信号与系统-习题1
信号与系统课后习题参考答案
1试分别指出以下波形是属于哪种信号?题图1-11-2 试写出题1-1 图中信号的函数表达式。
1-3 已知信号x1(t)与x2(t)波形如题图1-3 中所示,试作出下列各信号的波形图,并加以标注。
题图1-3⑴x1(t2)⑵ x1(1 t)⑶ x1(2t 2)⑷ x2(t 3)⑸ x2(t 2) ⑹x2(1 2t)2⑺x1(t) x2( t)⑻x1(1 t)x2(t 1)⑼x1(2 t) x2(t 4)21- 4 已知信号x1(n)与x2 (n)波形如题图1-4中所示,试作出下列各信号的波形图,并加以标注。
题图1-4⑴x1(2n 1) ⑵ x1(4 n)⑶ x1(n)2⑷ x2 (2 n)⑸ x2(n 2) ⑹ x2(n 2) x2( n 1)⑺x1(n 2) x2(1 2n)⑻x1(1 n) x2(n 4)⑼ x1(n 1) x2(n 3)1- 5 已知信号x(5 2t )的波形如题图1-5 所示,试作出信号x(t)的波形图,并加以标注。
题图1-51- 6 试画出下列信号的波形图:1⑴ x(t) sin( t) sin(8 t)⑵ x(t) [1 sin( t )] sin(8 t)21⑶x(t) [1 sin( t)] sin(8 t)⑷ x(t) sin( 2t )1-7 试画出下列信号的波形图:⑴ x(t)1 e t u(t) ⑵ x(t) e t cos10 t[u(t 1) u(t 2)]⑶ x(t)(2 e t)u(t)⑷ x(t) e (t 1)u(t)⑸ x(t)u(t22 9) ⑹ x(t)(t2 4)1-8 试求出以下复变函数的模与幅角,并画出模与幅角的波形图1j2 ⑴ X (j ) (1 e j2)⑵ X( j1 e j4⑶ X (j ) 11 ee j ⑷ X( j )试作出下列波形的奇分量、偶分量和非零区间上的平均分量与交流分量。
题图 1-10形图。
题图 1-141-15 已知系统的信号流图如下,试写出各自系统的输入输出方程。
信号与系统第1-3章习题
卷积 y(t) u (t 2) et u( t 1) 等于________________。 信号 x(n) cos(3 n / 5) 2sin(2 n / 3) 的基波周期为_______________。
sin 2t 2 ( t )dt _________。 t
(1) 确定该系统的单位冲激响应; (2) 画出系统方框图。 56、已知信号 f (t ) t[u(t) u(t 2)] ,试确定该信号的奇分量和偶分量。 57、已知系统的冲激响应 h(t ) u(t 1) u(t 2) ,激励 f(t ) u(t 1) u(t 2) ,求系统的零 状态响应 y(t)。 58、已知 f 1 2t 的波形如题图 58 所示,画出 f t 的波形,并写出 f t 的表达式。
d x1 (t ) 作 dt
6
54、什么叫稳定系统?一个因果稳定的离散时间 LTI 系统应满足什么条件? 55、考虑一因果的 LTI 系统,y(t)为系统输出,x(t)为系统输入,其微分方程为:
d 2 y (t ) dy (t ) 3dx(t ) 4 3 y (t) x(t ) 2 dt dt dt
j / 4
的直角坐标式为_____________________。
信号 x(t ) 2 cos(10t 1) sin( 4t 1) 的基波周期为_____________________。
4
25、 26、 27、
t
e ( )d _________。
(2t ) __________________。
B
1
-4 -3 -2 -1 0
t
信号与系统考研练习题
信号与系统考研练习题第一章习题1—1 画出下列各函数的波形图。
(1)(2)(3)(4)1—2 写出图1各波形的数学表达式图1(1) (2)(3) 全波余弦整流(4) 函数1—3 求下列函数的值。
(1)(2)(3)(4)(5)1—4 已知,求,。
1—5 设,分别是连续信号的偶分量和奇分量,试证明1—6 若记,分别是因果信号的奇分量和偶分量,试证明,1—7 已知信号的波形如图2所示,试画出下列函数的波形。
(1)(2)图 21—8 以知的波形如图3所示,试画出的波形.图31—9 求下列各函数式的卷积积分。
(1),(2),1—10 已知试画出的波形并求。
1—11 给定某线性非时变连续系统,有非零初始状态。
已知当激励为时,系统的响应为;若初始状态保持不变,激励为时,系统的响应则为。
试求当初始状态保持不变,而激励为时的系统响应。
1—12 设和分别为各系统的激励和响应,试根据下列的输入—输出关系,确定下列各系统是否具有线性和时不变的性质。
⑴⑵(3)(4)第一章习题答案1-1 (1)(2)(3)(4)1-2(1)、(2)、或或(3)(4) =1-3(1)(2)(3)(4)(5)01-4 ,1-7 (1)(2)1-81-9(1)(2)1-101-111-12 (1)非线性、时不变系统。
(2)线性、时变系统。
(3)线性、时不变系统。
(4)线性、时变系统。
第二章习题2—1 已知给定系统的齐次方程是,分别对以下几种初始状态求解系统的零输入响应。
1),2),3),2—2 已知系统的微分方程是当激励信号时,系统的全响应是,试确定系统的零输入响应、零状态响应、自由响应和强迫响应。
2—3 已知系统的微分方程是该系统的初始状态为零。
1)若激励,求响应。
2)若在时再加入激励信号,使得时,,求系数。
2—4 如图1所示电路,已知,若以电流为输出,试求冲激响应和阶跃响应。
图12—5 某线性非时变系统的冲激响应如图2所示,试求当输入为下列函数时零状态响应,并画出波形图。
信号与系统复习题1
信号与系统复习题1 第一部分 选择题一、单项选择题 1. 积分ed t--∞⎰2τδττ()等于( )A .δ()tB .ε()tC .2ε()tD .δε()()t t +2.设:两信号f 1(t)和f 2(t)如图—2。
则:f 1(t)与f 2(t)间变换关系为( )。
(A)f 2(t)=f 1(21t+3) (B)f 2(t)=f 1(3+2t) (C)f 2(t)=f 1(5+2t)(D)f 2(t)=f 1(5+21t)3.已知:f(t)=SgN(t)的傅里叶变换为F(j ω)=ωj 2, 则:F 1(j ω)=j πSgN(ω)的傅里叶反变换f 1(t)为( )。
(A)f 1(t)=t1(B)f 1(t)=-t 2(C)f 1(t)=-t1(D)f 1(t)=t 24.周期性非正弦连续时间信号的频谱,其特点为( )。
