高中数学第一章计数原理1.3.1二项式定理课件新人教B版选修2_3
(vip免费)【数学】1.3.1《二项式定理(一)》课件(新人教A版选修2-3)
2.求(3b+2a)6的展开式的第3项.
3.写出
(3
x
1 )n 23 x
的展开式的第r+1项.
4.用二项式定理展开:
(1) (a 3 b )9 ;
(5.2化)简(:2x
2 )7 x
.
(1)(1 x )5 (1
x)5 ;
1
(2)(2x 2
3x
1 2
)
4
1
(2x 2
3x
1 2
)
4
Thank you!
2).各项前的系数代表着什么? 各项前的系数 代表着这些项在展开式 中出现的次数
3).你能分析说明各项前的系数吗?
3).你能分析说明各项前的系数吗?
a4 a3b a2b2 ab3 b4 每个都不取b的情况有1种,即C40 ,则a4前的 系数为C40
恰有1个取b的情况有C41种,则a3b前的系数为C41 恰有2个取b的情况有C42 种,则a2b2前的系数为C42 恰有3个取b的情况有C43 种,则ab3前的系数为C43 恰有4个取b的情况有C44种,则b4前的系数为C44
青 春 风 采
高考总分:
692分(含20分加分) 语文131分 数学145分 英语141分 文综255分
毕业学校:北京二中 报考高校:
北京大学光华管理学 院
北京市文科状元 阳光女孩--何旋
来自北京二中,高考成绩672分,还有20 分加分。“何旋给人最深的印象就是她 的笑声,远远的就能听见她的笑声。” 班主任吴京梅说,何旋是个阳光女孩。 “她是学校的摄影记者,非常外向,如 果加上20分的加分,她的成绩应该是 692。”吴老师说,何旋考出好成绩的秘 诀是心态好。“她很自信,也很有爱心。 考试结束后,她还问我怎么给边远地区 的学校捐书”。
新教材 人教B版高中数学选择性必修第二册全册精品教学课件(共958页)
3.1.1 基本计数原理 P2
3.1.2 排列与排列数 P80
3.1.3 组合与组合数 P167
3.3 二项式定理与杨辉三角 P234
4.1 条件概率与事件的独立性
4.1.1 条件概率 P315
4.1.2 乘法公式与全概率公式 P351
4.1.3 独立性与条件概率的关系 P428
4.2 随机变量
2.(变条件,变结论)本例(2)换为:用数字 1,2,3 可以组成多少个 没有重复数字的整数?
[解] 分三类: ①第一类为一位整数,有 1,2,3,共 3 个; ②第二类为二位整数,有 12,13,21,23,31,32,共 6 个; ③第三类为三位整数,有 123,132,213,231,312,321,共 6 个. ∴共组成 3+6+6=15 个无重复数字的整数.
的个数是( )
A.1
B.3
C.6
D.9
D [这件事可分为两步完成:第一步,在集合{2,3,7}中任取一个
值 x 有 3 种方法;第二步,在集合{-1,-2,4}中任取一个值 y 有 3
种方法.根据分步乘法计数原理知,有 3×3=9 个不同的点.]
4.一个礼堂有 4 个门,若从任一个门进,从任一门出,共有不 同走法________种.
4.2.1 随机变量及其与事件的联系 P476
4.2.2 离散型随机变量的分布列 P511
4.2.3 二项分布与超几何分布 P566 4.2.4 随机变量的数字特征 P655 4.2.5 正态分布 P754
4.3.1 一元线性回归模型 P801
4.3 统计模型
4.3.2 独立性检验 P919
3.1.1 基本计数原理 第1课时 基本计数原理
人教版高中数学选修2-3二项式定理 (共16张PPT)教育课件
人
的
一
生
说
白
了
,
也
就
是
三
万
余
天
,
贫
穷
与
富
贵
,
都
是
一
种
生
活
境
遇
。
懂
得
爱
自
己
的
人
,
对
生
活
从
来
就
没
有
过
高
的
奢
望
,
只
是
对
生
存
的
现
状
欣
然
接
受
。
漠
漠
红
尘
,
芸
芸
众
生
皆
是
客
,
时
光
深
处
,
流
年
似
水
,
转
瞬
间
,
光
阴
就
会
老
去
,
留
在
心
头
的
,
只
是
弥
留
在
时
光
深
处
的
无
边
落
寞
。
轻
拥
沧
桑
,
淡
看
流
年
,
掬
一
捧
岁
月
,
握
一
份
懂
得
,
红
尘
口
罗
不
–■
① 项: a 3
a 2b ab 2 b 3
a3kbk
高中数学 1.3.1二项式定理课件 新人教A版选修23[1]
二项式定理(dìnglǐ) 思维导航 1.我们已知(a+b)2=a2+2ab+b2,展开式中有3项;运 用多项式乘法可以求得(a+b)3、(a+b)4的展开式,并且它们分 别(fēnbié)有4项、5项,你能用类比归纳的方法得出(a+b)n(n≥2) 的展开式吗?
第八页,共38页。
新知导学 1.二项展开式的推导:(a+b)n(n∈N*)是 n 个因式(a+b) 的积,按多项式乘以多项式的法则,可知确定乘积展开式中的 每一项,需要看有多少个因式(a+b)中取 a,多少个因式(a+b) 中取 b,如果从 k 个因式中选取 b,则就有__n_-__k____个因式中 选 a.∴积式为 an-kbk(k=0、1、2、…、n)的形式的项共有__C_nk___ 个.合并同类项后为 _____C_nk_a_n-_k_b_k__________.因此(a +b)n= _C_0n_a_n+__C__1na_n_-_1b_+__…__+__C__rna_n_-_rb_r_+__…__+__C_nn_-_1a_b_n_-_1_+__C_nn_b_n__这个公式 叫做二项式定理.
D.-40
[解析] Tr+1=Cr5(x2)5-r(-x23)r=Cr5x10-2r·(-2)r·x-3r =C5r (-2)r·x10-5r. 令 10-5r=0,∴r=2,常数项为 C25×4=40.
