2018北师大版高中数学必修三学案:第一章 章末复习课

合集下载

2018版高中数学北师大版必修三学案:第一章 3 统计图

2018版高中数学北师大版必修三学案:第一章 3 统计图

学习目标 1.理解统计图表的作用与意义.2.掌握茎叶图的概念与应用.3.通过实例体会条形统计图、折线统计图、扇形统计图和茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.知识点一统计图表的作用与意义思考通过抽样获得的原始数据有什么缺点?梳理数据分析的基本方法:(1)借助于图形分析数据的一种基本方法是用图将它们画出来,此方法可以达到两个目的,一是从数据中________信息,二是利用图形________信息.(2)借助于表格分析数据的另一种方法是用紧凑的________改变数据的排列方式,此方法是通过改变数据的________,为我们提供解释数据的新方式.知识点二常见统计图的特征类型一条形图的制作及读图例1某人统计了一本书中的100个句子的字数,得出下列结果:1~5个字的15句,6~10个字的27句,11~15个字的32句,16~20个字的15句,21~25个字的8句,26~30个字的3句.(1)试作出条形统计图;(2)统计出1~15个字及16~30个字的句子个数所占百分比,作出条形统计图;(3)统计出1~10个字,11~20个字,21~30个字的句子个数所占百分比,作出条形统计图.反思与感悟条形图的制作一般可分为以下几步:(1)根据统计资料整理数据,一般整理成表格形式;(2)画出横轴、纵轴,确定它们表示的项目;(3)画直条,条形的高与数据的大小成比例.跟踪训练1有100名学生,每人只能参加一个运动队,其中参加足球队的有30人,参加篮球队的有27人,参加排球队的有23人,参加乒乓球队的有20人.(1)列出学生参加运动队的频率分布表;(2)画出频率分布条形图.类型二折线统计图与扇形统计图例2某市是我国西部的一个多民族城市,总人口数为370万(2000年普查统计).如图1和图2所示的是2000年该市各民族人口的统计图,请你根据统计图提供的信息回答下列问题.(1)2000年该市少数民族的总人口数是多少?(2)2000年该市总人口中的苗族所占的百分比是多少?(3)若2000年该市参加中考的学生有40 000人,则参加中考的少数民族的学生人数约为多少?反思与感悟用统计图来表示百分比时,我们可以用条形统计图、折线统计图和扇形统计图,但最适宜用扇形统计图来表示.在解题过程中要看清楚题目的要求,根据不同的要求选择不同的统计图.统计图的功能就是将数据信息通过图表的形式恰当地表示出来.跟踪训练2如图是某保险公司提供的资料,在1万元以上的保险单中,有821少于2.5万元,那么不少于2.5万元的保险单有________万元.类型三茎叶图例3某赛季甲、乙两名篮球运动员每场比赛的得分情况如下:甲的得分12,15,24,25,31,31,36,36,37,39,44,49,50;乙的得分8,13,14,16,23,26,28,33,38,39,51.(1)画出甲、乙两名运动员得分数据的茎叶图;(2)根据茎叶图分析甲、乙两名运动员的水平.反思与感悟当数据较少时,用茎叶图分析问题的突出优点是(1)保留原始信息;(2)随时记录.用茎叶图分析数据可以运用数据分布的对称情况、集中分散情况来分析总体情况.跟踪训练3在某电脑杂志的一篇文章中,每个句子所含的字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17;在某报纸的一篇文章中,每个句子所含的字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22.(1)将这两组数据用茎叶图表示;(2)将这两组数据进行比较分析,得到什么结论?1.当收集到的数据量很大或有多组数据时,用哪种统计图表示较合适()A.茎叶图B.条形统计图C.折线统计图D.扇形统计图2.如图所示是从一批产品中抽样得到的数据的条形统计图,由图可看出数据出现机会最大的范围是()A.(8.1,8.3) B.(8.2,8.4)C.(8.4,8.5) D.(8.6,8.7)3.如图所示是某校高一年级学生到校方式的条形统计图,根据图形可得出骑自行车人数占高一年级学生总人数的()A.20% B.30%C.50% D.60%4.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:从折线图上两人射击命中环数的走势看,最有潜力的是________.1.条形统计图及折线统计图特别适用于数据量很大的情况,但却损失了数据的部分信息.扇形统计图适合表示总体的各个部分所占比例的问题,但不适用于总体分成部分较多的问题.2.茎叶图表示数据有两个突出优点:(1)统计图上没有原始信息的损失.(2)茎叶图可以随时记录,方便表示与比较.缺点:当数据量很大或有多组数据时,茎叶图就不那么直观、清晰了.答案精析问题导学知识点一思考因为通过抽样获得的原始数据多而且杂乱,无法直接从中理解它们的含义,并提取信息,也不便于我们用它来传递信息.梳理(1)提取传递(2)表格构成形式知识点二直观准确具体数目折线统计图扇形统计图原始数据题型探究例1(1)条形统计图如图(1)所示.(2)1~15个字的句子个数为1~5个字,6~10个字,11~15个字的句子个数之和:15+27+32=74,所占百分比为74%;16~30个字的句子个数为16~20个字,21~25个字,26~30个字的句子个数之和:15+8+3=26,所占百分比为26%.条形统计图如图(2)所示.(3)1~10个字的句子个数为15+27=42,所占百分比为42%;11~20个字的句子个数为32+15=47,所占百分比为47%;21~30个字的句子个数为8+3=11,所占百分比为11%.条形统计图如图(3)所示.跟踪训练1解(1)参加足球队记为1,参加篮球队记为2,参加排球队记为3,参加乒乓球队记为4,得频率分布表如下:(2)由上表可知频率分布条形图如图.例2 解 (1)15%×370=55.5(万人),即2000年该市少数民族的总人口数是55.5万人. (2)40%×15%=6%,∴2000年该市总人口中的苗族所占的百分比是6%. (3)40 000×15%=6 000(人),即2000年该市参加中考的少数民族的学生约有6 000人. 跟踪训练2 91解析 不少于1万元的占700万元的21%,为700×21%=147万元.1万元以上的保险单中,超过或等于2.5万元的保险单占1321,金额为1321×147=91万元,故不少于2.5万元的保险单有91万元.例3 解 (1)作出茎叶图如图.(2)由上面的茎叶图可以看出,甲运动员的得分情况是大致对称的;乙运动员的得分情况除一个特殊得分外,也大致对称.因此甲运动员的发挥比较稳定,总体得分情况比乙运动员好. 跟踪训练3 解 (1)茎叶图如图所示:(2)电脑杂志上每个句子的字数集中在10~30之间,报纸上每个句子的字数集中在20~40之间,说明电脑杂志上每个句子的平均字数要比报纸上每个句子的平均字数少.说明电脑杂志作为科普读物需要通俗易懂、简明.当堂训练1.B 2.B 3.B 4.乙。

2018版高中数学北师大版必修一学案:第三章 章末复习

2018版高中数学北师大版必修一学案:第三章 章末复习

学习目标 1.构建知识网络;2.进一步熟练指数、对数运算,加深对公式成立条件的记忆;3.以函数观点综合理解指数函数、对数函数、幂函数.1.指数幂、对数式的运算、求值、化简、证明等问题主要依据指数幂、对数的运算性质,在进行指数、对数的运算时还要注意相互间的转化.2.指数函数和对数函数的性质及图像特点是这部分知识的重点,而底数a的不同取值对函数的图像及性质的影响则是重中之重,要熟知a在(0,1)和(1,+∞)两个区间取值时函数的单调性及图像特点.3.应用指数函数y=a x和对数函数y=log a x的图像和性质时,若底数含有字母,要特别注意对底数a>1和0<a<1两种情况的讨论.4.幂函数与指数函数的主要区别:幂函数的底数为变量,指数函数的指数为变量.因此,当遇到一个有关幂的形式的问题时,就要看变量所在的位置从而决定是用幂函数知识解决,还是用指数函数知识去解决.5.比较几个数的大小是幂函数、指数函数、对数函数性质应用的常见题型,在具体比较时,可以首先将它们与零比较,分出正数、负数;再将正数与1比,分出大于1还是小于1;然后在各类中两两相比较.6.求含有指数函数和对数函数复合函数的最值或单调区间时,首先要考虑指数函数、对数函数的定义域,再由复合函数的单调性来确定其单调区间,要注意单调区间是函数定义域的子集.其次要结合函数的图像,观察确定其最值或单调区间.7.函数图像是高考考查的重点内容,在历年高考中都有涉及.考查形式有知式选图、知图造式、图像变换以及用图像解题.函数图像形象地显示了函数的性质,利用数形结合有时起到事半功倍的效果.类型一 指数、对数的运算例1 化简:(1)2932-⨯(2)2log 32-log 3329+log 38-25log 53.反思与感悟 指数、对数的运算应遵循的原则指数式的运算首先注意化简顺序,一般负指数先转化成正指数,根式化为分数指数幂运算,其次若出现分式则要注意分子、分母因式分解以达到约分的目的.对数运算首先注意公式应用过程中范围的变化,前后要等价,熟练地运用对数的三个运算性质并结合对数恒等式,换底公式是对数计算、化简、证明常用的技巧.跟踪训练1 计算80.25×42+(32×3)6+log 32×log 2(log 327)的值为________.类型二数的大小比较例2比较下列各组数的大小.(1)27,82;(2)log20.4,log30.4,log40.4;(3)1321211 2,log,log.33反思与感悟数的大小比较常用方法:(1)比较两数(式)或几个数(式)的大小问题是本章的一个重要题型,主要考查指数函数、对数函数、幂函数图像与性质的应用及差值比较法与商值比较法的应用.常用的方法有单调性法、图像法、中间搭桥法、作差法、作商法.(2)当需要比较大小的两个实数均是指数幂或对数式时,可将其看成某个指数函数、对数函数或幂函数的函数值,然后利用该函数的单调性比较.(3)比较多个数的大小时,先利用“0”和“1”作为分界点,即把它们分为“小于0”,“大于等于0小于等于1”,“大于1”三部分,再在各部分内利用函数的性质比较大小.跟踪训练2比较下列各组数的大小.(1)log0.22,log0.049;(2)a1.2,a1.3;(3)30.4,0.43,log0.43.类型三指数函数、对数函数、幂函数的综合应用命题角度1函数的性质及应用例3已知函数f(x)=a·2x+b·3x,其中常数a,b满足ab≠0.(1)若ab>0,判断函数f(x)的单调性;(2)若ab<0,求f(x+1)>f(x)时的x的取值范围.反思与感悟指数函数、对数函数、幂函数是使用频率非常高的基本初等函数,它们经过加、减、乘、除、复合、分段,构成我们以后研究的函数,使用时则通过换元、图像变换等手段化归为基本的指数函数、对数函数、幂函数来研究.跟踪训练3已知函数f(x)=log a(1-x)+log a(x+3)(0<a<1).(1)求函数f(x)的定义域;(2)若函数f(x)的最小值为-2,求a的值.命题角度2 函数的图像及应用例4 如图,函数f (x )的图像为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是( )A .{x |-1<x ≤0}B .{x |-1≤x ≤1}C .{x |-1<x ≤1}D .{x |-1<x ≤2}反思与感悟 指数函数、对数函数、幂函数图像既是直接考查的对象,又是数形结合求交点,最值,解不等式的工具,所以要能熟练画出这三类函数图像,并会进行平移、伸缩,对称、翻折等变换.跟踪训练4 若函数y =log a x (a >0,且a ≠1)的图像如图所示,则下列函数图像正确的是( )1.化简2lg (lg a 100)2+lg (lg a )为( )A .1B .2C .3D .02.在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图像可能是( )3.函数f (x )=⎝⎛⎭⎫12x与函数g (x )=log 12|x |在区间(-∞,0)上的单调性为( )A .都是增函数B .都是减函数C .f (x )是增函数,g (x )是减函数D .f (x )是减函数,g (x )是增函数4.已知P =2-32,Q =⎝⎛⎭⎫253,R =⎝⎛⎭⎫123,则P ,Q ,R 的大小关系是( ) A .P <Q <R B .Q <R <P C .Q <P <RD .R <Q <P5.函数f (x )=2x |log 0.5x |-1与x 轴交点的个数为( ) A .1 B .2 C .3 D .41.函数是高中数学极为重要的内容,函数思想和函数方法贯穿整个高中数学的过程,对本章的考查是以基本函数形式出现的综合题和应用题,一直是常考不衰的热点问题.2.从考查角度看,指数函数、对数函数概念的考查以基本概念与基本计算为主;对图像的考查重在考查平移变换、对称变换以及利用数形结合的思想方法解决数学问题的能力;对幂函数的考查将会从概念、图像、性质等方面来考查.答案精析题型探究例1 解 原式=2239533222(2)(10)10-⨯÷=2-1×103×1052-=2-1×1012=102. (2)原式=log 34-log 3329+log 38-552log 3=log 3⎝⎛⎭⎫4×932×8-55log 9 =log 39-9=2-9=-7. 跟踪训练1 111解析 ∵log 32×log 2(log 327) =log 32×log 23=lg 2lg 3×lg 3lg 2=1,∴原式=314422⨯+22×33+1=21+4×27+1=111. 例2 解 (1)∵82=(23)2=26,由指数函数y =2x 在R 上递增知26<27,即82<27. (2)∵对数函数y =log 0.4x 在(0,+∞)上是减函数, ∴log 0.44<log 0.43<log 0.42<log 0.41=0. 又幂函数y =x -1在(-∞,0)上是减函数,∴1log 0.42<1log 0.43<1log 0.44, 即log 20.4<log 30.4<log 40.4. (3)∵0<132-<20=1,log 213<log 21=0,112211log log 1,32>= 1321211log 2log .33-∴<<跟踪训练2 解 (1)∵log 0.049=lg 9lg 0.04=lg 32lg 0.22=2lg 32lg 0.2=lg 3lg 0.2=log 0.23. 又∵y =log 0.2x 在(0,+∞)上递减, ∴log 0.22>log 0.23,即log 0.22>log 0.049.(2)∵函数y =a x (a >0,且a ≠1), 当底数a >1时在R 上是增函数; 当底数0<a <1时在R 上是减函数, 而1.2<1.3,故当a >1时,有a 1.2<a 1.3; 当0<a <1时,有a 1.2>a 1.3. (3)30.4>30=1, 0<0.43<0.40=1, log 0.43<log 0.41=0, ∴log 0.43<0.43<30.4.例3 解 (1)当a >0,b >0时,因为a ·2x ,b ·3x 在R 上都是增函数,所以函数f (x )在R 上是增函数;当a <0,b <0时,因为a ·2x ,b ·3x 在R 上都是减函数, 所以函数f (x )在R 上是减函数. (2)f (x +1)-f (x )=a ·2x +2b ·3x >0. ①当a <0,b >0时,⎝⎛⎭⎫32x >-a 2b , 解得x >log 32⎝⎛⎭⎫-a2b ; ②当a >0,b <0时,⎝⎛⎭⎫32x <-a2b , 解得x <log 32⎝⎛⎭⎫-a2b . 跟踪训练3 解 (1)要使函数有意义,则有⎩⎪⎨⎪⎧1-x >0,x +3>0,解得-3<x <1,∴定义域为(-3,1). (2)函数可化为f (x )=log a [(1-x )(x +3)] =log a (-x 2-2x +3) =log a [-(x +1)2+4].∵-3<x <1,∴0<-(x +1)2+4≤4. ∵0<a <1,∴log a [-(x +1)2+4]≥log a 4. 由log a 4=-2,得a -2=4,∴a =124-=12. 例4 C [借助函数的图像求解该不等式.令g (x )=y =log 2(x +1),作出函数g (x )的图像如图.由⎩⎪⎨⎪⎧ x +y =2,y =log 2(x +1), 得⎩⎪⎨⎪⎧x =1,y =1. ∴结合图像知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}.]跟踪训练4 B [由题意得y =log a x (a >0,且a ≠1)的图像过(3,1)点,可解得a =3.选项A 中,y =3-x =(13)x ,显然图像错误;选项B 中,y =x 3,由幂函数图像可知正确;选项C 中,y =(-x )3=-x 3,显然与所画图像不符;选项D 中,y =log 3(-x )的图像与y =log 3x 的图像关于y 轴对称.显然不符.故选B.] 当堂训练1.B 2.D 3.D 4.B 5.B。

18版高中数学第一章统计7相关性学案北师大版必修3

18版高中数学第一章统计7相关性学案北师大版必修3

7 相关性[学习目标] 1.掌握相关关系的判断.2.会作散点图.3.体会化归思想的应用.知识点一变量间的相关关系1.变量之间常见的关系2.1.散点图在考虑两个量的关系时,为了对变量之间的关系有一个大致的了解,人们通常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图.2.曲线拟合从散点图上可以看出,如果变量之间存在着某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这样近似的过程称为曲线拟合.3.相关关系的分类(1)线性相关:若两个变量x和y的散点图中,所有点看上去都在一条直线附近波动,则称变量间是线性相关的.(2)非线性相关:若所有点看上去都在某条曲线(不是一条直线)附近波动,则称此相关为非线性相关的.此时,可以用一条曲线来拟合.4.不相关如果所有的点在散点图中没有显示任何关系,则称变量间是不相关的.思考任意两个统计数据是否均可以作出散点图?答可以,不管这两个统计量是否具备相关性,以一个变量值作为横坐标,另一个作为纵坐标,均可画出它的散点图.题型一变量间相关关系的判断例1 在下列两个变量的关系中,哪些是相关关系?①正方形边长与面积之间的关系;②作文水平与课外阅读量之间的关系;③农作物产量与施肥量之间的关系;④降雪量与交通事故的发生率之间的关系.解两变量之间的关系有两种:函数关系与带有随机性的相关关系.①正方形的边长与面积之间的关系是函数关系.②作文水平与课外阅读量之间的关系不是严格的函数关系,但是具有相关性,因而是相关关系.③一块农田的农作物产量与施肥量之间的关系是一种不确定的相关关系.④降雪量与交通事故的发生率之间具有相关关系.综上,②③④中的两个变量具有相关关系.反思与感悟函数关系是一种确定的关系,而相关关系是非随机变量与随机变量的关系.函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.跟踪训练1 下列两个变量间的关系不是函数关系的是( )A.正方体的棱长与体积B.角的度数与它的正弦值C.单产为常数时,土地面积与粮食总产量D.日照时间与水稻的单位产量答案 D解析函数关系与相关关系都是指两个变量之间的关系,但是这两种关系是不同的,函数关系是指当自变量一定时,函数值是确定的,是一种确定性的关系.因为A项V=a3,B项y=sinα,C项y=ax(a>0,且a为常数),所以这三项均是函数关系.D项是相关关系.题型二散点图例2 5名学生的数学和物理成绩(单位:分)如下:解以x轴表示数学成绩,y轴表示物理成绩,得相应的散点图如图所示.由散点图可知,各点分布在一条直线附近,故两者之间具有线性相关关系.反思与感悟 1.判断两个变量x和y间是否具有线性相关关系,常用的简便方法就是绘制散点图,如果图上发现点的分布从整体上看大致在一条直线附近,那么这两个变量就是线性相关的,注意不要受个别点的位置的影响.2.画散点图时应注意合理选择单位长度,避免图形过大或偏小,或者是点的坐标在坐标系中画不准,使图形失真,导致得出错误结论.跟踪训练2 (1)如图是两个变量统计数据的散点图,判断两个变量之间是否具有相关关系?(2)某男孩的年龄与身高的统计数据如下.解(1)不具有相关关系,因为散点图散乱地分布在坐标平面内.(2)散点图如图:由图可见,具有线性相关关系.题型三散点图的应用例3 下面是水稻产量与施化肥量的一组观测数据:(1)(2)你能从散点图中发现施化肥量与水稻产量近似成什么关系吗?水稻产量会一直随施化肥量的增加而增加吗?解(1)散点图如下:(2)从图中可以发现施化肥量与水稻产量具有线性相关关系,当施化肥量由小到大变化时,水稻产量也由小变大,图中的数据点大致分布在一条直线的附近,因此施化肥量和水稻产量近似成线性相关关系,但水稻产量只是在一定范围内随着化肥施用量的增加而增加,不会一直随施化肥量的增加而增加.反思与感悟利用散点图判断不同变量的相关性时,其关键是正确画出散点图,然后观察分布规律:是在一条直线附近波动还是在一条曲线附近波动,还是没有任何规律,从而得出线性相关、非线性相关或不相关的结论.跟踪训练3 对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图1;对变量u,v 有观测数据(u i,v i)(i=1,2,…,10),得散点图2.由这两个散点图可以判断( )A.变量x与y,u与v都有线性相关关系B.变量x与y,u与v都没有线性相关关系C.变量x与y有线性相关关系,u与v没有线性相关关系D.变量x与y没有线性相关关系,u与v有线性相关关系答案 A数形结合思想例4 以下是在某地搜集到的不同楼盘房屋的销售价格y(单位:万元)和房屋面积x(单位:m2)的数据:关还是负相关?分析作出散点图,利用散点图进行判断.解数据对应的散点图如图所示.通过以上数据对应的散点图可以判断,房屋的销售价格和房屋面积之间具有线性相关关系,且是正相关.解后反思判断两个变量x和y是否具有线性相关关系,常用的简便方法就是绘制散点图.如果发现点的分布从整体上看大致在一条直线附近,那么这两个变量就具有线性相关关系.注意不要受个别点的位置的影响.1.下列所给出的两个变量之间存在相关关系的为( )A.学生的座号与数学成绩B.学生的学号与身高C.曲线上的点与该点的坐标之间的关系D.学生的身高与体重答案 D解析A与B中的两个变量之间没有任何关系;C中的两个变量之间具有函数关系.2.下列各图中所示两个变量具有相关关系的是( )A.①②B.①③C.②④D.②③答案 D解析具有相关关系的两个变量的数据所对应的图形是散点图,②③能反映两个变量的变化规律,它们之间是相关关系.3.下面是四个散点图中的点的分布状态,直观上判断两个变量之间具有线性相关关系的是( )答案 C解析散点图A中的点无规律的分布,范围很广,表明两个变量之间的相关程度很小;B中所有的点都在同一条直线上,是函数关系;C中点的分布在一条带状区域上,即点分布在一条直线的附近,是线性相关关系;D中的点也分布在一条带状区域内,但不是线性的,而是一条曲线附近,所以不是线性相关关系,故选C.4.下列变量之间的关系是函数关系的是( )A.已知二次函数y=ax2+bx+c,其中a、c是已知常数,取b为自变量,因变量是这个函数的判别式Δ=b2-4acB.果树剪枝和果树产量C.闯红灯和交通事故发生率D.每亩施用肥料量和粮食的亩产量答案 A5.命题:①路程与时间、速度的关系是相关关系;②同一物体的加速度与作用力是函数关系;③产品的成本与产量之间的关系是函数关系;④圆的周长与面积的关系是相关关系;⑤广告费用与销售量之间的关系是相关关系.其中正确的命题序号是________.答案②⑤两个变量间的关系有两种:一种是函数关系,另一种是相关关系.另外要会画散点图,并会根据散点图判断两个变量间是何种关系.。

