新人教版数学八年级下册期末复习之分式

合集下载

2022年人教版八年级下册数学培优训练——《分式》全章复习与巩固(基础)知识讲解

2022年人教版八年级下册数学培优训练——《分式》全章复习与巩固(基础)知识讲解

《分式》全章复习与巩固(基础)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.2.了解分式的基本性质,掌握分式的约分和通分法则.3.掌握分式的四则运算.4.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想.【知识网络】【要点梳理】要点一、分式的有关概念及性质1.分式一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.要点诠释:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式AB才有意义.2.分式的基本性质(M为不等于0的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简. 要点二、分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算 a b a b c c c ±±= ;同分母的分式相加减,分母不变,把分子相加减. ;异分母的分式相加减,先通分,变为同分母的分式,再加减.(2)乘法运算 a c ac b d bd⋅=,其中a b c d 、、、是整式,0bd ≠. 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算 a c a d ad b d b c bc÷=⋅=,其中a b c d 、、、是整式,0bcd ≠. 两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.(4)乘方运算分式的乘方,把分子、分母分别乘方.4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.要点三、分式方程1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.要点诠释:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.要点四、分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.【典型例题】类型一、分式及其基本性质1、在ma y x xy x x x x 1,3,3,)1(,21,12+++π中,分式的个数是( ) A.2 B.3 C.4 D.5【答案】C ;【解析】()21131x x a x x x y m+++,,,是分式. 【总结升华】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.2、当x 为何值时,分式293x x -+的值为0? 【思路点拨】先求出使分子为0的字母的值,再检验这个值是否使分母的值等于0,当它使分母的值不等于0时,这个值就是要求的字母的值.【答案与解析】解: 要使分式的值为0,必须满足分子等于0且分母不等于0.由题意,得290,30.x x ⎧-=⎨+≠⎩解得3x =. ∴ 当3x =时,分式293x x -+的值为0. 【总结升华】分式的值为0的条件是:分子为0,且分母不为0,即只有在分式有意义的前提下,才能考虑分式值的情况. 举一反三:【变式】(1)若分式的值等于零,则x =_______;(2)当x ________时,分式没有意义.【答案】(1)由24x -=0,得2x =±. 当x =2时x -2=0,所以x =-2;(2)当10x -=,即x =1时,分式没有意义. 类型二、分式运算3、计算:2222132(1)441x x x x x x x -++÷-⋅++-. 【答案与解析】解:222222132(1)(1)1(2)(1)(1)441(2)(1)1x x x x x x x x x x x x x x -+++-++÷-⋅=⋅⋅++-+-- 22(1)(2)(1)x x x +=-+-. 【总结升华】本题有两处易错:一是不按运算顺序运算,把2(1)x -和2321x x x ++-先约分;二是将(1)x -和(1)x -约分后的结果错认为是1.因此正确掌握运算顺序与符号法则是解题的关键.举一反三:【变式】(2020•滨州)化简:÷(﹣)【答案】解:原式=÷=• =﹣. 类型三、分式方程的解法4、(2020•呼伦贝尔)解方程:.【思路点拨】观察可得最简公分母是(x ﹣1)(x +1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【答案与解析】解:方程的两边同乘(x ﹣1)(x +1),得3x +3﹣x ﹣3=0,解得x=0.检验:把x=0代入(x ﹣1)(x +1)=﹣1≠0.∴原方程的解为:x=0.【总结升华】本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.举一反三:【变式】()1231244x x x -=---, 【答案】解: 方程两边同乘以()24x -,得()()12422332x x x =---=-∴ 检验:当32x =-时,最简公分母()240x -≠, ∴32x =-是原方程的解.类型四、分式方程的应用5、(2020•东莞二模)某市为治理污水,需要铺设一条全长为600米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加20%,结果提前5天完成这一任务,原计划每天铺设多少米管道?【思路点拨】先设原计划每天铺设x 米管道,则实际施工时,每天的铺设管道(1+20%)x 米,由题意可得等量关系:原计划的工作时间﹣实际的工作时间=5,然后列出方程可求出结果,最后检验并作答.【答案与解析】解:设原计划每天铺设x 米管道,由题意得: ﹣=5,解得:x=20,经检验:x=20是原方程的解.答:原计划每天铺设20米管道.【总结升华】本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.举一反三:【变式】小明家、王老师家、学校在同一条路上,并且小明上学要路过王老师家,小明到王老师家的路程为3 km ,王老师家到学校的路程为0.5 km ,由于小明的父母战斗在抗震救灾第一线,为了使他能按时到校、王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是他步行速度的3倍,每天比平时步行上班多用了20 min ,王老师步行的速度和骑自行车的速度各是多少?【答案】解:设王老师步行的速度为x km/h ,则他骑自行车的速度为3x km/h . 根据题意得:230.50.520360x x ⨯+=+. 解得:5x =.经检验5x =是原方程的根且符合题意.当5x =时,315x =.答:王老师步行的速度为5km/h ,他骑自行车的速度为15km/h .。

