1-0 1参考答案题号 1 2 3 4 5 6 7 8 9 10 1112 答案DBDCBAADBDB A12∵a >d ,∴2a +2b <2c +2d , ∴a +b <c +d ,∴<, 即>,故选B .二、填空题 13.a ⊥c ; 14.②,④; 15.4; 16.3; 17.(3,2);18.合适 点拨:因为这样使得该抽样调查具有随机性、代表性. 19.(-3,-7); 20.440. 三、解答题: 21.(1)解:由①得:y =-2x +3……③ ③代入② x +2(-2x +3)=-6 x =4………………………………………………………………………………2分把x =4代入③得 y =-5 ∴原方程组解为 ⎩⎨⎧-==54y x ………………4分(2)解:①×3+②×2得: 27x =54x =2把x =2代入①得:4y =-12y =-3………………………………………………………………………2分 ∴原方程组解为 ⎩⎨⎧-==32y x ……………………………………………4分(3)解:解不等式①,得2x -≥; 解不等式②,得12x <-.在同一条数轴上表示不等式①②的解集,如图所示:…………………………2分……………………………………4分所以,原不等式组的解集是122x -<-≤.……………………………………6分 22.解:∵ DE ∥BC ,∠AED =80°,∴ ∠ACB =∠AED =80°. ………………………………………4分 ∵ CD 平分∠ACB , ∴ ∠BCD =21∠ACB =40°,……………………………………6分 ∴ ∠EDC =∠BCD =40°.…………………………………………8分 23.解:合适的路线有四条,如图所示是其中的一条, 即向北走100 m ,再向东走50 m 到C ;接着向南走 100 m ,再向东走50 m 到A ;接着向东走50 m ,再向 南走50 m 到B ;接着向西走150 m ,再向北走50 m 回到O .尽可能少走重复路段.如图所示,所走的路线 长最短,共为600 m. …………………………………6分 24.证明:∵AD ⊥BC 于D ,EG ⊥BC 于G∴AD ∥EG ,………………………3分 ∴∠2=∠3, ∠1=∠E , ………………5分 ∵AE =AF ∴∠E = ∠3,∴∠1 = ∠2,……………………………8分 ∴AD 平分∠BAC .………………………10分 25.解:(1)条形图补充如图所示.………………3分(2)10%……………………………………5分 (3)72°……………………………………7分 (4)500×(46%+20%)=330(人).………………10分26.解:(1)设工厂从A 地购买了x 吨原料,制成运往B 地的产品y 吨.则依题意,得:⎩⎨⎧=+=+.97200)120110(2.1,15000)1020(5.1x y x y …………………………………6分DB七年级(下)数学期末试卷 第11页(共8页) 解这个方程组,得:⎩⎨⎧==.300,400y x ∴工厂从A 地购买了400吨原料,制成运往B 地的产品300吨. ……………………………………………………………9分(2)依题意,得:300×8000-400×1000-15000-97200=1887800∴批产品的销售款比原料费与运输费的和多1887800元. ……………………12分27.解:(1)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12×120°-12×30°=45°; ……………………………………………………………2分(2)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12(α+30°)-12×30°=12α; ……………………………………………………………4分(3)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12(90°+β)-12β=45°;……6分 (4)∠MON 的大小等于∠AOB 的一半,而与∠BOC 的大小无关;……………9分(5)如图,设线段AB =a ,延长AB 到C ,使BC =b ,点M ,N 分别为AC ,BC 的中点,求MN 的长.规律是:MN 的长度总等于AB 的长度的一半,而与BC 的长度无关.…………12分。
2013-2014学年七年级下期末考试数学试题及答案(2)
2013-2014初一下数学期末学业水平质量检测2014年7月考生须知:1.本试卷共有三个大题,29个小题,共6页,满分100分. 2.考试时间为90分钟,请用蓝色或黑色钢笔、圆珠笔答卷.一、精心选一选:(每小题只有一个正确答案,每题3分,共30分) 1. 下列运算,正确的是( ) A .34a a a+=B .()222a b a b+=+C .1025a a a ÷= D .236()a a =2.下列各式由左边到右边的变形中,是因式分解的是( )A .()a x y ax ay +=+B .()24444x x x x -+=-+C .()2105521x x x x -=- D .()()2163443x x x x x -+=+-+3.不等式23x >-的最小整数解是( )A .-1B .0C .2D .34. 如图,∠AOB =15°,∠AOC =90°,点B 、O 、D 在同一直线上,那么∠COD 的度数为( ) A .75° B .15° C .105° D . 165°5. 计算()()2342515205m m n m m +-÷-结果正确的是()A .2134mn m -+B .2134m m --+C .2431m mn -- D .243m mn -6. 已知一组数据8,9,10,m ,6的众数是8,那么这组数据的中位数是( )A. 6B. 8C. 8.5D. 97. 已知22a b -=,那么代数式2244a b b --的值是 ( )A .2B .0C .4D .68.如图,下列能判定AB ∥CD 的条件有( )个.(1) ︒=∠+∠180BCD B ; (2)21∠=∠; (3) 43∠=∠; (4) 5∠=∠B .A .1B .2C .3D .49.如图,从边长为1a +的正方形纸片中剪去一个边长为1a -的正方形(a >1),剩余部分沿虚线剪开,再拼成一个矩形(不重叠无缝隙),那么该矩形的面积是( )第4题图COBAE54321第8题图D CAA .2B . 2aC . 4aD . 21a -10.