第二十页,共38页。
若
x+ 1 4
2
n x
展开式中前三项系数依次成等差
数列.求:
(1)展开式中含 x 的一次幂的项;
第三十一页,共38页。
[方法规律总结] 二项式系数与项的系数是两个不同的概 念,前者仅与二项式的指数及项数有关(yǒuguān),与二项式的 构成无关,后者与二项式的构成、二项式的指数及项数均有关 (yǒuguān).
高中数学第一章计数原理13131二项式定理同步课件新人教A版选修2
2.正确区分二项式系数与该项的系数. 二项式系数与项的系数是两个不同的概念,前者仅与 二项式的指数及项数有关,与二项式无关,后者与二项式、 二项式的指数及项数均有关.
[变式训练] (1)x+ax5展开式中 x3 的系数为 10,则 a 的值等于( )
17·山东卷)已知(1+3x)n 的展开式中含有 x2 项
(2)因为第 3r 项的二项式系数为 C31r0-1, 第 r+2 项的二项式系数为 C1r+0 1, 所以 C310r-1=Cr1+0 1,故 3r-1=r+1 或 3r-1+r+1= 10, 解得 r=1 或 r=2.5(不合题意,舍去),所以 r=1.
1.注意区分项的二项式系数与系数的概念. 2.要牢记 Cknan-kbk 是展开式的第(k+1)项,不要误 认为是第 k 项. 3.求解特定项时必须合并通项公式中同一字母的指 数,根据具体要求,令其为特定值.
解得 n=4(舍去 n=-1).
设(x- 2)4 展开式中 Tr+1=Crnx4-r(- 2)r.
由 4-r=2,得 r=2. 故(x- 2)4 展开式中含 x2 的项为 T3=C24x2(- 2)2= 12x2. 答案:12x2
[类题尝试] 已知二项式x- 2x10. (1)求展开式中含 x4 项的系数; (2)如果第 3r 项和第 r+2 项的二项式系数相等,求 r 的值. 解:(1)设第 k+1 项为 Tk+1=Ck10(-2)kx10-32k. 令 10-32k=4,解得 k=4, 故展开式中含 x4 项的系数为 C410(-2)4=3 360.
类型1 求二项展开式中的特定项或其系数(自主研析)
[典例❶]
已知在
12x2-
1 x
n
的展开式中,第9项为常
2020人教版高三数学选修2-3(B版)电子课本课件【全册】
1.3 二项式定理
本章小结
2.1 离散型随机变量及其分布列
2.1.1 离散型
2Байду номын сангаас1.3 超几何分布
2.2.2 事件的独立性
2.3 随机变量的数字特征
2.3.1 离散型随机变
2.4 正态分布
阅读与欣赏 关于“玛丽莲问题”的争论
3.1 独立性检验
本章小结
附表
后记
第一章 计数原理
2020人教版高三数学选修2-3(B版) 电子课本课件【全册】
1.2.2 组合
2020人教版高三数学选修2-3(B版) 电子课本课件【全册】
2020人教版高三数学选修2-3(B 版)电子课本课件【全册】目录
0002页 0065页 0109页 0165页 0242页 0291页 0317页 0352页 0392页 0394页 0447页 0514页 0608页 0652页
第一章 计数原理
1.2 排列与组合
1.2.1 排列
1.3 二项式定理
1.1 基本计数原理
2020人教版高三数学选修2-3(B版) 电子课本课件【全册】
1.2 排列与组合 排列
1.2.1
2020人教版高三数学选修2-3(B版) 电子课本课件【全册】
高中数学第1章计数原理1.31.3.1二项式定理课件新人教A版选修2_3
思考 2:二项式(a+b)n 与(b+a)n 展开式中第 k+1 项是否相同?
[提示] 不同.(a+b)n 展开式中第 k+1 项为 Cknan-kbk,而(b+a)n 展开式中第 k+1 项为 Cknbn-kak.
1.(x+1)n 的展开式共有 11 项,则 n 等于( )
A.9
B.10
C.11
1)n-k+…+(-1)nCnn.
[解]
(1)法一:
x-21 x4=C04(
x)4-C14(
x)3·21 x+C24(
x)2·2
1
x
2-C34 x·21 x3+C4421 x4=x2-2x+32-21x+161x2.
法二:
x-21 x4=22x-x14=161x2(2x-1)4
=161x2(16x4-32x3+24x2-8x+1)
40 10 [∵T3=C25(2x)2=C2522x2=40x2, ∴第 3 项的系数为 40,第 3 项的二项式系数为 C25=10.]
合作 探究 释疑 难
二项式定理的正用和逆用
【例 1】
(1)求
x-21 x4的展开式;
(2)化简:C0n(x+1)n-C1n(x+1)n-1+C2n(x+1)n-2-…+(-1)kCkn(x+
=x2-2x+32-21x+161x2.
(2)原式=C0n(x+1)n+C1n(x+1)n-1(-1)+C2n(x+1)n-2·(-1)2+…+ Ckn(x+1)n-k(-1)k+…+Cnn(-1)n=[(x+1)+(-1)]n=xn.
二项式定理的双向功能 1.正用:将二项式(a+b)n 展开,得到一个多项式,即二项式定 理从左到右使用是展开.对较复杂的式子,先化简再用二项式定理展 开. 2.逆用:将展开式合并成二项式(a+b)n 的形式,即二项式定理 从右到左使用是合并,对于化简、求和、证明等问题的求解,要熟悉 公式的特点、项数、各项幂指数的规律以及各项系数的规律.
