江苏大学2017年《853高等代数》考研专业课真题试卷
中国计量大学2017年《813高等代数》考研专业课真题试卷
0 0 0 0 0 0 0 0 0
.
0 0 0 0 0 0 0 0 0 0 0 0
其中 D1 2 , D2
2 1 0 1 2 1 0 1 2
2 1 . 1 2
4 2 0 0 3 1 0 0 * ,求矩阵 X . 2.(11 分)设矩阵 X 的伴随矩阵 X 0 0 4 0 0 0 0 1
.
a1 b1 c1 4. a2 b2 c2 a b c 3 3 3
a1 c1 b1 a c b 2 2 2 a c b 3 3 3
a1 c1 a2 c2 . a3 c3
1 0 1 5. 设 A 0 2 0 ,则 An ___________ 1 0 1
1 0 2 p1 0 , p2 3 , p3 1 ,求矩阵 A . 1 2 1
《高等代数》试卷 第3页 共4页
6.(13 分)若 1 , 2 , 3 , 为 n, n 1,
1 2 2 1 (B) A ,B 2 1 1 2
1 0 1 1 0 0 0 2 0 1 0 0 (C) A 0 1 0 , B 0 3 0 (D) A 2 0 0 , B 0 2 0 . 1 0 1 0 0 0 0 0 1 0 0 2
4.设 A 是 n 阶方阵,且 r ( A) r n, 则 A 的 n 个行向量中[ (A)必有 r 个行向量线性无关; 行向量都构成最大线性无关组; (D)任意一个行向量都可以由其他 r 个行向量线性表示.
昆明理工大学_843高等代数2017年_考研专业看真题
昆明理工大学2017年硕士研究生招生入学考试试题(A卷)
考试科目代码:843 考试科目名称:高等代数
考生答题须知
1.所有题目(包括填空、选择、图表等类型题目)答题答案必须做在考点发给的答题纸上,做在本试题册上无效。
请考生务必在答题纸上写清题号。
2.评卷时不评阅本试题册,答题如有做在本试题册上而影响成绩的,后果由考生自己负责。
3.答题时一律使用蓝、黑色墨水笔或圆珠笔作答(画图可用铅笔),用其它笔答题不给分。
4.答题时不准使用涂改液等具有明显标记的涂改用品。
全国名校高等代数考研真题汇编(含部分答案)
考生注意: 1.本 试 卷 满 分 为 150 分,共计10道题,每题满分15 分,考试时间总计180 分钟;
2.答案必须写在答题纸上,写在试题纸上或草稿纸 上均无效。
一、设 是 阶单位矩阵, ,证明 的行列式等于 .
,矩阵 满足
二、设 是 阶幕零矩阵满足
,
.证明所有的 都相似于一个对角矩阵,
的特征值之和等于矩阵 的秩.
3.南开大学高等代数考研真题 2012年南开大学804高等代数考研真题 2011年南开大学802高等代数考研真题
4.厦 门 大 学 825高等代数考研真题 2014年厦门大学825高等代数考研真题 2013年厦门大学825高等代数考研真题 2012年厦门大学825高等代数考研真题 2011年厦门大学825高等代数考研真题
有
证明:
(1)
.
(2) 是 的不变子空间,则 也是的 不变子空间.
