中考复习整式
初中数学中考总复习——整式(合并同类项整式加减乘法除法混合运算分解因式图文详解)
初中数学总复习整式
多项式的项数与次数
例3 下列多项式次数为3的是( C)
A. 5x 2 6x 1
B.x 2 x 1
C .a 2b ab b2
D.x2 y2 2x3 1
注意(1)多项式的次数不是所有项的次数的和,而是它的最高 次项次数;
(2)多项式的每一项都包含它前面的符号; (3)再强调一次, “π”当作数字,而不是字母
—
~~~——
~~~
一找
=(4x2-3x2)+ (-8x+6x)+ (5-4) 二移
= x2 -2x +1
三并
初中数学总复习整式
合并同类项的步骤:
1、找出同类项 用不同的线标记出各组同类项,注意每一项的符号。 2、把同类项移在一起
用括号将同类项结合,括号间用加号连接。
3、合并同类项 系数相加,字母及字母的指数不变 。
项式,最高次项是____x__23_y_2_,常数项是____13_____;
初中数学总复习整式
易错题
例5 下列各个式子中,书写格式正确的是( F)
A.a b D.a3
B. 1 1 ab 2
C.a 3
E. 1ab
F. a2b 3
初中数学总复习整式
小结:
1、代数式中用到乘法时,若是数字与数字乘,要用“×” 若是数字与字母乘,乘号通常写成”.”或省略不写,如 3×y应写成3·y或3y,且数字与字母相乘时,字母与 字母相乘,乘号通常写成“·”或省略不写。
初中数学总复习整式
多项式的项数与次数
例4 、请说出下列各多项式是几次几项式,并写出多项式的最高次
项和常数项;
(1)25 x2 y xy3是 __四___次 __三___ 项式,最高次项是_____x_y__3_,常数项是___2__5____;
2024年中考数学一轮复习提高讲义:整式的乘除
整式的乘除知识梳理1.同底数幂的运算(1) 乘法: aᵐ⋅aⁿ=aᵐ⁺ⁿ,(aᵐ)ⁿ=aᵐⁿ,(ab)ⁿ=aⁿbⁿ(其中m,n 都是正整数). 注意事项:①am⋅a′′=am+n区别加法aᵐ+aⁿ≠aᵐ⁺ⁿ(如2³+2²=12≠32=2⁵);②区分−aᵐ⋅aⁿ与((--a)" · a" ,-一个是积的符号,另一个是底数的符号;③推广(aᵐ)ⁿ=aᵐⁿ:[(aᵐ)ⁿ]ᵖ=aᵐⁿᵖ.(2)除法(将除法转化为乘法计算):circle1a m÷a n=a m⋅1a n =a m−n=a m⋅a−n,由此我们还可以得到1a n=a−n;②a⁰=1,因为aᵐ÷a′′=1=a′m−m=a⁰.2.单项式相乘单项式与单项式相乘的法则:把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式.3.多项式相乘(1)多项式与单项式相乘:利用分配律,用单项式去乘以多项式的每一项,再把所得的积相加.m(a+b+c)=ma+mb+mc(2)多项式与多项式相乘:先用一个多项式中的每一项乘以另一个多项式中的每一项,再把所得的积相加.(a+b+c)(d+e)=ad+ae+bd+be+cd+ce多项式乘法结束后,一般按照各项的次数高低进行排列.4.重要公式(1)平方差公式:a²−b²=(a+b)(a−b)(2)完全平方公式:(a+b)²=(a+b)(a+b)=a²+2ab+b²(a−b)²=(a−b)(a−b)=a²−2ab+b²典型例题例 1计算:(1)(−2x²)⋅(−3x²y³z)(2)−6x2y⋅(a−b)3⋅13xy2⋅(b−a)2(3)(−4ab3)⋅(−18ab)−(12ab2)2分析本题主要考查单项式的乘法运算和混合运算,乘法运算可以根据单项式与单项式的乘法法则进行.特别是第(3)题注意运算顺序,先算乘方,再算乘法,最后算减法.解 (1)原式: =(−2)⋅(−3)⋅x²⋅x²y³z=6x⁴y³z(2) 原式=−6x2y⋅13xy2⋅(a−b)3⋅(b−a)2=−6x2y⋅13xy2⋅(a−b)3⋅(a−b)2=−6⋅13⋅x2y⋅xy2⋅[(a−b)3⋅(a−b)2]=−2⋅x3y3⋅(a−b)5(3) 原式=(−4ab3)⋅(−18ab)−14a2b4=12a2b4−14a2b4=14a2b4例 2计算:(1)(x+1)(x²−1)(2)(x−y)(x²+x+y)分析本题考查的是多项式的乘法运算,可以根据多项式与多项式的乘法法则进行. 解 (1)原式=x³−x+x²−1=x³+x²−x−1(2) 原式=x³+x²+xy−x²y−xy−y²=x³−x²y+x²−y=:例 3计算:(1)(−13x+34y3)(−34y3−13x)(2)(2a²+b)(−2a²+b)分析本题主要考查平方差公式的运用.解(1) 原式=−(34y3−13x)(34y3+13x)=−(34y3)2+(13x)2=−916y6+19x3(2) 原式: =(b+2a²)(b−2a²)=b²−4a⁴双基训练1.下面是某同学在一次作业中的计算摘录:⑬a+2b=5ab;②4m³n−5mn³=−m³n;③4x³⋅(−2x²)=−6x³;④4a³b÷(−2a²b)=−2a;⑤(a³)²=a⁵;⑥(−a)³÷(−a)== -a²其中正确的个数有( ).A. 1个B.2个C.3 个D. 4个2.计算(x²−3x+n)(x²+mx+8)的结果中不含x²和 x³的项,则 m,n 的值分别为( ).A. m=3,n=1B. m=0,n=0C. m=-3,n=-9D. m=-3,n=83.下列分解因式不正确的是( ).A.x³−x=x(x²−1)B.m²+m−6=(m+3)(m−2)C.(a+4)(a−4)=a²−16D.x²+y²=(x+y)(x−y)4.