北师大版2017-2018学年高中数学必修3全册教学案含解析

北师大版2017-2018学年高中数学必修3全册教学案含解析

北师大版2017-2018学年高中数学必修3全册教学案目录第一章§1 从普查到抽样第一章§2 2.1简单随机抽样第一章§2 2.2分层抽样与系统抽样第一章§3 统计图表第一章§4 4.1 - 4.2平均数、中位数、众数、极差、方差标准差第一章§5 5.1 - 5.2估计总体的分布估计总体的数字特征第一章§7 相关性第一章§8 最小二乘估计复习课(一)统计第二章§1 算法的基本思想第二章§2 2.2变量与赋值第二章§2 2.3循环结构第二章§3 3.1条件语句第二章§3 3.2循环语句复习课(二)算法初步第三章§1 1.1 1.2频率与概率生活中的概率第三章§2 2.1古典概型的特征和概率计算公式第三章§2 2.2建立概率模型第三章§2 2.3互斥事件第三章§3 模拟方法——概率的应用复习课(三)概率从普查到抽样预习课本P3~6,思考并完成以下问题(1)普查的含义是什么?有什么特点?(2)抽样调查的含义是什么?有什么特点?(3)在统计学中,什么是总体和个体?(4)什么是样本和样本容量?[新知初探]1.普查(1)定义:普查是指一个国家或一个地区专门组织的一次性大规模的全面调查,目的是为了详细地了解某项重要的国情、国力.(2)特点:①所取得的资料更加全面、系统;②主要调查在特定时段的社会经济现象总体的数量.2.抽样调查(1)定义:通常情况下,从调查对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此对调查对象的某项指标作出推断,这就是抽样调查.其中,调查对象的全体称为总体,被抽取的一部分称为样本.(2)特点:①迅速、及时;②节约人力、物力和财力.[点睛]当调查的对象量很大,或调查过程具有破坏性时,采取普查就行不通,此时应采用抽样调查的方式.[小试身手]1.判断正误.(正确的打“√”,错误的打“×”)(1)高考考生的身体检查,是抽样调查.()(2)某养鱼专业户要了解鱼塘中鱼的平均质量,是抽样调查.()(3)商检人员在某超市检查出售的饮料的合格率,是普查.()(4)某班拟组织一次春游活动,为了确定春游的地点,向全班同学进行调查,是普查.()答案:(1)×(2)√(3)×(4)√2.下面问题可以用普查的方式进行调查的是()A.检验一批钢材的抗拉强度B.检验海水中微生物的含量C.检验10件产品的质量D.检验一批汽车的使用寿命解析:选C A不能用普查的方式调查,因为这种试验具有破坏性;B用普查的方式无法完成;C可以用普查的方式进行调查;D该试验具有破坏性,且需要耗费大量的时间,在实际生产中无法应用.3.从一批零件中抽取10个,测得它们的长度(单位:cm)如下:22.3622.3522.3322.3522.3722.3422.3822.3622.3222.35由此估计这批零件的平均长度.在此统计活动中:(1)总体为:______________________;(2)个体为:______________________;(3)样本为:______________________;(4)样本容量为:______________________.答案:(1)这批零件的长度(2)每个零件的长度(3)抽取的10个零件的长度(4)10[典例]100名运动员进行调查,下面说法正确的是()A.1 000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本容量是100[解析]根据调查目的可知,总体是这1 000名运动员的年龄,个体是每个运动员的年龄,样本是抽取的100名运动员的年龄,样本容量为100.故答案为D.[答案] D此类题目要正确理解总体与个体的概念,要弄明白概念的实质,并注意样本与样本容量的不同,其中样本容量为数目,无单位.[活学活用]为了了解全年级240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是()A.总体是240B.个体是每一个学生C.样本容量是40名学生D.样本容量是40解析:选D本题调查的对象是“学生的身高”这一项指标,故A、B不正确.而样本容量是数量,故C不正确.由此可见,研究此类问题首先要弄清楚所要调查的对象是什么.普查及其应用[典例]听力设备的质量,是全部检查还是抽取部分检查?谈谈你的想法和理由.[解]必须全部检查(采用普查).因为高考是一件非常严肃、责任重大的事件,高考是一场公平竞争,要求十分严格,所配设备必须全部合格,且这批设备数量较少,全部检查是可行的,这样可确保万无一失.判断是否采用普查获取有关信息的方法(1)分析调查对象的性质,判断是否必须了解每一个个体的相关信息;(2)确定总体个数,依此来判断采取普查是否可行.[活学活用]下列调查中,适合采用普查方式的是()A.调查某品牌电视机的市场占有率B.调查某品牌电视机的使用寿命C.调查七年级一班的男女同学的比例D.调查某型号炮弹的射程解析:选C A中的调查对象很多,B、D中的调查对象具有破坏性,都不能采用“普查”.而C选项中男女同学的比例是需要“普查”的.抽样调查及其应用[典例]某校高一男女生比例大约为1∶1.体育老师要调查高一全体学生的平均身高,采用什么方法既省力又合理,应注意什么问题?[解]最好是男女生按1∶1分类抽样调查.因为男女生在身高上有一定的差异,随意抽样调查有可能导致样本代表性不足.判断是否采用抽样调查获取有关信息的方法(1)分析调查目的,确定是需要每个个体情况还是总体情况.若只是关心总体的某项指标(如本例中的平均身高),一般采用抽样调查.(2)若采用普查,是否必要?是否具有破坏性?若不必要或有一定的破坏性,就采用抽样调查.[活学活用]下面的四个问题中,可以用抽样调查方法的是()A.检验10名参加计算机水平测试学生的成绩B.银行对公司10万元存款的现钞的真假检验C.跳伞运动员检查20个伞包及伞的质量D.检验一批汽车的防碰撞性能解析:选D根据抽样调查与普查的概念可知A、B、C一般采用普查的方法,只有D 是采用抽样调查的方法.抽样调查设计[典例]学者,谈他们对高考落榜的看法.这些名人所讲的都是大同小异,不外乎“我也有过落榜的沮丧,但从长远看,它有益于我的人生”,“我是因祸得福,落榜使我走了另一条成功之路”等等.小明据此得出一条结论,上大学不如高考落榜.他的结论正确吗?[解]小明的结论是错误的,在众多的高考落榜生中,走出另外一条成功之路的是少数,小明通过研究一些期刊杂志社报道过的一些成功人士就得出结论是片面的,因为他的抽样不具有代表性.根据调查问题的特点设计抽样调查的不同方案,应遵循以下原则:(1)要考虑如何合理地获取样本,以确保其典型性、代表性.即抽取的部分个体具有广泛的代表性,能很好地代表总体.(2)要考虑如何保证调查内容的真实性.[活学活用]为了缓解城市的交通拥堵情况,某城市准备出台限制私家车的政策,为此要进行民意调查,某个调查小组调查了一些拥有私家车的市民,你认为这样的调查结果会怎样?解:由于要出台限制私家车的政策,抽样调查的市民又是拥有私家车的市民,因此调查结果倾向于反对出台限制私家车的政策.如果要调查出社会公民对政策的真实意见,需要对市民的各个群体进行抽样调查,还包括对一些社会团体(比如公交公司、消防、医院等)的运营状况进行调查,这样才能比较真实地反映出社会的实际情况,获得市民的心声.[层级一学业水平达标]1.医生要检验人血液中血脂的含量,采取的调查方法应该是()A.普查B.抽样调查C.既不能普查也不能抽样调查D.普查与抽样调查都可以答案:B2.下列调查工作适合采用普查的是()A.环保部门对淮河水域的水污染情况的调查B.电视台对某电视节目收视率的调查C.质检部门对各厂家生产的电池使用寿命的调查D.企业在给职工做工作服前进行的尺寸大小的调查解析:选D A、B中的调查,从理论上来说采用普查是可行的,但是普查会费时费力;C中,质检部门对各厂家生产的电池使用寿命的调查不能采用普查,因为调查时的检验对电池具有破坏性;D中,企业在给职工做工作服前进行的尺寸大小的调查必须采用普查,否则工人的工作服会不合体.故选D.3.现从80件产品中随机抽出20件进行质量检验.下列说法正确的是()A.80件产品是总体B.20件产品是样本C.样本容量是80 D.样本容量是20解析:选D总体是80件产品的质量;样本是抽取的20件产品的质量;总体容量是80;样本容量是20.4.国家统计局、国家残联决定对国家残疾人生活、就业等情况进行调查,小明设计的调查方案是在国家残联的网站上设立一个调查表,根据网站上的数据进行分析.你认为小明的方案________(填“合理”或“不合理”).解析:很多残疾人不具有上网条件,因此获取的数据不具有代表性.答案:不合理[层级二应试能力达标]1.若对某校1 200名学生的耐力做调查,抽取其中120名学生,测试他们1 500米跑的成绩,得出相应的数值,在这项调查中,样本是指()A.120名学生B.1 200名学生C.120名学生的成绩D.1 200名学生的成绩解析:选C本题抽取的是120名学生的成绩,因此每个学生的成绩是个体,这120名学生的成绩构成一个样本.2.在古代,我国的科学技术发展水平是否居于世界领先位置呢?为了说明这一问题应该()A.列举我国的文化遗产B.列举我国古代的著名科学家C.列举外国人对我国科技成就的赞扬D.列举全世界古代所有重大科技成果,统计其中有百分之多少是中国人创造的答案:D3.为了了解高一年级学生的视力情况,特别是近视率问题,抽测了其中100名同学的视力情况.在这个过程中,100名同学的视力情况(数据)是()A.总体B.个体C.总体的一个样本D.样本容量解析:选C100名同学的视力情况(数据)是从总体中抽取的一部分个体所组成的集合,所以是总体的一个样本.4.下列调查方案中,抽样方法合适、样本具有代表性的是()A.用一本书第1页的字数估计全书的字数B.为调查某校学生对航天科技知识的了解程度,上学期间,在该校门口,每隔2分钟随机调查一位学生C.在省内选取一所城市中学,一所农村中学,向每个学生发一张卡片,上面印有秦始皇、毛泽东、周恩来、保尔、比尔·盖茨、邓亚萍、刘德华等一些名人的名字,要求每个学生只能在一个名字下面画“√”,以了解全省中学生最崇拜的人物是谁D.为了调查我国小学生的健康状况,共抽取了100名小学生进行调查解析:选B A中样本缺少代表性(第1页的字数一般较少);B中抽样保证了随机性原则,样本具有代表性;对于C,城市中学与农村中学的规模往往不同,学生崇拜的人物也未必在所列的名单之中,这些都会影响数据的代表性;D中总体数量很大,而样本容量太少,不足以体现总体特征.5.给出以下调查:①了解一批汽车驾校训练班学员的训练成绩是否达标;②了解一批炮弹的杀伤力;③某饮料厂对一批产品质量进行检查;④调查对2014年南京青奥会的满意度;⑤检验飞天设备中各零件产品的质量.其中适宜用抽样调查的是________(将正确答案的序号全填上).解析:若调查的目的必须通过普查才能实现,一般用普查,但若存在一定的破坏性则用抽样调查,关键还是看实际需要.驾校训练的司机直接影响驾驶安全,必须普查;炮弹的杀伤力调查具有破坏性,只能采用抽样调查;饮料质量的调查也具有破坏性,应该采用抽样调查;青奥会满意度调查比较复杂,普查成本高,也没必要,适宜用抽样调查;飞天设备不能有一点疏忽,每一个零件的质量都需要检查.答案:②③④6.普查是一项非常艰巨的工作,当总体中的对象很少时,往往采用的调查方式是________;当总体中的对象很多时,普查工作量就很大,这时通常采用的调查方式是________.但是如果调查具有破坏性,那么无论总体数目的多少,只能采用的调查方式是________.答案:普查抽样调查抽样调查7.为制定本市初中七、八、九年级学生校服的生产计划,有关部门准备对180名初中男生的身高做调查,现有三种调查方案:①测量少年体校中180名男子篮球、排球队员的身高;②查阅有关外地180名男生身高的统计资料;③在本市的市区和郊县各任选一所完全中学、两所初级中学,在这六所学校有关的年级(1)班中,用抽签的方法分别选出10名男生,然后测量他身高.为了达到估计本市初中这三个年级男生身高分布的目的,则上述调查方案比较合理的是________.解析:①中,少年体校的男子篮球、排球的运动员的身高一定高于一般的情况,因此无法用测量的结果去估计总体的结果;②中,用外地学生的身高也不能准确地反映本地学生身高的实际情况;而③中的调查方案比较合理,能达到估计本市初中这三个年级男生身高分布的目的.答案:③8.要调查中央电视台《新闻联播》的收视情况,某同学到某一大型商场调查了所有的顾客和售货员的收视情况,得出数据并进行分析,你认为他的调查结果可靠吗?为什么?解:因为某一商场的顾客和售货员的收视情况不具有代表性,不能反映该时间内工人、农民、学生等人员的收视情况,故调查结果不可靠.9.某年春季,某著名的全国性连锁服装店进行了一项关于当年秋季服装流行色的民意调查,调查者通过向顾客发放饮料,并让顾客通过挑选饮料瓶的颜色来对自己喜欢的服装颜色“投票”.这次调查结果显示,某大城市服装颜色的众数(大多数人的选择)为红色,而当年全国服装协会发布的秋季服装流行色是咖啡色.这个结果是否意味着该城市的人比其他城市的人较少倾向于选择咖啡色?你认为这两种调查结果的差异是由什么引起的?解:这个结果意味着该城市光顾这家连锁店的人比其他城市的人较少倾向于选择咖啡色,由于光顾这家连锁店的人是一种比较容易得到的样本(方便样本),不一定能代表该城市其他人的想法.而该城市的调查结果来自于该城市光顾这家连锁店的人,这个样本也不能很好地代表全国民众的观点,从而带来了调查结果的差异.抽样方法2.1简单随机抽样预习课本P8~11,思考并完成以下问题(1)什么样的抽样是简单随机抽样?(2)简单随机抽样有什么特点?(3)简单随机抽样的常用方法有哪些?(4)抽签法和随机数表法的概念是什么?它们的实施步骤是什么?各有什么优缺点?[新知初探]1.简单随机抽样(1)定义:根据实际需要有时需从总体中随机地抽取一些对象,然后对抽取的对象进行调查.在抽取的过程中,要保证每个个体被抽到的概率相同.这样的抽样方法叫作简单随机抽样.(2)特点:①总体个数有限:简单随机抽样要求被抽取样本的总体个数有限,这样便于通过样本对总体进行分析.②逐个抽取:简单随机抽样是从总体中逐个进行抽取,这样便于实际操作.③无放回抽样:简单随机抽样是一种无放回抽样,这样便于样本的获取和一些相关的计算.④等可能抽样:不仅每次从总体中抽取一个个体时各个个体被抽取的可能性相等,而且在整个抽样过程当中,各个个体被抽取的可能性相等,从而保证了这种抽样方法的公平性.2.抽签法(1)定义:抽签法就是先把总体中的N个个体编号,并把编号写在形状、大小相同的签上,然后将这些号签放在同一个箱子里均匀搅拌.每次随机地从中抽取一个,然后将号签均匀搅拌,再进行下一次抽取.如此下去,直至抽到预先设定的样本数.(2)优缺点:①优点:简单易行,当总体个数不多时,号签搅拌均匀很容易,个体有均等的机会被抽取,从而能保证样本的代表性.②缺点:当总体个数较多时,费时、费力,且号签很难被搅拌均匀,产生的样本代表性差,导致抽样的不公平.3.随机数法(1)定义:把总体中的N个个体依次编上0,1,…,N-1的号码,然后利用工具(转盘或摸球、随机数表、科学计算器或计算机)产生0,1,…,N-1中的随机数,产生的随机数是几,就选几号个体,直至抽到预先规定的样本数.(2)优缺点:优点:简单易行,它很好地解决了抽签法中遇到的当总体个数较多时制签难、号签很难被搅拌均匀的问题.缺点:总体个数很多,需要的样本容量较大时,不太方便.[点睛]当随机地选定开始读取的数字之后,读数的方向可以向右,也可以向左、向上、向下等.因为随机数表中每个位臵上各个数字出现的概率是相等的,因此不论采用什么方式读数,我们都能保证各个个体被抽到的概率相同.[小试身手]1.判断正误.(正确的打“√”,错误的打“×”)(1)从无数个个体中抽取20个个体作为样本,是简单随机抽样.()(2)从50台冰箱中一次性抽取5台冰箱进行质量检测,是简单随机抽样.()(3)某班有40名学生,指定个子最高的5名同学参加学校组织的篮球赛,是简单随机抽样.()(4)彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签,是简单随机抽样.()答案:(1)×(2)×(3)×(4)√2.在简单随机抽样中,某一个个体被抽中的可能性()A.与第几次抽样有关,第一次抽中的可能性要大些B.与第几次抽样无关,每次抽中的可能性都相等C.与第几次抽样有关,最后一次抽中的可能性要大些D.每个个体被抽中的可能性无法确定解析:选B在简单随机抽样中,每一个个体被抽中的可能性都相等,与第几次抽样无关.3.下列抽样中,用抽签法方便的是()A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验解析:选B根据抽签法的特点可知,B选项用抽签法比较方便.4.在容量为100的总体中用随机数表法抽取5个样本,总体编号为00,01,02, (99)给出下列几组号码:①00,01,02,03,04;②10,30,50,70,90;③49,19,46,04,67;④11,22,33,44,55则可能成为所得样本编号的是________(将所有正确结论的序号全填上).解析:随机数表法是一种简单随机抽样方法,因此每一个个体都有可能被抽到,且被抽到的可能性相同,因此所列几组都可能成为所得样本的编号.故填①②③④.答案:①②③④简单随机抽样的概念[典例](1)从无数个个体中抽取50个个体作为样本;(2)仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;(3)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区开展救灾工作.[解](1)不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.(2)不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.(3)不是简单随机抽样.因为这50名官兵是从中挑选出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.要判断所给的抽样方法是否是简单随机抽样,关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的四个特点.[活学活用]下面的抽样方法是简单随机抽样吗?为什么?①某工厂的质检员从一袋30个螺母中一次性取出5个进行质量检测;②某商品的市场调查员为了了解该商品在某日某超市的销售情况,在超市出口处随机向10个顾客询问是否购买了该商品;③某班级有4个小组,每组共有12个同学.班主任指定每组坐在第一张桌子的8位同学为班干部;④中国福利彩票30选7,得到7个彩票中奖号码.解:简单随机抽样要求:被抽取的样本的总体个数确定且较少,抽取样本时要求逐个抽取,每个个体被抽取的可能性一样.所以①不是,因为是一次性抽取不是逐个抽取;②不是,被抽取的样本的总体个数不确定;③不是,班主任的指定不能保证班级里的每一个学生被抽取的可能性一样;④是,它属于简单随机抽样中的随机数法.抽签法的应用[典例]某班有50抽取该样本的过程.[解]利用抽签法步骤如下:第一步:将这50名学生编号,编号为01,02,03, (50)第二步:将50个号码分别写在纸条上,并揉成团,制成号签.第三步:将得到的号签放在一个不透明的容器中,搅拌均匀.第四步:从容器中逐一抽取6个号签,并记录上面的号码.对应上面6个号码的学生就是参加该项活动的学生.利用抽签法抽取样本时应注意以下问题:(1)编号时,如果已有编号(如学号、标号等)可不必重新编号.(例如该题中这50名同学,可以直接利用学号)(2)号签要求大小、形状完全相同.(3)号签要搅拌均匀.(4)要逐一、不放回抽取.[活学活用]上海某中学从40名学生中选1名学生作为上海男篮拉拉队成员,采用下面两种方法选取.方法一:将40名学生按1~40进行编号,相应制作1~40的40个号签,把这40个号签放在一个暗箱中搅拌均匀,最后随机地从中抽取1个号签,与这个号签号码一致的学生幸运入选;方法二:将39个白球与1个红球混合放在一个暗箱中搅匀,让40名学生逐一从中摸取1个球,摸到红球的学生成为拉拉队成员.试问这两种方法是否都是抽签法?为什么?解:抽签法抽样时给总体中的N个个体编号各不相同,由此可知方法一是抽签法,因为抽签法要求所有的号签编号互不相同,而方法二中39个白球无法相互区分,故方法二不是抽签法.这两种方法的相同之处在于每名学生被选中的机会都相等.随机数法[典例]设某校共有12名教师组成暑期西部讲师团,请写出利用随机数法抽取该样本的步骤.[解]其步骤如下:第一步,将100名教师进行编号:00,01,02, (99)第二步,在随机数表(见教材第9页表1-2)中任取一数作为开始,如从第12行第9列开始,依次向右读取两位的数,可以得到31,70,05,00,25,93,45,53,78,14,28,89.与这12个编号对应的教师组成样本.随机数法解题策略(1)选定初始数字读数方向,向左、向右、向上或向下都可以,方向不同可能导致不同结果,但这一点不影响样本的公平性.(2)读数时,编号为两位,两位读取,编号为三位,则三位读取,如果出现重号,则跳过,接着读取.(3)当题目所给的编号位数不一致时,不便于直接从随机数表中读取,这时需要对号码作适当的调整使新编号位数相同.[活学活用]假设我们要检验某公司生产的袋装牛奶的质量是否达标,需从800袋袋装牛奶中抽取50袋进行检验.利用随机数法抽取样本,写出抽样过程.解:第一步:将800袋袋装牛奶编号为000,001, (799)第二步:从随机数表(见教材第9页表1-2)中任意一个位臵,如从第1行的第8列,第9列和第10列开始选数,向右读,抽得第1个样本号码208,依次得到样本号码:026,314,070,243,…,其中超出000~799范围的数和前面已出现的数舍去,一直到选出50个样本号码为止;第三步:所选出的50个号码对应的50袋袋装牛奶即为所要抽取的样本.简单随机抽样的灵活应用[典例]道物理题中随机抽3道;从20道化学题中随机抽3道;从12道生物题中随机抽2道.选用合适的方法确定这个学生所要回答的三门学科的题的序号(物理题的编号为1~15,化学题的编号为16~35,生物题的编号为36~47).。