将正整数1,2,3,…,从小到大按下面规律排列.那么第i 行第j 列的数为( )A .i j +B .in j +C .1n i j -+D .(1)i n j -+ 二、专心填一填:(每题2分,共16分) 11.已知⎩⎨⎧==32y x 是方程570x ky --=的一个解,那么k = . 12.水是生命之源,水是由氢原子和氧原子组成的,其中氢原子的直径为0.0000000001m ,把数0.0000000001用科学记数法表示为_______________________.13. 计算:2220142013-=____________.14. 如图,一把矩形直尺沿直线断开并错位,点E ,D ,B ,F 在同一条直线上,如果∠ADE =128°,那么∠DBC 的度数为___________.15.如果关于的不等式组12x m x m >-⎧⎨>+⎩,的解集是1x >-,那么m =________.16. 将命题“对顶角相等”改写成“如果……,那么……”的形式为______________________________________________. 17. 某班40如果这个班的数学平均成绩是69分,那么x =___________,y =____________.18. 定义一种新的运算叫对数,如果有n a N = ,那么log a N n =, 其中0a >且1a ≠,0N >. 例如,如果328=,那么2log 83=;如果3128-=,那么21log 8=_________. 由于,22log 816log 1287⨯==,因此,222log 8log 16log 816+=⨯. 可以验证 log log log a a a M N MN +=. 请根据上述知识计算:228log 6log 3+=_______. 三、耐心做一做:(共54分)19. (3分)计算:02211(π2014)()33--+--+; 20.(3分)计算:()()()2322643xy y x ÷-⋅;第14题图FEDCB A21.把下列各式进行因式分解:(每题3分,共6分)(1)22363ax axy ay -+; (2)()()2x x y y x -+-;22. (4分)解方程组25,437.x y x y +=⎧⎨+=⎩ 23. (4分) 解不等式组:26(3),5(2)14(1).x x x x ->+⎧⎨--≤+⎩24.(5分)已知425x y +=,求()()()()222282x y x y x y xy y ⎡⎤--+-+÷-⎣⎦的值.25.看图填空:(6分)如图,∠1的同位角是___________________,∠1的内错角是___________________, 如果∠1=∠BCD , 那么 ∥ ,根据是 ; 如果∠ACD =∠EGF , 那么 ∥ ,根据是 .26. (4分)对于形如222x xa a ++这样的二次三项式,可以用公式法将它分解成()2x a +的形式. 但对于二次三项式2223x xa a +-,就不能直接运用公式了. 小红是这样想的:在二次三项式2223x xa a +-中先加上一项2a ,使它与22x xa +的和成为一个完全平方式,再减去2a ,整个式子的值不变,于是有:()2222222323x xa a x ax a a a +-=++--第25题图GF E 1D CBA()224x a a =+-()()222x a a =+-()()3x a x a =+-像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.参考小红思考问题的方法,利用“配方法”把268a a -+进行因式分解.27. 列方程(组)解应用题:(5分)漕运码头的游船有两种类型,一种有4个座位,另一种有6个座位.这两种游船的收费标准是:一条4座游船每小时的租金为60元,一条6座游船每小时的租金为100元.某公司组织38名员工到漕运码头租船游览,如果每条船正好坐满,并且1小时共花费租金600元,求该公司分别租用4座游船和6座游船的数量.28. (5分)某校为了更好地开展“阳光体育一小时”活动,围绕着“你最喜欢的体育活动项目是什么(只写一项)?”的问题,对本校学生进行了随机抽样调查,以下是根据得到的相关数据绘制的统计图的一部分.各年级学生人数统计表图2图1%其它 10%踢毽子 20%跳绳 40%投篮各运动项目的喜欢人数占抽样总人数百分比统计图抽样调查学生最喜欢的运动项目的人数统计图请根据以上信息解答下列问题: (1)该校对多少名学生进行了抽样调查? (2)请将图1和图2补充完整;(3)已知该校七年级学生比九年级学生少20人,请你补全上表,并利用样本数据估计全校学生中最喜欢踢毽子运动的人数约为多少?29.(9分)直线1l 平行于直线2l ,直线3l 、4l 分别与1l 、2l 交于点B 、F 和A 、E ,点D 是直线3l上一动点,AB DC //交4l 于点C .(1)如图,当点D 在1l 、2l 两线之间运动时,试找出BAD ∠、DEF ∠、ADE ∠之间的等量关系,并说明理由;(2)当点D 在1l 、2l 两线外侧运动时,试探索BAD ∠、DEF ∠、ADE ∠之间的等量关系(点D 和B 、F 不重合),画出图形,直接写出结论.初一数学期末学业水平质量检测参考答案一、精心选一选:(每小题只有一个正确答案,每题3分,共30分)第29题图FED C B A l2l3l 4l 1二、专心填一填:(每题2分,共16分)三、耐心做一做:(共54分)19. 解:原式= 1199+-+ ; ………………… 2分;= 2; ………………… 3分.20. 解:原式= 43229(4)36x y x y ⋅-÷; ………………… 2分;=43223636x y x y -÷;= 2x y -. ………………… 3分.21. 把下列各式进行因式分解:(每题3分,共6分)(1)解:原式=()2232a x xy y -+; ………………… 1分;=()23a x y -. ………………… 3分.(2)解:原式=()()2xx y x y ---; ………………… 1分;= ()()21x y x --; ………………… 2分;=()()()11x y x x -+-. ………………… 3分.22. (4分)解方程组25,437.x y x y +=⎧⎨+=⎩①②解:3⨯-①②得:2=8x ; ………………… 1分;4x=, ………………… 2分;把4x=代入①得,5y=8+,3y=-. ………………… 3分;所以原方程组的解为=4= 3.x y ⎧⎨-⎩ ………………… 4分.23. (4分) 解不等式组: 6(3)5(2)14(1).x x x x -2>+⎧⎨--≤+⎩, ①②解:解不等式①,2618x x+->; 520x ->;4x<-; ………………… 1分;解不等式②,510144x x --≤+;15x ≤; ………………… 2分;………………… 3分; 所以这个不等式组的解集是4x <-. ………………… 4分.24. 