我们约定a⊗b=10“×10”,如: 2⊗3=10²×10³=10⁵,,那么 4⊗8 为 ( ).A.32B. 10³²C.10¹²D. 12¹⁰5.下列各式是完全平方式的是( ).A.x2−x+14B.1+4x²C.a²+ab+b²D.x²+2x−16.如图18-1所示,矩形花园ABCD 中,AB=a,AD=b,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RST K.若 LM=RS=c,则花园中可绿化部分的面积为( ).A.bc−ab+ac+b²B.a²+ab+bc−acC.ab−bc−ac+c²D.b²−bc+a²−ab7.如图18-2(a)所示,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分裁剪后拼成一个矩形(如图18-2(b)所示),上述操作所能验证的等式是( ).A.a²−b²=(a +b )(a −b )B.(a −b )²=a²−2ab +b²C.(a +b )²=a²+2ab +b²D.a²+ab =a (a +b )8.下列多项式中能用平方差公式分解因式的是( )A.a²+(−b )²B.5m²−20mnC.−x²−y²D.−x²+99.若 9x²+mxy +16y²是一个完全平方式,那么 m 的值是 .10.(23)2007×(1.5)2008÷(−1)2009=¯.11.分解因式: a²−1+b²−2ab =.12.如果((2a+2b+1)(2a+2b-1)=63,那么a+b 的值为 .13.把20厘米长的一根铁丝分成两段,将每一段围成一个正方形,如果这两个正方形的面积之差是5平方厘米,则这两段铁丝分别长 .14. 多项式 9x²+1加上一个单项式后,能成为一个完全平方式,那么加上的单项式可能是 .15. 若 3x =12,3y =23,则 3ˣ⁻²ʸ等于 .16. 比较3⁵⁵⁵,4⁴⁴⁴,5³³³的大小: > > .17.计算.(1)(23a 2b)3÷(13ab 2)2×34a 3b 2(2)(x 4+3y)2−(x 4−3y)2(3)(2a-3b+1)²(4)(x²−2x −1)(x²+2x −1)18.化简求值: [(x +12y)2+(x −12y)2](2x 2−12y 2),其中 x =−3,y =4.19.已知实数x 满足x+1x =3,求x2+1x2的值.20.已知.A=2x+y,B=2x-y,计算A²−B².能力提升21.若x+y=2m+1, xy=1,且21x²−48xy+21y²=2010,则m= .22. 设(1+x)²(1−x)=a+bx+cx²+dx³,则。
中考复习_整式
整式一、选择题1.(2011天津3分)若实数x 、y 、z 满足2()4()()0x z x y y z ----=.则下列式子一定成立的是(A)0x y z ++= (B) 20x y z +-= (C) 20y z x +-= (D) 2=0x z y +-【答案】D 。
【考点】代数式变形,完全平方公式。
【分析】∵()()2222()4()()=24x z x y y z x xz z xy xz y yz -----+---+()()()()()222222=244=44=2x xz z xy yz y x z y x z y x z y ++-+++-+++-∴由()22=0x z y +-得2=0x z y +-。
故选D 。
2.(2011重庆4分)计算(a 3)2的结果是 A 、a B 、a 5 C 、a 6 D 、a 9【答案】C 。
【考点】幂的乘方。
【分析】根据底数不变,指数相乘的幂的乘方法则计算即可:(a 3)2=a 3×2=a 6。
故选C 。
3.(2011重庆潼南4分)计算3 a •2 a 的结果是A .6aB .6a 2 C. 5a D. 5a2 【答案】B 。
【考点】单项式乘单项式。
【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可:∵3 a •2 a =6112aa +=,故选B 。
4.(2011浙江舟山、嘉兴3分)下列计算正确的是(A )32x x x =⋅ (B )2x x x =+ (C )532)(x x = (D )236x x x =÷【答案】A 。
【考点】同底数幂的乘法,合并同类项,幂的乘方,同底数幂的除法。
【分析】根据同底数幂的乘法、合并同类项、幂的乘方、同底数幂的除法的运算法则计算即可:A 、正确;B 、x +x =2x ,选项错误;C 、(x 2)3=x 6,选项错误;D 、x 6÷x 3=x 3,选项错误。
精品 中考数学一轮综合复习 第02课 整式(整式的加减乘除及因式分解)
8.若 m+n=3,则 2m 2 4mn 2n 2 6 的值为( A.12 B.6
C.3
D.0
9.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式 ,如 a b c 就是完 ..... 全对称式.下列三个代数式:① ( a b) ;② ab bc ca ;③ a 2b b 2 c c 2 a .其中是完全对称式的是
例 3.当 x=1 时,代数式 ax 3 bx 2014 等于 2013,则当 x=-1 时,代数式 ax 3 bx 2014 值为多少?
例 4.若多项式 4 x 2 6 xy 2 x 3 y 与 ax 2 bxy 3ax 2by 的和不含二次项,求 a、b 的值。
5
7.若 2 x 3,4 y 5 ,则 2 x 2 y 的值为( A.
3 5
9 3
B.-2
2
3 5 5
D.
