4712.3-2007耳式支座计算
附塔再沸器支承耳座的设计
附塔再沸器支承耳座的设计曹晓玲,曹皓闻(中石化南京工程有限公司, 江苏 南京 211100)[摘 要] 在设计附塔再沸器的支承耳座时,不能不加分析地直接选用JB/T 4712.3-2007《容器支座 第3部分:耳式支座》中提供的耳座型号,因两种耳座的受力模型不同,会造成耳座实际承受的不同的支座反力,应通过合理的受力分析验算耳座的承载能力。
[关键词] 附塔再沸器;支承耳座;承载力验算作者简介:曹晓玲(1972—),女,江苏盐城人,1994毕业于南京化工学院化工设备与机械专业,本科学历,主任工程师,主要从事化工设计工作。
在化工工艺布置中,精馏塔与塔底再沸器之间宜按工艺流程顺序靠近布置,对于立式再沸器,可布置在塔侧并利用塔体直接支撑,具有紧凑、无需支撑钢架及基础、安装方便的优点,而此时需要在塔体与再沸器之间设置支承耳座,见图1。
图11 耳座设计中存在的问题以往耳式支座的设计,一般可参考J B /T 4712.3-2007《容器支座 第3部分:耳式支座》中提供的耳座形式进行选用,但对于附塔再沸器的耳座,如直接选用则存在以下问题:(1)JB/T 4712.3-2007中耳座的受力模型与附塔再沸器支承耳座的受力模型不相同;(2)由水平地震力产生的偏心弯矩作用于耳座上的荷载与水平地震力产生的、作用于附塔再沸器耳座上的荷载不同,JB/T 4712.3-2007提供的耳座实际承受载荷公式不适用于附塔再沸器耳座承受的荷载计算;(3)JB/T 4712.3-2007中未提供耳座的承载力验算方法。
对此,本文针对附塔再沸器的支承耳座提出了设计方法及算例。
2 设计原则2.1 塔体与再沸器之间的距离在安装与配管允许的情况下,应尽量缩短塔体与再沸器之间的距离,以避免耳座受到较大的弯曲应力,造成耳座材料的浪费及在塔壁上产生过大的局部应力。
2.2 水平地震作用计算原则NB/T 47041-2014《塔式容器》中提供了高度H 与直径D 之比大于5的裙座自支承塔器的基本自振周期计算公式及多质点体系的基本振型水平地震力计算公式,但以此计算出的水平地震力并不能作为附塔再沸器耳座上的荷载,原因在于:(1)立式再沸器作为塔的附属结构,其支承结构形式可简化为单质点简支支承,不同于塔器的立式悬臂结构;(2)附塔再沸器的高度H 与直径D 之比在一般情况下均小于5,造成再沸器支承结构的刚度较大、基本自振周期较小。
JBT4712.3耳式支座计算软件
第 1 页,共 2 页
序号
数值名称
符号 单位
公式
计算
数值
JB/T4712.3-2007支承式支座载荷计算 适用:PN0~1.6MPa,DN300~4000mm,L/DN≤5,且H0≤10m 容器设计压力 设计温度 圆筒材料 设计温度下许用应力 [σ ]t MPa 圆筒厚度附加量 设备总重 重力加速度 地震影响系数 C m0 g a mm kg m/s2 7度:0.08、0.12 8度:0.16、0.24 容器内径 容器外径 10m高处的基本风压 水平力至底板高度 Di D0 q0 h mm mm N/m2 mm 有保温层时取保温层外径 用户提供或查GB50009表D.4及及其他 9度:0.32 0.12 1200 1220 400 0 C1+C2 壳体+附件+内部介质+保温 Ps t MPa 0.88 70 Q345R 189 3.3 1895 9.80665
m0g Ge 4(Ph GeSe) 103 kn nD
Q<[Q],满足要求
支座处圆筒支座弯矩 筒体有效厚度 支座处筒体许用弯矩
ML δ e
kN.m Q(L2-S1)/1000 mm δ n-C
[ML] kN.m 以δ e和P查JB/T4712.3表B.1~B.4 ML<[ML],满足要求 以上均满足要求,所选支座可行。
(Di 2 n 2 3 ) 2 b2 2( L2 S1 )
2
b2 L2 S1 δ n D Ge Se Pe Pw P [Q] Q
1541.1 0 0 2230.0 1095.1 2503.8 30.0 5.6 通过 0.87 6.7 4.71 通过
耳式支座处圆筒局部应力的另外一种计算方法
耳式支座处圆筒局部应力的另外一种计算方法杨洋【摘要】按照JB/T4712设计的耳式支座,当不能采用许用弯矩进行评定时,除了按标准释义采用AD规范对支座处圆筒局部应力进行计算评定外,提出还可以按照HG20582对支座处圆筒局部应力进行计算,并用AD规范验证了该方法的可行性.【期刊名称】《机械研究与应用》【年(卷),期】2017(030)003【总页数】3页(P84-86)【关键词】耳式支座;许用弯矩;AD规范;HG20582【作者】杨洋【作者单位】东方电气股份有限公司核设备设计所,四川成都 611731【正文语种】中文【中图分类】TQ053化工设备进行耳式支座设计时,一般按照设备结构特点及安装要求进行耳式支座选型,然后计算支座承受的载荷,并与JB/T4712推荐的许用载荷进行比较,以判断选定的支座能否满足承载要求。
同时,还应对支座处圆筒所受的弯矩进行评定,其许用弯矩可由JB/T4712.3附录表B获得。
当由于结构尺寸、内压等参数超出附表B的范围,无法获得许用弯矩时,可以按照标准释义中的方法对支座处圆筒局部应力进行计算、评定,局部应力按照AD规范S3/4中的方法进行计算。