(A)频谱是连续的,收敛的(B)频谱是离散的,谐波的,周期的(C)频谱是离散的,谐波的,收敛的 (D)频谱是连续的,周期的5. 已知信号f t ()如图所示,则其傅里叶变换为( )A.j Sa ωτωτ2244() B.-j Sa ωτωτ2244() C.j Sa ωτωτ2242() D.-j Sa ωτωτ2242() 6. 已知 [()](),f t F j =ω则信号f t ()25-的傅里叶变换为( ) A.1225F j e j ()ωω- B.F j e j ()ωω25-C.F j e j ()ωω252-D.12252F j e j ()ωω-7. 已知信号f t ()的傅里叶变换F j ()()(),ωεωωεωω=+--00则f t ()为( ) A.ωπω00Sa t () B.ωπω002Sa t () C.200ωωSa t ()D.2200ωωSa t()8. 已知一线性时不变系统,当输入x t ee t tt ()()()=+--3ε时,其零状态响应是y t e e t t t ()()()=---224ε,则该系统的频率响应为( )A.-+++321412()j j ωω B.321412()j j ωω+++ C.321412()j j ωω+-+ D.321412()-+++j j ωω 9. 信号f t e t t()()=-2ε的拉氏变换及收敛域为( )A.122s s ->,Re{} B.122s s +<-,Re{} C.122s s -<,Re{}D.122s s +>-,Re{} 10.信号f t t t ()sin ()()=--ωε022的拉氏变换为( ) A.s s e s2022+-ω B.s s e s222+ω C.ωω0222s e s + D.ωω0222s e s+- 11.题7图所示信号f(t)的傅里叶变换为( ) A.2Sa(ω)sin2ωB.4Sa(ω)sin2ωC.2Sa(ω)cos2ωD.4Sa(ω)cos2ω12.f(t)=e -(t-2))2t (-ε-e -(t-3)ε(t-3)的拉氏变换F(s)为( )A.1s e e s 3s 2+--- B.0C.1s e e s 3s 2----D.)1s )(1s (e e s 3s 2+----13.象函数F(s)=2]s (Re[2s 3s 12>+-)的原函数为( )A.(e -2t -e -t )ε(t)B.(e 2t -e t )ε(t)C.(e -t -e -2t )ε(t)D.(e t -e 2t )ε(t)14.若系统冲激响应为h(t),下列式中可能是系统函数H(s)的表达式为( ) A.1s 3s e 2st ++- B.2)1s (t +C.)1s (s 4e 2sT +- D.3e -2t ε(t-2)15.序列f 1(n)和f 2(n)的波形如题11图所示,设f(n)=f 1(n)*f 2(n),则f(2)等于( ) A.0 B.1 C.3D.516.序列f(n)=2-n ε(n-1)的单边Z 变换F(z)等于( )A.1z 2z 1--B.1z 21- C.1z 21+D.1z 2z - 第二部分 非选择题二、填空题17.f t t ()()-*=τδ 。
信号与系统练习题
第一章绪论1、选择题1.1、f (5-2t )是如下运算的结果 CA 、 f (-2t )右移5B 、 f (-2t )左移5C 、 f (-2t )右移25D 、 f (-2t )左移25 1.2、f (t 0-a t )是如下运算的结果 C 。
A 、f (-a t )右移t 0;B 、f (-a t )左移t 0 ;C 、f (-a t )右移a t 0;D 、f (-a t )左移at 0 1.3、已知 系统的激励e(t)与响应r(t)的关系为:)()()(t u t e t r = 则该系统为 B 。
A 、线性时不变系统;B 、线性时变系统;C 、非线性时不变系统;D 、非线性时变系统 1.4、已知 系统的激励e(t)与响应r(t)的关系为:)()(2t e t r = 则该系统为 C 。
A 、线性时不变系统 B 、线性时变系统 C 、非线性时不变系统 D 、非线性时变系统 1.5、已知 系统的激励e(t)与响应r(t)的关系为:)1()(t e t r -= 则该系统为 B 。
A 、线性时不变系统B 、线性时变系统C 、非线性时不变系统D 、非线性时变系统1.6、已知 系统的激励e(t)与响应r(t)的关系为:)2()(t e t r = 则该系统为 B A 、线性时不变系统 B 、线性时变系统 C 、非线性时不变系统 D 、非线性时变系统 1.7.信号)34cos(3)(π+=t t x 的周期为 C 。
A 、π2 B 、π C 、2π D 、π21.8、信号)30cos()10cos(2)(t t t f -=的周期为: B 。
A 、15π B 、5π C 、π D 、10π1.9、dt t t )2(2cos 33+⎰-δπ等于 B 。
A.0 B.-1 C.2 D.-21.10、 若)(t x 是己录制声音的磁带,则下列表述错误的是: BA. )(t x -表示将此磁带倒转播放产生的信号B. )2(t x 表示将此磁带放音速度降低一半播放C. )(0t t x -表示将此磁带延迟0t 时间播放D. )(2t x 表示将磁带的音量放大一倍播放 1.11.=⋅)]([cos t u t dtdA A .)()(sin t t u t δ+⋅- B. t sin - C. )(t δ D.t cos1.12.信号t t t x o 2cos 4)304cos(3)(++=的周期为 B 。
信号与系统第一章习题及作业(1,2)
(2)(余弦序列是否为周期信号,取决于2л/Ω0是正整 (余弦序列是否为周期信号,取决于 Ω 有理数还是无理数。) 数、有理数还是无理数。) 因此, 因此, 2л/Ω0=2л·7/8л=7/4=N/m Ω =2л·7/8л 所以基波周期为N=7; 所以基波周期为N=7; N=7
因为2л/Ω =16л 为无理数, (4) 因为 Ω0=16л,为无理数,则此信号不是周期 信号. 信号. (5) 因为周期信号在[-∞,+∞]的区间上,而本题的重 因为周期信号在[ ∞,+∞]的区间上, 的区间上 复区间是[0, +∞],则此信号为非周期信号 则此信号为非周期信号, 复区间是[0, +∞],则此信号为非周期信号,
f(n) 1 0 3 6 … n
9、判断是否为线性系统?为什么? 、判断是否为线性系统?为什么?