解:原式=()2222[4448](2)x xy y x y xy y -+--+÷-; ……………… 2分;=2222[4448](2)x xy y x y xy y -+-++÷- ;=2(42)(2)xy y y +÷-; ………………… 3分; =2x y --. ………………… 4分; ∵425x y +=, ∴522x y --=-. ………………… 5分. 25.看图填空:(6分)如图,∠1的同位角是∠EFG , ………………… 1分; ∠1的内错角是∠BCD 、∠AED , ………………… 2分; (少写一个扣0.5分,用它控制满分) 如果∠1=∠BCD ,那么 DE ∥ BC , ………………… 3分; 根据是内错角相等,两直线平行; ………………… 4分; 如果∠ACD =∠EGF ,那么 FG ∥ DC , ………………… 5分; 根据是同位角相等,两直线平行. ………………… 6分. 26. (4分)利用“配方法”把268a a -+进行因式分解.解:原式=26989a a -++-; ………………… 1分;=()231a --; ………………… 2分;=()()3131a a -+--; ………………… 3分;=()()24a a --. ………………… 4分. 备注:学生用十字相乘法分解且结果正确只能给1分.27. 解:设租用4座游船x 条,租用6座游船y 条.根据题意得:4638,60100600.x y x y +=⎧⎨+=⎩①②; ………………… 2分;解得:5,3x y =⎧⎨=⎩. ………………… 4分; 答:租用4座游船5条,租用6座游船3条. ………………… 5分. 28.(1)解:408020=200.20%40%10%或或(名) ……………………… 1分; (2)如图所示: ……………………… 3分;(3)表中填200. …………………… 4分;(180+120+200)⨯20%=100. …………………… 5分. 答:全校学生中最喜欢踢毽子运动的人数约为100名. 29.(1)结论:BAD DEF ADE ∠+∠=∠. ……………… 1分; 证明:∵AB DC //,(已知)∴BAD ADC ∠=∠(两直线平行,内错角相等); ……………… 2分;∵1l ∥2l ,AB DC //,(已知)∴//DC EF ,(平行于同一条直线的两条直线平行); ……………… 3分; ∴CDE DEF ∠=∠(两直线平行,内错角相等); ……………… 4分;∵ADC CDE ADE ∠+∠=∠,∴BAD DEF ADE ∠+∠=∠(等量代换). ……………… 5分. 注:理由注错不扣分,其它证法酌情给分. (2)30抽样调查学生最喜欢的运动项目的人数统计图各运动项目的喜欢人数占抽样总人数百分比统计图投篮跳绳 40%踢毽子 20%其它10%%图1图2D C B A l3l 4l 1画图正确,……………… 6分;当点D 在直线1l 上方运动时,DEF BAD ADE ∠-∠=∠, ……………… 7分;画图正确,……………… 8分;当点D 在直线2l 下方运动时,BAD DEF ADE ∠-∠=∠. ……………… 9分.第29题图F ED C BAl2l3l 4l 1。
2013-2014学年下学期期末质量检测卷七年级数学试题及答案
{2-3-<>x x ⎪⎩⎪⎨⎧⎩⎨⎧===-=13102,x y xy {ay x ay x --=++=-7312013-2014学年度第二学期期末质量检测七年级数学试卷及答案一.选择题.(本大题共10小题,每小题3分,共30分. 在每小题给出的四个选项中只有一项是符合要求的,请将正确答案的序号填入对应题目的下表内) 1.下列图形中,∠1与∠2是同位角的是( )A .(2)(3)B .(2)(3)(4)C .(1)(2)(4)D .(3)(4) 2.立方根等于它本身的数有( )个A 、 同一平面内,若a ⊥b ,b ⊥c ,则a ∥cB .若a ∥b ,a ∥c ,则b ∥cC 、一个角的补角与这个角的余角的差是90°D 、相等的两个角是对顶角 3. 下列有关2的叙述错误的是A .2是正数B .2是2的平方根C .1<2<2D .22 4、在平面直角坐标系中,点P (-1,12+m )关于y 轴的对称点2P 一定在 ( )A 、第一象限B .第二象限C .第三象限D .第四象限 5. 把面值为2元的纸币换成1角、5角都有的硬币,共有几种换法( ) A .2种 B .3种 C .4种 D .5种 7. 不等式组A. x <-3B. X <-2C.-3<x <-2D. 无解 7. 已知实数x 、y 满足()013222=++-y x ,则x-y=A .3B .-3 C.1 D .-1 都是关于x 、y 的方程6=+by x a 的解,则a+b 的值为 ( )8.若A.4B.-10C.4或-10D.-4或109.四个电子宠物排座位,一开始,小鼠、小猴、小兔、小猫分别坐在1,2,3,4号座位上(如图所示),以后它们不停地变换位置,第一次上下两排交换,第二次是在第一次换位后,再左右两列交换位置,第三次再上下两排交换,第四次再左右两列交换…这样一直下去,则第2005次交换位置后,小兔所在的号位是( )A.1B. 2C. 3D. 4 10. 已知方程组的解x 为非正数,y 为非负数,,则a 的取值范围是A 、3a 2≤-<B 、3a 2<≤-C 、3a 2<<-D 、3a 2≤≤-{520≤-+x m x {4237)2(3)(2=---=-y x y x y x二、填空题(本题共8题,每小题3分,满分24分)11、若y -3x 35b a -7与xy b a+是同类项,则x+y=12、 若点P (m-2,m+1)在平面直角坐标系的y 轴上,则点P 的坐标为 。
常州市七年级下册数学期末试卷-百度文库
A.0.38×106B.3.8×106C.3.8×105D.38×104
9.某中学现有学生500人,计划一年后女生在校生增加 ,男生在校生增加 ,这样,在校学生将增加 ,设该校现有女生人数 和男生 ,则列方程组为()
(1)每辆大货车和每辆小货车一次各可以运货多少吨?