针对支座处圆筒局部应力的计算,采用另外一种计算方法,即按照HG20582-1998第26部分《外载荷对圆筒引起的局部应力计算》进行计算。
下面以工程实际中的一台压力容器为例,来介绍此种计算方法,并通过AD规范S3/4验证此种计算方法。
1.1 基本参数及支座选型设计压力:2.5 MPa,设计温度:530 ℃。
设备外径:D0=273 mm,设备高度:H0=1 347 mm,设备总质量:m0=374 kg。
筒体名义厚度:Tn=18 mm,筒体有效厚度:T=16.2 mm,筒体平均半径:Rm=128.4 mm。
偏心载荷:Ge=0 N,水平力作用点至底板高度:h=324 mm;支座安装尺寸:D=536 mm地震影响系数:a=0.24(8级地震烈度),10 m高度处的基本风压值:q0=550N/mm2。
耳式支座安装尺寸及选用计算表(JBT4712.3)
支座 重量 规格 kg M20 1.7 M20 3 M24 6 M24 11.1 M24 21.6 M30 42.7 M30 69.8 M30 123.9
盖板 B4 50 50 50 70 70 100 100 100 δ 4 14 16 18
地脚螺栓 d 24 24 30 30 30 36 36 36
适用容积 高 公称直径 度 L1 B1 δ 1 S1 L2 B2 δ 2 L3 DN H 300~600 125 100 60 6 30 80 70 4 160 500~1000 160 125 80 8 40 100 90 5 200 700~1400 200 160 105 10 50 125 110 6 250 1000~2000 250 200 140 14 70 160 140 8 315 1300~2600 320 250 180 16 90 200 180 10 400 1500~3000 400 320 230 20 115 250 230 12 500 1700~3400 480 375 280 22 130 300 280 14 600 2000~4000 600 480 360 26 145 380 350 16 720 量以表中的垫板厚度δ 3计算的,如果δ 3的厚度改变,则支座的质量应相应的改变。 B型支座系列参数尺寸 底板 筋板
垫板 B3 125 160 200 250 320 400 480 600 δ 3 6 6 8 8 10 12 14 16 e 20 24 30 40 48 60 70 72
C型支座系列参数尺寸 底板 筋板 适用容积 高 公称直径 度 L1 B1 δ 1 S1 L2 B2 δ 2 L3 DN H 300~600 200 130 80 8 40 250 80 6 260 500~1000 250 160 80 12 40 280 100 6 310 700~1400 300 200 105 14 50 300 130 8 370 1000~2000 360 250 140 18 70 390 170 10 430 1300~2600 430 300 180 22 90 430 210 12 510 1500~3000 480 360 230 24 115 480 260 14 570 1700~3400 540 440 280 28 130 530 310 16 630 2000~4000 650 540 360 30 140 600 400 18 750 量以表中的垫板厚度δ 3计算的,如果δ 3的厚度改变,则支座的质量应相应的改变。
JBT4712.2-2007-腿式支座载荷计算(带公式)
1422.2 2
20.752 2 3
263.6 85.6 147
2019/8/12
腿式支座计算
共6页码 第5页
序号
数值名称
符号 单位
公式
计算
σ bt ≤[σ bt]
2 地脚螺栓的剪切应力:
地脚螺栓的剪切应力: τ bt Mpa (FH-0.4W1)/(NnbtAbt) τ bt Mpa 当计算的值τ bt小于0时,其值填为0
2 6.70
16
1 支腿装配焊缝的弯曲应力:
每条装配焊缝的计算长度 hf1 ㎜ hf-10
钢管为2(hf-10)
350
焊缝的焊脚高度
tf1 ㎜
12
焊缝的抗弯截面模量
Z ㎜3 2(hf12/6)(tf1/20.5)
346482.3
支腿装配焊缝的弯曲应力 σ f Mpa RL1/Z
35.70
焊缝系数
φ
0.49
地脚螺栓的内径
d1 ㎜
地脚螺栓的腐蚀裕量 Cbt ㎜
地脚螺栓的螺距
tb ㎜
一个螺栓的有效截面积 Abt ㎜2 π /4(d1-Cbt-0.866tb/6)2
地脚螺栓的拉应力
σ bt Mpa 1/(NnbtAbt)(4FHHC/Db-W1)
碳钢地脚螺栓许用应力 [σ bt] Mpa 常温下
182.54 235 通过
L1
㎜
H+hf/2+50
数值
1.04 63 通过
360 2130
壳体外壁至支柱形心的距离 e ㎜ 对H型钢支柱
W/2+垫板厚
102
㎜ 对钢管支柱
20
㎜ 对角钢支柱
压力容器设计耳式支座设计计算