八年级下册数学分式的加减法

八年级下册数学分式的加减法

八年级下册数学分式的加减法摘要:一、分式的基本概念1.分式的定义2.分式的组成部分3.分式的基本性质二、分式的加减法1.分式加法的规则2.分式减法的规则3.分式加减混合运算的顺序三、分式的加减法实际应用1.实际问题中的分式加减法2.利用分式的加减法解决实际问题正文:一、分式的基本概念分式是数学中一种常见的表达形式,它由分子和分母组成,用斜杠“/”表示。

分式的定义是:如果A 和B 是两个整式,并且B 不等于零,那么我们用A 除以B 所得到的商A/B 就叫做分式。

分式的组成部分包括分子、分母和分数线,其中分子和分母都是整式,分数线表示分式的开始和结束。

分式的基本性质有:分子和分母同时乘以或除以一个非零数,分式的值不变;分子和分母同时加上或减去一个相同的数,分式的值不变。

二、分式的加减法分式的加减法是数学中常见的运算,其规则如下:1.分式加法:对于两个分式A/B 和C/D,如果它们的分母相同,那么它们的和就是(A+C)/B;如果分母不同,需要将它们通分,然后将分子相加,分母保持不变。

2.分式减法:对于两个分式A/B 和C/D,如果它们的分母相同,那么它们的差就是(A-C)/B;如果分母不同,需要将它们通分,然后将分子相减,分母保持不变。

3.分式加减混合运算的顺序:在没有括号的情况下,先进行乘除运算,再进行加减运算。

如果有括号,先进行括号内的运算。

三、分式的加减法实际应用分式的加减法在实际问题中有很多应用,例如在物理、化学、地理等学科中,常常需要用分式的加减法来解决问题。

例如,在化学中,可能会遇到需要将两种物质的摩尔质量相加或相减的问题,这时候就需要用到分式的加减法。

在解决实际问题时,我们需要先将问题抽象成数学模型,然后根据问题中给出的条件,选择合适的数学方法,包括分式的加减法,来解决问题。

以上就是八年级下册数学分式的加减法的内容。

分式的加减法是数学中重要的基本概念和基本运算,它在解决实际问题中有着广泛的应用。

八年级下册数学知识点归纳大全

八年级下册数学知识点归纳大全

八年级下册数学知识点归纳大全学习时集中精力,养成良好学习习惯,是节省学习时间和提高学习效率的最为基本的方法。

下面是小编为大家整理的关于八年级下册数学知识点大全,希望对您有所帮助!新人教版初二数学下册知识点分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。

分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

()3.分式的通分和约分:关键先是分解因式4.分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

分式乘方法则:分式乘方要把分子、分母分别乘方。

分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。

异分母的分式相加减,先通分,变为同分母分式,然后再加减混合运算:运算顺序和以前一样。

能用运算率简算的可用运算率简算。

5. 任何一个不等于零的数的零次幂等于1,即;当n为正整数时,6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n是整数)(1)同底数的幂的乘法:;(2)幂的乘方:;(3)积的乘方:;(4)同底数的幂的除法:( a≠0);(5)商的乘方:();(b≠0)7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。

解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

解分式方程的步骤:(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根.增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。

分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

八年级下册数学知识点分式

八年级下册数学知识点分式

八年级下册数学知识点分式八年级下册数学知识点——分式一、定义分式是指由分子和分母以及分割符号(如:横线或斜线等)组成的算式,通常表示为a/b的形式,其中a、b均为整数,b不为0。

二、基本概念1. 真分数:分子小于分母的分式称为真分数,如1/2、2/3等。

2. 假分数:分子大于或等于分母的分式称为假分数,如5/3、9/4等。

3. 通分:对于分母不同的分式,将它们的分母约分至相同,即将它们化为相同分母的分式,这个过程称为通分。

4. 约分:对于分子分母有公共因数的分式,可以将它们约分成最简分式,即分子分母同时除以它们的公共因数,得到的分式称为最简分式。

三、分式的四则运算1. 加减法分式的加减法其实就是先通分,再将分子按照加减法的规则相加减,然后将结果约分为最简分式。

例如:7/10 + 5/6 = 21/30 + 25/30 = 46/30 = 23/152. 乘法分式的乘法就是将两个分式的分子和分母分别相乘,然后将结果约分为最简分数。

例如:2/3 × 3/4 = 6/12 = 1/23. 除法分式的除法相当于将分式的乘数乘上被除数的倒数,即将分子与被除数的分母相乘,分母与被除数的分子相乘,得到的结果再约分为最简分数。

例如:3/4 ÷ 2/3 = 3/4 × 3/2 = 9/8四、分式的应用1. 分式在比例问题中的应用分式在比例问题中的应用非常广泛,例如在解题时需要求出比例中某一部分的值,在这种情况下,就可以通过分式的运算来求解。

例如:若三个数的比例为a : b : c,且a = 3/4,b = 1/2,求c的值。

根据比例的定义,可得a : b = 3/4 : 1/2 = 3/2,那么c : a = 3/2 : 1,即c = (3/2) ÷ 1 × a = (3/2) × (3/4) = 9/8。