(2)某公司现有这两种货车共10辆,要求一次运货不低于35吨,则其中大货车至少多少辆?(用不等式解答)
25.阅读下列各式:(a•b)2=a2b2,(a•b)3=a3b3,(a•b)4=a4b4…
回答下列三个问题:
(1)验证:(2× )100=,2100×( )100=;
(知识迁移)(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式:.
23.解方程组:
(1)
(2)
24.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉。已知3辆大货车与2辆小货车可以一次运货21吨,5辆大货车与4辆小货车可以一次运货37吨.
A. B.
C. D.
10.若一个三角形的两边长分别为3和6,则第三边长可能是( )
A.6B.3C.2D.10
二、填空题
11.若分解因式 ,则 __________.
12.如图,将一张长方形纸片沿EF折叠后,点D、C分别落在点 、 的位置, 的延长线与BC相交于点G,若∠EFG=50°,则∠1=_______.
(1)P1(3,1)和P2(-3,1)两点中,点________________是“好点”.
江苏省常州市2014-2015学年七年级第一学期期末质量调研数学试卷苏科版
23.( 1)由大小相同的小立方体搭成的几何体如图( 体的俯视图和左视图 .
1)所示,请在图( 2)分别画出该几何
A. 108
B. 104
C.28
D.24
16. 如图,已知数轴上点 A 、 B、 C 所表示的数分别为 a、b、 c ,点 C 是线段 AB 的中点,
且 AB = 2,如果原点 O 的位置在线段 AC 上,那么 |a+ b- 2c|等于 ,,,,,, 【
】
A.3
B.2
C.1
D.0
A
C
B
a
c
b
三、计算与求解(第 17、 18 题每题 4 分,第 19、 20、 21 每题 6 分,共 26 分)
时,代数式 3x+ 1 的值与代数式 2( 3- x)的值互为相反数
4.已知 1 xm y 3与 2 xy n 是同类项,则 m n= 2
5.将一刻度尺如图所示放在数轴上 (数轴的单位长度是 1cm),刻度尺上的 “ 0cm”和“ 15cm” 分别对应数轴上的- 3.6 和 x,则 x=
6.下图是一个数值转换机。若输入数- 2,则输出数是
常州市 2014-2015 学年度第一学期期末质量调研
七年级数学试题
班级
姓名
一、填空题(每小题 2 分,共 20 分)
1
1. 的倒数是
2
,写出一个大于 3 且小于 4 的无理数
2.钓鱼岛是中国领土的一部分,岛屿周围的海域面积约
2013-2014常州市七年级第一学期期末数学试卷(电子稿含评分标准)
2013-2014常州市七年级第一学期期末数学试卷(电子稿含评分标准)2013-2014常州市七年级第一学期期末数学试卷一、填空题(每小题2分,共20分)1.-3的绝对值是,一53的倒数是。
2.据统计,截止2013年10月27日,第八届中国常州花博会累计入园人数约2680000人入园人数用科学记数法表示为人,3.下列各数:0.5,一2π,0,一310,3.14,722 ,0.2121121112…(相邻两个2之间依次增加一个1).其中无理数有个。
4.如图所示,若将天平左盘中两个等重的物品取下一个,则右盘中取下个砝码天平仍然平衡.(第4题)(第5题)5.如图,点C 是线段AB 上的任意一点,点D 是线段BC 的中点,若AB =10,AC=6,则CD= 。
6.写出一个同时满足下列两个条件的一元一次方程:①未知数系数是3;②方程的解是-3 所写方程为。
7.若代数式3x 2一4x -5的值为7,则x 2-34x -8的值为。
8.如图,OB ⊥OA ,∠BOC=400,OD 平分∠AOC ,则∠BOD= 度。
9.如图,将一张长方形的纸片沿折痕EF 翻折,使点C 、D 分别落在点M 、N 的位置,且∠BFM=21∠EFM ,则∠BFM= 度。
(第8趣)(第9题)10.若x 、y 、z 为整数,且满足y x -3+x z -3 =1,则y x -+z y -+x z -的值是。
二、选择题( 每小题3分,共18分)11.下列运算正确的是( )A .5a 2 -3a 2=2 B. 2x 2+3x 2=5x 4 C .3a+2b=5ab D. 7ab-6ba=ab12.下列式子正确的是( )A .-21->0 B .一(一4)=-4- C .一54>一43 D .-3.14>-π 13.已知a 、b 两数在数轴上对应的点如下图所示,下列结论正确的是( )A .a-l< b-lB .ab <0C .(b -a)·(b+a)>0D .ab <="" 14.一件夹克衫先按成本提高50%标价,再以8折出售,获利15元.若设这件夹克衫的成="" p="" 元,根据题意,可列出的方程是="" 本是x="">A .(1+50%)x ×80%=x -15B .(1+50%)x ×80%=x+15C .(1+50%x )×80%=x -15D .(1+50%x )×80%=x+1515.一个正方体的每个面都有一个汉字,其平面展开图如下图所示,那么在该正方体中与“美”字相对的字是 ( )A .建B .设C .常D .州丽16.