Lecture04 Georeferencing

合集下载

Chap4 构造特征

Chap4  构造特征

计算机辅助工业设计系列课程——Pro/Engineer Wildfire应用教程
三.关于其它圆角方式(yuanjiao.PRT) 1)Edge Chain eg4:长方体 2)Surf-Surf eg5: 3)Edge-Surf (先选曲面再选曲线) eg6: 4)多个圆角交汇于一点,圆角区域过渡的问题
孔的肩部深度 钻孔深度(尖部深度) 沉头 埋头
计算机辅助工业设计系列课程——Pro/Engineer Wildfire应用教程
§4-3 圆角特征
二. 各类圆角的创建

创建恒定倒圆角


可以添加或去除“设置” 可以添加或去除“参照” 要定义半径,可拖动半径图柄至所需距离

创建可变倒圆角


在半径的图柄之上,右键单击鼠标,然后从快捷菜单中选取 “添加半径”,在快捷菜单中选取“删除”(Delete),可删 除半径 半径值的位置设置 使用快捷菜单中的“成为可变”(Make Variable),可将 现有“恒定”倒圆角转换为“可变”倒圆角
§4-2 打孔特征(Hole)
计算机辅助工业设计系列课程——Pro/Engineer Wildfire应用教程
§4-2 打孔特征
三. Sketched Hole 1. 步骤: 1) 孔的类型为“草绘”(而不是“简单”)再点草绘图标 进入草绘。 2) 建立孔的旋转剖面 3) 选择孔要放置的位置 4) 指定孔中心轴的位置 Eg5:-1-P112-5-8
计算机辅助工业设计系列课程——Pro/Engineer Wildfire应用教程
Chap 4
主要内容
第一节 概述
构造特征
第二节 打孔特征(Hole) 第三节 圆角特征(Round)

Lec4_Introduction_to_Quantum_Mechanics

Lec4_Introduction_to_Quantum_Mechanics
Lecture 4
Semiconductor physics II
Introduction to Quantum Mechanics
1
What is Quantum Mechanics
Classical theoretical physics -- Newton's laws of motion. -- The motion of large objects, such as planets and satellites. Quantum mechanics -- the behaviors of electrons and high-frequency electromagnetic waves. Wave mechanics: The formulation of quantum mechanics to describe behavior and characteristics of these electrons. -- Schrodinger wave equation
5
Maximum kinetic energy
Tmax
Quanta -thermal radiation emitted from a heated surface in discrete packets of energy -Postulated by Planck in 1900 The energy of these quanta
13
Using the technique of separation of variables
Ψ ( x, t ) = ψ ( x )φ (t )
a function of the position
2
Principles of Quantum Mechanics

Lecture_4

Lecture_4
Nov-4-02 GAMIT/GLOBK Tutorial 4 9
autcln summary file
• One-way post-fit residual statistics – Only in postfit autcln summary – Gives RMS in mm
• by station and each satellite for a station • Normal values are 3-10 mm • >10 mm is not good
Nov-4-02 GAMIT/GLOBK Tutorial 4 5
Analyzing a solution: bias parameters
• Number of biases fixed – Fixed bias have no sigmas in Q-file – 608 B1L1 SMYC-TBLE 4- 2 0.0000000000 10.0000 \ – 609*B1L1 SMYC-TBLE 4- 5 0.0000000000 2.3133 \ 0.0367 -2.31330402 – The * means not fixed and sigma is given • Adjustments – parameters should not change much
Nov-4-02 GAMIT/GLOBK Tutorial 4 7
autcln output
• autcln.out.Z – full output – automatically compressed – use uncompress or use zcat to view – Lists actions taken by autcln • autcln.prefit.sum • autcln.post.sum – Summaries – Look at these

lecture 4

lecture 4
2
i 1 j 1 r k
O
ij
E ij E ij
2
Contingency tables: Chi-square test
• Testing procedure (5 steps) • 1) Hypothesis • H0: the distribution criteria are statistically independent • 2) Sample distribution • Chi-square distribution • Degrees of freedom: (k-1)(r-1)
Single linear regression: correlation
Single linear regression: relation between b and r
Regression coefficient b presents the character of the relation, but tells nothing about the strength
Ecellij Prowi Pcolumn totaln j
Men Income (* € 1000,-) low 20 middle 20 - 40 High > 40 Total Oij 25 30 35 90 Eij 27 33 30 90 Women Oij Eij 20 18 25 22 15 20 60 60 Total 45 55 50 150
Contingency tables: example
Sex Women abs. % 20 33 25 42 15 25 60 100
Income (* €1000,-) low ( 20) middle (20-40) high (> 40) Total abs. 25 30 35 90

Lecture4

Lecture4

•Solve line by line with TDMA •Use SOR to overrelax
DO ITERATIONS = 1 , MANY DO J = 1 , NY CALCULATE COEFFICIENTS FOR I = 1 , NX USE TDMA TO SOLVE FOR Tcalci,j, i=1,NX USE SOR: NEXT J CALCULATE RESIDUAL ERROR NEXT ITERATIONS
Ti +1, j + Ti −1, j + Ti , j +1 + Ti , j −1 − 4Ti , j +
∆x 2 ∂ 4T ∆y 2 ∂ 4T error = + 4 12 ∂x 12 ∂y 4
Co D.M. Christopher
Computational Methods in Heat Transfer, D.M. Christopher
Finite Differencing (uniform grid)
∂ ∂T ∂ ∂T & = 0dx dy ∫∫ ∂x (λ ∂x ) + ∂y (λ ∂y ) + Q
•Diagonal (not tridiagonal) •Symmetric (usually) •Sparse (many zeros)
Computational Methods in Heat Transfer, D.M. Christopher
Solution Methodology
• Direct solver
λ
4
-20
4
ai ≥ ∑ an
(n ≠ i)

读有限元Fortran程序笔记范文

读有限元Fortran程序笔记范文

读有限元程序笔记1.ALLOCATABLE::COORD(:,:),PROPS(:,:,:) !声明两个可变大小的数组,COORD(:,:)是二维数组,PROPS(:,:,:)是三维数组。

2.Fortran程序行首为C代表改行为注释,不会被编译3.全局变量(common),不同的程序之间,也就是在不同的函数之间或者是主程序跟函数之间,除了可以通过传递参数的方法来共享内存,还可以通过“全局变量”来让不同程序中声明出来的变量使用相同的内存位置。

4.Dimensional维的,viscoplastic塑性的,elastic有弹力的,finite有限的,element元素,program程序。

5.THREE DIMENSIONAL ELASTIC-VISCOPLASTIC FINITE ELEMENT PROGRAM三维弹塑性有限元程序6.Module可以用来封装程序模块,通常是用来把程序中,具备相关功能的函数及变量封装在一起。

程序在开始定义了一个module模块,在模块中定义了MXKKK=,MXGSJ=1000,MXGSJ=1000三个常量(PARAMETER表示常量),并且每个常量都赋了值。