t ℃D i mm [σ]t MPa δn mm C mmδe mmm 0kgH 0mmH 1mmh mmq 0N/m 2f i δis mm D o mm a G e N S e mm [M L ]kN·m 支座-Ⅰδ3mm [Q]kN b 2mm n pcs l 2mm k S 1mm P e N P w N P N Dmm Q kN M L KN·m 计算Q245R 支座材料Q235A 支座本体允许载荷150支座处圆筒所受的支座弯矩壳体保温层厚度0支座安装尺寸偏心距00支座实际承受载荷水平力水平风载荷水平地震载荷支座不均匀系数容器外径(包括保温层)支座处壳体的允许弯矩支座数量设备总质量1950048613500设计温度壳体内径壳体材料壳体设计温度下的许用应力筒体有效厚度150支座底板离地面高度2100140筒体名义厚度10厚度附加量1设备总高度结 论Q≤[Q]合格ML≤[ML]合格基本数据4支座筋板间距230支座筋板宽度P w = 1.2f i q 0D o H 0×10-6 =6801.51取较大值支座底板螺栓孔位置1159750地面粗糙度类别B 18.8238010m高度处的基本风压值水平力作用点至支座底板高度550支座垫板厚度1219.890.83风压高度变化系数10.2471.02120地震设防烈度8地震影响系数偏心载荷45910.8047611.18P= P w 或 P= P e +0.25P w =P e = am 0g =2661.6选用支座型号B6=-+-++=)(2)22(122223S l b D D n i δδ=⨯+++=-3010])(4[nDS G Ph kn G g m Q e e e =-=31210)(S l Q M Lt ℃D i mm [σ]t MPa δn mm C mmδe mmm 0kgH 0mmH mmq 0N/m 2f i δis mm D o mm a G e N S e mm [F]kN [Q]kN n pcs k δ3mm D r mm P e N P w N P N Q kN 计算水平地震载荷P e =am 0g=2971.25水平风载荷P w =1.2f i q 0D o H 0×10-6=4989.42水平力P=P w 或P=P e +0.25P w =4989.42支座实际承受载荷17.8封头名义厚度1600基本数据支座安装尺寸1200壳体保温层厚度0偏心载荷0偏心距0设计温度50壳体内径1设备总质量2524设备总高度465512椭圆形封头的允许垂直载荷149厚度附加量 1.3封头有效厚度10.7地震影响系数0.12风压高度变化系数选用支座型号水平力作用点至支座底板高度248010m高度处的基本风压值550支座数量4支座材料Q235A支座本体允许载荷地震设防烈度7封头材料Q345R 封头设计温度下的许用应力189地面粗糙度类别B 支座A312容器外径(包括保温层)162460Q≤[Q]合格Q≤[F]合格取较大值结 论支座不均匀系数0.83支座垫板厚度=⨯+++=-3010])(4[r e e e nD S G PH kn G g m QP c MPa t ℃DN mm [σ]t MPa δn mm C mmδe mmδhn mmm 0kgH 1mH 0mmH mmL mmh mmq 0N/m 2δis mmD o mm a H c mm f i [M L ]kN·m C bt mm 支腿C7-1900-63[Q]kN [τ]t MPa [σ]t MPa δa mm n pcs δb mm W mm C b mm t 2mm Dmm L o mm ηh f mm 支座数量4支座底板厚度22支座垫板厚度105支腿H型钢高度支座底板腐蚀裕度2支腿H型钢翼板厚度12角钢支腿中心圆参数1166180壳体总长度6456支座处壳体的允许弯矩24.26支座材料Q235A 支腿许用剪切应力M2433地脚螺栓规格地脚螺栓腐蚀裕度263支座型号8封头名义厚度16壳体切线距封头直边高度582440支座本体允许载荷壳体设计温度下的许用应力113筒体名义厚度设计压力0.6计 算 简 图地面粗糙度类别B 风压高度变化系数1地震设防烈度地震影响系数设计温度200适用范围:①、DN400~1600mm;②、L/DN≤5;③、对角钢和钢管支柱H1≤5m,对H型钢H 1≤8m;④、设计温度t=200℃;⑤、设计基本风压q o =800Pa,地面粗糙度为A类;⑥、地震设防烈度8度(Ⅱ类场地上),设计基本地震加速度0.2g14厚度附加量1筒体有效厚度13容器公称直径1200壳体材料Q235B 壳体保温层厚度100H型钢70支腿型式钢管支腿底板螺栓孔距设备重要度系数1支腿与壳体装配焊缝长度360基本数据12设计温度下支腿许用应力容器外径(包括保温层)142847720.16设备质心高度H c =H-h+L/2=支承高度190010m高度处的基本风压值800设备总质量13395设备总高度8。
JBT4712.4-2007支撑式支座计算校核
支承式支座强度校核(标准支座 JB/T4712.4-2007)
设备图号:XXXX
计算单位:四川科新机电股份有限公司
设备名称:
附录A例题
支座型号: B6
一、输入数据