( 3) ( 5) (7 )
y( t ) = ln y( t 0 ) + 3t 2 f ( t ) y( t ) = y( t 0 ) + f 2 ( t ) y( t ) = sin t ⋅ f ( t )
8、一个连续时间系统的输入-输出关系为 、一个连续时间系统的输入 输出关系为
1 t+T y ( t ) = T [ f ( t ) ] = ∫ T2 f (τ )d τ T t− 2 试确定系统是否为线性的?非时变的?因果的? 试确定系统是否为线性的?非时变的?因果的?
解:积分系统是线性的,因此系统是线性系统。 积分系统是线性的,因此系统是线性系统。
sin ω 0 tε ( t )
sin ω 0 ( t − t 0 )ε ( t )tt0 Nhomakorabeat
sin ω 0 tε ( t − t 0 )
信号与系统理论及应用 习题 - 第1章 -作业参考答案
1
t
1.5 写出如题图所示信号的解析表达式。
X1(t) E
0
(1)
2
t
X2(t) 1 0 -1
(2)
1
2
t
X3(t)
0
2T
4T
6T
8T
t
(3)
X4(n)
1
(4)
-2
-1
0
1
2
n
(1) x1 (t )
E (t 2)[u(t ) u(t 2)] 2
(2) x2 (t ) [u(t ) u(t 1)] [u(t 1) u(t 2)] (3) x3 (t ) e sin
t o
1 (t ) 2
(6) (9)
d t d [e (t )] (t ) '(t ) dt dt
0
et sin t (t 1)dt 0
(11)
1
1
(t 2 4)dt 0
1.7 已知 x(t)的波形如题图所示, 试画出 x(3-2t)、 x(3-t) 、 x(2t)、 x(t/2)的波形图。
1.14 请求出下面两个信号的 Nyquist 频率(即信号的最高频率)。
1. x1 (t ) cos(500 2 t ) sin(400 2 t ) 2. x2 (t ) cos(600 2 t ) sin(300 2 t ) 答:1. cos sin
答:
x(3-t) 1
0 -1
1
2
3
t
x(2t) 1
1
x(t/2)
0 -1
1
2
信号与系统(第5版) 配套习题及答案详解
《信号与系统》(第5版)习题解答目录第1章习题解析 (2)第2章习题解析 (6)第3章习题解析 (16)第4章习题解析 (24)第5章习题解析 (32)第6章习题解析............................................................................ 错误!未定义书签。
第7章习题解析 (50)第1章习题解析1-1 题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解 (a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。
1-2 给定题1-2图示信号f ( t ),试画出下列信号的波形。
[提示:f ( 2t )表示将f ( t )波形压缩,f (2t )表示将f ( t )波形展宽。
] (a) 2 f ( t - 2 )(b) f ( 2t )(c) f ( 2t ) (d) f ( -t +1 )题1-2图解 以上各函数的波形如图p1-2所示。
图p1-21-3 如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。
题1-3图解 各系统响应与输入的关系可分别表示为)()(t i R t u R R ⋅= t ti L t u L L d )(d )(= ⎰∞-=t C C i Ct u ττd )(1)(1-4 如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。
S R S L S C题1-4图解 系统为反馈联接形式。
设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+=且)()(,d )()(t y t x t t x t y '==⎰故有 )()()(t ay t f t y -='即)()()(t f t ay t y =+'1-5 已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解 设T 为系统的运算子,则可以表示为)()]([)(t f t f T t y ==不失一般性,设f ( t ) = f 1( t ) + f 2( t ),则)()()]([111t y t f t f T ==)()()]([222t y t f t f T ==故有)()()()]([21t y t f t f t f T =+=显然)()()()(2121t f t f t f t f +≠+即不满足可加性,故为非线性时不变系统。
信号与系统(应自炉)习题答案第1章 习题解重点
(222222j t k j t j t j k f t k e
e
e
e
f t π
π
π
πππ+++++==⨯==
∴原函数是周期函数,令1k =,则基波周期为2π。
1-2.
求信号( 14sin( 110cos(2--+=t t t f的基波周期。
解:cos(101 t +的基波周期为15
π,s i n (4
1-8.
用阶跃函数写出题图1-8所示各波形的函数表达式。
t
t
t
(a (
bc
题图1-8
解:(a)((((((3[31]2[11]f t t u t u t u t u t =++-+++-- (((3[13]t u t u t +-+---
(((((
(3 3(1 1(1 1(3 3f
t t u t t u t t u t t u t =+++--++-+-+--(b)([( (1]2[(1 (2]4(2 f t u t u t u t u t u t =--+---+-
1 t -的基波周期为
1
2
π二者的最小公倍数为π,故( 14sin( 110cos(2--+=t t t f的基波周期为π。
1-3.