10.四川大学高等代数考研真题及 详解
2013年四川大学931高等代数考研真 题及详解
2011年四川大学高等代数考研真题
11.浙江大学高等代数考研真题
2012年浙江大学601高等代数考研真题
浙江大学2012年攻读硕士学位研究生入学试题 考试科目:高等代数(601)
5.中 山 大 学 877高等代数考研真题
2015年中山大学877高等代数考研真题 2014年中山大学874高等代数考研真题 2013年中山大学869高等代数考研真题 2012年中山大学869高等代数考研真题 2011年中山大学875高等代数考研真题 6.中南大学高等代数考研真题 2011年中南大学883高等代数考研真题 7.湖南大学高等代数考研真题 2013年湖南大学813高等代数考研真题 8.华 东 师 范 大 学 817高等代数考研真题 2013年华东师范大学817高等代数考研真题 2012年华东师范大学817高等代数考研真题 2011年华东师范大学817高等代数考研真题 9.华中科技大学高等代数考研真题及详解 2013年华中科技大学高等代数考研真题 2012年华中科技大学高等代数考研真题及详解 2011年华中科技大学高等代数考研真题 10.四川大学高等代数考研真题及详解 2013年四川大学931高等代数考研真题及详解 2011年四川大学高等代数考研真题 11.浙江大学高等代数考研真题 2012年浙江大学601高等代数考研真题
2017年江苏大学硕士研究生入学考试复试科目主要参考书
901
机械制造技术基 础
年;或《机械制造技术基础》(第二版),卢秉恒、赵 万华、洪军.高等教育出版社,2005 年;或《机械制造 技术基础》(第二版),张世昌、李旦、高航.高等教
育出版社
903 光学
《光学教程》(第四版),姚启钧编.高等教育出版社, 2008 年
904 机械原理
《机械原理》,华大年或黄锡恺编.高等教育出版社; 或《机械原理》,申永胜编.清华大学出版社
布丁考研网,在读学长提供高参考价值的复习资料
2004 年
951
信号与线性系统
《信号与线性系统》(第四版),管致中等.高等教育 出版社,2004 年
952 数字信号处理
《数字信号处理》,吴镇扬.高等教育出版社,2004 年 9
953 电磁场理论
《电磁场与电磁波》(第二版),陈邦媛.科学出版社, 2006 年
《新编简明英语语言学教程》(第二版),主编戴炜栋、
917
英语语言文学基 础与汉语写作
何兆熊.上海外语教育出版社,2010 年;《英美文学选 读》(增订版),吴翔林编著.中国对外翻译出版公司,
2005 年 1 月
918 教育技术综合
《计算机应用基础》,全国高等网络教育考试委员会办 公室.清华大学出版社,2013 年。《教学设计》,皮连 生.高等教育出版社,2009 年
954
射频与微波电路
《射频通信电路》(第二版),陈邦媛.科学出版社, 2006 年
955 数据结构
《数据结构》(C 语言版)(第一版),严蔚敏、吴伟 明.清华大学出版社,1997 年;与《数据结构:C++实 现》,缪淮扣.科学出版社,2004 年
《常微分方程》(第二版),王高雄、周之铭等编.高
新版江苏大学数学考研经验考研真题考研参考书
刚上大学的时候,我的家人希望我能考研,因为我的本科学校很普通。
当时,我并没有想过。
直到这几年的学习,出于自身对专业课的兴趣越来越浓厚,想要继续深入系统的学习,而我们本科对专业课的学习知识一点皮毛,是远远不够的!怀着专业的热爱,我毅然决定考研,在大三上册就开始准备复习。
充满信心地去下定决心做一件事情是做好它的前提,最开始自己像一只无头苍蝇一般,没有方向。
只能靠自己慢慢摸索,查资料、看考研经验分享、问学长学姐,虽然这个过程很繁琐,但是我已经下定决心考研,所以无所畏惧!对于考研来说最关键的就是坚持。
一年的考研时间,我想,对于这个词,我是有很多话要说的。
我以为自己是个能坚持的人,但是考研这一年来,真正让我体会到了坚持的不易!正如很多研友的分享所说,考研谁不是一边想放弃一边又咬牙坚持着,那些坚持到最后的人,都会迎来他们的曙光。
文章可能有点长,末尾我也加了一些真题和资料的下载方式,大家放心阅读即可。
江苏大学数学的初试科目为:(101)思想政治理论(201)英语一(601)数学分析和(853)高等代数参考书目为:1.《数学分析》(第三版),华东师范大学数学系编.高等教育出版社,2001年2.《高等代数》(第三版),北京大学数学系编.高等教育出版社,2003年首先简单介绍一下我的英语复习经验。
⑴单词:英语的单词基础一定要打好,如果单词过不了关,那你其他可以看懂吗??单词可以用木糖英语单词闪电版就够了。