6 5
8.已知 a=1.610 ,b=410 ,则 a 2b=(
7 A.210
)
5 C.3.210 14 D.3.210
B.410
14
9.把多项式 ax 2 ax 2a 分解因式,下列结果正确的是( A. a ( x 2)( x 1) B. a ( x 2)( x 1) C. a( x 1) 2
第 4 页 共 8 页
2 (5) 27 x 18 x 3
2 2 (6) 3a 6ab 3b
3 (7) 2 x 8 x
2 (8) x 5 x 6
(9) x 2 12 x 35
(10) ax 2 3ax 28a
(11) x 2 6 x 16
中考复习——整式的运算(解析版)
中考复习——整式的运算一、选择题1、下列计算正确的是().A. 7ab-5a=2bB. (a+1a)2=a2+21aC. (-3a2b)2=6a4b2D. 3a2b÷b=3a2答案:D解答:A选项:7ab与-5a不是同类项,不能合并,故A错误;B选项:根据完全平方公式可得(a+1a)2=a2+21a+2,故B错误;C选项:(-3a2b)2=9a4b2,故C错误;D选项:3a2b÷b=3a2,故D正确.选D.2、计算(-2a)2·a4的结果是().A. -4a6B. 4a6C. -2a6D. -4a8答案:B解答:(-2a)2·a4=4a2·a4=4a6.选B.3、下列计算正确的是().A. a2·a3=a6B. a(a+1)=a2+aC. (a-b)2=a2-b2D. 2a+3b=5ab答案:B解答:A选项:a2·a3=a5,故A错误;B选项:a(a+1)=a2+a,故B正确;C选项:(a-b)2=a2-2ab+b2,故C错误;D选项:2a+3b,不是同类项,不能合并,故D错误;选B.4、下列运算正确的是().A. 3a+2b=5abB. 3a·2a=6a2C. a3+a4=a7D. (a-b)2=a2-b2答案:B解答:A选项:原式不能合并,故A错误;B选项:原式=6a2,故B正确;C选项:原式不能合并,故C错误;D选项:原式=a2-2ab+b2,故D错误.选B.5、下列计算正确的是().A. 5ab-3a=2bB. (-3a2b)2=6a4b2C. (a-1)2=a2-1D. 2a2b÷b=2a2答案:D解答:A选项:5ab,3a不是同类项,故不能合并,A错误;B选项:(-3a2b)2=(-3)2·(a2)2·b2=9a4b2,B错误;C选项:(a-1)2=a2-2a+1,a2-1=(a+1)(a-1),C错误;D选项:2a2b÷b=2a2,故D对.选D.6、下列计算正确的是().A. 2a+3b=5abB. (3ab)2=9ab2C. 2a·3b=6abD. 2ab2÷b=2b答案:C解答:A选项:2a+3b≠5ab,故错误;B选项:(3ab)2=9a2b2≠9ab2,故错误;C选项:2a·3b=6ab,故正确;D选项:2ab2÷b=2ab≠2b,故错误.选C.7、下列运算正确的是().A. 4m-m=4B. (a2)3=a5C. (x+y)2=x2+y2D. -(t-1)=1-t答案:D解答:A选项:4m-m=3m,故A错误;B选项:(a2)3=a6,故B错误;C选项:(x+y)2=x2+2xy+y2,故C错误;D选项:-(t-1)=1-t,故D正确.选D.8、计算:(-2m)2·(-m·m2+3m3)的结果是().A. 8m5B. -8m5C. 8m6D. -4m4+12m5答案:A解答:原式=(-2)2m2·(-m3+3m3)=4m2·2m3=8m5.9、计算(2x-3)(3x+4)的结果,与下列哪一个式子相同?().A. -7x+4B. -7x-12C. 6x2-12D. 6x2-x-12答案:D解答:由多项式乘法运算法则得(2x-3)(3x+4)=6x2+8x-9x-12=6x2-x-12.选D.10、小明总结了以下结论:①a(b+c)=ab+ac;②a(b-c)=ab-ac;③(b-c)÷a=b÷a-b÷c;④a÷(b+c)=a÷b+a÷c.其中一定成立的个数是().A. 1B. 2C. 3D. 4答案:B解答:①②符合乘法分配律,③(b-c)÷a=b÷a-c÷a,④错误.①②正确.选B.11、下列运算正确的是().A. 2m3+3m2=5m5B. m3÷m2=mC. m·(m2)3=m6D. (m-n)(n-m)=n2-m2答案:B解答:A选项:2m3+3m2=5m5,不是同类项,不能合并,故A错误;B选项:m3÷m2=m,故B正确;C选项:m·(m2)3=m7,故C错误;D选项:(m-n)(n-m)=-(m-n)2=-n2-m2+2mn,故D错误.选B.12、化简13(9x-3)-2(x+1)的结果是().A. 2x-2B. x+1C. 5x+3D. x-3答案:D解答:原式=3x-1-2x-2=x-3,选D.13、化简(x-3)2-x(x-6)的结果为().A. 6x-9B. -12x+9C. 9D. 3x+9答案:C解答:原式=x2-6x+9-x2+6x=9.选C.14、下列运算中,正确的是().A. 3y+5y=8y2B. 3y-5y=-2C. 3y×5y=15y2D. 3y÷5y=3 5 y答案:C解答:A选项:3y+5y=8y,故A错误;B选项:3y-5y=-2y,故B错误;C选项:3y×5y=15y2,故C正确;D选项:3y÷5y=35,故D错误;选C.15、化简:a(a-2)+4a=().A. a2+2aB. a2+6aC. a2-6aD. a2+4a-2答案:A解答:a(a-2)+4a=a2-2a+4a=a2+2a,选A.