符号意义及计算公式 p —设计压力 t —设计温度 DN —公称直径(标准规定DN800mm~DN4000mm) L —圆筒长度(上下封头切线间距离) D o —壳体外径(有保温层时取保温层外径) δ n — 封头名义厚度 δmin— 成形封头最小厚度 C2— 封头腐蚀裕量 δ e — 封头有效厚度 (δ e = δ min —C 2 ) g —重力加速度 m 0 —设备总质量 H 0 —容器总高度 (标准规定H0 ≤10m) 2S2或Dr(S2或Dr—支座底板中心线至容器中心线距离)
[Q ]—支座的许用载荷 n—支座数量 k —不均匀系数(安装3个支座时取 k=1,3个支座以上时取 k=0.83) 地面粗糙度类型(A、B、C、D共四类 ) H —水平力作用点至底板的距离(本程序限定H≤10m) fi —风压高度变化系数(按设备质心所处高度取) q 0 —设置地区10米高度处的基本风压值 地震设防烈度(7度、8度、9度) 设计基本地震加速度[0.10(0.15)、0.20(0.30)、0.40] α — 地震影响系数 [0.08(0.12)、0.16(0.24)、0.32] [F ]— 椭圆形封头的允许垂直载荷
g ——
kN MPa kg mm
——
mm
数值 0.3 50 2800 5076 2824 12 11
1 10 9.8 35000 6500 1820 450 4 0.83 B 3568 1.00 550 7 0.15 0.12
225.2
170 10000 2000
设备支座设计规范
支座.1耳式支座:一般用于之承在钢架或梁上的以及穿越楼板的立式容器,按JB/T4712.3-2007《容器支座第3部分:耳式支座》标准选用,支座数量一般应采用4个均布,但容器直径小于等于700mm时,支座数量允许采用2个。
支座与筒体连接处是否带垫板,应根据容器材料和容器与支座连接处的强度和刚度决定。
对低温容器的支座一般要加垫板,垫板尺寸一般按JB/T4712.3-2007标准选取。
支座型式有A(或AN)型、B(BN)型,选取原则按JB/T4712.3-2007标准规定。
10.2支承式支座:多用于安装在距地坪或基础面较近的具有椭圆或碟形封头的立式容器,按JB/T4712.4-2007《容器支座第4部分:支承式之座》标准选用。
支承式支座的数量一般采用3个或4个均布,支承式支座与封头连接处是否加垫板,应根据容器材料和容器与支座连接处的强度和刚度决定,支承式支脚用于带夹套容器时,,如夹套不能承受整体重量,应将支脚用于带夹套容器时,如夹套不能承受整体重量,应将支脚焊接在容器的下封头上。
10.3腿式支座:适用于安装在刚性基础上的立式容器,按JB/T4712.2-2007《容器支座第2部分:腿式之座》标准选用。
支腿容器焊接时应避免重叠。
10.4鞍式支座:使用于卧式容器的支承,按JB/T4712.1-2007《容器支座第1部分:鞍式支座》标准选用。
卧式容器应优先考虑双支座,支座中心线的位置按标准执行容器因操作温度变化,固定侧应采用固定鞍座F 型,滑动侧采用滑动鞍座S型。
固定鞍座通常设在接管较多的一侧。
采用三个“鞍座时中间鞍座宜选用F型”,两侧的鞍座宜选用F型,两侧的鞍座可选用S型。
10.5裙式支座:裙座有圆筒形和圆锥形两种型式,适用于高大型或重型立式容器的支承,裙座与容器的焊接一般推荐用对接结构,并采用连续的圆滑过渡焊,裙座与封头的连接及设计、制造技术要求应执行标准JB/T4710-2005《钢制塔式容器》的规定。
JB4712-2007各种支座自动计算校核(附件含自动计算excel版本)
7. 支腿装配焊缝的强度计算: 7.1 支腿装配焊缝的弯曲应力σf:σf=RL1/Z, M
式中: Z-焊缝的抗弯截面模量,mm^3;
σf= 35.71 Z= ########
校核
hf1-每条装配焊缝的计算长度,mm; hf1=hf-10 tf1-焊缝的焊角高度,mm; [B]-支腿装配焊缝的抗弯、抗剪许用应力,MPa; φ-焊缝系数,mm;(对于角焊缝受剪切时)
σf≤[B]
hf1= 350 tf1= 12.0 [B]= 77.18 φ= 0.49
安全
7.2 支腿装配焊缝的剪切应力σf:τ1=FL2/A1, M 式中: A1-焊缝的横截面积,mm^2;
校核
τ1≤[B]
ห้องสมุดไป่ตู้
τ1= 18.66 A1= 5939.70
安全
7.3 支腿装配焊缝的当量应力σz:
校核
σZ≤[B]
H0-容器壳体总长度(mm);
PW= 8850.40 fi= 1
q0= 800 D0= 1428 H0= 6456
2. 水平地震作用标准值计算 Pe:
Pe=aem0g
ae-地震影响系数;
设防烈度
7
计基本地震加速 0.98
1.47
地震影响系数a 0.08
0.12
m0-设备操作质量;(kg)
8
1.96
2.94
0.16
0.24
Pe= 21024.79 ae= 0.16
9 3.92 0.32
m0= 13395
3. 载荷的确定:
3.1 水平载荷 FH(N)
—取风载荷PW和(地震载荷Pe+0.25PW)的较大
3.2 垂直载荷载荷 W1(N)—取设备最大操作重力
容器支座计算(JB4712-2007)