也可以用app软件。
但是这样就会导致玩手机(如果你自制力超强),单词的话到考前也不能停止的。
我的单词并没有背好,导致英语后来只有60+,很难过…⑵阅读:阅读分数很高,所以一定要注重,可以听木糖英语的名师讲解,或者木糖英语的课程,阅读最重要的是自己有了自己的方法,有一个属于自己的做题方法可以节省很多时间,如果初次做题还没有什么思路,那就可以多看看真题里面的答案解析考研英语很难,和四六级是完全不同的!大家肯定都听说过,所以阅读暑假就可以开始做了,真题反复摸索,自己安排好时间。
硕士研究生入学考试大纲-853高等代数
目录I 考查目标 (2)II 考试形式和试卷结构 (2)III 考查内容 (2)IV. 题型示例及参考答案 (4)全国硕士研究生入学统一考试高等代数考试大纲I 考查目标要求考生比较系统地理解高等代数的基本概念和基本理论,掌握高等代数的基本思想和方法具有抽象思维能力、逻辑推理能力、运算能力和综合运用所学的知识分析问题和解决问题的能力。
II 考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间180分钟。
二、答题方式答题方式为闭卷、笔试。
三、试卷内容与题型结构计算题(30%)、证明题(70%)III 考查内容一、多项式1.熟练掌握多项式因式分解理论及整除理论。
2.掌握多项式、不可约多项式、最大公因式、重因式的概念;掌握整除、互素、不可约等概念的联系与区别。
3.掌握带余除法、辗转相除法、艾森斯坦因(Eisenstein)判别法。
4.会求两个多项式的最大公因式,会求有理系数多项式的有理根,会判别两个多项式互素。
二、行列式1.熟练掌握行列式的性质及行列式的计算。
2.掌握n阶行列式的定义。
3.掌握克拉默(Cramer)法则。
三、线性方程组1.熟练掌握向量线性相关性的概念、性质、判别法,会求向量组的秩及最大线性无关组。
2.掌握基础解系的概念及计算,熟练掌握线性方程组的解的判别定理,以及齐次和非齐次线性方程组的求解。
3.熟练掌握矩阵的秩的概念及计算。
四、矩阵1.熟练掌握矩阵、可逆矩阵、初等矩阵的概念与性质。
2.理解分块矩阵的概念,掌握分块矩阵的运算及思想方法。
3.熟练掌握矩阵的加法、减法、乘法,数乘、转置等运算。
4.熟练掌握可逆矩阵的判别方法及逆矩阵的计算。
5.能熟练使用矩阵的初等变换方法。
五、二次型1.掌握二次型的标准形、实二次型的规范形的概念。
2.熟练掌握正定二次型的概念、性质、判别方法。
3.掌握化二次型为标准形的思想方法。
4.理解合同矩阵的概念及背景。
六、线性空间1.掌握线性空间、子空间的概念及判定方法。
苏州大学高等代数历年考研真题
苏州大学历年高等数学考研真题08年考研真题07年考研真题化二次型()123122313,,222f x x x x x x x x x =-+为标准型,并给出所用的非退化线性替换.一, 求三阶矩阵1261725027-⎛⎫⎪ ⎪⎪--⎝⎭的Jordan 标准型. 二, 设,nR αβ∈且长度为2,矩阵T T n A E ααββ=++求A 的特征多项式.三, 设A 是n 阶反对称矩阵,n E 为单位矩阵.证明:a E A +可逆设,()()1Q=E+A b E A --设 求证Q 是正交阵.四, 设A 是3阶对称矩阵,且A 的各行元素之和都是3,向量()()0,1,1,1,2,1TTαβ=-=--是0AX =的解,求矩阵A 的特征值,特征向量,求正交阵Q 和矩阵B 使得TQ BQ A =五, 设P是一个数域,()P x 是[]P x 中次数大于0的多项式,证明:如果对于任意的()f x ,()g x ,若有()()()|P x f x g x ()()()()||p x f x p x g x ⇒或者,那么()P x 是不可约多项式. 六, 设欧氏空间中有12,0.n βαααβ≠ ,,,,()112,,,,n W L ααα= ()212,,,,n W L βααα= 证明:如果,0i βα=,那么21dim dim W W ≠设σ是n 维欧氏空间中的一个对称变换,则()ker VV σσ=⊕.苏州大学2007年硕士研究生入学考试《高等代数》试题解答1. 解 所给二次型的矩阵为011101110A ⎛⎫⎪=- ⎪ ⎪-⎝⎭其特征多项式为2()||(1)(2)f E A λλλλ=-=-+.故特征值为121,2λλ==-.11λ=,解对应的特征方程()0E A X -=得1(110)T X =,2(101)T X =.22λ=-,解对应的特征方程(2)0E A X --=得3(111)T X =-.以123,,X X X 作为列向量作成矩阵C .