设(3, 0<=tt f ,对以下每个信号确定其值一定为零的t值区间。
(1)(t f -1(2)((t f t f -+-21(3)((t f t f --21(4)(t f 3(5)(f
信号与系统-第1章例题
2 6
(6)(t 2t 3) (t 2)
3 2
4
(7)e4t (2 2t )
(8)e2t u(t ) (t 1)
[解 ]
(1) sin( t ) (t )dt sin( ) 2 / 2 4 4
1.5
1
f(2t)
1
f(2t+6)
1
t
1.5
4
t
例:判断下列关于信号波形变换的说法是否正确
(1) f (-t+1) 是将 f (-t) 左移一个时间单位而得 。 (2) f (-t+1) 是将 f (-t) 右移一个时间单位而得 。
错 对 对 错 错 对
(3) f (2t+1) 是将 f (t+1) 波形压缩0.5而得 。
[例题] 计算下列各式的值
(1) sin( t ) (t )dt 4
(2) e5t (t 1)dt
(3) e2t (t 8)dt
(4) e t (2 2t )dt
3
t (5) (t 3t ) ( 1)dt 2 3
(2)
3
0
e
2 t
k
(t 2k )dt
解:
1 2 (t 4 )sin( t )dt sin( t ) t 14 sin 4 2
3
0
e
2 t
k
2 t ( t 2 k ) dt e (t ) (t 2)dt 3 0
信号与系统练习题——第1-3章
信号与系统练习题(第1-3章)一、选择题1、下列信号的分类方法不正确的是(A )A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和非周期信号D 、连续信号和离散信号 2、下列离散序列中,哪个不是周期序列? (D ) A 、165()3cos()512f k k ππ=+ B 、2211()5cos()712f k k ππ=+C 、33()9sin()5f k k π= D 、433()7sin()45f k k π=+ 3、下列哪一个信号是周期性的?(C )。
A 、()3cos 2sin f t t t π=+;B 、()cos()()f t t t πε=;C 、()sin()76f k k ππ=+; D 、1()cos()53f k k π=+。
4、周期信号()sin6cos9f t t t =+的周期为(D )A 、πB 、2πC 、12π D 、23π 5、周期信号()sin3cos f t t t π=+的周期为(C )。
A 、πB 、2πC 、无周期D 、13π 6、以下序列中,周期为5的是(D )A. 3()cos()58f k k π=+ B. 3()sin()58f k k π=+ C.2()58()j k f k eπ+= D. 2()58()j k f k eππ+=7、下列说法正确的是(D )A 、两个周期信号()x t ,()y t 的和信号()()x t y t +一定是周期信号B 、两个周期信号()x t ,()y t 的周期分别为2()()x t y t +是周期信号C 、两个周期信号()x t ,()y t 的周期分别为2和π,则信号()()x t y t +是周期信号D 、两个周期信号()x t ,()y t 的周期分别为2和3,则信号()()x t y t +是周期信号 8、下列说法不正确的是(A )A 、两个连续周期信号的和一定是连续周期信号B 、两个离散周期信号的和一定是离散周期信号C 、连续信号()sin(),(,)f t t t ω=∈-∞+∞一定是周期信号D 、两个连续周期信号()x t ,()y t 的周期分别为2和3,则信号()()x t y t +是周期信号 9、(52)f t -是如下运算的结果(C )A 、(2)f t -右移5B 、(2)f t -左移5C 、(2)f t -右移25 D 、(2)f t -左移2510、将信号()f t 变换为(A )称为对信号()f t 的平移。
信号与系统练习题1
.一、单项选择题:14、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。
200 rad /s C 。
100 rad /s D 。
50 rad /sf如下图(a)所示,其反转右移的信号f1(t) 是()15、已知信号)(tf如下图所示,其表达式是()16、已知信号)(1tA、ε(t)+2ε(t-2)-ε(t-3)B、ε(t-1)+ε(t-2)-2ε(t-3)C、ε(t)+ε(t-2)-ε(t-3)D、ε(t-1)+ε(t-2)-ε(t-3)17、如图所示:f(t)为原始信号,f1(t)为变换信号,则f1(t)的表达式是()A、f(-t+1)B、f(t+1)C、f(-2t+1)D、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( )19。
信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ,则该系统是()>-系统的系统函数.已知2]Re[,651)(LTI 202s s s s s H +++= A 、因果不稳定系统 B 、非因果稳定系统C 、因果稳定系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数D 、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号23. 积分⎰∞∞-dt t t f )()(δ的结果为( )A )0(fB )(t f C.)()(t t f δ D.)()0(t f δ24. 卷积)()()(t t f t δδ**的结果为( )A.)(t δB.)2(t δC. )(t fD.)2(t f25. 零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差 2A 、1-eB 、3eC 、3-e D 、1 27.信号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在28.已知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae 2--+,则其2个特征根为( )A 。
信号与系统课后答案
与奇分量的波形,相应如图题 1.12 中所示。
1-13 已知信号 f(t)的偶分量 fe(t)的波形如图题 1-13(a)所示, 信号 f(t+1)×U(-t-1)的波形如图题 1-13(b) 所示。求 f(t)的奇分量 fo(t),并画出 fo(t)的波形。
解 因
f (t ) = f e (t ) + f 0 (t )
∫
t
−∞
δ (τ )dτ ,故根据现行系统的积分性有
y (t ) = ∫ h(τ (dτ = ∫ [δ (τ ) − δ (τ − 1) − δ (τ − 2) + δ (τ − 3)]dτ = u (t ) − u (t − 1) − u (t − 2) + u (t − 3)
1-2 已知各信号的波形如图题 1-2 所示,试写出它们各自的函数式。
解: f 1 (t ) = t[u (t ) − u (t − 1)] + u (t − 1)
f 2 (t ) = −(t − 1)[u (t ) − u(t − 1)]
f 3 (t ) = (t − 2)[u(t − 2) − u(t − 3)]
y 2 (t ) 的波形如图题 1.17(c)所示.