2018版高中数学北师大版必修三学案:第一章 统计 4-1 平均数、中位数、众数、极差、方差-4-2 标准差 精品

2018版高中数学北师大版必修三学案:第一章 统计 4-1 平均数、中位数、众数、极差、方差-4-2 标准差 精品

4.1 平均数、中位数、众数、极差、方差4.2 标准差[学习目标] 1.掌握各种基本数字特征的概念、意义以及它们各自的特点.2.要重视数据的计算,体会统计思想.知识点一 众数、中位数、平均数 1.众数、中位数、平均数定义(1)众数:一组数据中重复出现次数最多的数.(2)中位数:把一组数据按从小到大的顺序排列,处在中间位置(或中间两个数的平均数)的数称为这组数据的中位数.(3)平均数:如果n 个数x 1,x 2,…,x n ,那么x =1n (x 1+x 2+…+x n )称为这n 个数的平均数.2.三种数字特征与频率分布直方图的关系1.标准差(1)平均距离与标准差标准差是样本数据到平均数的一种平均距离,一般用s 表示.假设样本数据是x 1,x 2,…,x n ,x 表示这组数据的平均数.x i 到x 的距离是|x i -x |(i =1,2,…,n ),则用如下公式来计算标准差: s =1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. (2)计算标准差的步骤 ①求样本数据的平均数x ;②求每个样本数据与样本平均数的差x i -x (i =1,2,…,n ); ③求(x i -x )2(i =1,2,…,n );④求s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2];⑤求s =s 2,即为标准差. 2.方差标准差的平方s 2叫作方差.s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中,x i (i =1,2,…,n )是样本数据,n 是样本容量,x 是样本平均数.题型一 众数、中位数、平均数的简单运用 例1 某公司的33名职工的月工资(以元为单位)如下表:(1)(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又是多少?(精确到元)(3)你认为哪个统计量更能反映这个公司员工的工资水平?结合此问题谈一谈你的看法. 解 (1)平均数是:x =1 500+4 000+3 500+2 000×2+1 500+1 000×5+500×3+0×2033≈1 500+591=2 091(元),中位数是1 500元,众数是1 500元. (2)新的平均数是x ′=1 500+28 500+18 500+2 000×2+1 500+1 000×5+500×3+0×2033≈1 500+1 788=3 288(元),新的中位数是:1 500元,新的众数是1 500元.(3)在这个问题中,中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.反思与感悟 1.众数、中位数及平均数都是描述一组数据集中趋势的量,当一组数据中个别数据较大时,可用中位数描述其集中趋势,当一组数据中有不少数据重复出现时,其众数往往更能反映问题.2.在求平均数时,可采用新数据法,即当所给数据在某一常数a 的左右摆动时,用简化公式:x =x ′+a .跟踪训练1 在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如表所示:解 在17个数据中,1.75出现了4次,出现的次数最多,即这组数据的众数是1.75.上面表格里的17个数据可看成是按从小到大的顺序排列的,其中第9个数据1.70是最中间的一个数据,即这组数据的中位数是 1.70;这组数据的平均数是x =117(1.50×2+1.60×3+…+1.90×1)=28.7517≈1.69(m).答 17名运动员成绩的众数、中位数、平均数依次为1.75 m ,1.70 m,1.69 m. 题型二 平均数和方差的运用例2 甲、乙两机床同时加工直径为100 cm 的零件,为检验质量,各从中抽取6件测量,数据为甲:99 100 98 100 100 103 乙:99 100 102 99 100 100 (1)分别计算两组数据的平均数及方差;(2)根据计算结果判断哪台机床加工零件的质量更稳定. 解 (1)x 甲=16(99+100+98+100+100+103)=100,x 乙=16(99+100+102+99+100+100)=100.s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73,s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1. (2)两台机床所加工零件的直径的平均值相同,又s 2甲>s 2乙,所以乙机床加工零件的质量更稳定.反思与感悟 1.极差、方差与标准差的区别与联系: 数据的离散程度可以通过极差、方差或标准差来描述.(1)极差是数据的最大值与最小值的差,它反映了一组数据变化的最大幅度,它对一组数据中的极端值非常敏感.(2)方差则反映了一组数据围绕平均数波动的大小,为了得到以样本数据的单位表示的波动幅度通常用标准差,即样本方差的算术平方根,是样本数据到平均数的一种平均距离. 2.在实际问题中,仅靠平均数不能完全反映问题,还要研究方差,方差描述了数据相对平均数的离散程度,在平均数相同的情况下,方差越大,离散程度越大,数据波动性越大,稳定性越差;方差越小,数据越集中,质量越稳定.跟踪训练2 某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其质量,分别记录抽查数据如下(单位:kg): 甲:102 101 99 98 103 98 99 乙:110 115 90 85 75 115 110 (1)这种抽样方法是哪一种方法?(2)试计算甲、乙两个车间产品质量的平均数与方差,并说明哪个车间产品比较稳定. 解 (1)采用的抽样方法是:系统抽样.(2)x 甲=17(102+101+99+98+103+98+99)=100;x 乙=17(110+115+90+85+75+115+110)=100;x 2甲=17[(102-100)2+(101-100)2+(99-100)2+(98-100)2+(103-100)2+(98-100)2+(99-100)2]=17(4+1+1+4+9+4+1)≈3.43; s 2乙=17[(110-100)2+(115-100)2+(90-100)2+(85-100)2+(75-100)2+(115-100)2+(110-100)2]=17(100+225+100+225+625+225+100) ≈228.57.所以s 2甲<s 2乙,故甲车间产品较稳定.题型三 数据的数字特征的综合应用例3在一次科技知识竞赛中,两组学生的成绩如下表:次竞赛中的成绩谁优谁劣,并说明理由.解(1)甲组成绩的众数为90,乙组成绩的众数为70,从成绩的众数比较看,甲组成绩好些.(2)x甲=12+5+10+13+14+6(50×2+60×5+70×10+80×13+90×14+100×6)=150×4 000=80,x乙=14+4+16+2+12+12(50×4+60×4+70×16+80×2+90×12+100×12)=150×4 000=80.s2甲=12+5+10+13+14+6[2×(50-80)2+5×(60-80)2+10×(70-80)2+13×(80-80)2+14×(90-80)2+6×(100-80)2]=172,s2乙=14+4+16+2+12+12[4×(50-80)2+4×(60-80)2+16×(70-80)2+2×(80-80)2+12×(90-80)2+12×(100-80)2]=256.∵s2甲<s2乙,∴甲组成绩较乙组成绩稳定,故甲组好些.(3)甲、乙两组成绩的中位数、平均数都是80分.其中,甲组成绩在80分以上(包括80分)的有33人,乙组成绩在80分以上(包括80分)的有26人.从这一角度看,甲组的成绩较好.(4)从成绩统计表看,甲组成绩大于等于90分的有20人,乙组成绩大于等于90分的有24人,所以乙组成绩集中在高分段的人数多.同时,乙组得满分的人数比甲组得满分的人数多6人.从这一角度看,乙组的成绩较好.反思与感悟要正确处理此类问题,首先要抓住问题中的关键词语,全方位地进行必要的计算、分析,而不能习惯性地仅从样本方差的大小去决定哪一组的成绩好,像这样的实际问题还得从实际的角度去分析,如本例的“满分人数”;其次要在恰当地评估后,组织好正确的语言作出结论.跟踪训练3甲、乙两人同时生产内径为25.40 mm的一种零件.为了对两人的生产质量进行评比,从他们生产的零件中各抽出20件,量得其内径尺寸如下(单位:mm):甲25.4625.3225.4525.3925.3625.34 25.42 25.45 25.38 25.42 25.39 25.43 25.39 25.40 25.44 25.40 25.42 25.35 25.41 25.39 乙25.40 25.43 25.44 25.48 25.48 25.47 25.49 25.49 25.36 25.34 25.33 25.43 25.43 25.32 25.47 25.31 25.32 25.32 25.32 25.48从生产的零件内径的尺寸看,谁生产的质量较高?(结果保留小数点后3位) 解 用计算器计算可得 x 甲≈25.405,x 乙≈25.406; s 甲≈0.037,s 乙≈0.068.从样本平均数看,甲生产的零件内径比乙的更接近内径标准(25.40mm),差异很小;从样本标准差看,由于s 甲<s 乙,因此甲生产的零件内径尺寸比乙的稳定程度高得多.于是,可以作出判断,甲生产的零件的质量比乙的高一些.分类讨论思想例4 某班有四个学习小组,各小组人数分别为10,10,x,8,已知这组数据的中位数与平均数相等,求这组数据的中位数.分析 由于x 未知,因此中位数不确定,需讨论.解 该组数据的平均数为14(10+10+x +8)=14(28+x ),中位数是这4个数按从小到大的顺序排列后处在最中间两个数的平均数.(1)当x ≤8时,原数据从小到大排序为x,8,10,10,中位数是9,由14(28+x )=9,得x =8,符合题意,此时中位数是9;(2)当8<x ≤10时,原数据从小到大排序为8,x,10,10,中位数是12(x +10),由14(28+x )=12(10+x ),得x =8,与8<x ≤10矛盾,舍去;(3)当x >10时,原数据从小到大排序为8,10,10,x ,中位数是10,由14(28+x )=10,得x =12,符合题意,此时中位数是10.综上所述,这组数据的中位数是9或10.解后反思 当题目中含有参数,且参数的不同取值影响求解结果时,需对参数的取值分类讨论.1.下列选项中,能反映一组数据的离散程度的是( ) A .平均数 B .中位数 C .方差 D .众数答案 C解析 由方差的定义,知方差反映了一组数据的离散程度.2.一组样本数据按从小到大的顺序排列为13,14,19,x,23,27,28,31,其中位数为22,则x 等于( ) A .21 B .22 C .20 D .23 答案 A解析 根据题意知,中位数22=x +232,则x =21.3.一次选拔运动员的测试中,测得7名选手中的身高(单位:cm)分布的茎叶图如图所示.记录的平均身高为177 cm ,有一名候选人的身高记录不清楚,其末位数记为x ,则x 等于( )A .5B .6C .7D .8答案 D解析 由题意知,10+11+0+3+x +8+9=7×7,解得x =8.4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________. 答案 0.1解析 x -=4.7+4.8+5.1+5.4+5.55=5.1,则方差s 2=15[(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)2]=0.1.5.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4 则:(1)平均命中环数为________; (2)命中环数的标准差为________. 答案 (1)7 (2)2解析 (1)x =7+8+7+9+5+4+9+10+7+410=7.(2)∵s 2=110[(7-7)2+(8-7)2+(7-7)2+(9-7)2+(5-7)2+(4-7)2+(9-7)2+(10-7)2+(7-7)2+(4-7)2]=4,∴s =2.1.一组数据中的众数可能不止一个,中位数是唯一的,求中位数时,必须先排序. 2.利用直方图求数字特征: (1)众数是最高的矩形的底边的中点. (2)中位数左右两边直方图的面积应相等.(3)平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.3.标准差的平方s 2称为方差,有时用方差代替标准差测量样本数据的离散程度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.。

[推荐学习]2018北师大版高中数学必修三学案:第一章 1 从普查到抽样

[推荐学习]2018北师大版高中数学必修三学案:第一章 1 从普查到抽样

学习目标 1.了解普查与抽样调查的概念.2.理解随机抽样的必要性和重要性.3.明确两种调查的优缺点.知识点一统计思考我们每天都接触大量的数据:各地房价的涨幅,各种指数的变化、天气的各种数据等,这些数据是怎么来的?梳理统计是研究如何合理收集、______、______数据的学科.知识点二普查思考你对“武汉一人口普查员劳累过度以身殉职”的报道有何看法?梳理一般地,普查是指一个________或一个________专门组织的________大规模的全面调查,目的是为了详细地了解________重要的国情、国力.普查的主要特点:①所取得的资料更加全面、________;②主要调查在特定时段的社会经济现象总体的________.普查的对象________时,普查无疑是一项非常好的调查方式.知识点三抽样调查思考要了解一批牛奶的质量是否达标,能用普查吗?梳理当不宜普查时,有:(1)抽样调查:从调查对象中按照一定的方法抽取一部分,进行调查或观察,获取数据,并以此对调查对象的某项指标作出推断,这就是抽样调查.(2)总体:调查对象的全体称为总体.(3)个体:组成总体的每一个考察对象叫作个体;(4)样本及样本的容量:从总体中所抽取的一部分个体叫作总体的一个样本,样本中的个体数目叫作样本的容量.(5)抽样调查的优点:抽样调查与普查相比,有很多优点,最突出的有两点:①迅速、及时;②节约人力、物力和财力.类型一普查与抽样调查例1医生是如何检验人的血液中血脂的含量是否偏高的?反思与感悟设计合理的调查方案是调查的基础,是统计活动中非常重要的环节.若对大批量且有破坏性的检验问题,只能进行抽样调查,这样检验是科学、合理的.在抽样调查中应注意:抽取的样本要具有全面性、代表性、随机性.跟踪训练1下列调查中哪些是用普查方式,哪些是用抽样方法来收集数据的?(1)为了了解我们班级的每个学生穿几号鞋,向全班同学做调查;(2)为了了解我们学校高一年级学生穿几号鞋,向我们所在班的全体同学做调查;(3)为了了解我们班的同学每天的睡眠时间,在每个小组中各选取2名学生做调查;(4)为了了解我们班的同学每天的睡眠时间,选取班级中学号为双数的所有学生做调查.类型二如何进行抽样调查例2为了缓解城市的交通拥堵情况,某市准备出台限制私家车的政策,为此要进行民意调查.某个调查小组调查了一些拥有私家车的市民,你认为这样的调查结果会怎样?反思与感悟在统计活动中,尤其是大型的统计活动,为避免一些外界因素的干扰,通常需要确定调查的对象、调查的方法与策略,需要精心设计前期的准备工作和收集数据的方法,然后对数据进行分析,得出统计推断.跟踪训练2中央电视台希望在春节联欢晚会播出后一周内获得当年春节联欢晚会的收视率.下面是三名同学为电视台设计的调查方案.甲同学:我把这张《春节联欢晚会收视率调查表》放在互联网上,只要上网登录该网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快统计收视率了.乙同学:我给我们居民小区的每一户住户发一份是否在除夕那天晚上看过中央电视台春节联欢晚会的调查表,只要一两天就可以统计出收视率.丙同学:我在电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们是否收看了中央电视台春节联欢晚会,我不出家门就可以统计出中央电视台春节联欢晚会的收视率.请问:上述三名同学设计的调查方案能够获得比较准确的收视率吗?为什么?1.下列调查方式中,可用“普查”方式的是()A.调查某品牌电视机的市场占有率B.调查某电视连续剧在全国的收视率C.调查某校七年级一班的男女同学的比例D.调查某型号炮弹的射程2.下列说法不正确的是()A.普查是要对所有的对象进行调查B.样本不一定是从总体中抽取的,没抽取的个体也是样本C.当调查的对象很少时,普查是很好的调查方式,但当调查的对象很多时,则要耗费大量的人力、物力和财力D.普查不是在任何情况下都能实现的3.为了了解高一年级学生的视力情况,特别是近视率问题,抽测了其中100名同学的视力情况.在这个过程中,100名同学的视力情况(数据)是()A.总体B.个体C.总体的一个样本D.样本容量4.下列调查中属于抽样调查的是()①每隔5年进行一次人口普查;②某商品的质量优劣;③某报社对某个事情进行舆论调查;④高考考生的查体.A.②③B.①④C.③④D.①②5.“非典”期间,我国每日公布非典疫情,其中有关数据的收集所采用的调查方式是________.普查是一项非常艰巨的工作,它要对所有的对象进行调查.当普查的对象很少时,普查无疑是一项非常好的调查方式.普查主要有两个特点:(1)所取得的资料更加全面、系统;(2)主要调查在特定时段的社会经济现象总体的数量.答案精析问题导学知识点一思考由专业人员收集、整理、分析出来的.梳理整理分析知识点二思考人口普查是一个规模宏大的政府工程.普查是一项非常艰苦的工作,工作量很大,要耗费大量的人力、物力与财力,并且组织工作繁重、时间长.更值得注意的是,在很多情况下,普查工作难以实现.梳理国家地区一次性某项系统数量很少知识点三思考检验具有破坏性,故不能普查.题型探究例1解大家都知道,医生在检验时是不可能将一个人的血液都抽出来进行普查的,因此,医生在检验人的血液中血脂含量是否偏高时,通常是抽取少量的血样进行检验,然后由此作出推断,认为这个人的血液状况基本如此.跟踪训练1解(1)因为调查的是班级的每个学生,所以用的是普查.(2)通过我们班的全体同学穿几号鞋来了解学校高一年级学生穿几号鞋,这是抽样调查,样本是我们班的全体同学所穿的鞋号,总体是学校高一年级学生所穿的鞋号.(3)、(4)也都是抽样调查,样本分别是每小组中选取的2名学生的睡眠时间,学号为双数的所有学生的睡眠时间;总体都是我们班的同学每天的睡眠时间.例2解一个城市的交通状况的好坏将直接影响着生活在这个城市中的每个人,关系到每个人的利益.为了调查这个问题,在抽样时应当关注到各种人群,既要抽到拥有私家车的市民,也要抽到没有私家车的市民.调查时,如果只对拥有私家车的市民进行调查,结果一定是片面的,不能代表所有市民的意愿.因此,在调查时,要对生活在该城市的所有市民进行随机地抽样调查,不要只关注到拥有私家车的市民.跟踪训练2解综上所述,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.因为并不是每个人都有互联网可上;某一地方的居民小区代表性不强;并不是每家都拥有电话.当堂训练1.C 2.B 3.C 4.A 5.普查。

