长度与固体密度测量实验报告

合集下载

长度与固体密度测量实验报告

长度与固体密度测量实验报告

长度与固体密度测量实验报告实验目的:通过测量固体的长度和密度,探究其物理特性。

实验器材:- 卷尺- 质量秤- 固体物体实验步骤:1. 使用卷尺测量固体物体的长度L1。

2. 使用质量秤测量固体物体的质量M1。

3. 将固体物体放入水中,测量其排水时水位的高度H1。

4. 使用卷尺测量排水器的内径d。

5. 将固体物体放入排水器中,测量其排水时新水位的高度H2。

6. 使用质量秤测量固体物体与排水器一起的质量M2。

实验数据记录:固体物体的长度L1 = XX cm固体物体的质量M1 = XX g排水时水位的高度H1 = XX cm排水器的内径d = XX cm排水时新水位的高度H2 = XX cm固体物体与排水器一起的质量M2 = XX g实验结果计算:1. 计算固体物体的体积V:固体物体的体积V = (H1 - H2)π(d/2)^22. 计算固体物体的密度ρ:固体物体的密度ρ = M1/V实验讨论:通过测量固体的长度和密度,我们可以确定固体的物理特性。

在本实验中,我们测量了固体物体的长度,质量和排水高度,并根据这些数据计算了固体物体的体积和密度。

实验结果表明,固体物体的密度是多少。

密度是物质的一个重要特性,可以用来区分不同的物质。

通过对不同物质的密度进行测量,可以帮助我们确定物体的成分和性质。

实验的不确定性:在本实验中,存在一些不确定性和误差。

例如,使用卷尺和质量秤测量的长度和质量可能存在一定的误差。

另外,使用排水器测量水位高度时,也可能存在一定的误差。

我们可以通过多次重复实验来减小这些不确定性和误差,并计算平均值来提高测量的准确性。

实验改进:为了提高实验的准确性,我们可以采取以下改进措施:1. 使用更精确的测量工具,如数码卷尺和精密秤。

2. 对于固体物体的长度测量,可以使用更精确的测量方法,如使用显微镜或光学仪器。

3. 在测量排水高度时,可以使用更精确的装置,如冷冻融化法或气体排水法,以提高测量的准确性。

长度与固体密度测量实验报告(带数据)

长度与固体密度测量实验报告(带数据)

曲阜师范大学实验报告实验日期:2020.5.17 实验时间:8:30-12:00姓名:方小柒学号:**********实验题目:长度与固体密度测量实验一、实验目的:1.了解游标卡尺、螺旋测微器的构造,掌握它们的原理,正确读数和使用方法。

2.学会直接测量、间接测量的不确定度的计算与数据处理。

3.学会物理天平的使用。

4.掌握测定固体密度的方法。

二、实验仪器:螺旋测微器、游标卡尺、读数显微镜、读数显微镜三、实验内容:1. 用游标卡尺测量空心圆柱体的体积。

2. 用螺旋测微器测量铁丝直径。

3. 用读数显微镜测量金属丝的直径。

四、实验原理:1. 游标卡尺构造及读数原理游标卡尺主要由两部分构成,如(图1)所示:在一毫米为单位的主尺上附加一个能够滑动的有刻度的小尺(副尺),叫游标,利用它可以把主尺估读的那位数值较为准确地读出来。

游标卡尺在构造上的主要特点是:游标上N个分度格的总长度与主尺上(N-1)个分度格的长度相同,若主尺上最小分度为a,游标上最小分度值为b,则有Nb =(N-1)a(1)那么主尺与游标上每个分格的差值(游标的精度值或游标的最小分度值)是:(2)常用的游标是五十分游标(N=50。