1-18 图题 1-18(a)所示为线性时不变系统,已知 h1(t)=δ(t)-δ(t-1), h2(t)=δ(t-2)-δ(t-3)。(1)求响 应 h(t); (2) 求当 f(t)=U(t)时的响应 y(t)(见图题 1-18(b))。
解(1) h(t ) = h1 (t ) − h2 (t ) = δ (t ) − δ (t − 1) − δ (t − 2) + δ (t − 3) (2) 因 f (t ) = u (t ) =
信号与系统习题集
信号与系统 习题1一、填空题1.离散信号()2()k f k k ε=,则该信号的单边Z 变换为 ① 。
2.信号()f t 的傅里叶变换为()F j ω,则(23)f t -的傅里叶变换为 ① 。
3.已知周期信号()cos(230)sin(4+60)f t t t =++,则其周期为 ① s ,基波频率为 ② rad/s 。
4、已知)(1t f 和)(2t f 的波形如下图所示,设)()()(21t f t f t f *=,则=-)1(f ① ,=)0(f ② 。
5、单边拉氏变换())4(22+=s s s F ,其反变换()=t f ① 。
6、一离散系统的传输算子为23)(22+++=E E EE E H ,则系统对应的差分方程为 ① ,单位脉冲响应为 ② 。
二、单项选择题1. 下列说法不正确的是______。
A. 每个物理系统的数学模型都不相同。
B. 同一物理系统在不同的条件下,可以得到不同形式的数学模型。
C. 不同的物理系统经过抽象和近似,有可能得到形式上完全相同的数学模型。
D. 对于较复杂的系统,同一系统模型可有多种不同的数学表现形式。
2. 周期信号f (t )的傅立叶级数中所含有的频率分量是______。
A. 余弦项的奇次谐波,无直流B. 正弦项的奇次谐波,无直流C. 余弦项的偶次谐波,直流D. 正弦项的偶次谐波,直流 3. 当周期矩形信号的脉冲宽度缩小一半时,以下说法正确的是_____。
A. 谱线间隔增加一倍B. 第一个过零点增加一倍C. 幅值不变D. 谱线变成连续的 4. 图3所示的变化过程,依据的是傅立叶变换的_____。
图3A. 时移性 B. 频移性 C. 尺度变换 D. 对称性 5. 对抽样信号进行恢复,需将信号通过_____。
A. 理想带通滤波器B. 理想电源滤波器C. 理想高通滤波器D. 理想低通滤波器 6. 连续周期信号的频谱有_____。
A. 连续性、周期性 B. 连续性、收敛性 C. 离散性、周期性 D. 离散性、收敛性7. 若对)(t f 进行理想取样,其奈奎斯特取样频率为s f ,对)231(-t f 进行取样,其奈奎斯特取样频率为_____。
信号与系统课后习题与解答第一章
1-1 分别判断图1-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?图1-1图1-2解 信号分类如下:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧--⎩⎨⎧--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21图1-1所示信号分别为 (a )连续信号(模拟信号); (b )连续(量化)信号; (c )离散信号,数字信号; (d )离散信号;(e )离散信号,数字信号; (f )离散信号,数字信号。
1-2 分别判断下列各函数式属于何种信号?(重复1-1题所示问) (1))sin(t e at ω-; (2)nT e -; (3))cos(πn ;(4)为任意值)(00)sin(ωωn ;(5)221⎪⎭⎫⎝⎛。
解由1-1题的分析可知: (1)连续信号; (2)离散信号;(3)离散信号,数字信号; (4)离散信号; (5)离散信号。
1-3 分别求下列各周期信号的周期T : (1))30t (cos )10t (cos -; (2)j10t e ;(3)2)]8t (5sin [;(4)[]为整数)(n )T nT t (u )nT t (u )1(0n n ∑∞=-----。
解 判断一个包含有多个不同频率分量的复合信号是否为一个周期信号,需要考察各分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若不存在,则该复合信号为非周期信号。
(1)对于分量cos (10t )其周期5T 1π=;对于分量cos (30t ),其周期15T 2π=。
由于5π为21T T 、的最小公倍数,所以此信号的周期5T π=。
(2)由欧拉公式)t (jsin )t (cos e t j ωωω+= 即)10t (jsin )10t (cos e j10t +=得周期5102T ππ==。
信号与系统(应自炉)习题答案第1章 习题解
第1章 习 题 解 答1-1.判断下列信号是否是周期性的,如果是周期性的,试确定其基波周期(1)()⎪⎭⎫⎝⎛+=43cos 2πt t f 解:对于()k Z ∈()222cos 32cos 322cos 333444f t k t k t k t f t ππππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=++=++=+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∴原函数是周期函数,令1k =,则基波周期为23π。
(2)()26sin ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=πt t f解:对于()k Z ∈()()22sin sin 66f t k t k t f t ππππ⎡⎤⎡⎤⎛⎫⎛⎫+=+-=-= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦∴原函数是周期函数,令1k =,则基波周期为π。
(3)()[]()t u t t f π2cos =解:设其存在周期,令周期为T()()()cos 2f t T t T u t T π+=++⎡⎤⎣⎦在0T ≠的情况下函数不为零的部分发生了平移,故()()f t T f t +≠∴原函数不是周期函数。
(4)())(42π+=t j et f解:对于()k Z ∈())()(())(()224442222j t k j t j t j k f t k eeeef t ππππππ+++++==⨯==∴原函数是周期函数,令1k =,则基波周期为2π。