因此c = 9/8。

2. 分式在解方程中的应用在解方程中,有时需要将方程变形成分式的形式,然后进行分式的运算,最后再将分式恢复为方程,从而得到方程的解。

数学八下分式

数学八下分式

数学八下分式
八年级下册数学课程中有关分式的主题主要包括分式的运算、分式的化简、分式方程等内容。

以下是八年级下册数学中关于分式的一些常见知识点:
1. 分式的乘法和除法:学习如何进行分式的乘法和除法运算,包括分子乘法、分母乘法、分子除法和分母除法等。

2. 分式的加法和减法:掌握分式的加法和减法运算规则,包括通分、合并同类项等操作。

3. 分式的化简:学习如何化简分式,包括约分、提取公因式、分子分母同乘同除等方法,使分式的表达更简洁。

4. 分式方程:解决涉及分式的方程,包括一元一次分式方程和一元二次分式方程等,掌握解题的方法和技巧。

5. 分式的应用:了解分式在实际问题中的应用,如物品分配、比例关系、时间速度等问题,通过分式运算解决实际生活中的计算问题。

八年级下册数学中的分式知识是数学学习中的重要内容,需要通过练习和实践来加深理解和掌握。

建议学生多做练习题,加强对分式运算规则的理解和掌握,提高解决问题的能力和技巧。

八年级数学下册 第十六章分式复习教案 人教新课标版

八年级数学下册 第十六章分式复习教案 人教新课标版

《分式》复习教案教学内容本节课主要内容是对本单元进行回顾.教学目标1.知识与技能会进行分式的基本运算(加、减、乘、除、乘方),熟练掌握分式方程的解法,能应用“建模”思想解决实际问题.2.过程与方法经历回顾分式概念、计算、应用的过程,提高观察、类比归纳、猜想等能力,.领会其算理.3.情感、态度与价值观培养学生的自主、合作、交流的意识,和严谨的学习态度,让学生体会知识的内在价值.重难点、关键1.重点:通过理解分式的基本性质,掌握分式的运算、应用.2.难点:分式的通分以及分式方程的“建模”.3.关键:把握分式的基本性质,领会算理.教学准备教师准备:投影仪,制作与本节课有关的投影片,图片等.学生准备:做一份本单元知识小结.学法解析1.认知起点:在学习了不等式基本性质、约分、通分、混合运算,•以及分式方程、应用内容后进行反思.2.知识线索:3.学习方式:采用知识体系梳理,•合作交流的学习方式达到巩固提高本单元知识的目的.教学过程一、回顾交流,巩固反馈【组织交流】教师活动:打开投影机,先将学生分成四人小组,交流各自准备的单元小结,然后开展小组汇报.学生活动:小组合作交流,交流内容是(1)单元知识结构图;(2)课本P41“回顾与思考”的5个问题;(3)自己的单元小结.活动形式:先小组合作交流,再小组汇报,师生互动.媒体使用:学生汇报中,可借用投影仪,辅助讲解.教师归纳:本章主要内容是分式的概念;分式的基本性质;分式混合运算和可化为一元一次方程的分式方程及其应用,这些内容在今后进一步学习方程、函数等知识时占有重要地位和作用.(投影显示本单元知识体系,见课本P41)1.分式的基本性质是分式恒等变形的依据,•正确理解和熟练掌握这一性质是学好分式的关键,因此学习中要注意以下三点:(1)基本性质中的字母表示整数,(,A A M A A M B B M B B M⨯÷==⨯÷,M ≠0) (2)要特别强调M ≠0,且是一个整式,由于字母的取值可以是任意的,所以M•就有等于零的可能性,因此,应用基本性质时,重点要考查M 的值是否为零.2.约分,约分的目的是化简,关键是找分子和分母的最高公因式,•即系数的最大公约数、相同因式的最低次幂.3.通分,通分关键是确定n 个分式的公分母,•通常取各分母所有因式的最高次幂的积作公分母,这样的公分母叫最简公分母.4.分式的乘除法本质就是(1)因式分解,(2)约分.5.分式的加减法本质就是(1)通分,(2)分解因式,(3)约分.6.解分式方程的本质就是将分式方程化成整式方程,但要注意验根.【设计意图】让学生掌握课堂的主动权,以自主、合作、交流的手法调动学生的主观能动性.二、寓思与练,讨论交流【显示投影片1】演练题1:当x 取什么数时,下列分式有意义?(1)22461;(2);(3)512x x x x m-++. 思路点拨:(1)令5x+1=0,相应求出x 的值,然后x 不取这个值时分式必有意义.(•x ≠-15);(2)由于无论x 取何值x 2+2的值均大于零,因此,x 取任何实数,此分式都有意义;(3)因为任何数的平方均为非负数,则m 2≥0,所以m ≠0即可.演练题2:当x 取什么数,下列分式的值为零?(1)23||2;(2)47(2)(5)x x x x x +-++-. 思路点拨:令分子等于零,由此求出x 的值,此时应考虑分母是否等于零,•若等于零,则分式无意义,应舍去.(1)x=-32;(2)x=2. 【活动方略】教师活动:操作投影仪,引导学生训练,并请学生上台板演.学生活动:独立完成演练题1,2,以练促思.三、随堂练习,巩固深化1.x 为何值时,2||5x x -的值为零;(x ±5) 2.x 为何值时,259x x +-没有意义;(x=9) 3.x 为何值时,6721a a -+的值等于1.(a=2) 4.课本P42复习题16第6题.