另有10分度的、 20分度的、 50分度游标卡尺),即主尺上49 mm与游标上50格相当,见图2。

五十分游标的精度值δ=0.02mm.游标上刻有0、l、2、3、…、9,以便于读数。

毫米以上的读数要从游标“0”刻度线在主尺上的位置读出,毫米以下的数由游标(副尺)读出。

即:先从游标卡尺“0”刻度线在主尺的位置读出毫米的整数位,再从游标上读出毫米的小数位。

游标卡尺测量长度l的普遍表达式为(3)式中,K是游标的“0”刻度线所在处主尺刻度的整刻度(毫米)数,n是游标的第n条线与主尺的某一条线重合,α=1mm。

图3所示的情况,即l=21.58mm。

在用游标卡尺测量之前,应先把量爪A、B合拢,检查游标的“0”刻度线是否与主尺的“0”刻度线重合。

长度与密度的测量实验报告

长度与密度的测量实验报告

长度与密度的测量实验报告一、实验目的1.了解米尺、游标卡尺、螺旋测微仪的测量原理和使用方法;2.熟悉仪器的读数原则和有效数字运算法则;3.掌握直接测量、间接测量的数据处理方法及测量不确定度估计方法;4.了解测量密度的基本方法;5.掌握电子天平的结构原理、操作规程、使用及维护方法;6.掌握用静力称衡法测定不规则固体及液体密度的原理和方法;7.熟悉测量不确定度的估计方法.二、实验原理1.米尺(1)米尺均均分度,分度值为1.0mm;(2)其读数规则应是估计到其分度值的1/10;(3)注意事项①米尺是有一定厚度的.用米尺测量时,要尽可能把待测物体贴紧米尺的刻度线,以避免视差;②测量时则不用端边作为测量的起点,以避免因磨损带来的误差.一般选择某整刻度线作为起点(如100.0mm),以减小估读带来的误差.两端所对应读数之差为待测物体的长度;③考虑米尺分度可能不均匀,可采用随机化方法,即由不同起点进行多次测量,以减小系统误差.2.游标卡尺(1)结构及用途:量爪A,C与主尺L相连,B,D及深度尺G与副尺S相连,M为紧固螺钉,N为推把;AB组成内测量爪,可测内径及槽宽;CD组成外测量爪,可测长度、厚度及外径;G可测深度及台高;当卡口合拢时,主副尺零刻度线重合,深度尺端面与主尺端面重合.如果不重合,则要在读数时相应减去x0.(2)测量原理主尺上n−1个分度所对应的长度为(n−1) mm,副尺上n个分度所对应的长度也是(n−1) mm,因此主尺与副尺每个分度值之差即格差为εx=(1−n−1n)mm=1nmm即游标卡尺的最小分划单位即分度值.(3)读数方法游标卡尺的读数由主尺读数和副尺读数两部分组成,主尺上读出毫米位的准确数,毫米以下的尾数由副尺读出.若副尺上第m个刻线与主尺上某刻线(k+m)重合,因格差为εx,故可断定副尺零刻线与主尺上第k个刻度线相距mεx,于是可得待测长度为,x=(k)mm+(mεx)mm(4)注意事项①使用卡尺应采用左手持物,右手握尺,用右手大拇指控制推把,使游标沿着主尺滑动,被测物应放在量爪的中间部位(厚的地方);②测内径时量爪与待测物轴线平行,测外径时量爪与待测物轴线垂直,测深度时主尺端面应与待测物端面吻合;③测量前记下零点读数x0,注意判断x0的正负,多次测量时在其平均值中减去x0;④注意保护卡尺,测量时不应将待测物卡得太紧;卡住待测物体后切忌来回挪动.用完将其紧固螺钉M松开.3.螺旋测微仪(1)结构:螺旋测微器是利用螺旋进退来测量长度的仪器,它比游标卡尺更精密,常用于测量小球的直径、金属丝的直径和薄板的厚度.量程为25 mm,螺旋测微器的分度值为0.01 mm.主尺分度为0.5mm.因此,副尺旋转一周即在主尺上移动一格,顶砧和测微螺杆间距改变0.5mm.副尺套筒上均分50个小格.因此,每旋转1小格移动0.01 mm.(2)读数方法①记录零点读数,应注意微分筒上的零刻度线在主尺横线的上方还是下方,对应零点读数分别为正值还是负值;②然后左手持尺架(框架),右手转动粗调旋钮使顶砧、测微螺杆间距稍大于被测物,放入被测物,转动微调旋钮到夹住被测物,直到棘轮发出“咯咯”声音为止,拨动固定旋钮使测杆固定后读数;③读数时,要读出主尺上的读数还有微分筒上的读数,注意不要丢掉主尺上可能露出的“半整数”,副尺读数时应包括一位小数.测量结果应是测量值=读数值-零点读数.(3)注意事项①为避免弓形手柄热膨胀,使用螺旋测微器应左手捏持弓形手柄上的绝热塑料垫块,将待测物体稳妥地置于实验台面上,右手旋转棘轮;②测量时不得直接旋转副尺套筒,应轻转其尾部的棘轮;③测量完毕,应将测微螺杆退回几转,使顶砧、测微螺杆离开一定间隙,以防外界温度变化时因热膨胀而使顶砧、测微螺杆过分压紧、损坏螺纹;④测量小球直径在桌面上完成,不要将螺旋测微器拿起来读数.4.密度测量方法-静力称衡法ρ=m v若不计空气浮力,则物体在空中的重量为W=mg,与其在水中的视重W1=m1g,之差即为它在水中的浮力:F=W−W1=(m−m1)g由阿基米德原理,V是排开液体的体积即为待测物体的体积:F = ρ0gV解得待测物体的密度:ρ=mρ0m −m 1由上述可知,用静力称衡法测定固体或液体的密度,最终将转化为质量的测量. 5.实验数据处理 (1)A 类不确定度 ①样本标准偏差s xi =√∑(x i −x̅)2n i=1n −1②样本算术平均值标准偏差s x̅=s xi √nu ax =t (p,k )s x̅自由度k =n −1t 分布的置信系数与自由度的关系真值出现在x̅±t (0.683,k)∙s x̅区间内的概率为68.3%. (2) B 类不确定度考虑仪器分辨率为εx ,遵从均匀分布,则u bx =εx√3(3)合成不确定度 直接测量:u x =√∑u ai 2+∑u bi 2设待测量与各直接测量之间有函数关系x =f (x 1,x 2,x 3…)则待测量的平均值可直接用各量平均值计算测量的不确定度与各直接测量量的不确定度的关系为①计算和差形式方便u x=√∑(ðfðx iU xi)2i ②计算乘除指数形式方便u x x̅=√∑(ðln fðx iu xi)2i此两者是等价的,因为ⅆln f ⅆf = 1 f(4)计算不确定度过程①两边取对数;②两边求全微分(合并同一微分项系数);③逐项平方并将微分符号d改为不确定度符号.(5)最终结果表示测量结果有效数字取决于测量不确定度的大小,遵从与测量不确定度末位取齐原则;算术平均值:考虑到不确定度,为慎重起见比测得值多保留一位;不确定度:标准不确定度首数小于“5”取两位,而当首数大于或等于“5”只取一位;结果表示:x=x̅±u x(单位).三、实验内容1.以米尺测量教科书的宽度l.测量时采取以下两种不同的方法各测4次;(1)不同起点,同一位置(l1i);(2)不同起点,不同位置(l2i).2.以游标卡尺在不同方位测量半空心圆柱体的外径D1、内径D2、高度H1及深度H2各4次,并求其体积;3.以螺旋测微器在钢球不同位置的三互垂方向测量其直径D 6次,并求其体积.4.用流体静力称衡法测定牛角扣的密度:(1)调节天平至备用状态,测定牛角扣在空气中的质量;(2)然后测定其在水中的视质量.用细线拴住牛角扣,悬吊于烧杯的液体中,不要露出水面或接触烧杯底或杯壁.称出牛角扣完全浸没在水中的视质量m1;(3)本实验宜采用相同条件下的多次测量方法.为了掌握实验条件及求得水的密度,还应在实验前后分别测室温θ和水温θe.(4)注意事项①严格遵守天平操作步骤和操作规则.天平使用前需要预热,首先要调整4个脚使仪器保持平衡,水平仪内气泡位于圆圈中央,称量物品要放在秤盘中央,注意初始要将天平清零;②在液体中称衡时应注意不使待测物体露出水面或接触烧杯,并应防止待测液体与水混合;③实验中应注意随时排除附着于待测样品上的气泡,排除方法可以用细丝轻轻摇振;④不要去皮.四、实验数据1.以米尺测量教科书的宽度l:单位:cm;允差:∆l=0.05cm;u Bl=3结果表示:l122.用游标卡尺测半空心圆柱的几何尺寸并求体积:单位:mm;零点读数:x0=0.00;允差:∆x=0.04mm;u Bx=√3V̅=π(D12H1−D22H2)4=7932.952mm3;u V=√(2πD1H1/4)2∙u D12+(πD12/4)2∙u H12+(2πD2H2/4)2∙u D22+(πD22/4)2∙u H22=540.306mm3结果表达式:V=7932.952±540.306(mm3)3.用螺旋测微器测定钢球直径求体积:单位:mm;零点读数:x0=0.000;允差:∆D=0.0004;u BD=3V̅=πD36=5785.029mm3;u V=√(3πD2/6)2∙u D2=0.77mm3结果表达式:V=5785.029±0.77(mm3)4.用流体静力法测定牛角扣和乙醇的密度:环境温度:θe=θe1+θe22=24.1℃+26.0℃2=25.05℃;水温: θ=θ1+θ22=25.5℃+25.7℃2=25.6℃;水的密度:ρ0=0.9969g/mL;单位:g;u Bm=3m1=3.136±0.06cmρ̅=mρ0m−m1=6.199g/cm3;uρ=√(ln m)2∙u m2+(ln m−m1)2∙u m−m12=0.017g/cm3结果表达式:ρ=6.199±0.017(g/cm3)四、实验思考1.某游标卡尺的分度值为0.01mm,主尺分度值为0.5mm.试问:其游标的分度数为多少?游标部分的长度为多少?分度数n=0.5mm0.01mm=50,长度(50−1)×0.5=24.5mm.2.待测物体放入液体后,其表面为什么会产生气泡?怎样做才能使之少产生气泡?怎样排除气泡?因为牛角扣的表面张力;将牛角扣尽可能慢的浸入水中;假如存在气泡,轻弹杯壁和细绳,排除气泡.3.对于测定不规则状物体的体积,为何不利用量筒通过排水法直接测量物体排开水的体积,而用静力称衡法?哪个精度比较高?原因是?容易产生气泡,一旦产生气泡,则排水法实验需重新进行;而且排水法需要得知前后体积差,不规则物体容易带水,会使后面水的体积测定出现错误;在理想情况下(不规则物体上无气泡,出水不带水)静力衡称法精度较高,因为仪器精度比较高(系统误差比较小).。

大学物理实验报告长度,质量,密度的测量

大学物理实验报告长度,质量,密度的测量

大学物理实验报告长度,质量,密度的测量大学物理实验报告:长度、质量、密度的测量一、实验目的1、掌握游标卡尺、螺旋测微器和电子天平的使用方法。

2、学会测量规则物体和不规则物体的长度、质量和密度。

3、理解误差的概念和数据处理方法,提高实验数据的准确性和可靠性。

二、实验原理1、长度测量游标卡尺:利用主尺和游标尺的分度差来提高测量精度。

主尺刻度间距为 1mm,游标尺上通常有 n 个等分刻度,总长度为(n 1)mm,游标卡尺的精度为(n 1)mm / n 。

螺旋测微器:通过旋转微分筒,使测微螺杆前进或后退,从而测量物体的长度。

螺旋测微器的精度通常为 001mm 。

2、质量测量电子天平:基于电磁力平衡原理,通过测量物体所受的电磁力来确定其质量。

3、密度测量对于规则物体,如长方体,其密度ρ = m / V ,其中 m 为质量,V 为体积。

体积 V = l × w × h ,l 、w 、h 分别为长方体的长、宽、高。

对于不规则物体,采用排水法测量体积。

先测量量筒中一定量水的体积 V1 ,然后将物体放入量筒中,再次测量水和物体的总体积 V2 ,物体的体积 V = V2 V1 。

三、实验仪器1、游标卡尺(精度 002mm )2、螺旋测微器(精度 001mm )3、电子天平(精度 001g )4、长方体金属块5、圆柱体金属块6、小石块7、量筒(50ml )8、烧杯四、实验步骤1、长度测量用游标卡尺测量长方体金属块的长、宽、高,各测量 5 次,记录测量数据。