最新高中数学 第一章1.3 二项式定理 1.3.1 二项式定理学案 新人教A版选修2-3(考试必备)
1.3.1 二项式定理学习目标 1.能用计数原理证明二项式定理.2.掌握二项式定理及其展开式的通项公式.3.会用二项式定理解决与二项展开式有关的简单问题.知识点 二项式定理及其相关概念思考1 我们在初中学习了(a +b )2=a 2+2ab +b 2,试用多项式的乘法推导(a +b )3,(a +b )4的展开式.答案 (a +b )3=a 3+3a 2b +3ab 2+b 3,(a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4. 思考2 能用类比方法写出(a +b )n (n ∈N *)的展开式吗? 答案 能,(a +b )n =C 0n a n +C 1n a n -1b +…+C k n a n -k b k +…+C n n b n (n ∈N *).梳理1.(a +b )n展开式中共有n 项.( × )2.在公式中,交换a ,b 的顺序对各项没有影响.( × ) 3.C k n an -k b k是(a +b )n 展开式中的第k 项.( × )4.(a -b )n与(a +b )n的二项式展开式的二项式系数相同.( √ )类型一 二项式定理的正用、逆用例1 (1)求⎝⎛⎭⎪⎫3x +1x 4的展开式.考点 二项式定理题点 运用二项式定理求展开式解 方法一 ⎝ ⎛⎭⎪⎫3x +1x 4=(3x )4+C 14(3x )3·⎝ ⎛⎭⎪⎫1x +C 24(3x )2⎝ ⎛⎭⎪⎫1x 2+C 34(3x )⎝ ⎛⎭⎪⎫1x 3+C 44⎝ ⎛⎭⎪⎫1x 4=81x 2+108x +54+12x +1x 2. 方法二 ⎝⎛⎭⎪⎫3x +1x 4=⎝⎛⎭⎪⎫3x +1x 4=1x 2(1+3x )4=1x 2·[1+C 14·3x +C 24(3x )2+C 34(3x )3+C 44(3x )4]=1x2(1+12x +54x 2+108x 3+81x 4)=1x 2+12x+54+108x +81x 2.(2)化简:C 0n (x +1)n -C 1n (x +1)n -1+C 2n (x +1)n -2-…+(-1)k C k n (x +1)n -k+…+(-1)n C nn .考点 二项式定理题点 逆用二项式定理求和、化简 解 原式=C 0n (x +1)n +C 1n (x +1)n -1(-1)+C 2n (x +1)n -2(-1)2+…+C k n (x +1)n -k(-1)k+…+C nn (-1)n=[(x +1)+(-1)]n=x n. 引申探究若(1+3)4=a +b 3(a ,b 为有理数),则a +b =________. 答案 44解析 ∵(1+3)4=1+C 14×(3)1+C 24×(3)2+C 34×(3)3+C 44×(3)4=1+43+18+123+9=28+163,∴a =28,b =16,∴a +b =28+16=44.反思与感悟 (1)(a +b )n的二项展开式有n +1项,是和的形式,各项的幂指数规律是:①各项的次数和等于n ;②字母a 按降幂排列,从第一项起,次数由n 逐项减1直到0;字母b 按升幂排列,从第一项起,次数由0逐项加1直到n .(2)逆用二项式定理可以化简多项式,体现的是整体思想.注意分析已知多项式的特点,向二项展开式的形式靠拢.跟踪训练1 化简:(2x +1)5-5(2x +1)4+10(2x +1)3-10(2x +1)2+5(2x +1)-1. 考点 二项式定理题点 逆用二项式定理求和、化简解 原式=C 05(2x +1)5-C 15(2x +1)4+C 25(2x +1)3-C 35(2x +1)2+C 45(2x +1)-C 55(2x +1)0=[(2x +1)-1]5=(2x )5=32x 5. 类型二 二项展开式通项的应用 命题角度1 二项式系数与项的系数 例2 已知二项式⎝ ⎛⎭⎪⎫3x -23x 10. (1)求展开式第4项的二项式系数; (2)求展开式第4项的系数;(3)求第4项.考点 二项展开式中的特定项问题 题点 求二项展开式特定项的系数 解 ⎝⎛⎭⎪⎫3x -23x 10的展开式的通项是 T k +1=C k 10(3x )10-k⎝ ⎛⎭⎪⎫-23x k =C k 10310-k ⎝ ⎛⎭⎪⎫-23k ·1032kx- (k =0,1,2,…,10).(1)展开式的第4项(k =3)的二项式系数为C 310=120. (2)展开式的第4项的系数为C 31037⎝ ⎛⎭⎪⎫-233=-77 760. (3)展开式的第4项为T 4=T 3+1=-77 760x .反思与感悟 (1)二项式系数都是组合数C kn (k ∈{0,1,2,…,n }),它与二项展开式中某一项的系数不一定相等,要注意区分“二项式系数”与二项式展开式中“项的系数”这两个概念. (2)第k +1项的系数是此项字母前的数连同符号,而此项的二项式系数为C kn .例如,在(1+2x )7的展开式中,第四项是T 4=C 3717-3(2x )3,其二项式系数是C 37=35,而第四项的系数是C 3723=280.跟踪训练2 已知⎝ ⎛⎭⎪⎫x -2x n 展开式中第三项的系数比第二项的系数大162.(1)求n 的值;(2)求展开式中含x 3的项,并指出该项的二项式系数. 考点 二项展开式中的特定项问题 题点 求二项展开式特定项的系数解 (1)因为T 3=C 2n (x )n -2⎝ ⎛⎭⎪⎫-2x 2=4C 2n 62n x-,T 2=C 1n (x )n -1⎝ ⎛⎭⎪⎫-2x =-2C 1n 32n x -,依题意得4C 2n +2C 1n =162,所以2C 2n +C 1n =81, 所以n 2=81,n ∈N *,故n =9.(2)设第k +1项含x 3项,则T k +1=C k 9(x )9-k⎝ ⎛⎭⎪⎫-2x k =(-2)k C k9932k x-,所以9-3k 2=3,k =1,所以第二项为含x 3的项为T 2=-2C 19x 3=-18x 3. 二项式系数为C 19=9.命题角度2 展开式中的特定项例3 已知在⎝⎛⎭⎪⎪⎫3x -33x n的展开式中,第6项为常数项.