四、X 例学习,提高认知例1 计算.2244222815(1);(2)()(66).583()[:(1),(2)]6x y a b xy x y x y ab xy x y ax xy x y b -÷-++答案思路点拨:按法则进行分式乘除法运算,应注意,如果运算结果不是最简分式,一定要约分,对于分式的乘除混合运算,按乘除的顺序依次进行;当分子、分母是多项式时,一般先分解因式,并在运算过程中约分,使运算简化.例2 计算.222222222(1);11112(2)()().4444224xy y x x y y x x y b a ab b a ab b a b a b a b -+--+-÷+-+++-+- 思路点拨:(1)•分式的加减运算就是把异分母的加减化成同分母的分式的加减,因此,在通分过程中找出最简公分母是关键.(2)对于分式的混合运算,•应注意运算顺序.【活动方略】教师活动:通过分析例1、例2的算理,增强学生的运算能力,提高运算的准确性. 学生活动:参与例1、例2的分析,同老师一道领会算理,掌握正确的学习方法.五、随堂练习,巩固深化1.计算. 22225(1)221(2)1111(3)1();()121x xx x x x a a a a a a a a +----+-+--÷-+--+ 2.先化简,再求值:()(2)(1)x y x y y y x y x x -÷+-÷+,其中x=115,.[]253y = 六、联系实际,实践应用【显示投影片2】例3 解分式方程:1-6351x x x+=-+ [x=2] 思路点拨:解分式方程基本思路是方程两边都乘以各分母的最简公分母,使方程化为整式方程,但解后必须验根.例4 某水泵厂在一定天数内生产4 000台水泵,工人为了支援祖国现代化建设,每天比原计划增加25%,可提前10天完成任务,问原计划每天生产多少台?(80台)思路点拨:工程问题常用的关系式是时间=总工作量日产量,设原计划每天生产x台,•列式4000400014x x x-+=10.【活动方略】教师活动:操作投影仪,启发引导学生弄清题意,正确解答.学生活动:利用例3、例4,复习分式方程解法,以及应用题“建模”方法,并归纳小结.七、继续演练,反复认识【显示投影片3】1.解方程:8177xx x----=8(无解)2.一列火车从车站开出,预计行程450千米,当它开出3小时后,因出现特殊情况多停一些,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地,•求这列火车原来的速度.[提示:设火车原速为x千米/小时,列车450314531.22xx x-+=,x=75]3.课本P43“复习题16”第11,12题.八、布置作业,专题突破1.课本P42“复习题16”第1,2(3)(4)(6),3(2)(4)(6),4,5,8,9,10题.2.选用课时作业设计.九、课后反思课时作业设计【驻足“双基”】1.x______时,分式755x x +-有意义. 2.分式2134,,11m m m +-的最简公分母是________. 3.计算:(a+b )·2222a b a b a b---=______. 4.当x=______时,分式752x x-与的值相等. 5.当m=______时,方程233y m y y =---会产生增根. 6.若分式29(3)(4)a a a -+-的值为零,则a 的值是( ). A .±3 B .-3 C .3 D .以上结论都不对7.能使分式233x x x+---2值为零的x 的值是( ). A .x=4 B .x=-4 C .x=-4或x=4 D .以上结论都不对8.计算.(1)2(1)1132(2)(1)(1)(1)1166x x x x x x x x x x x +---÷-+-++-- 9.化简求值:133(2),(2)(1)24x x x x x x +÷-+=+-+其中. 10.解方程:1122x x x----=-3 【提升“学力”】 11.a 为何值时,关于x 的方程12325x a x a +-=-+的解等于零? 12.某个体商贩一次同时卖出两件上衣,每件都以135元出售,其中一件盈利25%,另一件亏本25%,讨论在这次买卖中,该商贩能否赚到钱?13.某某到某某铁路长300千米,为适应两省、市经济发展的要求,客车的行车速度每小时比原来增加了40千米,这样使得由某某至某某的时间缩短了1.5小时,•求列车原来的速度及现在的速度.请参照上面的应用题,编一道类似的应用题(不需要求解)这道应用题应满足:(1)不改变分式方程的形式; (2)改变实际背景和数据.答案:1.x ≠5 2.m (m+1)(m-1) 3.a+b 4.-5 5.-3 6.C 7.A8.(1)2211,(2)9.1610.2()11.13(3)5x x a x x --==--增根 (提示:先把a 看作已知数,•按照解分式方程的步骤求出x ,然后令x=0,得到关于a 的方程,求出a 值.(8-a )x=1-5a ,当a ≠8时,x=15151,0,150,885a a a a a a --=-=∴=--解唯一令则.) 12.赚不到 13.设列车原来的速度为x 千米/时,则30030040x x -+=1.5.。