用螺旋测微器测量圆柱体金属块的直径和高度,各测量 5 次,记录测量数据。

2、质量测量用电子天平分别测量长方体金属块、圆柱体金属块和小石块的质量,各测量 3 次,记录测量数据。

3、密度测量计算长方体金属块的体积,根据测量的质量和体积计算其密度。

计算圆柱体金属块的体积,根据测量的质量和体积计算其密度。

采用排水法测量小石块的体积,根据测量的质量和体积计算其密度。

长度与密度的测量实验报告

长度与密度的测量实验报告

长度与密度的测量实验报告1. 引言长度和密度是物体的两个基本物理性质,它们在物理学和工程学中具有重要的应用价值。

本实验旨在通过测量不同物体的长度和密度,探究它们之间的关系,并验证相关物理原理。

2. 实验目的(1)测量不同物体的长度和质量,计算出它们的密度;(2)通过实验验证长度与密度之间的关系。

3. 实验器材(1)游标卡尺:用于测量物体的长度;(2)天平:用于测量物体的质量;(3)容器:用于测量物体的体积。

4. 实验步骤(1)准备不同形状和材料的物体,如金属块、塑料块等;(2)使用游标卡尺测量各物体的长度,并记录下测量结果;(3)使用天平测量各物体的质量,并记录下测量结果;(4)计算各物体的密度,公式为密度=质量/体积;(5)将测量结果整理成表格。

5. 实验结果根据测量数据计算得到的各物体的密度如下表所示:物体长度(cm)质量(g)密度(g/cm³)金属块 5.2 10.5 2.02塑料块 4.8 7.2 1.50...6. 实验分析根据实验结果可得知,不同物体的密度相差较大。

通过观察测量数据,我们可以发现,长度与密度之间并没有直接的线性关系。

不同物体的密度主要取决于其材料的性质,例如金属块因为金属原子的紧密排列而具有较高的密度,而塑料块因为分子间的间隔较大而具有较低的密度。

7. 结论通过本次实验,我们验证了长度与密度之间并没有直接的线性关系。

不同物体的密度主要取决于其材料的性质。

在实际应用中,长度和密度的测量对于材料的选择和工程设计具有重要意义。

8. 实验改进为了提高实验的准确性和可靠性,我们可以采取以下改进措施:(1)增加样本数量,对更多不同材料的物体进行测量,以获得更广泛的数据;(2)使用更精确的测量仪器,如数码卡尺和高精度天平,以提高测量的准确性;(3)在测量前应确保测量仪器的零点校准准确,并注意减小人为误差。

9. 实验应用长度与密度的测量在许多领域有着广泛的应用。

在工程设计中,通过测量材料的长度和密度,可以计算出其质量和体积,从而评估材料的可行性和适用性。

长度与固体密度测量实验报告

长度与固体密度测量实验报告

长度与固体密度测量实验报告长度与密度丈量实验一、实验简介长度是最根本的物理量。

在种种百般的长度丈量仪器中,它们的外观虽然差别,但其标度多数是以一定的长度来分别的,对许多物理量的丈量都可以归为对长度的丈量,因此,长度的丈量是实验丈量的底子。

在进行长度的丈量中,我们不但要求能够正确使用丈量仪器,还要能够凭据对长度丈量的差别精度要求,公道选择仪器,以及凭据丈量东西和丈量条件采取适当的丈量手段。

密度是表征物体特征的重要物理量,因而密度的丈量对物体性质的研究起着重要的作用。

对付规矩的物体,用物理天平测出其质量,用丈量长度的要领测出其体积,即可丈量出物质的密度。

二、实验原理 1.游标卡尺结构及读数原理游标卡尺主要由两部分组成,如(图 1)所示:在一毫米为单位的主尺上附加一个能够滑动的有刻度的小尺(副尺),叫游标,利用它可以把主尺估读的那位数值较为准确地读出来。

游标卡尺在结构上的主要特点是:游标上 N 个分度格的总长度与主尺上(N- 1)个分度格的长度相同,若主尺上最小分度为 a,游标上最小分度值为 b,则有Nb =(N-1)a (1) 那么主尺与游标上每个分格的差值(游标的精度值或游标的最小分度值)是:固体密度测量实验【教学目标】一、知识与技能1、掌握密度公式,并能进行简单的计算;2、会用天平、量筒等常规方法测量物质密度;3、会运用学过的浮力、阿基米德原理、浮沉条件等知识,测量物质的密度。

二、过程与方法1、根据密度的公式,明确要想测出物质密度,需从质量和体积入手思考设计实验;2、明确测量密度的常规方法——排液法;3、围绕“排液法”的器材选择和实验思路,逐步换设情境,提出问题,让学生对产生的新问题展开讨论并提出解决方案。

三、情感、态度与价值观通过揭示学生思维中的矛盾来创设问题情境,以探究性的专题逐步创设成阶梯型的问题情境,激活学生的发散性思维、引发创造性思维,以产生积极的作用。

【教学重、难点】一、重点:1、知道测量密度的常规方法——排液法2、掌握密度的公式,并能结合阿基米德原理、浮沉条件等物理知识推导出密度的表达式。

长度与密度的测量实验报告

长度与密度的测量实验报告

长度与密度的测量实验报告实验报告:长度与密度的测量摘要实验目的:通过测量长度和质量,计算出物体的密度,掌握实验测量的方法。

实验原理:长度测量使用游标卡尺,密度测量采用比重法。

实验方法:使用游标卡尺测量导线的长度,使用天平测量导线的重量和液体的重量,计算出密度。

实验结果:导线长度为15.6 cm,导线质量为2.14 g,液体质量为19.4 g,密度为5.48 g/cm³。

实验结论:通过本次实验,我们了解了长度和密度的基本概念,并掌握了实验测量的方法,为今后的实验做好了铺垫。

引言长度和密度是物理中的两个重要概念,不仅在实验中常被用到,在日常生活中也与我们息息相关。

本次实验旨在通过测量长度和质量,计算出密度,以此加深对长度和密度的理解,并掌握实验测量的方法。

实验仪器与试剂仪器:游标卡尺,天平。

试剂:导线,液体。

实验步骤1. 使用游标卡尺测量导线的长度,并记录下来。

2. 使用天平测量导线的重量,并记录下来。

3. 将一定量的液体倒入容器中,记录下容器的质量。

4. 将导线悬挂在容器中,记录下容器与导线的总质量。

5. 计算出液体的质量。

6. 根据公式:密度=质量÷体积,计算出密度。

实验结果导线长度为15.6 cm,导线质量为2.14 g,液体和容器的总质量为21.3 g,容器的质量为1.9 g,液体质量为19.4 g,容器内部体积为5 cm³,导线体积为0.0399 cm³,密度为5.48 g/cm³。

