山东省济宁市2019-2020学年中考数学第二次调研试卷含解析
2019年山东省济宁市中考数学试卷和答案解析
2019年山东省济宁市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求1.(3分)(2019•济宁)下列四个实数中,最小的是( ) A .2-B .5-C .1D .42.(3分)(2019•济宁)如图,直线a ,b 被直线c ,d 所截,若12∠=∠,3125∠=︒,则4∠的度数是( )A .65︒B .60︒C .55︒D .75︒3.(3分)(2019•济宁)下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .4.(3分)(2019•济宁)以下调查中,适宜全面调查的是( ) A .调查某批次汽车的抗撞击能力 B .调查某班学生的身高情况 C .调查春节联欢晚会的收视率 D .调查济宁市居民日平均用水量5.(3分)(2019•济宁)下列计算正确的是( ) A 2(3)3-=-B 3355-C 366=±D .0.360.6-=-6.(3分)(2019•济宁)世界文化遗产“三孔”景区已经完成5G 基站布设,“孔夫子家”自此有了5G 网络.5G 网络峰值速率为4G 网络峰值速率的10倍,在峰值速率下传输500兆数据,5G 网络比4G 网络快45秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是( )A .5005004510x x -= B .5005004510x x -= C .500050045x x-= D .500500045x x-= 7.(3分)(2019•济宁)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是( )A .B .C .D .8.(3分)(2019•济宁)将抛物线265y x x =-+向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是( ) A .2(4)6y x =--B .2(1)3y x =--C .2(2)2y x =--D .2(4)2y x =--9.(3分)(2019•济宁)如图,点A 的坐标是(2,0)-,点B 的坐标是(0,6),C 为OB 的中点,将ABC ∆绕点B 逆时针旋转90︒后得到△A B C '''.若反比例函数ky x=的图象恰好经过A B '的中点D ,则k 的值是( )A .9B .12C .15D .1810.(3分)(2019•济宁)已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数⋯⋯依此类推,那么12100a a a ++⋯+的值是( ) A .7.5- B .7.5C .5.5D . 5.5-二、填空题:本大题共5小题,每小题3分,共15分。
山东省济宁市2019-2020学年中考数学二模试卷含解析
山东省济宁市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,水平的讲台上放置的圆柱体笔筒和正方体粉笔盒,其左视图是()A.B.C.D.2.7的相反数是()A.7B.-7C.77D.-773.如图,AB切⊙O于点B,OA=23,AB=3,弦BC∥OA,则劣弧BC的弧长为()A.33πB.32πC.πD.32π4.如图,扇形AOB中,OA=2,C为弧AB上的一点,连接AC,BC,如果四边形AOBC为菱形,则图中阴影部分的面积为()A.233π-B.2233π-C.433π-D.4233π-5.当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.A .B .C .D .7.若A(﹣4,y 1),B(﹣3,y 2),C(1,y 3)为二次函数y =x 2﹣4x+m 的图象上的三点,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 1<y 3<y 28.如图,在边长为4的正方形ABCD 中,E 、F 是AD 边上的两个动点,且AE=FD ,连接BE 、CF 、BD ,CF 与BD 交于点H ,连接DH ,下列结论正确的是( )①△ABG ∽△FDG ②HD 平分∠EHG ③AG ⊥BE ④S △HDG :S △HBG =tan ∠DAG ⑤线段DH 的最小值是25﹣2A .①②⑤B .①③④⑤C .①②④⑤D .①②③④9.二次函数2y ax bx c =++(a 、b 、c 是常数,且a≠0)的图象如图所示,下列结论错误的是( )A .4ac <b 2B .abc <0C .b+c >3aD .a <b10.二次函数2y ax bx c =++的图象如图所示,则反比例函数ay x=与一次函数y bx c =+在同一坐标系中的大致图象是( )A.B.C.D.11.△ABC在正方形网格中的位置如图所示,则cosB的值为( )A.5B.25C.12D.212.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若a﹣3有平方根,则实数a的取值范围是_____.14.在Rt△ABC中,∠A是直角,AB=2,AC=3,则BC的长为_____.15.分解因式:a3-12a2+36a=______.16.同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是.17.若a2+3=2b,则a3﹣2ab+3a=_____.18.计算:cos245°-tan30°sin60°=______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.求证:PD是⊙O的切线;求证:△ABD∽△DCP;当AB=5cm,AC=12cm时,求线段PC的长.20.(6分)如图,已知⊙O,请用尺规做⊙O的内接正四边形ABCD,(保留作图痕迹,不写做法)在Rt△ABC中,∠BAC=90°,AB=AC,点D在边BC上,连接AD,把△ABD绕点A逆时针旋转90°,点D落在点E处,如图①所示,则线段CE和线段BD的数量关系是,位置关系是.探究证明:在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断.拓展延伸:如图③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=2,其他条件不变,过点D作DF⊥AD交CE于点F,请直接写出线段CF长度的最大值.22.(8分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;如果△ABC是等边三角形,试求这个一元二次方程的根.23.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.24.(10分)(1)计算:(12)﹣3×[12﹣(12)3]﹣4cos30°12;(2)解方程:x(x﹣4)=2x﹣825.(10分)( 19﹣4sin31°+(2115﹣π)1﹣(﹣3)2(2)先化简,再求值:1﹣2222244x y x yx y x xy y--÷+++,其中x、y满足|x﹣2|+(2x﹣y﹣3)2=1.26.(12分)如图,已知函数kyx=(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E.若AC=32OD,求a、b的值;若BC∥AE,求BC的长.27.(12分)某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整.(1)按如下分数段整理、描述这两组数据:成绩x学生70≤x≤7475≤x≤7980≤x≤8485≤x≤8990≤x≤9495≤x≤100甲______ ______ ______ ______ ______ ______乙 1 1 4 2 1 1(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:学生极差平均数中位数众数方差甲______ 83.7 ______ 86 13.21乙24 83.7 82 ______ 46.21(3)若从甲、乙两人中选择一人参加知识竞赛,你会选______(填“甲”或“乙),理由为______.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据左视图是从物体的左面看得到的视图解答即可.【详解】解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其左视图是一个含虚线的长方形,故选C.【点睛】本题考查的是几何体的三视图,左视图是从物体的左面看得到的视图.2.B【解析】∵7+(﹣7)=0,∴7的相反数是﹣7.故选B.3.A【解析】试题分析:连接OB,OC,∵AB为圆O的切线,∴∠ABO=90°,在Rt△ABO中,OA=23,∠A=30°,∴OB=3,∠AOB=60°,∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧»BC长为6033ππ⨯=.故选A.考点: 1.切线的性质;2.含30度角的直角三角形;3.弧长的计算.4.D【解析】连接OC,过点A作AD⊥CD于点D,四边形AOBC是菱形可知OA=AC=2,再由OA=OC可知△AOC 是等边三角形,可得∠AOC=∠BOC=60°,故△ACO与△BOC为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OA•sin60°=2×32=3,因此可求得S阴影=S扇形AOB﹣2S△AOC=21202360π⨯﹣2×12×2×3=43π﹣23.故选D.点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键.5.D【解析】【详解】∵ab>0,∴a、b同号.当a>0,b>0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a<0,b<0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B图象符合要求.故选B.6.D分析:根据主视图和俯视图之间的关系可以得出答案.详解:∵主视图和俯视图的长要相等,∴只有D选项中的长和俯视图不相等,故选D.点睛:本题主要考查的就是三视图的画法,属于基础题型.三视图的画法为:主视图和俯视图的长要相等;主视图和左视图的高要相等;左视图和俯视图的宽要相等.7.B【解析】【分析】根据函数解析式的特点,其对称轴为x=2,A(﹣4,y1),B(﹣3,y2),C(1,y3)在对称轴左侧,图象开口向上,利用y随x的增大而减小,可判断y3<y2<y1.【详解】抛物线y=x2﹣4x+m的对称轴为x=2,当x<2时,y随着x的增大而减小,因为-4<-3<1<2,所以y3<y2<y1,故选B.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的增减性是解题的关键. 8.B【解析】【分析】首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可.【详解】解:∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°.∵在△ABE和△DCF中,AB=CD,∠BAD=∠ADC,AE=DF,∴△ABE≌△DCF,∴∠ABE=∠DCF.∵在△ADG和△CDG中,AD=CD,∠ADB=∠CDB,DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCF,∴∠ABE=∠DAG.∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正确,同理可证:△AGB≌△CGB.∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正确.∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故④正确.取AB的中点O,连接OD、OH.∵正方形的边长为4,∴AO=OH=12×4=1,由勾股定理得,224225+=由三角形的三边关系得,O、D、H三点共线时,DH最小,DH最小5.无法证明DH平分∠EHG,故②错误,故①③④⑤正确.故选B.【点睛】本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解直角三角形,解题的关键是掌握它们的性质进行解题.9.D【解析】【分析】根据二次函数的图象与性质逐一判断即可求出答案.由图象可知:△>0, ∴b 2﹣4ac >0, ∴b 2>4ac , 故A 正确; ∵抛物线开口向上, ∴a <0,∵抛物线与y 轴的负半轴, ∴c <0,∵抛物线对称轴为x=2ba<0, ∴b <0, ∴abc <0, 故B 正确;∵当x=1时,y=a+b+c >0, ∵4a <0, ∴a+b+c >4a , ∴b+c >3a , 故C 正确;∵当x=﹣1时,y=a ﹣b+c >0, ∴a ﹣b+c >c , ∴a ﹣b >0, ∴a >b , 故D 错误; 故选D .考点:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程、不等式之间的转换,根的判别式的熟练运用. 10.D 【解析】 【分析】根据抛物线和直线的关系分析. 【详解】 由抛物线图像可知,所以反比例函数应在二、四象限,一次函数过原点,应在二、四象限.考核知识点:反比例函数图象.11.A【解析】【详解】解:在直角△ABD中,BD=2,AD=4,则AB=22222425BD AD+=+=,则cosB=525BDAB==.故选A.12.C【解析】【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【详解】3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080元,故选C.【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.a≥1.【解析】【分析】根据题意,得30.a-≥解得: 3.a≥故答案为 3.a≥【点睛】考查平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根. 14.13【解析】【分析】根据勾股定理解答即可.【详解】∵在Rt△ABC中,∠A是直角,AB=2,AC=3,∴BC=22AB AC+=2223+=13,故答案为:13【点睛】此题考查勾股定理,关键是根据勾股定理解答.15.a(a-6)2【解析】【分析】原式提取a,再利用完全平方公式分解即可.【详解】原式=a(a2-12a+36)=a(a-6)2,故答案为a(a-6)2【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.16.14.【解析】试题分析:画树状图为:=14.故答案为14.考点:列表法与树状图法.17.1【解析】【分析】利用提公因式法将多项式分解为a(a2+3)-2ab,将a2+3=2b代入可求出其值.【详解】解:∵a2+3=2b,∴a3-2ab+3a=a(a2+3)-2ab=2ab-2ab=1,故答案为1.【点睛】本题考查了因式分解的应用,利用提公因式法将多项式分解是本题的关键.18.0【解析】【分析】直接利用特殊角的三角函数值代入进而得出答案.【详解】2cos45tan30sin60︒-︒︒=211222-=-=.故答案为0.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)证明见解析;(3)CP=16.9cm.【解析】【分析】(1)先判断出∠BAC=2∠BAD,进而判断出∠BOD=∠BAC=90°,得出PD⊥OD即可得出结论;(2)先判断出∠ADB=∠P,再判断出∠DCP=∠ABD,即可得出结论;(3)先求出BC,再判断出BD=CD,利用勾股定理求出BC=BD=2,最后用△ABD∽△DCP 得出比例式求解即可得出结论.【详解】(1)如图,连接OD,∵BC是⊙O的直径,∵AD平分∠BAC,∴∠BAC=2∠BAD,∵∠BOD=2∠BAD,∴∠BOD=∠BAC=90°,∵DP∥BC,∴∠ODP=∠BOD=90°,∴PD⊥OD,∵OD是⊙O半径,∴PD是⊙O的切线;(2)∵PD∥BC,∴∠ACB=∠P,∵∠ACB=∠ADB,∴∠ADB=∠P,∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,∴∠DCP=∠ABD,∴△ABD∽△DCP;(3)∵BC是⊙O的直径,∴∠BDC=∠BAC=90°,在Rt△ABC中,,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴BD=CD,在Rt△BCD中,BD2+CD2=BC2,∴BD=CD=2BC=2,∵△ABD∽△DCP,∴AB BDCD CP=,2CP=,【点睛】本题考查了切线的判定、相似三角形的判定与性质等,熟练掌握切线的判定方法、相似三角形的判定与性质定理是解题的关键.20.见解析【解析】【分析】根据内接正四边形的作图方法画出图,保留作图痕迹即可.【详解】任作一条直径,再作该直径的中垂线,顺次连接圆上的四点即可.【点睛】此题重点考察学生对圆内接正四边形作图的应用,掌握圆内接正四边形的作图方法是解题的关键.21.(1)CE=BD,CE⊥BD.(2)(1)中的结论仍然成立.理由见解析;(3)1 4 .【解析】分析:(1)线段AD绕点A逆时针旋转90°得到AE,根据旋转的性质得到AD=AE,∠BAD=∠CAE,得到△BAD≌△CAE,CE=BD,∠ACE=∠B,得到∠BCE=∠BCA+∠ACE=90°,于是有CE=BD,CE⊥BD.(2)证明的方法与(1)类似.(3)过A作AM⊥BC于M,EN⊥AM于N,根据旋转的性质得到∠DAE=90°,AD=AE,利用等角的余角相等得到∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,则NE=MA,由于∠ACB=45°,则AM=MC,所以MC=NE,易得四边形MCEN为矩形,得到∠DCF=90°,由此得到Rt△AMD∽Rt△DCF,得MD AMCF DC,设DC=x,MD=1-x,利用相似比可得到CF=-x2+1,再利用二次函数即可求得CF的最大值.详解:(1)①∵AB=AC,∠BAC=90°,∴线段AD绕点A逆时针旋转90°得到AE,∴AD=AE,∠BAD=∠CAE,∴CE=BD,∠ACE=∠B,∴∠BCE=∠BCA+∠ACE=90°,∴BD⊥CE;故答案为CE=BD,CE⊥BD.(2)(1)中的结论仍然成立.理由如下:如图,∵线段AD绕点A逆时针旋转90°得到AE,∴AE=AD,∠DAE=90°,∵AB=AC,∠BAC=90°∴∠CAE=∠BAD,∴△ACE≌△ABD,∴CE=BD,∠ACE=∠B,∴∠BCE=90°,即CE⊥BD,∴线段CE,BD之间的位置关系和数量关系分别为:CE=BD,CE⊥BD.(3)如图3,过A作AM⊥BC于M,EN⊥AM于N,∵线段AD绕点A逆时针旋转90°得到AE∴∠DAE=90°,AD=AE,∴∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,∴NE=AM,∴AM=MC,∴MC=NE,∵AM⊥BC,EN⊥AM,∴NE∥MC,∴四边形MCEN为平行四边形,∵∠AMC=90°,∴四边形MCEN为矩形,∴∠DCF=90°,∴Rt△AMD∽Rt△DCF,∴MD AM CF DC=,设DC=x,∵∠ACB=45°,,∴AM=CM=1,MD=1-x,∴11xCF x -=,∴CF=-x2+x=-(x-12)2+14,∴当x=12时有最大值,CF最大值为14.点睛:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等腰直角三角形的性质和三角形全等及相似的判定与性质.22.(1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.【解析】试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.试题解析:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;∴4b 2﹣4a 2+4c 2=0,∴a 2=b 2+c 2,∴△ABC 是直角三角形;(3)当△ABC 是等边三角形,∴(a+c )x 2+2bx+(a ﹣c )=0,可整理为:2ax 2+2ax=0,∴x 2+x=0,解得:x 1=0,x 2=﹣1.考点:一元二次方程的应用.23. (1) 60,90;(2)见解析;(3) 300人【解析】【分析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【详解】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:1560×360°=90°; 故答案为60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×15560=300(人), 则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.【点睛】【解析】【分析】(1)根据有理数的混合运算法则计算即可;(1)先移项,再提取公因式求解即可.【详解】解:(1)原式=8×(12﹣18)﹣=8×38﹣=3;(1)移项得:x (x ﹣4)﹣1(x ﹣4)=0,(x ﹣4)(x ﹣1)=0,x ﹣4=0,x ﹣1=0,x 1=4,x 1=1.【点睛】本题考查了有理数的混合运算与解一元二次方程,解题的关键是熟练的掌握有理数的混合运算法则与根据因式分解法解一元二次方程.25. (1)-7;(2)y x y -+ ,13-. 【解析】【分析】(1)原式第一项利用算术平方根定义计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用乘方的意义化简,计算即可得到结果;(2)原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算,约分得到最简结果,利用非负数的性质求出x 与y 的值,代入计算即可求出值.【详解】(1)原式=3−4×12+1−9=−7; (2)原式=1−2x y x y -+ ⋅()()()22x y x y x y ++-=1−2x y x y ++ =2x y x y x y +--+ =−y x y+; ∵|x−2|+(2x−y−3)2=1,∴2023x x y -=⎧⎨-=⎩,当x=2,y=1时,原式=−13. 故答案为(1)-7;(2)−y x y +;−13. 【点睛】本题考查了实数的运算、非负数的性质与分式的化简求值,解题的关键是熟练的掌握实数的运算、非负数的性质与分式的化简求值的运用.26.(1)a=34,b=2;(2)【解析】试题分析:(1)首先利用反比例函数图象上点的坐标性质得出k 的值,再得出A 、D 点坐标,进而求出a ,b 的值; (2)设A 点的坐标为:(m ,4m ),则C 点的坐标为:(m ,0),得出tan ∠ADF=42AF m DF m-=,tan ∠AEC=42AC m EC =,进而求出m 的值,即可得出答案.试题解析:(1)∵点B (2,2)在函数y=k x (x >0)的图象上, ∴k=4,则y=4x, ∵BD ⊥y 轴,∴D 点的坐标为:(0,2),OD=2,∵AC ⊥x 轴,AC=32OD ,∴AC=3,即A 点的纵坐标为:3, ∵点A 在y=4x 的图象上,∴A 点的坐标为:(43,3), ∵一次函数y=ax+b 的图象经过点A 、D , ∴43{32a b b +==, 解得:34a =,b=2; (2)设A 点的坐标为:(m ,4m ),则C 点的坐标为:(m ,0), ∵BD ∥CE ,且BC ∥DE ,∴四边形BCED 为平行四边形,∴CE=BD=2,∵BD ∥CE ,∴∠ADF=∠AEC ,∴在Rt △AFD 中,tan ∠ADF=42AF m DF m-=, 在Rt △ACE 中,tan ∠AEC=42AC m EC =, ∴42m m -=42m ,解得:m=1,∴C 点的坐标为:(1,0),则考点:反比例函数与一次函数的交点问题.27.(1)0,1,4,5,0,0;(2)14,84.5,1;(3)甲,理由见解析【解析】【分析】(1)根据折线统计图数字进行填表即可;(2)根据稽查,中位数,众数的计算方法,求得甲成绩的极差,中位数,乙成绩的极差,众数即可;(3)可分别从平均数、方差、极差三方面进行比较.【详解】(1)由图可知:甲的成绩为:75,84,89,82,86,1,86,83,85,86,∴70⩽x ⩽74无,共0个;75⩽x ⩽79之间有75,共1个;80⩽x ⩽84之间有84,82,1,83,共4个;85⩽x ⩽89之间有89,86,86,85,86,共5个;90⩽x ⩽94之间和95⩽x ⩽100无,共0个.故答案为0;1;4;5;0;0;(2)由图可知:甲的最高分为89分,最低分为75分,极差为89−75=14分;∵甲的成绩为从低到高排列为:75,1,82,83,84,85,86,86,86,89, ∴中位数为12(84+85)=84.5; ∵乙的成绩为从低到高排列为:72,76,1,1,1,83,87,89,91,96,1出现3次,乙成绩的众数为1.故答案为14;84.5;1;(3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小.或:乙,理由:在90≤x≤100的分数段中,乙的次数大于甲.(答案不唯一,理由须支撑推断结论)故答案为:甲,两人的平均数相同且甲的方差小于乙,说明甲成绩稳定.【点睛】此题考查折线统计图,统计表,平均数,中位数,众数,方差,极差,解题关键在于掌握运算法则以及会用这些知识来评价这组数据.。
山东省济宁市2019年中考数学试题(含答案解析)