(word完整版)新人教版八年级数学下册第十六章分式知识点总结,文档

(word完整版)新人教版八年级数学下册第十六章分式知识点总结,文档

一、分式的定义: 若是 A 、 B 表示两个整式,并且B 中含有字母,那么式子A叫做分式。

B例 1. 以下各式 a ,1, 1x+y ,a 2b 2 ,-3x 2,0?中,是分式的有〔 〕个。

x 15ab二、 分式有意义的条件是分母不为零; 【B ≠0】分式没有意义的条件是分母等于零; 【B=0】分式值为零的条件分子为零且分母不为零。

【B ≠0 且 A=0 即子零母不零】例 2. 以下分式,当 x 取何值时有意义。

〔 1〕2x1 ;〔 2〕 3 x2。

3x 22x 3例 3. 以下各式中,无论 x 取何值,分式都有意义的是〔 〕。

A .1 B . xC .3x 1D .x 212x 12x 1x 22x 2例 4.当 x______时,分式2x1没心义。

当 x_______时,分式x 21 的值为零。

3x 4x 2x 2例 5. 1 - 1 =3,求5x3xy 5 y的值。

x y x2xyy三、分式的根本性质: 分式的分子与分母同乘或除以一个不等于0 的整式,分式的值不变。

〔 CA A C A A C0 〕B C B B CB四、分式的通分和约分:要点先是分解因式。

1 x 1 y例 6. 不改变分式的值,使分式510的各项系数化为整数,分子、分母应乘以〔 ? 〕。

1 x 1 y3 9例 7. 不改变分式2 3x 2 x 的值,使分子、分母最高次项的系数为正数,那么是〔 ?〕。

5x 3 2x 3分式 4 y 3x , x2 1 , x2xy y 2, a22ab2中是最简分式的有〔例 8. 4x 〕。

4ax1 y ab 2b例 9. 约分:〔1〕x 26x9 ; 〔2〕 m 23m 2x29m2m例 10. 通分:〔 1〕x ,y;〔2〕a 1,66ab 29a 2bc22a 2a 1 a 1例 11. x 2 +3x+1=0,求 x 2+12 的值. x例 12. x+ 1=3,求x 4x 2 2 的值. xx 1五、分式的运算:分式乘法法那么:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

人教版八年级数学《分式》期末复习一

人教版八年级数学《分式》期末复习一

分式复习一1、分式的概念:形如BA ,其中A ,B 都是整式, 且B 中含有字母。

.例1:下列式子:(1)b a b a +- (2)π32-x (3)14-x (4)2x属于分式的有(1)(3} 。

例2:有理式x2,)(31y x +,3-πx ,x a -5,42yx -中,分式有( B )。

(A )1个 (B )2个 (C )3个 (D )4个小练习: 1.下列各式:x 2、22+x 、x xyx -、33yx +、23+πx 、()()1123-++x x x 中,分式有(C )A 、1个 B 、2个 C 、3个 D 、4个 2.下列各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π中,分式有 。

2、分式是否有意义:对于分式A B来说,当分母B ≠0时,分式A B有意义;当分母B=0时,分式A B无意义。

例3、分式322--x x 有意义,则x 取值为( C )。

(A )2≠x (B )3≠x (C )23≠x (D )23-≠x例4、当x 时,分式42-x x无意义。

小练习:1、当x ≠ 3时,代数式32-x 有意义.当38-时,分式8x 32x +-无意义;2、当x 时分式xx2121-+有意义。

3、使分式24xx -有意义的x 的取值范围是(B) A. 2x = B.2x ≠ C.2x =- D.2x ≠-4、列分式中,一定有意义的是(D )(A )152--x x (B )yy 312+ (C )12+x x (D )112+-y y3、分式A B等于0,则分子A=0,且B ≠0。

例5、若分式xx-+44的值为0,则x 值为( a )。

(A )4-=x (B )4=x (C )0=x (D )0≠x例6、若分式293x x-+的值为0,则x 的值为( B )。

(A )3=x (B )3-=x (C )3x =± (D )不存在小练习:1、若分式112+-x x 的值为0,则x 的取值为( A )A 、1=xB 、1-=xC 、1±=xD 、无法确定2、分式392--x x 当x = -3 时分式的值为零。