(1)求n ;(2)求含x 2的项的系数; (3)求展开式中所有的有理项. 考点 二项展开式中的特定项问题 题点 求二项展开式的特定项 解 通项公式为T k +1=C kn3n k x-(-3)k3k x-=C k n(-3)k23n k x-.(1)∵第6项为常数项,∴当k =5时,有n -2k3=0,即n =10.(2)令10-2k 3=2,得k =12(10-6)=2,∴所求的系数为C 210(-3)2=405. (3)由题意得,⎩⎪⎨⎪⎧10-2k3∈Z ,0≤k ≤10,k ∈N .令10-2k3=t (t ∈Z ), 则10-2k =3t ,即k =5-32t .∵k ∈N ,∴t 应为偶数.令t =2,0,-2,即k =2,5,8.∴第3项,第6项与第9项为有理项,它们分别为405x 2,-61 236,295 245x -2. 反思与感悟 (1)求二项展开式的特定项的常见题型 ①求第k 项,T k =C k -1n an -k +1b k -1;②求含x k 的项(或x p y q 的项);③求常数项;④求有理项.(2)求二项展开式的特定项的常用方法①对于常数项,隐含条件是字母的指数为0(即0次项);②对于有理项,一般是先写出通项公式,其所有的字母的指数恰好都是整数的项.解这类问题必须合并通项公式中同一字母的指数,根据具体要求,令其属于整数,再根据数的整除性来求解;③对于二项展开式中的整式项,其通项公式中同一字母的指数应是非负整数,求解方式与求有理项一致.跟踪训练3 (1)若⎝⎛⎭⎪⎫x -a x 9的展开式中x 3的系数是-84,则a =________. 考点 二项展开式中的特定项问题 题点 由特定项或特定项的系数求参数 答案 1解析 展开式的通项为T k +1=C k 9x 9-k(-a )k ⎝ ⎛⎭⎪⎫1xk=C k9·(-a )k x9-2k(0≤k ≤9,k ∈N ).当9-2k =3时,解得k =3,代入得x 3的系数, 根据题意得C 39(-a )3=-84,解得a =1.(2)已知n 为等差数列-4,-2,0,…的第六项,则⎝⎛⎭⎪⎫x +2x n的二项展开式的常数项是________.考点 二项展开式中的特定项问题 题点 求二项展开式的特定项 答案 160解析 由题意得n =6,∴T k +1=2k C k 6x6-2k,令6-2k =0得k =3,∴常数项为C 3623=160.1.(x +2)n的展开式共有11项,则n 等于( ) A .9 B .10 C .11 D .8 考点 二项展开式中的特定项问题 题点 由特定项或特定项的系数求参数 答案 B解析 因为(a +b )n 的展开式共有n +1项,而(x +2)n的展开式共有11项,所以n =10,故选B.2.1-2C 1n +4C 2n -8C 3n +…+(-2)n C nn 等于( ) A .1 B .1 C .(-1)nD .3n考点 二项式定理题点 逆用二项式定理求和、化简 答案 C解析 逆用二项式定理,将1看成公式中的a ,-2看成公式中的b ,可得原式=(1-2)n=(-1)n.3.⎝⎛⎭⎪⎫x 2-1x n的展开式中,常数项为15,则n 的值为( ) A .3 B .4 C .5 D .6 考点 二项展开式中的特定项问题 题点 由特定项或特定项的系数求参数 答案 D解析 展开式的通项为T k +1=C kn (x 2)n -k·(-1)k ·⎝ ⎛⎭⎪⎫1x k =(-1)k C k n x 2n -3k.令2n -3k =0,得n =32k (n ,k ∈N *),若k =2,则n =3不符合题意,若k =4,则n =6,此时(-1)4·C 46=15,所以n =6.4.在⎝⎛⎭⎪⎪⎫x +13x 24的展开式中,x 的幂指数是整数的项共有( ) A .3项 B .4项 C .5项 D .6项 考点 二项展开式中的特定项问题 题点 求多项展开式中的特定项 答案 C解析 ⎝ ⎛⎭⎪⎪⎫x +13x 24的展开式的通项为T k +1=C k 24·(x )24-k ⎝ ⎛⎭⎪⎪⎫13x k =C k 245126kx -,故当k =0,6,12,18,24时,幂指数为整数,共5项. 5.求二项式(x -3x )9展开式中的有理项. 考点 二项展开式中的特定项问题 题点 求多项展开式中的特定项解 T k +1=C k 9912kx -⎛⎫ ⎪⎝⎭·13kx ⎛⎫- ⎪⎝⎭=(-1)k C k9·276kx -,令27-k 6∈Z (0≤k ≤9),得k =3或k =9,所以当k =3时,27-k 6=4,T 4=(-1)3C 39x 4=-84x 4,当k =9时,27-k 6=3,T 10=(-1)9C 99x 3=-x 3.综上,展开式中的有理项为-84x 4与-x 3.1.注意区分项的二项式系数与系数的概念. 2.要牢记C k n an -k b k是展开式的第k +1项,不要误认为是第k 项.3.求解特定项时必须合并通项公式中同一字母的指数,根据具体要求,令其为特定值.一、选择题1.S =(x -1)4+4(x -1)3+6(x -1)2+4x -3,则S 等于( ) A .x 4B .x 4+1 C .(x -2)4D .x 4+4考点 二项式定理题点 逆用二项式定理求和、化简 答案 A解析 S =(x -1)4+4(x -1)3+6(x -1)2+4(x -1)+1=C 04(x -1)4+C 14(x -1)3+C 24(x -1)2+C 34(x -1)+C 44=[(x -1)+1]4=x 4,故选A.2.设i 为虚数单位,则(1+i)6展开式中的第3项为( ) A .-20i B .15i C .20D .-15考点 二项展开式中的特定项问题 题点 求二项展开式中的特定项 答案 D解析 (1+i)6展开式中的第3项为C 26i 2=-15. 3.(x -2y )10的展开式中x 6y 4的系数是( ) A .-840 B .840 C .210D .-210考点 二项展开式中的特定项问题 题点 求二项展开式特定项的系数 答案 B解析 在通项公式T k +1=C k 10(-2y )k x 10-k中,令k =4,即得(x -2y )10的展开式中x 6y 4的系数为C 410×(-2)4=840.4.