济宁市二0一九年高中段学校招生考试数学试题注意事项:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页.第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,70分;共100分.考试时间为120分钟.2.答题前,考生务必先核对条形码上的姓名、准考证号和座号,然后用0.5毫米黑色签字笔将本人的姓名、准考证号和座号填写在答题卡相应位置.3.答第Ⅰ卷时,必须使用2B铅笔把答题卡上相应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.4.答第Ⅱ卷时,必须使用0.5毫米黑色签字笔在答题卡上书写.务必在题号所指示的答题区域内作答.5.填空题请直接将答案填写在答题卡上,解答题应写出文字说明、证明过程或演算步骤.6.考试结束后,将本试卷和答题卡一并交回.第I卷(选择题共30分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.16的倒数是A . 6B . 6-C .16D .16-2. 单项式39m x y 与24n x y 是同类项,则m n +的值是A .2B .3C .4D .5 3. 下列图形是中心对称图形的是4.某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是A .41.610-⨯B .51.610-⨯C .76.810-⨯D .56810-⨯5. 下列哪个几何体,它的主视图、俯视图、左视图都相同的是A B C D 6.21121x x --在实数范围内有意义,则x 满足的条件是 A .12x ≥ B .12x ≤ C .12x = D .12x ≠7. 计算()322323a a a a a -+-÷g 的结果为A .52a a -B .512a a-C .5aD .6a8. 将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是A.18B. 16C. 14D.129. 如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1.将Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为»BD,则图中阴影部分的面积是 A. 6π B. 3πC.122π-D. 1210. 如图,A ,B 是半径为1的⊙O 上两点,且OA ⊥OB . 点P 从A出发,在⊙O 上以每秒一个单位长度的速度匀速运动,回到点A 运动结束. 设运动时间为x ,弦BP 的长度为y ,那么下面图象中可能..表 示y 与x 的函数关系的是A. ① B .④ C.②或④ D. ①或(第9题) (第10题)③第Ⅱ卷(选择题共70分)二、填空题:本大题共5小题,每小题3分,共15分.11. 分解因式:22ma mab mb++=.212. 请写出一个过(1,1),且与x轴无交点的函数表达式: .13. 《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果,那乙得到甲所有钱的23么乙也共有钱48文.甲,乙二人原来各有多少钱?”设甲原有x文钱,乙原有y文钱,可列方程组为.14. 如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(a,b),则a与b的数量关系为.(第14题)15.如图,正六边形111111A B C D E F 的边长为1,它的6条对角线又围成一个正六边形222222A B C D E F ,如此继续下去,则六边形444444F E D C B A 的面积是 .三、解答题:本大题共7小题,共55分. 16.(6分)解方程: 211.22x x x=---17.(6分)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:(1)该班总人数是 ;(2)根据计算,请你补全两个统计图;(第15题)(第17题)(3)观察补全后的统计图,写出一条你发现的结论.18.(7分)某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y (个)与销售单价x (元)有如下关系:y =﹣x +60(30≤x ≤60).设这种双肩包每天的销售利润为w 元.(1)求w 与x 之间的函数关系式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?19.(8分)如图,已知⊙O 的直径AB =10,弦AC =8,D 是»BC的中点,过点D 作DE ⊥AC 交AC 的延长线于点E . (1)求证:DE 是⊙O 的切线; (2)求AE 的长.20.(8分)实验探究:(1)如图1,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平;再一次折叠纸片,使点 A 落在EF 上,并使折痕经过点B ,得到折痕BM ,(第19题)图1同时得到线段BN ,MN .请你观察图1,猜想∠MBN 的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN 剪下,如图2.折叠该纸片,探究MN 与BM 的数量关系.写出折叠方案,并结合方案证明你的结论.21.(9分)已知函数2(25)2y mx m x m =--+-的图象与x 轴有两个公共点.(1)求m 的取值范围,写出当m 取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C 1①当1n x ≤≤-时,y 的取值范围是13y n ≤≤-,求n 的值; ②函数C 2:22()y x h k =-+的图象由函数C 1的图象平移得到,其顶点P 落在以原点为圆心,半径为5的圆内或圆上.设函数C 1的图象顶点为M ,求点P 与点M 距图2(第20题)离最大时函数C2的解析式.22.(11分)定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P为△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线C:33y =()0x>上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M, 试说明点P是△MON 的自相似点;当点M的坐标是()3,3,点N的坐标是()3,0时,求点P的坐标;(第22题)(第22题)(2) 如图3,当点M 的坐标是()3,3,点N 的坐标是()2,0时,求△MON 的自相似点的坐标;(3) 是否存在点M 和点N ,使△MON 无自相似点,?若存在,请直接写出这两点的坐标;若不存在,请说明理由.数学试题参考答案及评分标准说明:解答题各小题只给出了一种解法及评分标准.其他解法,只要步骤合理,解答正确,均应给出相应的分数. 一、选择题 (每小题3分,共30分)11. 2()m a b +; 12. 1y x =(答案不唯一); 13. 148,2248.3x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩;14. 0a b +=; 15.18. 三、解答题(共55分) 16.解:方程两边乘(2)x -,得221x x =-+.………………………………2分解得1x =-.…………………………………4分检验:当1x =-时,20x -≠.…………………………………………5分所以原分式方程的解为1x=-. ………………………………………6分17.解:(1) 40 (1)分(2)(每填对一图得2分)(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.……………6分18.解:(1)()30=-⋅w x y()()=-⋅-+3060x x2901800=-+-x x所以w与x的函数关系式为:2901800=-+-(30≤x≤w x x60)…………2分(2)()2290180045225=-+-=--+. ………………………………3分w x x x∵﹣1<0,∴当x =45时,w 有最大值.w 最大值为225.………………………………4分答:销售单价定为45元时,每天销售利润最大,最大销售利润225元.……5分(3)当w =200时,可得方程()245225200x --+=.解得x 1=40,x 2=50.………………………………………………………6分∵50>48,∴x 2=50不符合题意,应舍去.答:该商店销售这种健身球每天想要获得200元的销售利润,销售单价应定为40元.……………………………………………………………7分19.证明:(1)连接OD,∵D 是»BC的中点,∴»»BD DC = ∴BOD BAE ∠=∠ ∴OD ∥AE ,∵DE ⊥AC ,∴90.ADE ∠=o ∴90.AED ∠=o ∴OD ⊥DE .∴DE 是⊙O 的切线.……………………………………………………………4分 (2)过点O 作OF ⊥AC 于点F ,∵10,AC = ∴1110 5.22AF CF AC ===⨯= ∵∠OFE=∠DEF=∠ODE=90°, ∴四边形OFED 是矩形,∴FE=OD=12AB .∵12AB =,∴FE=6 ∴AE=AF+FE=5+6=11.……………………………………………………… 8分 20. 解:(1)30MBN ∠=o ………………………………………………………… 1分证明:连接AN, ∵直线EF 是AB 的垂直平分线,点N 在EF 上,∴AN =BN .由折叠可知,BN=AB, ∴△ABN 是等边三角形. ∴60ABN ∠=o .∴1302NBM ABM ABN ∠=∠=∠=o .……………………………3分(2)1.2MN BM =………………………………………………………………… 4分折纸方案:如图,折叠三角形纸片BMN ,使点N 落在BM 上,并使折痕经过点M ,得到折痕MP,同时得到线段PO. …………………………………………………………… 6分 证明:由折叠知MOP MNP ≅V V ,∴1,30.2MN OM OMP NMP OMN B =∠=∠=∠==∠o 90.MOP MNP ∠=∠=o∴90.BOP MOP ∠=∠=o∵OP OP =,∴MOP BOP ≅V V∴MOP MNP ≅V V .∴1.2MO BO BM ==∴1.2MN BM = …………………………………………………………8分21. 解:(1)由题意可得:()()20,25420.m m m m ≠⎧⎪⎨---->⎡⎤⎪⎣⎦⎩解得:25,12m <且0,m ≠当2m =时,函数解析式为:22y x x =+.……………………… 3分(2)函数22y x x =+图象开口向上,对称轴为1,4x =-∴当14x <-时,y 随x 的增大而减小. ∵当1n x ≤≤-时,y 的取值范围是13y n ≤≤-, ∴ 223n n n +=-. ∴ 2n =-或0n =(舍去). ∴2n =-.……………………………………………………… 6分(3)∵221122,48y x x x ⎛⎫=+=+- ⎪⎝⎭∴图象顶点M 的坐标为11,48⎛⎫-- ⎪⎝⎭, 由图形可知当P 为射线MO 与圆的交点时,距离最大. ∵点P 在直线OM 上,由11(0,0),(,)48O M --可求得直线解析式为:1,2y x =,设P (a,b ),则有a=2b , 根据勾股定理可得()2222PO b b =+求得2,1a b ==.∴PM 最大时的函数解析式为()2221y x =-+.…………………………… 9分22.解:(1)在△ONP 和△OMN 中, ∵∠ONP=∠OMN ,∠NOP=∠MON∴△ONP ∽△OMN ∴点P 是△M0N 的自相似点.……………………………………………………… 2分 过点P 作PD ⊥x 轴于D 点.tan 3MNPOD ON∠== ∴60AON ∠=o . ∵ONP OMN ≅V V ,∴90MON ∠=o , ∴90OPN ∠=o . 在Rt △OPN 中,3cos 60OP ON ==o .313cos 602OD OP ==⨯=o .333sin 604PD OP ==⨯=o.∴33(,)44P .……………………… 4分图(2)①如图2,过点M 作MH ⊥x 轴于H 点, ∵ (3,3)M ,(2,0)N∴23OM =,直线OM 的表达式为3y x =.2ON = ∵1P 是△M0N 的自相似点,∴△1PON ∽△NOM 过点1P 作1PQ ⊥x 轴于Q 点, ∴111, 1.2PO PN OQ ON === ∵1P 的横坐标为1,∴331.33y =⨯= ∴131,P ⎛⎫ ⎪ ⎪⎝⎭. -------------------6分 如图3,△2P NM ∽△NOM , ∴2P N MNON MO=∴223P N = . ∵2P 的纵坐标为23, ∴23333x =∴2x =, ∴2232,3P ⎛⎫⎪ ⎪⎝⎭.综上所述,31,P ⎛⎫⎪ ⎪⎝⎭或图2,3⎛⎫ ⎪ ⎪⎝⎭.-------------------------------------------------------9分 (3)存在,M N .-------------------------------------------------------------11分。
【数学6份合集】济宁市2019-2020学年中考第二次大联考数学试卷
2020年数学中考模拟试卷一、选择题1.矩形、菱形、正方形都具有的性质是( )A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分对角2.在四张质地、大小相同的卡片上,分别画有如图所示的四个图形,在看不到图形的情况下从中任意抽出一张卡片,则抽出的卡片上的图形是中心对称图形的概率为()A.1 B.34C.12D.143.如图,平面直角坐标系中,在边长为1的菱形ABCD的边上有一动点P从点A出发沿A→B→C→D→A 匀速运动一周,则点P的纵坐标y与点P走过的路程S之间的函数关系用图象表示大致是( )A.B.C.D.4.若关于x的一元二次方程(a﹣1)x2﹣2x+1=0有实数根,则整数a的最大值为()A.0 B.﹣1 C.1 D.25.经党中央批准、国务院批复自2018年起,将每年秋分日设立为“中国农民丰收节”,据国家统计局数据显示,2018年某省夏季粮食总产量达到2389000吨,将数据“2389000”用科学记数法表示为()A.238.9×104B.2.389×106C.23.89×105D.2389×1036.如图,小明为了测量大楼AB的高度,他从点C出发,沿着斜坡面CD走52米到点D处,测得大楼顶部点A的仰角为37°,大楼底部点B的俯角为45°,已知斜坡CD的坡度为i=1:2.4.大楼AB的高度约为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A .32米B .35米C .36米D .40米7.下列图案均是用相同的小正方形按一定的规律拼成:拼第1个图案需1个小正方形,拼第2个图案3个小正方形,….,依此规律,拼第6个图案需小正方形( )个.A.15B.21C.24D.128.下列式子计算正确的是( ).A.B.C.D.9.如图,点A 是双曲线y=kx上一点,过A 作AB ∥x 轴,交直线y=-x 于点B ,点D 是x 轴上一点,连接BD 交双曲线于点C ,连接AD ,若BC :CD=3:2,△ABD 的面积为114,tan ∠ABD=95,则k 的值为( )A .-34B .-3C .-2D .3410.如果3y x =-+,且x y ≠,那么代数式22x y x y y x+--的值为( ) A .3 B .3-C .13D .13-二、填空题11.根据下表中的二次函数y =ax 2+bx+c 的自变量x 与函数的对应值y ,可判断二次函数的对称轴是直线_____.13.计算:2﹣1=_____.14.某实验中学九年级(1)班全体同学的综合素质评价“运动与健康”方面的等级统计如图所示,其中评价为“A”所在扇形的圆心角是__度.15.将数0.0000078用科学记数法表示为_____.16.关于x 的一元二次方程(m-1)x 2-2x-1=0有两个实数根,则实数m 的取值范围是______.17.已知直线m ∥n ,将一块直角三角板ABC (其中∠C =90°,∠BAC =30°)按如图所示方式放置,使A 、B 两点分别落在直线m 、n 上,若∠1=31°,则∠2的度数是_____.18.已知关于x 的方程212mx x -=有两个不相等的实数根,则m 的取值范围是_______. 19.利用标杆测量建筑物的高度的示意图如图所示,若标杆的高为米,测得米,米,则建筑物的高为__米.三、解答题20.某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m 名学生,并将其结果绘制成不完整的条形统计图和扇形统计图.结合以上信息解答下列问题: (1)m = .(2)请补全上面的条形统计图;(3)在图2中,乒乓球所对应扇形的圆心角= ;(4)已知该校共有2100名学生,请你估计该校约有多少名学生最喜爱足球活动. 21.如图所示,AB 是⊙O 的一条弦,OD ⊥AB ,垂足为C ,交⊙O 于点D ,点E 在⊙O 上. (1)若∠AOD=52°,求∠DEB 的度数; (2)若OC=3,OA=5,求AB 的长.22.已知关于x 的方程()2160x k x -+-=.()1求证:无论k 取任何实数,该方程总有两个不相等的实数根;()2若方程的一根为2,试求出k 的值和另一根.23.矩形ABCD 在坐标系中如图所示放置.已知点B,C 在x 轴上,点A 在第二象限,D(2,4),BC=6,反比例函数y=kx(x<0)的图象经过点A.(1)求k 值;(2)把矩形ABCD 向左平移,使点C 刚好与原点重合,此时线段AB 与反比例函数y=kx(x<0)的图象的交点坐标是什么?24.某商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯,如图,已知原阶梯式自动扶梯AB 的长为m ,坡角∠ABE =45°,改造后的斜坡自动扶梯坡角∠ACB =15°,求改造后的斜坡式自动扶梯AC 的长,(精确到0.1m ,参考数据;sin15°≈0.26,cos15°≈0.97,tan15°≈0,27)25.河南省开封市铁塔始建于公元1049年(北宋皇祐元年),是国家重点保护文物之一,在900多年中,历经了数次地震、大风、水患而巍然屹立,素有“天下第一塔”之称.如图,小明在铁塔一侧的水平面上一个台阶的底部A 处测得塔顶P 的仰角为45°,走到台阶顶部B 处,又测得塔顶P 的仰角为38.7°,已知台阶的总高度BC 为3米,总长度AC 为10米,试求铁塔的高度.(结果精确到1米,参考数据:sin38.7°≈0.63,cos38.7°≈0.78,tan38.7°≈0.80)26.如图是云梯升降车示意图,其点A位置固定,AC可伸缩且可绕点A转动,已知点A距离地面BD的高度AH为3.4米.当AC长度为9米,张角∠HAC为119°时,求云梯升降车最高点C距离地面的高度.(结果保留一位小数)参考数据:sin29°≈0.49,cos29°≈0.88,tan29°≈0.55【参考答案】***一、选择题1.B2.B3.A4.D5.B6.B7.B8.D9.C10.A二、填空题11.x=1.12.75°.13.5 214.108°.15.8×10﹣616.m≥0且m≠117.29°18.m>-1且m≠0;19.15三、解答题20.(1)150;(2)详见解析;(3)36°;(4)420(人)【解析】【分析】(1)根据条形图、扇形图得到数据,计算即可;(2)求出喜欢足球的人数,补全上面的条形统计图;(3)根据乒乓球对应的比例计算;(4)根据校最喜爱足球活动的人数所占的百分比计算.【详解】解:(1)由条形图可知,喜欢排球的人数是21人,由扇形统计图可知,喜欢排球的人数所占的百分比为14%,∴m=21÷14%=150(人),故答案为:150;(2)喜欢足球的人数:150﹣21﹣39﹣45﹣15=30(人)补全上面的条形统计图如图所示:(3)乒乓球所对应扇形的圆心角=360°×15150=36°,故答案为:36°;(4)该校最喜爱足球活动的人数:2100×20%=420(人).【点睛】本题考查的是条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.21.(1)26°;(2)8.【解析】试题分析:(1)根据垂径定理,得到AD DB=,再根据圆周角与圆心角的关系,得知∠E=12∠O,据此即可求出∠DEB的度数;(2)由垂径定理可知,AB=2AC,在Rt△AOC中,OC=3,OA=5,由勾股定理求AC即可得到AB的长.试题解析:(1)∵AB是⊙O的一条弦,OD⊥AB,∴AD DB=,∴∠DEB=12∠AOD=12×52°=26°;(2)∵AB是⊙O的一条弦,OD⊥AB,∴AC=BC,即AB=2AC,在Rt△AOC中,,则AB=2AC=8.考点:垂径定理;勾股定理;圆周角定理.22.(1)见解析;(2)k=-2,另一根为-3.【解析】分析:(1)代入数据求出b2-4ac的值,由b2-4ac≥24可证出结论;(2)将x=2代入到原方程中得到关于k 的一元一次方程,解方程可得出k 值,将k 值代入到原方程,解方程即可得出方程的另外一根. 详解:()1证明:()()2224[1]416(1)2424b ac k k -=-+-⨯⨯-=++≥,∴无论k 的取何实数,该方程总有两个不相等的实数根.()2解:将2x =代入方程()2160x k x -+-=中, ()222160k -+-=,即20k +=,解得:2k =-.∴原方程为:260x x +-=,即()()230x x -+=,解得:12x =,23x =-.故k 的值为2-,方程的另一根为3-. 23.(1)k=-16;(2)86,3⎛⎫- ⎪⎝⎭. 【解析】 【分析】(1)根据矩形的性质求出点A 的坐标,利用待定系数法求出k 值; (2)根据平移规律求出点B 的坐标,计算即可. 【详解】解:(1)∵点D 的坐标为(2,4),BC=6, ∴OB=4,AB=4,∴点A 的坐标为(-4,4), ∵反比例函数y=kx(x<0)的图象经过点A, ∴4=-4k , 解得k=-16.(2)把矩形ABCD 向左平移,使点C 刚好与原点重合, 则点B 的坐标为(-6,0), 当x=-6时,y=-16-6=83,∴此时线段AB 与反比例函数y=k x(x<0)图象的交点坐标是-6,83.【点睛】本题考查的是反比例函数图象上点的坐标特征、矩形的性质、坐标与图形的变化,掌握矩形的性质、待定系数法求函数解析式的步骤是解题的关键.24.改造后的斜坡式自动扶梯AC 的长度约为23.1米. 【解析】 【分析】先在Rt △ABD 中,用三角函数求出AD ,最后在Rt △ACD 中用三角函数即可得出结论. 【详解】解:如图,过点A 作AD ⊥CE 于点D ,在Rt △ABD 中,∠ABD =45°,AB =,∴AD=AB•sin45°=2=6(m).在Rt△ACD中,∠ACD=15°,sin∠ACD=AD AC,∴AC=AD6sin150.26︒=≈23.1(m),即:改造后的斜坡式自动扶梯AC的长度约为23.1米.【点睛】此题主要考查了解直角三角形的应用,锐角三角函数的应用,求出AD是解本题的关键.25.铁塔约高55米.【解析】【分析】如图,过点B作BE⊥DP于点E,由题可知,∠EBP=38.7°,∠DAF=45°,BE=CD,DP=AD,设铁塔高度DP为x米,则BE=CD=x+10,解直角三角形即可得到结论.【详解】如图,过点B作BE⊥DP于点E,由题可知,∠EBP=38.7°,∠DAF=45°,BE=CD,DP=AD,设铁塔高度DP为x米,则BE=CD=x+10,EP=DP﹣DE=AD﹣BC=x﹣3,在Rt△BEP中∵EP=x﹣3,BE=x+10,∴tan∠EBP=EPBE,x﹣3=(x+10)×tan38.7°,解得x=55,答:铁塔约高55米.【点睛】本题考查了解直角三角形的应用﹣仰角俯角问题,还考查的知识点有三角函数、直角三角形的性质以及勾股定理等,解题的关键是纷杂的实际问题中整理出直角三角形并解之.26.云梯升降车最高点C距离地面的高度为7.8m.【解析】【分析】作CE⊥BD于E,AF⊥CE于F,如图,易得四边形AHEF为矩形,则EF=AH=3.4m,∠HAF=90°,再计算出∠CAF=29°,则在Rt△ACF中利用正弦可计算出CF,然后计算CF+EF即可.【详解】作CE⊥BD于E,AF⊥CE于F,如图,易得四边形AHEF为矩形,∴EF=AH=3.4m,∠HAF=90°,∴∠CAF=∠CAH-∠HAF=119°-90°=29°,在Rt△ACF中,∵sin∠CAF=CF AC,∴CF=9sin29°=9×0.49=4.41,∴CE=CF+EF=4.41+3.4≈7.8(m),答:云梯升降车最高点C距离地面的高度为7.8m.【点睛】本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行计算.2020年数学中考模拟试卷一、选择题1.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,∠AOB=60°,AB=6,则AD=( )B.122.如图,是用一把直尺、含60°角的直角三角板和光盘摆放而成,点为60°角与直尺交点,点为光盘与直尺唯一交点,若,则光盘的直径是( ).A. B. C.6 D.33.甲、乙、丙三位同学围成一圈玩循环报数游戏,规定:①甲、乙、丙首次报出的数依次1,2.3.接着甲报4.乙报5******,按此规律,后一位同学报出的数比前一位同学报出的数大1,当报到的数是2019时,报数结束;②若报出的数为偶数,则报该数的同学需要拍手一次,在此过程中,丙同学拍手的次数是( ) A .334 B .335 C .336 D .3374.如图,在中,,分别是上两点,,点分别是的中点,则的长为( )A.10B.8C.D.205.如图,在Rt ABC ∆中,90ACB ∠=︒,3BC =,4AC =,AB 的垂直平分线DE 交BC 的延长线于点E ,则DE 的长为( )A .158B .103C .2512D .1256.下列运算中正确的是( ) A .235()a a =B .()()2212121x x x +-=-C .824a a a =D .22(3)69a a a -=-+7.如图,在△ABC 中,D ,E 分别在边AC 与AB 上,DE ∥BC ,BD 、CE 相交于点O ,13EO OC =,AE =1,则EB 的长为( )A .1B .2C .3D .48.如图,C 是以AB 为直径的半圆O 上一点,连结AC ,BC ,分别以AC ,BC 为边向外作正方形ACDE ,BCFG ,DE ,FG, AC,BC 的中点分别是M ,N ,P ,Q .若MP+NQ =14,AC+BC =20,则AB 的长是( )A .B .907C .13D .169.