在module模块中定义了NELEM,NPOIN,NPROP,MXDFN,NSTEP,IDEVP,IDDP,LTYPE以及NFIX1,NPL,NVL,NSL,NHL,NTL,IDCVG,NTOTV,NKK以及DTIME,TOLER,SCALE,DSCALE这些全局变量(common表示全局变量),定义了ICM(3,8),CGAUS(2),VSHAP(8,8),DERIV(3,8,8)以及POSGP(3),COPG(3),EJ(3,3),EJACI(3,3),R(8,8)这些维数与大小都确定的全局数组变量,定义了COORD(:,:),PROPS(:,:,:)以及STRSG(:,:,:),DJ(:,:),CARTD(:,:,:,:)以及TRANJ(:,:,:,:),DJRMX(:,:,:)以及DREMX(:,:,:),DJEMX(:,:,:,:)以及CREMX(:,:,:),CJEMX(:,:,:,:)以及MELEM(:,:),MPROP(:),ISSOR(:,:),NNDEX(:)以及MPFIX(:,:),MPSJ(:),MMATP(:),MPIV(:)以及TSTIF(:)以及ADISP(:),TDISP(:),ALOAD(:)以及PSNBR(:,:,:),PSNBJ(:,:)以及PSTNR(:,:,:),PSTNJ(:,:)以及STRSP(:,:),STRSJ(:,:)这些维数确定但是大小不确定的可变大小的数组,ALLOCATABLE表示可变大小的数组变量。

FLUENT官方培训教材完整版幻灯片

FLUENT官方培训教材完整版幻灯片
如CAD、SolidWorks等,根据 实际问题需求建立准确的几何模 型。
100%
简化模型
在保证计算精度的前提下,合理 简化模型以降低计算量。
80%
设定边界条件
根据实际问题,设定模型的边界 条件,如入口、出口、壁面等。
网格划分策略及技巧
选择合适的网格类型
根据模型特点选择合适的网格 类型,如结构化网格、非结构 化网格等。
求解策略
采用有限体积法进行数值求解,结合适当的 湍流模型和热传导方程进行迭代计算。
结果分析
展示温度场、热流量和努塞尔数等关键结果 ,评估热设计方案的合理性。
07
总结回顾与拓展学习资源推荐
本次培训内容总结回顾
FLUENT软件基础操作
介绍了FLUENT软件界面、基本功能 、操作流程等。
前处理与网格划分
演示技巧
分享动画演示的实用技巧,如选择合适的帧率、添加背景音乐和解 说等。
输出格式
支持多种动画输出格式,如AVI、MP4等,方便在不同场合进行演 示和分享。
数据提取、导出及报告编写
数据提取
从计算结果中提取关键数据,如某点的速度、压力值等。
数据导出
将提取的数据导出为Excel、CSV等格式,便于进一步分析 和处理。
求解策略
采用有限体积法进行数值求解 ,结合湍流模型捕捉流动细节 ,提高计算精度。
结果分析
展示管道内的速度场、压力场 和流量分布等关键结果,评估
管道设计的合理性。
案例三:多相流混合过程模拟
问题描述
多相流体(如气液、气 固等)在混合过程中的 相互作用和流动特性。
建模方法
在FLUENT中建立多相 流模型,定义各相的物 理属性和相互作用机制

lecture04

lecture04
© ftw. 2004
functions: f1, f2 represented by function nodes
dependencies represented by edges
5 7
LDPC Code
x · HT=0
0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1
© ftw. 2004
9
Bad News
The tree assumption for random LDPC codes is only fulfilled if the block length goes to infinity. For finite length codes, the graph usually contains closed loops (cycles). These cycles cause correlations between the messages and the assumption of independent observations is not fulfilled. Conclusion: The Sum-Product algorithm is suboptimal.
1 2 3 4 5 C 6 7 D 8 9 E 10 A