小明用棋子摆放成图形来研究数的规律,如下图所示,图(1)中棋子摆成三角形,其颗数3,6,9,12,…称为三角形数:类似地,图(2)中的4,8,12,16,…称为正方形数.下列所给的四个数中既是三角形数又是正方形数的是( )A .2013B .2014C .2015D .2016三、计算与求解(第17、18题每题4分,第19题5分,第20、21题每题6分,共25分)17.计算:-61-18+9 18.计算:-12×2+(-2)3÷4一(一3)19.先化简,再求值:一2(x 2—3x)+2(3x 2—2x 一21),其中x=-4.20.解方程:2x+3=11-6x. 21.解方程:21+x -1=332x -四、解答题(第22、23题每题6分,第24题5分,共17分)22.甲、乙两个旅游团某天分别乘车外出旅游,两个旅游团行程共435km ,甲团行程是乙团行程的3倍少25km .求这天甲、乙两个旅游团的行程.23.如图,直线AB与CD相交于点D,OP是∠BOC的平分线,OE⊥CD,垂足为0,如果∠AOD=400,求:(1) ∠COP的度数(2) ∠BOE的度数.24.用5个相同的小正方体木块搭出如下图所示的物体.(1)画出它的三视图;(2)在下图所示的物体中,再添加一个小正方体,使得它的主视图和左视图不变请你画出添加后新物体所有可能的俯视图.五、解答题(第25题6分,第26题7分,共13分)25.按下列要求画图,并回答问题:(1)如图,在三角形ABC中,画线段BC的中点D,过点D画射线AD(2)分别过点B、C画BE⊥AD、CF⊥AD,垂足分别为点E、F.(3)判断直线BE和CF的位置关系.(不需说明理由)26.我国古代有很多著名的数学问题,“鸡兔同笼”就是其中之一.约1500年前《孙子算经》中记载了这个有趣问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”(1)求笼中鸡兔各有多少只?(2)如果笼中鸡兔共有16只脚,但不知头的个数,请你直接写出鸡和兔的只数,六、操作与探究(本题7分)27.如果点P将线段AB分成两条相等的线段AP和PB,那么点P叫做线段AB的二等分点(中点);如果点P l、P2将线段AB分成三条相等的线段AP1、P1P2和P2B,那么点P l、P2叫做线段AB的三等分点;以此类推,如果点P l、P2、…、P n-1将线段AB分成n 条相等的线段AP1、P1P2、P2P3、…、P n-1B,那么点P l、P2、…、P n-1叫做线段AB的n 等分点,如图(1)所示.已知点么、B在直线l的同侧,请解答下面的问题:(1)在所给边长为1个单位的正方形网格中,探究:①如图(2),若点A、B到直线l的距离分别是4个单位和2个单位,那么线段AB的中点P到直线l的距离是个单位;②如图(3),若点A、B到直线l的距离分别是2个单位和5个单位,那么线段AB的中点P到直线l的距离是个单位;③由①、②可以发现结论:若点A、B到直线l的距离分别是h个单位和t个单位,那么线段AB的中点P到直线l的距离是个单位;(2)如图(4)所示,若点A、B到直线l的距离分别是d l和d2,利用(1)中的结论求线段AB的三等分点P l、P2到直线l的距离;(3)若点A、B到直线l的距离分别是d1和d2,点P l、P2、…、P n-1为线段AB的n等分点,则第i个n等分点p i到直线l的距离是。
江苏省常州市七年级(下)期末数学试卷(解析版)
江苏省常州市七年级(下)期末数学试卷一、选择题(本大题共8小题,每小题2分,共16分)1.(2分)下列计算正确的是()A.3x+5y=8xy B.(﹣x3)3=x6C.x6÷x3=x2D.x3•x5=x82.(2分)世界上最小的开花结果植物是出水浮萍,这种植物的果实像一个微小的无花果,质量只有,将数用科学记数法表示为()A.×10﹣7B.×10﹣8C.×10﹣9D.76×10﹣103.(2分)若x<y,则下列不等式中不成立的是(),A.x﹣1<y﹣1 B.3x<3y C.<D.﹣2x<﹣2y4.(2分)我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x间、房客y人,下列方程组中正确的是()A.B.C.D.5.(2分)两根木棒分别长5cm、7cm,第三根木棒与这两根木棒首尾依次相接构成三角形.如果第三根木棒的长是偶数(单位:cm),则一共可以构成不同的三角形有()A.4个 B.5个 C.8个 D.10个6.(2分)一个n边形的内角和比它的外角和大180°,则n等于()A.3 B.4 C.5 D.6.7.(2分)如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于()A.70°B.80°C.90°D.100°8.(2分)在下列命题中:①同旁内角互补;②两点确定一条直线;③两条直线相交,有且只有一个交点;④若一个角的两边分别与另一个角的两边平行,那么这两个角相等.)其中属于真命题的有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共8小题,每小题2分,共16分)9.(2分)计算:2x•(x+7)=.10.(2分)写出有一个解是的二元一次方程:.(写出一个即可)11.(2分)若实数x、y满足方程组,则代数式2x+3y﹣4的值是.12.