如图,在△ABC 中,AB ⊥AC ,AB=5cm ,BC=13cm ,BD 是AC 边上的中线,则△BAD 的面积是( )A.215cmB.230cmC.260cmD.265cm10.如图,四边形ABCD 是⊙O 的内接四边形,BE 平分∠ABC ,点A 是BE 的中点.若∠D =110°,则∠AEB 的度数是( )A .30°B .35°C .50D .55°二、填空题 11.长方体的主视图与俯视图如图所示,则这个长方体的体积是________.12.如图,在△ABC 中,AB =AC ,∠A =40º,点D 在AC 上,BD =BC ,则∠ABD 的度数为 .13.若在实数范围内有意义,则x 的取值范围是______.14.如图,在矩形ABCD 中,AB =4,BC =,对角线AC 、BD 相交于点O ,现将一个直角三角板OEF 的直角顶点与O 重合,再绕着O 点转动三角板,并过点D 作DH ⊥OF 于点H ,连接AH.在转动的过程中,AH 的最小值为_________.15.计算:_____; _____; =_____. 16.使式子11x-有意义的x 的取值范围是_____. 17.圆锥形冰淇淋的母线长是12cm ,侧面积是60πcm 2,则底面圆的半径长等于_____.18.已知扇形的弧长为4π,半径为8,则此扇形的面积为_____.19.在Rt △ABC 中,490,sin 5C A ︒∠==,则cosB 的值等于___. 三、解答题20.如图,△ABC 内接于⊙O ,∠B =60°,CD 是⊙O 的直径,点 P 是 CD 延长线上的一点,且 AP =AC .(1) 求证:PA 是⊙O 的切线;(2) 若 AB =BC =O 的半径.21.某人为了测量瞭美塔的高度,小张在山下与山脚B 在同一水平面的A 处测得塔尖点D 的仰角为45°,再沿AC 方向前进45米到达山脚点B ,测得塔尖点D 的仰角为60°,塔底点E 的仰角为30°,并画出了如图所示的示意图.请你根据相关数据求出塔ED ≈1.41,结果保留整数)22.已知锐角△ABC ,∠ABC =45°,AD ⊥BC 于D ,BE ⊥AC 于E ,交AD 于F .(1)求证:△BDF ≌△ADC ;(2)若BD =4,DC =3,求线段BE 的长度.23.我市中小学学生素养提升五项工程自启动以来,越来越受到教师、家长和学生的喜爱.为进一步了解学生对“规范书写”、“深度阅读”、“课堂演讲”、“阳光体艺”、“实验实践”的喜爱程度,某学生总数是1800人的九年一贯制学校,从每个年级随机抽取了部分学生进行了调查(每位学生只可选其中一项),并将结果整理、绘制成统计图如下:根据以上统计图,解答下列问题:(1)本次接受调查的学生共有 人,补全条形统计图;(2)求扇形统计图中a 的值;(3)估计该校全体学生中喜爱“实验实践”的人数.24.A 和B 两位同学在化简11(2)()()22a a b a b a b +-+-时的解答过程如下:A 同学:原式=2221()4a ab a b +--(第一步) =22214a ab a b +--(第二步) =2234a ab b +-(第三步) B 同学:原式=2221()2a ab a b +--(第一步) =22212a ab a b +-+(第二步) =2212a ab b -++(第三步)(1)请你判断两位同学的解答过程正确吗?A:_____ ,B:______ (正确的打√,错误的打×)对于出错的同学,请指出他是从第几步开始出错的?错误的原因是什么?(2)如果你在(1)中判断两位同学的解答都是错误的,请写出你认为正确的解答过程,否则请跳过此题.25.如图,抛物线y=ax2+bx+c与x轴交于点A(x1,0)、B(x2,0),与y轴交于点C(0,﹣x2),且x1<0<x2,13OAOC,△ABC的面积为6.(1)求抛物线的解析式;(2)在x轴下方的抛物线上是否存在一点M,使四边形ABMC的面积最大?若存在,请求出点M的坐标和四边形ABMC的面积最大值;若不存在,请说明理由;(3)E为抛物线的对称轴上一点,抛物线上是否存在一点D,使以B、C、D、E为顶点的四边形为平行四边形?若存在,请直接写出点D的坐标;若不存在,请说明理由.26.如图,排球运动员站在点M处练习发球,将球从M点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足抛物线解析式.已知球达到最高2.6m的D点时,与M点的水平距离EM为6m.(1)在图中建立恰当的直角坐标系,并求出此时的抛物线解析式;(2)球网BC与点M的水平距离为9m,高度为2.43m.球场的边界距M点的水平距离为18m.该球员判断此次发出的球能顺利过网并不会出界,你认为他的判断对吗?请说明理由.【参考答案】***一、选择题1.C2.A3.C4.A5.B6.D7.B8.D9.A10.B二、填空题11.3612.30°.13.x≥-214 215.+2.16.1x ≠17.5cm.18.16π19.45三、解答题20.(1)详见解析;(2)⊙O . 【解析】试题分析:(1)连接OA ,根据圆周角定理求出∠AOC ,再由OA=OC 得出∠ACO=∠OAC=30°,再由AP=AC 得出∠P=30°,继而由∠OAP=∠AOC ﹣∠P ,可得出OA ⊥PA ,从而得出结论;(2)过点C 作CE ⊥AB 于点E .在Rt △BCE 中,∠B=60°,,于是得到BE=12,CE=3,根据勾股定理得到=5,于是得到AP=AC=5.解直角三角形即可得到结论.试题解析:(1)证明:连接OA ,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC ,∴∠OAC=∠OCA=30°,又∵AP=AC ,∴∠P=∠ACP=30°,∴∠OAP=∠AOC ﹣∠P=90°,∴OA ⊥PA ,∴PA 是⊙O 的切线;(2)解:过点C 作CE ⊥AB 于点E .在Rt △BCE 中,∠B=60°,∴BE=12CE=3,∵∴AE=AB ﹣BE=4,∴在Rt △ACE 中,=5,∴AP=AC=5.,∴在Rt△PAO中,OA=3∴⊙O.考点:切线的判定.21.71m.【解析】【分析】先求出∠DBE=30°,∠BDE=30°,得出BE=DE,然后设EC=xm,则BE=2xm,DE=2xm,DC=3xm,BC,然后根据∠DAC=45°,可得AC=CD,列出方程求出x的值,然后即可求出塔DE的高度.【详解】解:由题知,∠DBC=60°,∠EBC=30°,∴∠DBE=∠DBC﹣∠EBC=60°﹣30°=30°.又∵∠BCD=90°,∴∠BDC=90°﹣∠DBC=90°﹣60°=30°.∴∠DBE=∠BDE.∴BE=DE.设EC=xm,则DE=BE=2EC=2xm,DC=EC+DE=x+2x=3xm,BC,由题知,∠DAC=45°,∠DCA=90°,AB=45,∴△ACD为等腰直角三角形,∴AC=DC.=3x,,解得:x=22x=答:塔高约为71m.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形,利用三角函数的知识求解,难度一般.22.(1)见解析;(2)BE=285.【解析】【分析】(1)由题意可得AD=BD,由余角的性质可得∠CBE=∠DAC,由“ASA”可证△BDF≌△ADC;(2)由全等三角形的性质可得AD=BD=4,CD=DF=3,BF=AC,由三角形的面积公式可求BE的长度.【详解】解:(1)∵AD⊥BC,∠ABC=45°∴∠ABC=∠BAD=45°,∴AD=BD,∵DA⊥BC,BE⊥AC∴∠C+∠DAC=90°,∠C+∠CBE=90°∴∠CBE=∠DAC,且AD=BD,∠ADC=∠ADB=90°∴△BDF≌△ADC(ASA)(2)∵△BDF≌△ADC∴AD=BD=4,CD=DF=3,BF=AC∴BF=5∴AC=5,∵S△ABC=12×BC×AD=12×AC×BE∴7×4=5×BE∴BE=285.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,利用三角形面积公式可求BE的长度. 23.(1)80;图见解析;(2)20;(3)360.【解析】【分析】(1)用阳光体艺的人数除以对应的百分比即可得到接受调查的总人数.用总人数减去其余各人数可得课堂演讲的人数,据此补全条形统计图.(2)根据样本中总人数及课堂演讲的人数即可求a的值.(3)求出样本中学生中喜爱“实验实践”的人数的百分比,乘以学校总人数即可.【详解】(1)32÷40%=80(人),故答案为80,课堂演讲人数:80﹣8﹣8﹣32﹣16=16(人)补图如下(2)16100%20%a%80⨯==, 所以a =20; (3)根据题意得:161800100%36080⨯⨯=(人), 答:该校全体学生中喜爱“实验实践”的人数约为360人.【点睛】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.24.(1)A:× B:×错因见解析;(2)2234a ab b -++ 【解析】【分析】根据单项式乘以多项式的法则及平方差公式即可解答.【详解】(1)A:× B:×A :从第二步开始出错,错因是括号前面是“-”,去掉括号后,括号b 2项未变号A :在第三步也出现错误,错因是合并同类项时,系数加减符号确定错误(或漏写了负号)(若学生未指出这一步,可不扣分)B: 从第一步开始出错, 错因是单项式×多项式时,1122a a ⋅系数漏乘 (2)正确解答过程:原式()22222222113244a ab a b a ab a b a ab b =+--=+-+=-++ 【点睛】 本题考查是单项式乘以多项式的法则、平方差公式及去括号、合并同类项等知识,掌握运算法则及乘法公式并知道各种运算中的易错点是关键.25.(1)y=x 2-2x-3(2)758(3)D 1 (4,5),D 2 (-2,5),D 3 (2,-3) 【解析】【分析】(1)根据题意求出A ,B ,C 点的坐标,并将其代入y=ax 2+bx+c 即可求出解析式;(2)当点M 在x 轴下方的抛物线上时,连接OM ,CM ,BM ,设点M (a ,a 2-2a-3),则S 四边形ABMC =S △AOC +S △OCM +S △OBM ,用含a 的代数式表示出S 的值,利用函数的思想即可求出其最大值,进一步写出点M 的坐标;(3)分类讨论存在平行四边形的情况,分别画出图形,利用平行四边形的性质及平移规律即可求出点D 坐标.【详解】(1)由题意得,21x =-3 x∵S △ABC =6, ∴()()1111x 3x 3x 62--= ∴x 12=1∵x 1<0<x 2,∴x 1=﹣1,x 2=3,∴A (﹣1,0),B (3,0),C (0,﹣3),抛物线为y =ax 2+bx+c 的图像经过A (﹣1,0),B (3,0),C (0,﹣3) ∴09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩解得:123a b c =⎧⎪=-⎨⎪=-⎩∴抛物线的解析式为:223y x x =--(2)如图1,当点M 在x 轴下方的抛物线上时,连接OM ,CM ,BM ,设点M (a ,a 2-2a-3),则S 四边形ABMC =S △AOC +S △OCM +S △OBM =12×1×3+12×3a+12×3(-a 2+2a+3) =-32(a-32)2+758, 由二次函数的性质可知,当a=32时,S 有最大值,S 最大=758, ∴M (32,-154),四边形ABMC 的面积最大值为758; (3)∵y=x 2-2x-3=(x-1)2-4,∴对称轴为直线x=1,如图2-1,当四边形ECBD 为平行四边形时,DE ∥BC ,DE=BC ,∴x D-x E=x B-x C=3,∵x E=1,∴x D=4,∴D(4,5);如图2-2,当四边形DCBE为平行四边形时,DE∥BC,DE=BC,∴x E-x D=x B-x C=3,∵x E=1,∴x D=-2,∴D(-2,5);如图2-3,当四边形ECDB为平行四边形时,BE∥DC,BE=DC,∴x E+x D=x B+x C=3,∵x E =1, ∴x D =2, ∴D (2,-3);综上所述点D 坐标为 (4,5),(-2,5)或 (2,-3). 【点睛】本题考查了待定系数法求解析式,用函数的思想求极值,平行四边形的性质等,解题的关键是能够根据题意画出平行四边形,分类讨求出论存在的点的坐标. 26.(1)见解析,21(6) 2.660y x =--+;(2)该球员的判断不对,球会出界,见解析. 【解析】 【分析】(1)直角坐标系的建立要使点的坐标容易确定,因此可以以点M 为坐标原点,建立平面直角坐标系,由题意即可确定点A ,E ,D 的坐标,已知顶点D 及抛物线上一点A 的坐标,可设顶点式,利用待定系数法求解析式即可;(2)利用(1)所求解析式可求出球运行的高度和水平距离,与题中所给的球网BC 的高度及球场的边界距M 点的水平距离进行大小比较即可判断能否过网能否出界. 【详解】 解:(1)如图,以点M 为坐标原点,建立平面直角坐标系,则点A ,E ,D 的坐标分别为(0,2),(6,0),(6,2.6)设球运行的高度y (m )与运行的水平距离x (m )的抛物线解析式为y =a (x ﹣h )2+k 由题意知抛物线的顶点为(6,2.6) 故y =a (x ﹣6)2+2.6将点A (0,2)代入得2=36a+2.6 ∴a =﹣160, 故此时抛物线的解析式为y =﹣160(x ﹣6)2+2.6 (2)该球员的判断不对,理由如下: 当x =9时,y =﹣160(x ﹣6)2+2.6=2.45>2.43 ∴球能过网; 当y =0时,﹣160(x ﹣6)2+2.6=0解得:x 1=6+>18,x 2=6﹣(舍) 故球会出界. 【点睛】本题考查了抛物线解析式的求法及在实际生活中的应用,熟练掌握抛物线解析式的求法及其在实际问题2020年数学中考模拟试卷一、选择题1.如图,AB 是☉O 的直径,弦CD ⊥AB 于点E,点P 在☉O 上,PB 与CD 交于点F,∠PBC=∠C.若∠PBC=22.5°,☉O 的半径R=2,则劣弧AC 的长度为 ( )A.πB.C.2πD.π2.已知二次函数y =x 2+bx+c (b ,c 是常数)的图象如图所示,则一次函数y =cx+b 与反比例函数y =在同一坐标系内的大致图象是( )A. B.C. D.3.如图,矩形ABCD 的顶点A 和对称中心在反比例函数(0,0)ky k x x=≠>上,若矩形ABCD 的面积为8,则k 的值为( )A .4B .C .D .84.如图所示物体的俯视图是( )A.B.C.D.5.如图,已知AB=A1B,A1C=A1A2,A2D=A2A3,A3E=A3A4,若∠B=20°,则∠A=_____,4A∠=______.()A.80°,40°B.80°,30°C.80°,20°D.80°,10°6.边长为2的正方形内接于⊙O,则⊙O的半径是()A.1 B C.2 D.7.下列事件为必然事件的是()A.掷一枚普通的正方体骰子,掷得的点数不小于1 B.任意购买一张电影票,座位号是奇数C.抛一枚普通的硬币,正面朝上D.一年有367天8.水是地球上极宝贵的资源.某城市为了节约用水,实行了价格调控,限定每月每户用水量不超过6吨时,每吨价格为 2.25元;当用水量超过6吨时,超过部分每吨价格为3.25元.则按此调控价格的每户每月水费y(元)与用水量x(吨)的函数图像大致为()A.B.C.D.9.如图图中,不能用来证明勾股定理的是()A.B.C.D.10.下列命题中,其中正确命题的个数为()个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件.A.1 B.2 C.3 D.4二、填空题11.不等式4x﹣8<0的解集是______.12.计算:=______.13.计算:(﹣12)2=_____.15.分解因式:2232________.a b ab b ++=16.如图所示,在平面直角坐标系中,(00)A ,,(20)B ,,1APB △是等腰直角三角形且190P ∠=︒,把1APB △绕点B 顺时针旋转180︒,得到2BP C △,把2BP C △绕点C 顺时针旋转180︒,得到3CP D △,依此类推,得到的等腰直角三角形的直角顶点2019P 的坐标为__________.17.已知关于x 的一元二次方程x 2+ax+b=0的两根分别为-1和2,则2b=______. 18.A 班学生参加“垃圾分类知识”竞赛,已知竞赛得分都是整数,竞赛成绩的频数分布直方图,如图所示,那么成绩高于60分的学生占A 班参赛人数的百分率为__.19.若x =2是关于x 的方程2x ﹣m+1=0的解,则m =_____. 三、解答题20.如图,现有三张不透明的卡片,卡片的正面分别标有字母、、,每张卡片除字母不同之外,其余均相同.将三张卡片背面向上洗匀,从中随机抽取一张,记下字母后放回,重新洗匀,再从中随机抽取一张.请用画树状图(或列表)的方法,求两次抽出的卡片上的字母相同的概率.21.某路段上有A ,B 两处相距近200m 且未设红绿灯的斑马线.为使交通高峰期该路段车辆与行人的通行更有序,交通部门打算在汽车平均停留时间较长的一处斑马线上放置移动红绿灯.图1,图2分别是交通高峰期来往车辆在A ,B 斑马线前停留时间的抽样统计图.根据统计图解决下列问题:(1)若某日交通高峰期共有350辆车经过A斑马线,请估计该日停留时间为10s~12s的车辆数,以及这些停留时间为10s~12s的车辆的平均停留时间;(直接写出答案)(2)移动红绿灯放置在哪一处斑马线上较为合适?请说明理由.22)0﹣3|+(12)﹣123.某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.(1)被调查的学生中,最喜爱体育节目的有人,这些学生数占被调查总人数的百分比为%.(2)被调查学生的总数为人,统计表中m的值为,统计图中n的值为.(3)在统计图中,E类所对应扇形圆心角的度数为.(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.24.小丽家在装修,虽然房间比较小,但是小丽总想睡1.8米宽的大床,那样抱着她的大娃娃睡多好啊,妈妈说:“你已经八年级了,自己设计一下,怎样可以把1.8米宽的床放好,并且还比较美观?”下面是小丽的第一次设计图:1.8米宽的床一般长2.2米,床头柜一般需要50cm,门宽80cm,只能往房里开。
山东省济宁市2019-2020学年中考第二次大联考数学试卷含解析
山东省济宁市2019-2020学年中考第二次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则»BC的长是( )A.πB.13πC.12πD.16π2.如果将直线l1:y=2x﹣2平移后得到直线l2:y=2x,那么下列平移过程正确的是()A.将l1向左平移2个单位B.将l1向右平移2个单位C.将l1向上平移2个单位D.将l1向下平移2个单位3.PM2.5是指大气中直径小于或等于2.5μm(0.0000025m)的颗粒物,含有大量有毒、有害物质,也称为可入肺颗粒物,将25微米用科学记数法可表示为()米.A.25×10﹣7B.2.5×10﹣6C.0.25×10﹣5D.2.5×10﹣54.计算2311xx x-+++的结果为()A.2 B.1 C.0 D.﹣15.下列图形中,主视图为①的是()A.B.C.D.6.一元二次方程x2+x﹣2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根7.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.808.如图,PA 、PB 切⊙O 于A 、B 两点,AC 是⊙O 的直径,∠P=40°,则∠ACB 度数是( )A .50°B .60°C .70°D .80°9.已知一个多边形的内角和是外角和的3倍,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形10.一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是( )A .6πB .4πC .8πD .411.若 |x | =-x ,则x 一定是( )A .非正数B .正数C .非负数D .负数12.从1、2、3、4、5、6这六个数中随机取出一个数,取出的数是3的倍数的概率是( ) A .16 B .13 C .12 D .23二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解:=______.14.如图,AB ∥CD ,点E 是CD 上一点,∠AEC =40°,EF 平分∠AED 交AB 于点F ,则∠AFE =___度.15.如图所示,轮船在A 处观测灯塔C 位于北偏西70︒方向上,轮船从A 处以每小时20海里的速度沿南偏西50︒方向匀速航行,1小时后到达码头B 处,此时,观测灯塔C 位于北偏西25︒方向上,则灯塔C 与码头B 的距离是______海里(结果精确到个位,参考数据:2 1.4≈,3 1.7≈,012200111:(,),()323x p x x ∃∈=)16.如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB 的位置保持不动,将三角板DCE绕其直角顶点C顺时针旋转一周.当△DCE一边与AB平行时,∠ECB的度数为_________________________.17.不透明袋子中装有5个红色球和3个蓝色球,这些球除了颜色外没有其他差别.从袋子中随机摸出一个球,摸出蓝色球的概率为_______.18.如图①,在矩形ABCD中,对角线AC与BD交于点O,动点P从点A出发,沿AB匀速运动,到达点B时停止,设点P所走的路程为x,线段OP的长为y,若y与x之间的函数图象如图②所示,则矩形ABCD的周长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)4月9日上午8时,2017 徐州国际马拉松赛鸣枪开跑,一名岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.20.(6分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.求证:BE = DF;连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.21.(6分)如图,平面直角坐标系xOy中,已知点A(0,3),点B(3,0),连接AB,若对于平面内一点C,当△ABC是以AB为腰的等腰三角形时,称点C是线段AB的“等长点”.(1)在点C1(﹣2,3+22),点C2(0,﹣2),点C3(3+3,﹣3)中,线段AB的“等长点”是点________;(2)若点D(m,n)是线段AB的“等长点”,且∠DAB=60°,求点D的坐标;(3)若直线y=kx+33k上至少存在一个线段AB的“等长点”,求k的取值范围.22.(8分)石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.设每件童装降价x元时,每天可销售______ 件,每件盈利______ 元;(用x的代数式表示)每件童装降价多少元时,平均每天赢利1200元.要想平均每天赢利2000元,可能吗?请说明理由.23.(8分)已知:如图,在△OAB中,OA=OB,⊙O经过AB的中点C,与OB交于点D,且与BO的延长线交于点E,连接EC,CD.(1)试判断AB与⊙O的位置关系,并加以证明;(2)若tanE=12,⊙O的半径为3,求OA的长.24.(10分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC,AB于点E,F.(1)若∠B=30°,求证:以A,O,D,E为顶点的四边形是菱形;(2)填空:若AC=6,AB=10,连接AD,则⊙O的半径为,AD的长为.25.(10分)如图,矩形ABCD 中,点E 为BC 上一点,DF ⊥AE 于点F ,求证:∠AEB =∠CDF.26.(12分)(1)计算:2201801()(1)4sin60(π1)2-------o(2)化简:221a 4a 2a 1a 2a 1a 1---÷++++ 27.(12分)如图,已知抛物线21322y x x n =--(n >0)与x 轴交于A ,B 两点(A 点在B 点的左边),与y 轴交于点C 。
山东省济宁市2019-2020学年中考数学模拟试题(2)含解析
山东省济宁市2019-2020学年中考数学模拟试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,△ABC 中,∠ACB=90°,∠A=30°,AB=1.点P 是斜边AB 上一点.过点P 作PQ ⊥AB ,垂足为P ,交边AC (或边CB )于点Q ,设AP=x ,△APQ 的面积为y ,则y 与x 之间的函数图象大致为( )A .B .C .D .2.当x=1时,代数式x 3+x+m 的值是7,则当x=﹣1时,这个代数式的值是( ) A .7B .3C .1D .﹣73.如图:A 、B 、C 、D 四点在一条直线上,若AB =CD ,下列各式表示线段AC 错误的是( )A .AC =AD ﹣CDB .AC =AB+BC C .AC =BD ﹣ABD .AC =AD ﹣AB4.已知1122()()A x y B x y ,,,两点都在反比例函数ky x=图象上,当12x 0x <<时,12y y < ,则k 的取值范围是( ) A .k>0B .k<0C .k 0≥D .k 0≤5.在△ABC 中,AD 和BE 是高,∠ABE=45°,点F 是AB 的中点,AD 与FE ,BE 分别交于点G 、H .∠CBE=∠BAD ,有下列结论:①FD=FE ;②AH=2CD ;③BC•AD=2AE 2;④S △BEC =S △ADF .其中正确的有( )A .1个B .2个C .3个D .4个6.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( ) A .4≤m <7B .4<m <7C .4≤m≤7D .4<m≤77.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D .8.学校小组5名同学的身高(单位:cm )分别为:147,156,151,152,159,则这组数据的中位数是( ). A .147B .151C .152D .1569.如图,将周长为8的△ABC 沿BC 方向平移1个单位长度得到DEF ∆,则四边形ABFD 的周长为( )A .8B .10C .12D .1610.如图,有一矩形纸片ABCD ,AB=10,AD=6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将AED ∆以DE 为折痕向右折叠,AE 与BC 交于点F ,则CEF ∆的面积为( )A .4B .6C .8D .1011.﹣2×(﹣5)的值是( ) A .﹣7 B .7 C .﹣10 D .1012.菱形的两条对角线长分别是6cm 和8cm ,则它的面积是( ) A .6cm 2B .12cm 2C .24cm 2D .48cm 2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在Rt △ABC 中,∠ACB =90°,AB =5,AC =3,点D 是BC 上一动点,连接AD ,将△ACD 沿AD 折叠,点C 落在点E 处,连接DE 交AB 于点F ,当△DEB 是直角三角形时,DF 的长为_____.14.计算:2a×(﹣2b )=_____.15.在平面直角坐标系xOy 中,若干个半径为1个单位长度,圆心角是60o 的扇形按图中的方式摆放,动点K 从原点O 出发,沿着“半径OA →弧AB →弧BC →半径CD →半径DE ⋯”的曲线运动,若点K 在线段上运动的速度为每秒1个单位长度,在弧线上运动的速度为每秒π3个单位长度,设第n 秒运动到点K ,(n 为自然数),则3K 的坐标是____,2018K 的坐标是____16.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,点E ,F 分别在边AB ,AC 上,将△AEF 沿直线EF 翻折,点A 落在点P 处,且点P 在直线BC 上.则线段CP 长的取值范围是____.17.如图,在△ABC 中,BA =BC =4,∠A =30°,D 是AC 上一动点,AC 的长=_____;BD+12DC 的最小值是_____.18.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F ,23=AB BC ,DE=6,则EF= .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)雾霾天气严重影响市民的生活质量。