2018版高中数学北师大版必修三学案:第一章 统计 2-2 第1课时 分层抽样 精品

2018版高中数学北师大版必修三学案:第一章 统计 2-2 第1课时 分层抽样 精品

2.2分层抽样与系统抽样第1课时分层抽样[学习目标] 1.理解分层抽样的概念.2.会用分层抽样从总体中抽取样本.3.能用分层抽样解决实际问题.知识点一分层抽样的概念将总体按其属性特征分成若干类型(有时称作层),然后在每个类型中按照所占比例随机抽取一定的样本.这种抽样方法通常叫作分层抽样,有时也称为类型抽样.分层抽样具有如下特点:(1)适用于总体由差异明显的几部分组成的情况;(2)按比例确定每层抽取个体的个数;(3)在每一层进行抽样时,采用简单随机抽样或系统抽样的方法;(4)分层抽样能充分利用已掌握的信息,使样本具有良好的代表性;(5)分层抽样也是等机会抽样,每个个体被抽到的可能性都是样本容量n总体容量N,而且在每层抽样时,可以根据个体情况采用不同的抽样方法.知识点二分层抽样的步骤思考分层抽样的总体具有什么特性?答分层抽样的总体由差异明显的几部分构成,也就是说当已知总体由差异明显的几部分组成时,为了使样本充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比例进行抽样.题型一 对分层抽样概念的理解例1 有40件产品,其中一等品10件,二等品25件,次品5件.现从中抽出8件进行质量分析,则应采取的抽样方法是( ) A .抽签法 B .随机数法 C .系统抽样 D .分层抽样答案 D解析 总体是由差异明显的几部分组成,符合分层抽样的特点,故采用分层抽样. 反思与感悟 判断抽样方法是分层抽样,主要是依据分层抽样的特点: (1)适用于总体由差异明显的几部分组成的情况. (2)样本能更充分地反映总体的情况.(3)等可能抽样,每个个体被抽到的可能性都相等.跟踪训练1 在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本.方法1:采用简单随机抽样的方法,将零件编号00,01,02,…,99,用抽签法抽取20个. 方法2:采用分层抽样的方法,从一级品中随机抽取4个,从二级品中随机抽取6个,从三级品中随机抽取10个.对于上述问题,下列说法正确的是( )①不论采用哪种抽样方法,这100个零件中每一个零件被抽到的可能性都是15;②采用不同的方法,这100个零件中每一个零件被抽到的可能性各不相同;③在上述两种抽样方法中,方法2抽到的样本比方法1抽到的样本更能反映总体特征; ④在上述抽样方法中,方法1抽到的样本比方法2抽到的样本更能反映总体的特征. A .①② B .①③ C .①④ D .②③答案 B解析 根据两种抽样的特点知,不论哪种抽样,总体中每个个体入样的可能性都相等,都是nN ,故①正确,②错误.由于总体中有差异较明显的三个层(一级品、二级品和三级品),故方法③抽到的样本更有代表性,③正确,④错误.故①③正确. 题型二 分层抽样的应用例2 一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁及50岁以上的有95人.为了了解这个单位职工与身体状态有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?解 用分层抽样来抽取样本,步骤如下:(1)分层.按年龄将500名职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁及50岁以上的职工.(2)确定每层抽取个体的个数.抽样比为100500=15,则在不到35岁的职工中抽取125×15=25(人);在35岁至49岁的职工中抽取280×15=56(人);在50岁及50岁以上的职工中抽取95×15=19(人).(3)在各层分别按系统抽样或随机数法抽取样本. (4)汇总每层抽样,组成样本.反思与感悟 利用分层抽样抽取样本的操作步骤: (1)将总体按一定属性特征进行分层; (2)计算各层的个体数与总体的个体数的比;(3)按各层的个体数占总体的比确定各层应抽取的样本容量; (4)在每一层进行抽样(可用简单随机抽样); (5)最后将每一层抽取的样本汇总合成样本.跟踪训练2 一个单位有职工800人,其中具有高级职称的有160人,具有中级职称的有320人,具有初级职称的有200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是________. 答案 8,16,10,6解析 抽样比为40800=120,故各层抽取的人数依次为160×120=8,320×120=16,200×120=10,120×120=6.抽样方法例3 某单位有老年人28人、中年人54人、青年人81人,为了调查他们的身体状况,从中抽取一个容量为36的样本,则最适合抽取样本的办法是( ) A .简单随机抽样 B .抽签法 C .分层抽样D .先从老年人中剔除1人,再用分层抽样分析 根据题意结合各种抽样方法的特点进行选择.解析 因为总体由差异明显的三部分组成,所以考虑用分层抽样.因为总人数为28+54+81=163,样本容量为36,由于按36163抽样,无法得到整数解,因此考虑先剔除1人,将抽样比变为36162=29.若从老年人中随机地剔除1人,则老年人应抽取27×29=6(人),中年人应抽取54×29=12(人),青年人应抽取81×29=18(人),从而组成容量为36的样本.答案 D解后反思 本题易错选C.已知总体是由差异明显的三部分组成,因而盲目选了C ,却忽略了分层抽样过程中的取整要求.1.某校高三年级有男生500人,女生400人,为了解该年级学生的健康状况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是( ) A .简单随机抽样 B .抽签法 C .随机数表法 D .分层抽样答案 D解析 从男生500人中抽取25人,从女生400人中抽取20人,抽取的比例相同,因此用的是分层抽样.2.为了保证分层抽样时,每个个体等可能地被抽取,必须要求( ) A .每层的个体数必须一样多 B .每层抽取的个体数相等C .每层抽取的个体可以不一样多,但必须满足抽取n i =n ·N iN (i =1,2,…,k )个个体,其中k是层数,n 是抽取的样本容量,N i 是第i 层所包含的个体数,N 是总体容量 D .只要抽取的样本容量一定,每层抽取的个体数没有限制 答案 C 解析3.甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,为统计三校学生某方面的情况,计划采用分层抽样法抽取一个容量为90的样本,应在这三校分别抽取学生( ) A .30人,30人,30人 B .30人,45人,15人 C .20人,30人,10人 D .30人,50人,10人答案 B解析 先求抽样比n N =903 600+5 400+1 800=1120,再各层按抽样比分别抽取,甲校抽取3 600×1120=30(人),乙校抽取5 400×1120=45(人),丙校抽取1 800×1120=15(人),故选B.4.某校高三一班有学生54人,二班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加军训表演,则一班和二班分别被抽取的人数是( ) A .8,8 B .10,6 C .9,7 D .12,4答案 C解析 抽样比为1654+42=16,则一班和二班分别被抽取的人数是54×16=9,42×16=7.5.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生. 答案 60解析 根据题意,应从一年级本科生中抽取的人数为44+5+5+6×300=60.1.对于分层抽样中的比值问题,常利用以下关系式解: (1)样本容量n 总体容量N =各层抽取的样本数该层的容量; (2)总体中各层容量之比=对应层抽取的样本数之比. 2.选择抽样方法的规律:(1)当总体容量较小,样本容量也较小时,制签简单,号签容易搅匀,可采用抽签法. (2)当总体容量较大,样本容量较小时,可采用随机数法. (3)当总体是由差异明显的几部分组成时,可采用分层抽样法.。

【配套K12】2018北师大版高中数学必修三学案:第一章 4 数据的数字特征

【配套K12】2018北师大版高中数学必修三学案:第一章 4 数据的数字特征

学习目标 1.能合理地选取样本,并从中提取基本的数字特征.2.了解众数、中位数、平均数的概念,会计算方差和标准差.3.进一步体会用样本估计总体的思想,会用样本的数字特征估计总体的数字特征.知识点一众数、中位数、平均数思考1平均数、中位数、众数中,哪个量与样本的每一个数据有关,它有何缺点?思考2在电视大奖赛中,计算评委打分的平均值时,为什么要去掉一个最高分和一个最低分?梳理众数、中位数、平均数定义(1)众数:一组数据中出现次数________的数.(2)中位数:把一组数据按____________的顺序排列,处在________位置的数(或中间两个数的________)叫作这组数据的中位数.(3)平均数:如果n个数x1,x2,…,x n,那么x=________________叫作这n个数的平均数.知识点二方差、标准差思考1当样本数据的标准差为0时,该组数据有何特点?思考2标准差、方差的意义是什么?梳理标准差、方差的概念及计算公式(1)标准差是样本数据到平均数的一种_____________________,一般用s表示.s=________________________________________________________________________. (2)标准差的平方s2叫作方差.s2=________________________________________________________________________ (x n是样本数据,n是样本容量,x是样本平均数).(3)标准差(或方差)越小,数据越稳定在平均数附近.s=0时,每一组样本数据均为x.知识拓展平均数、方差公式的推广:1.若数据x1,x2,…,x n的平均数为x,那么mx1+a,mx2+a,mx3+a,…,mx n+a的平均数是m x+a.2.设数据x1,x2,…,x n的平均数为x,方差为s2,则a.s2=1n[(x 21+x22+…+x2n)-n x2];b.数据x1+a,x2+a,…,x n+a的方差也为s2;c.数据ax1,ax2,…,ax n的方差为a2s2.知识点三用样本的基本数字特征估计总体的基本数字特征1.样本的基本数字特征包括________、________、________、________.2.平均数向我们提供了样本数据的重要信息,但是平均数有时也会使我们作出对总体的片面判断,因为这个平均数掩盖了一些极端的情况,而这些极端情况显然是不能忽视的.因此,还需要用标准差来反映数据的________程度.3.现实中的总体所包含的个体数往往是很多的,虽然总体的平均数与标准差客观存在,但是我们无从知道.所以通常的做法是用样本的平均数和标准差去估计总体的平均数与标准差.虽然样本具有________性,不同的样本测得的数据不一样,与总体的数字特征也可能不同,但只要样本的________好,这样做就是合理的,也是可以接受的.类型一众数、中位数和平均数的理解与应用例1某公司的各层人员及工资数构成如下:人员:经理1人,周工资2 200元;高层管理人员6人,周工资均为250元;高级技工5人,周工资均为220元;工人10人,周工资均为200元;学徒1人,周工资为100元.(1)计算该公司员工周工资的众数、中位数、平均数;(2)这个问题中,平均数能客观地反映这个公司的工资水平吗?反思与感悟(1)众数、中位数与平均数都是描述一组数据集中趋势的量,平均数是最重要的量.(2)众数考查各个数据出现的频率,大小只与这组数据中的部分数据有关,当一组数据中部分数据多次重复出现时,众数往往更能反映问题.(3)中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能在所给的数据中,也可能不在所给的数据中.(4)平均数的大小与一组数据里每个数据均有关系,任何一个数据的变动都会引起平均数的变动.(5)因为平均数与每一个样本数据有关,所以任何一个样本数据的改变都会引起平均数的改变,这是众数、中位数不具有的性质,也正因为这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于全体样本数据的信息.但平均数受数据的极端值的影响较大,使平均数在估计总体时可靠性降低.跟踪训练1对于数据3,3,2,3,6,3,10,3,6,3,2,有下列结论:①这组数据的众数是3;②这组数据的众数与中位数的数值不相等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等.其中正确结论的个数为()A.1 B.2 C.3 D.4类型二标准差、方差的应用例2计算数据89,93,88,91,94,90,88,87的方差和标准差(标准差结果精确到0.1).反思与感悟(1)方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小.(2)样本标准差反映了各样本数据围绕样本平均数波动的大小,标准差越小,表明各样本数据在样本平均数周围越集中;反之,标准差越大,表明各样本数据在样本平均数的两边越分散.(3)若样本数据都相等,则s=0.(4)当样本的平均数相等或相差无几时,就要用样本数据的离散程度来估计总体的数字特征,而样本数据的离散程度是由标准差来衡量的.跟踪训练2甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图.(1)分别求出两人得分的平均数与方差;(2)根据图和(1)中算得的结果,对两人的训练成绩作出评价.1.某市2016年各月的平均气温(℃)数据的茎叶图如图:则这组数据的中位数是()A.19 B.20 C.21.5 D.232.设样本数据x1,x2,…,x10的平均数和方差分别为1和4,若y i=x i+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的平均数和方差分别为()A.1+a,4 B.1+a,4+aC.1,4 D.1,4+a3.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________.4.若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为________.5.某校医务室抽查了高一10位同学的体重(单位:kg)如下:74,71,72,68,76,73,67,70,65,74.求这10个学生体重数据的平均数、中位数、方差、标准差.1.平均数、中位数和众数刻画了一组数据的集中趋势,极差、方差刻画了一组数据的离散程度.它们作为一组数据的代表各有优缺点,也各有各的用处,从不同的角度出发,不同的人会选取不同的统计量来表达同一组数据的信息.2.标准差的平方s2称为方差,有时用方差代替标准差测量样本数据的离散程度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.答案精析问题导学知识点一思考1平均数与样本的每一个数据有关,它可以反映出更多的关于样本数据总体的信息,但是平均数受数据中极端值的影响较大.思考2为了避免平均值受数据中个别极端值的影响,增大它在估计总体时的可靠性,故计算评委打分时要去掉一个最高分和一个最低分.梳理(1)最多(2)从小到大(或从大到小)中间平均数(3)1n(x1+x2+…+x n)知识点二思考1当样本数据的标准差为0时,该组数据都相等.思考2标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.梳理(1)平均距离1n[(x1-x)2+(x2-x)2+…+(x n-x)2](2)1n[(x1-x)2+(x2-x)2+…+(x n-x)2]知识点三1.众数中位数平均数标准差2.分散3.随机代表性题型探究例1解(1)众数为200,中位数为220,平均数为2 200×1+250×6+220×5+200×10+100×11+6+5+10+1=300.(2)虽然平均数为300,但由给出的数据可见,只有经理的周工资在平均数以上,其余的都在平均数以下,故用平均数不能客观地反映该公司的工资水平.跟踪训练1A[在这11个数中,数3出现了6次,频率最高,故众数是3;将这11个数按从小到大的顺序排列得2,2,3,3,3,3,3,3,6,6,10,中间数据是3,故中位数是3;而平均数x=2×2+3×6+6×2+1011=4.故只有①正确.] 例2 解 ①x =90+18[(-1)+3+(-2)+1+4+0+(-2)+(-3)]=90+18×0=90; ②计算x i -x (i =1,2,…,8),得各数据为-1,3,-2,1,4,0,-2,-3;③计算(x i -x )2(i =1,2,…,8),得各数据为1,9,4,1,16,0,4,9;④计算方差:s 2=18(1+9+4+1+16+0+4+9)=448=5.5; ⑤计算标准差:s = 5.5≈2.3.所以这组数据的方差为5.5,标准差约为2.3.跟踪训练2 解 (1)由题图可得甲、乙两人五次测试的成绩分别为甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分. x 甲=10+13+12+14+165=13, x 乙=13+14+12+12+145=13, s 2甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4, s 2乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8. (2)由s 2甲>s 2乙可知乙的成绩较稳定.从折线图来看,甲的成绩基本上呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩无明显提高.当堂训练1.B2.A [∵x 1,x 2,…,x 10的平均数x =1,方差s 21=4,且y i =x i +a (i =1,2,…,10),∴y 1,y 2,…,y 10的平均数y =110·(y 1+y 2+…+y 10)=110·(x 1+x 2+…+x 10+10a )=110·(x 1+x 2+…+x 10)+a =x +a =1+a ,其方差s 22=110·[(y 1-y )2+(y 2-y )2+…+(y 10-y )2]=110[(x 1-1)2+(x 2-1)2+…+(x 10-1)2]=s 21=4.故选A.]3.6 4.165.解 这10个学生体重数据的平均数为x =110×(74+71+72+68+76+73+67+70+65+74)=71.这10个学生体重数据从小到大依次为65,67,68,70,71,72,73,74,74,76,位于中间的两个数是71,72,∴这10个学生体重数据的中位数为71+722=71.5. 这10个学生体重数据的方差为s 2=110×[(74-71)2+(71-71)2+(72-71)2+(68-71)2+(76-71)2+(73-71)2+(67-71)2+(70-71)2+(65-71)2+(74-71)2]=11,这10个学生体重数据的标准差为s =s 2=11.。