(2分)已知一个锐角为(5x﹣35)°,则x的取值范围是.$13.(2分)不等式3(x﹣1)≤5﹣x的非负整数解有个.14.(2分)写出命题“直角三角形的两个锐角互余”的逆命题:.15.(2分)如图,在四边形ABCD中,∠A+∠B=200°,作∠ADC、∠BCD的平分线交于点O1称为第1次操作,作∠O1DC、∠O1CD的平分线交于点O2称为第2次操作,作∠O2DC、∠O2CD的平分线交于点O3称为第3次操作,…,则第5次操作后∠CO5D的度数是.16.(2分)已知x=2是关于x的方程kx+b=0(k≠0,b>0)的解,则关于x的不等式k(x﹣3)+2b>0的解集是.三、解答题(本大题共9小题,共68分,第17、18、19、21、24题每题8分,第20、22、23题每题6分,第25题10分,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)17.(8分)计算:(1)(﹣1)2+(﹣2017)0+;!(2)(2m﹣3)(m+2).18.(8分)分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy3.19.(8分)解方程组或不等式组:(1);(2).20.(6分)已知x+y=1,xy=,求下列各式的值:(1)x2y+xy2;(2)(x2﹣1)(y2﹣1).*21.(8分)如图,已知AF分别与BD、CE交于点G、H,∠1=52°,∠2=128°.(1)求证:BD∥CE;(2)若∠A=∠F,探索∠C与∠D的数量关系,并证明你的结论.22.(6分)某商场计划购进A、B两种商品,若购进A种商品2件和B种商品1件需45元;若购进A种商品3件和B种商品2件需70元.(1)A、B两种商品每件的进价分别是多少元(2)若购进A、B两种商品共100件,总费用不超过1000元,最多能购进A种商品多少件23.(6分)用两根同样长的铁丝分别围成一个长方形和一个正方形.<(1)设长方形的长为xcm、宽为ycm,用含有x、y的代数式表示正方形的面积;(2)已知长方形的长比宽多am,用含a的代数式表示正方形面积与长方形面积的差.24.(8分)已知实数x、y满足2x+3y=1.(1)用含有x的代数式表示y;(2)若实数y满足y>1,求x的取值范围;(3)若实数x、y满足x>﹣1,y≥﹣,且2x﹣3y=k,求k的取值范围.25.(10分)已知:如图,点A、B分别是∠MON的边OM、ON上两点,OC平分∠MON,在∠CON的内部取一点P(点A、P、B三点不在同一直线上),连接PA、PB.(1)探索∠APB与∠MON、∠PAO、∠PBO之间的数量关系,并证明你的结论;((2)设∠OAP=x°,∠OBP=y°,若∠APB的平分线PQ交OC于点Q,求∠OQP的度数(用含有x、y的代数式表示).参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分)1.(2分)下列计算正确的是()|A.3x+5y=8xy B.(﹣x3)3=x6C.x6÷x3=x2D.x3•x5=x8【解答】解:A、3x+5y,无法计算,故此选项错误;B、(﹣x3)3=﹣x9,故此选项错误;C、x6÷x3=x3,故此选项错误;D、x3•x5=x8,故此选项正确.故选:D.2.(2分)世界上最小的开花结果植物是出水浮萍,这种植物的果实像一个微小的无花果,质量只有,将数用科学记数法表示为(),A.×10﹣7B.×10﹣8C.×10﹣9D.76×10﹣10【解答】解:0000 76=×10﹣8,故选:B.3.(2分)若x<y,则下列不等式中不成立的是()A.x﹣1<y﹣1 B.3x<3y C.<D.﹣2x<﹣2y【解答】解:若x<y,则x﹣1<y﹣1,选项A成立;若x<y,则3x<3y,选项B成立;,若x<y,则<,选项C成立;若x<y,则﹣2x>﹣2y,选项D不成立,故选:D.4.(2分)我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x间、房客y人,下列方程组中正确的是()A.B.C.D.【解答】解:设该店有客房x间,房客y人;?根据题意得:,故选:A.5.(2分)两根木棒分别长5cm、7cm,第三根木棒与这两根木棒首尾依次相接构成三角形.如果第三根木棒的长是偶数(单位:cm),则一共可以构成不同的三角形有()A.4个 B.5个 C.8个 D.10个【解答】解:根据三角形的三边关系,得第三根木棒的长大于2cm而小于12cm.又第三根木棒的长是偶数,则应为4cm,6cm,8cm,10cm.%共可以构成4个不同的三角形故选:A.6.(2分)一个n边形的内角和比它的外角和大180°,则n等于()A.3 B.4 C.5 D.6【解答】解:根据题意得:(n﹣2)•180°﹣360°=180°,解得n=5.>故选:C.7.(2分)如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于()A.70°B.80°C.90°D.100°【解答】解:∵AB∥CD,∴∠1=∠B=50°,∵∠C=40°,·∴∠E=180°﹣∠B﹣∠1=90°,故选:C.8.(2分)在下列命题中:①同旁内角互补;②两点确定一条直线;③两条直线相交,有且只有一个交点;…④若一个角的两边分别与另一个角的两边平行,那么这两个角相等.