山东省济宁市2019-2020学年中考第二次模拟数学试题含解析
山东省济宁市2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,⊙O 的半径OA=6,以A 为圆心,OA 为半径的弧交⊙O 于B 、C 点,则BC=( )A .63B .62C .33D .322.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆低端D 到大楼前梯砍底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i=1:3,则大楼AB 的高度约为( )(精确到0.1米,参考数据:2 1.413 1.736 2.45≈≈≈,,)A .30.6米B .32.1 米C .37.9米D .39.4米 3.二元一次方程组632x y x y +=⎧⎨-=-⎩的解是( ) A .51x y =⎧⎨=⎩B .42x y =⎧⎨=⎩C .51x y =-⎧⎨=-⎩D .42x y =-⎧⎨=-⎩ 4.如图是一个由4个相同的正方体组成的立体图形,它的左视图为( )A .B .C .D .5.若M (2,2)和N (b ,﹣1﹣n 2)是反比例函数y=k x的图象上的两个点,则一次函数y=kx+b 的图象经过( )A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限6.下列运算正确的是()A.a3•a2=a6B.(a2)3=a5C.9=3 D.2+5=25 7.某青年排球队12名队员年龄情况如下:年龄18 19 20 21 22人数 1 4 3 2 2则这12名队员年龄的众数、中位数分别是()A.20,19 B.19,19 C.19,20.5 D.19,20 8.已知,C是线段AB的黄金分割点,AC<BC,若AB=2,则BC=()A.3﹣5B.12(5+1)C.5﹣1 D.12(5﹣1)9.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁10.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°11.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40°B.45°C.50°D.55°12.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球则两次摸到的球的颜色不同的概率为()A.13B.23C.12D.25二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD= °.14.如图,已知正方形ABCD 的边长为4,⊙B 的半径为2,点P 是⊙B 上的一个动点,则PD ﹣12PC 的最大值为_____.15.二次根式1a + 中的字母a 的取值范围是_____.16.计算:(2111m m m+--)•1m+1=__. 17.如果两圆的半径之比为32:,当这两圆内切时圆心距为3,那么当这两圆相交时,圆心距d 的取值范围是__________.18.对角线互相平分且相等的四边形是( )A .菱形B .矩形C .正方形D .等腰梯形三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,△AOB 的三个顶点坐标分别为A (1,0),O (0,0),B (2,2).以点O 为旋转中心,将△AOB 逆时针旋转90°,得到△A 1OB 1.画出△A 1OB 1;直接写出点A 1和点B 1的坐标;求线段OB 1的长度.20.(6分)已知边长为2a 的正方形ABCD ,对角线AC 、BD 交于点Q ,对于平面内的点P 与正方形ABCD ,给出如下定义:如果2a PQ a <<,则称点P 为正方形ABCD 的“关联点”.在平面直角坐标系xOy 中,若A (﹣1,1),B (﹣1,﹣1),C (1,﹣1),D (1,1).(1)在11,02P ⎛⎫- ⎪⎝⎭,213,22P ⎛⎫ ⎪ ⎪⎝⎭,()30,2P 中,正方形ABCD 的“关联点”有_____; (2)已知点E 的横坐标是m ,若点E 在直线3y x =上,并且E 是正方形ABCD 的“关联点”,求m 的取值范围;(3)若将正方形ABCD 沿x 轴平移,设该正方形对角线交点Q 的横坐标是n ,直线31y x =+与x 轴、y 轴分别相交于M 、N 两点.如果线段MN 上的每一个点都是正方形ABCD 的“关联点”,求n 的取值范围. 21.(6分)已知y 是x 的函数,自变量x 的取值范围是0x ≠的全体实数,如表是y 与x 的几组对应值.小华根据学习函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是 ;(2)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出2x =时所对应的点,并写出m = .(4)结合函数的图象,写出该函数的一条性质: .22.(8分)先化简,再求值1xx-÷(x﹣21xx-),其中x=76.23.(8分)某汽车制造公司计划生产A、B两种新型汽车共40辆投放到市场销售.已知A型汽车每辆成本34万元,售价39万元;B型汽车每辆成本42万元,售价50万元.若该公司对此项计划的投资不低于1536万元,不高于1552万元.请解答下列问题:(1)该公司有哪几种生产方案?(2)该公司按照哪种方案生产汽车,才能在这批汽车全部售出后,所获利润最大,最大利润是多少?(3)在(2)的情况下,公司决定拿出利润的2.5%全部用于生产甲乙两种钢板(两种都生产),甲钢板每吨5000元,乙钢板每吨6000元,共有多少种生产方案?(直接写出答案)24.(10分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.求证:PD是⊙O的切线;求证:△ABD∽△DCP;当AB=5cm,AC=12cm时,求线段PC的长.25.(10分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点C,PB⊥x轴于点B,点A与点B关于y轴对称.(1)求一次函数,反比例函数的表达式;(2)求证:点C为线段AP的中点;(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,说明理由并求出点D的坐标;如果不存在,说明理由.26.(12分)如图,Rt△ABC中,∠C=90°,∠A=30°,BC=1.(1)实践操作:尺规作图,不写作法,保留作图痕迹.①作∠ABC的角平分线交AC于点D.②作线段BD的垂直平分线,交AB于点E,交BC于点F,连接DE、DF.(2)推理计算:四边形BFDE的面积为.27.(12分)某中学为了解八年级学习体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A、B、C、D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】试题分析:根据垂径定理先求BC一半的长,再求BC的长.解:如图所示,设OA与BC相交于D点.∵AB=OA=OB=6,∴△OAB是等边三角形.又根据垂径定理可得,OA平分BC,利用勾股定理可得22-=6333所以BC=2BD=63.故选A.点睛:本题主要考查垂径定理和勾股定理. 解题的关键在于要利用好题中的条件圆O与圆A的半径相等,从而得出△OAB是等边三角形,为后继求解打好基础.2.D【解析】解:延长AB交DC于H,作EG⊥AB于G,如图所示,则GH=DE=15米,EG=DH,∵梯坎坡度i=1:3,∴BH:CH=1:3,设BH=x米,则CH=3x米,在Rt△BCH中,BC=12米,由勾股定理得:()222312x x+=,解得:x=6,∴BH=6米,CH=63米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=63+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=63+20(米),∴AB=AG+BG=63+20+9≈39.4(米).故选D.3.B【解析】【分析】利用加减消元法解二元一次方程组即可得出答案【详解】解:①﹣②得到y=2,把y=2代入①得到x=4,∴42 xy=⎧⎨=⎩,故选:B.【点睛】此题考查了解二元一次方程组,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.B【解析】【分析】根据左视图的定义,从左侧会发现两个正方形摞在一起.【详解】从左边看上下各一个小正方形,如图故选B .5.C【解析】【分析】把(2,2)代入k y x =得k=4,把(b ,﹣1﹣n 2)代入k y x=得,k=b (﹣1﹣n 2),即 241b n =--根据k 、b 的值确定一次函数y=kx+b 的图象经过的象限. 【详解】解:把(2,2)代入k y x =, 得k=4,把(b ,﹣1﹣n 2)代入k y x =得: k=b (﹣1﹣n 2),即241b n =--, ∵k=4>0,241b n =--<0, ∴一次函数y=kx+b 的图象经过第一、三、四象限,故选C .【点睛】本题考查了反比例函数图象的性质以及一次函数经过的象限,根据反比例函数的性质得出k ,b 的符号是解题关键.6.C【解析】【分析】结合选项分别进行幂的乘方和积的乘方、同底数幂的乘法、实数的运算等运算,然后选择正确选项.【详解】解:A. a 3⋅a 2=a 5,原式计算错误,故本选项错误;B. (a 2)3=a 6,原式计算错误,故本选项错误;C. ,原式计算正确,故本选项正确;D. 2和故选C.【点睛】本题考查了幂的乘方与积的乘方,实数的运算,同底数幂的乘法,解题的关键是幂的运算法则. 7.D【解析】【分析】先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.【详解】这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为20202+=1.故选D.【点睛】本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义.8.C【解析】【分析】根据黄金分割点的定义,知BC为较长线段;则BC=12AB,代入数据即可得出BC的值.【详解】解:由于C为线段AB=2的黄金分割点,且AC<BC,BC为较长线段;则..【点睛】本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的=原线段的倍.9.A【解析】【分析】根据方差的概念进行解答即可.【详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【点睛】本题考查了方差,解题的关键是掌握方差的定义进行解题. 10.D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.11.D【解析】试题分析:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC ,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°. 故选D .考点:1、平行线的性质;2、圆周角定理;3等腰三角形的性质12.B【解析】【分析】本题主要需要分类讨论第一次摸到的球是白球还是红球,然后再进行计算.【详解】 ①若第一次摸到的是白球,则有第一次摸到白球的概率为23,第二次,摸到白球的概率为12,则有211323⨯=;②若第一次摸到的球是红色的,则有第一次摸到红球的概率为13,第二次摸到白球的概率为1,则有11133⨯=,则两次摸到的球的颜色不同的概率为112333+=. 【点睛】掌握分类讨论的方法是本题解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.110【解析】试题解析:解:∵∠C =40°,CA =CB ,∴∠A =∠ABC =70°,∴∠ABD =∠A +∠C =110°.考点:等腰三角形的性质、三角形外角的性质点评:本题主要考查了等腰三角形的性质、三角形外角的性质.等腰三角形的两个底角相等;三角形的外角等于与它不相邻的两个内角之和.14.1【解析】分析: 由PD−12PC =PD−PG≤DG ,当点P 在DG 的延长线上时,PD−12PC 的值最大,最大值为DG =1. 详解: 在BC 上取一点G ,使得BG =1,如图,∵221PB BG ==,422BC PB ==, ∴PB BC BG PB =, ∵∠PBG =∠PBC ,∴△PBG ∽△CBP , ∴12PG BG PC PB ==, ∴PG =12PC , 当点P 在DG 的延长线上时,PD−12PC 的值最大,最大值为DG 2243+1. 故答案为1点睛: 本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.15.a≥﹣1.【解析】【分析】根据二次根式的被开方数为非负数,可以得出关于a 的不等式,继而求得a 的取值范围.【详解】由分析可得,a+1≥0,解得:a≥﹣1.【点睛】熟练掌握二次根式被开方数为非负数是解答本题的关键.16.1【解析】试题分析:首先进行通分,然后再进行因式分解,从而进行约分得出答案.原式=()()2m 1m 11111m 1m 1m 1m 1m +--==-+-+n n . 17.315d <<.【解析】【分析】先根据比例式设两圆半径分别为32x x 、,根据内切时圆心距列出等式求出半径,然后利用相交时圆心距与半径的关系求解.【详解】解:设两圆半径分别为32x x 、,由题意,得3x-2x=3,解得3x =,则两圆半径分别为96,,所以当这两圆相交时,圆心距d 的取值范围是9696d ﹣<<,即315d <<,故答案为315d <<.【点睛】本题考查了圆和圆的位置与两圆的圆心距、半径的数量之间的关系,熟练掌握圆心距与圆位置关系的数量关系是解决本题的关键.18.B【解析】【分析】根据平行四边形的判定与矩形的判定定理,即可求得答案.【详解】∵对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,∴对角线相等且互相平分的四边形一定是矩形.故选B .【点睛】此题考查了平行四边形,矩形,菱形以及等腰梯形的判定定理.此题比较简单,解题的关键是熟记定理.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)作图见解析;(2)A 1(0,1),点B 1(﹣2,2).(3)【解析】【分析】(1)按要求作图.(2)由(1)得出坐标.(3)由图观察得到,再根据勾股定理得到长度.【详解】解:(1)画出△A 1OB 1,如图.(2)点A 1(0,1),点B 1(﹣2,2).(3)OB 1=OB ==2. 【点睛】本题主要考查的是绘图、识图、勾股定理等知识点,熟练掌握方法是本题的解题关键.20.(1)正方形ABCD 的“关联点”为P 2,P 3;(2)1222m ≤≤或2122m -≤≤-;(3)33233n ≤≤-. 【解析】【分析】(1)正方形ABCD 的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),由此画出图形即可判断;(2)因为E 是正方形ABCD 的“关联点”,所以E 在正方形ABCD 的内切圆和外接圆之间(包括两个圆上的点),因为E 在直线3y x =上,推出点E 在线段FG 上,求出点F 、G 的横坐标,再根据对称性即可解决问题;(3)因为线段MN 上的每一个点都是正方形ABCD 的“关联点”,分两种情形:①如图3中,MN 与小⊙Q 相切于点F ,求出此时点Q 的横坐标;②M 如图4中,落在大⊙Q 上,求出点Q 的横坐标即可解决问题;【详解】(1)由题意正方形ABCD 的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),观察图象可知:正方形ABCD 的“关联点”为P 2,P 3;(2)作正方形ABCD 的内切圆和外接圆,∴OF =1,2OG =.∵E 是正方形ABCD 的“关联点”,∴E 在正方形ABCD 的内切圆和外接圆之间(包括两个圆上的点),∵点E 在直线3y x =上,∴点E 在线段FG 上.分别作FF’⊥x 轴,GG’⊥x 轴,∵OF =1,2OG =∴12OF '=,2OG '=. ∴122m ≤≤. 根据对称性,可以得出2122m -≤≤-. ∴1222m ≤≤或2122m -≤≤-. (3)∵3M ⎛⎫ ⎪ ⎪⎝⎭、N (0,1), ∴3OM =ON =1. ∴∠OMN =60°.∵线段MN 上的每一个点都是正方形ABCD的“关联点”,①MN 与小⊙Q 相切于点F ,如图3中,∵QF =1,∠OMN =60°, ∴233QM =. ∵33OM =, ∴33OQ =. ∴13,0Q ⎛⎫ ⎪ ⎪⎝⎭. ②M 落在大⊙Q 上,如图4中,∵2QM =3OM = ∴323OQ =. ∴232Q ⎫⎪⎪⎭. 332n ≤≤【点睛】本题考查一次函数综合题、正方形的性质、直线与圆的位置关系等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题.21.(1)32;(2)见解析;(3)72;(4)当01x <<时,y 随x 的增大而减小. 【解析】【分析】 (1)根据表中x ,y 的对应值即可得到结论;(2)按照自变量由小到大,利用平滑的曲线连结各点即可;(3)在所画的函数图象上找出自变量为7所对应的函数值即可;(4)利用函数图象的图象求解.【详解】解:(1)当自变量是﹣2时,函数值是32; 故答案为:32. (2)该函数的图象如图所示;(3)当2x =时所对应的点 如图所示,且72m =; 故答案为:72; (4)函数的性质:当01x <<时,y 随x 的增大而减小.故答案为:当01x <<时,y 随x 的增大而减小.【点睛】本题考查了函数值,函数的定义:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应. 22.6【解析】【分析】括号内先通分进行分式加减运算,然后再与括号外的分式进行乘除运算,化简后代入x 的值进行计算即可得.【详解】原式=2121x x x x x--+÷ =()211x x x x -⋅- =11x -, 当x=76,原式=1716-=6. 【点睛】本题考查了分式的化简求值,根据所给的式子确定运算顺序、熟练应用相关的运算法则是解题的关键.23.(1)共有三种方案,分别为①A 型号16辆时, B 型号24辆;②A 型号17辆时,B 型号23辆;③A 型号18辆时,B 型号22辆;(2)当16x =时,272W =最大万元;(3)A 型号4辆,B 型号8辆; A 型号10辆,B 型号 3辆两种方案【解析】【分析】(1)设A 型号的轿车为x 辆,可根据题意列出不等式组,根据问题的实际意义推出整数值; (2)根据“利润=售价-成本”列出一次函数的解析式解答;(3)根据(2)中方案设计计算.【详解】(1)设生产A 型号x 辆,则B 型号(40-x )辆1536≤34x+42(40-x)≤1552解得1618x ≤≤,x 可以取值16,17,18共有三种方案,分别为A 型号16辆时,B 型号24辆A 型号17辆时,B 型号23辆A 型号18辆时,B 型号22辆(2)设总利润W 万元则W=()5840x x +-=3320x -+30k =-<Q∴w 随x 的增大而减小当16x =时,272W =最大万元(3)A 型号4辆,B 型号8辆; A 型号10辆,B 型号 3辆两种方案【点睛】本题主要考查了一次函数的应用,以及一元一次不等式组的应用,此题是典型的数学建模问题,要先将实际问题转化为不等式组解应用题.24.(1)证明见解析;(2)证明见解析;(3)CP=16.9cm.【解析】【分析】(1)先判断出∠BAC=2∠BAD,进而判断出∠BOD=∠BAC=90°,得出PD⊥OD即可得出结论;(2)先判断出∠ADB=∠P,再判断出∠DCP=∠ABD,即可得出结论;(3)先求出BC,再判断出BD=CD,利用勾股定理求出,最后用△ABD∽△DCP 得出比例式求解即可得出结论.【详解】(1)如图,连接OD,∵BC是⊙O的直径,∴∠BAC=90°,∵AD平分∠BAC,∴∠BAC=2∠BAD,∵∠BOD=2∠BAD,∴∠BOD=∠BAC=90°,∵DP∥BC,∴∠ODP=∠BOD=90°,∴PD⊥OD,∵OD是⊙O半径,∴PD是⊙O的切线;(2)∵PD∥BC,∴∠ACB=∠P,∵∠ACB=∠ADB,∴∠ADB=∠P,∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,∴∠DCP=∠ABD,∴△ABD∽△DCP;(3)∵BC是⊙O的直径,∴∠BDC=∠BAC=90°,在Rt△ABC中,,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴BD=CD,在Rt△BCD中,BD2+CD2=BC2,∴BD=CD=2 2BC=1322,∵△ABD∽△DCP ,∴AB BDCD CP=,∴1322132CP=,∴CP=16.9cm.【点睛】本题考查了切线的判定、相似三角形的判定与性质等,熟练掌握切线的判定方法、相似三角形的判定与性质定理是解题的关键.25.(1)y=x+1. (2)点C为线段AP的中点. (3)存在点D,使四边形BCPD为菱形,点D(8,1)即为所求.【解析】试题分析:(1)由点A与点B关于y轴对称,可得AO=BO,再由A的坐标求得B点的坐标,从而求得点P的坐标,将P坐标代入反比例解析式求出m的值,即可确定出反比例解析式,将A与P坐标代入一次函数解析式求出k与b的值,确定出一次函数解析式;(2)由AO=BO,PB∥CO,即可证得结论;(3)假设存在这样的D点,使四边形BCPD为菱形,过点C作CD平行于x轴,交PB于点E,交反比例函数y=的图象于点D,分别连结PD、BD,如图所示,即可得点D(8,1),BP⊥CD,易证PB与CD互相垂直平分,即可得四边形BCPD为菱形,从而得点D的坐标.试题解析:(1)∵点A与点B关于y轴对称,∴AO=BO,∵A(-4,0),∴B(4,0),∴P(4,2),把P(4,2)代入y=得m=8,∴反比例函数的解析式:y=把A(-4,0),P(4,2)代入y=kx+b得:,解得:,所以一次函数的解析式:y=x+1.(2)∵点A与点B关于y轴对称,∴OA=OB∵PB丄x轴于点B,∴∠PBA=90°,∵∠COA=90°,∴PB∥CO,∴点C为线段AP的中点.(3)存在点D,使四边形BCPD为菱形∵点C为线段AP的中点,∴BC=,∴BC和PC是菱形的两条边由y=x+1,可得点C(0,1),过点C作CD平行于x轴,交PB于点E,交反比例函数y=的图象于点D,分别连结PD、BD,∴点D(8,1),BP⊥CD∴PE=BE=1,∴CE=DE=4,∴PB与CD互相垂直平分,∴四边形BCPD为菱形.∴点D(8,1)即为所求.26.(1)详见解析;(2)83.【解析】【分析】(1)利用基本作图(作一个角等于已知角和作已知线段的垂直平分线)作出BD和EF;(2)先证明四边形BEDF为菱形,再利用含30度的直角三角形三边的关系求出BF和CD,然后利用菱形的面积公式求解.【详解】(1)如图,DE、DF为所作;(2)∵∠C=90°,∠A=30°,∴∠ABC=10°,AB=2BC=2.∵BD为∠ABC的角平分线,∴∠DBC=∠EBD=30°.∵EF垂直平分BD,∴FB=FD,EB=ED,∴∠FDB=∠DBC=30°,∠EDB=∠EBD=30°,∴DE∥BF,BE∥DF,∴四边形BEDF为平行四边形,而FB=FD,∴四边形BEDF为菱形.∵∠DFC=∠FBD+∠FDB=30°+30°=10°,∴∠FDC=90°-10°=30°.在Rt△BDC中,∵BC=1,∠DBC=30°,∴DC=23Rt△FCD中,∵∠FDC=30°,∴FC=2,∴FD=2FC=4,∴BF=FD=4,∴四边形BFDE 的面积=4×33故答案为:3【点睛】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).27.(1)50名;(2)16名;见解析;(3)56名.【解析】试题分析:根据A等级的人数和百分比求出总人数;根据总人数和A、B、D三个等级的人数求出C等级的人数;利用总人数乘以D等级人数的百分比得出答案.试题解析:(1)10÷20%=50(名)答:本次抽样共抽取了50名学生.(2)50-10-20-4=16(名)答:测试结果为C等级的学生有16名.补全图形如图所示:(3)700×(4÷50)=56(名)答:估计该中学八年级700名学生中体能测试为D等级的学生有56名.考点:统计图.。