二、填空题16、计算:7x-4x=______.答案:3x解答:7x-4x=(7-4)x=3x.17、计算:a3÷a=______.答案:a2解答:同底数幂相除,底数不变,指数相减,所以,原式=a3-1=a2.18、计算:2a·3ab=______.答案:6a2b解答:2a·3ab=6a2b.故答案为:6a2b.19、计算:a5÷a3=______.答案:a2解答:a5÷a3=a5-3=a2.20、化简x(x-1)+x的结果是______.答案:x2解答:原式=x2-x+x=x2.故答案为:x2.21、计算x+7x-5x的结果等于______.答案:3x解答:计算x+7x-5x的结果等于(1+7-5)x=3x.故答案为:3x.三、解答题22、计算:(2x2)3-x2·x4.答案:7x6.解答:(2x2)3-x2·x4=8x6-x6=7x6.23、计算:[a 3·a 5+(3a 4)2]÷a 2. 答案:10a 6.解答:原式=(a 3+5+9a 8)÷a 2 =(a 8+9a 8)÷a 2 =10a 8÷a 2 =10a 6.24、化简:a (1-2a )+2(a +1)(a -1). 答案:a -2.解答:原式=a -2a 2+2(a 2-1) =a -2a 2+2a 2-2 =a -2. 25、计算.(1)π0+(12)-1-2. (2)(x -1)(x +1)-x (x -1). 答案:(1)0.(2)x -1. 解答:(1)原式=1+2-3=0. (2)原式=x 2-1-x 2+x =x -1. 26、计算:(1)|-8|×2-1+(-1)2020. (2)(a +2)(a -2)-a (a +1). 答案:(1)1.(2)-a -4. 解答:(1)原式=8×12-4+1 =4-4+1 =1.(2)原式=(a 2-4)-(a 2+a ) =a 2-4-a 2-a =-a -4. 27、计算:(1-tan45°-()0.(2)ab(3a-2b)+2ab2.答案:(1)0.(2)3a2b.解答:(1()0=2-1-1=0.(2)ab(3a-2b)+2ab2=3a2b-2ab2+2ab2=3a2b.28、完成下列各题.(1)计算:(2020)0+|-3|.(2)化简:(a+2)(a-2)-a(a+1).答案:(1)2.(2)-4-a.解答:(1)原式=1-2+3=2.(2)原式=a2-4-a2-a=-4-a.29、解决下列问题.(1-|-2|+)0-(-1).(2)化简:(x-1)2-x(x+7).答案:(1)2.(2)-9x+1.解答:(1)原式=2-2+1+1=2.(2)原式=x2-2x+1-x2-7x=-9x+1.30、解答下列各题:(1)计算:(a+1)2+a(2-a).(2)解不等式:3x-5<2(2+3x).答案:(1)4a+1.(2)x>-3.解答:(1)原式=a2+2a+1+2a-a2=4a+1.(2)去括号,得3x -5<4+6x , 移项,得3x -6x <4+5, 合并同类项,得-3x <9, 两边同除以-3,得x >-3. 31、计算:(1)22x y y x y +-+()().(2)294922a a a a a --⎛⎫+÷⎪--⎝⎭. 答案:(1)x 2.(2)33a a -+. 解答:(1)(x +y )2-y (2x +y ) =x 2+2xy +y 2-2xy -y 2 =x 2.(2)(a +942a a --)÷292a a --=()()2942a a a a -+--·()()233a a a -+-=()()229433a a aa a -+-+- =()()()2333a a a -+- =33a a -+. 32、有一电脑程序:每按一次按键,屏幕的A 区就会自动加上a 2,同时B 区就会自动减去3a ,且均显示化简后的结果.已知A ,B 两区初始显示的分别是25和-16.如,第一次按键后,A 、B 两区分别显示:(1)从初始状态按2次后,分别求A ,B 两区显示的结果.(2)从初始状态按4次后,计算A ,B 两区代数式的和,请判断这个和能为负数吗?说明理由.答案:(1)A 区:25+2a 2;B 区:-16-6a . (2)不能为负数,证明见解答.解答:(1)按2次后,A 区:25+2a 2;B 区:-16-6a . (2)按4次后,A 区:25+4a 2,B 区:-16-12a . 两区代数式相加为:25+4a 2-16-12a =4a 2-12a +9 =(2a -3)2. ∵(2a -3)2≥0, ∴不能为负数.33、已知:整式A =({{n 2-1)}{2)+(2n )2,整式B >0. 尝试化简整式A. 发现﹒A =B 2,求整式B.联想·由上可知,B 2=(n 2-1)2+(2n )2,当n >1时,n 2-1,2n ,B 为直角三角形的三边长,如图填写下表中B 的值.答案:15,37.解答:A =(n 2-1)2+(2n )2=n 4-2n 2+1+4n 2=n 4+2n 2+1=(n 2+1)2 ∵A =B 2,B >0, ∴B =n 2+1, 当2n =8时,n =4, ∴n 2+1=42+1=15; 当n 2-1=35时,n 2+1=37. 故答案为:15,37.2nn 2-1B。
【中考-章节复习五】 第一章 整式的运算
提高复习效 率,你一定 行!