georeferencing

georeferencing

一.影像校准
所有图件扫描后都必须经过扫描纠正,对扫描后的栅格图进行检查,以确保矢量化工作顺利进行。

对影像的校准有很多方法,下面介绍一种常用方法。

1.打开ArcMap,增加Georeferncing工具条。

2.把需要进行纠正的影像增加到ArcMap中,会发现Georeferncing工具条中的工具被激活。

3.在校正中我们需要知道一些特殊点的坐标。

通过读图,我们知道坐标的点就是公里网格的交点,我们可以从图中均匀的取几个点。

一般在实际中,这些点应该能够均匀分布。

4.首先将Georeferncing工具条的Georeferncing菜单下Auto Adjust不选择。

5.在Georeferncing工具条上,点击Add Control Point按钮。

6.使用该工具在扫描图上精确到找一个控制点点击,然后鼠标右击输入该点实际的坐标位置,如下图所示:
7.用相同的方法,在影像上增加多个控制点,输入它们的实际坐标。

8.增加所有控制点后,在Georeferencing菜单下,点击Update Display。

9.更新后,就变成真实的坐标。

10.在Georeferencing菜单下,点击Rectify,将校准后的影像另存。

后面我们的数字化工作是对这个校准后的影像进行操作的。

英文文章

英文文章

ORIGINAL PAPERLower Carboniferous post-orogenic granites in central-eastern Sierra de Velasco,Sierras Pampeanas,Argentina:U–Pb monazite geochronology,geochemistry and Sr–Nd isotopesPablo Grosse ÆFrank So¨llner ÆMiguel A.Ba ´ez ÆAlejandro J.Toselli ÆJuana N.Rossi ÆJesus D.de la RosaReceived:1October 2007/Accepted:19December 2007/Published online:22January 2008ÓSpringer-Verlag 2008Abstract The central-eastern part of the Sierra de Velasco (Sierras Pampeanas,NW Argentina)is formed by the large Huaco (40930km)and Sanagasta (25915km)granite massifs and the small La Chinchilla stock (292km).The larger granites intrude into Ordovician metagranitoids and crosscut Devonian (?)mylonitic shear zones,whereas the small stock sharply intrudes into the Huaco granite.The two voluminous granites are biotitic-muscovitic and biotitic porphyritic syeno-to monzogranites.They contain small and rounded tonalitic and quartz-dioritic mafic micro-granular enclaves.The small stock is an equigranular,zinnwaldite-and fluorite-bearing monzogranite.The stud-ied granites are silica-rich (SiO 2[70%),potassium-rich (K 2O [4%),ferroan,alkali-calcic to slightly calk-alkalic,and moderately to weakly peraluminous (A/CNK:1.06–1.18Huaco granite, 1.01–1.09Sanagasta granite, 1.05–1.06La Chinchilla stock).They have moderate to strong enrichments in several LIL (Li,Rb,Cs)and HFS (Nb,Ta,Y,Th,U)elements,and low Sr,Ba and Eu contents.U–Pb monazite age determinations indicate Lower Carboniferous crystallization ages:350–358Ma for the Huaco granite,352.7±1.4Ma for the Sanagasta granite and 344.5±1.4Ma for the La Chinchilla stock.The larger granites have similar e Nd values between -2.1and -4.3,whereas the younger stock has higher e Nd of -0.6to -1.4,roughly comparable to the values obtained for the Carboniferous San Blas granite (-1.4to -1.7),located in the north of the sierra.The Huaco and Sanagasta granites have a mainly crustal source,but with some participation of a more primitive,possibly mantle-derived,component.The main crustal component can be attributed to Ordovician peralu-minous metagranitoids.The La Chinchilla stock derives from a more primitive source,suggesting an increase with time in the participation of the primitive component during magma genesis.The studied granites were generated during a post-orogenic period in a within-plate setting,possibly as a response to the collapse of the previous Famatinian oro-gen,extension of the crust and mantle upwelling.They are part of the group of Middle Devonian–Lower Carboniferous granites of the Sierras Pampeanas.The distribution and U–Pb ages of these granites suggests a northward arc-par-allel migration of this mainly post-orogenic magmatism with time.Keywords Carboniferous post-orogenic granites ÁU–Pb monazite geochronology ÁGeochemistry ÁSr–Nd isotopes ÁSierra de Velasco ÁSierras Pampeanas ÁArgentinaP.Grosse (&)Instituto Superior de Correlacio´n Geolo ´gica (CONICET)and Fundacio´n Miguel Lillo,Miguel Lillo 251,4000San Miguel de Tucuma´n,Argentina e-mail:pablogrosse@F.So¨llner Department fu¨r Geo-und Umweltwissenschaften,Ludwig-Maximilians-Universita¨t,Luisenstrasse 37,80333Munich,GermanyM.A.Ba´ez ÁA.J.Toselli ÁJ.N.Rossi Instituto Superior de Correlacio´n Geolo ´gica (CONICET)and Facultad de Ciencias Naturales,Universidad Nacional de Tucuma´n,Miguel Lillo 205,4000San Miguel de Tucuma´n,Argentina J.D.de la RosaDepartamento de Geologı´a,Universidad de Huelva,Campus Universitario El Carmen,21071Huelva,SpainInt J Earth Sci (Geol Rundsch)(2009)98:1001–1025DOI 10.1007/s00531-007-0297-5IntroductionThe Sierras Pampeanas geological province of north-western Argentina contains abundant granitoid massifs generated during the Famatinian orogenic cycle(for details see Rapela et al.2001a;Miller and So¨llner2005).Most of these Famatinian granitoids are related to the main sub-duction phase of this cycle(e.g.Pankhurst et al.2000; Rapela et al.2001a;Miller and So¨llner2005)and have Early-Middle Ordovician ages(e.g.Pankhurst et al.1998, 2000;So¨llner et al.2001;Ho¨ckenreiner et al.2003) (Fig.1a).These granitoids are distributed along two sub-parallel,NNW–SSE trending belts:a main calc-alkaline I-type belt towards the southwest,and an inner peralumi-nous and S-type belt towards the northeast(Fig.1a).Additionally,numerous younger granites of Middle Devonian to Lower Carboniferous age are also present in the Sierras Pampeanas(e.g.Brogioni1987,1993;Rapela et al.1991;Grissom et al.1998;Llambı´as et al.1998; Saavedra et al.1998;Siegesmund et al.2004;Dahlquist et al.2006)(Fig.1a).The genesis of these granites is not well constrained,and they have been alternatively con-sidered as products of a crustal reheating process during a final phase of the Famatinian cycle,(e.g.Grissom et al. 1998;Llambı´as et al.1998;Ho¨ckenreiner et al.2003; Miller and So¨llner2005)or part of a separate cycle called Achalian(e.g.Sims et al.1998;Rapela et al.2001a; Siegesmund et al.2004;Lo´pez de Luchi et al.2007).The Sierra de Velasco is located in the central region of the Sierras Pampeanas(Fig.1a)and consists almost entirely of rocks of granitoid composition,making it the largest granitic massif of this geological province.The Sierra de Velasco granitoids have generally been regarded as part of the Famatinian inner peraluminous S-type belt (e.g.Rapela et al.1990;Toselli et al.1996,2000;Pank-hurst et al.2000),with the exception of the southern portion of the sierra which seems to correspond to the main calc-alkaline I-type belt(Bellos et al.2002;Bellos2005) (Fig.1a,b).However,field studies carried out in the northern(Ba´ez et al.2002;Ba´ez and Basei2005)and central(Grosse and Sardi2005;Grosse et al.2005)parts of the sierra indicate the presence of younger undeformed granites(Fig.1b),possibly belonging to the late-Famatin-ian,or Achalian,granite group.Recent U–Pb age determinations have confirmed that the northern unde-formed granites are of Lower Carboniferous age(Ba´ez et al.2004;Dahlquist et al.2006).The central undeformed granites have yet to be dated.The goal of this study is to determine the absolute ages and the geochemistry of the undeformed granites located in the central part of the Sierra de Velasco.To this end,we have carried out U–Pb dating on monazite and whole-rock elemental and Sr–Nd isotopic geochemical analyses.The obtained data are used to place constraints on the possible magma sources and geotectonic setting of these granites, and to discuss regional implications.Geological setting:the Sierra de VelascoThe Sierra de Velasco is dominated by rocks of granitoid composition.Low grade metamorphic rocks are only present as small outcrops along the easternflank of the sierra(Fig.1b,c).These phyllites and mica schists have been correlated with the La Ce´bila Formation,located in the Sierra de Ambato(Gonza´lez Bonorino1951;Espizua and Caminos1979).Recent discovery of marine fossils in this formation constrains its age to the Lower Ordovician (Verdecchia et al.2007),in agreement with detrital zircon geochronology(Rapela et al.2007).The granitoid units of the Sierra de Velasco have been reviewed and described by Toselli et al.(2000,2005)and Ba´ez et al.(2005).Two groups can be distinguished (Fig.1b):older deformed granitoids(here referred to as metagranitoids)and younger undeformed granites.The metagranitoids are the most abundant rocks.They are weakly to strongly foliated,depending on the degree of deformation.The main variety consists of strongly pera-luminous porphyritic two-mica-,garnet-,sillimanite-and kyanite-bearing meta-monzogranites(Rossi et al.2000, 2005).Subordinate varieties include strongly peraluminous porphyritic biotite–cordierite meta-monzogranites and moderately peraluminous coarse-to medium-grained bio-tite meta-granodiorites and meta-tonalites.In the southern part of the sierra,the main lithologies are metaluminous to weakly peraluminous biotite-hornblende meta-granodior-ites and meta-tonalites(Bellos2005)(Fig.1b).Two U–Pb SHRIMP determinations indicate Lower Ordovician ages for the metagranitoids(481±3Ma,Pankhurst et al.2000; 481±2Ma,Rapela et al.2001b).All of the metagranitoids are cut by several NNW–SSE trending mylonitic shear zones(Fig.1b).No age determi-nations exist of these shear zones in the Sierra de Velasco. However,similar mylonitic shear zones in other areas of the Sierras Pampeanas have been dated,with ages varying between the Upper Ordovician and the Upper Devonian (Northrup et al.1998;Rapela et al.1998;Sims et al.1998; Lo´pez et al.2000;Ho¨ckenreiner et al.2003).The precise Sm–Nd age of402±2Ma(Ho¨ckenreiner et al.2003) obtained on syntectonically grown garnet from mylonites of the Sierra de Copacabana(Fig.1a),which can be traced directly into the Sierra de Velasco(Lo´pez and Toselli 1993;So¨llner et al.2003),can be considered the best age estimate of mylonitization in this range.The undeformed granites crop out in the northern and central-eastern parts of the sierra(Fig.1b).Toselli et al.