2017_2018版高中数学第一章统计章末复习课学案北师大版必修3

2017_2018版高中数学第一章统计章末复习课学案北师大版必修3

第一章 统计学习目标 1.会根据不同的特点选择适当的抽样方法获得样本数据.2.能利用图、表对样本数据进行整理分析,用样本和样本的数字特征估计总体.3.能利用散点图对两个变量是否相关进行初步判断,能用线性回归方程进行预测.1.抽样方法(1)当总体容量较小,样本容量也较小时,可采用______________. (2)当总体容量较大,样本容量较小时,可用__________________. (3)当总体容量较大,样本容量也较大时,可用____________________. (4)当总体由差异明显的几部分组成时,可用__________________. 2.用样本估计总体用样本频率分布估计总体频率分布时,通常要对给定的一组数据作频率________与频率____________.当样本只有两组数据且样本容量比较小时,用________刻画数据比较方便. 3.样本的数字特征样本的数字特征可分为两大类:一类是反映样本数据集中趋势的,包括________、________和________;另一类是反映样本波动大小的,包括________及________. 4.变量间的相关关系(1) 两个变量之间的相关关系的研究,通常先作变量的________,根据散点图判断这两个变量最接近于哪种确定性关系(函数关系). (2)求线性回归方程的步骤:①先把数据制成表,从表中计算出x ,y ,∑ni =1x 2i ,∑ni =1x i y i ; ②计算回归系数a ,b .公式为⎩⎨⎧b =∑ni =1x i y i -n x y ∑ni =1x 2i-n x 2,a =y -b x .③写出线性回归方程y =bx +a .类型一 抽样方法的应用例1 某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,干事20人,上级机关为了了解机关人员对政府机构的改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,如何抽取?反思与感悟三种抽样方法并非截然分开,它们都能保证个体被抽到的机会相等.跟踪训练1 某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名,现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( )A.6 B.8 C.10 D.12类型二用样本的频率分布估计总体分布例2 有1个容量为100的样本,数据(均为整数)的分组及各组的频数如下:[12.5,15.5),6;[15.5,18.5),16;[18.5,21.5),18;[21.5,24.5),22;[24.5,27.5),20;[27.5,30.5),10;[30.5,33.5),8.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)估计数据小于30的数据约占多大百分比.反思与感悟借助图表,可以把抽样获得的庞杂数据变得直观,凸显其中的规律,便于信息的提取和交流.跟踪训练2 为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图,由于不慎将部分数据丢失,但知道后5组频数和为62,视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为( )A.64 B.54 C.48 D.27类型三用样本的数字特征估计总体的数字特征例3 甲、乙两机床同时加工直径为100 cm的零件,为检验质量,各从中抽取6件测量,数据为甲:99 100 98 100 100 103乙:99 100 102 99 100 100(1)分别计算两组数据的平均数及方差;(2)根据计算结果判断哪台机床加工零件的质量更稳定.反思与感悟样本的数字特征就像盲人摸到的象的某一局部特征,只有把它们结合起来才能看到全貌.跟踪训练3 对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:问:甲、乙谁的平均成绩好?谁的各门功课发展较平衡?类型四线性回归方程的应用例4 下表提供了某厂节能降耗技术改进后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y=bx+a;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?反思与感悟 散点图经最小二乘法量化为线性回归方程后,更便于操作(估计、预测),但得到的值仍是估计值.跟踪训练4 2017年元旦前夕,某市统计局统计了该市2016年10户家庭的年收入和年饮食支出的统计资料如表: 年收入x (万元) 2 4 4 6 6 6 7 7 8 10 年饮食支出y (万元)0.91.41.62.02.11.91.82.12.22.3(1)如果已知y 与x 成线性相关关系,求线性回归方程; (2)若某家庭年收入为9万元,预测其年饮食支出.(参考数据:∑10i =1x i y i =117.7,∑10i =1x 2i =406)1.10个小球分别编有号码1,2,3,4,其中1号球4个,2号球2个,3号球3个,4号球1个,则数0.4是指1号球占总体分布的( ) A .频数 B .概率 C .频率D .累积频率2.为了了解全校1 320名高一学生的身高情况,从中抽取220名学生进行测量,下列说法正确的是( )A .样本容量是220B .个体是每一个学生C .样本是220名学生D .总体是1 3203.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:父亲身高x (cm) 174 176 176 176 178 儿子身高y (cm)175175176177177则y 对x 的线性回归方程为( ) A .y =x -1 B .y =x +1 C .y =12x +88D .y =176 4.某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如图,则所给结论中错误的是( )A .甲的极差是29B .乙的众数是21C .甲罚球命中率比乙高D .甲的中位数是245.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15,则该班的学生人数是( )A .45B .50C .55D .601.应用抽样方法抽取样本时,应注意根据总体特征和已知信息设计和选择合适的抽样方法,确保样本的代表性.2.用样本的频率分布估计总体分布利用样本的频率分布表和频率分布直方图对总体情况作出估计,有时也利用频率分布折线图和茎叶图对总体情况作出估计.直方图能够很容易地表示大量数据,非常直观地表明分布的形状.在样本数据较少时,用茎叶图表示数据的效果较好,它不但可以保留原始信息,而且可以随时记录,这给数据的记录和表示都带来方便.3.用样本的数字特征估计总体的数字特征为了从整体上更好地把握总体的规律,我们还可以通过样本数据的众数、中位数、平均数和标准差等数字特征对总体的数字特征作出估计.虽然随着样本不同,样本数字特征也不同,但只要样本代表性好,样本数字特征还是能估计总体数字特征的.4.线性回归方程的应用分析两个变量的相关关系时,我们可根据样本数据散点图确定两个变量之间是否存在相关关系,还可利用最小二乘法求出线性回归方程,并利用线性回归方程进行估计和预测.答案精析知识梳理1.(1)抽签法 (2)随机数法 (3)系统抽样法 (4)分层抽样法 2.分布表 分布直方图 茎叶图 3.众数 中位数 平均数 方差 标准差 4.(1)散点图 题型探究例1 解 用分层抽样抽取.∵20∶100=1∶5,∴105=2,705=14,205=4,即从副处级以上干部中抽取2人,一般干部中抽取14人,干事中抽取4人.∵副处级以上干部与干事人数都较少,他们分别按1~10编号和1~20编号,然后采用抽签法分别抽取2人和4人,对一般干部采用00,01,…,69编号,然后用随机数法抽取14人. 跟踪训练1 B [分层抽样的原理是按照各部分所占的比例抽取样本,设从高二年级抽取的学生数为n ,则3040=6n ,得n =8.]例2 解 (1)样本的频率分布表如下:(2)频率分布直方图如图:(3)小于30的数据占0.06+0.16+0.18+0.22+0.20+0.10=0.92=92%.跟踪训练2 B [[4.7,4.8)之间频率为0.32,[4.6,4.7)之间频率为1-0.62-0.05-0.11=1-0.78=0.22.∴a =(0.22+0.32)×100=54.]例3 解 (1)x 甲=16(99+100+98+100+100+103)=100,x 乙=16(99+100+102+99+100+100)=100.s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73, s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1.(2)两台机床所加工零件的直径的平均数相同, 又s 2甲>s 2乙,所以乙机床加工零件的质量更稳定.跟踪训练 3 解 甲的平均成绩为x 甲=74,乙的平均成绩为x 乙=73.所以甲的平均成绩好.甲的方差是s 2甲=15[(-14)2+62+(-4)2+162+(-4)2]=104,乙的方差是s 2乙=15×[72+(-13)2+(-3)2+72+22]=56.因为s 2甲>s 2乙,所以乙的各门功课发展较平衡. 例4 解 (1)散点图如图所示:(2)x =3+4+5+64=4.5,y =2.5+3+4+4.54=3.5,∑4i =1x i y i =3×2.5+4×3+5×4+6×4.5=66.5,∑4i =1x 2i =32+42+52+62=86, ∴b =∑4i =1x i y i -4x y∑4i =1x 2i -4x2=66.5-4×4.5×3.586-4×4.52=0.7, a =y -b x =3.5-0.7×4.5=0.35.∴所求的线性回归方程为y =0.7x +0.35. (3)现在生产100吨甲产品用煤y =0.7×100+0.35=70.35,∴90-70.35=19.65.∴预测生产100吨甲产品的生产能耗比技改前降低约19.65吨标准煤. 跟踪训练4 解 (1)依题意可计算得:x =6,y =1.83,x 2=36,x y =10.98,又∵∑10i =1x i y i =117.7,∑10i =1x 2i =406, ∴b =∑10i =1x i y i -10x y∑10i =1x 2i -10x2≈0.17,a =y -b x ≈0.81,∴y =0.17x +0.81.∴所求的线性回归方程为y =0.17x +0.81. (2)当x =9时,y =0.17×9+0.81=2.34(万元).可估计大多数年收入为9万元的家庭每年饮食支出约为2.34万元. 当堂训练1.C 2.A 3.C 4.D 5.B。

2018版高中数学北师大版必修三学案第一章+疑难规律方法:第一章+统计+整理版

2018版高中数学北师大版必修三学案第一章+疑难规律方法:第一章+统计+整理版

1例析简单随机抽样简单随机抽样是一种最简单、最基本的抽样方法.适用于总体中的个体数较少且抽取的样本容量较小时.抽样中选取个体的方法有两种:放回和不放回.简单随机抽样中用的是不放回抽取.下面让我们一同来看如下的例题:例1 判断下面的抽样方法是不是简单随机抽样?(1)从不确定个体数的总体中抽取20个个体作为样本.(2)从30瓶果汁中一次性随机抽取3瓶进行质量检查.(3)某班有40名同学,指定个子最高的5名同学参加学校组织的篮球赛.(4)从装有编号为1~36的大小、形状都相同的号签的盒子中逐个不放回地抽出6个号签.分析简单随机抽样的定义,抓住以下特点来理解:①它要求被抽取的样本所在总体的容量确定且有限;②它是从总体中逐个地进行抽取;③它是一种不放回抽样;④每个个体被抽到的可能性是相同的,是等可能抽样.解(1)不是简单随机抽样.因为总体的个体数是不确定的,从而不能保证每个个体等可能入样.(2)不是简单随机抽样.因为简单随机抽样的定义要求的是逐个抽取.(3)不是简单随机抽样.因为该例是指定个子最高的5名同学参加比赛,每个个体被抽到的可能性是不同的,不是等可能抽样.(4)是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回地、等可能地进行抽样.点评要判断所给的抽样方法是不是简单随机抽样,关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的上述四个特点.例2 若将例1(2)中的字眼“一次性”改为“逐个”,则该例便为简单随机抽样.即从30瓶果汁中逐个随机抽取3瓶进行质量检查.请选用合适的抽样方法,写出抽样过程.分析简单随机抽样分为两种:抽签法和随机数法.当总体容量和样本容量都较小时,可采用抽签法进行抽样.解(1)将30瓶果汁进行编号,号码为1,2,3, (30)(2)将1~30这30个编号写到大小、形状都相同的号签上;(3)将写好的号签放入一个不透明的容器中,并搅拌均匀;(4)从容器中每次抽取一个号签,连续不放回地抽取3次,并记录下上面的编号;(5)所得号码对应的3瓶果汁就是要抽取的样本.点评抽签法(也叫抓阄法)是简单随机抽样的一种方法,一个抽样试验是否能用抽签法,关键看两点:一是制作号签是否方便;二是号签是否容易被“搅拌均匀”.本题中,总体中个体数(30)较少,制作号签比较方便,并且容易被“搅拌均匀”,所以可以采用抽签法.将例2中的总体容量增大,我们该如何解决呢?比如例3.例3 现在要考察某公司生产的2.5 L的果汁质量是否达标,欲从400瓶果汁中抽取6瓶进行质量检查.请选用合适的方法抽样,并写出抽样过程.分析当总体容量较大,而样本容量较小时,因制签麻烦,故不宜用抽签法,可采用随机数法.解选用随机数法.步骤如下:第一步,先将400瓶果汁编号,可以编为001,002, (400)第二步,在随机数表中任选一个数作为开始,比如第6行第1个数,取出072作为抽取的6瓶果汁中的第一个代号(见课本后的附表随机数表);第三步,继续向右读,每次读取三位,凡不在001~400中的数或重复的数跳过去不读,取到末尾时转到下一行从左到右继续读数,如此下去直到得出在001到400之间的6个三位数,分别为072,170,133,199,291,105;第四步,找出与072,170,133,199,291,105对应的果汁作为样本.点评当总体中的个体较多,制作号签比较复杂,并且把号签搅拌均匀比较困难时,可以选择使用随机数法,本题将个体编号的位数统一为3位.使用随机数法应注意以下两点:(1)随机数法要求对个体编号且每个个体的号码位数必须相同.如对100个个体编号时应从00编到99(或者从001编到100),而不能用1,2,…,100.可见在总体中的个体进行编号时要视总体中个体的数目而定,但必须保证所编号码的位数一致,不允许出现不同位数的号码.(2)选定开始读的数后,读数的方向可左、可右、可上、可下,即任意方向均可.读数的方向不同可能导致不同的结果,但这一点不影响样本的公平性和合理性.2系统抽样题型全析在三种随机抽样中,系统抽样是较为重要的一种.当总体中的个体数较多时,可将总体分成均匀的几个部分,然后按预先定出的规则,从每一部分抽取一个个体,得到需要的样本,这种抽样方法叫做系统抽样,又称等距抽样.在抽样调查中,由于系统抽样简便易行,所以应用普遍.下面举例说明系统抽样的常见题型.一、系统抽样的选取问题例1 某商场想通过检查部分发票及销售记录来快速估计每月的销售金额,采用如下方法:从某本发票的存根中随机抽一张,如15号,然后按顺序将65号,115号,165号,…发票上的销售金额组成一个调查样本.这种抽取样本的方法是( )A .抽签法B .随机数法C .系统抽样法D .分层抽样分析 上述抽样方法是将发票平均分成若干组,每组50张,从第一组抽出了15号,以后各组抽15+50n (n ∈N +)号,符合系统抽样的特点.答案 C点评 将总体分成均匀的几部分,按照预先定出的规则在各部分中抽取是系统抽样的常用步骤.二、间隔问题例2 为了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k 为________.分析 要抽取n 个个体入样,需将N 个编号均分成n 组.(1)若N n 为整数,则抽样间隔为N n;(2)若N n 不是整数,则先剔除多余个体,再均分成n 组,此时抽样间隔为[N n]. 解析 根据样本容量为30,将1 200名学生分为30段,每段人数即间隔k =1 20030=40. 答案 40点评 将总体号码平均分组时,应先考虑总体容量N 是否能被样本容量n 整除.三、抽取的个数问题例3 为了了解参加一次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是( )A .2B .4C .5D .6分析 因为1 252=50×25+2,所以应随机剔除2个个体.答案 A点评 (1)用系统抽样法抽取多少个个体就需将总体均分成多少组;(2)当总体中的个体数不能被样本容量整除时,需要剔除个体.需要注意的是,即使是被剔除的个体,被抽到的机会和其他个体也是一样的.四、综合问题例4一个总体中的1 000个个体编号为0,1,2,…,999,并依次将其分为10个小组,组号为0,1,2,…,9.要用系统抽样法抽取一个容量为10的样本,规定如果在第0组随机抽取的号码为x,那么依次错位地得到后面各组的号码(即在第k组中抽取的号码的后两位数为x+33k 的后两位数).(1)当x=24时,写出所抽取样本的10个号码;(2)若所抽取的10个号码中某个数的后两位数是87,求x的取值范围.分析按系统抽样的规则计算求解.解(1)所分组为0~99,100~199,…,900~999共10组,从每组中抽一个,第0组取24,则第1组取100+(24+33×1)=157,依次错位地从每组中取出,所取的号码为24,157,290,323,456,589,622,755,888,921.(2)①若抽取的样本为两位数,当k=0,取得号码为87时,x=87;②若抽取的样本为三位数,则87为x+33k(k=1,2,…,9)的后两位数.如当k=5时,x+33×5=□87,可以求出x=22,这样令k取不同的值可以求得x的值分别为:21,22,23,54,55,56,87,88,89,90.综上:x∈{21,22,23,54,55,56,87,88,89,90}.点评本题是系统抽样法的逆向综合问题,体现了知识间的联系和数学思想的运用.3辨析分层抽样的解题方法若总体由差异明显的几部分组成,抽样时,先将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,再将各层取出的个体合在一起作为样本.这种抽样方法就是分层抽样.分层抽样尽量利用事先掌握的信息,并充分考虑了保持样本结构和总体结构的一致性,这对提高样本的代表性是很重要的.一、应用分层抽样应遵循以下要求:(1)将相似的个体归入一类,即为一层,分层抽样中分多少层、如何分层要视具体情况而定,总的原则是,层内样本的差异要小,层面之间的样本差异要大,且互不重叠.即遵循不重复、不遗漏的原则.(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等.即所有层应采用同一抽样比等可能抽样.(3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样.二、一般地,分层抽样的操作步骤:第一步,计算样本容量与总体的个体数之比.第二步,将总体分成互不交叉的层,按比例确定各层要抽取的个体数.第三步,用简单随机抽样或系统抽样在各层中抽取相应数量的个体.第四步,将各层抽取的个体合在一起,就得到所取样本.样本容量与总体的个体数之比是分层抽样的比例常数,按这个比例可以确定各层应抽取的个体数,如果各层应抽取的个体数不都是整数应当调节样本容量,剔除个体.三、分层抽样的优点使样本具有较强的代表性,并且抽样过程中可综合选用各种抽样方法,因此分层抽样是一种实用、操作性强、应用比较广泛的抽样方法.下面举例解析分层抽样的方法.例1某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样方法,则40岁以下年龄段应抽取________人.解析由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.40岁以下年龄段的职工数为200×0.5=100,则应抽取的人数为40200×100=20.答案3720点评简单随机抽样是基础,系统抽样与分层抽样是补充和发展,三者相辅相成,对立统一.保证每个个体等可能入样是简单随机抽样、系统抽样、分层抽样共同的特征,为了保证这一点,分层时用同一抽样比是必不可少的.例2某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.36解析设老年职工人数为x,则2x+x+160=430,所以x=90,因此,该单位老年职工共有90人,样本中老年职工人数为90×32160=18,所以用分层抽样的比例应抽取该样本中的老年职工人数为18.答案 B点评分层抽样要正确计算各层在总体中所占的比例,每层采用简单随机抽样法.分层抽样利用了调查者对调查对象事先掌握的各种信息,考虑了保持样本结构与总体结构的一致性,从而使样本更具代表性,在实际调查中被广泛应用.4浅析3种抽样方法的合理选取一、简单随机宜少量例1 据报道,2009年7月22日的“日全食”较为理想的观测地点有上海、重庆、苏州、杭州、合肥、武汉、宜昌、成都、乐山、嘉兴这10个城市.某天文小组从这10个城市中随机抽取4个城市进行观测,宜采用的抽样方法是______________,每个城市被选中的可能性是______________.解析由于总体中个体数目较少,所以宜采用简单随机抽样的方法进行抽样.每个城市被选中的可能性均相等,均为410=0.4.答案简单随机抽样0.4点评本题中个体总数较少,使用简单随机抽样中的抽签法即可.可以直接把10个城市名分别写在10个大小相同的纸条上,将纸条放在一个盒子里摇匀,逐个随机抽出4个即可.在整个抽样过程中可以保证每个个体被抽到的可能性相等,也可以进一步计算出相应的值.二、差别明显选分层例2 网络上有一种“QQ农场”游戏,这种游戏通过虚拟软件模拟种植与收获的过程.为了解某小区不同年龄层次的居民对此游戏的态度(小区中居民的年龄具有一定的差别),现从中抽取100人进行调查,结果如下表:请问随机抽取这100人较合理的抽样方法是________,调查结果得出后,若想从这100人中再选取20人进行座谈,较合理的抽样方法是____________.若这个小区共有2 000人,则每个人被抽到参加座谈的可能性为______.解析因为小区居民的年龄存在明显差异,故抽取这100人宜采用分层抽样.根据调查结果,有三种明显不同的态度,因此,选取20人参加座谈,也宜采用分层抽样.在整个抽样过程中,每个人被抽到的可能性是相同的,均为202 000=0.01.答案分层抽样分层抽样0.01点评分层抽样的过程是先把有差别的个体进行分层,在每一层中可以采用简单随机抽样或系统抽样的方法,这样也能保证每个个体被抽到的可能性相同.三、大量抽取选系统例3 2017年春节来临之际,某超市进行促销活动,为购买商品顾客分发了编号为0000~9999的奖券,超市计划从中抽取100张作为中奖号码,较合理的抽样方法是__________,每张奖券中奖的可能性为________.解析由于奖券数量较大,有10 000张奖券,所以宜采用系统抽样方法进行抽取.在抽样过程中,每张奖券被抽到的可能性是相等的,均为10010 000=0.01.答案系统抽样0.01点评当总体中个体数目较多时,首先把个体编号,进行平均分组(若不能整除,则随机剔除多余的个体),然后采用简单随机抽样的方法从第一组中抽取一个个体,即可知道应抽取的其他编号的个体.5频率分布图中的统计问题分类解析频率分布直方图将数理统计的数据直观化、形象化.关于统计一般可分为三步,第一步抽样,第二步根据抽样所得结果,画成图形,第三步根据图形,分析结论.在第二步中可画成两种图形,一个是频率分布直方图,另一个是频率分布条形图,两者有很大的不同,前者是以面积表示频率,频率分布条形图是以高度表示频率.下面就频率分布图中的统计问题分类解析.一、求样本中限制条件下的个体所占频率例1观察新生儿的体重,其频率分布直方图如图所示,则新生儿体重在[2 700,3 000)的频率为()A.0.001B.0.1C.0.2 D.0.3解析由直方图的意义可知,在区间[2 700,3 000)内取值的频率为(3 000-2 700)×0.001=0.3. 答案 D点评频率为相应直方图的面积,即频率=纵坐标×横坐标差的绝对值.二、求样本中限制条件下的个体的频数例2某市高三数学抽样考试中,对90分以上的成绩进行统计,其频率分布条形图如图所示.若130~140分数段的人数为90,则90~100分数段的人数为________.解析 由于90分以上的考试人数是样本总体,则图中5个分数段的频率之和等于1,设130~140分数段的频率为p ,则0.45+0.25+0.15+0.10+p =1,即0.95+p =1,则p =0.05.设该样本总体共有n 个学生的分数,且设90~100分数段的人数为x ,则由频率概念得⎩⎪⎨⎪⎧ 0.05×n =90,0.45×n =x ,解得⎩⎪⎨⎪⎧n =1 800,x =810,故90~100分数段的人数为810. 答案 810点评 本题是频率分布条形图.由于各分数段的人数与频率成正比,则可由x 90=0.450.05,求出x ;题设条形图的纵坐标是“频率”这是有别于常规的,在审题时不能混淆.例3 一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2 500,3 000)(元)月收入段应抽出________人.解析 由直方图可得[2 500,3 000)(元)月收入段共有10 000×0.000 5×500=2 500(人),按分层抽样应抽出2 500×10010 000=25(人). 答案 25点评 先求频数,频数=频率×样本容量,再按比例进行抽样.三、求频率分布直方图中的参数问题例4 为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力,得到频率分布直方图如图.由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则a ,b 的值分别为( )A .0.27,78B .0.27,83C .2.7,78D .2.7,83解析 注意到纵轴表示频率组距,由图像可知,前4组的公比为3,最大频率a =0.1×33×0.1=0.27,设后六组公差为d ,则0.01+0.03+0.09+0.27×6+5×62·d =1,解得d =-0.05,即后四组频率的公差为-0.05,所以,视力在4.6到5.0之间的学生数为(0.27+0.22+0.17+0.12)×100=78,故选A.答案 A点评 解答本题关键是要利用直方图中残缺不全的数据,分析它们之间存在的内在关系.6 学习变量的相关关系的注意点一、相关关系不一定是因果关系函数关系是一种因果关系,但相关关系不一定是因果关系,它仅是一种伴随关系. 例1 下列各组关系中,不属于相关关系的是( )A .降雪量与交通事故的发生之间的关系B .正方体的体积与棱长之间的关系C .日照时间与小麦的亩产量之间的关系D .人的身高与体重之间的关系解析 选B ,正方体的体积与棱长之间的关系是一种确定的函数关系.答案 B点评 本题易错选D.在人的身高与体重之间确实具有相关性,但人有胖瘦,所以,人的身高与体重之间没有因果关系,但有相关关系.二、注意区分回归方程中a 、b 的意义线性回归方程为y =bx +a ,其中b 是回归系数,而一次函数的习惯写法为y =ax +b ,不要把它们混淆了.另外,对于线性回归方程y =bx +a 有a =y -b x ,即y =b x +a .例2 一蚊香销售公司进行了一次市场调查,并统计了某品牌电热蚊香片的销售单价x (元/盒)与平均日销量y (盒),得到如下的数据资料:若由相关资料知,y 与x 呈线性相关关系.试求y 与x 的线性回归方程.解 由表中数据知x =16.8,y =29.8, ∑i =15x i y i =2 099,∑i =15x 2i =1 558,∴b =2 099-5×16.8×29.81 558-5×16.82≈-2.75, a =y -b x =29.8+2.75×16.8=76.所以所求的线性回归方程为y =-2.75x +76.点评 在写回归方程时,容易误写为y =76x -2.75,其原因是求出a 、b 后,把回归方程公式y =bx +a 中的a 、b 位置搞错了.三、注意建立回归方程的前提条件 当数据之间具有线性相关关系时才可以求回归方程.若数据之间不具有线性相关关系,即使用最小二乘法求出了回归方程,其回归方程也是没有实际意义的,不能用来作为估计的根据.所以求回归方程前一定要判断两个变量是否线性相关.例3 下表给出了x ,y 之间的一组数据:变量x ,y 之间是否具有相关关系?若有,求出线性回归方程.解 画出变量x ,y 的相关数据对应的散点图如图所示:由散点图可以看出,各点并不在一条直线附近,所以变量x ,y 之间不具有线性相关关系,不能用回归直线进行拟合,即使用样本数据求得回归方程也是没有意义的.点评 此题易产生如下错解,求得b =0,a =1.5,所以线性回归方程为y =1.5.产生错解的原因是没有考察变量x ,y 之间是否具有相关关系.。