20000 kg 9.81 10000 4 0.12 50300 mm 1 2380 mm 10 350 2 8 2400 1470 mm kN mm mm mm mm
支座载荷计算
不均匀系数k (3个为1,3个以上为0.83) 水平地震力 水平风载荷 水平力P 实际承受的载荷 结论 0.83 23544 N 6859 N 25259 N
Pe m0 g
Pw 1.2 fi q0 Do H0 106
m g Ge 4( Ph Ge Se ) Q 0 103 nD kn
156.9 kN 支座安全
JB4712-2007各种支座自动计算校核
cr]=
911.48 安全
τ = 1.04 [τ ]= 63 105 安全
σ b= 172.33 式中: L1-基础板下表面至支腿装配焊缝中心的长度,mm; L1=H+h Lf1/2+50 = 2130 hf-支腿与本体装配的焊缝长度,mm; hf= 360 e-壳体外壁至支柱形心距离,mm; e=W/2 e= 90 Wmin-单根支腿的最小抗弯截面模量,mm^3; Wmin= 129674 支腿的许用弯曲应力[σ b],MPa; [σ b]= 235 校核 σ b≤[σ b] 安全
m0= 13395
FH= 23237.39 W1= 131360 R= 5809.35 N= 4 FL1= 45127.57
FL2-单根支腿垂直反力(弯矩的拉伸侧),N;
FL2= -110808
HC-基础顶面至设备质心的高度,mm; DB-支柱中心圆直径,mm;
HC=H-h2+L/2
HC= 4772.00 DB= 1422.24
bt= bt]=
0.00 117.6 安全
[τ
τ
bt≤[τ bt]
6. 基础板的强度计算: 基础上的压缩应力σ c1: σ c1=FL2/(b1*b2), MPa σ c1= 式中: b1-基础板长度,mm; b1= b2-基础板宽度,mm; b2= [σ c1]-混凝土许用耐压应力,MPa; [σ c1]= 校核 σ
H-支承高度,mm; h2-封头直边高度,mm; L-壳体切线距,mm; W-H型钢高度,mm; DN-容器公称直径,mm; δ 2n-容器名义厚度,mm; δ a-垫板名义厚度,mm;
H= h2= L= W= DN=
1900 40 5824 180 1200 14 12
JB4712-2007各种支座自动计算校核(附件含自动计算excel版本)2
p —设计压力 t —设计温度 D N —公称直径(标准规定DN≤4000) Di —壳体内径 D 0 —容器外径(有保温时为保温层外径)
δn — 壳体的名义厚度 C1 — 钢材厚度负偏差 C2 — 腐蚀裕量 δe — 壳体的有效厚度 (δ e = δ n —C 1 —C 2 )
H 0 —容器总高度 h —水平力作用点至支座底板的距离
(水平作用点在支座底板上方为正值,在支座底板下方为负值)
支座底板离地面的高度
地面粗糙度类型( A 、 B 、 C 、 D 共四类)设Leabharlann 质心所处高度(本程序限定H≤15m)
f i —风压高度变化系数(按设备质心所处高度取)
n--支座数量
k —不均匀系数(安装 3 个支座时取
[Q ]—支座的许用载荷
—— kN kN·m mm mm mm mm mm N/m2 度 —— —— m/s2 MPa
三、结论
符合标准范围DN≤4000,本支座可用。
Q < [Q] 满足支座本体允许载荷要求 ML > [ML] 不安全。
简图:
支承式支座强度校核(标准支座
计算单位:
设备名称: 附录A例题
JB/T4712.4-2007)
设备图号:XXXX
支座型号:
B6
一、输入数据
符号意义及计算公式 单位 MPa ℃ mm mm mm mm mm mm mm m/s2 kg mm mm kN 个
k=1,3个支座以上时取 k=0.83)
数值 0.3 50 2800 5076 2824 12 11 1 10 9.8 35000 6500 1820 450 4 0.83 B 3568 1.00 550 7 0.15 0.12 225.2 170 10000 2000
4712.3-2007耳式支座计算
以下各部分计算内容系根据JB/T 4712.3-2007《容器支座 第3部分:耳式支座 附录A》进行设计计算。
一、数据输入
设计压力 设计温度 壳体内径 设备总高度 支座底板离地面高度 支座底板距设备质心 p t Di H0 h fi q0 N/m2 MPa ℃ mm mm mm mm 0.6 270 1000 7767 6000 1000 B 1 650 7 0.08 MPa mm mm mm kg N mm mm mm mm mm DO n k mm mm 118 10 0.3 9.7 9131 0 0 140 289.5 70 10
附表2 对应于设防烈度α
设防烈度 设计基本地震加速度 地震影响系数最大值α
max
7 0.1g 0.08 0.15g 0.12 0.2g 0.16
8 0.3g 0.24
9 0.4g 0.32
进行设计计算。
δ3
kN
判断依据:Q<[Q]且ML<[ML],所选耳式支座合格
耳式支座最终校核结果
距地面高度Hit
附表1 风压高度变化系数fi 地面粗糙度类别