(2006)have grouped these granites in the Aimogasta batholith.The northern San Blas and Asha granites intrude the older metagranitoids and cross-cut the mylonitic shearzones (Ba´ez et al.2002;Ba ´ez and Basei 2005).They are moderately to weakly peraluminous porphyritic two-mica monzogranites.Existing U–Pb ages are 334±5Ma(conventional U–Pb method on zircon,Ba ´ez et al.2004)and 340±3Ma (U–Pb SHRIMP on zircon,Dahlquistet al.2006)for the San Blas granite,and 344±1Ma(conventional U–Pb method on monazite,Ba´ez et al.2004)for the Asha granite.In restricted areas,the granitic rocks are unconformably overlain by continental sandstones and conglomerates of the Paganzo Group (Salfity and Gorustovich 1984),ofFig.1a General geological map of the Sierras Pampeanas of NW Argentina with the main lithologies;sierras considered in the text are named.b General geology of the Sierra deVelasco;c Geological map of the central part of the Sierra de Velasco showing the Huaco,Sanagasta and La Chinchilla granites,with locations of dated samples;Bt biotite,Ms muscovite,Crd cordierite,Mzgr monzogranite,Ton tonalite,Grd granodioriteUpper Carboniferous to Permian age,deposited during regional uplift of the Sierras Pampeanas.Unconsolidated Tertiary-recent sediments,related to Andean tectonics, locallyfill basins and formfluvial terraces and cones. The Huaco,Sanagasta and La Chinchilla granitesThe central-eastern region of the Sierra de Velasco is formed mainly by two large granitic massifs,the Huaco granite(HG)and the Sanagasta granite(SG)(Fig.1c) (Grosse and Sardi2005).These granites consist of adjacent, sub-elipsoidal bodies with dimensions of approximately 40930km for the HG and25915km for the SG. Additionally,a small stock of around292km,named La Chinchilla stock(LCS),has been recognized in the central area of the HG(Fig.1c)(Grosse et al.2005).The HG and the SG intrude into the older metagranitoids and mylonites and are not deformed.The contacts are sharp and the granites truncate both the structures of the metag-ranitoids and the mylonitic shear zones,and contain enclaves of both of these host rocks.Thesefield relation-ships indicate that the granites are younger than both the crystallization of the metagranitoids and their deformation. The contact between the HG and the SG is irregular and transitional,suggesting that the two granites have similar ages and consist of two coeval magmatic pulses.The transitional area between the two granites is of*100–200m;in Fig.1c the contact between the granites was drawn along this transitional zone.The LCS clearly intrudes into the HG and is thus younger.The contacts are sharp and straight,and aplitic dykes from the LCS com-monly cut through the HG.Both the HG and the SG are rather homogeneous por-phyritic syeno-to monzogranites.They are characterized by abundant K-feldspar megacrysts up to12cm long (generally between2and5cm)set in a medium-to coarse-grained groundmass of quartz,plagioclase,K-feldspar, micas and accessory minerals.The megacrysts are usually oriented,defining a primary magmatic foliation.The HG consists in grayish-white K-feldspar megacrysts (30–36vol.%)and a groundmass of anhedral quartz(25–39%),subhedral plagioclase laths(An10–23)(18–31%), interstitial perthitic K-feldspar(2–14%),dark brown to straw-colored biotite(4–10%)and muscovite(2–6%). Accessory minerals include apatite(up to0.5%),zircon, monazite and ilmenite,all of which are generally associ-ated with,or included in,biotite.The SG contains pink K-feldspar megacrysts(33–37%) that are occasionally mantled by plagioclase generating a Rapakivi-like texture.The groundmass consists in anhedral quartz(23–34%),subhedral plagioclase laths(An18–24) (17–33%),interstitial perthitic K-feldspar(2–17%),and dark brown to straw-colored biotite(3–10%).Muscovite is absent or very scarce(0–2%).Accessory minerals are commonly found included in biotite.Apatite is less abundant than in the HG,whereas zircon,monazite and especially the opaque minerals(both ilmenite and magne-tite)are more frequent.In addition,titanite and allanite are sometimes present.Both the HG and the SG commonly contain small and rounded mafic microgranular enclaves.These generally have ovoid shapes,elongated parallel to the magmaticflow direction.The enclaves arefine-to veryfine-grained equigranular tonalites and quartz-diorites.They contain abundant biotite(15–50%)forming small,subhedral crys-tals.Opaque minerals and acicular apatite are common. The enclaves usually contain much larger xenocrysts of quartz,feldspar or biotite,and have chilled margins,sug-gesting partial assimilation and homogenization with the enclosing granites.Pegmatites and aplites are very common in these gran-ites,specially in the HG.The larger pegmatites are zoned and belong to the rare-element class,beryl type,beryl-columbite-phosphate sub-type with a hybrid LCT-NYF affiliation(Galliski1993;Sardi2005;Sardi and Grosse 2005).The HG also contains a small outcrop of an orbic-ular granite(Quartino and Villar Fabre1962;Grosse et al. 2006b).The LCS is a medium-grained,equigranular to slightly porphyritic,monzogranite.It shows a weak textural zona-tion determined by a progressive increase in grain size towards the center of the stock,where a slight porphyritic texture is present(up to10%of K-feldspar megacrysts). Mineralogically,the LCS consists of quartz(37–42%), plagioclase(almost pure albite,An1–2)(25–33%),K-feld-spar(19–34%),discolored,very pale brown to pale red-brown biotite(4–9%),anhedral and irregularly shaped fluorite(up to1%)and small quantities of zircon,monazite, opaque minerals and very scarce apatite.Beryl is occa-sionally present as euhedral prismatic crystals.Microprobe analyses(Grosse et al.2006a)indicate that the biotites of the HG and the SG have compositions ranging from Fe-biotites to siderophyllites(according to the classification diagram of Tischendorf et al.1997)and have high Fe/(Fe+Mg)ratios(0.76–0.82),typical of evolved granites.In the discrimination diagram of Nachit et al.(1985),they plot in the calc-alkalinefield.Biotites from de LCS have very high Fe/(Fe+Mg)ratios(0.94–0.97)and are Li-rich.They classify mainly as zinnwaldites and also as protolithionites in the classification diagram of Tischendorf et al.(1997).Zircons of the HG and the SG have similar morpholo-gies.They correspond mainly to the S17–19and S22–23 types of Pupin(1980),which are characteristic of calc-alkaline series granites.On the other hand,the zirconsof the LCS are different,with morphologies mostly of the P5-type of Pupin(1980),of primitive alkaline affiliation. The San Blas granite,in the north of the sierra(Fig.1b), has the same zircon typology as the LCS.No previous U–Pb age determinations exist of the HG and the SG,while the LCS has not been previously dated by any method.K–Ar and Rb–Sr geochronological studies have been carried out on granites of the Sierra de Velasco, which in some cases correspond to the HG or SG(see compilation in Linares and Gonza´lez1990).The ages in these studies are very variable,spanning from the Ordo-vician to the Permian,probably due to the inherent problems of the methods used(low closure temperature,Ar loss,etc.).Analytical methodsU–Pb geochronologyU–Pb geochronology was carried out at the Department of Earth-and Environmental Sciences,Ludwig-Maximilians-Universita¨t,Munich,Germany.Heavy mineral concen-trates,mainly zircons and monazites,were obtained using standard crushing,magnetic separation,and heavy-liquid techniques.For each analyzed sample around50monazite crystals were handpicked.Chosen crystals were yellow, translucent,anhedral to subhedral and lacked inclusions and fractures.We chose to analyze monazites because this mineral generally does not contain inherited cores and does not suffer radiogenic Pb loss at low temperatures,both common problems in zircons(see Parrish1990for discussion).Additionally,the closing temperature of monazite,although slightly lower than that of zircon(for details see Romer and Ro¨tzler2001),is sufficiently high to maintain the system unperturbed by low-temperature post-crystallization events.The monazite fractions were cleaned with purified6N HCl,H2O and acetone,and then deposited in Teflon inserts together with a mixed205Pb–233U spike.Subsequently, samples were dissolved in autoclaves,heated at180°C,for 5days using48%HF and subsequently6N HCl.The U and Pb of the samples were separated using small50l l ion exchange columns with Dowex raisin AG198100–200 mesh.The isotopic ratios of Pb and U were determined with a thermal ionization mass spectrometer(TIMS) Finnigan MAT261/262.Pb isotopes were measured in static mode and U isotopes in dynamic mode.Standards (NBS982Pb and U500)were used for measurement con-trol.U–Pb data was treated using the PBDAT1.24(Ludwig 1994)and ISOPLOT/Ex2.49x(Ludwig2001)programs. Errors quoted are at the2r confidence level.The correc-tions for initial non-radiogenic Pb was obtained following the model of Stacey and Kramers(1975).The U decay constants proposed by the IUGS(Steiger and Ja¨ger1977) were used for the age calculations.Mass fractionation was corrected using0.13±0.06%/a.m.u.for Pb and0.05±0.04%per a.m.u for U.Together with the samples,a procedural blank was analyzed to determine the level of contamination.For Pb blank corrections a mean value of 0.2ng and an isotopic composition of208Pb/204Pb=38.14; 207Pb/204Pb=15.63;206Pb/204Pb=18.15was used.Long term measured standards gave values of:NBS982(Pb): 208Pb/206Pb=0.99474±0.00013(0.013%,2rm,n=94); U500(U):238U/235U=1.00312±0.00027(=0.027%, 2r m,n=14).Whole-rock major and trace element geochemistry Whole-rock geochemistry was determined at the universi-ties of Oviedo(major elements)and Huelva(trace elements),Spain.Major elements were analyzed by X-ray fluorescence(XRF)with a Phillips PW2404system using glass beads.The typical precision of this method is better than±1.5%relative.Trace elements were analyzed by inductively coupled plasma mass spectrometry(ICP-MS) with an HP-4500system.Samples were dissolved using a mixture of HF+HNO3(8:3),a second dissolution in HNO3after evaporation andfinal dissolution in HCl.The precision and accuracy for most elements is between5and 10%relative(5–7%for Rb,Sr,Nd and Sm)and was controlled by repeated analyses of international rock stan-dards SARM-1(granite)and SARM-4(norite).Details on the method can be found in de la Rosa et al.