实验结论本次实验通过测量长度和密度,计算出物体的密度,了解了长度和密度的基本概念,并掌握了实验测量的方法,为今后的实验做好了铺垫。

长度和密度测量实验报告

长度和密度测量实验报告

学生实验报告(理、工科类专业用)一、实验综述1、实验目的及要求1.了解游标卡尺、螺旋测微器的构造,掌握它们的原理,正确读数和使用方法。

2.学会直接测量、间接测量的不确定度的计算与数据处理。

3.学会物理天平的使用。

4.掌握测定固体密度的方法。

2、实验仪器、设备或软件1、游标卡尺2、螺旋测微器3、物理天平二、实验过程(实验步骤、记录、数据、分析)1、测圆环体体积((2)直接量外径标准差σD=0.02(mm)(3)直接量外径D的A类不确定度:ΔA=1.05*σD=0.02(mm)(4)直接量外径D的B类不确定度:ΔB=Δ仪÷1.05=0.02(mm)(5)直接量外径D的合成不确定度:Ux=0.02 (mm)(6)直接量外径D的测量结果为:D=9.22±0.02(mm)Urx= Ux÷D’*100%=0.22%(7)直接量内径标准差σd=0.02(mm)(8)直接量内径d 的A 类不确定度:ΔA=1.05*σd=0.02(mm) (9)直接量内径d 的B 类不确定度:ΔB=Δ仪÷1.05=0.02(mm) (10)直接量内径d 的合成不确定度:Ux=0.02 (mm) (11)直接量内径d 的科学测量结果:d=3.12±0.02(mm)Urx= Ux ÷d ’*100%=0.64% (12)直接量高标准差σh =0.02(mm)(13)直接量高h 的A 类不确定度:ΔA=1.05*σh=0.02(mm) (14)直接量高h 的B 类不确定度:ΔB=Δ仪÷1.05=0.02(mm) (15)直接量高h 的合成不确定度:Ux=0.02 (mm) (16)直接量高h 的科学测量结果:h=7.32±0.02(mm)Urx= Ux ÷h ’*100%=0.27% (17)间接量体积V 的平均值:V=πh(D 2-d 2)/4=432.54(m ㎡) (18)间接量V 的不确定度:)5.0(2)5.0(2))2(225.0(2σπσπσπσd dh Dh h d D v D ++-==2.53(m ㎡) (19)圆环体体积V 的科学测量结果:V=432.54±2.53(m ㎡)2、测钢丝直径仪器名称:螺旋测微器(千分尺) 准确度=mm 01.0 估读到mm 001.0((2) 钢丝直径标准差:σd=0.002(3) 钢丝直径d 的A 类不确定度:ΔA=1.05*σd=0.002(mm) (4) 钢丝直径d 的B 类不确定度:ΔB=Δ仪÷1.05=0.005(mm) (5) 钢丝直径d 的合成不确定度:Ux=0.005(mm)(6) 钢丝直径d 的科学测量结果:d=2.157±0.002(mm) Urx=Ux ÷d *100%=0.23%3、测石蜡的密度仪器名称:物理天平TW —0.5 天平感量: 0.02 g 最大称量500 g123ΔB=Δ仪÷1.05=0.02g(2)写出直接测量M 1、M 2、M 3的科学测量结果:M 1=2.32±0.02 g M 2=11.09±0.02 g M 3=9.00±0.02 g (3)ρt 以22.50C 为标准查表取值,计算石蜡密度平均值:t M M M ρρ321-==0.90g/cm 3(4)间接量密度ρ的不确定度 =0.02(5)石蜡密度ρ的科学测量结果: σp=0.90±0.02 g/cm 3三、结论1、实验结果(1)圆环体体积V 的科学测量结果:V=432.54±2.53(m ㎡) (2)钢丝直径d 的科学测量结果:d=2.157±0.002(mm) Urx=Ux ÷d *100%=0.23% (3)石蜡密度ρ的科学测量结果: σp=0.90±0.02 g/cm 32、分析讨论:(1)要求平均值剔除异常数据 (2)要用系统误差修正平均值 (3)数据要用科学方法表示。

长度密度的测量的实验报告

长度密度的测量的实验报告

长度密度的测量的实验报告实验报告:长度密度的测量引言:长度密度是指物体单位长度的质量,是一个物质特性的重要参数。

测量长度密度可以帮助我们了解物质的组成和性质,对研究物质的结构和变化过程具有重要意义。

本实验旨在通过测量不同物质的长度和质量,计算出它们的长度密度,并探究长度密度与物质性质之间的关系。

实验材料和仪器:1. 不同材质的物体:如金属块、木块、塑料块等。

2. 电子天平:用于测量物体的质量。

3. 卷尺:用于测量物体的长度。

实验步骤:1. 准备不同材质的物体,并记录它们的名称。

2. 使用卷尺测量每个物体的长度,并记录在实验记录表中。

3. 将每个物体放在电子天平上,记录它们的质量。

4. 计算每个物体的长度密度,公式为:长度密度 = 质量 / 长度。

5. 将实验结果整理并进行分析。

实验结果和分析:通过实验测量,我们得到了不同物体的长度和质量数据,并计算出它们的长度密度。

下面是实验结果的总结:物体名称 | 长度 (cm) | 质量 (g) | 长度密度 (g/cm)物体A | 10 | 50 | 5物体B | 15 | 75 | 5物体C | 20 | 80 | 4物体D | 12 | 48 | 4从实验结果可以看出,不同物体的长度密度并不相同。

物体A和物体B的长度密度相等,为5 g/cm。

这说明它们的质量和长度成正比关系,即质量随长度的增加而增加。

物体C和物体D的长度密度也相等,为4 g/cm。

这表明它们的质量和长度之间也存在一定的比例关系。

进一步分析可以发现,长度密度与物体的材质有关。

金属块通常具有较高的长度密度,因为金属的质量较大,而长度相对较小。

相比之下,塑料块的长度密度较低,因为塑料的质量较小,而长度相对较大。

结论:通过本次实验,我们成功测量了不同物体的长度和质量,并计算出它们的长度密度。

实验结果表明,长度密度与物体的质量和长度有关,同时也与物体的材质有关。

长度密度的测量对于了解物质的组成和性质具有重要意义,可以帮助我们深入研究物质的结构和变化过程。

长度与物体密度的测量实验报告

长度与物体密度的测量实验报告

长度与物体密度的测量实验报告一、实验目的1、学会使用游标卡尺和螺旋测微器测量物体的长度。

2、掌握测量不规则物体体积的方法。

3、理解密度的概念,学会测量物体的密度。

二、实验原理1、长度测量游标卡尺:利用主尺和游标尺的差值来提高测量精度。

螺旋测微器:通过旋转螺杆,使测微螺杆与固定刻度之间的距离发生变化,从而测量微小长度。

2、物体密度的测量密度的定义:物体的质量与体积的比值,即ρ = m / V 。

测量规则物体的体积可以通过几何公式计算,不规则物体的体积通过排水法测量。

三、实验器材1、游标卡尺(精度 002mm)2、螺旋测微器(精度 001mm)3、电子天平(精度 001g)4、烧杯5、量筒6、待测金属圆柱体7、待测不规则小石块8、细线9、水四、实验步骤1、游标卡尺的使用观察游标卡尺的量程和精度。

测量前,将游标卡尺的两测量爪并拢,检查游标零刻度线与主尺零刻度线是否对齐,若未对齐,记下零误差。

用游标卡尺测量金属圆柱体的直径,在不同位置测量多次,取平均值。

2、螺旋测微器的使用观察螺旋测微器的量程和精度。

测量前,先检查零点,当测砧与测微螺杆并拢时,可动刻度的零刻度线应与固定刻度的基线重合,若未重合,记下零点误差。

用螺旋测微器测量金属圆柱体的高度,在不同位置测量多次,取平均值。

3、测量金属圆柱体的质量将电子天平调零。

把金属圆柱体放在电子天平上,测量其质量,记录测量结果。

4、测量不规则小石块的体积先往量筒中倒入适量的水,记下此时水的体积 V₁。

用细线系住不规则小石块,慢慢浸没在量筒的水中,记下此时水和小石块的总体积 V₂。

小石块的体积 V = V₂ V₁。

5、测量不规则小石块的质量用电子天平测量不规则小石块的质量,记录测量结果。

五、实验数据记录与处理1、金属圆柱体直径测量数据(mm):1012 1010 1014 1016 1018高度测量数据(mm):2022 2020 2018 2024 2026质量测量数据(g):5623直径的平均值:\(D =\frac{1012 + 1010 + 1014 + 1016 + 1018}{5} =1014mm\)高度的平均值:\(H =\frac{2022 + 2020 + 2018 + 2024 + 2026}{5} =2022mm\)金属圆柱体的体积:\(V =\pi (\frac{D}{2})^2 H = 314 \times (\frac{1014}{2})^2 \times 2022 ≈ 160778mm^3 = 160778cm^3\)金属圆柱体的密度:\(\rho =\frac{m}{V} =\frac{5623g}{160778cm^3} ≈ 3498g/cm^3\)2、不规则小石块水的初始体积 V₁(ml):500水和小石块的总体积 V₂(ml):750质量测量数据(g):1256小石块的体积:\(V = V₂ V₁= 750 500 = 250ml = 250cm^3\)小石块的密度:\(\rho =\frac{m}{V} =\frac{1256g}{250cm^3} =502g/cm^3\)六、实验误差分析1、测量长度时,由于人为读数的偏差,可能导致测量结果存在误差。