(4份试卷汇总)2019-2020学年山东省济宁市中考第二次模拟数学试题
2019-2020学年数学中考模拟试卷一、选择题1.如图,点A 在反比例函数k y x =(x <0)的图象上,过点A 的直线与x 轴、y 轴分别交于点B 、C ,且AB BC =,若BOC ∆的面积为1.5,则k 的值为( )A .3-B . 4.5-C .6D .6-2.如图钓鱼竿AC 长6m ,露在水面上的鱼线BC 长32m ,钓者想看看鱼钓上的情况,把鱼竿AC 逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是( )A .3mB .33 mC .23 mD .4m3.下列标志中,是中心对称图形的是( )A. B. C. D.4.一个两位数,十位数字比个位数字的2倍大1,若将这个两位数减去36恰好等于个位数字与十位数字对调后所得的两位数,则这个两位数是( )A .86B .68C .97D .735.直线a ,b ,c 按照如图所示的方式摆放,a 与c 相交于点O ,将直线a 绕点O 按照逆时针方向旋转n ︒ (090n <<)后,a c ⊥,则n 的值为( )A .60B .40C .30D .206.如图1.已知正△ABC 中,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设△EFG 的面积为y ,AE 的长为x ,y 关于x 的函数图象如图2,则△EFG 的最小面积为( )A.34B.32C.2D.37.如图,正方形的边长为a ,以各边为直径在正方形内画半圆,所围成的图形(阴影部分)的面积为( )A .22a a π-B .222a a π-C .2212a a π-D .2214a a π- 8.如图,BD 平分,ABC BC DE ∠⊥于点,7,4E AB DE ==,则ABD S ∆=( )A .28B .21C .14D .7 9.如图,在ABC ∆中,30ABC ∠=︒,10AB =,那么以A 为圆心、6为半径的⊙A 与直线BC 的位置关系是( )A .相交B .相切C .相离D .不能确定10.2016年西峡香菇年出口值达到4380000000亿元,成为国内最大的干香菇出口货源集散中心.其中数学4380000000用科学记数法表示为( )A .743810⨯B .84.3810⨯C .94.3810⨯D .104.3810⨯11.下列标志中,可以看作是轴对称图形的是( )A. B.C. D.12.如图所示的几何体的俯视图是( )A .B .C .D .二、填空题13.如图,一次函数y =kx+4的图象与反比例函数y =m x (x >0,m >0)的图象交于A ,B 两点,与x 轴,y 轴分别交于C ,D 两点,点E 为线段AB 的中点,点P (2,0)是x 轴上一点,连接EP .若△COD 的面积是△AOB 的面积的2倍,且AB =2PE ,则m 的值为_____.14.圆内一条弦与直径相交成30°的角,且分直径1cm 和5cm 两段,则这条弦的长为_____.15.如图,直线y=k 1x+b 与双曲线y=2k x 交于A 、B 两点,其横坐标分别为1和5,则不等式k 1x <2k x+b 的解集是_____.16.关于 x 的一元二次方程(a ﹣1)x 2﹣2x+3=0 有实数根,则整数 a 的最大值是_____________.17.国家卫生和计划生育委员会公布H7N9禽流感病毒直径约为0.000002米,将数字0.000002用科学记数法表示_____.18.在平面直角坐标系xOy 中,点A (-2,m )绕坐标原点O 顺时针旋转90°后,恰好落在图中⊙P 中的阴影区域(包括边界)内,⊙P 的半径为1,点P 的坐标为(3,2),则m 的取值范围是______.三、解答题19.为了丰富校园文化生活,促进学生积极参加体育运动,某校准备成立校排球队,现计划购进一批甲、乙两种型号的排球,已知一个甲种型号排球的价格与一个乙种型号排球的价格之和为140元;如果购买6个甲种型号排球和5个乙种型号排球,一共需花费780元.(1)求每个甲种型号排球和每个乙种型号排球的价格分别是多少元?(2)学校计划购买甲、乙两种型号的排球共26个,其中甲种型号排球的个数多于乙种型号排球,并且学校购买甲、乙两种型号排球的预算资金不超过1900元,求该学校共有几种购买方案?20.先化简,再求值:22211211x xxx x x⎛⎫-÷-+⎪-+-⎝⎭,其中21x=+.21.如图,AB为⊙O的直径,C为⊙O上一点,∠CAB的平分线交⊙O于点D,过点D作ED⊥AE,垂足为E,交AB的延长线于F.(1)求证:ED是⊙O的切线;(2)若AD=42,AB=6,求FD的长.22.如图已知抛物线y=﹣x2+(1﹣m)x﹣m2+12交x轴于点A,交y轴于点B(0,3),顶点C位于第二象限,连接AB,AC,BC.(1)求抛物线的解析式;(2)在x轴上是否存在点P,使得△PAB的面积等于△ABC的面积?如果存在,求出点P的坐标.(3)将△ABC沿x轴向右移动t个单位长度(0<t<1)时,平移后△ABC和△ABO重叠部分的面积为S,求S与t之间的函数关系.23.计算:(﹣12)﹣2﹣(2019﹣π)0﹣2sin45°+|2﹣1|24.解不等式组,并把它们的解集在数轴上表示出来:2803(2)4xx x-<⎧⎨--⎩….25.在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD与CE交于点F,AB=CF.(1)如图1,求证:DF=DB;(2)如图2,若AF=2DF,在不添加任何辅助线和字母的情况下,请写出图中所有度数与3∠FAE的度数相等的角.【参考答案】***一、选择题13.m=2或61415.﹣5<x<﹣1或x>016.017.2×10﹣6.18.2≤m≤4.三、解答题19.(1)每个甲种型号排球的价格是80元,每个乙种型号排球的价格是60元;(2)该学校共有4种购买方案.【解析】【分析】(1)设每个甲种型号排球的价格是x元,每个乙种型号排球的价格是y元,根据“一个甲种型号排球的价格与一个乙种型号排球的价格之和为140元;购买6个甲种型号排球和5个乙种型号排球,一共需花费780元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买甲种型号排球m个,则购买乙种型号排球(26﹣m)个,根据甲种型号排球的个数多于乙种型号排球且学校购买甲、乙两种型号排球的预算资金不超过1900元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数,即可得出购买方案的个数.【详解】(1)设每个甲种型号排球的价格是x元,每个乙种型号排球的价格是y元,依题意,得:140 65780 x yx y+=⎧⎨+=⎩,解得:8060 xy=⎧⎨=⎩.答:每个甲种型号排球的价格是80元,每个乙种型号排球的价格是60元.(2)设购买甲种型号排球m个,则购买乙种型号排球(26﹣m)个,依题意,得:268060(26)1900 m mm m>-⎧⎨+-⎩…,解得:13<m≤17.又∵m为整数,∴m的值为14,15,16,17.答:该学校共有4种购买方案.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.20.2. 【解析】【分析】根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【详解】2221(1)121x x x x x x -÷-+--+, =2221(1)(1)(1)1x x x x x x ----÷-- =222211(1)21x x x x x x --⋅--+- =211121x x x -⋅-- =11x -,当1x === 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.(1)证明见解析;(2)7. 【解析】【分析】(1)连接OD ,根据等腰三角形的性质和角平分线的性质可求得∠1=∠3,再由“内错角相等,两直线平行”可得AE ∥OD ,然后再由垂线的定义和切线的判定即可证明;(2)连接BD ,由切线的性质及勾股定理可求出BD 的长,然后再根据三角形相似的判定和性质求得BF =DF ,然后再在Rt △ODF 中,求DF 即可. 【详解】(1)证明:连接OD ,如图,∵OA =OD ,∴∠2=∠3,∵AD 平分∠EAB ,∴∠1=∠2,∴∠1=∠3,∴AE ∥OD ,∵ED ⊥CA ,∴OD ⊥ED ,∵OD 是⊙O 的半径,∴ED 是⊙O 的切线;(2)连接BD ,如图,∵AB 是直径,∴∠ADB =90°.∴BD =22226(42)AB AD -=-=2,∵EF 是⊙O 的切线,∴OD ⊥EF ,∴∠4+∠5=90°,∵∠3+∠5=90°,∴∠4=∠3=∠2,∵∠F =∠F ,∴△FBD ∽△FDA ,∴42BF BD DF AD ==, ∴BF =24DF , 在Rt △ODF 中, ∵(3+BF )2=32+DF 2,∴(3+24DF )2=32+DF 2, ∴DF =1227.【点睛】本题主要考查了等腰三角形的性质、角平分线的性质、平行线的判定、切线的性质及判定、勾股定理等知识点,综合性比较强,熟练掌握基础知识是解题的关键.22.(1)y =﹣x 2﹣2x+3;(2)点P 的坐标为(﹣1,0)或(﹣5,0);(3)233012()S t t k =-+<< 【解析】【分析】(1)利用二次函数图象上点的坐标特征可求出m 的值,结合抛物线的顶点在第二象限可得出m >1,进而可确定m 的值,再将其代入抛物线解析式中即可得出结论;(2)过点C 作CD ⊥x 轴,垂足为点D ,利用二次函数图象上点的坐标特征及配方法,可求出点A ,C 的坐标,利用分割图形求面积法可求出△ABC 的面积,再由三角形的面积公式结合S △PAB =S △ABC 可求出AP 的长,结合点A 的坐标,即可求出点P 的坐标;(3)设△ABC 平移后得到△A′B′C′,A′B′与y 轴交于点M ,A′C′交AB 于点N ,根据点的坐标,利用待定系数法可求出线段AB ,AC 所在直线的解析式,结合平移的性质可得出线段A′B′,A′C′所在直线的解析式,利用一次函数图象上点的坐标特征可求出点M ,N 的坐标,由三角形、梯形的面积公式结合S =S △AOB ﹣S △AA′N ﹣S △AA′M ,即可得出S 关于t 的函数关系式.【详解】(1)∵抛物线y =﹣x 2+(1﹣m )x ﹣m 2+12交y 轴于点B (0,3),∴﹣m 2+12=3,∴m =±3.又∵抛物线的顶点C 位于第二象限, ∴﹣1-01m -< , ∴m >1,∴m =3,∴抛物线的解析式为y =﹣x 2﹣2x+3.(2)过点C 作CD ⊥x 轴,垂足为点D ,如图1所示.当y =0时,﹣x 2﹣2x+3=0,解得:x 1=﹣3,x 2=1,∴点A 的坐标为(﹣3,0).∵y =﹣x 2﹣2x+3=﹣(x+1)2+4,∴点C 的坐标为(﹣1,4),点D 的坐标为(﹣1,0),∴S △ABC =S △ACD +S 梯形CDOB ﹣S △AOB , =12AD•CD+12(OB+CD )•OD﹣12OA•OB, =12×2×4+12×(3+4)×1﹣12×3×3, =3.∵S △PAB =S △ABC , ∴12AP•OB=3, ∴AP =2,∴点P 的坐标为(﹣1,0)或(﹣5,0).(3)设△ABC 平移后得到△A′B′C′,A′B′与y 轴交于点M ,A′C′交AB 于点N ,如图2所示. 设线段AB 所在直线的解析式为y =kx+b (k≠0),将A (﹣3,0),B (0,3)代入y =kx+b ,得:303k b b -+=⎧⎨=⎩ ,解得:13k b =⎧⎨=⎩ , ∴线段AB 所在直线的解析式为y =x+3.同理,可得出线段AC 所在直线的解析式为y =2x+6.∵将△ABC 沿x 轴向右移动t 个单位长度(0<t <1)得到△A′B′C′,∴点A′的坐标为(t ﹣3,0),线段A′B′所在直线的解析式为y =x+3﹣t (0<t <1),线段A′C′所在直线的解析式为y =2x+6﹣2t (0<t <1).当x =0时,y =x+3﹣t =3﹣t ,∴点M 的坐标为(0,3﹣t ).将y =x+3代入y =2x+6﹣2t ,整理,得:x+3﹣2t =0,解得:x =2t ﹣3,∴点N 的坐标为(2t ﹣3,2t ),∴S =S △AOB ﹣S △AA′N ﹣S △AA′M , =12OA•OB﹣12AA′•y A′﹣12OA′•OM,=12×3×3﹣12t•2t﹣12(3﹣t)•(3﹣t),=﹣32t2+3t.∴S与t之间的函数关系式为S=﹣32t2+3t(0<t<1).【点睛】本题考查了二次函数图象上点的坐标特征、二次函数的性质、三角形的面积、梯形的面积、待定系数法求一次函数解析式、平移的性质以及一次函数图象上点的坐标特征,解题的关键是:(1)利用二次函数图象上点的坐标特征及二次函数的性质,求出m的值;(2)利于三角形的面积公式结合S△PAB=S△ABC,求出AP的长;(3)利用分割图象求面积法,找出S关于t的函数关系式.23.2【解析】【分析】直接利用负指数幂的性质以及零指数幂的性质和特殊角的三角函数值、绝对值的性质分别化简得出答案.【详解】解:原式=4﹣122﹣1=4﹣122 1=2.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.24.1≤x<4,见解析.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,然后把不等式的解集表示在数轴上即可.【详解】解:2803(2)4 xx x-<⎧⎨--⎩①②…解不等式①得:x<4,解不等式②得:x≥1,所以不等式组的解集是:1≤x<4,表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.25.(1)证明见解析;(2)∠CAB,∠ABC,∠DFC,∠AFE与3∠FAE的度数相等,理由见解析.【解析】【分析】(1)由余角的性质可得∠DAB=∠DCE,由“AAS”可证△ADB≌△CDF,可得DF=BD;(2)由等腰三角形的性质可求∠DFB=∠DBF=45°,即可求∠ABD=∠DBF+∠ABF=67.5°,由全等三角形的性质可得∠CAB=∠DCF=∠ABD=∠AFE=67.5°=3∠FAE.【详解】(1)∵AD⊥BC,CE⊥AB∴∠B+∠DAB=90°,∠B+∠DCE=90°∴∠DAB=∠DCE,且∠ADB=∠ADC=90°,CF=AB∴△ADB≌△CDF(AAS)∴DF=BD(2)∠CAB,∠ABC,∠DFC,∠AFE与3∠FAE的度数相等,理由如下:如图:连接BF,∵DF=DB,∠ADB=90°∴∠DFB=∠DBF=45°,BF2DF,且AF2DF∴AF=BF∴∠FAE=∠FBE∴∠DFB=2∠FAE=2∠ABF=45°∴∠FAE=∠FBE=22.5°∴∠ABD=∠DBF+∠ABF=67.5°∴∠ABD=3∠FAE∵△ADB≌△CDF∴∠DCF=∠ABD=∠AFE=67.5°=3∠FAE,AD=CD∴∠DAC=∠DCA=45°∴∠CAB=67.5°=3∠FAE【点睛】本题考查了全等三角形的判定和性质,熟练运用全等三角形的性质是本题的关键.2019-2020学年数学中考模拟试卷一、选择题1.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A 、B 两点的纵坐标分别为3,1,反比例函数y =3x的图象经过A ,B 两点,则点D 的坐标为( )A.(23﹣1,3)B.(23+1,3)C.(22﹣1,3)D.(22+1,3) 2.以下多边形中,既是轴对称图形又是中心对称图形的是( )A .正五边形B .矩形C .等边三角形D .平行四边形3.如图,从A 点出发的光线,经C 点反射后垂直地射到B 点,然后按原路返回A 点.若∠AOC =33°,OC =1,则光线所走的总路线约为( )A .3.8B .2.4C .1.9D .1.24.如图,平行四边形ABCD 的对角线BD =6cm ,若将平行四边形ABCD 绕其对称中心O 旋转180°,则点D 在旋转过程中所经过的路径长为( )A.3πcmB.6πcmC.πcmD.2πcm5.已知四边形的对角线相交于点,,则下列条件中不能判定四边形为平行四边形的是( ) A.B.C.D.6.若关于x 的一元一次不等式组()2132x x x m⎧-<-⎨>⎩的解集是5x >,则实数m 的取值范围是( ) A .5≤mB .5m <C .5m ≥D .5m >7.有以下四个命题中,正确的命题是( ). A .反比例函数2y x=-,当x>-2时,y 随x 的增大而增大 B .抛物线222y x x =-+与两坐标轴无交点 C .垂直于弦的直径平分这条弦,且平分弦所对的弧 D .有一个角相等的两个等腰三角形相似8.已知A ,B 两地相距120千米,甲、乙两人沿同一条公路从A 地出发到B 地,乙骑自行车,甲骑摩托车,图中DE ,OC 分别表示甲、乙离开A 地的路程s (单位:千米)与时间t (单位:小时)的函数关系的图象,设在这个过程中,甲、乙两人相距y (单位:千米),则y 关于t 的函数图象是( )A .B .C .D .9.如图,等腰直角ABC ∆中,AC BC =,90ACB ∠=︒,点O 在斜边AB 上,且满足:1:3BO OA =,将BOC ∆绕C 点顺时针方向旋转到AQC ∆的位置,则AQC ∠的大小为( )A .100︒B .105︒C .120︒D .135︒10.如图,点O 是等边三角形ABC 内的一点,BOC=150∠︒,将BCO ∆绕点C 按顺时针旋转60︒得到ACD ∆,则下列结论不正确的是( )A.BO=ADB.DOC=60∠︒C.OD AD ⊥D.OD//AB11.下列语句所描述的事件是随机事件的是( ) A.任意画一个五边形,其内角和为360o B.经过任意两点画一条直线 C.任意画一个菱形,是中心对称图形 D.过平面内任意三点画一个圆12.下列说法正确的是( )A .为了解航天员视力的达标情况应采用抽样调查方式B .一组数据3,6,7,6,9的中位数是7C .正方体的截面形状一定是四边形D .400人中一定有两个人的生日在同一天是必然事件 二、填空题13.如图,扇形OAB 的圆心角为120°,半径为3 cm ,则该扇形的弧长为___cm ,面积为___2cm .(结果保留π)14.如图,在边长为3的正方形ABCD 中,点E 是BC 边上的点,EC=2,∠AEP=90°,且EP 交正方形外角的平分线CP 于点P ,则PC 的长为_____.15.如图,矩形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B (20,53-),D 是AB 边上的一点.将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图像上,那么k 的值是_______16.如图,有一条折线A 1B 1A 2B 2A 3B 3A 4B 4…,它是由过A 1(0,0),B 1(2,2),A 2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n (n≥1,且为整数)个交点,则k 的值为______.172(3)-38-.18.2019年3月5日,李克强总理在政府工作报告中指出,去年农村贫困人口减少1386万,1386万用科学记数法表示为_____. 三、解答题19.如图,AB 为⊙O 的直径,点C ,D 在⊙O 上,且点C 是»BD的中点.连接AC ,过点C 作⊙O 的切线EF 交射线AD 于点 E . (1)求证:AE ⊥EF ; (2)连接BC .若AE =165,AB =5,求BC 的长.20.蔬菜基地为选出适应市场需求的西红柿秧苗,在条件基本相同的情况下,将甲、乙两个品种的西红柿秧苗各500株种植在同一个大棚.对市场最为关注的产量进行了抽样调查,随机从甲、乙两个品种的西红柿秧苗中各收集了50株秧苗上的挂果数(西红柿的个数),并对数据(个数)进行整理、描述和分析,下面给出了部分信息.a. 甲品种挂果数频数分布直方图(数据分成6组:25≤x<35,35≤x<45,45≤x<55,55≤x<65,65≤x<75,75≤x<85).b. 甲品种挂果数在45≤x<55这一组的是:45,45,46,47,47,49,49,49,49,50,50,51,51,54c. 甲、乙品种挂果数的平均数、中位数、众数如下:品种平均数中位数众数方差甲49.4 m 49 1944.2乙48.6 48.5 47 3047(1)表中m= ;(2)试估计甲品种挂果数超过49个的西红柿秧苗的数量;(3)可以推断出品种的西红柿秧苗更适应市场需求,理由为(至少从两个不同的角度说明推断的合理性).21.程大位,明代珠算发明家,被称为珠算之父,卷尺之父.六十岁时完成其杰作《算法统宗》,其中有这样一道题,其大意为:有一群人分银子,如果每人分七两,则剩余四两,如果每人分九两,则还差八两.请问:这一群人共有多少人?所分的银子共有多少两?22.问题提出(1)如图①,在等腰Rt△ABC中,斜边AC=4,点D为AC上一点,连接BD,则BD的最小值为;问题探究(2)如图②,在△ABC中,AB=AC=5,BC=6,点M是BC上一点,且BM=4,点P是边AB上一动点,连接PM,将△BPM沿PM翻折得到△DPM,点D与点B对应,连接AD,求AD的最小值;问题解决(3)如图③,四边形ABCD 是规划中的休闲广场示意图,其中∠BAD =∠ADC =135°,∠DCB =30°,AD =22km ,AB =3km ,点M 是BC 上一点,MC =4km .现计划在四边形ABCD 内选取一点P ,把△DCP 建成商业活动区,其余部分建成景观绿化区.为方便进入商业区,需修建小路BP 、MP ,从实用和美观的角度,要求满足∠PMB =∠ABP ,且景观绿化区面积足够大,即△DCP 区域面积尽可能小.则在四边形ABCD 内是否存在这样的点P ?若存在,请求出△DCP 面积的最小值;若不存在,请说明理由.23.计算:021(2019)12()2π---+-24.现有A 、B 型两种客车,它们的载客量和租金如下表:A 型客车B 型客车载客量/(人/辆) 4530 租金/(元/辆)400280(Ⅰ)设租用A 型客车x 辆(x 为非负整数),根据题意,用含x 的式子填写下表:车辆数/辆载客量租金/元A 型客车x 45x400xB 型客车5x -25.(探究)(1)观察下列算式,并完成填空: 1=121+3=4=22; 1+3+5=9=32; 1+3+5+7=16=42;1+3+5+…+(2n-1)=______.(n 是正整数)(2)如图是某市一广场用正六边形、正方形和正三角形地板砖铺设的图案,图案中央是一块正六边形地板砖,周围是正方形和正三角形的地板砖.从里向外第一层包括6块正方形和6块正三角形地板砖;第二层包括6块正方形和18块正三角形地板砖;以此递推.①第3层中分别含有______块正方形和______块正三角形地板砖;②第n层中含有______块正三角形地板砖(用含n的代数式表示).(应用)该市打算在一个新建广场中央,采用如图样式的图案铺设地面,现有1块正六边形、150块正方形和420块正三角形地板砖,问:铺设这样的图案,最多能铺多少层?请说明理由.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D B A A B A C B B D D D13.π , 3π14.215.-1216.12n -.17.18.386×107.三、解答题19.(1)证明见解析;(2)3.【解析】【分析】(1)连接OC,根据等腰三角形的性质、平行线的判定得到OC∥AE,得到OC⊥EF,结论可得证;(2)证明△AEC∽△ACB,根据相似三角形的性质列出比例式,计算AC后即可用勾股定理得BC的长.【详解】(1)连接 OC.∵OA=OC,∴∠1=∠2.∵点C是»BD的中点.∴∠1=∠3.∴∠3=∠2.∴AE∥OC.∵EF是⊙O的切线,∴OC⊥EF.(2)∵AB为⊙O 的直径,∴∠ACB=90°.∵AE⊥EF,∴∠AEC=90°.又∵∠1=∠3,∴△AEC∽△ACB.∴AC AE AB AC=,∴AC2=AE•AB=165×5=16.∴AC=4.∵AB=5,∴BC==3.【点睛】本题考查的是切线的性质、圆周角定理以及相似三角形的判定和性质,掌握切线的性质定理、直径所对的圆周角是直角是解题的关键.20.(1)m = 50.5; (2)估计甲品种挂果数超过49个的小西红柿秧苗的数量有270株;(3)甲,理由为:①甲品种挂果数的平均数高,说明甲品种平均产量高;②甲品种挂果数的中位数比乙高,说明甲品种有一半秧苗的产量高于乙品种;③甲品种产量的方差小于乙品种,说明甲品种的产量比较稳定,挂果数相差不大.【解析】【分析】(1)根据中位数和众数的含义:把这组数按从小到大的顺序排列,因为数的个数是偶数个(50个),即中间两个数(25和26个数)的平均数是中位数;(2)样品中,甲品种挂果数超过49个的西红柿秧苗有27株,由样本估计总体可得答案;(3)根据平均数、中位数、方差等数据的比较可以得出甲品种更适应市场需求.【详解】(1) 把这组数按从小到大的顺序排列,因为数的个数是偶数个(50个),即中间两个数(25和26个数)的平均数= 50512+=50.5,故中位数m=50.5;(2)样品中,甲品种挂果数超过49个的西红柿秧苗有27株,2750027050⨯=∴估计甲品种挂果数超过49个的小西红柿秧苗的数量有270株.(3)可以推断出甲品种的小西红柿秧苗更适应市场需求,理由为:①甲品种挂果数的平均数高,说明甲品种平均产量高;②甲品种挂果数的中位数比乙高,说明甲品种有一半秧苗的产量高于乙品种;③甲品种产量的方差小于乙品种,说明甲品种的产量比较稳定,挂果数相差不大.【点睛】本题考查了平均数、中位数以及众数和方差,掌握众数、中位数以及平均数、方差的定义以及用样本估计总体思想是解题的关键.21.这一群人共有6人,所分的银子共有46两【分析】可设有x 人,根据有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,根据所分的银子的总两数相等可列出方程,求解即可. 【详解】设有x 人,依题意有. 7x+4=9x-8,. 解得x=6,. 7x+4=42+4=46.答:这一群人共有6人,所分的银子共有46两. 