5 10 15 20 30 40 50 60 70 80 90 100 150
A 1.17 1.38 1.52 1.63 1.80 1.92 2.03 2.12 2.20 2.27 2.34 2.40 2.64
7.265968192
33.10236
3.计算支座处圆筒所受的支座弯矩
ML
Q l 2 s1 10 3
kN m
三、校核所选耳式支座
耳式支座本体允许载荷 支座处圆筒的许用弯矩 [Q] kN [ML] kN m
110 11.3 合格
化工设备设计基础-13
垫板
底板 腹板
筋板
(2)鞍式支座在同一直径下分为轻型(A型)、重型 (B型)两种,主要是考虑了在同一直径的容器,由于 内部结构、长径比及内部物料等因素使得容器的总重量 有很大的差别。 重型鞍座可满足卧式换热器,介质比重较大或L/D 较大卧式容器的要求;轻型鞍座则满足一般卧式容器的 使用要求。 但容器直径DN≤900mm,鞍座未设轻型结构,原因 容器直径太小其重量差别不大,此时轻型与重型的尺寸 及用途相差不大。
(3)鞍座间距.尽量使支座中心到封头切线的距离A小 于或等于0.5Ra,当无法满足A小于或等于0.5Ra时, A不宜大于0.2L。(JB/T4731-2005 6-1-1) (4)选用F、S型各一, S型鞍座的定位尺寸
5
5
4.鞍座标记
JB/T4712.1-2007,鞍座X X- X 固定鞍座F,滑动鞍座S 公称直径,mm 型号(A,BI,---BV)
2.碳素钢与低合金钢人孔、手孔 《碳素钢与低合金钢人孔、手孔》标准,其标淮号为 e ( ) HG21515~21535—2005) D L 1.17 D 2.2 E ( ) 2.6 E Do L D 详细标准号及相关说明见教材P353-,表11-2。 Do
2.5 e
cr
0
e
3.不锈钢人孔、手孔 (HG21594-21604) P373
⑥耳式支座标记
JB/T4712.3-2,007耳座 X X-X
3
=X
垫板厚度,标准可不标 筋板或底板材料代号
支座号(1,2,3---) 型号(A,AN,B,BN)
2.支承式支座(JB/T4712.2-2007)(p419)
Chap. 11 人孔、手孔、视镜和液面计 一、人孔和手孔 1、容器上开设人孔、手孔的规定 e ( ) e (1)最少数量与最小尺寸的规定 P P353表11-1 2.6 E Do P 2.2 E ( ) L Do
耳式支座计算程序使用说明
菜单栏
【数据】
1、 保存数据
保存已经输入的结构参数。数据默认保存在 D:\Program Files\WangXinghai\耳 式支座计算\DATA 文件夹下的“工程数据.神话”文件下,可以 txt 文本文件打开。
通常此文件也可进行计算结果的传输,在其他设计人员的程序中打开。
2、 载入数据
读取已经保存的数据。可以读取自己保存的或者其他设计人员发来的数据文件。
6
耳式支座计算程序说明
可以看到符合要求的 H 的最小值为 203。 对其他参数也可这样输入。 尽管软件可以迭代计算获取最小的符合要求的结构尺寸,但从公式及软件测试中,发现 结构厚度的跌算中,存在不唯一的最小值,通常可以在软件获得的数值附近增减进行验证, 这需要工程设计人员有一定的经验进行判断。 进行最小值验证时,应根据下方提示的结构评估进行验证,将不满足的尺寸调整到符合 结构尺寸要求时,再计算其他参数。推荐 b4 值≥55。 地脚螺栓规格的输入方式为“M**”或“m**”,否则软件无法识别,将造成错误的评 判,这点应特别注意。
耳式支座计算程序说明
程序说明
开发目的
标准耳式支座的选用可参考 JB/T4712.3-2007《容器支座 第三部分:耳式支座》,标准 适用于公称直径不大于 DN4000 的设备,并列出了 0.0MPa、0.6MPa、1.0MPa、1.6MPa 压力 下设备对应的支座处壳体的允许弯矩。
超过标准适用范围的耳座可以参考该标准进行计算,校核耳座本体和设备壳体的强度及 局部应力,以免造成耳座结构的破坏或局部应力过大对设备造成的损伤。
【运行】
提供了计算、生成计算书、打开计算书和计算示例功能。其中计算示例中的数据为JB/T4712.来自-2007 中附录案例的计算数据。
耳式支座计算+A7校核计算中出现的问题
工程名:
设备位号:
设备名称:
图 号:
设计单位:
设计: 日期:
校核: 日期:
审核: 日期:
审定: 日期:
耳式支座计算单位 安徽华东化工医药工程有限责任公司
计算条件 设备简图
设备类型一般设备
设计压力P0.6 Mpa
设计温度T50 ℃
设备内径Di2800 mm
焊接接头系数K0.85
筒体材料名称Q235-B
设计温度许用应力[σ1]t113 MPa
筒体名义厚度δn12 mm
设备总高度H06500 mm
设备总质量m035000 Kg
地震设防烈度8度+0.3g
地震影响系数α0.24
10m处基本风压q0550
风压高度变化系数f i 1
偏心载荷Ge10000 N
偏心距Se2000 mm
水平力作用点至地板高度h1500 mm
支座型号A7
适用容器公称直径DN1700-3400 mm
支座数量n 4 个
筋板和底板的材料名称Q235-B
筋板和底板材料的许用应力[σ2]t113 MPa