知识点:
, a 2 h 等,都是数与字母的乘积,这 样的代数式叫做单顶式.几个单项式的和叫做多 π 1 1 项式,例如 ab - 16 b , 2 ab - 2 mn 等.单顶式和多项式 统称整式. 一个单项式中,所有字母的指数和叫做这个
2
π 2 3 像 16 b , 5 x
计算下列各式:
1 1 2 2 3 2 (1) (2xy ) • ( xy) = (2 × ) • ( xx) • ( y y ) = x y 3 3 3 2 3 [(-2) ×(-3)](a 2a) • b 3 = 6a 3b 3 (2) (-2a b ) • (-3a ) =
2
(3) ( 4 ×10 ) • (5 ×10 ) 5 4 9 10 = (4 ×5) • (10 ×10 ) = 20 ×10 = 2 ×10
幂 的 乘 方
?
(2 ) = 2
3 6
(2) 8 = 8×8×8×8×8×8
= (2 )
3 6
?个2 3
(2 ) = 2
?
即
(a ) = a
m n
mn
(m,n都是正整数)
不变 相乘 幂的乘方,底数_____,指数_____.
------ 幂的乘方运算法则 2.如果甲球的半径是乙球的n倍,那么甲球的体 3 积是乙球的 n 倍. 地球、木星、太阳可以近似地看做是球体,木 星、太阳的半径分别约是地球的10倍和 10 2 倍, 3 (10 2 ) 3 = 10 6 它们的体积分别约是地球的____、_________倍. 10
= 20 ×10 = 2 ×10 2 12 答:它工作 5 ×10 秒可做 2 ×10 次运算.
中考数学专题复习2整式的运算(解析版)
整式的运算复习考点攻略考点01 整式的有关概念1.整式:单项式和多项式统称为整式.2.单项式:单项式是指由数字或字母的乘积组成的式子;单项式中的数字因数叫做单项式的系数;单项式中所有字母指数的和叫做单项式的次数. 【注意】单项式的系数包括它前面的符号3.多项式:几个单项式的和叫做多项式;多项式中.每一个单项式叫做多项式的项.其中不含字母的项叫做常数项;多项式中次数最高项的次数就是这个多项式的次数.4.同类项:多项式中所含字母相同并且相同字母的指数也相同的项叫做同类项. 【例1】单项式3212a b 的次数是_____. 【答案】5 【解析】单项式3212a b 的次数是325+=.故答案为5. 【例2】下列说法中正确的是( )A .25xy -的系数是–5 B .单项式x 的系数为1.次数为0C .222xyz -的次数是6D .xy +x –1是二次三项式 【答案】D【解析】A.25xy -的系数是–15.则A 错误;B.单项式x 的系数为1.次数为1.则B 错误;C.222xyz -的次数是1+1+2=4.则C 错误;D.xy +x –1是二次三项式.正确.故选D.【例3】若单项式32m x y 与3m nxy +是同类项.2m n +_______________.【答案】2【解析】由同类项的定义得:13m m n =⎧⎨+=⎩解得12m n =⎧⎨=⎩221242m n +=⨯+==故答案为:2.【例4】按一定规律排列的单项式:a .2a -.4a .8a -.16a .32a -.….第n 个单项式是( )A .()12n a --B .()2na -C .12n a -D .2n a【答案】A 【解析】解:a .2a -.4a .8a -.16a .32a -.….可记为:()()()()()()0123452,2,2,2,2,2,,a a a a a a ------•••∴ 第n 项为:()12.n a -- 故选A .【例5】如图.图案均是用长度相等的小木棒.按一定规律拼搭而成.第一个图案需4根小木棒.则第6个图案需小木棒的根数是( )A .54B .63C .74D .84【答案】A【解析】拼搭第1个图案需4=1×(1+3)根小木棒. 拼搭第2个图案需10=2×(2+3)根小木棒. 拼搭第3个图案需18=3×(3+3)根小木棒. 拼搭第4个图案需28=4×(4+3)根小木棒. …拼搭第n 个图案需小木棒n (n +3)=n 2+3n 根. 当n =6时.n 2+3n =62+3×6=54. 故选A.考点02 整式的运算1.幂的运算:a m ·a n =a m +n ;(a m )n =a mn ;(ab )n =a n b n ;a m ÷a n =m n a -. 2. 整式的加减:几个整式相加减.如有括号就先去括号.然后再合并同类项。
中考专题复习 第三讲 整式
第三讲整式【基础知识回顾】一、整式的有关概念::由数与字母的积组成的代数式1、整式:多项式:。
单项式中的叫做单项式的系数,所有字母的叫做单项式的次数。
组成多项式的每一个单项式叫做多项式的,多项式的每一项都要带着前面的符号。
2、同类项:①定义:所含相同,并且相同字母的也相同的项叫做同类项,常数项都是同类项。
②合并同类项法则:把同类项的相加,所得的和作为合并后的,不变。
二、整式的运算:1、整式的加减:①去括号法则:a+(b+c)=a+ ,a-(b+c)=a- .②添括号法则:a+b+c= a+( ),a-b-c= a-( )③整式加减的步骤是先,再。
2、整式的乘法:①单项式乘以单项式:把它们的系数、相同字母分别,对于只在一个单项式里含有的字母,则连同它的作为积的一个因式。
②单项式乘以多项式:用单项式去乘多项式的每一项,再把所得的积,即m(a+b+c)= 。
③多项式乘以多项式:先用第一个多项式的每一项去乘另一个多项式的每一项,再把所得的积,即(m+n)(a+b)= 。
④乘法公式:Ⅰ、平方差公式:(a+b)(a—b)=,Ⅱ、完全平方公式:(a±b)2 = 。
3、整式的除法:①单项式除以单项式,把、分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
②多项式除以单项式,先用这个多项式的每一项这个单项式,再把所得的商。
即(am+bm)÷m= 。