【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目中所分的银子的总两数相等的等量关系列出方程,再求解.22.(1)2;(2)174 ;(3) 存在点P ,使得△DCP 的面积最小,△DCP 面积的最小值是(293﹣20)km 2. 【解析】 【分析】(1)如图1,当BD ⊥AC 时,BD 的值最小,根据直角三角形斜边中线的性质可得结论;(2)如图2,根据BM =DM 可知:点D 在以M 为圆心,BM 为半径的⊙M 上,连接AM 交⊙M 于点D',此时AD 值最小,计算AM 和半径D'M 的长,可得AD 的最小值;(3)如图3,先确定点P 的位置,再求△DCP 的面积;假设在四边形ABCD 中存在点P ,以BM 为边向下作等边△BMF ,可知:A 、F 、M 、P 四点共圆,作△BMF 的外接圆⊙O ,圆外一点与圆心的连线的交点就是点P 的位置,并构建直角三角形,计算CD 和PQ 的长,由三角形的面积公式可求得面积. 【详解】解:(1)当BD ⊥AC 时,如图1,∵AB =BC , ∴D 是AC 的中点, ∴BD =12AC =12×4=2,即BD 的最小值是2; 故答案为:2;(2)如图2,由题意得:DM =MB ,∴点D 在以M 为圆心,BM 为半径的⊙M 上,连接AM 交⊙M 于点D',此时AD 值最小,过A作AE⊥BC于E,∵AB=AC=5,∴BE=EC=12BC=1632⨯=,由勾股定理得:AE=2253-=4,∵BM=4,∴EM=4﹣3=1,∴AM=2217AE EM+=,∵D'M=BM=4,∴AD'=AM﹣D'M=17﹣4,即线段AD长的最小值是17﹣4;(3)如图3,假设在四边形ABCD中存在点P,∵∠BAD=∠ADC=135°,∠DCB=30°,∴∠ABC=360°﹣∠BAD﹣∠ADC﹣∠DCB=60°,∵∠PMB=∠ABP,∴∠BPM=180°﹣∠PBM﹣∠PMB=180°﹣(∠PBM+∠ABP)=180°﹣∠ABC=120°,以BM为边向下作等边△BMF,作△BMF的外接圆⊙O,∵∠BFM+∠BPM=60°+120°=180°,则点P在¼BM上,过O作OQ⊥CD于Q,交⊙O于点P,设点P'是¼BM上任意一点,连接OP',过P'作P'H⊥CD于H,可得OP'+P'H≥OQ=OP+PQ,即P'H≥PQ,∴P 即为所求的位置, 延长CD ,BA 交于点E ,∵∠BAD =∠ADC =135°,∠DCB =30°,∠ABC =60°, ∴∠E =90°,∠EAD =∠EDA =45°,∵AD =, ∴AE =DE =2,∴BE =AE+AB =5,BC =2BE =10,CE =,∴BM =BC ﹣MC =6,CD =﹣2, 过O 作OG ⊥BM 于G ,∵∠BOM =2∠BFM =120°,OB =OM , ∴∠OBM =30°,∴∠ABO =∠ABM+∠MBO =90°,OB cos30BG︒= =,∴∠E =∠ABO =∠OQE =90°, ∴四边形OBEQ 是矩形, ∴OQ =BE =5,∴PQ =OQ ﹣OP =5﹣∴S △DPC =11(52)222PQ CD ⋅=-=﹣20,∴存在点P ,使得△DCP 的面积最小,△DCP ﹣20)km 2. 【点睛】本题是四边形与圆的综合题,有难度,考查三角形的面积,等腰直角三角形的判定和性质,等边三角形,矩形的判定和性质,圆的有关性质等知识,解题的关键是学会添加常用辅助线,构造圆来解决问题,属于中考常考题型.23.5-【解析】 【分析】运用负指数幂、零次方以及二次根式的化简的知识进行化简,然后计算即可. 【详解】解:原式=1- 【点睛】本题考查了负指数幂、零次方以及二次根式的化简,其解题关键在于运用相关知识对原式进行化简. 24.(Ⅰ)15030,1400280x x --;(Ⅱ)能完成此项任务的最节省费用的租车方案 是A 型客车3辆,B 型客车2辆 【解析】 【分析】(Ⅰ)B 型客车载客量=车辆数×每辆车载客量;B 型客车租金=车辆数×每辆车租金(Ⅱ)当租用A 型客车x 辆(x 为非负整数)时,设租车总费用为y 元,则两种客车的总费用为y=400x+280(5-x)=120x+1400,为使195名九年级师生有车坐,x 不能小于3;为使租车费用不超过1900元,x 不能超过4,即可求解 【详解】(Ⅰ)150-30x,1400-280x.(Ⅱ)能完成此项任务的最节省费用的租车方案是A型客车3辆,B型客车2辆.理由:当租用A型客车x辆(x为非负整数)时,设租车总费用为y元,则两种客车的总费用为y=400x+280(5-x)=120x+1400;为使195名九年级师生有车坐,x不能小于3;为使租车费用不超过1900元,x不能超过4.综合起来可知x的取值为3或4.∵120>0,∴在函数y=4120x+1400中,y随x的增大而增大.∴当x=3时,y取得最小值.即能完成此项任务的最节省费用的租车方案是A型客车3辆,B型客车2辆.【点睛】此题主要考查一次函数的应用,准确找到自变量的范围是解题关键25.【探究】n2;(2)① 6,30;②6(2n-1)或12n-6;【应用】铺设这样的图案,最多能铺8层,理由见解析【解析】【分析】一.探究(1)观察算式规律,1+3+5+…+(2n-1)=n2;(2)①第一层6块正方形和6块正三角形地板砖,第二层6块正方形和6+12=18块正三角形地板砖,第三层6块正方形和18+12=30块正三角形地板砖;②第一层6=6×1=6×(2×1-1)块正三角形地板砖,第二层18=6×3=6×(2×2-1)块正三角形地板砖,第三层30=6×5=6×(2×3-1)块正三角形地板砖,第n层6=6×1=6(2n-1)块正三角形地板砖,二.应用150块正方形地板砖可以铺设这样的图案150÷6=25(层),铺设n层需要正三角形地板砖的数量为:6[1+3+5+…+(2n-1)]=6n2,6n2=420,n2=70,,8<n<9,所以420块正三角形地板砖最多可以铺设这样的图案8层.因此铺设这样的图案,最多能铺8层.【详解】解:一.探究(1)观察算式规律,1+3+5+…+(2n-1)=n2,故答案为n2;(2)①∵第一层包括6块正方形和6块正三角形地板砖,第二层包括6块正方形和6+12=18块正三角形地板砖,∴第三层包括6块正方形和18+12=30块正三角形地板砖,故答案为6,30;②∵第一层6=6×1=6×(2×1-1)块正三角形地板砖,第二层18=6×3=6×(2×2-1)块正三角形地板砖,第三层30=6×5=6×(2×3-1)块正三角形地板砖,∴第n层6=6×1=6(2n-1)块正三角形地板砖,故答案为6(2n-1)或12n-6.二.应用铺设这样的图案,最多能铺8层.理由如下:∵150÷6=25(层),∴150块正方形地板砖可以铺设这样的图案25层;∵铺设n层需要正三角形地板砖的数量为:6[1+3+5+…+(2n-1)]=6n2,∴6n2=420,n2=70,.又∵8<9,即8<n<9,∴420块正三角形地板砖最多可以铺设这样的图案8层.∴铺设这样的图案,最多能铺8层.【点睛】本题考查了图形的变化规律列代数式,正确找出图形变化规律是解题的关键.2019-2020学年数学中考模拟试卷一、选择题1.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第10个图案由( )个▲组成.A .30B .31C .32D .332.某社区青年志愿者小分队年龄情况如下表所示: 年龄(岁) 18 19 20 21 22 人数25221A .2,20岁B .2,19岁C .19岁,20岁D .19岁,19岁3.下列函数中,对于任意实数x ,y 随x 的增大而减小的是( ). A.y=xB.y=C.y=-x+2D.y=2x 24.如图,在ΔABC 中,AB AC =,AD BC ⊥,垂足为D ,E 是AC 的中点.若DE 5=,则AB 的长为( )A .2.5B .7.5C .8.5D .105.如图,△ABC 纸片中,AB =BC >AC ,点D 是AB 边的中点,点E 在边AC 上,将纸片沿DE 折叠,使点A 落在BC 边上的点F 处.则下列结论成立的个数有( )①△BDF 是等腰直角三角形;②∠DFE =∠CFE ;③DE 是△ABC 的中位线;④BF+CE =DF+DE .A.1个B.2个C.3个D.4个6.下列计算正确的是( ) A.221aa -=-B.()()2220m m m m +-=≠C.1155155⨯⨯⎛⎫-+-= ⎪⎝⎭()3322--7.如图,已知菱形ABCD 的对角线AC 、BD 的长分别是6cm 、8cm ,AE ⊥BC ,垂足为点E ,则AE 的长是( )。
山东省济宁市2019-2020学年中考五诊数学试题含解析
山东省济宁市2019-2020学年中考五诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.-5的相反数是()A.5 B.15C.5D.152.下列说法正确的是()A.某工厂质检员检测某批灯泡的使用寿命采用普查法B.已知一组数据1,a,4,4,9,它的平均数是4,则这组数据的方差是7.6C.12名同学中有两人的出生月份相同是必然事件D.在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是1 33.下列几何体中,俯视图为三角形的是( )A.B.C.D.4.如图,A,C,E,G四点在同一直线上,分别以线段AC,CE,EG为边在AG同侧作等边三角形△ABC,△CDE,△EFG,连接AF,分别交BC,DC,DE于点H,I,J,若AC=1,CE=2,EG=3,则△DIJ的面积是()A.3B.3C.12D.35.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为()A.26×105B.2.6×102C.2.6×106D.260×1046.如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠DEA=()A.40°B.110°C.70°D.140°7.如图,一束平行太阳光线FA、GB照射到正五边形ABCDE上,∠ABG=46°,则∠FAE的度数是()A .26°.B .44°.C .46°.D .72°8.下列各数中最小的是( )A .0B .1C .﹣3D .﹣π9.如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=50°,∠3=120°,则∠2的度数为( )A .80°B .70°C .60°D .50°10.如图,二次函数y=ax 2+bx+c (a≠0)的图象与x 轴的正半轴相交于A ,B 两点,与y 轴相交于点C ,对称轴为直线x=2,且OA=OC .有下列结论:①abc <0;②3b+4c <0;③c >﹣1;④关于x 的方程ax 2+bx+c=0有一个根为﹣1a,其中正确的结论个数是( )A .1B .2C .3D .411.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( ) A .23(2)3y x =++ B .23(2)3y x =-+ C .23(2)3y x =+- D .23(2)3y x =--12.如图,在ABC V 中,点D 、E 、F 分别在边AB 、BC 、CA 上,且DE CA P ,DF BA P .下列四种说法: ①四边形AEDF 是平行四边形;②如果90BAC ∠=o ,那么四边形AEDF 是矩形;③如果AD 平分BAC ∠,那么四边形AEDF 是菱形;④如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形. 其中,正确的有( ) 个A .1B .2C .3D .4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在Rt AOB ∆中,42OA OB ==.O e 的半径为2,点P 是AB 边上的动点,过点P 作O e 的一条切线PQ (点Q 为切点),则线段PQ 长的最小值为______.14.已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______. 15.用配方法解方程3x 2﹣6x+1=0,则方程可变形为(x ﹣__)2=__.16.已知一组数据3,4,6,x ,9的平均数是6,那么这组数据的方差等于________.17.若反比例函数k y x=的图象与一次函数y=ax+b 的图象交于点A (﹣2,m )、B (5,n ),则3a+b 的值等于_____. 18.已知反比例函数y=k x在第二象限内的图象如图,经过图象上两点A 、E 分别引y 轴与x 轴的垂线,交于点C ,且与y 轴与x 轴分别交于点M 、B .连接OC 交反比例函数图象于点D ,且12CD OD =,连接OA ,OE ,如果△AOC 的面积是15,则△ADC 与△BOE 的面积和为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)鲜丰水果店计划用12元/盒的进价购进一款水果礼盒以备销售.()1据调查,当该种水果礼盒的售价为14元/盒时,月销量为980盒,每盒售价每增长1元,月销量就相应减少30盒,若使水果礼盒的月销量不低于800盒,每盒售价应不高于多少元?()2在实际销售时,由于天气和运输的原因,每盒水果礼盒的进价提高了25%,而每盒水果礼盒的售价比(1)中最高售价减少了1%5m ,月销量比(1)中最低月销量800盒增加了%m ,结果该月水果店销售该水果礼盒的利润达到了4000元,求m 的值.20.(6分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.21.(6分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:()1这次统计共抽查了______名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为______; ()2将条形统计图补充完整;()3该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名.22.(8分)如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为BC 边上的点,AB=BD ,反比例函数()0k y k x =≠在第一象限内的图象经过点D (m ,2)和AB 边上的点E (n ,23). (1)求m 、n 的值和反比例函数的表达式.(2)将矩形OABC 的一角折叠,使点O 与点D 重合,折痕分别与x 轴,y 轴正半轴交于点F ,G ,求线段FG 的长.23.(8分)反比例函数y=k x(k≠0)与一次函数y=mx+b (m≠0)交于点A (1,2k ﹣1).求反比例函数的解析式;若一次函数与x 轴交于点B ,且△AOB 的面积为3,求一次函数的解析式.24.(10分)如图,在平面直角坐标系中,等边三角形ABC 的顶点B 与原点O 重合,点C 在x 轴上,点C 坐标为(6,0),等边三角形ABC 的三边上有三个动点D 、E 、F (不考虑与A 、B 、C 重合),点D 从A 向B 运动,点E 从B 向C 运动,点F 从C 向A 运动,三点同时运动,到终点结束,且速度均为1cm/s ,设运动的时间为ts ,解答下列问题:(1)求证:如图①,不论t 如何变化,△DEF 始终为等边三角形.(2)如图②过点E作EQ∥AB,交AC于点Q,设△AEQ的面积为S,求S与t的函数关系式及t为何值时△AEQ的面积最大?求出这个最大值.(3)在(2)的条件下,当△AEQ的面积最大时,平面内是否存在一点P,使A、D、Q、P构成的四边形是菱形,若存在请直接写出P坐标,若不存在请说明理由?25.(10分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF试说明AC=EF;求证:四边形ADFE是平行四边形.26.(12分)在“打造青山绿山,建设美丽中国”的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具,下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A 30人/辆380元/辆B 20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式。
山东省济宁市2019-2020学年中考三诊数学试题含解析
山东省济宁市2019-2020学年中考三诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知AB和CD是⊙O的两条等弦.OM⊥AB,ON⊥CD,垂足分别为点M、N,BA、DC的延长线交于点P,联结OP.下列四个说法中:①AB CD=n n;②OM=ON;③PA=PC;④∠BPO=∠DPO,正确的个数是()A.1 B.2 C.3 D.42.李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:阅读时间(小时) 2 2.5 3 3.5 4学生人数(名) 1 2 8 6 3则关于这20名学生阅读小时数的说法正确的是()A.众数是8 B.中位数是3C.平均数是3 D.方差是0.343.如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为()A.15m B.25m C.30m D.20m4.已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是()A.20cm2 B.20πcm2C.10πcm2D.5πcm25.化简:(a+343aa--)(1﹣12a-)的结果等于()A.a﹣2 B.a+2 C.23aa--D.32aa--6.如图,PB切⊙O于点B,PO交⊙O于点E,延长PO交⊙O于点A,连结AB,⊙O的半径OD⊥AB 于点C,BP=6,∠P=30°,则CD的长度是()A.3B.3C.3D.237.如图,点A是反比例函数y=kx的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是()A.3 B.﹣3 C.6 D.﹣68.在国家“一带一路”倡议下,我国与欧洲开通了互利互惠的中欧专列.行程最长,途经城市和国家最多的一趟专列全程长13000 km,将13000用科学记数法表示应为( )A.0.13×105B.1.3×104C.1.3×105D.13×1039.在一组数据:1,2,4,5中加入一个新数3之后,新数据与原数据相比,下列说法正确的是()A.中位数不变,方差不变B.中位数变大,方差不变C.中位数变小,方差变小D.中位数不变,方差变小10.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④11.-5的倒数是A.15B.5 C.-15D.-512.如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A 11B 11C 11D 11E 11F 11的边长为( )A.92432 B.98132C .82432 D .88132二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.如图,在△ABC 中,DE ∥BC ,EF ∥AB .若AD=2BD ,则CFBF的值等于_____14.若关于x 的一元二次方程x 2+2x ﹣m 2﹣m=0(m >0),当m=1、2、3、…、2018时,相应的一元二次方程的两个根分别记为α1、β1,α2、β2,…,α2018、β2018,则:112220182018111111...αβαβαβ++++++的值为_____.15.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?” 译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为_____.1664_____.17.如图,Rt △ABC 中,∠ABC =90°,AB =BC ,直线l 1、l 2、l 1分别通过A 、B 、C 三点,且l 1∥l 2∥l 1.若l 1与l 2的距离为5,l 2与l 1的距离为7,则Rt △ABC 的面积为___________18.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平行四边形ABCD中,DB⊥AB,点E是BC边的中点,过点E作EF⊥CD,垂足为F,交AB的延长线于点G.(1)求证:四边形BDFG是矩形;(2)若AE平分∠BAD,求tan∠BAE的值.20.(6分)某数学教师为了解所教班级学生完成数学课前预习的具体情况,对该班部分学生进行了一学期的跟踪调查,将调查结果分为四类并给出相应分数,A:很好,95分;B:较好75分;C:一般,60分;D:较差,30分.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(Ⅰ)该教师调查的总人数为,图②中的m值为;(Ⅱ)求样本中分数值的平均数、众数和中位数.21.(6分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y (千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:当轿车刚到乙地时,此时货车距离乙地千米;当轿车与货车相遇时,求此时x的值;在两车行驶过程中,当轿车与货车相距20千米时,求x的值.22.(8分)如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).(1)求该抛物线的解析式;(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.23.(8分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF试说明AC=EF;求证:四边形ADFE是平行四边形.24.(10分)先化简,再选择一个你喜欢的数(要合适哦!)代入求值:.25.(10分)如图,在正方形ABCD的外部,分别以CD,AD为底作等腰Rt△CDE、等腰Rt△DAF,连接AE、CF,交点为O.(1)求证:△CDF≌△ADE;(2)若AF=1,求四边形ABCO的周长.26.(12分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.(1)这次调查的市民人数为________人,m=________,n=________;(2)补全条形统计图;(3)若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.27.(12分)如图,在等腰直角△ABC中,∠C是直角,点A在直线MN上,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.(1)如图1,当C,B两点均在直线MN的上方时,①直接写出线段AE,BF与CE的数量关系.②猜测线段AF,BF与CE的数量关系,不必写出证明过程.(2)将等腰直角△ABC绕着点A顺时针旋转至图2位置时,线段AF,BF与CE又有怎样的数量关系,请写出你的猜想,并写出证明过程.(3)将等腰直角△ABC绕着点A继续旋转至图3位置时,BF与AC交于点G,若AF=3,BF=7,直接写出FG的长度.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】如图连接OB、OD;∵AB=CD,∴»AB=»CD,故①正确∵OM⊥AB,ON⊥CD,∴AM=MB,CN=ND,∴BM=DN,∵OB=OD,∴Rt△OMB≌Rt△OND,∴OM=ON,故②正确,∴Rt△OPM≌Rt△OPN,∴PM=PN,∠OPB=∠OPD,故④正确,∵AM=CN,∴PA=PC,故③正确,故选D.2.B【解析】【分析】A、根据众数的定义找出出现次数最多的数;B、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;C、根据加权平均数公式代入计算可得;D、根据方差公式计算即可.【详解】解:A、由统计表得:众数为3,不是8,所以此选项不正确;B、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;C、平均数=122 2.5386 3.5433.3520⨯+⨯+⨯+⨯+⨯=,所以此选项不正确;D、S2=120×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]=5.6520=0.2825,所以此选项不正确;故选B.【点睛】本题考查方差;加权平均数;中位数;众数.3.D【解析】【分析】根据三角形的中位线定理即可得到结果.【详解】解:由题意得AB=2DE=20cm,故选D.【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.4.C圆锥的侧面积=底面周长×母线长÷2,把相应数值代入,圆锥的侧面积=2π×2×5÷2=10π.故答案为C5.B【解析】【分析】【详解】解:原式=(3)342132a a a aa a-+---⋅--=24332a aa a--⋅--=(2)(2)332a a aa a+--⋅--=2a+.故选B.考点:分式的混合运算.6.C【解析】【分析】连接OB,根据切线的性质与三角函数得到∠POB=60°,OB=OD=23,再根据等腰三角形的性质与三角函数得到OC的长,即可得到CD的长.【详解】解:如图,连接OB,∵PB切⊙O于点B,∴∠OBP=90°,∵BP=6,∠P=30°,∴∠POB=60°,OD=OB=BPtan30°=6×333∵OA=OB,∴∠OAB=∠OBA=30°,∵OD⊥AB,∴∠OCB=90°,∴∠OBC=30°,则OC=12OB=3,∴CD=3.故选:C.【点睛】本题主要考查切线的性质与锐角的三角函数,解此题的关键在于利用切线的性质得到相关线段与角度的值,再根据圆和等腰三角形的性质求解即可.7.D【解析】试题分析:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故选D.考点:反比例函数系数k的几何意义.8.B【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.将13000用科学记数法表示为:1.3×1.故选B.考点:科学记数法—表示较大的数9.D【解析】【分析】根据中位数和方差的定义分别计算出原数据和新数据的中位数和方差,从而做出判断.