在⎝ ⎛⎭⎪⎫x +2x n 的展开式中,若常数项为60,则n 等于( )A .3B .6C .9D .12考点 二项展开式中的特定项问题题点 由特定项或特定项的系数求参数 答案 B解析 T k +1=C k n(x )n -k⎝ ⎛⎭⎪⎫2x k =2k C kn 32n k x-.令n -3k2=0,得n =3k .根据题意有2k C k3k =60,验证知k =2,故n =6.5.若(1+3x )n (n ∈N *)的展开式中,第三项的二项式系数为6,则第四项的系数为( ) A .4 B .27 C .36D .108考点 二项展开式中的特定项问题 题点 求二项展开式特定项的系数 答案 D解析 T k +1=C kn (3x )k,由C 2n =6,得n =4,从而T 4=C 34·(3x )3,故第四项的系数为C 3433=108.6.在二项式121412nx x ⎛⎫⎪+⎪⎝⎭的展开式中,若前三项的系数成等差数列,则展开式中有理项的项数为( ) A .5 B .4 C .3D .2考点 二项展开式中的特定项问题 题点 求多项展开式中的特定项 答案 C解析 二项展开式的前三项的系数分别为1,C 1n ·12,C 2n ·⎝ ⎛⎭⎪⎫122,由其成等差数列,可得2C 1n ·12=1+C 2n ·⎝ ⎛⎭⎪⎫122⇒n =1+n (n -1)8,所以n =8(n =1舍去).所以展开式的通项T k +1=C k 8⎝ ⎛⎭⎪⎫12k344kx -.若为有理项,则有4-3k4∈Z ,所以k 可取0,4,8,所以展开式中有理项的项数为3.7.设函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫x -1x 4,x <0,-x ,x ≥0,则当x >0时,f (f (x ))表达式的展开式中常数项为( ) A .4 B .6 C .8D .10考点 二项展开式中的特定项问题 题点 求二项展开式的特定项答案 B解析 依据分段函数的解析式, 得f (f (x ))=f (-x )=⎝ ⎛⎭⎪⎫1x -x 4,∴T k +1=C k4(-1)k xk -2.令k -2=0,则k =2,故常数项为C 24(-1)2=6. 二、填空题8.⎝ ⎛⎭⎪⎫2x +1x 7的展开式中倒数第三项为________.考点 二项展开式中的特定项问题 题点 求二项展开式的特定项 答案84x8解析 由于n =7,可知展开式中共有8项, ∴倒数第三项即为第六项,∴T 6=C 57(2x )2·⎝ ⎛⎭⎪⎫1x 25=C 57·221x 8=84x8.9.若(x +1)n =x n+…+ax 3+bx 2+nx +1(n ∈N *),且a ∶b =3∶1,那么n =________. 考点 二项展开式中的特定项问题 题点 由特定项或特定项的系数求参数 答案 11解析 a =C n -3n ,b =C n -2n .∵a ∶b =3∶1, ∴C n -3n C n -2n =C 3n C 2n =31,即n (n -1)(n -2)·26n (n -1)=3, 解得n =11.10.已知正实数m ,若x 10=a 0+a 1(m -x )+a 2(m -x )2+…+a 10(m -x )10,其中a 8=180,则m 的值为________.考点 二项展开式中的特定项问题 题点 由特定项或特定项的系数求参数 答案 2解析 由x 10=[m -(m -x )]10,[m -(m -x )]10的二项展开式的第9项为C 810m 2(-1)8·(m -x )8, ∴a 8=C 810m 2(-1)8=180, 则m =±2.又m >0,∴m =2.11.使⎝⎛⎭⎪⎫3x +1x x n (n ∈N *)的展开式中含有常数项的最小的n 为________.考点 二项展开式中的特定项问题 题点 由特定项或特定项的系数求参数 答案 5解析 展开式的通项公式T k +1=C k n(3x )n -k⎝ ⎛⎭⎪⎫1x x k,∴T k +1=3n -k C kn52n k x-,k =0,1,2,…,n .令n -52k =0,n =52k ,故最小正整数n =5. 三、解答题12.若二项式⎝⎛⎭⎪⎫x -a x 6(a >0)的展开式中x 3的系数为A ,常数项为B ,且B =4A ,求a 的值.考点 二项展开式中的特定项问题 题点 由特定项或特定项的系数求参数解 ∵T k +1=C k 6x 6-k⎝⎛⎭⎪⎫-a x k =(-a )k C k6362kx -,令6-3k 2=3,则k =2,得A =C 26·a 2=15a 2;令6-3k 2=0,则k =4,得B =C 46·a 4=15a 4.由B =4A 可得a 2=4,又a >0, ∴a =2.13.已知在⎝⎛⎭⎪⎫12x 2-1x n的展开式中,第9项为常数项,求:(1)n 的值;(2)展开式中x 5的系数; (3)含x 的整数次幂的项的个数. 考点 二项展开式中的特定项问题 题点 求多项展开式中的特定项解 已知二项展开式的通项为T k +1=C k n⎝ ⎛⎭⎪⎫12x 2n -k ·⎝⎛⎭⎪⎫-1x k =(-1)k ⎝ ⎛⎭⎪⎫12n -k C kn 522n k x -.(1)因为第9项为常数项,即当k =8时,2n -52k =0,解得n =10.(2)令2×10-52k =5,得k =25(20-5)=6.所以x 5的系数为(-1)6⎝ ⎛⎭⎪⎫124C 610=1058. (3)要使2n -52k ,即40-5k 2为整数,只需k 为偶数,由于k =0,1,2,3,…,9,10,故符合要求的有6项,分别为展开式的第1,3,5,7,9,11项.四、探究与拓展14.设a ≠0,n 是大于1的自然数,⎝ ⎛⎭⎪⎫1+x a n 的展开式为a 0+a 1x +a 2x 2+…+a n x n.若点A i (i ,a i ) (i =0,1,2)的位置如图所示,则a =________.考点 二项展开式中的特定项问题题点 由特定项或特定项的系数求参数答案 3解析 由题意知A 0(0,1),A 1(1,3),A 2(2,4).即a 0=1,a 1=3,a 2=4.