三、幂的运算性质:1、同底数幂的乘法:不变相加,即:a m a n=(a>0,m、n为整数)2、幂的乘方:不变相乘,即:(a m) n =(a>0,m、n为整数)3、积的乘方:等于积中每一个因式分别乘方,再把所得的幂。
即:(ab) n =(a>0,b>0,n为整数)。
4、同底数幂的除法: 不变相减,即:a m÷a n =(a>0,m、n为整数)【重点考点例析】考点一:代数式的相关概念。
例1 如果单项式-x a+1y3与12y b x2是同类项,那么a、b 的值分别为()A.a=2,b=3 B.a=1,b=2C.a=1,b=3 D.a=2,b=2对应训练1.计算-2x2+3x2的结果为()A.-5x2B.5x2C.-x2D.x2考点二:代数式求值例2 已知x-1x=3,则4-12x2+32x的值为()A.1 B.32C.52D.72例3 下面是一个简单的数值运算程序,当输入x的值为3时,则输出的数值为.对应训练2.若x2-2x=3,则代数式2x2-4x+3的值为.3.按如图所示的程序计算.若输入x的值为3,则输出的值为.考点三:单项式与多项式。
《整式运算》中考专题复习(知识点+基础应用+能力提高+中考真题)
基本知识点总结一、主要概念:1.单项式2.多项式3.同类项4.整式单项式(定义、系数、次数)整式多项式(定义、项、次数、同类项、升降幂排列)二、基本运算法则1.合并同类项法则:合并同类项时,把系数相加,字母和字母指数不变.2. 添括号法则添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号。
3. 整式加减法法则:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项。
步骤:第一步:有括号的先去括号第二步:题目中标出同类项第三步:合同同类型整式加减运算专题应用考点一:同类项概念及其应用 基础应用1.下列各组式子中是同类项的是 ( ) A.n m mn 2541与 B.abc ab 55与 C.b a y x 2222与 D.52与32 2.下列说法正确的是 ( )A.a 是单项式,它的系数为0B. -πx 是一次单项式C.多项式222y xy x +-是单项式2x 、xy 2、2y 的和 D 是一个单项式3.下列各组中,不是同类项的是A.3和0B.2222R R ππ与 C.xy 与2pxy D.11113+--+-n n n n x y y x 与 4.下列各对单项式中,不是同类项的是 ( ) A.0与31B.23n m x y +-与22m n y x +C.213x y 与225yxD.20.4a b 与20.3ab 5.下列各组中的两项不属于同类项的是 ( ) A.233m n 和23m n - B.5xy和5xy C.-1和14 D.2a 和3x6.与y x 221不仅所含字母相同,而且相同字母的指数也相同的是 ( ) A.z x 221 B. xy 21C.2yx -D. x 2y 7.下列各组式子中,两个单项式是同类项的是( )A.2a 与2aB.5b a 2 与b a 2C. xy 与y x 2D. 0.3m 2n 与0.3x 2y8.说出下列各题中的两项是不是同类项?为什么? (1)-4x 2y 、4xy 2(2)a 2b 2、-a 2b2(3)3.5abc 、0.5acb(4)43、a 3(5)a 2、a 2(6)2πx 、4x 能力提高1.如果23321133a b x y x y +--与是同类项,那么a 、b 的值分别是( )A.12a b =⎧⎨=⎩B.02a b =⎧⎨=⎩C.21a b =⎧⎨=⎩D.11a b =⎧⎨=⎩2.若2313m x y z -与2343x y z 是同类项,则m = .x13.已知:23 x 3my 3与-1 x 6y n+1是同类项,求 m 、n 的值4.若单项式22m x y 与313n x y -是同类项,求m n +的值5.已知31394b a m -与12583+-n b a 是同类项,求2013(25)m n -的值 中考真题1.(2016•上海)下列单项式中,与a 2b 是同类项的是( )A. 2a 2bB. a 2b 2C. a b 2D . 3a b2.(2012•梅州)若代数式﹣4x 6y 与x 2ny 是同类项,则常数n 的值为 .3.(2010•红河自治州)如果的取值是和是同类项,则与n m y x y x m m n 31253-- ( ) A.3和-2 B.-3和2 C.3和2 D.-3和-24.(2013•凉山州)如果单项式﹣xa +1y 3与是同类项,那么a 、b 的值分别为( )A.a=2,b=3B.a=1,b=2C.a=1,b=3D.a=2,b=2 5.(2015•遵义)如果单项式﹣xy b+1与xa ﹣2y 3是同类项,那么(a ﹣b )2015= .6.(2012•黔西南州)已知﹣2xm ﹣1y 3和x n ym+n 是同类项,则(n ﹣m )2012= .7.(2012•河源)若代数式﹣4x 6y 与x 2ny 是同类项,则常数n 的值为 . 8.(2012•莆田)如果单项式x a+1y 3与2x 3y b 是同类项,那么a b= .考点二:合并同类项 基础应用1.合并下列多项式中的同类项:(1)6ab-ab (2)5xy-5yx (3)33225m m - (4)bc a b a 2221c 2+(5)23232b a b a +- (4)225354ba b a -3.下列各题合并同类项的结果对不对?752222(5)3222=-x x (6) 7mn-7nm=0 (7)a +a =2a (8)422532x x x =+(9)xy y x 523=+ (10)43722=-x x (11)628=-a a (12)532725x x x =+(13)b a ab b a 22223=- (14)y x y x y x 222835-=-- (15)2x+5y=7y (16)y x xy y x 33398=-(17)abc c ab 945=+ (18)523523x x x =+ (19)22254x x x =+ (20)ab ab b a 47322-=- 能力提高1.