长度和物体密度的测量实验报告

长度和物体密度的测量实验报告

长度和物体密度的测量实验报告长度和物体密度的测量实验报告引言在物理学中,测量是一项非常重要的任务。

在本次实验中,我们将探究如何测量长度和物体密度。

这些测量对于许多领域都非常重要,包括工程、建筑、制造业和科学研究等。

实验目的本次实验的主要目的是掌握使用尺子和游标卡尺等工具进行长度测量,并了解使用天平进行物体密度测量的方法。

实验原理1. 长度测量:使用尺子或游标卡尺进行长度测量。

尺子通常用于较长的物体,而游标卡尺则用于更精确的测量。

2. 物体密度测量:使用天平进行物体质量和重力加速度的测量,并计算出其密度。

实验步骤1. 长度测量:(1)准备一根已知长度的棍子作为参照物。

(2)将待测物品放在水平桌面上,并用尺子或游标卡尺将其两端距离进行测量。

(3)若需要更精确地进行长度测量,则可采用游标卡尺。

2. 物体密度测量:(1)将待测物品放在天平上,并记录其质量。

(2)将待测物品挂在弹簧测力计下,记录其所受的重力。

(3)根据万有引力定律,得出地球对待测物品的引力。

(4)利用公式密度=质量/体积,计算出待测物品的密度。

实验结果1. 长度测量:我们使用尺子和游标卡尺对不同长度的物体进行了测量。

结果表明,游标卡尺比尺子更精确。

例如,在一根长度为10厘米的棍子上,使用尺子和游标卡尺分别进行了三次测量。

结果表明,尺子的平均值为9.98厘米,而游标卡尺的平均值为10.00厘米。

2. 物体密度测量:我们使用天平和弹簧测力计对不同质量和形状的物体进行了密度测量。

例如,在一个直径为5厘米、高度为10厘米的圆柱形容器中放入水,并将其质量和重力进行了记录。

结果表明,该容器中水的质量为100克,重力为0.98牛顿。

因此,该容器中水的密度为100/(3.14*2.5*2.5*10)=0.20克/立方厘米。

实验结论本次实验通过对长度和物体密度的测量,我们得出了以下结论:1. 游标卡尺比尺子更精确。

2. 物体密度可以通过天平和弹簧测力计进行测量,并利用公式密度=质量/体积进行计算。

长度与固体密度测量

长度与固体密度测量

大学物理实验报告 实验题目:长度与固体密度测量【实验目的与要求】www.cejk.club1. 用游标卡尺测量空心圆柱体的体积。

2. 用螺旋测微器测量铁丝直径。

3、记录游标卡尺和螺旋测微器的 0 点误差【实验仪器】 螺旋测微器、游标卡尺【实验原理】(用自己语言简略叙述即可,应包括受力分析图、电路图、理论公式) 1. 游标卡尺构造及读数原理游标卡尺主要由两部分构成,如(图 1)所示:在一毫米为单位的主尺上附加一个能够滑动的有刻度的小尺(副尺),叫 游标,利用它可以把主尺估读的那位数值较为准确地读出来。

游标卡尺在构造上的主要特点是:游标上 N 个分度格的总长度与主尺上(N-1)个分度格的长度相同,若主尺上 最小分度为 a ,游标上最小分度值为 b ,则有Nb =(N-1)a(1)那么主尺与游标上每个分格的差值(游标的精度值或游标的最小分度值)是:(2)常用的游标是五十分游标(N=50。

另有 10 分度的、 20 分度的、 50 分度游标卡尺),即主尺上 49 mm 与游标上 50 格相当,见图 2。

五十分游标的精度值 δ=0.02mm .游标上刻有 0、l 、2、3、…、9,以便于读数。

毫米以上的读数要从游标“0”刻度线在主尺上的位置读出,毫米以下的数由游标(副尺)读出。

即:先从游标卡尺“0”刻度线在主尺的位置读出毫米的整数位,再从游标上读出毫米的小数位。

游标卡尺测量长度l 的普遍表达式为(3)式中,K 是游标的“0”刻度线所在处主尺刻度的整刻度(毫米)数,n 是游标的第n 条线与主尺的某一条线重合,α=1mm。

图3 所示的情况,即l=21.58mm。

在用游标卡尺测量之前,应先把量爪A、B 合拢,检查游标的“0”刻度线是否与主尺的“0”刻度线重合。

如不重合,应记下零点读数,加以修正,即待测量l=l1-l0。

其中,l1 为未作零点修正前的读数值,l0 为零点读数。

l0 可以正,也可以负。

使用游标卡尺时,可一手拿物体,另一手持尺,如图4 所示。

长度和密度测量实验报告

长度和密度测量实验报告

长度和密度测量实验报告实验目的:1.掌握长度和密度的测量方法;2.熟悉使用相关仪器设备进行实验操作;3.分析实验数据,探索密度与长度之间的关系。

实验原理:1.长度的测量方法:a.直尺法:用一把直尺量取被测物体的长度;b.游标卡尺法:使用游标卡尺的测量原理,精确量取被测物体的长度。

2.密度的测量方法:a.水排法:测量固体的质量,将其浸入水中,根据排水量计算密度;b.电子天平法:将物体放在电子天平上直接测量质量,并计算密度。

实验步骤:1.长度的测量:a.使用直尺法,用直尺测量标准物长度,记录数据;b.使用游标卡尺法,将游标卡尺放在被测物体两端,记录数据。

2.密度的测量:a.使用水排法:首先测量被测物体的质量,然后将其放入测量容器中,记录容器初始水位。

然后将被测物体放入容器中,容器内部水位上升,记录新的水位数据。

b.使用电子天平法:将被测物体放在电子天平上称重,得到质量数据。

实验数据记录:1.长度的测量数据:序号,直尺法(cm),游标卡尺法(cm)------,-------------,-----------------1,10.2,10.252,15.1,15.153,20.0,20.052.密度的测量数据:质量(g),容器初始水位(cm),容器变化水位(cm)----------------,-----------------,-----------------25.0,10.0,2.050.0,10.0,3.575.0,10.0,5.0数据处理与分析:1.长度的平均值计算:直尺法平均值:(10.2 + 15.1 + 20.0) / 3 = 15.1 cm游标卡尺法平均值:(10.25 + 15.15 + 20.05) / 3 = 15.15 cm2.密度的计算:使用水排法测得的密度=质量/排水体积=质量/(容器变化水位×斜截面积)其中,斜截面积可以近似用容器的底面积代替。

容器底面积可以由直径计算得到:(π×直径^2)/4根据上述公式- 第一组数据:25.0 / (2.0 × ((π × (10.0^2)) / 4)) = 0.198 g/cm³- 第二组数据:50.0 / (3.5 × ((π × (10.0^2)) / 4)) = 0.180 g/cm³- 第三组数据:75.0 / (5.0 × ((π × (10.0^2)) / 4)) = 0.171 g/cm³实验结果与讨论:1.根据直尺法和游标卡尺法测得的长度平均值,可以发现两种方法得到的结果非常接近,说明游标卡尺具有较高的测量精度。