人教版八年级数学《分式》期末复习二

人教版八年级数学《分式》期末复习二

分式复习二一、两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。

乘法和除法运算时,分子或分母能分解的要分解,结果要化为最简分式 。

练习题:二、分式的加减:同分母相加 异分母相加 注意:在分式有关的运算中,一般总是先把分子、分母分解因式; 过程中,分子、分母一般保持分解因式的形式。

练习题:bdacd c b a =⨯bcad c d b a d c b a =⨯=÷3234)1(xy y x ⋅cdb ac ab 452)2(2223-÷222441(3)214a a a a a a -+-⋅-+-2211(4)497m m m÷--223(5)5325953x x x x x ÷⋅--+2222255(6)343m n p q mnp pq mn q⋅÷221642(7)816282a a a a a a a ---÷⋅++++2222444431669)8(x x x x x x x x -++⋅--÷-+-、ACB AC A B +=+ADAC BD AD CA AD BD D C A B +=+=+•aa 34)1(-xx x x -+--+11211)2(21211)3(+++-+x x x x 11211)4(2++--+x x x x(7)当 x = 2000时,求 的值(8)、已知 求A 和B三、解分式方程的思路是:分式方程 去分母 整式方程 四.解分式方程的一般步骤(1)、在方程的两边都乘以最简公分母,约去分母,化成整式方程.(2)、解这个整式方程.(3)、 把整式方程的根代入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去. (4)、写出原方程的根. 练习题:5.若方程 有增根,则增根应是1122)5(++-+x x x xy x y y x x x y x -+--+22x x x x x x 13632+-+--22)2(2)2(3-+-=-+x Bx A x x 511.31x x x x -+-=--2282.124x x x --=+-313.244x x x -+=--25334.322y y y y --=---223242ax x x x +=--+五、列分式方程解应用题的一般步骤1.审:分析题意,找出研究对象,建立等量关系.2.设:选择恰当的未知数,注意单位.3.列:根据等量关系正确列出方程.4.解:认真仔细.5.验:不要忘记检验.6.答:不要忘记写.1、一项工程,需要在规定日期内完成,如果甲队独做,恰好如期完成,如果乙队独做,就要超过规定3天,现在由甲、乙两队合作2天,剩下的由乙队独做,也刚好在规定日期内完成,问规定日期是几天?2、已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水每小时的流速是多少千米?3、某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用的时间相等,求他步行40千米用多少小时?4、甲加工180个零件所用的时间,乙可以加工240个零件,已知甲每小时比乙少加工5个零件,求两人每小时各加工的零件个数.5、A、B两地相距135千米,有大、小两辆汽车从 A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟.已知大、小汽车速度的比为2:5,求两辆汽车的速度.。

新人教版数学八年级下册分式复习要点

新人教版数学八年级下册分式复习要点

第十五章分式知识要点一、分式的判断方法:分式的分母必含有字母。

例如:下列各式中,31x+21y, xy 1 ,a +51 ,—4xy , 2x x , πx 是分式有 xy 1, a+51,2xx 。

分析: 31 x+ 21y ,—4xy , πx都不是分式,因为它们的分母都不含字母。

二、分式有意义的条件是分母不为零, 分式无意义的条件是分母为零, 分式值为零的条件分子为零 且分母不为零。

例如:21+-x x (1)要使21+-x x 这个分式有意义,则分母x+2≠0,解得x ≠-2时有意义;(2)要使21+-x x 这个分式无意义,则分母x+2=0,解得x=-2时无意义;(3)要使21+-x x 这个分式的值为零,则分子x-1=,解得x=1,;分母x+2≠0,解得x ≠-2;所以当x=1时分式的值为零。

三、分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

(0≠C ) 例如:1、如果把yx y322-中的x 和y 都扩大5倍,那么分式的值( B )A 扩大5倍B 不变C 缩小5倍D 扩大4倍 分析:因为分子和分母都乘以5。

2、下列各式正确的是( )A.11a x a b x b ++=++B.22y y x x= C.n na m ma =,(0a ≠) D.n n a m m a -=-四、约分——约去分子分母的最大公因式确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数; ②取分子、分母相同的字母因式的最低次幂.注意:分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。

A A CBB C∙=∙A A C B B C ÷=÷例如:约分2912xxy =x y34 分析:12和9的最大公约数是3;分子、分母相同的字母因式的最低次幂是x ,所以分子分母的最大公因式是3x 。

分子分母同时除以3x 即为约分的结果。

即xyx x x xy 34393122=÷÷五、通分.确定最简公分母的方法:①最简公分母的系数,取各分母系数的最小公倍数; ②最简公分母的字母因式取各分母所有字母的最高次幂. 注意:分式的分母为多项式时,一般应先因式分解。

数学八年级下册分式知识点总结

数学八年级下册分式知识点总结

数学八年级下册分式知识点总结
数学八年级下册分式的知识点总结包括:
1. 分式的定义:分式是由分子和分母组成的有理数表达式,分子和分母都是整数。

2. 分数的运算:加减乘除四则运算的规则同整数的运算规则。

3. 分式化简:将分子和分母的公因式约去,将分数化简为最简形式。

4. 分数的乘除法:乘法时,分子乘以分子,分母乘以分母。

除法时,乘以倒数,即分
子乘以分母的倒数。

5. 分式的加减法:分式加减法也要找到分母的最小公倍数,然后分子相加减,分母不变。

6. 分式的混合运算:先进行分数的乘除法运算,再进行分数的加减法运算。

7. 分式方程的解:分式方程的解与分式的定义域有关,需要注意排除分母为零的情况。

8. 分式不等式的解:将分数不等式转化为分母为正数的不等式,根据分母正负的不同
确定解的范围。

9. 分式的应用:分式在实际问题中的应用包括比例、速度、利润等方面。

八年级下册数学的分式知识点整理

八年级下册数学的分式知识点整理

八年级下册数学的分式知识点整理在平时的学习中,大家最不陌生的就是知识点吧!知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。