若2243a b x y x y x y -+=-,则a b +=__________. 2.若22+k k y x 与n y x 23的和为5n y x 2,则k= ,n= 3.若与的和是单项式,则 ,.4.如果- x a y a+1 与3x 5y b-1的和仍是一个单项式,求2a-b 的值.5.52114m a b +与3613n a b -的和仍是单项式,求m,n.6.已知,求m+n-p 的值.中考真题1.(2010•株洲市)在22x y ,22xy -,23x y ,xy - 四个代数式中找出两个同类项,并合并这两个同类项.2.(2014•毕节地区)若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m n 的值是( ) 223m a b 40.5n a b -m =n =35414527m n a b pa b a b ++-=-3.(2010•衡阳)若3x m+5y 2与x 3y n 的和是单项式,则n m= .考点二:添括号法则1.a ,b ,c 都是有理数,那么a-b+c 的相反数是( ) A.b-a-cB.b+a-cC.-b-a+cD.b-a+c2.下列去括号正确的是( ) A.2y 2-(3x-y+3z)=2y 2-3x-y+3z B.9x 2-[y-(5z+4)]=9x 2-y+5z+4 C.4x+[-6y+(5z-1)]=4x-6y-5z+1D.-(9x+2y)+(z+4)=-9x-2y-z-43. 在3a -2b+4c -d=3a -d -( )的括号里应填上的式子是( ) A. 2b -4c B. –2b -4c C. 2b+4c D. –2b+4c4.在括号内填上适当的项:(a+b -c)(a -b+c)=[][](_______)(________)-+a a . 5.去括号运算:-{-[-(-a )2-b 2 ]}-[-(-b 2)]考点三:整式及整式加减法运算 基础应用1. 下列代数式5.2,1,2,1,22--+-+yx a x x x x ,其中整式有( )个 A.4 B.3 C.2 D.1 2. 下列说法中,错误的是( )A.单项式与多项式统称为整式B.单项式x 2yz 的系数是1 C.ab+2是二次二项式 D.多项式3a+3b 的系数是3 3. 下列代数式a+bc,5a,mx 2+nx+p,-x.,1,5xyz,nm,其中整式有( )个 A.7 B.6 C.5 D.4 4. 下列运算正确的是( )A.3a+2b=5abB.3a 2b -3ba 2=0 C.3x 2+2x 3=5x 5D.5y 2-4y 2=1 能力提高1.若b a ,互为相反数,求b b b b b a a a a a 865429753+++++++++的值.2.已知A= mx ²+ 2x- 1,B= 3x ²- nx+ 3,且多项式A- B 的值与m 、n 的取值无关,试确定m 、n 的值.3.化简(1)22231722m m m +- (2)3x 2-1-2 x -5+3x - x 2(3)b a b a b a 2222132-+;(4) 222432132b ab a ab a -++- (5)4x 2y-8xy 2+7-4x 2y+12xy 2-4 (6) 3x 2-4xy+4y 2-5x 2+2xy-2y 2;(7)a 2-2a b +b 2+2a 2+2a b -b 2(8)2222642336a b ab b ab a ++---(9)322223b ab b a ab b a a +-+-+ (10)-0.8a 2b -6a b -1.2a 2b +5a b +a 2b(11)22222243845b a ab ab ab b a ab +-+-- (12)6x 2y+2 xy-3x 2y 2-7x-5yx-4y 2x 2-6x 2y4.先化简后求值:(1)x 3-x +1-x 2,其中x =-3; (2)x 5-y 3+4x 2y -4x +5,其中x =-1,y =-2;(3)2222342251, 2.xy yx y x x y x y ---+=-=,其中(7分)5. 已知2 a +(b +1)2=0,求5a b 2-[2a 2b -(4a b 2-2a 2b )]的值.中考真题1.( 2012•广州)下面的计算正确的是( )A .6a ﹣5a=1 B.a+2a 2=3a 3C.﹣(a ﹣b )=﹣a+bD.2(a+b )=2a+b 2.( 2014•广东)计算3a ﹣2a 的结果正确的是( )A.1B.aC.﹣aD.﹣5a 3.(2011•四川)计算a+(-a)的结果是( )A.2aB.0C.-a2D.-2a4.(2010•重庆)计算3x +x 的结果是( )A.3x 2B.2xC.4xD. 4x 25.(2010•浙江)化简a +b -b ,正确的结果是( )A.a -bB.-2bC.a +bD.a +2 6.(2014•济宁)化简﹣5ab +4ab 的结果是( )A.-1B. aC. bD.﹣ab 7.(2012•广东)计算﹣2a 2+a 2的结果为( )A.﹣3aB.﹣aC.﹣3a2D.﹣a28.(2015•梧州)先化简,再求值:2x+7+3x ﹣2,其中x=2.9.(2012•乐山)化简:3(2x 2﹣y 2)﹣2(3y 2﹣2x 2). 10.(2014 •嘉荫县)计算:(1)2x+3y ﹣6xy 与﹣2y+3x+xy 的和 (2)化简多项式:3x 2y ﹣4xy 2﹣3+5x 2y+2xy 2+5.单项式、多项式专题练习一、单项式1.(2015•台州)单项式2a 的系数是( ) A .2B .2aC .1D .a2.(2011•柳州)单项式3x 2y 3的系数是 3 .3.