2018版高中数学北师大版必修三学案:第一章 8 最小二

2018版高中数学北师大版必修三学案:第一章 8 最小二

学习目标 1.了解用最小二乘法建立线性回归方程的思想,会用给出的公式建立线性回归方程.2.理解回归直线与观测数据的关系,能用线性回归方程进行估计和预测.知识点一 最小二乘法思考 具有线性相关关系的散点大致分布在一条直线附近.如何确定这条直线比较合理?知识点二 线性回归方程思考 数学上的“回归”是什么意思?梳理 用最小二乘法得到的直线方程称为__________,a ,b 是线性回归方程的系数. 如果用x 表示x 1+x 2+…+x n n ,用y 表示y 1+y 2+…+y nn ,则可以求得b =(x 1-x )(y 1-y )+(x 2-x )(y 2-y )+…+(x n -x )(y n -y )(x 1-x )2+(x 2-x )2+…+(x n -x )2=x 1y 1+x 2y 2+…+x n y n -n x y x 21+x 22+…+x 2n-n x 2.a=________.类型一线性回归方程的求法例1下表为某地近几年机动车辆数与交通事故数的统计资料.(1)请判断机动车辆数与交通事故数之间是否具有线性相关关系,如果不具有线性相关关系,请说明理由;(2)如果具有线性相关关系,求出线性回归方程.反思与感悟即使散点图呈饼状,也可利用公式求出线性回归方程,但这种方程显然没什么价值.故应先画出散点图,看是否呈直线形,再求方程.跟踪训练1以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线.类型二线性回归方程的应用例2有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表:(1)画出散点图;(2)从散点图中发现气温与热饮销售杯数之间有什么关系;(3)求线性回归方程;(4)如果某天的气温是2℃,预测这天卖出的热饮杯数;(5) 气温为2℃时,小卖部一定能够卖出143杯左右热饮吗?为什么?反思与感悟线性回归方程主要用于预测,但这种预测类似于天气预报,不一定与实际数据完全吻合.跟踪训练2有人统计了同一个省的6个城市某一年的人均国民生产总值(即人均GDP)和这一年各城市患白血病的儿童数,如下表:(1)画出散点图,并判定这两个变量是否具有线性相关关系;(2)通过计算可知这两个变量的线性回归方程为y=23.25x+102.15,假如一个城市的人均GDP为12万元,那么可以断言,这个城市患白血病的儿童一定超过380人,请问这个断言是否正确?1.下列有关线性回归的说法,不正确的是()A.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B.在平面直角坐标系中用描点的方法得到表示具有相关关系的两个变量的一组数据的图形叫作散点图C.线性回归方程最能代表观测值x、y之间的线性关系D.任何一组观测值都能得到具有代表意义的线性回归方程2.已知回归直线的斜率的估计值是1.23,样本点中心(即(x,y))为(4,5),()A.y=1.23x+4B.y=1.23x+5C.y=1.23x+0.08D.y=0.08x+1.233.某产品的广告费用x与销售额y的统计数据如下表:根据上表可得线性回归方程y=bx+a中的b为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元B.65.5万元C.67.7万元D.72.0万元4.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的线性回归方程为y=0.85x-85.71,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(x,y)C.若该大学某女生身高增加1 cm,则其体重约增加0.85 kgD.若该大学某女生身高为170 cm,则可判定其体重必为58.79 kg1.求线性回归方程时应注意的问题(1)知道x与y成线性相关关系,无需进行相关性检验,否则应首先进行相关性检验,如果两个变量之间本身不具有相关关系,或者说,它们之间的相关关系不显著,即使求出线性回归方程也是毫无意义的,而且用其估计和预测的量也是不可信的.(2)用公式计算a、b的值时,要先计算b,然后才能算出a.2.利用线性回归方程,我们可以进行估计和预测.若线性回归方程为y=bx+a,则x=x0处的估计值为y0=bx0+a.答案精析问题导学 知识点一思考 应该使散点整体上最接近这条直线.最小二乘法是一种求回归直线的方法,用这种方法求得的回归直线能使样本数据的点到回归直线的距离 [y 1-(a +bx 1)]2+[y 2-(a +bx 2)]2+…+[y n -(a +bx n )]2最小. 知识点二思考 “回归”一词最早由英国统计学家(Francils Galton)提出的,本意是子女的身高会向一般人的均值靠拢.现在这个概念引伸到随机变量有向回归线集中的趋势. 梳理线性回归方程 y -b x 题型探究例1 解 (1)在平面直角坐标系中画出数据的散点图,如图.直观判断散点在一条直线附近,故具有线性相关关系. (2)计算相应的数据之和:∑i =18x i =1 031,∑i =18y i =71.6,∑i =18x 2i =137 835,∑i =18x i y i =9 611.7, x =128.875,y =8.95,将它们代入公式计算得b ≈0.077 4,a ≈-1.024 9, 所以,所求线性回归方程为y =0.077 4x -1.024 9. 跟踪训练1 解 (1)数据对应的散点图如图所示:(2)x =15∑i =15x i =109,y =23.2,∑i =15x 2i =60 975,∑i =15x i y i =12 952.设所求线性回归方程为y =bx +a ,则b =∑i =15x i y i -5x y∑i =15x 2i -5x2≈0.196 2,a =y -b x =23.2-109×0.196 2=1.814 2, 故所求线性回归方程为y =0.196 2x +1.814 2. 回归直线如(1)中图所示. 例2 解 (1)散点图如图所示:(2)从上图看到,各点散布在从左上角到右下角的区域里,因此,气温与热饮销售杯数之间呈负相关,即气温越高,卖出去的热饮杯数越少.(3)从散点图可以看出,这些点大致分布在一条直线的附近,因此,可用公式求出线性回归方程的系数.利用计算器容易求得线性回归方程为y =-2.352x +147.767.(4)当x =2时,y =143.063.因此,某天的气温为2℃时,这天大约可以卖出143杯热饮. (5)小卖部不一定能够卖出143杯左右热饮,原因如下:①线性回归方程中的截距和斜率都是通过样本估计出来的,存在误差,这种误差可以导致预测结果的偏差.②即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x的预报值,能够与实际值y很接近.我们不能保证点(x,y)落在回归直线上,甚至不能百分之百地保证它落在回归直线的附近.跟踪训练2解(1)散点图如下:根据散点图可以看出,在6个点中,虽然第一个点离这条直线较远,但其余5个点大致分布在这条直线的附近,所以这两个变量具有线性相关关系.(2)断言是错误的,将x=12代入y=23.25x+102.15得y=23.25×12+102.15=381.15>380,但381.15是对该城市人均GDP为12万元的情况下所作的一个估计,该城市患白血病的儿童可能超过380人,也可能低于380人.当堂训练1.D 2.C 3.B 4.D。

2018版高中数学北师大版必修三学案:第一章 统计 5-1 估计总体的分布-5-2 估计总体的数字特征 精品

2018版高中数学北师大版必修三学案:第一章 统计 5-1 估计总体的分布-5-2 估计总体的数字特征 精品

5.1 估计总体的分布 5.2 估计总体的数字特征[学习目标] 1.学会列频率分布表,会画频率分布直方图.2.会用频率分布表或频率分布直方图估计总体分布,并作出合理解释.3.在解决问题过程中,进一步体会用样本估计总体的思想,认识统计的实际作用,初步经历收集数据到统计数据的全过程.知识点一 频率分布表与频率分布直方图 1.用样本估计总体的两种情况 (1)用样本的频率分布估计总体的分布. (2)用样本的数字特征估计总体的数字特征. 2.作频率分布直方图的步骤(1)求极差:即一组数据中最大值和最小值的差;(2)决定组距与组数:将数据分组时,组数应力求合适,以使数据的分布规律能较清楚地呈现出来.这时应注意:①一般样本容量越大,所分组数越多;②为方便起见,组距的选择应力求“取整”;③当样本容量不超过120时,按照数据的多少,通常分成5~12组. (3)将数据分组:按组距将数据分组,分组时,各组均为左闭右开区间,最后一组是闭区间. (4)列频率分布表:一般分四列:分组、频数累计、频数、频率,最后一行是合计.其中频数合计应是样本容量,频率合计是1.(5)画频率分布直方图:画图时,应以横轴表示分组,纵轴表示频率/组距.其相应组距上的频率等于该组上的小长方形的面积.即每个小长方形的面积=组距×频率组距=频率.思考 为什么要对样本数据进行分组?答不分组很难看出样本中的数字所包含的信息,分组后,计算出频率,从而估计总体的分布特征.知识点二频率折线图在频率分布直方图中,按照分组原则,再在左边和右边各加一个区间.从所加的左边区间的中点开始,用线段依次连接各个矩形的顶端中点,直至右边所加区间的中点,就可以得到一条折线,我们称之为频率折线图.随着样本量的增大,所划分的区间数也可以随之增多,而每个区间的长度则会相应随之减小,相应的频率折线图就会越来越接近于一条光滑曲线.题型一频率分布直方图的绘制例1调查某校高三年级男生的身高,随机抽取40名高三男生,实测身高数据(单位:cm)如下:171163163166166168168160168165 171169167169151168170168160174 165168174159167156157164169180 176157162161158164163163167161(1)作出频率分布表;(2)画出频率分布直方图.解(1)最低身高151 cm,最高身高180 cm,它们的差是180-151=29,即极差为29;确定组距为4,组数为8,列表如下:(2)反思与感悟 1.组数的决定方法是:设数据总数目为n,一般地,当n≤50,则分为5~8组;当50≤n≤120时,则分为8~12组较为合适.2.分点数的决定方法是:若数据为整数,则分点数据减去0.5;若数据是小数点后一位的数,则分点减去0.05,以此类推.3.画频率分布直方图小长方形高的方法是:假设频数为1的小长方形的高为h,则频数为k 的小长方形高为kh.跟踪训练1美国历届总统中,就任时年纪最小的是罗斯福,他于1901年就任,当时年仅42岁;就任时年纪最大的是里根,他于1981年就任,当时69岁.下面按时间顺序(从1789年的华盛顿到2009年的奥巴马,共44任)给出了历届美国总统就任时的年龄:57,61,57,57,58,57,61,54,68,51,49,64,50,48,65,52,56,46,54,49,51,47,55,55,54,42,51,56,55,51,54,51, 60,62,43,55,56,61,52,69,64,46,54,48(1)将数据进行适当的分组,并画出相应的频率分布直方图和频率分布折线图.(2)用自己的语言描述一下历届美国总统就任时年龄的分布情况.解(1)以4为组距,列表如下:(2)从频率分布表中可以看出60%左右的美国总统就任时的年龄在50岁至60岁之间,45岁以下以及65岁以上就任的总统所占的比例相对较小. 题型二 频率分布直方图的应用例2 为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小矩形的面积之比为2∶4∶17∶15∶9∶3,第二小组的频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,则该校全体高一年级学生的达标率约是多少? 解 (1)频率分布直方图是以面积的形式来反映数据落在各小组内的频率大小的, 因此第二小组的频率为42+4+17+15+9+3=0.08.因为第二小组的频率=第二小组的频数样本容量,所以样本容量=第二小组的频数第二小组的频率=120.08=150.(2)由直方图可估计该校全体高一年级学生的达标率约为17+15+9+32+4+17+15+9+3×100%=88%.反思与感悟 1.频率分布直方图的性质:(1)因为小矩形的面积=组距×频率组距=频率,所以各小矩形的面积表示相应各组的频率.这样,频率分布直方图就以面积的形式反映了数据落在各个小组内的频率大小. (2)在频率分布直方图中,各小矩形的面积之和等于1. (3)频数相应的频率=样本容量. 2.频率分布直方图反映了样本在各个范围内取值的可能性,由抽样的代表性利用样本在某一范围内的频率,可近似地估计总体在这一范围内的可能性.跟踪训练2 如图所示是总体的一个样本频率分布直方图,且在[15,18)内频数为8. (1)求样本在[15,18)内的频率; (2)求样本容量;(3)若在[12,15)内的小矩形面积为0.06,求在[18,33)内的频数.解 由样本频率分布直方图可知组距为3.(1)由样本频率分布直方图得样本在[15,18)内的频率等于475×3=425.(2)样本在[15,18)内频数为8,由(1)可知,样本容量为8425=8×254=50.(3)∵在[12,15)内的小矩形面积为0.06,∴样本在[12,15)内的频率为0.06,故样本在[15,33)内的频数为50×(1-0.06)=47,又在[15,18)内频数为8,故在[18,33)内的频数为47-8=39. 题型三 频率分布与数字特征的综合应用例3 已知一组数据:125 121 123 125 127 129 125 128 130 129 126 124 125 127 126 122 124 125 126 128 (1)填写下面的频率分布表:(2)作出频率分布直方图;(3)根据频率分布直方图或频率分布表求这组数据的众数、中位数和平均数. 解 (1)(2)(3)在[125,127)中的数据最多,取这个区间的中点值作为众数的近似值,得众数126,事实上,众数的精确值为125.(2)图中虚线对应的数据是125+2×58=126.25,事实上中位数为125.5.使用“组中值”求平均数:x =122×0.1+124×0.15+126×0.4+128×0.2+130×0.15=126.3,平均数的精确值为x =125.75.反思与感悟 1.利用频率分布直方图估计数字特征: (1)众数是最高的矩形的底边的中点; (2)中位数左右两侧小矩形的面积相等;(3)平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.2.利用直方图求众数、中位数、平均数均为估计值,与实际数据可能不一致.跟踪训练3 某中学举行电脑知识竞赛,现将高一参赛学生的成绩进行整理后分成五组绘制成如图所示的频率分布直方图,已知图中从左到右的第一、二、三、四、五小组的频率分别是0.30、0.40、0.15、0.10、0.05.求:(1)高一参赛学生成绩的众数、中位数. (2)高一参赛学生的平均成绩. 解 (1)由图可知众数为65, 又∵第一个小矩形的面积为0.3,∴设中位数为60+x,则0.3+x×0.04=0.5,得x=5,∴中位数为60+5=65.(2)依题意,x=55×0.3+65×0.4+75×0.15+85×0.1+95×0.05=67,∴平均成绩约为67分.1.用样本频率分布估计总体频率分布的过程中,下列说法正确的是()A.总体容量越大,估计越精确B.总体容量越小,估计越精确C.样本容量越大,估计越精确D.样本容量越小,估计越精确答案 C解析由用样本估计总体的性质可得.2.频率分布直方图中,小矩形的面积等于()A.组距B.频率C.组数D.频数答案 B解析根据小矩形的宽及高的意义,可知小矩形的面积为一组样本数据的频率.3.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60C.120 D.140答案 D解析 设所求人数为N ,则N =2.5×(0.16+0.08+0.04)×200=140,故选D.4.某中学举办电脑知识竞赛,满分为100分,80分以上为优秀(含80分).现将高一两个班参赛学生的成绩进行整理后分成5组,绘制成频率分布直方图如下图所示.已知图中从左到右的第一、三、四、五小组的频率分别为0.30、0.15、0.10、0.05,而第二小组的频数是40,则参赛的人数是________,成绩优秀的频率是________. 答案 100 0.15解析 设参赛的人数为n ,第二小组的频率为1-(0.30+0.15+0.10+0.05)=0.4, 依题意40n=0.4,∴n =100,优秀的频率是0.10+0.05=0.15.1.频率分布是指一个样本数据在各个小范围内所占比例的大小,总体分布是指总体取值的频率分布规律,通常用样本的频率分布表或频率分布直方图去估计总体的分布.2.用同样的方法先后从总体中抽取两个大小相同的样本,但两次得到的样本频率分布表、样本频率分布直方图、样本的平均数和标准差仍然可能互不相同.如果抽样的方法比较合理,那么样本可以反映总体的信息,样本容量越大,越接近总体的真实情况.。