其中属于真命题的有()A.1个 B.2个 C.3个 D.4个【解答】解:①两直线平行,同旁内角互补,是假命题;②两点确定一条直线;是真命题;③两条直线相交,有且只有一个交点,是真命题;④若一个角的两边分别与另一个角的两边平行,那么这两个角相等或互补,是假命题.其中属于真命题的有2个,¥故选:B.二、填空题(本大题共8小题,每小题2分,共16分)9.(2分)计算:2x•(x+7)=2x2+14x.【解答】解:原式=2x2+14x,故答案为:2x2+14x.10.(2分)写出有一个解是的二元一次方程:x+y=0.(写出一个即可)¥【解答】解:写出有一个解是的二元一次方程x+y=0,故答案为:x+y=0.11.(2分)若实数x、y满足方程组,则代数式2x+3y﹣4的值是2.【解答】解:,①+②得:4x+6y=12,即2x+3y=6,则原式=6﹣4=2,故答案为:2/12.(2分)已知一个锐角为(5x﹣35)°,则x的取值范围是7<x<25.【解答】解:由题意可知:0<5x﹣35<90解得:7<x<25故答案为:7<x<2513.(2分)不等式3(x﹣1)≤5﹣x的非负整数解有3个.【解答】解:去括号,得:3x﹣3≤5﹣x,!移项,得:3x+x≤5+3,合并同类项,得:4x≤8,系数化为1,得:x≤2,则不等式的非负整数解有0、1、2这3个,故答案为:3.14.(2分)写出命题“直角三角形的两个锐角互余”的逆命题:两个锐角互余的三角形是直角三角形.【解答】解:命题“直角三角形的两个锐角互余”的逆命题为“两个锐角互余的三角形是直角三角形”.、故答案为:两个锐角互余的三角形是直角三角形.15.(2分)如图,在四边形ABCD中,∠A+∠B=200°,作∠ADC、∠BCD的平分线交于点O1称为第1次操作,作∠O1DC、∠O1CD的平分线交于点O2称为第2次操作,作∠O2DC、∠O2CD的平分线交于点O3称为第3次操作,…,则第5次操作后∠CO5D的度数是175°.【解答】解:如图所示,∵∠ADC、∠BCD的平分线交于点O1,∴∠O1DC+∠O1CD=(∠ADC+∠DCB),∵∠O1DC、∠O1CD的平分线交于点O2,∴∠O2DC+∠O2CD=(∠O1DC+∠O1CD)=(∠ADC+∠DCB),`同理可得,∠O3DC+∠O3CD=(∠O2DC+∠O2CD)=(∠ADC+∠DCB),由此可得,∠O5DC+∠O5CD=(∠O4DC+∠O4CD)=(∠ADC+∠DCB),∴△CO5D中,∠C O5D=180°﹣(∠O5DC+∠O5CD)=180°﹣(∠ADC+∠DCB),又∵四边形ABCD中,∠DAB+∠ABC=200°,∴∠ADC+∠DCB=160°,∴∠CO5D=180°﹣×160°=180°﹣5°=175°,故答案为:175°./16.(2分)已知x=2是关于x的方程kx+b=0(k≠0,b>0)的解,则关于x的不等式k(x﹣3)+2b>0的解集是x>7.【解答】解:把x=2代入kx+b=0得2k+b=0,则b=﹣2k,所以k(x﹣3)+2b>0化为k(x﹣3)﹣4k>0,因为k>0,所以x﹣3﹣4>0,所以x>7.故答案为x>7.<三、解答题(本大题共9小题,共68分,第17、18、19、21、24题每题8分,第20、22、23题每题6分,第25题10分,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)17.(8分)计算:(1)(﹣1)2+(﹣2017)0+;(2)(2m﹣3)(m+2).【解答】解:(1)(﹣1)2+(﹣2017)0+=1+1+4=6;(2)(2m﹣3)(m+2)-=2m2+4m﹣3m﹣6=2m2+m﹣6.18.(8分)分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy3.【解答】解:(1)原式=a(9x2﹣y2)=a(3x+y)(3x﹣y)(2)原式=2xy(x2+2xy+y2).=2xy(x+y)219.(8分)解方程组或不等式组:(1);(2).【解答】解:(1),②﹣①×2得:x=6,把x=6代入①得:6+2y=20,、解得y=﹣3,所以原方程组的解为;(2),由不等式①,得x≥1;由不等式②,得x>2,∴不等式组的解集为x>2.20.(6分)已知x+y=1,xy=,求下列各式的值:~(1)x2y+xy2;(2)(x2﹣1)(y2﹣1).【解答】解:(1))x2y+xy2=xy(x+y)=×1=(2)(x2﹣1)(y2﹣1)=x2y2﹣x2﹣y2+1=(xy)2﹣[(x+y)2﹣2xy]+1=()2﹣[(1﹣)]+1=.21.(8分)如图,已知AF分别与BD、CE交于点G、H,∠1=52°,∠2=128°.)(1)求证:BD∥CE;(2)若∠A=∠F,探索∠C与∠D的数量关系,并证明你的结论.【解答】(1)证明:∵∠1=∠DGH=52°,∠2=128°,∴∠DGH+∠2=180°,∴BD∥CE;(2)解:∠C=∠D.)理由:∵BD∥CE,∴∠D=∠CEF.∵∠A=∠F,∴AC∥DF,∴∠C=∠CEF,∴∠C=∠D.22.(6分)某商场计划购进A、B两种商品,若购进A种商品2件和B种商品1件需45元;若购进A种商品3件和B种商品2件需70元.