长度和固体密度的测量

长度和固体密度的测量
游标卡尺外形图
游标卡尺的读数
2、螺旋测微计(千分尺)
1.尺架 2.测砧 3.测微螺杆 4.隔热装置 5.锁紧装置 6.固定套筒 7.微分筒 8.测力装置 9.扳子 10.曲柄
螺旋测微器“0”点读数
3、物理天平
圆柱体的尺寸数据记录表
次序
1 2 3 4 5 6
实验1 长度和固体密度的测量
实验目的
• 1、学习游标卡尺、千分尺的原理和使用 方法。
• 2、学习物理天平的使用方法和不规则固 体密度的测量方法。
• 3、学习一般仪器测量的读数规则,学习 直接测量和间接测量的不确定度的计算。
1、游标卡尺
量爪 AB 和 A'B' 尾尺 C 主尺 D 游标 E 固定螺钉 M
高度H(mm) 直径D(mm) 质量M(g)) / / / / /
要求:计算金属圆柱体密度的不确定度, 写出正确的表达结果。

长度和密度的测量实验报告

长度和密度的测量实验报告

长度和密度的测量实验报告实验目的:通过实验测量不同材料的长度和密度,并了解测量方法。

实验器材:卷尺,万能表,烧杯,容器,天平,低粘度液体,测量杆实验步骤:1. 测量长度①先准备好测量杆和卷尺,找到需要测量长度的材料。

②将测量杆靠在材料上,用卷尺测量材料的长度。

③根据多次测量的结果得出平均值。

2. 测量密度①先准备好天平和容器,用万能表测量容器的容积。

②将低粘度液体倒入容器中,记录液体的质量。

③将需要测量密度的材料放入容器中,注意材料不要漂浮在液体表面。

④在不改变液体数量的情况下重新测量液体的质量。

根据质量的变化得出材料的质量。

⑤根据公式ρ=m/V 计算材料的密度。

实验结果:测量长度得到结果如下:材料长度1(cm)长度2(cm)长度3(cm)平均长度(cm)金属线 50.2 50.1 50.2 50.17绳子 48.8 49.2 48.9 48.97皮带 45.1 45.2 45.1 45.13测量密度得到结果如下:材料容器体积(mL)液体质量(g)材料和液体质量(g)材料质量(g)密度(g/mL)铁块 50 50 100.4 50.4 1.008木块 50 48.2 98.6 48.4 0.968锡块 50 36.5 86.8 36.3 0.726结论:经过多次测量,我们得出了不同材料的长度和密度数据。

在长度方面,我们发现金属线的长度最长,皮带最短,而绳子的长度略低于金属线。

在密度方面,我们发现铁块的密度最大,锡块最小,木块居中。

在测量密度时,需要注意容器的准确体积和液体的质量,以及可以影响测量结果的一些因素,如空气的影响等要加以排除。

在测量长度时,需要选择合适的仪器和测量方法,确定测量的起点和终点,并保持测量精度的一致性。

长度与密度测量实验报告

长度与密度测量实验报告

长度与密度测量实验报告长度与密度测量实验报告引言:长度和密度是物理学中非常重要的概念。

在本次实验中,我们将通过测量不同物体的长度和密度来深入研究这两个概念。

通过实验数据的收集和分析,我们将得出一些有关长度和密度的结论,并进一步探讨它们在物理学中的应用。

实验部分:1. 实验目的本次实验的主要目的是测量不同物体的长度和密度,通过实验数据的收集和分析,探索长度和密度的关系,并了解它们在物理学中的应用。

2. 实验材料和方法我们使用了以下材料和方法来进行实验:- 长度测量器:使用尺子、卷尺或测量仪器来测量物体的长度。

- 密度测量器:使用天平和容器来测量物体的质量和体积,从而计算出物体的密度。

3. 实验步骤以下是我们进行实验的具体步骤:- 长度测量:选择几个不同形状和大小的物体,使用长度测量器来测量它们的长度。

确保测量器与物体接触紧密,准确记录所得数据。

- 密度测量:选择几个不同材质的物体,使用天平测量它们的质量,并使用容器测量它们的体积。

通过质量除以体积,计算出物体的密度。

结果与讨论:1. 长度测量结果我们测量了不同物体的长度,并记录了以下数据:- 物体A:10 cm- 物体B:15 cm- 物体C:20 cm通过对这些数据的分析,我们可以观察到长度与物体的形状和大小有关。

不同形状和大小的物体具有不同的长度。

2. 密度测量结果我们测量了不同材质的物体的质量和体积,并计算出以下数据:- 物体X:质量100 g,体积50 cm³,密度2 g/cm³- 物体Y:质量150 g,体积75 cm³,密度2 g/cm³- 物体Z:质量200 g,体积100 cm³,密度2 g/cm³通过对这些数据的分析,我们可以观察到不同材质的物体具有相似的密度。

在本实验中,我们选择的物体都具有相同的密度,即2 g/cm³。

这表明密度与物体的材质有关。

结论:通过本次实验,我们得出了以下结论:- 长度与物体的形状和大小有关。

长度与密度的测量实验报告

长度与密度的测量实验报告

长度与密度的测量实验报告引言:本实验旨在通过测量物体的长度和质量,探究长度与密度之间的关系。

通过实验,我们可以了解到不同物体的密度是否存在差异,并且可以得出密度与长度之间的定量关系。

实验材料和方法:实验所需材料包括测量尺、天平和不同物体(如金属块、塑料块、木块等)。

实验步骤如下:1. 准备不同物体,并在测量尺上标记出它们的长度。

2. 使用天平测量每个物体的质量,并记录下来。

3. 根据测量结果,计算每个物体的密度,公式为密度=质量/长度。

4. 比较不同物体的密度,分析其差异,并探究与长度之间的关系。

实验结果与讨论:根据实验数据计算得出的密度结果如下:物体1:金属块长度:10cm质量:50g密度:5g/cm³物体2:塑料块长度:10cm质量:20g密度:2g/cm³物体3:木块长度:10cm质量:30g密度:3g/cm³通过比较不同物体的密度,我们可以发现其存在一定的差异。

金属块的密度最大,塑料块的密度最小,而木块的密度居中。

这表明不同物质具有不同的密度特性。

进一步分析发现,虽然不同物体的密度不同,但它们的长度均相等。

这表明长度与密度之间并不存在直接的定量关系。

密度的大小主要取决于物体的质量,而不是长度。

结论:通过本次实验,我们得出了如下结论:1. 不同物质具有不同的密度特性,金属块的密度最大,塑料块的密度最小,木块的密度居中。

2. 长度与密度之间并不存在直接的定量关系,密度的大小主要取决于物体的质量。

3. 密度的测量是一种重要的物性测量方法,可以用于判断物质的性质和成分。

实验的局限性和改进方向:本实验只选取了少量的物体进行测量,因此结果的可靠性有一定限制。

为了提高实验的准确性和可靠性,可以选择更多不同类型的物体进行测量,并重复实验多次以取得更加可靠的结果。

在实验过程中,应注意测量尺的准确性和天平的灵敏度,以避免误差的产生。

同时,还可以采用更加精密的仪器和测量方法,以提高测量结果的准确性。

长度和密度的测量实验报告

长度和密度的测量实验报告

长度和密度的测量实验报告一、实验目的1、学会使用游标卡尺和螺旋测微器测量物体的长度。

2、掌握测量规则形状和不规则形状物体体积的方法。

3、学会使用天平测量物体的质量,进而计算物体的密度。

4、培养严谨的科学态度和实验操作能力。

二、实验原理1、长度测量游标卡尺:利用主尺和游标尺的分度差来提高测量精度。

螺旋测微器:通过旋转微分筒,使测微螺杆前进或后退,从而测量物体的长度。

2、密度计算密度的定义:物体的质量与体积之比,即ρ = m / V 。

对于规则形状的物体,如长方体,体积 V = l × w × h (l 为长,w 为宽,h 为高)。

对于不规则形状的物体,通过排水法测量其体积。

三、实验器材1、游标卡尺(精度 002mm)2、螺旋测微器(精度 001mm)3、天平(精度 01g)4、待测金属圆柱体5、待测不规则形状小石块6、烧杯、量筒、细线、水四、实验步骤1、用游标卡尺测量金属圆柱体的直径和高度测量前,先检查游标卡尺的主尺和游标尺的零刻度线是否对齐,以及测量爪是否紧密贴合。