地脚螺栓的材料名称 Q235-B
地脚螺栓许用应力及屈服强度MPa
单个地脚螺栓座螺栓数n1 1 个
地脚螺栓规格M30
耳式支座简图及结构参数
H 480 l1 375 b1 280 δ1 22 s1 130 l2 300 b2 280 δ2 14 l3 600 b3 480 δ3 14 e 70 b4 50 δ4 14 d 36。
耳座及支座计算
4785 610 2 1 0.23 1.38 550 0 0 60 5393 3318 5393
#VALUE! #VALUE! #VALUE!
N/mm2 N mm kN N N N
28.1 7.6
39.2 10.6
#VALUE! #VALUE!
kN kN-m
耳座处壳体所受弯矩 Ml=
Ql2 S1 103
Page 1
耳式支座
使用说明: 1.编制依据:JB/T4725-92。 2.红色为输入数据,绿色为计 计算结果。
Page 2
耳式支座
位号 1. 耳座安装尺寸计算( JB/T4725-92) 容器内径 Di= 壳体名义厚度t= b2= l2= s1= 垫板厚度 δ3= 筋板厚度 δ2= 耳座安装尺寸D=
E101 850 10 160 360 90 10 12 1419.5
E101 850 10 160 360 90 10 12 1419.5 100 4300 6685 610 2 1 0.23 1.38 550 0 0 60 7534 3318 7534
D303 1000 10 160 360 90 10 12 1571.1 mm mm mm mm mm mm mm mm mm mm Kg mm 0.83
Di 2t 2t32 b2 2t22 2l2 S1
Байду номын сангаас
2. 耳座载荷计算 (适于H/D<5 且H<10m, JB/T4725-92) 保温层厚 = 100 容器总高度H0= 4300 设备操作质量(壳+附件+介质+保温) m0= 重心至耳座底板距离h= 耳座数量 n= 不均匀系数 k= 地震系数α= 风压高度变化系数fi= 基本风压q0= 偏心载荷Ge= 偏心距Se= 支座本体允许载荷[Q] KN 水平地震力Pe=0.5αm0g= 水平风载荷 Pw=0.95fiq0(Di+2*t)H0/1000000= 水平力P=max{Pe,Pw}= 计算结果:
耳式支座 计算载荷 允许载荷
耳式支座计算载荷允许载荷
(原创实用版)
目录
1.耳式支座的定义和作用
2.计算载荷的方法和重要性
3.允许载荷的定义和影响因素
4.耳式支座的应用领域和未来发展
正文
耳式支座是一种常见的机械零件,主要用于支撑和固定机械设备的部件,以承受和分散载荷。
在机械设备的设计和使用过程中,计算载荷是非常重要的一环。
因为只有准确地计算出设备的载荷,才能保证设备的正常运行和使用寿命,同时也能确保设备的安全性能。
计算载荷的方法通常是根据设备的工作条件和使用环境,以及设备的设计和材料等因素,通过数学模型和工程经验进行估算。
这个过程需要考虑的因素非常多,包括设备的工作时间、工作强度、工作温度等。
因此,计算载荷是一项复杂而繁琐的工作,需要专业的技术人员进行。
允许载荷是耳式支座能够承受的最大载荷,超过这个载荷,耳式支座就可能发生损坏或者变形,从而影响设备的正常运行。
允许载荷的大小取决于耳式支座的材料、尺寸和结构等因素。
因此,在选择和使用耳式支座时,必须根据实际工作条件和需要,选择合适的允许载荷。
耳式支座的应用领域非常广泛,几乎涵盖了所有的机械设备行业。
包括汽车制造、航空航天、建筑工程、电力设备等。
在未来的发展中,随着科技的进步和工艺的提高,耳式支座将会更加精确和耐用,以满足不断提高的使用要求。
总的来说,耳式支座在机械设备的设计和使用中扮演着非常重要的角
色。
计算载荷和允许载荷的准确,不仅可以保证设备的正常运行,也可以提高设备的使用寿命和安全性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ge Se
DO
NUMBER OF SUPPORTS n NONUNIFORM VOEFFICIENT k
0 1020 4 0.83
JB/T4712.3-2007
14-2、CALCULATION
14-2-1.INSTALLATION DIMENSION CALCULATION FOR SUPPORT
D
DISTANCE BETWEEN BASEPLATE TO GROUND LEVEL DISTANCE BETWEEN BASEPLAT TO C.G. h
GROUND ROUGHNESS
WIND PRESSURE HEIGHT COEFFICIENT OF VARIATION WIND PRESSURE SEISMIC FORTIFICATION INTENSITY EFFECT COEFFICIENT OF SEISMIC a ALLOWABLE STRESS AT DESIGN TEMP. [σ] t YIELD STRESS AT DESIGN TEMP. σy SHELL NOMINALTH'K TH'K DEVIATION ACTUAL TH'K OPERATING MASS ECCENTRIC LOAD ECCENTRIC DISTANCE b2 l2 s1 L1 δ3 b3 t INSULATION TH'K OUTER DIAMETER δn C δe m0