则C 可逆,且TC AC 为对角阵. 这时做非退化线性替换1122133123y x x y x x y x x x=+⎧⎪=+⎨⎪=-++⎩得222123123(,,)2f y y y y y y =+-.■ 2. 解 1261725027E A λλλλ+--⎛⎫ ⎪-=--- ⎪ ⎪+⎝⎭,将其对角化为210001000(1)(1)λλ⎛⎫⎪ ⎪ ⎪+-⎝⎭.故A 的若当标准形为100110001-⎛⎫ ⎪- ⎪ ⎪⎝⎭.■ 3. 解 A 的特征多项式为()||n f E A λλ=- (1)T Tn E λααββ=--- (1)()TT n E αλαββ⎛⎫=--⎪⎝⎭22(1)(1)()T n T E αλλαββ-⎛⎫=--- ⎪ ⎪⎝⎭22(1)(1)T T n T TE αααβλλβαββ-⎛⎫=--- ⎪⎝⎭21(1)1T T n T Tλαααβλβαλββ----=--- 222(1)(1025())n T λλλαβ-=--++.■ 4. 证 ⑴ A 是反对称实矩阵,故其特征值为零或纯虚数.其实,假定λ是A 的特征值,ξ是相应的特征向量.则()()()T T T T TT T T A A A A A ξλξξλξλξξξξξξξλξξ=⇒==⇒=-=-=-,又T TA ξξλξξ=,故λλ=-,这说明λ是零或纯虚数.由此得||0E A +≠,因而E A +可逆.⑵ 由⑴知E A -可逆,这说明Q 有意义.而1()()T Q E A E A -=+-,因此11()()()()T Q Q E A E A E A E A --=+-+- 11()()()()E A E A E A E A --=++--E =.故Q 是正交矩阵. ■5. 解 依题意有011003121003111003A -⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭因而1003011111003121111003111111A --⎛⎫⎛⎫⎛⎫⎪⎪ ⎪=-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭其特征多项式为2()||(3)f E A λλλλ=-=-.故特征值为120,3λλ==.⑴10λ=,解特征方程0AX -=得()11,0,1TX =-,()21,1,0TX =-.特征向量为1122l X l X +. ⑵23λ=,解特征方程(3)0E A X -=得()31,1,1T X =.特征向量为33l X .以上123,,l l l R ∈.把向量12,X X 正交并单位化得111(,0,)22η=-,2333,,22222η⎛⎫=-- ⎪ ⎪⎝⎭.把向量3X 单位化得3111,,333η⎛⎫=⎪⎝⎭.以123,,ηηη作为列向量作成矩阵P ,则P 为正交矩阵且000000003T P AP B ⎛⎫⎪== ⎪ ⎪⎝⎭.1102233322222111333T Q P ⎛⎫- ⎪ ⎪ ⎪==-- ⎪ ⎪ ⎪⎪⎝⎭,则Q 满足T Q BQ A =.■ 6. 证 假设()p x 可约,不妨设12()()()p x p x p x =,其中120((),())(())p x p x p x <∂<∂.这时显然有12()|()()p x p x p x ,但不可能有1()|()p x p x 或者2()|()p x p x .这与题设矛盾,故假设错误.因而()p x 不可约. ■7. 证 依题显然有12W W ⊂,假设21dim dim W W =,则12W W =.于是1W β∈ ,这说明β可被12,,,n ααα 线性表出.记1122n n l l l βααα=+++ 给上式两边同时计算,ββ得,0ββ=,于是0β=,与题设矛盾,故假设错误, 原命题21dim dim W W ≠成立. ■8. 证 对于任意的ker ασ∈及任意的V σβσ∈,有,,0ασβσαβ==,于是有ker V σσ⊥,因而ker {0}V σσ= .又dim ker dim V n σσ+=,于是dim(ker )V n σσ+=,故ker V V σσ=⊕.■06年考研真题用正交线性替换将实三元二次型222123112132233(,,)44282f x x x x x x x x x x x x =-+-+-变成标准形,并写出所用的非退化线性变换。
江苏大学数学分析试卷和答案
冯
江 苏 大 学 试 题(B 卷)
(2016-2017 学年第一学期)
课程名称
数学分析I
开课学院 理 学 院
使用班级 应数 10, 信计 10, 数师 10 考试日期 2017.1.