(2001).Sr and Nd isotope geochemistrySr and Nd isotope analyses were carried out at the Department of Earth-and Environmental Sciences, Ludwig-Maximilians-Universita¨t,Munich,Germany.The analyzed powders were the same as those used for major and trace element analyses.For the determination of con-centrations and for comparison with the ICP-MS data,a mixed Sm–Nd spike was added to12samples.For the remaining samples,and for all Rb–Sr calculations,the concentrations obtained by ICP-MS were used.Samples(approximately0.1g each)were dissolved on a hot plate(140°C)during36h using a mixture of5ml of HF48%+HNO3(5:1).Sr and REE were separated using ion exchange columns with Dowex AG50W raisin.Nd and Sm were then separated from the total REE fractions using smaller ion exchange columns with bis(2-ethyl-hexyl)phosphoric acid(HDEHP)and Teflon powder.Theisotopic ratios of Sr,Nd and Sm were determined with a thermal ionization mass spectrometer (TIMS)Finnigan MAT 261/262.Standards were used for measurement control (NBS987,AMES Nd and AMES Sm).All errors used are at the 95%(2r )confidence level.Mass fraction-ation was corrected normalizing the isotopic ratios to 88Sr/86Sr =8.3752094for Sr,146Nd/144Nd =0.7219for Nd,and 148Sm/152Sm =0.4204548for Sm.CHUR con-stants used for e Nd calculation were 143Nd/144Nd =0.512638(Goldstein et al.1984)and 147Sm/144Nd =0.1967(Peucat et al.1988).One-step model ages were calculated following Goldstein et al.(1984)(with 143Nd/144Nd (DM)=0.51315and 147Sm/144Nd (DM)=0.217)and two-step model ages were calculated following Liew and Hofmann (1988)(with 143Nd/144Nd (DM)=0.513151,147Sm/144Nd (DM)=0.219and 147Sm/144Nd (CC)=0.12).During the period of analyses,the measured standards gave the following average values:NBS987(Sr):87Sr/86Sr =0.710230±0.000013(0.0018%,2r m ,n =8);AMES (Nd):143Nd/144Nd =0.512131±0.000007(0.0013%,2r m ,n =10);AMES (Sm):149Sm/147Sm =0.91262±0.00016(0.018%,2r m ,n =3).U–Pb monazite geochronologyMonazite fractions of six samples were analyzed,three of which correspond to the Sanagasta granite (SG),two to the Huaco granite (HG),and one to the La Chinchilla stock (LCS).Locations of the analyzed samples are shown in Fig.1c.Table 1shows the analytical results.In the U–Pb concordia diagram (Fig.2),two of the six analyzed samples are concordant whereas the other four are discordant,three of which plot above the concordia (phe-nomenon called ‘‘reverse discordance’’)and one below.Reverse discordance in monazite has been observed by many authors and seems to be a common phenomenon in this mineral (Parrish et al.1990,and references therein).Scha¨rer (1984)suggests that reverse discordances are owed to an excess in 206Pb due to the decay of 230Th,an inter-mediate product in the decay chain of 238U to 206Pb,incorporated in significant amounts in the crystal during crystallization of monazite,because this mineral is a carrier of Th.This might be valid for sample 7703Mo,which is slightly reverse discordant (Fig.2).However,samples 7365Mo,7381Mo and 7369Mo are strongly reverse and normally discordant,respectively (Fig.2).These samples probably suffered loss of U (7365Mo,7381Mo)and radiogenic Pb (7369Mo).The two samples of the HG are strongly reverse discor-dant,probably due to loss of U (U contents:6,135and 10,129ppm)(Fig.2).207Pb/206Pb ages of both samples are equivalent within limits of errors at 350±5andT a b l e 1U –P b m o n a z i t e d a t a o f t h e t h r e e s t u d i e d g r a n i t e s o f c e n t r a l -e a s t e r n S i e r r a d e V e l a s c oS a m p l eW e i g h t (g )U (p p m )T h (p p m )P b (p p m )206P b /204P b m e a s u r e dC a l c u l a t e d a t o m i c r a t i o sC a l c u l a t e d a g e s (i n M a )206P b /238U2r (%)207P b /235U2r(%)207P b /206P b2r (%)206P b /238U2r207P b /235U2r207P b /206P b2rH u a c o g r a n i t e7365M o0.0001521016983552159071340.068090.210.502170.250.053490.12424.60.9413.21.0349.75.37381M o 0.000138613546863146943430.113740.210.841770.240.053680.11694.41.5620.11.5357.54.9S a n a g a s t a g r a n i t e7369M o0.00011030483830554140230800.005920.210.043480.280.053300.1738.00.143.20.1341.57.87379M o0.000093331166434104940230.056270.210.414820.260.053470.15352.90.7352.30.9348.76.77703M o0.00015022266190997831150.056310.210.411960.330.053060.24353.20.7350.31.2331.311.0L a C h i n c h i l l a s t o c k7740M o 0.00012226816011092719720.054910.210.402970.330.053230.24344.60.7343.81.1338.610.9R a d i o g e n i c P b c o r r e c t e d f o r b l a n k a n d f o r i n i t i a l P b (f o l l o w i n g t h e m o d e l o f S t a c e y a n d K r a m e r s 1975).U c o r r e c t e d f o r b l a n k .A g e s c a l c u l a t e d u s i n g t h e P B D A T 1.24p r o g r a m (L u d w i g 1994)a n d t h e d e c a y c o n s t a n t s r e c o m m e n d e d b y t h e I U G S (S t e i g e r a n d J a¨g e r 1977)358±5Ma.These ages are interpreted as the best estimatefor crystallization of the HG.Recently,So¨llner et al.(2007)have carried out LA-ICP-MS U–Pb age determinations on zircons of sample 7365of the HG,obtaining a main crystallization age of 354±4Ma,thus confirming the monazite 207Pb/206Pb ages.In addition,many of these zir-cons have non-detrital inherited cores with Ordovician ages,suggesting significant participation of Ordovician metag-ranitoids in the formation of the HG (So¨llner et al.2007).Only one of the three samples of the SG (sample 7379Mo)gives a concordant age of 352.7±1.4Ma (degree of discordance =1.5%,Fig.2).Sample 7703Mo is slightly reverse discordant at 350.3±1.2Ma (207Pb/235U age),whereas sample 7369Mo is strongly discordant at 38.0±0.1Ma (206Pb/238U age;207Pb/206Pb age =342±8Ma)(Fig.2),suggesting loss of radiogenic Pb,possibly related to the very high measured U content (30,483ppm)and the presence of dim and/or fractured crystals.All three data points,including the origin,fit a regression line with an upper intercept of 340±26Ma (MSWD =3.8).The concordant age of 352.7±1.4Ma of sample 7379Mo is interpreted as the most precise and adequate age of crystallization of the SG.Sample 7740Mo of the LCS is concordant at 344.5±1.4Ma (degree of discordance =1.2%,Fig.2),which is interpreted as dating the time of crystallization of the LCS.GeochemistryMajor and trace elementsTable 2shows 31whole-rock major and trace element chemical analyses of the studied granites;13analysescorrespond to the HG,10to the SG,4to the LCS and 4to mafic microgranular enclaves of the HG and the SG (see also Grosse et al.2007).For comparison,the average composition of the border and central facies of the San Blas granite are also shown (calculated from 13analyses of Ba´ez 2006).The HG and the SG are characterized by a high and restricted SiO 2range of 69.7–74.7%(wt%).With slightly lower average SiO 2,the SG has somewhat higher Fe 2O 3tot ,MgO,TiO 2and CaO concentrations than the HG,although both granites are poor in these oxides.They are,on the other hand,rich in alkalis (generally [8%),specially in K 2O (generally [5%).Both granites are peraluminous;the HG is mainly moderately peraluminous (Alumina Satura-tion Index,A/CNK,= 1.06–1.18),whereas the SG is weakly peraluminous (A/CNK =1.01–1.09).In major element variation diagrams (Fig.3),both granites show similar,poorly defined correlations.Fe 2O 3tot ,MgO and TiO 2decrease with increasing SiO 2suggesting fractionation of mafic phases,mainly biotite.Al 2O 3,CaO and P 2O 5also decrease,suggesting fractionation of pla-gioclase and apatite,respectively,whereas Na 2O and K 2O do not correlate well with SiO 2.The HG and the SG can be distinguished well in an A/CNK versus SiO 2diagram (Fig.4a)and in the A–B diagram of Debon and Le Fort (1983)(Fig.4b),due to the different variations in peraluminosity:it decreases with differentia-tion in the HG,while it increases with differentiation in the SG.These opposite tendencies can be explained by frac-tionation of muscovite in the HG (which will strongly decrease the peraluminosity of the remaining melt due to its high peraluminosity)and the absence of this mineral in the SG (where the increase in peraluminosity is due mainly to the fractionation of plagioclase,whose A/CNK =1).Fig.2U–Pb Concordiadiagram of monazites from the three studied granites of central-eastern Sierra de Velasco.Two samples correspond to the Huaco granite (HG:7365Mo and 7381Mo),three to theSanagasta granite (SG:7369Mo,7379Mo and 7703Mo)and one to the La Chinchilla stock (LCS:7740Mo).See text for further explanations.Plotted errorellipses and quoted errors are at the 2r confidence level。