}(1)A、B两种商品每件的进价分别是多少元(2)若购进A、B两种商品共100件,总费用不超过1000元,最多能购进A种商品多少件【解答】解:(1)设A商品的进价是a元,B商品的进价是b元,根据题意得:,解得:,答:A商品的进价是20元,B商品的进价是5元;(2)设购进A种商品x件,则购进B种商品(100﹣x)件,-根据题意得:20x+5(100﹣x)≤1000,解得:x≤33,∵x为整数,∴x的最大整数解为33,∴最多能购进A种商品33件.23.(6分)用两根同样长的铁丝分别围成一个长方形和一个正方形.(1)设长方形的长为xcm、宽为ycm,用含有x、y的代数式表示正方形的面积;`(2)已知长方形的长比宽多am,用含a的代数式表示正方形面积与长方形面积的差.【解答】解:(1)∵长方形的周长为2(x+y)m,∴正方形的边长为:m=m,∴正方形的面积为()2m2;(2)设长方形的宽为ym,则长方形的长为(y+a)m,所以长方形的面积为y(y+a)m2,∵正方形的边长为m=(y+)m,~∴正方形的面积为(y+)2m2,∴正方形面积与长方形面积的差为(y+)2﹣y(y+a)=a2(m2).24.(8分)已知实数x、y满足2x+3y=1.(1)用含有x的代数式表示y;(2)若实数y满足y>1,求x的取值范围;(3)若实数x、y满足x>﹣1,y≥﹣,且2x﹣3y=k,求k的取值范围.【解答】解:(1)2x+3y=1,)3y=1﹣2x,y=;(2)y=>1,解得:x<﹣1,即若实数y满足y>1,x的取值范围是x<﹣1;(3)联立2x+3y=1和2x﹣3y=k得:,/解方程组得:,由题意得:,解得:﹣5<k≤4.25.(10分)已知:如图,点A、B分别是∠MON的边OM、ON上两点,OC平分∠MON,在∠CON的内部取一点P(点A、P、B三点不在同一直线上),连接PA、PB.(1)探索∠APB与∠MON、∠PAO、∠PBO之间的数量关系,并证明你的结论;(2)设∠OAP=x°,∠OBP=y°,若∠APB的平分线PQ交OC于点Q,求∠OQP的度数(用含有x、y的代数式表示).【解答】解:(1)分两种情况:①如图1,点P在直线AB的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,证明:∵四边形AOBP的内角和为(4﹣2)×180°=360°,∴∠APB=360°﹣∠MON﹣∠PAO﹣∠PBO;②如图2,点P在直线AB的左侧,∠APB=∠MON+∠PAO+∠PBO,证明:延长AP交ON于点D,∵∠ADB是△AOD的外角,∴∠ADB=∠PAO+∠AOD,∵∠AP B是△PDB的外角,∴∠APB=∠PDB+∠PBO,∴∠APB=∠MON+∠PAO+∠PBO;(2)设∠MON=2m°,∠APB=2n°,∵OC平分∠MON,∴∠AOC=∠MON=m°,∵PQ平分∠APB,∴∠APQ=∠APB=n°,分两种情况:第一种情况:如图3,∵∠OQP=∠MOC+∠PAO+∠APQ,即∠OQP=m°+x°+n°①∵∠OQP+∠CON+∠OBP+∠BPQ=360°,∴∠OQP=360°﹣∠CON﹣∠OBP﹣∠BPQ,即∠OQP=360°﹣m°﹣y°﹣n°②,①+②得2∠OQP=360°+x°﹣y°,∴∠OQP=180°+x°﹣y°;第二种情况:如图4,∵∠OQP+∠APQ=∠MOC+∠PAO,即∠OQP+n°=m°+x°,∴2∠OQP+2n°=2m°+2x°①,∵∠APB=∠MON+∠PAO+∠PBO,∴2n°=2m°+x°+y°②,①﹣②得2∠OQP=x°﹣y°,∴∠OQP=x°﹣y°,综上所述,∠OQP=180°+x°﹣y°或∠OQP=x°﹣y°.。
常州市七年级下学期期末数学试题题及答案
原正方形的边长为 .
故选: .
【点睛】
此题考查了完全平方公式,找到等量关系列方程为解题关键.
5.A
解析:A
【分析】
将已知等式代入22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2可得.
【详解】
解:∵4m=a,8n=b,
∴22m+6n=22m×26n
=(22)m•(23)2n
22.如图,在方格纸内将△ABC经过一次平移得到 ,图中标出了点B的对应点 .
(1)在给定的方格纸中画出平移后的 ;
(2)画出BC边上的高AE;
(3)如果P点在格点上,且满足S△PAB=S△ABC(点P与点C不重合),满足这样条件的P点有个.
23.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.
28.已知有理数 满足: ,且 ,求 的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
ቤተ መጻሕፍቲ ባይዱ【解析】
【分析】
直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案.
【详解】
解:A、(ab2)2=a2b4,故此选项正确;
B、a2+a2=2a2,故此选项错误;
(1)求 两组工人各有多少人?
(2)由于疫情加重, 两组工人均提高了工作效率,一名 组工人和一名 组工人每小时共可生产口罩 只,若 两组工人每小时至少加工 只口罩,那么 组工人每人每小时至少加工多少只口罩?
27.计算
(1)(-a3)2·(-a2)3
(2)(2x 3y)2 (y+3x)(3x y)