2018版高中数学北师大版必修三学案:第一章 6 统计活

2018版高中数学北师大版必修三学案:第一章 6 统计活

学习目标 1.了解一个统计活动的全过程,提高收集、处理数据的能力.2.能通过实例体会变量间的相关性.3.掌握相关关系的判断.能根据散点图对线性相关关系进行判断和直线拟合,从而对整体进行估计.知识点一统计活动的步骤思考这一章到目前为止,我们已经学了很多统计知识,你能简要概括一下统计都是做哪些工作吗?梳理统计活动的步骤:一般地,有(1)确定____________;(2)____________;(3)整理数据;(4)__________;(5)作出推断.知识点二散点图与曲线拟合思考假定我们已经有了两个量的一些对应取值,怎样处理这些数据才能便于我们观察猜想这两个量的关系?梳理一般地,在考虑两个量的关系时,为了对变量之间的关系有一个大致的了解,人们通常将____________的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图.从散点图上可以看出,如果变量之间________________,这些点会有一个________的大致趋势,这种趋势通常可以用一条____________来近似,这样近似的过程称为____________.知识点三相关关系思考数学成绩y与学习数学所用时间t之间的关系,能否用函数关系刻画?梳理一般地,函数关系中的两个变量间是一种确定性关系;相关关系是一种非确定性关系.函数关系是一种因果关系而相关关系不一定是因果关系,也可能是伴随关系.相关关系的分类(1)线性相关:若____________x和y的散点图中,所有点看上去都在____________附近波动,则称变量间是线性相关的.(2)非线性相关:若散点图上所有点看上去都在________(不是一条直线)附近波动,则称此相关为非线性相关的,此时,可以用____________来拟合.(3)不相关:如果所有的点在散点图中______________,则称变量间是不相关的.类型一统计活动的方案设计例1如何设计随着年代推移初次结婚年龄如何发生变化的统计活动.反思与感悟统计活动作出的推断结论的准确性,决定于抽取的样本是否具有代表性,以及样本容量的大小,一般来说,用科学的抽样方法抽取样本,并且样本容量足够大,这样的统计活动得到的结论准确性高,可信度大,可以作为决策依据.跟踪训练1请设计一个测量全班同学身高的试验.类型二变量之间的相关关系判断例2在下列两个变量的关系中,哪些是相关关系?(1)正方形边长与面积之间的关系;(2)作文水平与课外阅读量之间的关系;(3)人的身高与年龄之间的关系;(4)降雪量与交通事故发生率之间的关系.反思与感悟如果能够从两个变量的观察数据之间发现相关关系是极为有意义的,由此可以进一步研究二者之间是否蕴涵因果关系,从而发现引起这种相关关系的本质原因是什么.跟踪训练2有关法律规定,香烟盒上必须印上“吸烟有害健康”的警示语.吸烟是否一定会引起健康问题?有人认为“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法对吗?类型三散点图及曲线拟合例3在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:画出散点图,分析年龄与人体脂肪含量的关系.反思与感悟画散点图时应注意合理选择单位长度,避免图形过大或过小,或者是点的坐标在坐标系中画不准,使图形失真,导致得出错误结论.跟踪训练3如表所示为我国在1000年到2000年间的人口数量.(1)试画出散点图;(2)年份与人口是相关关系吗?你觉得用什么函数模型模拟效果比较好?1.对于给定的两个变量的统计数据,下列说法正确的是()A.都可以分析出两个变量的关系B.都可以用一条直线近似地表示两者的关系C.都可以作出散点图D.都可以用确定的表达式表示两者的关系2.观察下列散点图,具有相关关系的是()A.①②B.①③C.②④D.②③3.下列两个变量之间的关系,哪个不是函数关系()A.匀速行驶的车辆的行驶距离与时间B.角度和它的正弦值C.等腰直角三角形的腰长与面积D.在一定年龄段内,人的年龄与身高4.下列变量之间的关系是函数关系的是()A.圆的周长与半径B.施肥量和小麦亩产量C.降雨量和交通事故发生率D.学习时间和学习成绩1.判断变量之间有无相关关系,一种简便可行的方法就是绘制散点图.根据散点图,可以很容易看出两个变量是否具有相关关系,是不是线性相关.2.函数关系中的两个变量间是一种确定性关系;相关关系是一种非确定性关系.函数关系是一种因果关系而相关关系不一定是因果关系,也可能是伴随关系,函数关系与相关关系之间有着密切联系,在一定条件下可以互相转化.3.设计统计方案可以帮助我们更好地理解统计的全过程,其中收集数据过程实质是抽样,要强调样本的代表性;把数据整理成图表形式并计算特征数如平均数,标准差,可以估计总体分布,且便于交流.答案精析问题导学知识点一思考收集数据;整理数据;分析数据;估计总体.梳理(1)调查对象(2)收集数据(4)分析数据知识点二思考以一个量为横坐标,一个量为纵坐标画出图.梳理变量所对应存在着某种关系集中光滑的曲线曲线拟合知识点三思考一般来说,学数学的时间越长,成绩越好.但用时10小时,数学成绩却不是一个确定的数字.故不能用函数关系刻画.梳理(1)两个变量一条直线(2)某条曲线一条曲线(3)没有显示任何关系题型探究例1解我们可以按照如下的步骤来进行这个统计活动.(1)确定调查的对象:全班同学的父母辈和祖父母辈.调查目的:随着年代推移结婚年龄如何变化.(2)收集数据:每位同学收集自己父母辈和祖父母辈的初次结婚年龄,按照以下方式记录下来(如下表).(3)整理数据,把所收集到的数据汇总成一个表格.整理数据处理方法:利用计算机处理数据.(4)分析数据:①将上面的数据用折线图、频率分布直方图分别表示出来.同学们之间可进行交流、讨论,确定出比较合适的统计图.②分别估计父辈、母辈、祖父辈、祖母辈的初次结婚年龄的平均数与标准差,并进行比较.(5)作出推断,通过分析数据作出推断.跟踪训练1解试验的操作步骤设计如下:(1)准备身高测量仪(为了避免仪器的误差,准备3架身高测量仪);(2)安排负责仪器的人,一般每架仪器两人,一人测量一人记录;(3)组织学生排队依次测量.用每架测量仪各测量一次,将所得数据填入下表;(4)整理数据,用求平均值的方法算出每位同学的身高.例2解两变量之间的关系有:函数关系与带有随机性的相关关系.(1)正方形的边长与面积之间的关系是函数关系.(2)作文水平与课外阅读量之间的关系不是严格的函数关系,但是具有相关性,因而是相关关系.(3)人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而它们不具备相关关系.(4)降雪量与交通事故发生率之间具有相关关系.跟踪训练2解从已经掌握的知识来看,吸烟会损害身体的健康,但是除了吸烟之外,还有许多其他的因素影响身体健康,人体健康是很多因素共同作用的结果.我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题.但吸烟引起健康问题的可能性大.因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.例3解散点图如下;在散点图中,点散布在从左下角到右上角的区域,故人的年龄与人体脂肪含量是线性相关关系.跟踪训练3解(1)散点图如下:(2)由图可知,我国在1000年到2000年间的人口数量与年份是相关关系.因为增长速度越来越快,用指数模型模拟效果比较合适.当堂训练1.C 2.D 3.D 4.A。

2018学年高中数学北师大版必修3教学案:第一章 §4 4.1 - 4.2 平均数、中位数、众数、极差、方差 标准差

2018学年高中数学北师大版必修3教学案:第一章 §4 4.1 - 4.2 平均数、中位数、众数、极差、方差 标准差

数据的数字特征4.1 & 4.2 平均数、中位数、众数、极差、方差 标准差预习课本P25~31,思考并完成以下问题(1)什么是平均数、中位数、众数? (2)什么是极差、方差、标准差? (3)方差、标准差的计算公式是什么? [新知初探]1.平均数、中位数、众数(1)平均数如果有n 个数x 1,x 2,…,x n ,那么=,x x 1+x 2+ (x)n叫作这n 个数的平均数.(2)中位数把一组数据按从小到大的顺序排列,把处于最中间位置的那个数(或中间两数的平均数)称为这组数据的中位数.(3)众数一组数据中重复出现次数最多的数称为这组数的众数,一组数据的众数可以是一个,也可以是多个.[点睛] 如果有几个数据出现的次数相同,并且比其他数据出现的次数都多,那么这几个数据都是这组数据的众数;若一组数据中,每个数据出现的次数一样多,则认为这组数据没有众数.2.极差、方差、标准差(1)极差一组数据中最大值与最小值的差称为这组数据的极差.(2)方差标准差的平方s 2叫作方差.s 2=[(x 1-)2+(x 2-)2+…+(x n -)2].1n x x x 其中,x n 是样本数据,n 是样本容量,是样本平均数.x (3)标准差标准差是样本数据到平均数的一种平均距离,一般用s 表示.s = .1n[(x 1-x )2+(x 2-x )2+…+(xn -x )2][点睛] (1)标准差、方差描述了一组数据围绕着平均数波动的大小,标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.(2)标准差、方差为0时,表明样本数据全相等,数据没有波动幅度和离散性.(3)标准差的大小不会超过极差.[小试身手]1.判断正误.(正确的打“√”,错误的打“×”)(1)平均数反映了一组数据的平均水平,任何一个样本数据的改变都会引起平均数的变化.( )(2)一组数据中,有一半的数据不大于中位数,而另一半则不小于中位数,中位数反映了一组数据的中心的情况.中位数不受极端值的影响.( )(3)一组数据的众数的大小只与这组数据中的部分数据有关.( )(4)数据极差越小,样本数据分布越集中、稳定.( )(5)数据方差越小,样本数据分布越集中、稳定.( )答案:(1)√ (2)√ (3)√ (4)√ (5)√2.在某次考试中,10名同学的得分如下:84,77,84,83,68,78,70,85,79,95.则这一组数据的众数和中位数分别为( )A .84,68B .84,78C .84,81D .78,81解析:选C 将所给数据按从小到大排列得68,70,77,78,79,83,84,84,85,95,显然众数为84,而本组数据共10个,中间两位是79,83,它们的平均数为81,即中位数为81.3.某学生几次数学测试成绩的茎叶图如图所示,则该学生这几次数学测试的平均成绩为________.解析:根据茎叶图提供的信息知,这几次测试成绩为53,60,63,71,74,75,80.所以所求的平均成绩为×(53+60+63+71+74+75+80)=68.17答案:684.如图所示是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.解析:依题意知,运动员在5次比赛中的分数依次为8,9,10,13,15,其平均数为=11.8+9+10+13+155由方差公式得s 2=[(8-11)2+(9-11)2+(10-11)2+(13-11)2+(15-11)2]15=(9+4+1+4+16)=6.8.15答案:6.8中位数、众数、平均数的计算及应用[典例] 据报道,某公司的33名职工的月工资(以元为单位)如下:职务董事长副董事长董事总经理经理管理员职员人数11215320工资5 5005 0003 5003 0002 5002 0001 500(1)求该公司职工月工资的平均数、中位数、众数;(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又是什么?(精确到元)(3)你认为哪个统计量更能反映这个公司员工的工资水平,结合此问题谈一谈你的看法.[解] (1)平均数是=1 500+(4 000+3 500+2 000×2+1 500+1 000×5+500×3+0×20)≈1 500+591=2 x 133091(元),中位数是1 500元,众数是1 500元.(2)平均数是′=1 500+(28 500+18 500+2 000×2+1 500+1 000×5+500×3+0×20)≈1 500+1 x 133788=3 288(元).中位数是1 500元,众数是1 500元.(3)在这个问题中,中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.刻画一组数据集中趋势的统计量有平均数、中位数和众数等,它们作为一组数据的代表各有优缺点,也各有各的用处,从不同的角度出发,不同的人会选取不同的统计量来表达同一组数据的信息,不同的统计量会侧重突出某一方面的信息. [活学活用]1.某学习小组在一次数学测验中,得100分的有1人,95分的有1人,90分的有2人,85分的有4人,80分和75分的各1人,则该小组成绩的平均分、众数、中位数分别是( )A .85分、85分、85分B .87分、85分、86分C .87分、85分、85分D .87分、85分、90分解析:选C 由题意知,该学习小组共有10人,因此众数和中位数都是85,平均数为=87.100+95+2×90+4×85+80+75102.16位参加百米半决赛同学的成绩各不相同,按成绩取前8位进入决赛.如果小刘知道了自己的成绩后,要判断他能否进入决赛.则其他15位同学成绩的下列数据中,能使他得出结论的是( )A .平均数B .极差C .中位数D .方差解析:选C 判断是不是能进入决赛,只要判断是不是前8名,所以只要知道其他15位同学的成绩中是不是有8个高于他,也就是把其他15位同学的成绩排列后看第8个的成绩即可,小刘的成绩高于这个成绩就能进入决赛,低于这个成绩就不能进入决赛,这个第8名的成绩就是这15位同学成绩的中位数.方差、标准差的计算与应用[典例] 从甲、乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测试,两人在相同条件下各射击10次,命中的环数如下:甲:7,8,6,9,6,5,9,9,7,4.乙:9,5,7,8,7,6,8,6,7,7.(1)分别计算甲、乙两人射击命中环数的极差、众数和中位数;(2)分别计算甲、乙两人射击命中环数的平均数、方差、标准差;(3)比较两人的成绩,然后决定选择哪一个人参赛.[解] (1)对于甲:极差是9-4=5,众数是9,中位数是7;对于乙:极差是9-5=4,众数是7,中位数是7.(2)甲==7,x 7+8+6+9+6+5+9+9+7+410s =×[(7-7)2+(8-7)2+(6-7)2+(9-7)2+(6-7)2+(5-7)2+(9-7)2+(9-7)2甲1102+(7-7)2+(4-7)2]=2.8,s 甲==≈1.673.s 2甲2.8乙==7,x 9+5+7+8+7+6+8+6+7+710s =×[(9-7)2+(5-7)2+(7-7)2+(8-7)2+(7-7)2+(6-7)2+(8-7)2+(6-7)2乙1102+(7-7)2+(7-7)2]=1.2,s 乙==≈1.095.s 2乙1.2(3)∵甲=乙,s 甲>s 乙,x x ∴甲、乙两人的平均成绩相等,乙的成绩比甲的成绩稳定一些,从成绩的稳定性考虑,可以选择乙参赛.在实际问题中,仅靠平均数不能完全反映问题,还要研究方差,方差描述了数据相对平均数的离散程度.在平均数相同的情况下,方差越大,离散程度越大,数据波动性越大,稳定性越差;方差越小,数据越集中、越稳定. [活学活用]某班20位女同学平均分为甲、乙两组,她们的劳动技术课考试成绩如下(单位:分):甲组 60,90,85,75,65,70,80,90,95,80;乙组 85,95,75,70,85,80,85,65,90,85.(1)试分别计算两组数据的极差、方差和标准差;(2)哪一组的成绩较稳定?解:(1)甲组:最高分为95分,最低分为60分,极差为95-60=35(分),平均分为甲=×(60+90+85+75+65+70+80+90+95+80)=79(分),x 110方差为s =×[(60-79)2+(90-79)2+(85-79)2+(75-79)2+(65-79)2+(70-79)2甲1102+(80-79)2+(90-79)2+(95-79)2+(80-79)2]=119,标准差为s 甲==≈10.91(分).s 2甲119乙组:最高分为95分,最低分为65分,极差为95-65=30(分),平均分为乙=×(85+95+75+70+85+80+85+65+90+85)=81.5(分),x 110方差为s =×[(85-81.5)2+(95-81.5)2+(75-81.5)2+(70-81.5)2+(85-81.5)2乙1102+(80-81.5)2+(85-81.5)2+(65-81.5)2+(90-81.5)2+(85-81.5)2]=75.25,标准差为s 乙==≈8.67(分).s 2乙75.25(2)由于乙组的方差(标准差)小于甲组的方差(标准差),因此乙组的成绩较稳定.从(1)中得到的极差也可得到乙组的成绩比较稳定.数字特征与统计图表的综合问题[典例] (1)为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e ,众数为m o ,平均值为,则( )xA .m e =m o =B .m e =m o <x xC .m e <m o <D .m o <m e <x x(2)如图所示,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为A 和x B ,样本标准差分别为s A 和s B ,则( )xA.A >B ,s A >s BB.A <B ,s A >s B x x x xC.A >B ,s A <s BD.A <B ,s A <s Bx x x x [解析] (1)由条形统计图可知,30名学生的得分依次为2个3分,3个4分,10个5分,6个6分,3个7分,2个8分,2个9分,2个10分.中位数为第15,16个数(分别为5,6)的平均数,即m e =5.5,5出现次数最多,故m o =5.=≈5.97.x 2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×1030于是得m o <m e <.x (2)观察图形可得:样本A 的数据均小于或等于10,样本B 的数据均大于或等于10,故A <B ,又样本B 的波动范围较小,故s A >s B .x x [答案] (1)D (2)B(1)由于茎叶图保留了原始数据,因此根据茎叶图进行有关数据计算可以直接进行;另外,在茎叶图中,数据的分布能直观体现数据的平均水平和离散程度,因此给出茎叶图解决与平均数和方差有关的统计问题时,我们也可以直观观察来完成.(2)折线统计图研究样本数据的数字特征与横坐标和纵坐标的意义有关,一般情况下,整体分布位置较高的平均数大,波动性小的方差小.(3)若条形统计图的横坐标是单一数据,则可通过该统计图还原真实的样本数据,进而中位数、众数、平均数均可直接计算得到.(4)当条形统计图的横轴是区间形式,各数字特征就不能直接求出,但是可以近似估计.①中位数:条形统计图(直方图)中,中位数左边和右边的各矩形的面积和应该相等,由此可以估计中位数的值.②平均数:平均数的估计值等于条形统计图(直方图)中每个小矩形的高度(面积)乘小矩形底边中点的横坐标之积的总和.③众数:在条形统计图(直方图)中,众数是最高的矩形的中点的横坐标. [活学活用]1.样本数为9的四组数据,它们的平均数都是5,它们的条形统计图如图所示,则标准差最大的一组是( )A .第一组B .第二组C .第三组D .第四组解析:选D 法一:第一组中,样本数据都为5,数据没有波动幅度,标准差为0;第二组中,样本数据为4,4,4,5,5,5,6,6,6,标准差为;63第三组中,样本数据为3,3,4,4,5,6,6,7,7,标准差为;253第四组中,样本数据为2,2,2,2,5,8,8,8,8,标准差为2.2故标准差最大的一组是第四组.法二:从四个条形图可看出第一组数据没有波动性,第二、三组数据的波动性都比较小,而第四组数据的波动性相对较大,利用标准差的意义可以直观得到答案.2.如图是某青年歌手大奖赛上七位评委为甲、乙两名选手打出的分数的茎叶图(其中m为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1,a2,则一定有( )A.a1>a2B.a2>a1C.a1=a2D.a1,a2的大小与m的值有关解析:选B 去掉的最低分和最高分就是第一行和第三行的数据,剩下的数据我们只要计算其叶上数字之和即可.此时甲选手叶上的数字之和是20,乙选手叶上的数字之和是25,故a2>a1.[层级一 学业水平达标]1.对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56 B.46,45,53C.47,45,56 D.45,47,53解析:选A 样本的中位数是(45+47)÷2=46,众数是45,极差为68-12=56.2.某学校为了了解学生课外阅读情况,随机调查了50名学生,得到他们在每一天各自课外阅读所用时间的数据,结果用条形统计图表示如下,根据条形统计图估计该校全体学生这一天平均每人的课外阅读时间为( )A.0.6 h B.0.9 hC.1.0 h D.1.5 h解析:选B 由条形统计图可得,这50名学生这一天平均每人的课外阅读时间为=0.9(h),因此估计该校全体学5×0+20×0.5+10×1.0+10×1.5+5×2.050生这一天平均每人的课外阅读时间为0.9 h.3.若一个样本容量为8的样本的平均数为5,方差为2.现样本中又加入一个新数据5,此时样本容量为9,平均数为,方差为s 2,则( )x A.=5,s 2<2 B.=5,s 2>2x x C.>5,s 2<2 D.>5,s 2>2x x 解析:选A ∵(x 1+x 2+…+x 8)=5,∴(x 1+x 2+…+x 8+5)=5,∴=5.1819x 由方差定义及意义可知加入新数据5后,样本数据取值的稳定性比原来强,∴s 2<2,故选A.4.小明5次上学途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为________.解析:由题意可得x +y =20,(x -10)2+(y -10)2=8,设x =10+t ,y =10-t ,则t 2=4,|t |=2,故|x -y |=2|t |=4.答案:4[层级二 应试能力达标]1.样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( )A. B.6565C.D .22解析:选D 由题可知样本的平均值为1,所以=1,解得a =-1,a +0+1+2+35所以样本的方差为[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.152.甲、乙、丙、丁四人参加奥运会射击项目选拔赛,四人的平均成绩和方差如下表所示:甲乙丙丁平均环数x 8.68.98.98.2方差s 23.53.52.15.6从这四个人中选择一人参加奥运会射击项目比赛,最佳人选是( )A .甲 B .乙C .丙D .丁解析:选C 由表可知,乙、丙的成绩最好,平均环数都为8.9,但乙的方差大,说明乙的波动性大,所以丙为最佳人选.3.如果5个数x 1,x 2,x 3,x 4,x 5的平均数是7,那么x 1+1,x 2+1,x 3+1,x 4+1,x 5+1这5个数的平均数是( )A .5B .6C .7D .8解析:选D 法一(定义法):依题意x 1+x 2+…+x 5=35,所以(x 1+1)+(x 2+1)+…+(x 5+1)=40,故所求平均数为=8.405法二(性质法):显然新数据(记为y i )与原有数据的关系为y i =x i +1(i =1,2,3,4,5),故新数据的平均数为+1=8.x 4.某班有48名学生,在一次考试中统计出平均分为70分,方差为75,后来发现有2名同学的分数登记错了,甲实得80分,却记了50分,乙实得70分,却记了100分,更正后平均分和方差分别是( )A .70,75B .70,50C .75,1.04D .62,2.35解析:选B 因甲少记了30分,乙多记了30分,故平均分不变,设更正后的方差为s 2,则由题意可得s 2=[(x 1-70)2+(x 2-70)2+…+(80-70)2+(70-70)2+…+(x 48-70)2],148而更正前有75=[(x 1-70)2+(x 2-70)2+…+(50-70)2+(100-70)2+…+(x 48-70)2],化148简整理得s 2=50.5.某校开展“爱我海西、爱我家乡”摄影比赛,9位评委为参赛作品A 给出的分数的茎叶图如图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91.复核员在复核时,发现有一个数字(茎叶图中的x )无法看清.若记分员计算无误,则数字x 应该是________.解析:由茎叶图可知最低分为88.若90+x 为最高分,则平均分为≈91.4≠91.故最高分为94.则去掉最高分94和最低分88,平89+89+91+92+92+93+9478899923x214均分为=91,解得x =1.89+89+91+92+92+93+(90+x )7答案:16.一农场在同一块稻田中种植一种水稻,其连续8年的产量(单位:kg)如下:450,430,460,440,450,440,470,460,则该组数据的方差为________.解析:根据题意知,该组数据的平均数为×(450+430+460+440+450+440+470+460)=450,18所以该组数据的方差为×(02+202+102+102+02+102+202+102)=150.18答案:1507.由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________(从小到大排列).解析:不妨设x 1≤x 2≤x 3≤x 4且x 1,x 2,x 3,x 4为正整数,则由已知条件可得Error!即得Error!又∵x 1,x 2,x 3,x 4为正整数,∴x 1=x 2=x 3=x 4=2或x 1=1,x 2=x 3=2,x 4=3或x 1=x 2=1,x 3=x 4=3,∵s ==1,∴x 1=x 2=1,x 3=x 4=3.由此14[(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2]可得这四个数为1,1,3,3.答案:1,1,3,38.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示.(1)请填写下表:平均数方差中位数命中9环及9环以上的次数甲乙(2)请从下列四个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看(谁的成绩更稳定);②从平均数和中位数相结合看(谁的成绩好些);③从平均数和命中9环及9环以上的次数相结合看(谁的成绩好些);④从折线统计图上两人射击命中环数的走势看(谁更有潜力).解:(1)由图可知,甲打靶的成绩为9,5,7,8,7,6,8,6,7,7,乙打靶的成绩为2,4,6,8,7,7,8,9,9,10.甲的平均数为7,方差为1.2,中位数是7,命中9环及9环以上的次数为1;乙的平均数为7,方差为5.4,中位数是7.5,命中9环及以上次数为3.如下表:平均数方差中位数命中9环及9环以上的次数甲7 1.271乙7 5.47.53(2)①甲、乙的平均数相同,乙的方差较大,所以甲的成绩更稳定;②甲、乙的平均数相同,乙的中位数较大,所以乙的成绩好些;③甲、乙的平均数相同,乙命中9环及9环以上的次数比甲多,所以乙的成绩较好;④从折线统计图上看,在后半部分,乙呈上升趋势,而甲起伏不定,且均未超过乙,故乙更有潜力.9.某校拟派一名跳高运动员参加一项校际比赛,对甲、乙两名跳高运动员进行了8次选拔比赛,他们的成绩(单位:m)如下:甲:1.70,1.65,1.68,1.69,1.72,1.73,1.68,1.67;乙:1.60,1.73,1.72,1.61,1.62,1.71,1.70,1.75.经预测,跳高1.65 m 就很可能获得冠军.该校为了获取冠军,可能选哪位选手参赛?若预测跳高1.70 m 方可获得冠军呢?解:甲的平均成绩和方差如下:甲=(1.70+1.65+1.68+1.69+1.72+1.73+1.68+1.67)=1.69,x 18s =[(1.70-1.69)2+(1.65-1.69)2+…+(1.67-1.69)2]=0.000 6.2甲18乙的平均成绩和方差如下:乙=(1.60+1.73+1.72+1.61+1.62+1.71+1.70+1.75)=1.68,x 18s =[(1.60-1.68)2+(1.73-1.68)2+…+(1.75-1.68)2]=0.003 15.2乙18显然,甲的平均成绩好于乙的平均成绩,而且甲的方差小于乙的方差,说明甲的成绩比乙稳定.由于甲的平均成绩高于乙,且成绩稳定,所以若跳高1.65 m 就很可能获得冠军,应派甲参赛.在这8次选拔赛中乙有5次成绩在1.70 m 以上,虽然乙的平均成绩不如甲,成绩的稳定性也不如甲,但成绩突破1.70 m 的可能性大于甲,所以若跳高1.70 m 方可获得冠军,应派乙参赛.。