学术英语(理工)_Unit_4

学术英语(理工)_Unit_4

topic of potential risks of nuclear radiation.
2 Radiation is not so terrible as expected and human beings are exposed to different sources of radiation
1 Writing a literature Review
Enhancing your academic language
Complete the following expressions or sentences. 1 a small breach (缺口) in the dam 2 shallow (浅的) foundation 3 implement (履行) a promise 4 the survivor(s) (幸存者) of the earthquake 5 hypothetical (假设的) situation 6 initiate (发起) a reform 7 have potential (潜力) as an artist 8 despite (不顾) their strong disagreement 9 neutralize (中和) acids 10 be in contact (联系) with each other 11 transport (运输) goods by lorry 12 the volume (大量) of exports
1 Writing a literature Review
3 Amber Cornelio holds a different attitude from the other three authors. He believes that radiation exposure will

使用georeferencer

使用georeferencer

使用georeferencer
Georeferencer 是一种地图参考工具,用于将地图或图像与地理
坐标系统相关联。

它能够帮助我们在数字地图上精确定位和标记物体、地点或事件。

使用 Georeferencer 的过程一般分为以下几个步骤:
1. 导入地图或图像:选择要进行地理参考的地图或图像,并使
用 Georeferencer 将其导入到软件中。

2. 确定控制点:在地图上选择几个已知位置的控制点,这些控
制点必须具有已知的地理坐标。

通常我们会选择容易辨认且分布较广
的特征点作为控制点,如交叉路口、建筑物角落等。

3. 标记控制点:在 Georeferencer 中,我们需要手动标记已知
控制点的像素坐标。

这样软件就能根据这些已知点的地理坐标与像素
坐标之间的关系,推算出其他像素点的地理坐标。

4. 应用地理参考:完成控制点的标记后,Georeferencer 将根
据这些控制点的地理坐标信息对整个地图或图像进行地理参考。

这意
味着每个像素点都会被赋予相应的地理坐标。

5. 精度评估与校准:完成地理参考后,我们可以通过检查其他
已知位置的点来评估参考的精确性。

如果需要,可以对地理参考进行
微调和校准,以提高参考的精度。

Georeferencer 在许多领域中都有广泛的应用,如地理信息系统、历史地理学、土地管理等。

通过将地图或图像与地理坐标系统相关联,Georeferencer 可以方便地实现地理信息的数字化和空间分析。

GeoEastV3.5解释课件:04地震地质层位标定

GeoEastV3.5解释课件:04地震地质层位标定

GeoEast V3.5解释系统培训地震地质层位标定子系统东方地球物理公司物探技术研究中心2020年目 录一、概述二、创建\提取子波三、合成记录制作与标定四、配套功能五、小结n合成地震记录是用声波测井经过人工合成转换成的地震记录(地震道),它是联系地震资料和测井资料的桥梁,是构造解释和岩性储层地震解释的基础,是地震与地质相结合的一个纽带。

n 合成地震记录的精度直接影响到地震地质层位的精准标定,也影响到岩性储层解释的精度,通过制作高精度的合成地震记录,可以将研究的目的层准确地标定在地震剖面上,在井资料与地震资料之间建立准确的对应关系,为精细储层描述打下坚实的基础,同时也为精细速度场建立提供条件。