共2 页 第1 页
题 号 一 二 三 四 五 六 七 八 总分 核查人签名
Байду номын сангаас得分
姓名
学号
阅卷教师
注:第一题单项选择题和第二题填空题可以做在试卷纸上,其它试题必须做在答 题纸上。
ex ey
.
2
六、(10
分)讨论函数
y
x 4
32 x 1
的单调区间、凸凹区间、极值(点)情况.
七、(10 分) 圆形铁皮剪去一个圆心角为 的扇形后卷成一个漏斗. 问 为何值时漏 斗的容积为最大?
学生所在学院
专业、班级
学号
姓名
第页
江苏大学试题
《数学分析 I》(B 卷)试卷答案(兼评分标准)
一、单项选择题(每小题 3 分,共 15 分)1.D, 2.C, 3.B, 4.A, 5.B 二、填空题(每空 2 分,共 10 分)1. x S, x ,2. 当n, m N时有 xn xm ,3.
5、设 y f u sinu , u x x2 , 求 d 2 y
四、(5 分)用 定义证明 lim x x0
1 x2
1 x02 , ( x0 1 ).
五、(10 分)证明下列不等式: (1) 当 x 1 时, ln 1 x2 arctan x 1. 2
(2)
x y
对 x, y R 有不等式 e 2
B、an bn 收敛.
C、 anbn 收敛.
江苏大学04《高等代数》
机密★启用前
共 2 页
第 1 页
江苏大学2004年硕士研究生入学考试试题
考试科目:高等代数
考生注意:答案必须写在答题纸上,写在试题及草稿纸上无效!
一、[本题12分]计算行列式之值。
二、[本题12分]设n阶矩阵A=,
求:1)A的特征多项式
2)A的不变因子、行列式因子、初等因子
3)A的Jordan标准形
三、[本题12分]
1、证明:(其中)线性相关至少有一个(1)可被线性表示。
2、证明:一个向量组的任何一个线性无关组都可以扩充为该向量
组的一个极大线性无关组。
四、[本题12分]若设W=
(1)试证:W是的子空间
(2)求出W的一组基及维数
五、[本题12分]
1、设A、B均为n阶矩阵,证明:如果AB=O,则秩(A)+秩(B)。
2、设A是一个n阶矩阵,且秩(A)=r,证明:存在一个n阶可逆矩
阵P,使PAP-1的
后n-r行全为零。
第2页
六、[本题10分]
证明:如果A是正交矩阵,那么A 的主子式全大于零。
所谓主子式就是行指标和列指标相同的子式。
七、[本题10分]
设V1与V2分别是齐次线性方程组与的解空间。
证明。
八、[本题10分]
设是有限维线性空间V的线性变换。
W是V的子空间。
W表示由W中向量的象组成的子空间,证明:
维(W)+维()=维(W)
九、[本题10分]
若记是数域P上n维线性空间的所有线性变换构成的集合。
设1,2
证明:1(0)2(0)3,使2=31。
第3页。