用游标卡尺的外测量爪夹住金属圆柱体的直径部分,轻轻推动游标尺,使测量爪刚好接触圆柱体,读取主尺和游标尺上的刻度值,记录下来。

同样的方法,用游标卡尺的内测量爪测量圆柱体的高度,注意测量时要保持卡尺与圆柱体垂直。

2、用螺旋测微器测量金属圆柱体的直径测量前,先检查螺旋测微器的零点是否准确。

当测砧和测微螺杆并拢时,如果可动刻度的零刻度线与固定刻度的水平横线对齐,则零点准确;否则,需要进行零点修正。

将金属圆柱体放在测砧和测微螺杆之间,旋转微分筒,使测微螺杆轻轻接触圆柱体,听到“喀喀”声时停止旋转。

读取固定刻度上的数值(注意半毫米刻度线是否露出),再加上可动刻度上与固定刻度横线对齐的刻度值(估读一位),即为圆柱体的直径测量值。

3、用天平测量金属圆柱体的质量将天平放在水平桌面上,调节天平的平衡螺母,使指针指在分度盘的中央刻度线处,此时天平平衡。

固体密度测量实验报告

固体密度测量实验报告

固体密度测量实验报告固体密度测量实验报告引言固体密度是物质的一个重要性质,它可以帮助我们了解物质的组成和性质。

本实验旨在通过测量不同固体样品的密度,探究固体密度的测量方法和影响因素。

实验方法1. 实验仪器和材料本实验使用的仪器有:电子天平、容量瓶、量筒、实验室温度计等。

本实验使用的材料有:不同固体样品、水。

2. 实验步骤(1)准备工作:清洁实验仪器,确保实验环境整洁。

(2)测量容量瓶的质量:使用电子天平,将空容量瓶的质量称量并记录。

(3)测量容量瓶加样品后的质量:将容量瓶加入待测样品,再次称量并记录质量。

(4)测量容量瓶内水的质量:将容量瓶加满水,称量并记录质量。

(5)测量容量瓶加样品和水后的质量:将容量瓶加入待测样品和水,再次称量并记录质量。

实验结果与数据处理1. 实验数据根据实验步骤中所测得的质量数据,可以计算出固体样品的质量、容量瓶内水的质量和容量瓶加样品和水后的质量。

2. 数据处理(1)计算固体样品的质量:固体样品的质量等于容量瓶加样品后的质量减去容量瓶的质量。

(2)计算容量瓶内水的质量:容量瓶内水的质量等于容量瓶加样品和水后的质量减去容量瓶加样品后的质量。

(3)计算固体样品的体积:固体样品的体积等于容量瓶内水的质量除以水的密度。

(4)计算固体样品的密度:固体样品的密度等于固体样品的质量除以固体样品的体积。

讨论与分析1. 实验误差在实验中,可能存在一些误差,如仪器误差、操作误差等。

为了减小误差的影响,我们在实验过程中要注意操作的准确性,重复实验以提高数据的可靠性。

2. 影响因素固体样品的密度受到多种因素的影响,如温度、压力、纯度等。

在本实验中,我们控制了温度和压力的影响,但未考虑固体样品的纯度。

固体样品的纯度对密度的测量结果也有一定的影响。

3. 实验结果的意义通过本实验测量得到的固体样品的密度,可以帮助我们了解固体样品的组成和性质。

不同物质的密度不同,可以用来区分不同物质。

同时,密度还可以作为判断物质纯度的指标之一。

固体的密度的实验报告

固体的密度的实验报告

固体的密度的预习报告一、实验目的(1)学会物理天平的正确使用。

(2)用流体静力称衡法测定固体的密度。

(3)进一步熟悉游标卡尺的使用。

二、仪器用具物理天平、砝码、游标卡尺、温度计、铁筒、金属圆柱体、木块、细线等。

三、实验原理(1)形状规则的固体,我们可直接测量它的质量和体积来求密度,对于直径为d ,高度为h 的金属圆柱体的密度为ρ铜=m 1V 1=4m 1πd 2h (1)对于长为a ,宽为b ,高为c 的矩形木块的密度为ρ木=M 1V 2=M1abc (2) (2)对于形状不规则的固体,其体积无法用长度测量仪器来进行测量,但可以根据阿基米德原理,采用流体静力称衡法间接地测出体积,即用测量质量的方法来代替测定其体积,从而求出密度。

由于浸入液体中的物体受到液体静压力(即浮力)的作用,所以称为液体静力称衡法。

如果不计空气的浮力,一块无规则的铜块在空气中称衡时,天平的砝码值是m 1g ,在液体中称衡时,天平的砝码值是m 2g ,那么铜块所受浮力等于铜块排开液体的重量F =P 1−P 2=m 1g −m 2g =ρ0V 1g所以得V 1=m 1−m 2ρ0,从而间接地解决V 的测量问题,ρ0是液体的密度,故得ρ铜‘=m 1V 1=m 1m 1−m 2ρ0 (3)如果所用的液体是纯水,测其水温,可从图表中查出水的密度ρ0来。

对于无规则的木块,因其密度小于水的密度,可先称出木块在空气中的质量M 1,然后在木块下面挂一重物,并将重物浸没在水中,而木块在空气中,称出其质量M 2,最后将木块和重物一起全都沉入水中,称出其质量M 3,则木块在水中所受到的浮力为M 2g −M 3g =ρ0V 2g所以木块的密度为ρ木‘=M 1M 2−M 3ρ0 (4)只有当浸入液体后物体的性质不会发生变化的条件下,才能用液体静力称衡法来测定它的密度。

(3)误差分析1、空气浮力的修正公式(1)(2)(3)(4)中都没有考虑空气浮力的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长度与密度测量实验一、实验简介长度是最基本的物理量。

在各种各样的长度测量仪器中,它们的外观虽然不同,但其标度大都是以一定的长度来划分的,对许多物理量的测量都可以归为对长度的测量,因此,长度的测量是实验测量的基础。

在进行长度的测量中,我们不仅要求能够正确使用测量仪器,还要能够根据对长度测量的不同精度要求,合理选择仪器,以及根据测量对象和测量条件采用适当的测量手段。

密度是表征物体特征的重要物理量,因而密度的测量对物体性质的研究起着重要的作用。

对于规则的物体,用物理天平测出其质量,用测量长度的方法测出其体积,即可测量出物质的密度。

二、实验原理1.游标卡尺构造及读数原理游标卡尺主要由两部分构成,如(图1)所示:在一毫米为单位的主尺上附加一个能够滑动的有刻度的小尺(副尺),叫游标,利用它可以把主尺估读的那位数值较为准确地读出来。

游标卡尺在构造上的主要特点是:游标上 N 个分度格的总长度与主尺上(N- 1)个分度格的长度相同,若主尺上最小分度为 a,游标上最小分度值为 b,则有Nb =(N-1)a(1)那么主尺与游标上每个分格的差值(游标的精度值或游标的最小分度值)是:N − 1 1δ = a − b = a − a= N(2)N N精品常用的游标是五十分游标(N=50。

另有 10 分度的、 20 分度的、 50 分度游标卡尺),即主尺上49 mm 与游标上50 格相当,见图2。

五十分游标的精度值δ=0.02mm.游标上刻有0、l、2、3、…、9,以便于读数。

毫米以上的读数要从游标“0”刻度线在主尺上的位置读出,毫米以下的数由游标(副尺)读出。

即:先从游标卡尺“0”刻度线在主尺的位置读出毫米的整数位,再从游标上读出毫米的小数位。

游标卡尺测量长度 l 的普遍表达式为l = kα + nδ(3)式中,K 是游标的“0”刻度线所在处主尺刻度的整刻度(毫米)数,n 是游标的第 n 条线与主尺的某一条线重合,α=1mm。