合成记录测井地震地质一、概述工作流程•创建/提取子波•制作合成记录•编辑合成记录•合成记录成果应用一、概述合成记录井震标定实例地震数据岩性数据测井曲线一、概述数据基础1.创建项目/工区2.地震数据3.目的层段范围4.钻测井数据(AC、Den等曲线编辑)目 录一、概述二、创建\提取子波三、合成记录制作与标定四、配套功能五、小结井震标定主界面二、创建\提取子波子系统启动菜单启动工具条启动多频谱叠合对比分析频谱分析的两种启动方式二、创建\提取子波频谱分析二、创建\提取子波1.理论子波2.地震提取子波3.井震联合提取子波4.子波振幅谱提取5.常相位提取子波雷克子波带通子波俞氏子波子波QC根据自相关和傅立叶变换从井旁地震道提取地震子波。

注意:井旁地震道选取多道变相位子波常相位子波变相位子波常相位子波二、创建\提取子波 3.井震联合提取子波利用井旁地震道和合成道在反射系数控制范围内残差最小原理估算子波的一种方法。

注意:要求先做初步的标定。

本功能是在目标层段没有测井资料时,可以利用目标层段的地震数据估算出子波振幅谱,然后与测井段子波相位谱融合,得到目标层的子波。

目 录一、概述二、创建\提取子波三、合成记录制作与标定四、配套功能五、小结三、合成记录制作与标定1.常规合成记录(Normal Synthetic)2.弹性阻抗合成记录(EI…)3.叠前AVA合成记录(AVA-gather)4.转换波合成记录(Converted Wave Synthetic)5.各向异性合成记录制作(Anistropy Synthetic)6.波动方程合成记录(Wave_Mig.Synthetic)7.VSP合成记录制作及标定n 合成记录 = 测井(声波)合成地震记录:由测井资料得到“人工合成”的过井地震道,是个正演过程。

georefcells函数

georefcells函数

georefcells函数georefcells函数是一个在地理信息系统(GIS)中常用的函数,用于将地理坐标转换为地理网格单元坐标。

它可以将地球表面的坐标点转换为特定的网格单元坐标,以便于进行空间分析和数据可视化。

本文将介绍georefcells函数的基本概念、使用方法、参数意义以及常见问题和解决方法。

一、基本概念georefcells函数将地球表面的坐标点转换为地理网格单元坐标,这些坐标通常以经纬度形式表示。

地理网格单元是地理信息系统中的一个基本单位,通常以一定大小和形状的区域为单位,用于描述地球表面的空间分布特征。

每个网格单元都有其特定的属性,如土地利用类型、人口密度、环境质量等。

二、使用方法在使用georefcells函数时,需要提供地球表面的坐标点作为输入参数。

函数的返回值是该坐标点所在的网格单元的坐标。

具体使用方法如下:1. 导入必要的库和模块;2. 定义输入坐标点的经纬度;3. 调用georefcells函数,并将经纬度作为参数传入;4. 函数返回网格单元的坐标信息。

三、参数意义1. 经纬度:输入的地球表面坐标点的经纬度信息;2. 网格大小:指定地理网格单元的大小和形状;3. 地图投影:指定使用的地图投影方式;4. 坐标系:指定使用的坐标系,如WGS84等;5. 输出格式:指定返回的网格单元坐标的格式,如直角坐标系或极坐标系。

四、常见问题及解决方法在使用georefcells函数时,可能会遇到以下问题:1. 输入的经纬度不准确或不完整;解决方法是确保输入的经纬度信息准确无误,并进行必要的校验和验证;2. 选择的网格大小不合适;解决方法是根据具体的应用需求选择合适的网格大小,以获得准确的空间分析结果;3. 使用的地图投影或坐标系不正确;解决方法是选择适合具体应用需求的地图投影和坐标系,并进行必要的转换和校准;4. 函数的返回值不符合预期格式;解决方法是检查函数的调用方式是否正确,并确认返回值的格式是否符合要求。

geom 参数r 菱形

geom 参数r 菱形

geom 参数r 菱形
菱形是一种拥有特殊几何属性的多边形。

在几何学中,菱形的特点是四条边相等且相互垂直,同时拥有对角线相等和相互垂直的性质。

在描述菱形时,参数r通常用来表示菱形的一边长度。

对于给定参数r的菱形,我们可以通过以下方法来计算其各项参数:
1. 周长:菱形的周长可以通过将四条边的长度相加来计算,即周长=4r。

2. 面积:菱形的面积可以通过对角线长度之积除以2来计算,即面积=(d1 * d2) / 2,其中d1和d2分别表示菱形的两条对角线长度。

3. 对角线长度:对于菱形,两条对角线相等。

因此,可以使用勾股定理来计算对角线的长度。

假设菱形的对角线长度为d,那么有d^2 = r^2 + r^2,整理得d = r * √2。

4. 内切圆半径:内切圆是指能够与菱形的四个顶点相切的圆。

对于菱形,内切圆的半径等于菱形的一边长度的一半,即内切圆半径= r / 2。

5. 外接圆半径:外接圆是指能够与菱形的四个顶点相切于四个顶点上的圆。

对于菱形,外接圆的半径等于菱形的一条对角线长度的一半,即外接圆半径= d / 2 = (r * √2) / 2。

通过以上计算方法,我们可以准确地得到给定参数r的菱形的周长、面积、对角线长度、内切圆半径和外接圆半径。

这些参数的计算对于解决与菱形相关的几何问题和工程设计具有重要意义。

无论是在数学学习中还是实际应用中,理解和应用这些几何参数都能够帮助我们更好地理解和利用菱形这一重要的几何形状。

黄金皓月补丁!第四章81共23页文档

黄金皓月补丁!第四章81共23页文档
Evaluation on public research institute 32 institutes are evaluated for 2019’s performance
Feasibility study on big R&D programs
Programs with more than $ 50 million budget
14
Resource allocation among R& D Programs
PI from existing R&D evaluation systems are not actively utilized in budget allocation so far
However, as the authority of resource allocati on is transferred to the central budget authorit y, more active use of PI is expected
Evaluation on program results heavily relies on performanc e indicators
Cost-benefit indicators are rarely adopted in the eval uation process, even though they suggested in the PI pool
Hard to come up with relevant information
Establishing reliable peer review process is hard
Existence of strong social ties among scientists tends to hi nder objective evaluation process