14-1、 DATA INPUT
DESIGN PRESSURE DESIGN TEMP. INSIDE DIAMETER TOTAL HEIGHT p t Di H0 MPa ℃ mm mm mm mm 1.7 80 1000 2450 2000 50 B fi N/m2 0 0 6 0 MPa MPa mm mm mm kg N mm mm mm mm mm mm mm mm mm mm 138 245 10 0.3 9.7 2793 0 0 110 125 50 250 10 200 8
ZJPEC
JY14-ASM-C01-CAL
R0
CALCULATION FOR LUG SUPPORT
The following calculation for each part all according to JB/T4712.3-2007"VESSEL SUPPORTS PART 3 LUG SUPPORT APPENDIX A" to carry on the design calculation
8.244398
kN
14-2-3.BENDING MOMENT ON SHELL WHERE JOINT SUPPORTS
ML
Q l 2 s1 10 3
kN m
14-3、CHECK THE LUG SUPPORT
ALLOWABLE LOAD FOR SUPPORT kN [Q] ALLOWABLE BENDING MOMENT ON kN m SHELL WHERE JOINT SUPPORTS [ML] BECAUSE:Q<[Q] AND M L<[ML],
B 1.00 1.00 1.14 1.25 1.42 1.56 1.67 1.77 1.86 1.95 2.02 2.09 2.38
C 0.74 0.74 0.74 0.84 1.00 1.13 1.25 1.35 1.45 1.54 1.62 1.70 2.03
D 0.62 0.62 0.62 0.62 0.62 0.73 0.84 0.93 1.02 1.11 1.19 1.27 1.61
7 0.1g 0.08 0.15g 0.12 0.2g 0.16
8 0.3g 0.24
9 0.4g 0.32
21
1
2
Q A M Z
η : Welding Coefficient Judgement :
σc1+σc2
≤
0.49
σy /1.5
= 80.03333333 MPa
THEREFOR
OKΒιβλιοθήκη 20ZJPECJY14-ASM-C01-CAL
R0
DISTANCE FROM GROUND LEVEL H it
ATACHED LIST 2 EFFECT COEFFICIENT OF SEISMIC α max
SEISMIC FORTIFICATION INTENSITY BASIC ACCELERATION OF SEISMIC MAX EFFECT COEFFICIENT OF SEISMIC α max
A 2tL1b3 2 / 2tL1b3
Z: Section Coefficier
1365685
mm2
Z
tL1b3 tL1b3 3 3 2
364273.4
mm3
M: Moment 618.3298 kN 0.006037 1.697433 Mpa Mpa
σ1: σ2:
Tensile Stress Tensile Stress
ATTACHED LIST 1 WIND PRESSURE HIGH COEFFICIENT OF VARIATION fi TYPE OF GROUND ROUGHNESS
5 10 15 20 30 40 50 60 70 80 90 100 150
A 1.17 1.38 1.52 1.63 1.80 1.92 2.03 2.12 2.20 2.27 2.34 2.40 2.64
HORIZONTAL FORCE P= THE LARGER PW OR Pe+0.25P W,N
Pe+0.25P W =
0
N
SO
P=
0
N
ACTUAL LOAD FOR SUPPORT
m g Ge 4Ph GeSe 3 Q 0 10 nD kn
0.618329819
30 6.69 OK
(AS PER JB/T4712.3-2007 TABLE3)
(AS PER δe AND p TO CHECK JB/T4712.3-2007 TALBE B.2)
THEREFOR 14-4、CHECK THE WELD LINE STRESS A: Area of section
Di 2 n 2 3 2 b22
2l 2 s1
1184.17
mm
19
ZJPEC
14-2-2.LOAD CALCULATION SEISMIC LOAD WIND LOAD
JY14-ASM-C01-CAL
R0
Pe am 0 g
0
N 0 N
Pw 1.2f i q 0 D 0 H 0 10 6