1-2.求信号())14sin()110cos(2--+=t t t f 的基波周期。
解:cos(101)t +的基波周期为15π, s i n (41)t -的基波周期为12π二者的最小公倍数为π,故())14sin()110cos(2--+=t t t f 的基波周期为π。
1-3.设()3,0<=t t f , 对以下每个信号确定其值一定为零的t 值区间。
(1)()t f -1 (2)()()t f t f -+-21 (3))()(t f t f --21 (4)()t f 3 (5)()3tf解:(1)()t f -1为()f t 反折后向右平移一个单位得到,故当()2t >-时()10f t -=(2)()2f t -为()f t 反折后向右平移两个单位得到,故当()1t >-时()20f t -=。
信号与系统经典例题答案解析
习题三——P142
∫ ∫ 3.5(b)
a0
=
2 T
T 2
−
T 2
f ( t )dt
=A, bn
=
2 T
T
2 f ( t ) sin n Ω tdt = 0
−
T 2
∫ an
=
2 T
T 2
−
T 2
f (t)cos nΩtdt
=2
A
sin(nπ nπ
/ 2)
=
ASa( nπ ) 2
∑ f (t) = 1 A + ∞ ASa( nπ )cos(nΩt)
∫ = 2 1τdτ −2
=
2
⎡ ⎢⎣
1 2
τ
2 ⎤1 ⎥⎦ −2
=
−3
P52,例2-2
1
-2
0
1
-2
2.28(2) ( p2 + 2p + 1) y(t) = ( p + 1) f (t) y(0− ) = 1, y' (0− ) = 2, f (t ) = e−2tε (t )
解: A( p) = p2 + 2p + 1 = ( p + 1)2
F1( jω) = FT[ f '(t)]= 2−e−jω −e jω
= 2(1 − cosω ) = 4sin2(ω )
2
F(
jω )
=
F1( jω ) jω
+
πF1 (0)δ
(ω )
=
4 jω
sin 2
(ω 2
)
f(t) 1
t0= 1
y f (t) = 0
-1 0 1 t
信号与系统第一章习题
(2)
1 2,为时变系统
X
图解说明
xt
1
x t
经系统 1 2
O 1t
O
右移1
2t
x t 1 12 O1
第 17 页
3t
xt
xt 1
1
右移1 1
经系统
x t 1 1 2
O 1t
O 1 2t
O
2
4t
X
例1-7
第 18
页
系统的输入为x(t),输出为y(t),系统关系如下,判断系统是否
是因果系统。
X
例1-6
第 16
页
判断系统 yt x t 是否为线性时不变系统?
2
此系统的作用是展宽输入系统的信号,一切变换都是 对t而言
xt
经系统, t t 2
x t 2
时移, t t0
x t t0 2
(1)
xt 时移, t t0
xt t0
经系统, t t 2
x
t 2
t0
X
例1-5
第 14
页
判断方程 yt x2t 描述的系统是否为线性系统?
在检验一个系统的线性时,重要的是要牢记:系统必须 同时满足可加性和齐次性。
设x1t, x2t为两个输入信号
先经系统
x1t y1t x12 t
x2 t y2 t x22 t
再线性运算
ay1t by2t ax12t bx22t
2
1
O 1 2 3t
d f 6 2t
dt
1
(1) (1)
3
O 12
t
(2)
对信号的波形进行微分变换时, 应注意在函数的跳变点处会出 现冲激信号。
信号与系统第1章习题
人口数为上述三部分之和,即
y(k)=y(k-1)+(α-β)y(k-1)+f(k)
整理得
y(k)-(1+α-β)y(k-1)=f(k)
这是一个一阶差分方程。
63
第1章 信号与系统的基本概念
1.15 某经济开发区计划每年投入一定资金,设这批资金 在投入后第二年度的利润回报率为α%,第三年度开始年度的
号。因sint的周期T1=2π s, sin2t的周期T2=π s,且T1/T2=2为有 cosπt的周期T2=2 s, 且T1/T2=π/2 理数, 故f1(t)是周期信号,它的周期为2π s。 (2) 因sin2t的周期T1=π s, 为无理数, 故f2(t)是非周期信号。
(3) 因cost的周期为T1=2π s,
题解图 1.5-2
18
第1章 信号与系统的基本概念
(3) 由于x(2-t)=x[-(t-2)],故可将x(t)波形“翻转”后,再 右移2个单位,画出题(3)波形如题解图1.5-3中的f3(t)所示。
题解图 1.5-3
19
第1章 信号与系统的基本概念
(4) 按照“展缩-平移”方式,将x(t)波形“压缩”
34
第1章 信号与系统的基本概念
题解图 1.6-3
35
第1章 信号与系统的基本概念
(4) 先画出y(k)、y(-k)图形,然后进行相减运算,得到题 (4)序列图形如题解图1.6-4所示。
题解图 1.6-4
36
第1章 信号与系统的基本概念
(5) 和序列图形如题解图1.6-5所示。
题解图 1.6-5
第1章 信号与系统的基本概念
y(k)的一阶后向差分:
y(k)的迭分:
信号与系统练习题库
选择练习题一1.卷积积分)(*2t e t δ'-等于: ( D ) A. )(t δ' B.-2)(t δ' C. t e 2- D. -2t e 2-2.周期信号是( A )A.功率信号B.能量信号C.既是功率信号又是能量信号D. 二者均不是计算⎰∞∞-=-dt t t )6(sin 2πδ( D ) A .1 B .1/6C .1/8D .1/43. 不属于周期信号频谱特性的是( D ) A. 离散性 B. 谐波性 C. 收敛性 D. 连续性4.已知信号()t f 的波形如图所示,则 ()t f 的表达式( B ) A.()t t ε B.()()11--t t ε C.()1-t t ε D.()()112--t t ε 5.已知系统微分方程为dy t dty t f t ()()()+=2,若y f t t t (),()sin ()012+==ε,解得全响应为y t e t t ()sin()=+-︒-54242452,t ≥0。
全响应中24245sin()t -︒为( D ) A .零输入响应分量B .零状态响应分量C .自由响应分量D .稳态响应分量信号()f t 波形如下图a 所示,则图b 的表达式是( C )。