图 3 所示的情况,即 l=21.58mm。

在用游标卡尺测量之前,应先把量爪 A、B 合拢,检查游标的“0”刻度线是否与主尺的“0”刻度线重合。

如不重合,应记下零点读数,加以修正,即待测量l=l1- l0。

其中,l1 为未作零点修正前的读数值,l0 为零点读数。

l0 可以正,也可以负。

使用游标卡尺时,可一手拿物体,另一手持尺,如图 4 所示。

要特别注意保护量爪不被磨损。

使用时轻轻把物体卡住即可读数。

游标卡尺使用注意事项(1)使用前,首先要弄清其规格(2)根据被测对象情况,决定使用外测量爪、内测量爪、尾尺。

(3)校正零点读数。

若量爪 A、B接触时,游标 0 线与主线不重合,应找出修正量,然后再使用。

(4)注意保护量爪,预防卡口磨损。

为此测量时不应将待测物卡得太紧。

(5)用毕将其固定螺丝松开,然后将游标卡尺放入包装盒。

2.螺旋测微器(千分尺)常见的螺旋测微器如下图所示。

它的量程是 25mm,分度值是 0.01mm。

螺旋测微器结构的主要部分是一个微螺旋杆。

螺距是 0.5 mm。

因此,当螺旋杆旋一周时,它沿轴线方向只前进 0.5mm。

1.尺架2.测砧3.测微螺杆4.锁紧装置5.固定套筒6.微分筒7.棘轮8.螺母套管9.被测物螺旋柄圆周上,等分为 50 格,螺旋杆沿轴线方向前进 0.01 mm 时螺旋柄圆周上的刻度转过一个分格,这就是所谓机械放大原理。

测量物体长度时,应轻轻转动螺旋柄后端的棘轮旋柄,推动螺旋杆,把待测物体刚好夹住时读数,可以从固定标尺上读出整格数(每格 0.5mm)。

螺旋测微计的读数方法:(1)测量前后应进行零点校正,即以后要从测量读数中减去零点读数。

零点读数时顺刻度序列记为正值,反之为负值。

(2)读数时由主尺读整刻度值,0.5mm 以下由微分套筒读出,并估读到0.001mm 量级。

(3)要特别注意主尺上半毫米刻线,如果它露出到套筒边缘,主尺上就要读出 0.5mm 的数。

螺旋测微器使用注意事项:(1)使用前,首先要弄清其规格,选用合适的量程。

(2)校正零点读数。

(3)先用粗测旋钮使测头小砧接近被测物,后用微调旋钮使测头小砧接触被测物。

听到“喀”、“喀”止动声后停止旋转。

否则易损伤测微螺杆。

(4)读数时要注意固定刻度尺上表示半毫米的刻线是否已经露出。

(5)测量完毕应使测微螺杆与测砧之间留有空隙,以防因热膨胀损坏螺纹。

3.读数显微镜读数显微镜是用来测量微小距离或微小距离变化的。

其构造分为观察被测物体的显微镜和读数的螺旋测微装置。

读数显微镜的量程一般为50mm,分度值是0.01mm,可估读到 0.001mm。

读数显微镜的使用:1.将读数显微镜适当安装,对准待测物;2.调节显微镜的目镜,以清楚地看到叉丝(或标尺);3.调节显微镜物镜焦距,使被测物体成像清晰;4.旋转测微手轮,使叉丝竖线与被测物体的两端面相切;5.分别读出相切时标尺所对应的读数 L1 和 L2,两者读数之差△L=L1-L2 即被测物体的长度。

读数显微镜使用注意事项:(1)测量时,显微镜移动方向与待测长度平行。

(2)同次测量中,测微手轮须恒定向一个方向旋转,避免产生空程误差。

三、实验仪器实验仪器有:螺旋测微器、游标卡尺、读数显微镜。

1.实物图螺旋测微器仿真图鼠标左键点击双击仪器可以打开仪器大视图。

(1)鼠标左键点击开始测量按钮,可以进行测量铁丝的直径;(2)鼠标左键或右键点击微分筒可以粗调减小或增大当前测量距离;(3)鼠标左键或右键点击微分筒可以细调减小或增大当前测量距离;游标卡尺实物图游标卡尺仿真图鼠标左键双击可以打开仪器的大视图,大视图中可以对仪器进行操作。

(1)鼠标左键点击开始测量按钮,可以分别进行测量空心圆柱的外径、内径、高度;(2)鼠标左键点击可以拖动游标从而改变当前所测得距离;3.读数显微镜读数显微镜实物图读数显微镜仿真图鼠标左键双击主场景中仪器视图可以打开仪器大视图,大视图中可以进行操作。

(1)鼠标点击反射镜旋钮可以调节目镜视野明亮度;(2)鼠标点击物镜旋钮可以改变物镜镜筒的高度,从而改变被测物体在目镜中的清晰度;(3)鼠标左键点击目镜镜筒紧固旋钮可以解锁螺丝,从而改变目镜镜筒的方位,右击锁紧;(4)鼠标点击目镜调焦旋钮可以改变目镜视野中叉丝的清晰度;(5)鼠标左键点击放置金属丝按钮可以将金属丝放置在显微镜台上,从而进行测量;四、实验内容1.用游标卡尺测量空心圆柱体的体积。

2.用螺旋测微器测量铁丝直径。

3.用读数显微镜测量金属丝的直径。

五、实验指导1.实验重点、难点(1)游标卡尺、螺旋测微器的使用,及零点误差的记录。

(2)读读显微镜的调节及使用。

(3)实验数据的处理;2.辅助功能介绍实验项目:显示实验名称和实验内容信息(多个实验内容依次列出);可以通过单击实验内容进行实验内容之间的切换。

切换至新的实验内容后,实验桌上的仪器会重新按照当前实验内容进行初始化。

实验仪器栏:存放实验所需的仪器,可以点击其中的仪器拖放至桌面,鼠标触及到仪器,实验仪器栏会显示仪器的相关信息;仪器使用完后,则不允许拖动仪器栏中的仪器了。

工具箱:各种使用工具,如计算器等。

数据记录:打开实验数据记录表格。

帮助按钮:帮助按钮可以打开帮助文件。

提示信息栏:显示实验过程中的仪器信息,实验内容信息,仪器功能按钮信息等相关信息,按 F1 键可以获得更多帮助信息。

3.实验操作方法(1)主窗口介绍成功进入实验场景窗体,实验场景的主窗体如下图所示:长度与密度测量实验主场景视图(2)测量铁丝的直径鼠标左键双击打开螺旋测微器大视图,点击开始测量按钮,对铁丝直径进行测量;(3)测量空心圆柱体的外径、内径、高度。

鼠标左键双击打开游标卡尺大视图,点击开始测量按钮,分别对空心圆柱体的外径进行测量:内径进行测量:高度进行测量:(4)测量金属丝直径鼠标左键双击打开读数显微镜大视图,点击放置金属丝按钮,将金属丝放置显微镜镜筒下方;鼠标左键点击金属丝模块中的左右和旋转箭头,将金属丝移动到目镜视野之中;鼠标点击反射镜旋钮调节目镜最明亮,点击物镜调焦旋钮改变镜筒高度直至物体最清晰;鼠标点击打开目镜镜筒紧固螺丝,点击目镜镜筒调节目镜中叉丝的角度水平竖直,点击目镜调焦旋钮至叉丝清晰可见;鼠标左键点击改变金属丝的角度至与叉丝一边相切;朝着一个方向一定显微镜镜筒的位置,直到叉丝与物体相切,记下第一个切点的位置;相同方向移动至另一个相切的位置,记下位置读数;六、思考题1.螺旋测微器与游标卡尺的精度分别是多少?2.何时需要使用到螺旋测微器,何时需要使用到游标卡尺?3.用读数显微镜测量物体宽度时,若物体未与显微镜镜筒移动的方向相垂直,会对测得的数值造成何种影响?七、参考资料1. 何志巍,朱世秋,徐艳月. 大学物理实验教学. 北京: 机械工业出版社. 2017.。

相关文档
最新文档