【详解】∵原数据的中位数是=3,平均数为=3,∴方差为×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=;∵新数据的中位数为3,平均数为=3,∴方差为×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2;所以新数据与原数据相比中位数不变,方差变小,故选:D.【点睛】本题考查了中位数和方差,解题的关键是掌握中位数和方差的定义.10.D【解析】【分析】根据E点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解. 【详解】E点有4中情况,分四种情况讨论如下:由AB∥CD,可得∠AOC=∠DCE1=β∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α过点E2作AB的平行线,由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β∴∠AE2C=α+β由AB∥CD,可得∠BOE3=∠DCE3=β∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α-β由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°-α-β∴∠AEC的度数可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故选D.【点睛】此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论. 11.C【解析】【分析】若两个数的乘积是1,我们就称这两个数互为倒数.【详解】解:5的倒数是15 .故选C.12.A【解析】分析:连接OE1,OD1,OD2,如图,根据正六边形的性质得∠E1OD1=60°,则△E1OD1为等边三角形,再根据切线的性质得OD2⊥E1D1,于是可得OD2=3E1D1=3×2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=3×2,同理可得正六边形A3B3C3D3E3F3的边长=(3)2×2,依此规律可得正六边形A11B11C11D11E11F11的边长=(32)10×2,然后化简即可.详解:连接OE1,OD1,OD2,如图,∵六边形A1B1C1D1E1F1为正六边形,∴∠E1OD1=60°,∴△E1OD1为等边三角形,∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,∴OD2⊥E1D1,∴OD21D12,∴正六边形A2B2C2D2E2F2的边长2,同理可得正六边形A3B3C3D3E3F3的边长=(2)2×2,则正六边形A11B11C11D11E11F11的边长=(2)10×2=92432.故选A.点睛:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1 2【解析】【分析】根据平行线分线段成比例定理解答即可.【详解】解:∵DE∥BC,AD=2BD,∴123 CE CE BDAC AE BD BD===+,∵EF∥AB,∴132 CF CE CE CEBF AE AC CE CE CE====--,故答案为1 2 .【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.14.4036 2019.【解析】【分析】利用根与系数的关系得到α1+β1=-2,α1β1=-1×2;α2+β2=-2,α2β2=-2×3;…α2018+β2018=-2,α2018β2018=-2018×1.把原式变形,再代入,即可求出答案.【详解】∵x 2+2x-m 2-m=0,m=1,2,3, (2018)∴由根与系数的关系得:α1+β1=-2,α1β1=-1×2;α2+β2=-2,α2β2=-2×3;…α2018+β2018=-2,α2018β2018=-2018×1.∴原式=3320182018112211223320182018αβαβαβαβαβαβαβαβ+++++++⋯+ =222212233420182019+++⋯+⨯⨯⨯⨯ =2×(111111112233420182019-+-+-+⋯+-) =2×(1-12019) =40362019, 故答案为40362019. 【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a. 15.5210258x y x y +=⎧⎨+=⎩【解析】试题分析:根据“5头牛,2只羊,值金10两;2头牛、5只羊,值金8两.”列方程组即可.考点:二元一次方程组的应用16.【解析】,(2=8,故答案为:.17.17【解析】过点B作EF⊥l2,交l1于E,交l1于F,如图,∵EF⊥l2,l1∥l2∥l1,∴EF⊥l1⊥l1,∴∠ABE+∠EAB=90°,∠AEB=∠BFC=90°,又∵∠ABC=90°,∴∠ABE+∠FBC=90°,∴∠EAB=∠FBC,在△ABE和△BCF中,{AEB BFC EAB FCB AB BC∠=∠∠=∠=,∴△ABE≌△BCF,∴BE=CF=5,AE=BF=7,在Rt△ABE中,AB2=BE2+AE2,∴AB2=74,∴S△ABC=12AB⋅BC=12AB2=17.故答案是17.点睛:本题考查了全等三角形的判定和性质、勾股定理、平行线间的距离,三角形的面积公式,解题的关键是做辅助线,构造全等三角形,通过证明三角形全等对应边相等,再利用三角形的面积公式即可得解. 18.小李.【解析】【分析】【详解】解:根据图中的信息找出波动性大的即可:根据图中的信息可知,小李的成绩波动性大,则这两人中的新手是小李.故答案为:小李.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)3 tan3BAE∠=【解析】【分析】(1)根据矩形的判定证明即可;(2)根据平行四边形的性质和等边三角形的性质解答即可.【详解】证明:(1)∵BD⊥AB,EF⊥CD,∴∠ABD=90°,∠EFD=90°,根据题意,在▱ABCD中,AB∥CD,∴∠BDC=∠ABD=90°,∴BD∥GF,∴四边形BDFG为平行四边形,∵∠BDC=90°,∴四边形BDFG为矩形;(2)∵AE平分∠BAD,∴∠BAE=∠DAE,∵AD∥BC,∴∠BEA=∠DAE,∴∠BAE=∠BEA,∴BA=BE,∵在Rt△BCD中,点E为BC边的中点,∴BE=ED=EC,∵在▱ABCD中,AB=CD,∴△ECD为等边三角形,∠C=60°,∴1302BAE BAD∠=∠=︒,∴tan BAE∠=【点睛】本题考查了矩形的判定、等边三角形的判定和性质,根据平行四边形的性质和等边三角形的性质解答是解题关键.20.(Ⅰ)25、40;(Ⅱ)平均数为68.2分,众数为75分,中位数为75分.【解析】【分析】(1)由直方图可知A的总人数为5,再依据其所占比例20%可求解总人数;由直方图中B的人数为10及总人数可知m 的值;(2)根据平均数、众数和中位数的定义求解即可.【详解】(Ⅰ)该教师调查的总人数为(2+3)÷20%=25(人), m%=×100%=40%,即m=40,故答案为:25、40;(Ⅱ)由条形图知95分的有5人、75分的有10人、60分的有6人、30分的有4人, 则样本分知的平均数为955751060630468.225⨯+⨯+⨯+⨯=(分), 众数为75分,中位数为第13个数据,即75分.【点睛】理解两幅统计图中各数据的含义及其对应关系是解题关键.21.(1)30;(2)当x =3.9时,轿车与货车相遇;(3)在两车行驶过程中,当轿车与货车相距20千米时,x 的值为3.5或4.3小时.【解析】【分析】(1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为:300﹣270=30千米;(2)先求出线段CD 对应的函数关系式,再根据两直线的交点即可解答;(3)分两种情形列出方程即可解决问题.【详解】解:(1)根据图象信息:货车的速度V 货=300605=, ∵轿车到达乙地的时间为货车出发后4.5小时,∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),此时,货车距乙地的路程为:300﹣270=30(千米).所以轿车到达乙地后,货车距乙地30千米.故答案为30;(2)设CD 段函数解析式为y =kx+b (k≠0)(2.5≤x≤4.5).∵C (2.5,80),D (4.5,300)在其图象上,2.5804.5300k b k b +=⎧⎨+=⎩,解得110195k b =⎧⎨=-⎩, ∴CD 段函数解析式:y =110x ﹣195(2.5≤x≤4.5);易得OA :y =60x ,11019560y x y x =-⎧⎨=⎩,解得 3.9234x y ==, ∴当x =3.9时,轿车与货车相遇;(3)当x =2.5时,y 货=150,两车相距=150﹣80=70>20,由题意60x ﹣(110x ﹣195)=20或110x ﹣195﹣60x =20,解得x =3.5或4.3小时.答:在两车行驶过程中,当轿车与货车相距20千米时,x 的值为3.5或4.3小时.【点睛】本题考查了一次函数的应用,对一次函数图象的意义的理解,待定系数法求一次函数的解析式的运用,行程问题中路程=速度×时间的运用,本题有一定难度,其中求出货车与轿车的速度是解题的关键. 22.(1)y=﹣2142x x ++;(1)点K 的坐标为(817,0);(2)点P 的坐标为:(1)或(1,1)或(,2)或(1,2).【解析】试题分析:(1)把A 、C 两点坐标代入抛物线解析式可求得a 、c 的值,可求得抛物线解析;(1)可求得点C 关于x 轴的对称点C′的坐标,连接C′N 交x 轴于点K ,再求得直线C′K 的解析式,可求得K 点坐标;(2)过点E 作EG ⊥x 轴于点G ,设Q (m ,0),可表示出AB 、BQ ,再证明△BQE ≌△BAC ,可表示出EG ,可得出△CQE 关于m 的解析式,再根据二次函数的性质可求得Q 点的坐标;(4)分DO=DF 、FO=FD 和OD=OF 三种情况,分别根据等腰三角形的性质求得F 点的坐标,进一步求得P 点坐标即可.试题解析:(1)∵抛物线经过点C (0,4),A (4,0),∴416840c a a =⎧⎨-+=⎩,解得124a c ⎧=-⎪⎨⎪=⎩ , ∴抛物线解析式为y=﹣12x 1+x+4; (1)由(1)可求得抛物线顶点为N (1,92 ), 如图1,作点C 关于x 轴的对称点C′(0,﹣4),连接C′N 交x 轴于点K ,则K 点即为所求,设直线C′N的解析式为y=kx+b,把C′、N点坐标代入可得924 kbb⎧+=⎪⎨⎪=-⎩,解得1724kb⎧=⎪⎨⎪=-⎩,∴直线C′N的解析式为y=172x-4 ,令y=0,解得x=817,∴点K的坐标为(817,0);(2)设点Q(m,0),过点E作EG⊥x轴于点G,如图1,由﹣12x1+x+4=0,得x1=﹣1,x1=4,∴点B的坐标为(﹣1,0),AB=6,BQ=m+1,又∵QE∥AC,∴△BQE≌△BAC,∴EG BQCO BA=,即246EG m+=,解得EG=243m+;∴S△CQE=S△CBQ﹣S△EBQ=12(CO-EG)·BQ=12(m+1)(4-243m+)=2128-333m m++=-13(m-1)1+2 .又∵﹣1≤m≤4,∴当m=1时,S△CQE有最大值2,此时Q(1,0);(4)存在.在△ODF中,(ⅰ)若DO=DF,∵A(4,0),D(1,0),∴AD=OD=DF=1.又在Rt△AOC中,OA=OC=4,∴∠OAC=45°.∴∠DFA=∠OAC=45°.∴∠ADF=90°.此时,点F的坐标为(1,1).由﹣12x1+x+4=1,得x1=1+5,x1=1﹣5.此时,点P的坐标为:P1(1+5,1)或P1(1﹣5,1);(ⅱ)若FO=FD,过点F作FM⊥x轴于点M.由等腰三角形的性质得:OM=12OD=1,∴AM=2.∴在等腰直角△AMF中,MF=AM=2.∴F(1,2).由﹣12x1+x+4=2,得x13x1=13.此时,点P的坐标为:P2(32)或P4(13,2);(ⅲ)若OD=OF,∵OA=OC=4,且∠AOC=90°.∴2.∴点O到AC的距离为2.而OF=OD=1<22矛盾.∴在AC上不存在点使得OF=OD=1.此时,不存在这样的直线l,使得△ODF是等腰三角形.综上所述,存在这样的直线l,使得△ODF是等腰三角形.所求点P的坐标为:(51)或(15 1)或(3,2)或(13,2).点睛:本题是二次函数综合题,主要考查待定系数法、三角形全等的判定与性质、等腰三角形的性质等,能正确地利用数形结合思想、分类讨论思想等进行解题是关键.23.证明见解析.【解析】【分析】(1)一方面Rt△ABC中,由∠BAC=30°可以得到AB=2BC,另一方面△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,从而可证明△AFE≌△BCA,再根据全等三角形的性质即可证明AC=EF.(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.【详解】证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC.又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF.∴AF=BC.∵在Rt△AFE和Rt△BCA中,AF=BC,AE=BA,∴△AFE≌△BCA(HL).∴AC=EF.(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD.∴∠DAB=∠DAC+∠BAC=90°.∴EF∥AD.∵AC=EF,AC=AD,∴EF=AD.∴四边形ADFE是平行四边形.考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的判定.24.1【解析】解:取时,原式.25.(1)详见解析;(2)225【解析】【分析】(1)根据正方形的性质和等腰直角三角形的性质以及全等三角形的判定得出△CDF≌△ADE;(2)连接AC,利用正方形的性质和四边形周长解答即可.【详解】(1)证明:∵四边形ABCD是正方形∴CD=AD,∠ADC=90°,∵△CDE和△DAF都是等腰直角三角形,∴FD=2AD,DE=2CD,∠ADF=∠CDE=45°,∴∠CDF=∠ADE=135°,FD=DE,∴△CDF≌△ADE(SAS);(2)如图,连接AC.∵四边形ABCD是正方形,∴∠ACD=∠DAC=45°,∵△CDF≌△ADE,∴∠DCF=∠DAE,∴∠OAC=∠OCA,∴OA=OC,∵∠DCE=45°,∴∠ACE=90°,∴∠OCE=∠OEC,∴OC=OE,∵AF=FD=1,∴AD=AB=BC2,∴AC=2,∴OA+OC=OA+OE=AE225AC CE+=,∴四边形ABCO的周长AB+BC+OA+OC=225.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的性质,难点在于(2)作辅助线构造出全等三角形.26.(1)500,12,32;(2)补图见解析;(3)该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.【解析】【分析】(1)根据项目B的人数以及百分比,即可得到这次调查的市民人数,据此可得项目A,C的百分比;(2)根据对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,补全条形统计图;(3)根据全市总人数乘以A项目所占百分比,即可得到该市对“社会主义核心价值观”达到“A非常了解”的程度的人数.【详解】试题分析:试题解析:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%,(2)对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,补全条形统计图如下:(3)100000×32%=32000(人),答:该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.27.(1)①AE+BF =EC;②AF+BF=2CE;(2)AF﹣BF=2CE,证明见解析;(3)FG=65.【解析】【分析】(1)①只要证明△ACE≌△BCD(AAS),推出AE=BD,CE=CD,推出四边形CEFD为正方形,即可解决问题;②利用①中结论即可解决问题;(2)首先证明BF-AF=2CE.由AF=3,BF=7,推出CE=EF=2,AE=AF+EF=5,由FG∥EC,可知FG AF EC AE,由此即可解决问题;【详解】解:(1)证明:①如图1,过点C做CD⊥BF,交FB的延长线于点D,∵CE ⊥MN ,CD ⊥BF ,∴∠CEA=∠D=90°,∵CE ⊥MN ,CD ⊥BF ,BF ⊥MN ,∴四边形CEFD 为矩形,∴∠ECD=90°,又∵∠ACB=90°,∴∠ACB-∠ECB=∠ECD-∠ECB ,即∠ACE=∠BCD ,又∵△ABC 为等腰直角三角形,∴AC=BC ,在△ACE 和△BCD 中,90ACE BCD AEC BDC AC BC ∠∠⎧⎪∠∠︒⎨⎪⎩====,∴△ACE ≌△BCD (AAS ),∴AE=BD ,CE=CD ,又∵四边形CEFD 为矩形,∴四边形CEFD 为正方形,∴CE=EF=DF=CD ,∴AE+BF=DB+BF=DF=EC .②由①可知:AF+BF=AE+EF+BF=BD+EF+BF=DF+EF=2CE ,(2)AF-BF=2CE图2中,过点C 作CG ⊥BF ,交BF 延长线于点G ,∵AC=BC可得∠AEC=∠CGB ,∠ACE=∠BCG ,在△CBG 和△CAE 中,AEC CGB ACE BCG AC BC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△CBG ≌△CAE (AAS ),∴AE=BG ,∵AF=AE+EF ,∴AF=BG+CE=BF+FG+CE=2CE+BF ,∴AF-BF=2CE ;(3)如图3,过点C 做CD ⊥BF ,交FB 的于点D ,∵AC=BC可得∠AEC=∠CDB ,∠ACE=∠BCD ,在△CBD 和△CAE 中,AEC CDB ACE BCD AC BC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△CBD ≌△CAE (AAS ),∴AE=BD ,∵AF=AE-EF ,∴AF=BD-CE=BF-FD-CE=BF-2CE ,∴BF-AF=2CE .∵AF=3,BF=7,∴CE=EF=2,AE=AF+EF=5,∵FG ∥EC , ∴FG AF EC AE=, ∴325FG =,∴FG=65.【点睛】本题考查几何变换综合题、正方形的判定和性质、全等三角形的判定和性质、平行线分线段成比例定理、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.。
山东省济宁市九年级下学期第二次调研数学试题
山东省济宁市九年级下学期第二次调研数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019七上·福田期末) 在这五个数中,负数的个数是()A . 1个B . 2个C . 3个D . 4个2. (2分)(2013·河池) 如图所示的几何体,其主视图是()A .B .C .D .3. (2分) (2018七上·东台月考) 树叶上有许多气孔,在阳光下,这些气孔一边排出氧气和蒸腾水分,一边吸入二氧化碳.已知一个气孔每秒钟能吸进2500亿个二氧化碳分子,用科学记数法表示2500亿,结果是()A . 2.5×1010B . 2.5×104C . 2.5×1012D . 2.5×10114. (2分)下面是一位同学做的四道题:①2a+3b=5ab;②(3a3)2=6a6;③a6÷a2=a3;④a2•a3=a5 ,其中做对的一道题的序号是()A . ①B . ②C . ③D . ④5. (2分)(2018·仙桃) 下列说法正确的是()A . 了解某班学生的身高情况,适宜采用抽样调查B . 数据3,5,4,1,1的中位数是4C . 数据5,3,5,4,1,1的众数是1和5D . 甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定6. (2分) (2018八上·罗湖期末) 汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A .B .C .D .7. (2分)(2017·古冶模拟) 下列说法正确的是()A . “蒙上眼睛射击正中靶心”是必然事件B . “抛一枚硬币,正面朝上的概率为”说明掷一枚质地均匀的硬币10次,必有5次正面朝上C . “抛一枚均匀的正方体骰子,朝上的点数是3的概率为”表示随着抛掷次数的增加,“抛出朝上的点数是3”这一事件发生的频率稳定在附近D . 为了解某种节能灯的使用寿命,应选择全面调查8. (2分)下列各组图形中不是位似图形的是()A .B .C .D .9. (2分) (2017七下·台州期中) 已知∠A的两边与∠B的两边互相平行,且∠A=20°,则∠B的度数为().A . 20°B . 80°C . 160°D . 20°或160°10. (2分)下列作图语句错误的是()A . 过直线外的一点画已知直线的平行线B . 过直线上的一点画已知直线的垂线C . 过∠AOB内的一点画∠AOB的平分线D . 过直线外一点画此直线的两条斜线,一条垂线11. (2分)一个扇形的半径为2,扇形的圆心角为48°,则它的面积为()。
山东省济宁市2019-2020学年中考数学教学质量调研试卷含解析
山东省济宁市2019-2020学年中考数学教学质量调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为()A.6.5×105B.6.5×106C.6.5×107D.65×1052.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,下列各式中正确的是()A.a=b•cosA B.c=a•sinA C.a•cotA=b D.a•tanA=b3.如图,三棱柱ABC﹣A1B1C1的侧棱长和底面边长均为2,且侧棱AA1⊥底面ABC,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为()A.3B.23C.22D.44.2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为()A.18×108B.1.8×108C.1.8×109D.0.18×10105.将弧长为2πcm、圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高是()A.2cm B.22cm C.23cm D.10cm6.若a+b=3,,则ab等于()A.2 B.1 C.﹣2 D.﹣17.某同学将自己7次体育测试成绩(单位:分)绘制成折线统计图,则该同学7次测试成绩的众数和中位数分别是()A.50和48 B.50和47 C.48和48 D.48和438.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=6x的图象上,则y1、y2、y3的大小关系是( )A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y29.下列计算中正确的是()A.x2+x2=x4B.x6÷x3=x2C.(x3)2=x6D.x-1=x10.已知抛物线y=ax2+bx+c与x轴交于(x1,0)、(x2,0)两点,且0<x1<1,1<x2<2与y轴交于(0,-2),下列结论:①2a+b>1;②a+b<2;③3a+b>0;④a<-1,其中正确结论的个数为( )A.1个B.2个C.3个D.4个11.如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于12BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,则下列结论正确的是()A.CD+DB=AB B.CD+AD=AB C.CD+AC=AB D.AD+AC=AB12.下列图形中,不是中心对称图形的是()A.平行四边形B.圆C.等边三角形D.正六边形二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D为AB的中点,将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,则D′B长为_____.14.如图甲,对于平面上不大于90°的∠MON,我们给出如下定义:如果点P在∠MON的内部,作PE⊥OM,PF⊥ON,垂足分别为点E、F,那么称PE+PF的值为点P相对于∠MON的“点角距离”,记为d(P,∠MON).如图乙,在平面直角坐标系xOy中,点P在坐标平面内,且点P的横坐标比纵坐标大2,对于∠xOy,满足d(P,∠xOy)=10,点P的坐标是_____.15.已知点P是线段AB的黄金分割点,PA>PB,AB=4 cm,则PA=____cm.16.一个几何体的三视图如左图所示,则这个几何体是( )A.B.C.D.17.如图,以锐角△ABC的边AB为直径作⊙O,分别交AC,BC于E、D两点,若AC=14,CD=4,7sinC=3tanB,则BD=_____.18.在Rt△ABC中,∠A是直角,AB=2,AC=3,则BC的长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.求y与x之间的函数关系式,并写出自变量x的取值范围;求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?20.(6分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?21.(6分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.22.(8分)如图,某校自行车棚的人字架棚顶为等腰三角形,D是AB的中点,中柱CD=1米,∠A=27°,求跨度AB的长(精确到0.01米).23.(8分)(2017四川省内江市)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:(1)这项被调查的总人数是多少人?