f(t)t024y(t)t682图a 图b(A )(4)f t - (B )(3)f t -+ (C )(4)f t -+ (D )(4)f t -6. 系统结构框图如图示,该系统的单位冲激响应h(t)满足的方程式为( C )A .dy t dt y t x t ()()()+= B .h t x t y t ()()()=- C .dh t dth t t ()()()+=δ D .h t t y t ()()()=-δ7.信号f t f t 12(),()波形如图所示,设f t f t f t ()()*()=12,则f()0为( B ) A .1 B .2 C .3D .48.若矩形脉冲信号的宽度加宽,则它的频谱带宽( B ) A .不变 B .变窄C .变宽D .与脉冲宽度无关9. 已知信号)(t f 的傅里叶变换)()()(00ωωεωωεω--+=j F 则)(t f 为( A )A.)(00t S a ωπωB. )2(00t S a ωπωC. )(200t S a ωωD. )2(200t S a ωω 9.()()()()t e t f t e t f t t εε4221,--==则()()=*t f t f 21( D )A . ()t e t ε2-B .()t e tε4-C .()()t e e t t ε4221--+ D .()()t e e t t ε4221---10. 已知一线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应是)()22()(4t e e t y t t ε---=,则该系统的频率响应为( A )A.)521524(2++-++ωωωωj j j j B. )521524(2+++++ωωωωj j j j C. )521524(++-++ωωωωj j j jD. )521524(+++++ωωωωj j j j11..已知信号f t ()如图所示,则其傅里叶变换为( C )A .τωττωτ2422Sa Sa ()()+ B .τωττωτSa Sa ()()422+C .τωττωτ242Sa Sa ()()+D .τωττωτSa Sa ()()42+12.已知f(t)↔F(j ω),则信号y(t)=f(t)δ(t-3)的频谱 Y(j ω)=( ) A.f(3)e -j 3ω B. F(j ω)e -j 3ω C. f(3) D. F(j ω)13..周期信号f(t)=-f(t 2T±),(T —周期),则其傅里叶级数展开式的结构特点是( A ) A.只有正弦项 B.只有余弦项 C.只含偶次谐波D.只含奇次谐波14.信号)}2()2({-+--t u t u dtd的傅立叶变换是( C ) A ω2sin 2j B )(2ωπδ C -2j ω2sin D15.f(t)的频宽是200Hz,那么f(-2t-6)的奈奎斯特频率为( C )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)t t)](23--t δttttn][)1(][2121nxnx n-+])1[(2-nxnn][nx]4[-nx]3[nx-]3[nxn]13[+nx1.27 解(a )()(t x t y =① 因为)2()2()0(x x y +-=,在0=t 的输出与前后时刻的输入都有关,所以系统是记忆的。
② 已知)2()2()(111t x t x t y -+-=,)2()2()(222t x t x t y -+-=。
当)()(012t t x t x -=时,)2()2()(01012t t x t t x t y --+--=,而)2()2()(010101t t x t t x t t y +-+--=-,所以:)()(012t t y t y -≠。
因而系统是时变的。
③已知)2()2()(111t x t x t y -+-=,)2()2()(222t x t x t y -+-=,)2()2()(333t x t x t y -+-=,当)()()(213t x t x t x +=时,)]2()2([)]2()2([)(21213t x t x t x t x t y -+-+-+-= 所以)()()(213t y t y t y +=,因而系统是可加的。
当)()(12t ax t x =时,)()2()2()(1112t ay t ax t ax t y =-+-=,因而系统是齐次的。
综合系统的可加性与齐次性,所以系统是线性的。
④因为)2()2()0(x x y +-=,在0=t 的输出与2=t 的输入也有关,所以系统是非因果的。
⑤若+∞<≤B t x )(,即输入有界,则:+∞<≤-+-≤-+-=B t x t x t x t x t y 2)2()2()2()2()(,即输出有界。
所以系统是稳定的。
(b ))()].3[cos()(t x t t y =①可见,在0t t =点的输出)(0t y 仅与t t =点的输入有关∴非记忆。
②已知)()]3[cos()(11t x t t y ⋅=,)()]3[cos()(22t x t t y ⋅=。
当)()(012t t x t x -=时,)()]3[cos()(012t t x t t y -⋅=,而)()33cos()(01001t t x t t t t y -⋅-=-, )()(012t t y t y -≠,因而系统是时变的。
③已知)]()3[cos()(11t x t t y ⋅=,)()]3[cos()(22t x t t y ⋅=,)()]3[cos()(33t x t t y ⋅=,当)()()(213t x t x t x +=时,)]()([)]3[cos()(213t x t x t t y +⋅=, 所以)()()(213t y t y t y +=,因而系统是可加的。
当)()(12t ax t x =时,)()]().3[cos()(12t ay t ax t t y ==,因而系统是齐次的。
综合系统的可加性与齐次性,所以系统是线性的。
④因为系统是非记忆的,所以系统是因果的。
⑤若+∞<≤B t x )(,即输入有界,则:∞<≤≤≤=B t x t x t t x t t y )()().3cos()().3cos()(,即输出有界,所以系统是稳定的。
(c )ττd x t y t⎰∞-=2)()(①0t t =Θ的输出)(0t y 与)2,(0t t -∞∈的输出有关,∴系统是记忆的。
②当输入)()(01t t x t x -=时,输出ττd t x t y t⎰∞--=201)()(,令s t =-0τ,则0t s +=τ,那么)()()()(022100t t y x ds s x t y t t t t -≠==⎰⎰-∞--∞-τ,因而系统是时变的。