为了帮助大家掌握重要知识点,下面是店铺精心整理的八年级下册数学的分式知识点整理,欢迎大家分享。

1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。

2.分式有意义、无意义的条件:分式有意义的条件:分式的分母不等于0;分式无意义的条件:分式的分母等于0。

3.分式值为零的条件:分式AB =0的条件是A=0,且B≠0.(首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0.当分母的值不为0时,就是所要求的字母的值。

)4.分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

用式子表示为 (其中A、B、C是整式 ),5.分式的通分:和分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。

通分的关键是确定几个式子的最简公分母。

几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。

求最简公分母时应注意以下几点:(1)“各分母所有因式的最高次幂”是指凡出现的字母(或含字母的'式子)为底数的幂选取指数最大的;(2)如果各分母的系数都是整数时,取它们系数的最小公倍数作为最简公分母的系数;(3)如果分母是多项式,一般应先分解因式。

6.分式的约分:和分数一样,根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。

约分后分式的分子、分母中不再含有公因式,这样的分式叫最简公因式。

约分的关键是找出分式中分子和分母的公因式。

(1)约分时注意分式的分子、分母都是乘积形式才能进行约分;分子、分母是多项式时,通常将分子、分母分解因式,然后再约分;(2)找公因式的方法:① 当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;②当分子、分母都是多项式时,先把多项式因式分解。

(最新整理)八年级数学下册分式知识点总结

(最新整理)八年级数学下册分式知识点总结

八年级数学下册分式知识点总结编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册分式知识点总结)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册分式知识点总结的全部内容。

第十六章 分式1.分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子叫做分式。

BA 分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零。

2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

()0≠C 3。

分式的通分和约分:关键先是分解因式4.分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

分式乘方法则:分式乘方要把分子、分母分别乘方。

分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。

异分母的分式相加减,先通分,变为同分母分式,然后再加减,a b a b a c ad bc ad bc c c c b d bd bd bd±±±=±=±=混合运算:运算顺序和以前一样。

能用运算率简算的可用运算率简算。

5。

任何一个不等于零的数的零次幂等于1, 即;当n 为正整数时, ()0(10≠=a a n n aa 1=-)0≠a 6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数)(1)同底数的幂的乘法:;m n m n a a a +∙=(2)幂的乘方:;()m n mn a a =(3)积的乘方:;()n n n ab a b =(4)同底数的幂的除法:( a ≠0);m n m n a a a -÷=(5)商的乘方:;(b ≠0)(nn n a a b b=7。

最新八年级下册数学知识点归纳:分式

最新八年级下册数学知识点归纳:分式

最新八年级下册数学知识点归纳:分式
1.分式的有关概念
设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简
2、分式的基本性质
(M为不等于零的整式)
3.分式的运算 (分式的运算法则与分数的运算法则类似).
(异分母相加,先通分);
4.零指数
5.负整数指数
注意正整数幂的运算性质
可以推广到整数指数幂,也就是上述等式中的m、 n 可以是O或负整数.
6、解分式方程的一般步骤:在方程的两边都乘以最简公分母,约去分母,化为整式方程.解这个整式方程..验根,即把整式方程的根代入最简公分母,看结果是不是零,若结果不是0,说明此根是原方程的根;若结果是0,说明此
根是原方程的增根,必须舍去.
7、列分式方程解应用题的一般步骤:
(1)审清题意;(2)设未知数(要有单位);(3)根据题目中的数量关系列出式子,找出相等关系,列出方程;(4)解方程,并验根,还要看方程的解是否符合题意;(5)写出答案(要有单位)。

通过对最新八年级下册数学知识点归纳:分式的学习,是否已经掌握了本文知识点,更多参考资料尽在!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册期末复习之分式
一、分式有意义与分式值
1、x 时,分式42-x x 有意义。