由⎝ ⎛⎭⎪⎫1+x a n的展开式的通项公式知T k +1=C k n ⎝ ⎛⎭⎪⎫x a k(k =0,1,2,…,n ).故C 1n a =3,C 2na 2=4,解得a =3.15.设f (x )=(1+x )m +(1+x )n 的展开式中含x 项的系数是19(m ,n ∈N *).(1)求f (x )的展开式中含x 2项的系数的最小值;(2)当f (x )的展开式中含x 2项的系数取最小值时,求f (x )的展开式中含x 7项的系数. 考点 二项展开式中的特定项问题题点 求二项展开式特定项的系数解 (1)由题设知m +n =19,所以m =19-n ,含x 2项的系数为C 2m +C 2n =C 219-n +C 2n=(19-n )(18-n )2+n (n -1)2=n 2-19n +171=⎝ ⎛⎭⎪⎫n -1922+3234.因为n ∈N *,所以当n =9或n =10时,x 2项的系数的最小值为⎝ ⎛⎭⎪⎫122+3234=81.(2)当n=9,m=10或n=10,m=9时,x2项的系数取最小值,此时x7项的系数为C710+C79=C310+C29=156.。
数学选修2-3 1.3.1二项式定理
填一填
(x+2)8 的展开式中的第 6 项为 ,其二项式系数为 . 5 3 5 5 解析:展开式的第 6 项是 T6=C8 x· 2 =1 792x3,其二项式系数为C8 . 答案:1 792x3 56
-5-
1.3.1 二项式定理
首 页
X 新知导学 Z 重难探究
INZHI DAOXUE
HONGNAN TANJIU
D 当堂检测
ANGTANG JIANCE
探究一
探究二
探究三
探究四
探究一二项式定理
1.简单的二项式展开时可直接利用二项式定理展开;对于形式较复杂 的二项式,在展开之前可以根据二项式的结构特点进行必要的变形,然后再 展开,以使运算得到简化.记准、记熟二项式(a+b)n 的展开式是解答好与二 项式定理有关的问题的前提. 2.逆用二项式定理要注意二项展开式的结构特点.a 的指数是从高到 低,b 的指数是从低到高,a,b 的指数和都相等;如果项的系数是正负相间,则 是(a-b)n 的形式.
3
2x)
20-k
·-
∵系数为有理数,∴40-5k 是 6 的倍数,0≤k≤20,k∈Z,∴k=2,8,14,20.
答案:(1)C (2)A
-13-
1 ������ 2
= -
2 2
������
· ( 2)
3
20-k ������
C20 · x
20-k
=(-1)
k
40-5������ · 2 6 C������
0 C4 · (2
4
解:(1)方法一:直接利用二项式定理展开并化简:
1 4 ������
+
(2)原式 0 5 1 2 3 4 =C5 (x-1)5+C5 (x-1)4+C5 (x-1)3+C5 (x-1)2+C5 (x-1)+C5 -1=[(x-1)+1]5-1=x5-1.
高中数学选修2-3(人教B版)第一章计数原理1.4知识点总结含同步练习题及答案
描述:例题:高中数学选修2-3(人教B版)知识点总结含同步练习题及答案第一章 计数原理 1.3计数模型(补充)一、学习任务掌握计数的几种模型,并能处理一些简单的实际问题.二、知识清单数字组成模型 条件排列模型 分组分配模型染色模型计数杂题三、知识讲解1.数字组成模型与顺序相关的数字问题,通常是计算满足某些特征的数字的个数.常见特征比如各个数位的数字不同、四位数、奇数、比某数大的数、某个数位满足某种条件的数等等,其中各个数位数字可以相同的问题通常借助乘法原理分步解决,各个数位数字不相同通常是与排列相关的问题.由 、、、、 这五个数字可组成多少个无重复数字的五位数?解:首位不能是 ,有 种,后四位数有 种排列,所以这五个数可以组成 个无重复的五位数.012340C 14A 44=96C 14A 44用数字 、 组成四位数,且数字 、 至少都出现一次,这样的四位数共有______个(用数字作答).解:因为四位数的每个数位上都有两种可能性,其中四个数字全是 或 的情况不合题意,所以符合题意的四位数有 个.23231423−2=1424从 , 中选一个数字,从 、、 中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A. B. C. D.解:B当选 时,先从 、、 中选 个数字有 种方法,然后从选中的 个数字中选 个排在末位有 种方法,剩余 个数字排在首位,共有 种方法;当选 时,先从 、、 中选 个数字有 种方法,然后从选中的 个数字中选 个排在末位有 种方法,其余 个数字全排列,共有 种方法.依分类加法计数原理知共有 个奇数.02135241812601352C 2321C 121=6C 23C 1221352C 2321C 122=12C 23C 12A 226+12=18用 , ,, , , 这 个数字,可以组成______个大于 且小于 的012345630005421描述:例题:2.条件排列模型计算满足某些限制条件的排列的个数,常见的如相邻问题、不相邻问题、某位置不能排某人、某人只能或不能排在某些位置的问题等等.不重复的四位数.解:分四类:①千位数字为 , 之一时,百十个位数只要不重复即可,有 (个);②千位数字为 ,百位数字为 ,,, 之一时,共有 (个);③千位数字是 ,百位数字是 ,十位数字是 , 之一时,共有 (个);④最后还有 也满足条件.所以,所求四位数共有 (个).175342=120A 3550123=48A 14A 245401=6A 12A 135420120+48+6+1=175 名男生, 名女生,按照不同的要求排队,求不同的排队方案的方法种数.(1)全体站成一排,其中甲只能在中间或两端;(2)全体站成一排,男生必须排在一起;(3)全体站成一排,甲、乙不能相邻.解:(1)先考虑甲的位置,有 种方法,再考虑其余 人的位置,有 种方法.故有种方法;(2)(捆绑法)男生必须站在一起,即把 名男生进行全排列,有 种排法,与 名女生组成 个元素全排列,故有 种不同的排法;(3)(插空法)甲、乙不能相邻,先把剩余的 名同学全排列,有 种排法,然后将甲、乙分别插到 个空中,有 种排法,故有 种不同的排法.34A 136A 66=2160A 13A 663A 3345=720A 33A 555A 556A 26=3600A 55A 26有甲、乙、丙在内的 个人排成一排照相,其中甲和乙必须相邻,丙不排在两头,则这样的排法共有______种.