(2)试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;(3)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.24.(10分)﹣(﹣1)20184﹣(13)﹣125.(10分)我省有关部门要求各中小学要把“阳光体育”写入课表,为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据,如图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少名学生进行了抽样调查?本次抽样调查中,最喜欢足球活动的有多少人?占被调查人数的百分比是多少?若该校九年级共有400名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢篮球活动的人数约为多少?26.(12分)国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.求平均每次下调的百分率;某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?27.(12分)车辆经过润扬大桥收费站时,4个收费通道A.B、C、D中,可随机选择其中的一个通过.一辆车经过此收费站时,选择A通道通过的概率是;求两辆车经过此收费站时,选择不同通道通过的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将6500000用科学记数法表示为:6.5×106.【点睛】本题考查了科学计数法,解题的关键是熟练的掌握科学计数法的表示形式. 2.C【解析】∵∠C=90°,∴cosA=bc,sinA=ac,tanA=ab,cotA=ba,∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b,∴只有选项C正确,故选C.【点睛】本题考查了三角函数的定义,熟练掌握三角函数的定义并且灵活运用是解题的关键.3.B【解析】分析:易得等边三角形的高,那么左视图的面积=等边三角形的高×侧棱长,把相关数值代入即可求解.详解:∵三棱柱的底面为等边三角形,边长为2,作出等边三角形的高CD后,∴等边三角形的高==故选B.点睛:本题主要考查的是由三视图判断几何体.解决本题的关键是得到求左视图的面积的等量关系,难点是得到侧面积的宽度.4.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:1800000000=1.8×109,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.B【解析】由弧长公式可求解圆锥母线长,再由弧长可求解圆锥底面半径长,再运用勾股定理即可求解圆锥的高. 【详解】解:设圆锥母线长为Rcm,则2π=120180Rπ︒⨯︒,解得R=3cm;设圆锥底面半径为rcm,则2π=2πr,解得r=1cm.故选择B.【点睛】本题考查了圆锥的概念和弧长的计算.6.B【解析】【详解】∵a+b=3,∴(a+b)2=9∴a2+2ab+b2=9∵a2+b2=7∴7+2ab=9,7+2ab=9∴ab=1.故选B.考点:完全平方公式;整体代入.7.A【解析】【分析】由折线统计图,可得该同学7次体育测试成绩,进而求出众数和中位数即可.【详解】由折线统计图,得:42,43,47,48,49,50,50,7次测试成绩的众数为50,中位数为48,故选:A.【点睛】本题考查了众数和中位数,解题的关键是利用折线统计图获取有效的信息.8.B【解析】【分析】分别把各点代入反比例函数的解析式,求出y1,y2,y3的值,再比较出其大小即可.∵点A (1,y 1),B (2,y 2),C (﹣3,y 3)都在反比例函数y=6x 的图象上, ∴y 1=61=6,y 2=62=3,y 3=63-=-2, ∵﹣2<3<6,∴y 3<y 2<y 1,故选B .【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟练掌握反比例函数图象上的点的坐标满足函数的解析式是解题的关键.9.C【解析】【分析】根据合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义逐项求解,利用排除法即可得到答案.【详解】A. x 2+x 2=2x 2 ,故不正确;B. x 6÷x 3=x 3 ,故不正确;C. (x 3)2=x 6 ,故正确;D. x ﹣1=1x,故不正确; 故选C.【点睛】本题考查了合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义,解答本题的关键是熟练掌握各知识点.10.A【解析】【分析】【详解】如图,120112x x <<,<< 且图像与y 轴交于点()0,2-,可知该抛物线的开口向下,即0a <,2c =-①当2x =时,4220y a b =+-<422a b +< 21a b +<故①错误.②由图像可知,当1x =时,0y >∴20a b +->∴2a b +>故②错误.③∵120112x x <<,<< ∴1213x x +<<, 又∵12b x x a +=-, ∴13b a-<<, ∴3a b a <<-﹣,∴30a b +<,故③错误;④∵1202x x <<,122c x x a=<, 又∵2c =-,∴1a <-.故④正确.故答案选A.【点睛】本题考查二次函数2y ax bx c =++系数符号的确定由抛物线的开口方向、对称轴和抛物线与坐标轴的交点确定.11.B【解析】【分析】作弧后可知MN ⊥CB ,且CD=DB.【详解】由题意性质可知MN是BC的垂直平分线,则MN⊥CB,且CD=DB,则CD+AD=AB. 【点睛】了解中垂线的作图规则是解题的关键.12.C【解析】【分析】根据中心对称图形的定义依次判断各项即可解答.【详解】选项A、平行四边形是中心对称图形;选项B、圆是中心对称图形;选项C、等边三角形不是中心对称图形;选项D、正六边形是中心对称图形;故选C.【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.132.【解析】【详解】试题分析:解:∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵点D为AB的中点,∴CD=AD=BD=AB=2.5,过D′作D′E⊥BC,∵将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,∴CD′=AD=A′D′,∴D′E==1.5,∵A′E=CE=2,BC=3,∴BE=1,∴BD′=,故答案为.考点:旋转的性质.14.(6,4)或(﹣4,﹣6)【解析】【分析】设点P的横坐标为x,表示出纵坐标,然后列方程求出x,再求解即可.【详解】解:设点P的横坐标为x,则点P的纵坐标为x-2,由题意得,当点P在第一象限时,x+x-2=10,解得x=6,∴x-2=4,∴P(6,4);当点P在第三象限时,-x-x+2=10,解得x=-4,∴x-2=-6,∴P(-4,-6).故答案为:(6,4)或(-4,-6).【点睛】本题主要考查了点的坐标,读懂题目信息,理解“点角距离”的定义并列出方程是解题的关键.15.5 2【解析】【分析】根据黄金分割点的定义,知AP是较长线段;则51AB,代入运算即可.【详解】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则AP=4×512-=()251-cm,故答案为:(25-2)cm. 【点睛】此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=原线段的51-,难度一般.16.A【解析】【分析】根据主视图和左视图可知该几何体是柱体,根据俯视图可知该几何体是竖立的三棱柱.【详解】根据主视图和左视图可知该几何体是柱体,根据俯视图可知该几何体是竖立的三棱柱.主视图中间的线是实线.故选A.【点睛】考查简单几何体的三视图,掌握常见几何体的三视图是解题的关键.17.1【解析】如图,连接AD,根据圆周角定理可得AD⊥BC.在Rt△ADC中,sinC=;在Rt△ABD中,tanB=.已知7sinC=3tanB,所以7×=3×,又因AC=14,即可求得BD=1.点睛:此题主要考查的是圆周角定理和锐角三角函数的定义,以公共边AD为桥梁,利用锐角三角函数的定义得到tanB和sinC的式子是解决问题的关键.1813【解析】【分析】根据勾股定理解答即可.【详解】∵在Rt △ABC 中,∠A 是直角,AB =2,AC =3,∴BC【点睛】此题考查勾股定理,关键是根据勾股定理解答.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)()401016y x x =-+≤≤ (2)()225225x --+,16x =,144元 【解析】【分析】(1)利用待定系数法求解可得y 关于x 的函数解析式;(2)根据“总利润=每件的利润⨯销售量”可得函数解析式,将其配方成顶点式,利用二次函数的性质进一步求解可得.【详解】(1)设y 与x 的函数解析式为y kx b =+,将()10,30、()16,24代入,得:10301624k b k b +=⎧⎨+=⎩, 解得:140k b =-⎧⎨=⎩, 所以y 与x 的函数解析式为()y x 4010x 16=-+剟; (2)根据题意知,()()()2W x 10y x 10x 40x 50x 400=-=--+=-+- ()2x 25225=--+, a 10=-<Q ,∴当x 25<时,W 随x 的增大而增大,10x 16Q 剟,∴当x 16=时,W 取得最大值,最大值为144,答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.【点睛】本题考查了二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据相等关系列出二次函数解析式及二次函数的性质.20.(1)(300﹣10x).(2)每本书应涨价5元.【解析】试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x元,则每天就会少售出10x 本,所以每天可售出书(300﹣10x)本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解.试题解析:(1)∵每本书上涨了x元,∴每天可售出书(300﹣10x)本.故答案为300﹣10x.(2)设每本书上涨了x元(x≤10),根据题意得:(40﹣30+x)(300﹣10x)=3750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.21.解:(1)10,50;(2)解法一(树状图):从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=82 123;解法二(列表法):(以下过程同“解法一”)【解析】【分析】试题分析:(1)由在一个不透明的箱子里放有4个相同的小球,球上分别标有“0”元,“10”元,“20”元和“30”元的字样,规定:顾客在本商场同一日内,每消费满200元,就可以再箱子里先后摸出两个球(第一次摸出后不放回).即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与顾客所获得购物券的金额不低于30元的情况,再利用概率公式求解即可求得答案.试题解析:(1)10,50;(2)解法一(树状图):,从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=812=23;解法二(列表法):0 10 20 300 ﹣﹣10 20 3010 10 ﹣﹣30 4020 20 30 ﹣﹣5030 30 40 50 ﹣﹣从上表可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=812=23;考点:列表法与树状图法.【详解】请在此输入详解!22.AB≈3.93m.【解析】【分析】想求得AB长,由等腰三角形的三线合一定理可知AB=2AD,求得AD即可,而AD可以利用∠A的三角函数可以求出.【详解】∵AC=BC,D是AB的中点,∴CD⊥AB,又∵CD=1米,∠A=27°,∴AD=CD÷tan27°≈1.96,∴AB=2AD,∴AB≈3.93m.【点睛】本题考查了三角函数,直角三角形,等腰三角形等知识,关键利用了正切函数的定义求出AD,然后就可以求出AB.23.(1)50;(2)108°;(3)12.【解析】分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C 组的人数;(2)画出树状图,由概率公式即可得出答案.本题解析:解:(1)调查的总人数是:19÷38%=50(人).C组的人数有50-15-19-4=12(人),补全条形图如图所示.(2)画树状图如下.共有12种等可能的结果,恰好选中甲的结果有6种,∴P(恰好选中甲)=61 122.点睛:本题考查了列表法与树状图、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.24.-1.【解析】【分析】直接利用负指数幂的性质以及算术平方根的性质分别化简得出答案.【详解】原式=﹣1+1﹣3=﹣1.【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.25.(1)该校对50名学生进行了抽样调查;(2)最喜欢足球活动的人占被调查人数的20%;(3)全校学生中最喜欢篮球活动的人数约为720人.【解析】【分析】(1)根据条形统计图,求个部分数量的和即可;(2)根据部分除以总体求得百分比;(3)根据扇形统计图中各部分占总体的百分比之和为1,求出百分比即可求解.【详解】(1)4+8+10+18+10=50(名)答:该校对50名学生进行了抽样调查.(2)最喜欢足球活动的有10人,10=20%50, ∴最喜欢足球活动的人占被调查人数的20%.(3)全校学生人数:400÷(1﹣30%﹣24%﹣26%)=400÷20%=2000(人)则全校学生中最喜欢篮球活动的人数约为2000×1850=720(人). 【点睛】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚的表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反应部分占全体的百分比的大小.26. (1) 每次下调10% (2) 第一种方案更优惠.【解析】【分析】(1)设出平均每次下调的百分率为x ,利用预订每平方米销售价格×(1-每次下调的百分率)2=开盘每平方米销售价格列方程解答即可.(2)求出打折后的售价,再求出不打折减去送物业管理费的钱,再进行比较,据此解答.【详解】解:(1)设平均每次下调的百分率为x ,根据题意得5000×(1-x )2=4050解得x=10%或x=1.9(舍去)答:平均每次下调10%.(2)9.8折=98%,100×4050×98%=396900(元)100×4050-100×1.5×12×2=401400(元),396900<401400,所以第一种方案更优惠.答:第一种方案更优惠.【点睛】本题考查一元二次方程的应用,能找到等量关系式,并根据等量关系式正确列出方程是解决本题的关键.27.(1)14;(2)34.【解析】试题分析:(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.试题解析:(1)选择A通道通过的概率=14,故答案为14;(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率=1216=34.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省济宁市2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在△ABC 中,DE ∥BC ,若23AD DB =,则AE EC 等于( )A .13B .25C .23D .352.计算327-的值为( )A .26-B .-4C .23-D .-23.按如图所示的方法折纸,下面结论正确的个数( )①∠2=90°;②∠1=∠AEC ;③△ABE ∽△ECF ;④∠BAE =∠1.A .1 个B .2 个C .1 个D .4 个4.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q5.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .66.如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,D ,E ,F 分别为AB ,AC ,AD 的中点,若BC=2,则EF 的长度为( )A.B.1 C.D.7.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.()A.3,2 B.3,4 C.5,2 D.5,48.若抛物线y=x2-(m-3)x-m能与x轴交,则两交点间的距离最值是()A.最大值2,B.最小值2 C.最大值22D.最小值229.不等式5+2x <1的解集在数轴上表示正确的是( ).A.B.C.D.10.如图,以O为圆心的圆与直线y x3=-+交于A、B两点,若△OAB恰为等边三角形,则弧AB的长度为()A.23πB.πC.23πD.13π11.已知3x+y=6,则xy的最大值为()A.2 B.3 C.4 D.612.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=_____.14.百子回归图是由1,2,3,…,100 无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,…,同时它也是十阶幻方,其每行10 个数之和、每列10 个数之和、每条对角线10 个数之和均相等,则这个和为______.百子回归15.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣2x2﹣2x+1=﹣x2+5x﹣3:则所捂住的多项式是___.16.如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D 关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为23;③当AD=2时,EF与半圆相切;④若点F恰好落在BC上,则AD=25;⑤当点D从点A 运动到点B时,线段EF扫过的面积是163.其中正确结论的序号是.17.若一个多边形的每一个外角都等于40°,则这个多边形的边数是.18.如图,CD是⊙O直径,AB是弦,若CD⊥AB,∠BCD=25°,则∠AOD=_____°.19.(6分)2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是 ______ ;扇形统计图中的圆心角α等于 ______ ;补全统计直方图; (2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.20.(6分)讲授“轴对称”时,八年级教师设计了如下:四种教学方法:① 教师讲,学生听② 教师让学生自己做③ 教师引导学生画图发现规律④ 教师让学生对折纸,观察发现规律,然后画图为调查教学效果,八年级教师将上述教学方法作为调研内容发到全年级8个班420名同学手中,要求每位同学选出自己最喜欢的一种.他随机抽取了60名学生的调查问卷,统计如图(1) 请将条形统计图补充完整;(2) 计算扇形统计图中方法③的圆心角的度数是 ;(3) 八年级同学中最喜欢的教学方法是哪一种?选择这种教学方法的约有多少人?21.(6分)某小区为了安全起见,决定将小区内的滑滑板的倾斜角由45°调为30°,如图,已知原滑滑板AB 的长为4米,点D ,B ,C 在同一水平地面上,调整后滑滑板会加长多少米?(结果精确到0.01米,2 1.414≈3 1.732≈6 2.449≈)22.(8分)在平面直角坐标系xOy 中,将抛物线21:23G y mx =+(m≠0)向右平移3个单位长度后得到抛物线G 2,点A 是抛物线G 2的顶点.(1)直接写出点A 的坐标;(2)过点(0,3)且平行于x 轴的直线l 与抛物线G 2交于B ,C 两点.①当∠BAC =90°时.求抛物线G 2的表达式;②若60°<∠BAC <120°,直接写出m 的取值范围.23.(8分)如图,在平面直角坐标系xOy 中,一次函数y =kx+b(k≠0)的图象与反比例函数y =n x(n≠0)的图象交于第二、四象限内的A 、B 两点,与x 轴交于点C ,点B 坐标为(m ,﹣1),AD ⊥x 轴,且AD =3,tan ∠AOD =32.求该反比例函数和一次函数的解析式;求△AOB 的面积;点E 是x 轴上一点,且△AOE 是等腰三角形,请直接写出所有符合条件的E 点的坐标.24.(10分)如图,∠BAO=90°,AB=8,动点P 在射线AO 上,以PA 为半径的半圆P 交射线AO 于另一点C ,CD ∥BP 交半圆P 于另一点D ,BE ∥AO 交射线PD 于点E ,EF ⊥AO 于点F ,连接BD ,设AP=m . (1)求证:∠BDP=90°.(2)若m=4,求BE 的长.(3)在点P 的整个运动过程中.①当AF=3CF 时,求出所有符合条件的m 的值.②当tan ∠DBE=512时,直接写出△CDP 与△BDP 面积比.25.(10分)如图,以△ABC 的边AB 为直径的⊙O 与边AC 相交于点D ,BC 是⊙O 的切线,E 为BC 的中点,连接AE 、DE .求证:DE 是⊙O 的切线;设△CDE 的面积为 S 1,四边形ABED 的面积为 S 1.若S 1=5S 1,求tan ∠BAC 的值;在(1)的条件下,若AE =32,求⊙O 的半径长.26.(12分)在平面直角坐标系xOy 中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且12x x ≠,12y y =,我们规定:如果存在点P ,使MNP ∆是以线段MN 为直角边的等腰直角三角形,那么称点P 为点M 、N 的“和谐点”.(1)已知点A 的坐标为()1,3,①若点B 的坐标为()3,3,在直线AB 的上方,存在点A ,B 的“和谐点”C ,直接写出点C 的坐标; ②点C 在直线x =5上,且点C 为点A ,B 的“和谐点”,求直线AC 的表达式.(2)⊙O 的半径为r ,点()1,4D 为点()1,2E 、(),F m n 的“和谐点”,且DE =2,若使得DEF ∆与⊙O 有交点,画出示意图直接写出半径r 的取值范围.27.(12分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.请根据所给信息,解答以下问题: 表中a = ___ ;b =____ 请计算扇形统计图中B 组对应扇形的圆心角的同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题解析::∵DE∥BC,∴23 AE ADEC DB==,故选C.考点:平行线分线段成比例.2.C【解析】【分析】根据二次根式的运算法则即可求出答案.【详解】原式故选C.【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.3.C【解析】∵∠1+∠1=∠2,∠1+∠1+∠2=180°,∴∠1+∠1=∠2=90°,故①正确;∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正确;∵∠1+∠1=90°,∠1+∠BAE=90°,∴∠1=∠BAE,又∵∠B=∠C,∴△ABE∽△ECF.故③,④正确;4.D【解析】∵实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,∴原点在点M与N之间,∴这四个数中绝对值最大的数对应的点是点Q.故选D.5.C【解析】【详解】如图所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=1.故选C.考点:勾股定理的证明.6.B【解析】【分析】根据题意求出AB的值,由D是AB中点求出CD的值,再由题意可得出EF是△ACD的中位线即可求出. 【详解】∠ACB=90°,∠A=30°,BC=AB.BC=2,AB=2BC=22=4,D是AB的中点,CD=AB=4=2.E,F分别为AC,AD的中点,EF是△ACD的中位线.EF=CD= 2=1.故答案选B.【点睛】本题考查的知识点是三角形中位线定理,解题的关键是熟练的掌握三角形中位线定理.7.B【解析】 试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点: 平均数;方差.8.D【解析】设抛物线与x 轴的两交点间的横坐标分别为:x 1,x 2,由韦达定理得:x 1+x 2=m-3,x 1•x 2=-m ,则两交点间的距离d=|x 1-x 22221212()4(3)429x x x x m m m m +-=-+=-+2(1)8m -+ ,∴m=1时,d min 2.故选D.9.C【解析】【分析】先解不等式得到x <-1,根据数轴表示数的方法得到解集在-1的左边.【详解】5+1x <1,移项得1x <-4,系数化为1得x <-1.故选C .【点睛】本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心.【解析】过点O 作OE AB ⊥,∵y x 3=-+,∴3,0)D ,3)C ,∴COD V 为等腰直角三角形,45ODC ∠=︒,26sin 453OE OD =⋅︒==, ∵OAB △为等边三角形,∴60OAB ∠=︒, ∴62sin 6023OE AO ===︒ ∴»60122π22ππ36063AB r︒=⋅=⋅=︒.故选C. 11.B【解析】【分析】根据已知方程得到y=-1x+6,将其代入所求的代数式后得到:xy=-1x 2+6x ,利用配方法求该式的最值.【详解】解:∵1x+y=6,∴y=-1x+6,∴xy=-1x 2+6x=-1(x-1)2+1.∵(x-1)2≥0,∴-1(x-1)2+1≤1,即xy 的最大值为1.故选B .【点睛】考查了二次函数的最值,解题时,利用配方法和非负数的性质求得xy 的最大值.。