ArcGISgeoreferencing

ArcGISgeoreferencing

Auto registration allows you to automatically georeference your raster dataset to a referenced raster dataset. The automated links are based on spectral signatures, so it is meant for aerial and satellite imagery, which is similar in nature. The auto registration does not work well with scanned maps or historical data.To use it, you must place the nongeoreferenced raster dataset in the generally correct geographic location along with a referenced raster that is in a known coordinate system. The Fit To Display, Shift, and Rescale tools help you place the raster dataset in the approximate geographic location. When you click the Auto Registration button, the system attempts to create links from your unreferenced raster dataset to your referenced raster dataset. If accurate links cannot be created, you may need to adjust the source raster dataset to better overlap the referenced raster dataset.Tip:To achieve a higher success rate in autoregistration, the two images need to be as similar as possible: geographic location, time and season, image orientation, image scale, and band combination.Steps:1.In ArcMap, add the target raster that resides in map coordinates, then add the rasterdataset you want to georeference.Adding the raster data with the map coordinate system first is a good workflow so thatyou do not need to set the data frame coordinate system.2.To display the Georeferencing toolbar, click the Customize menu and clickToolbars >Georeferencing.3.Make sure that the layer you are georeferencing is selected in the Georeferencing layerdrop-down box.4.Zoom in to the approximate location where your raster dataset should be located.e Fit To Display to move the raster dataset into the display.e the Shift and Rescale tools to more accurately place the raster.7.Click the Auto Registration button .8.In the Link Table, evaluate the links that were created.1.Delete any links that do not appear to be accurate.2.Create more links if necessary.9.Click the Georeferencing drop-down menu and click either Update Georeferencing orRectify. Updating the georeferencing saves the transformation information with the raster and its auxiliary files. Rectifying creates a new file with the georeferencing information.Note:Note:Updating a raster layer, an image service, or a mosaic layer only updates the layer within your map document; it does not save the georeferencing information back to the source.。

geoview中文教程

geoview中文教程

)点击(下一步)继(下一步)继,弹出下一个窗口,让(下一步)继选择窗口上部的选项,在下面的“Service name”中键入HRS,在下面的lmgrd.exe路径浏览中选择点击OK就建立了新的井项目avo_guide.wdb2)输入井曲线到刚刚建立的井项目中,在井资源管理器中输如果las文件中有XY坐标和高程,将直接读出来,否则需要手选择输入的曲线,在最右面Usage选项中打然后点击入曲线。

输入完成显示如下的窗口。

单井显示的结果,可以点击改变观察结果。

CTRL+Z放大需要观察的结果。

使用鼠标左键弹性放大要观察的区域。

选择需要的曲线,然后点击OK,弹出新窗口:口填写参数,然后点击Next以及OK。

(5)加载真实地震数据进行比较,从第一页的文件选择中选择道集数据,然后点击Next。

同时和井colony做好位置的匹配。

填写Y为70的坐标得到Xline71,Colony井在330cdp处点击OK显示出该井的位置。

通过点击参数更改选项改变显示参数,用户可以自行实验。

(6)提取子波子波提取的方法有两种,统计法和过井道提取法,现使用统计方法配于实际地震记录,但是合成记录的振幅值太高,通过点击(7)时深校正点击Logs-> Correlate:目的是抽取合成记录和地震记录的组合道,使之调整到统一的时深关系中。

选择Gather.vol然后点击OK。

调整前后的匹配情况校正后的匹配情况点击OK存储速度为P-wave-corr。

6、流体替换前面计算的合成记录与地震数据并没有本质差异,也没有什么AVO现象,因为在用Castagna计算横波曲线时,我们使用的是充满盐水的曲线,而真正含气的曲线并非如此,因此需要做流体替换用FRM,有两种方法计算,其一是计算有效的含气砂岩的速度,第二种方法是用盐水替换气体。

完成流体替换。

再从新计算前面计算的合成记录,新得到的合成记录在目的层处较以前明显振幅增强了。

见上图。

(2)创建湿砂岩模型首先拷贝一口井曲线,拷贝colony井为colony-wet-well。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Others are based on ordering
E.g. street addresses in most parts of the world order houses along streets
Others are only nominal
Placenames do not involve ordering or measuring
Metric references
Essential to the making of maps and the display of mapped information in GIS Provide the potential for infinitely fine spatial resolution (provided we have sufficiently accurate measuring devices) From measurements of two or three locations it is possible to compute distances
Linear Referencing
A system for georeferencing positions on a road, street, rail, or river network Is closely related to street address but uses an explicit measurement of distance rather then the much less reliable surrogate of street address number Combines the name of the link with an offset distance along the link from a fixed point, most often an intersection
Lecture 4: Georeferencing
Thanks to Joana Barros: Birkbeck College, London
Georeferencing
„To georeference‟ the act of assigning locations to atoms of information Is essential in GIS, since all information must be linked to the Earth‟s surface The method of georeferencing must be: Unique, linking information to exactly one location Shared, so different users understand the
Georeferencing systems
Placenames Postal addresses and postal codes Linear referencing systems Cadastres Latitude and longitude Projections and coordinate systems The Global Positioning System
meaning of a georeference
Persistent through time, so today‟s
georeferences are still meaningful tomorrow
Uniqueness
A georeference may be unique only within a defined domain, not globally
Users of Linear Referencing
Transportation authorities To keep track of pavement quality, signs, traffic conditions on roads Police To record the locations of accidents
Principal meridians: Geographers lines
Township and Range
Latitude and Longitude
The most comprehensive and powerful method of georeferencing
Provides potential for very fine spatial resolution Allows distance to be computed between pairs of locations Supports other forms of spatial analysis
Georeferences as Measurements
Some georeferences are metric
They define location using measures of distance from fixed places
E.g. distance from the Equator or from the Greenwich Meridian
Useful for mapping
Postcodes in Canada
Forward Sortation Areas (FSA)
The first three characters of the six-character postcode form the FSA
Central part of the Toronto metropolitan region
There are many instances of Springfield in the U.S., but only one in any state The meaning of a reference to London may depend on context, since there are smaller Londons in several parts of the world
Cadastral Maps
Defined as the map of land ownership in an area, maintained for the purposes of taxing land, or of creating a public record of ownership
Gould/Tobler‟s experiment (See CSISS Classics)
Where do postal addresses fail as georeferences?
In rural areas
Urban-style addresses have been extended recently to many rural areas
Placenames
The earliest form of georeferencing
And the most commonly used in everyday activities
Many names of geographic features are universally recognized
Others may be understood only by locals
Names work at many different scales
From continents to small villages and neighborhoods
Names may pass out of use in time
Defined in many countries
E.g. ZIP codes in the US
Hierarchically structured
The first few characters define large areas Subsequent characters designate smaller areas Coarser spatial resolution than postal address
Problem Cases
Locations in rural areas may be a long way from an intersection or other suitable zero point Pairs of streets may intersect more than once Measurements of distance along streets may be inaccurate, depending on the measuring device, e.g. a car odometer
Uses a well-defined and fixed reference frame
Based on the Earth‟s rotation and center of mass, and the Greenwich Meridian
For natural features
Lakes, mountains, and rivers cannot ses
When numbering on streets is not sequential
E.g. in Japan
Postcodes as Georeferences
ZIP Code Boundaries in the US
ZIP code boundaries are a convenient way to summarize data in the US. The dots on the left have been summarized as a density per square mile on the right
相关文档
最新文档