③已知ττd x t y t )()(211⎰∞-=,ττd x t y t )()(222⎰∞-=。
令)()()(213t x t x t x +=,则)()()]()([)(212213t y t y d x x t y t +=+=⎰∞-τττ,因而系统是可加的。
当)()(1t ax t x =时,)()()()(2211t ay d ax d x t y tt===⎰⎰∞-∞-ττττ,因而系统是齐次的。
综合系统的可加性与齐次性,所以系统是线性的。
④ττd x y ⎰∞-=10)()5(Θ,即5=t 时的输出)5(y 与)10,(-∞=t 间的输入都有关∴系统是非因果的。
⑤若+∞<=B t x )(,即输入有界,则:∞==≤=⎰⎰⎰∞-∞-∞-tttd B d x d x t y 222)()()(τττττ,所以系统是不稳定的。
(d )⎩⎨⎧≥-+<=0),2()(0,0)(t t x t x t t y ①)2()0()0(-+=x x y Θ,即)0(y 与2,0-==t t 的输入有关,∴系统是记忆系统。
②令)()(01t t x t x -=,则⎩⎨⎧≥--+-<=⎩⎨⎧≥-+<=0),2()(0,00),2()(0,0)(00111t t t x t t x t t t x t x t t y而⎩⎨⎧≥--+-<=⎩⎨⎧≥---+-<-=-000000000),2()(,00),2()(0,0)(t t t t x t t x t t t t t t x t t x t t t t y)()(01t t y t y -≠∴,系统是时变的。
③令)()(1t ax t x =,则)(0),2()(0,0)(1t ay t t ax t ax t t y =⎩⎨⎧≥-+<=,所以,系统是齐次的。
已知⎩⎨⎧≥-+<=0),2()(0,0)(111t t x t x t t y ,⎩⎨⎧≥-+<=0),2()(0,0)(222t t x t x t t y 当)()()(213t x t x t x +=时,)()(0),2()(0,00),2()(0,00),2()2()()(0,00),2()(0,0)(2122112121333t y t y t t x t x t t t x t x t t t x t x t x t x t t t x t x t t y +=⎩⎨⎧≥-+<+⎩⎨⎧≥-+<=⎩⎨⎧≥-+-++<=⎩⎨⎧≥-+<=综上,所以,系统是线性的。
④考察0t t =点,若00<t ,则0)(0=t y若00≥t ,则)2()()(000-+=t x t x t y ,满足因果的定义,所以系统是因果的。
⑤若∞<≤B t x )(,即输入有界,则:∞<≤⎩⎨⎧≥+<=B t t x t x t t y 20,)2()(0,0)(,有界,所以系统是稳定的。
(e )⎩⎨⎧≥-+<=0)(),2()(0)(,0)(t x t x t x t x t y ①考察0t t =点,若0)(0≥t x ,则)2()()(00-+=t x t x t y即0t t =点的输出)(0t y 与2,00-==t t t t 点的输入有关,所以,系统是记忆的。
②令)()(01t t x t x -=,则)(0)(),2()(0)(,00)(),2()(0)(,0)(0000011111t t y t t x t t x t t x t t x t x t x t x t x t y -=⎩⎨⎧≥---+-<-=⎩⎨⎧≥-+<=因此,系统是时不变的。
③已知⎩⎨⎧≥-+<=0)(),2()(0)(,0)(11111t x t x t x t x t y ,⎩⎨⎧≥-+<=0)(),2()(0)(,0)(22222t x t x t x t x t y 令)()()(213t x t x t x +=,则:⎩⎨⎧≥+-+-++<+=⎩⎨⎧≥-+<=0)()(),2()2()()(0)()(,00)(),2()(0)(,0)(2121212133333t x t x t x t x t x t x t x t x t x t x t x t t x t y 而⎪⎪⎩⎪⎪⎨⎧≥≥≥+-++-+≥<-+<≥-+<<<++=+0)(&0)(&0)()(),2()()2()(0)(&0)(),2()(0)(&0)(),2()(0)(&0)(&0)()(,00)()(2121221121222111212121t x t x t x t x t x t x t x t x t x t x t x t x t x t x t x t x t x t x t x t x t y t y所以,)()()(213t y t y t y +≠∴系统是非线性的。
④考察0t t =点,若0)(0<t x ,则0)(0=t y若0)(0≥t x ,则)2()()(000-+=t x t x t y ,满足因果的定义,所以系统是因果的⑤若∞<≤B t x )(,则:∞<≤⎩⎨⎧≥+<=B t x t x t x t x t y 20)(,)2()(0)(,0)(,有界,所以系统是稳定的。
(f ))3/()(t x t y =①()3/1)1(x y =Θ,即1=t 时的输出与3/1=t 时的输入有关,∴系统是记忆的。
②令)()(01t t x t x -=,则)3/()3/()(011t t x t x t y -==而)()3/3/(]3/)[()(1000t y t t x t t x t t y ≠-=-=-,所以,系统是时变的。
③已知)3/()(11t x t y =,)3/()(22t x t y =,令)()()(213t x t x t x +=,则:)()()3/()3/()3/()(212133t y t y t x t x t x t y +=+==,因而系统是可加的。
当)()(1t ax t x =时,)()3/()3/()(11t ay t ax t x t y ===,所以系统是齐次的。
综上,系统是线性的。
④)31()1(-=-x y Θ,即1-=t 时的输出与3/1-=t 时的输入有关,∴系统是非因果的。
⑤若∞<≤B t x )(,则:则∞<≤=B x t y )3/1()(,所以系统稳定。
(g )dt t dx t y )()(=①∆-∆+==→∆=)()(|)()()(0000lim 0t x t x t d t dx t y t t Θ,即0t t =时的输出与∆+=00,t t t 的输入有关,所以系统是记忆的。