解:甲和乙必须相邻,可将甲、乙捆绑,看成一个元素,与丙除外的另三个元素构成四个元素,自由排列,有 种方法;丙不排在两头,可对丙插空,插四个元素生成的中间的三个空中的任何一个,有 种方法;最后甲、乙两人的排法有 种方法.综上,总共有 种排法.6144A 44A 13A 22=144A 44A 13A 22 把椅子摆成一排, 人随机就座,任何两人不相邻的坐法种数为( )A. B. C. D.解:D“不相邻”应该用“插空法”,三个空椅子,形成 个空,三个坐人的椅子插入空中,因为人不同,所以需排序,所以有 种不同坐法.6314412072244=24A 34某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同课程的排法?解:法一: 门课程总的排法是 种,其中不符合要求的可分为:体育排在第一节有 种排法,数学排在最后一节有 种排法,但这两种方法,都包括体育在第一节,数学排在最后一节,这种情况有 种排法,因此符合条件的排法应是: 种.法二:① 体育、数学即不排在第一节也不排在最后一节,这种情况有 种排法;② 数学6A 66A 55A 55A 44−2+=504A 66A 55A 44⋅A 24A 44⋅144种颜色可供选择,则不同的着色方法共有______种.(以数字作答)72种花,且相邻的96高考不提分,赔付1万元,关注快乐学了解详情。
高中数学第一章计数原理1.3.1二项式定理课件新人教B版选修23
求展开式中的特定项
[探究共研型]
探究 1 如何求x+1x4 展开式中的常数项. 【提示】 利用二项展开式的通项 Cr4x4-r·x1r=Cr4x4-2r 求解,令 4-2r=0,则 r=2,所以x+1x4 展开式中的常数项为 C24=4×2 3=6.
第十七页,共34页。
探究 2 (a+b)(c+d)展开式中的每一项是如何得到的? 【提示】 (a+b)(c+d)展开式中的各项都是由 a+b 中的每一项分别乘以 c +d 中的每一项而得到.
第三十一页,共34页。
4.在x2-21x9 的展开式中,第 4 项的二项式系数是________,第 4 项的系数 是________. 【导学号:62980024】
【解析】 Tr+1=Cr9·(x2)9-r·-21xr=-12r· Cr9·x18-3r,当 r=3 时,T4=-123·C39·x9=-221x9, 所以第 4 项的二项式系数为 C39=84,项的系数为-221. 【答案】 84 -221
第二十五页,共34页。
[再练一题]
3.(1)在(1-x3)(1+x)10 的展开式中,x5 的系数是________.
(2)若x-
a6 x2
展开式的常数项为
60,则常数
a
的值为________.
【导学号:62980023】
第二十六页,共34页。
【解析】 (1)x5 应是(1+x)10 中含 x5 项、含 x2 项分别与 1,-x3 相乘的结果,
(2)求x-1x9 的展开式中 x3 的系数.
【精彩点拨】 利用二项式定理求展开式中的某一项,可以通过二项展开 式的通项公式进行求解.
第十三页,共34页。
【自主解答】 (1)由已知得二项展开式的通项为 Tr+1=Cr6(2 x)6-r·-1xr=(-1)rCr6·26-r·x3-32 r, ∴T6=-12·x-92. ∴第 6 项的二项式系数为 C56=6, 第 6 项的系数为 C56·(-1)·2=-12. (2)Tr+1=Cr9x9-r·-1xr=(-1)r·Cr9·x9-2r, ∴9-2r=3,∴r=3,即展开式中第四项含 x3,其系数为(-1)3·C39=-84.
高中数学 第一章 计数原理 1.3.1 二项式定理教案 新人教B版选修2-3(2021年整理)
辽宁省本溪满族自治县高中数学 第一章 计数原理 1.3.1 二项式定理教案 新人教B 版选修2-31辽宁省本溪满族自治县高中数学 第一章 计数原理 1.3.1 二项式定理教案 新人教B 版选修2-3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(辽宁省本溪满族自治县高中数学 第一章 计数原理 1.3.1 二项式定理教案 新人教B 版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为辽宁省本溪满族自治县高中数学 第一章 计数原理 1.3.1 二项式定理教案 新人教B 版选修2-3的全部内容。
辽宁省本溪满族自治县高中数学 第一章 计数原理 1.3.1 二项式定理教案 新人教B 版选修2-31二项式定理教学 目标 1。
初步掌握二项式定理。
2.提高学生对代数式的运算、变形能力。
3。
深化对组合数的认识。
4.进一步培养学生观察、归纳的能力.重点 难点 重点:二项式定理. 难点:二项式定理的应用 教法 尝试、变式、互动教具教学过程设教材处理师生活动一、新知探究 1.二项式定理公式 2.通项公式3.二项式系数 项的系数 二. 二项式定理的简单应用例1 求的二项展开式.例2 求 的二项展开式的第6项例3 求的展开式的第4项的二项式系数和系数例4.求(x —12y-2z)8 的展开式中x 6yz 的系数三、课堂练习1.写出7(p+q)的展开式2.求623)a b +(展开式的第3项3.写出 展开式的通项4.求 展开式中含9a 项的系数5.求 展开式中的常数项6.在(x 2+3x+2)5的展开式中,x 2的系数为__________板书设计 教学反思331)2n x-(x 2151)a a +(81)x x -(辽宁省本溪满族自治县高中数学第一章计数原理 1.3.1 二项式定理教案新人教B版选修2-32。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[再练一题]
1.(1)求 3
1 4 x+ 的展开式; x
1 2 (2)化简:1+2Cn +4Cn +„+2nCn n.