高中数学第一章统计章末复习提升学案北师大版必修3(2021学年)

高中数学第一章统计章末复习提升学案北师大版必修3(2021学年)

2017-2018版高中数学第一章统计章末复习提升学案北师大版必修3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018版高中数学第一章统计章末复习提升学案北师大版必修3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018版高中数学第一章统计章末复习提升学案北师大版必修3的全部内容。

第一章统计1.关于抽样方法(1)用随机数法抽样时,对个体所编号码位数要相同,当问题所给位数不同时,以位数较多的为准,在位数较少的数前面添“0”,凑齐位数.(2)用系统抽样法时,如果总体容量N能被样本容量n整除,抽样间隔为k=错误!;如果总体容量N不能被样本容量n整除,先用简单随机抽样剔除多余个体,抽样间隔为k=错误!(其中K =N-多余个体数).(3)三种抽样方法的异同点类别共同点各自特点相互联系适用范围简单随机抽样抽样过程中每个个体被抽到的可能性相同从总体中逐个抽取总体中的个体数较少系统抽样将总体平均分成几部分,按事先确定的规则在起始部分抽样时,采用简单随机抽样总体中的个体数较多分别在各部分中抽取分层抽样将总体分成几层,按各层个体数之比抽取各层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成2。

关于用样本估计总体(1)用样本频率分布估计总体频率分布时,通常要对给定的一组数据进行列表、作图处理,作频率分布表与频率分布直方图时要注意其方法步骤.(2)茎叶图刻画数据有两个优点:一是所有信息都可以从图中得到;二是茎叶图中的数据可以随时记录,随时添加,便于记录和表示.(3)平均数反映了样本数据的平均水平,而标准差反映了样本数据的波动程度.3.变量间的相关关系(1)除了函数关系这种确定性的关系外,还大量存在因变量的取值带有一定随机性的两个变量之间的关系——相关关系,对于一元线性相关关系,通过建立回归方程就可以根据其部分观测值,获得对这两个变量之间的整体关系的了解,主要是作出散点图,写出回归方程.(2)求回归方程的步骤:①先把数据制成表,从表中计算出x,错误!,错误!错误!,错误!i yi;②计算回归系数错误!,错误!.公式为错误!③写出回归方程错误!=错误!x+错误!.题型一抽样方法的运用1.抽样方法有:简单随机抽样、系统抽样、分层抽样.2.三种抽样方法比较例1 (1)某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名,现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( )A.6 ﻩB.8C.10 ﻩD.12(2)问题:①某小区有800户家庭,其中高收入家庭200户,中等收入家庭480户,低收入家庭120户,为了了解有关家用轿车购买力的某个指标,要从中抽取一个容量为100的样本;②从10名学生中抽取3人参加座谈会.方法:(1)简单随机抽样;(2)系统抽样;(3)分层抽样.则问题与方法配对正确的是( )A.①(1),②(2)ﻩB.①(3),②(2)C.①(2),②(3) ﻩD.①(3),②(1)答案(1)B (2)D解析(1)分层抽样的原理是按照各部分所占的比例抽取样本.设从高二年级抽取的学生数为n,则\f(30,40)=错误!,得n=8。

[推荐学习]2018北师大版高中数学必修三学案:第一章 5 用样本估计总体

[推荐学习]2018北师大版高中数学必修三学案:第一章 5 用样本估计总体

学习目标 1.学会列频率分布表,会画频率分布直方图.2.会用频率分布表或分布直方图估计总体分布,并作出合理解释.3.在解决问题过程中,进一步体会用样本估计总体的思想,认识统计的实际作用,初步经历收集数据到统计数据的全过程.知识点一总体的分布思考如果把我国初生婴儿的性别作为总体,那么它的分布是指什么?梳理一般地,总体分布是指总体中个体所占的比例.知识点二用频率分布表或频率分布直方图估计总体分布思考1要做频率分布表,需要对原始数据做哪些工作?思考2如何决定组数与组距?思考3同样一组数据,如果组距不同,得到的频率分布直方图也会不同吗?梳理1.频率分布直方图,数据落在各小组内的频率用频率分布直方图的________在频率分布直方图中,纵轴表示f iΔx i来表示,各小长方形的面积的总和等于____.2.频率折线图在频率分布直方图中,按照分组原则,再在左边和右边各加一个区间,从所加的左边区间的________开始,用线段依次连接各个矩形的____________,直至右边所加区间的________,就可以得到一条折线,我们称之为频率折线图.3.随着样本容量不断增大,样本中落在每个区间内的样本数的________会越来越稳定于总体在相应区间内取值的________.随着样本量的增大,所划分的区间数也可以随之增多,而每个区间的长度则会相应随之减小.相应的频率折线图就会越来越接近于一条光滑曲线.知识点三总体的数字特征思考如果想知道某一历史时期黄河流域男性平均身高,有可能获得总体数据吗?怎么办?梳理一般地,1.现实中的总体所包含的个体数往往很难获得,总体的平均数与标准差是未知的,我们通常用样本的平均数和标准差去估计总体的平均数与标准差,但要求样本有较好的代表性.2.在抽样过程中,抽取的样本是具有随机性的,因此样本的数字特征也有随机性.用样本的数字特征估计总体的数字特征,是一种统计思想,没有唯一答案.类型一用频率分布表及频率分布直方图估计总体分布例1下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位:cm).(1)列出样本频率分布表;(2)画出频率分布直方图;(3)估计身高小于134 cm的人数占总人数的百分比.反思与感悟频率分布表和频率分布直方图之间的密切关系是显然的,它们只不过是相同的数据的两种不同的表达方式,是通过各小组数据在样本容量中所占比例大小来表示数据的分布规律,它可以让我们更清楚地看到整个样本数据的频率分布情况,并由此估计总体的分布情况.跟踪训练1为了了解中学生身体发育情况,对某中学17岁的60名女生的身高(单位:cm)进行了测量,结果如下:154159166169159156166162158159156166160164160157151157161162158153158164158163158153157168162159154165166157155146151158160165158163163162161154165161162159157159149164168159153160列出样本的频率分布表;绘出频率分布直方图和频率折线图.类型二估计总体数字特征例2为了解A,B两种轮胎的性能,某汽车制造厂分别从这两种轮胎中随机抽取了8个进行测试,下面列出了每种轮胎行驶的最远里程数(单位:1 000 km)轮胎A96,112,97,108,100,103,86,98轮胎B108,101,94,105,96,93,97,106(1)分别计算A,B两种轮胎行驶的最远里程的平均数、中位数;(2)分别计算A,B两种轮胎行驶的最远里程的极差、标准差;(3)根据以上数据你认为哪种型号的轮胎性能更加稳定?反思与感悟平均数、中位数、众数、极差、方差等统计量是将多个数据“加工”成一个数据,能更清楚地反映这组数据的某些重要特征,要理解这些统计量表达的信息.跟踪训练2为迎接5月31日世界无烟日的到来,小华对10名戒烟成功者戒烟前和戒烟5个星期后的体重(单位:kg)作了认真统计,并记录如下表所示:(1)求这10人在戒烟前和戒烟后的体重的平均数;(2)求这10人在戒烟前和戒烟后的体重的方差;(3)通过上述数据,你能得到什么结论?1.用样本频率分布估计总体频率分布的过程中,下列说法正确的是()A.总体容量越大,估计越精确B.总体容量越小,估计越精确C.样本容量越大,估计越精确D.样本容量越小,估计越精确2.下列说法不正确的是()A.频率分布直方图中每个小矩形的高就是该组的频率B.频率分布直方图中各个小矩形的面积之和等于1C.频率分布直方图中各个小矩形的宽一样大D.频率分布折线图是从所加的左边区间的中点开始,用线段依次连接频率分布直方图的每个小矩形上端中点,直至右边所加区间的中点得到的3.某校为了了解高三学生的身体状况,抽取了100名女生的体重.将所得的数据整理后,画出了如图的频率分布直方图,则所抽取的女生中体重在40~45 kg的人数是()A.10 B.2 C.5 D.154.一个容量为20的样本数据,分组后组距与频数如下表:则样本在[10,50)上的频率为()A.0.5 B.0.24C.0.6 D.0.75.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示.(1)直方图中x的值为__________;(2)在这些用户中,用电量落在区间[100,250)内的户数为________.1.频率分布是指一个样本数据在各个小范围内所占比例的大小,总体分布是指总体取值的频率分布规律,我们通常用样本的频率分布表或频率分布直方图去估计总体的分布.2.用同样的方法先后从总体中抽取两个大小相同的样本,但两次得到的样本频率分布表、样本频率分布直方图、样本的平均数和标准差仍然可能互不相同,是样本的随机性造成的,是不可避免的.只要抽样的方法比较合理,就能反映总体的信息,当样本量很大时,就比较接近总体的真实情况.答案精析问题导学 知识点一思考 是指男女性别的比例. 知识点二思考1 分组,频数累计,计算频数和频率. 思考2 若极差组距为整数,则极差组距=组数.若极差组距不为整数,则⎣⎢⎡⎦⎥⎤极差组距+1=组数.注意:[x ]表示不大于x 的最大整数.思考3 不同.对于同一组数据分析时,要选好组距和组数,不同的组距与组数对结果有一定的影响. 梳理1.面积 1 2.中点 顶端中点 中点 3.频率 概率 知识点三思考 时代变迁,已经不可能获得所有数据,但可以根据出土的同时期样本数据计算平均身高来估计. 题型探究例1 解 (1)样本频率分布表如下:(2)频率分布直方图如下:(3)由样本频率分布表可知身高小于134 cm 的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134 cm 的人数占总人数的19%.跟踪训练1 解 第一步,求极差:上述60个数据中最大为169,最小为146.故极差为169-146=23(cm).第二步,确定组距和组数,可取组距为3 cm , 则组数为233=723,可将全部数据分为8组.第三步,确定区间界限:[145.5,148.5),[148.5,151.5),[151.5,154.5),[154.5,157.5),[157.5,160.5),[160.5,163.5),[163.5,166.5),[166.5,169.5). 第四步,列频率分布表:第五步,根据上述数据绘制频率分布直方图:第六步,在频率分布直方图中,按照分组原则,再在左边和右边各加一个区间,从所加的左边区间的中点开始,用线段依次连接各个矩形的顶端中点,直至右边所加区间的中点,就可以得到一条折线即为频率折线图.例2 解 (1)A 轮胎行驶的最远里程的平均数为 96+112+97+108+100+103+86+988=100,中位数为100+982=99;B 轮胎行驶的最远里程的平均数为108+101+94+105+96+93+97+1068=100,中位数为101+972=99.(2)A 轮胎行驶的最远里程的极差为112-86=26,标准差为s =(-4)2+122+(-3)2+82+0+32+(-14)2+(-2)28=2212≈7.43;B 轮胎行驶的最远里程的极差为108-93=15,标准差为s =82+12+(-6)2+52+(-4)2+(-7)2+(-3)2+628=1182≈5.43.(3)由于A 和B 的最远行驶里程的平均数相同,而B 轮胎行驶的最远里程的极差和标准差较小,所以B 轮胎性能更加稳定.跟踪训练2 解 (1)将数据按从小到大的顺序重新排列; 戒烟前:52,52,55,55,60,60,64,67,69,80; 戒烟后:52,54,55,57,58,62,67,68,70,81.求得x戒烟前=61.4(kg),x戒烟后=62.4(kg).(2)s2戒烟前=110[(67-61.4)2+(80-61.4)2+…+(60-61.4)2]=70.44,s2戒烟后=110[(70-62.4)2+(81-62.4)2+…+(58-62.4)2]=73.84.(3)从戒烟前后两组数据的统计量知:从平均数看,戒烟后这10人的平均体重增加了1 kg;从方差看,戒烟后数据的波动比戒烟前数据的波动大,说明戒烟对不同的人所发生的变化程度是不同的,通过对这两组数据的统计分析,得出结论:吸烟有害健康,戒烟对身体健康是有益的.当堂训练1.C 2.A 3.A 4.D5.(1)0.004 4(2)70解析(1)(0.002 4+0.003 6+0.006 0+x+0.002 4+0.001 2)×50=1,∴x=0.004 4.(2)(0.003 6+0.004 4+0.006 0)×50×100=70.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习目标 1.会根据不同的特点选择适当的抽样方法获得样本数据.2.能利用图、表对样本数据进行整理分析,用样本和样本的数字特征估计总体.3.能利用散点图对两个变量是否相关进行初步判断,能用线性回归方程进行预测.
1.抽样方法
(1)当总体容量较小,样本容量也较小时,可采用______________. (2)当总体容量较大,样本容量较小时,可用__________________. (3)当总体容量较大,样本容量也较大时,可用____________________. (4)当总体由差异明显的几部分组成时,可用__________________. 2.用样本估计总体
用样本频率分布估计总体频率分布时,通常要对给定的一组数据作频率________与频率____________.当样本只有两组数据且样本容量比较小时,用________刻画数据比较方便. 3.样本的数字特征
样本的数字特征可分为两大类:一类是反映样本数据集中趋势的,包括________、________和________;另一类是反映样本波动大小的,包括________及________. 4.变量间的相关关系
(1) 两个变量之间的相关关系的研究,通常先作变量的________,根据散点图判断这两个变量最接近于哪种确定性关系(函数关系). (2)求线性回归方程的步骤:
①先把数据制成表,从表中计算出x ,y
,∑n
i =1x 2
i ,∑n
i =1
x i y i ; ②计算回归系数a ,b .公式为⎩⎪⎨⎪⎧
b =
∑n
i =1
x i y i
-n x y
∑n i =1
x 2i
-n x 2

a =y -
b x .
③写出线性回归方程y=bx+a.
类型一抽样方法的应用
例1某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,干事20人,上级机关为了了解机关人员对政府机构的改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,如何抽取?
反思与感悟三种抽样方法并非截然分开,它们都能保证个体被抽到的机会相等.
跟踪训练1某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名,现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为()
A.6 B.8 C.10 D.12
类型二用样本的频率分布估计总体分布
例2有1个容量为100的样本,数据(均为整数)的分组及各组的频数如下:
[12.5,15.5),6;[15.5,18.5),16;[18.5,21.5),18;
[21.5,24.5),22;[24.5,27.5),20;[27.5,30.5),10;
[30.5,33.5),8.
(1)列出样本的频率分布表;
(2)画出频率分布直方图;
(3)估计数据小于30的数据约占多大百分比.
反思与感悟借助图表,可以把抽样获得的庞杂数据变得直观,凸显其中的规律,便于信息的提取和交流.
跟踪训练2为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图,由于不慎将部分数据丢失,但知道后5组频数和为62,视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为()
A.64 B.54 C.48 D.27
类型三用样本的数字特征估计总体的数字特征
例3甲、乙两机床同时加工直径为100 cm的零件,为检验质量,各从中抽取6件测量,数据为
甲:9910098100100103
乙:9910010299100100
(1)分别计算两组数据的平均数及方差;
(2)根据计算结果判断哪台机床加工零件的质量更稳定.
反思与感悟样本的数字特征就像盲人摸到的象的某一局部特征,只有把它们结合起来才能看到全貌.
跟踪训练3对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:
问:甲、乙谁的平均成绩好?谁的各门功课发展较平衡?
类型四线性回归方程的应用
例4下表提供了某厂节能降耗技术改进后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y=bx+a;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
反思与感悟 散点图经最小二乘法量化为线性回归方程后,更便于操作(估计、预测),但得到的值仍是估计值.
跟踪训练4 2017年元旦前夕,某市统计局统计了该市2016年10户家庭的年收入和年饮食支出的统计资料如表:
(1)如果已知y 与x 成线性相关关系,求线性回归方程; (2)若某家庭年收入为9万元,预测其年饮食支出. (参考数据:∑10
i =1
x i y i =117.7,∑10
i =
1
x 2i =406)
1.10个小球分别编有号码1,2,3,4,其中1号球4个,2号球2个,3号球3个,4号球1个,则数0.4是指1号球占总体分布的( ) A .频数 B .概率 C .频率
D .累积频率
2.为了了解全校1 320名高一学生的身高情况,从中抽取220名学生进行测量,下列说法正确的是( ) A .样本容量是220 B .个体是每一个学生。

相关文档
最新文档