)1(1--x x x =x 1
成立的条件是
2、x= 时,分式
2
152x x --的值为零。

若221
x x --的值为0,则x=______
3、分式 x 2-1
x+1 的值为零,那么x=
4、若分式
6
52
2
+--x x x 的值为0,则x 的值为
5、当x 为全体实数时, 下列分式中一定有意义的是( )
A
2||
X X + B 422--x x C 3122
++x x D
2
)3(||+x x
6、当
2
2-+a a 有意义时,a 的取值范围是
7、若式子
x
x
+-121有意义,则x 的取值范围是
8、当x 时,分式21
x
x -的值为正数
二、分式中字母值的扩大与缩小
1、圆的半径增加一倍,那么圆的面积增加了
2、如果把分式y
x x 232-中的x,y 都扩大3倍,则分式的值将 3、如果把
y x xy 322-中的x 和y 都扩大5倍,则分式的值将 4、把分式xy
y x -中的x 、y 的值都扩大2倍,则分式的值将
5、把分式
)0,0(2
2≠≠+y x y
x xy 中的分子、分母的x 、y 同时扩大2倍,则分式的值将
6、如果把分式2
x x y
+的x 和y 都扩大k 倍,那么分式的值应
7、把分式xy
y x 3245-中的x 、y 的值都扩大2倍,则分式的值应
三、最简分式与最简公分母
1、下列各分式中,最简分式是 ( )
A .()()
3485x y x y -+ B .22
y x x y
-+ C .2222
x y x y xy ++ D .()
222
x y x y -+
2、分式28,9,12z y x xy z x x z y -+-的最简公分母是
3、分式
233a a b -、222b ab -与33
58c a bc -的最简公分母是 4、分式1
1x + ,11x x +-,221
xy x -的最简公分母是 四、科学计数法
1、用科学计数法表示的数-3.6×10-4写成小数是
2、数-0.000052用科学计数法表示为
3、一个氧原子质量为2.67523
10
-⨯ 克,则6
105⨯个氧原子的质量为__
4、我国西部地区土地占我国领土面积的三分之二,我国领土面积大约为960万Km 2
,用科学记数法表示我国西部地区的面积为 Km 2
5、3480000用科学计数法法保留两位有效数字是
6、把43.951保留三个有效数字,并用科学计数法表示为
7、“神舟”五号飞船绕地球飞行了14圈,总路程约60万千米,则它绕地球平均每圈约飞行 米(用科学记数法保留三个有效数字) 五、增根 1、若分式方程x
a x
a x +-=
+-321有增根,则a 的值是 2、分式方程
3-x x +1=x
m
-3有增根,则m= 3、当m=________时,关于x 的分式方程
213
x m
x +=--无解. 4、如果方程8877x k x x --=--有增根,那么k=
5、已知x=1是方程
111
x k x x x x +=--+的一个增根,则k=_______ 6、若关于x 的方程11
ax x +--1=0无实根,则a 的值为_____ 7、方程
3
233x x x
=---有增根,则这个增根
六、方程变式求值 1、若
31=
+b a a .则 =b a 若b a =2,则2
222b a b ab a ++-= 2、若 034=-x y ,则 =+y
y
x 3、若x+
x 1=3 ,则x 2
+21x
= 4、若4y -3x=0 ,则(x+y):y= 5、若
3,111--+=-b
a
a b b a b a 则= 6、已知b
ab a b ab a b a ---+=-2232,311求 的值
7、已知0200952
=--x x , 求分式 2
1
)1()2(22-+---x x x 的值
8、 若13x x +=, 求分式1
242
++x x x 的值
七、化简 1、化简:—
()()
a b
a b a b -+-+的结果为
2、y x m x y
=- y x n x y =+,求2
2n m -的值
3、化简
⑴()()n m n m mn n m n m n m n m -+÷⎪⎪⎭
⎫ ⎝⎛+---+222222 ⑵⎪⎭⎫ ⎝⎛-+÷⎪⎭⎫ ⎝⎛-+1111112x x ⑶a b b
b a a b a b a a 2
2
2224)()(⨯+÷-- ⑷ )21(222222ab b a ab b a b a ++÷-- ⑸⎪⎪⎭
⎫ ⎝
⎛--÷-x y xy x x y x 2
222 ⑹22
2
24421y xy x y x y x y x ++-÷+-- 4、化简(
212x x --21
44
x x -+)÷222x x - 选取一个合适的值代入求值
八、综合计算
1、计算n
m m n m n 2
2
22∙÷-的结果
②()231200841
0-+⎪

⎫ ⎝⎛--+- ③0
1)13(|1|)2
1
(-+-+-
④ -÷-+--2010(5)4
1()1(1
2
π)0
⑤1
1(1)527232-⎛⎫π-+-+-- ⎪⎝⎭
⑥231)2008(41
0-+⎪⎭
⎫ ⎝⎛--+- ⑦
132822--+
九、解方程
1、要使2415--x x 与的值相等,则x =__________
2、当x=________,2x -3与543
x +的值互为倒数
3、关于x 的方程
43
32=-+x a ax 的解为x=1,则a=
6 、关于x 的方程
212
x m
x +=-- 的解是最大的负整数 则m=_____ 7、关于x 的方程211
x a x +=-的解是正数,则a 的取值范围是 8、若)1)(1(3-+-x x x =1+x A +1
-x B
,则A= B= .
9、若
7
21(2)(1)
A B x x x x x -+=
+-+- , 则A= B= . 10、关于的方程3
23+=-+m m x x 有一个负数解,求m 的取值范围.
11、解方程①26321311-=+-x x ②0)
1(2
13=-+--x x x x ③
13132=-+--x x x ④ 1
412112-=-++x x x
十、应用题
1、某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,那么每天应多做多少件?
2、甲、乙两地相距360km ,新修的高速公路开通后,在甲、乙两地间行
驶的长途客运车平均车速提高了50%,而从甲地到乙地的时间缩短了2h 。

试确定原来的平均速度。

3、八年级(1)班的学生周末乘汽车到游览区游览,游览区距学校120km ,一部分学生乘慢车先行,出发1h 后,另一部分学生乘快车前往,结果他们同时到达游览区,。

已知快车的速度是慢车速度的1。

5倍求慢车的速度。

4、为迎接六十周年国庆,某公司计划组织部分员工义务植树180棵,由于员工参与的积极性高,实际参加植树活动的人数比原计划增加了50%,结果每人比原计划少栽了2棵树,实际有多少人参加这次植树活动?。

相关文档
最新文档