【解】
(1)法一: 3
1 4 0 4 1 3 x+ = C (3 x ) + C (3 x ) 4 4 x
1 1 3 2 2 1 2 3 4 1 4 · +C4(3 x) · x +C4(3 x) x +C4 x x
阶 段 1
阶 段 3
1.3
二项式定理
1.3.1 二项式定理
阶 段 2 学 业 分 层 测 评
1.会证明二项式定理.(难点) 2.掌握二项式定理及其展开式的通项公式.(重点)
[基础· 初探] 教材整理 二项式定理
阅读教材 P26~P27 例 1 以上部分,完成下列问题. 二项式定理及相关的概念 二项式定理 概念 二项式系数
【精彩点拨】 (1)二项式的指数为 5,且为两项的和,可直接按二项式定理 展开;(2)可先把 x+1 看成一个整体,分析结构形式,逆用二项式定理求解.
【自主解答】
5 2
3 5 3 3 5 0 5 1 4 5 - 2+„+C5- 2 (1)2x-2x2 =C5(2x) +C5(2x) · 2x 2x
(2)在公式中,交换 a,b 的顺序对各项没有影响.(
n-r r n (3)Cr a b 是 ( a + b ) 展开式中的第 r 项.( n
) )
(4)(a-b)n 与(a+b)n 的二项式展开式的二项式系数相同.(
【解析】 (1)× 因为(a+b)n 展开式中共有 n+1 项.
n r r n r n (2)× 因为二项式的第 r+1 项 Cr a b 和 ( b + a ) 的展开式的第 k + 1 项 C n nb
n 1 n 1 2 n 2 2 n r r (a+b)n=C0 b+Cn a b +„+Cr b +„+ 公式________________________________________________ na +Cna na
- - -
n n C _____________ 称为二项式定理 nb (n∈N+)
[ 小组合作型]
二项式定理的正用、逆用
3 5 (1)用二项式定理展开2x-2x2 ;
0 n-1 2 n-2 r r n-r (2)化简:Cn (x+1)n-C1 ( x + 1) + C ( x + 1) -„+ ( - 1) C ( x + 1) +„+ n n n
(-1)nCn n.
二项式系数与项的系数问题
(1)求二项式2
16 x- 的展开式中第 6 项的二项式系数和第 6 项的 x
系数;
19 (2)求x-x 的展开式中 x3 的系数.
【精彩点拨】
利用二项式定理求展开式中的某一项,可以通过二项展开
式的通项公式进行求解.
【自主解答】 (1)由已知得二项展开式的通项为 Tr+1=Cr 6(2 x)
- -r
ar 是不同的,其中的 a,b 是不能随便交换的.
n-r r (3)× 因为 Cr a b 是(a+b)n 展开式中的第 r+1 项. n r (4)√ 因为(a-b)n 与(a+b)n 的二项式展开式的二项式系数都是 Cn .
【答案】
(1)×
(2)× (3)× (4)√
[ 质疑· 手记] 预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问 1: 解惑: 疑问 2: 解惑: 疑问 3: 解惑:
1.展开二项式可以按照二项式定理进行.展开时注意二项式定理的结构特 征,准确理解二项式的特点是展开二项式的前提条件. 2.对较复杂的二项式,有时先化简再展开会更简便. 3.对于化简多个式子的和时,可以考虑二项式定理的逆用 .对于这类问题的 求解,要熟悉公式的特点,项数,各项幂指数的规律以及各项的系数.
6-r
1 3 r r r 6-r 3-2 r - =(-1) C6· · 2 · x , x
∴T6=-12· x . ∴第 6 项的二项式系数为 C5 6=6, 第 6 项的系数为 C5 (-1)· 2=-12. 6· 1r r 9-r 9 -2 r - =(-1)r· (2)Tr+1=C9x · Cr · x , 9
180 135 405 243 =32x -120x + - 4 + 7 - 10. x x 8x 32x
0 n-1 n-2 n- (2)原式=Cn (x+1)n+C 1 (-1)+C 2 (-1)2+„+Cr n(x+1) n(x+1) n (x +1) r n n n (-1)r+„+Cn n(-1) =[(x+1)+(-1)] =x .
- - -
在二项式定理中,如果设 a=1,b=x,则得到公式(1+x)n=
1 2 2 r r n n 1 + C x + C x +„+ C x +„+ C n n n nx ___________________________________( n∈N+)
判断(正确的打“√”,错误的打“×”) (1)(a+b)n 展开式中共有 n 项.( ) )
12 1 =8ห้องสมุดไป่ตู้x +108x+54+ + 2. x x
2
法二: 3
2
4 1 3 x + 1 1 4 4 3 2 x+ = = (81 x + 108 x + 54 x +12x+1) 2 2 x x x
12 1 =81x +108x+54+ x +x2.
1 n n n n (2)原式=1+2Cn +22C2 n+„+2 Cn=(1+2) =3 .
r C 各项系数___( n r=0,1,2,„,n)叫做展开式的二项式系数
二项式通项 二项展开式 备注
n-r r r n-r r Cr a b 是展开式中的第 _____ 项,可记做 T = C b (其中 r + 1 + n r 1 na
0≤r≤n,r∈N,n∈N+)
n 1 n 1 2 n 2 2 r n r r n n C0 a + C a b + C a b +„+ C a b +„+ C n n n n nb (n∈N+)