(2015•厦门)已知一个单项式的系数是2,次数是3,则这个单项式可以是( ) A .﹣2xy 2B .3x 2C .2xy 3D .2x 34.(2015•通辽)下列说法中,正确的是( ) A .﹣x 2的系数是 B .πa 2的系数是C .3ab 2的系数是3a D .xy 2的系数是 5.(2014•鄄城县)下列说法中正确的是()A .x 的系数是0B .24与42不是同类项 C .y 的次数是0 D .23xyz 是三次单项式 6.(2015.庐江县)4πx 2y 49的系数与次数分别为( )A.49,7 B. 49π,6 C.4π,4 D . 49π,47.(2015•岳阳)单项式﹣x 2y 3的次数是 . 8.(2015•桂林)单项式7a 3b 2的次数是 . 9.(2015•临沂)观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…按照上述规律,第2015个单项式是( )A .2015x2015B .4029x2014C .4029x2015D .4031x201510.(2013•淮安)观察一列单项式:1x ,3x 2,5x 2,7x ,9x 2,11x 2,…,则第2013个单项式是 4025x 2. 11.(2015•牡丹江)一列单项式:﹣x 2,3x 3,﹣5x 4,7x 5,…,按此规律排列,则第7个单项式为 . 12.(2014•青海)一组按照规律排列的式子:,…,其中第8个式子是 ,第n 个式子是 .(n 为正整数) 9.(2014•北海)下列式子按一定规律排列:,,,,…,则第2014个式子是 .二、多项式1.(2014•佛山)多项式2a 2b ﹣ab 2﹣ab 的项数及次数分别是( )2.(2013年佛山市)多项式的次数及最高次项的系数分别是( ) A.3,-3 B.2,-3 C.5,-3 D.2,33.(2015.日照)x2y3−3xy3−2的次数和项数分别为()A.5,3B.5,2C.2,3D.3,34.(2011广东湛江)多项式2x2-3x+5是_____次_____项式.5.(2013•济宁)如果整式x n﹣2﹣5x+2是关于x的三次三项式,那么n等于()A.3 B.4 C.5 D.6。
备战九年级中考数学一轮复习第2课整式(含因式分解)(全国通用)
13.(202X·哈尔滨)把多项式m2n+6mn+9n分解因式的结果 是_____n_(m__+__3_)2_____.
14.(202X·重庆)已知a+b=4,则代数式1+ a +b 的值 22
为( A )
A.3
B.1
C.0
D.-1
考点3 求代数式的值
15.【例3】(202X·广东)已知x=5-y,xy=2,计算代数式 3x+3y-4xy=____7____.
第2课 整式(含因式分解)
1.(1)单项式:数与字母的积所表示的代数式叫做单项式,单 独一个数或者一个字母也是单项式. (2)多项式:几个单项式的和叫做多项式. (3)整式:单项式与多项式统称为整式.
1.(1)单项式-3xy2的系数是__-__3____,次数是____3____; (2)多项式2x-5xy3-1是____4____次____三____项式,其中 一次项为____2_x___,一次项系数为____2____.
23.(202X·天水)分解因式:m3n-mn= mn(m+1)(m-1) .
24.(海南中考)某工厂去年的产值是a万元,今年比去年 增加10%,今年的产值是__1_._1_a___万元.
25.(广东中考)下列计算正确的是( C )
A.b6+b3=b2
B.b3·b3=b9
C.a2+a2=2a2
C.2kk
D.k2+k
31.(202X·苏州)若单项式2xm-1y2与单项式1 x2yn+1是同类项, 3
则m+n=___4_____.
32.(202X·枣庄)若a+b=3,a2+b2=7,则ab=___1_____.
C组 33.(202X·聊城)因式分解:x(x-2)-x+2= (x-1)(x-2) .
初三中考数学复习-整式及因式分解
A.2
B.3
C.4
D.6
9.把多项式 ax3-2ax2+ax 分解因式,结果正确的是
A.ax(x2-2x)
B.ax2(x-2)
C.ax(x+1)(x-1)
D.ax(x-1)2
10.若 a2 kab 9b2 是完全平方式,则常数 k 的值为
A.±6 C.±2
B.12 D.6
11.若有理数 a,b 满足 a2 b2 5 , (a b)2 9 ,则 4ab 的值为
多项式乘多项式的运算中要做到不重不漏,应用乘法公式进行简便计算,另外去括号时,要注意符号的变
化,最后把所得式子化简,即合并同类项.
典例 6 已知 a﹣b=5,c+d=﹣3,则(b+c)﹣(a﹣d)的值为
A.2
B.﹣2
C.8
D.﹣8
11.一个长方形的周长为 6a 8b ,相邻的两边中一边长为 2a 3b ,则另一边长为
的指数是否相同.
多项式的次数是指次数最高的项的次数.同类项一定要先看所含字母是否相同,然后再看相同字母的指数
是否相同.
单独一个数或字母也是单项式;单项式的次数是指单项式中所有字母指数的和,单独的一个常数的次数是 0.
典例 2 下列说法中正确的是
A. xy2 的系数是-5 5
B.单项式 x 的系数为 1,次数为 0
D. 35x3 y2 5x2 y 7xy
12.先化简,再求值:3a(a2+2a+1)﹣2(a+1)2,其中 a=2.
考向六 因式分解
因式分解的概念与方法步骤 ①看清形式:因式分解与整式乘法是互逆运算.符合因式分解的等式左边是多项式,右边是整式乘积的形 式. ②方法:(1)提取公因式法;(2)运用公式法. ③因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解 必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的 2 倍,如 果没有两数乘积的 2 倍还不能分解. 一“提”(取公因式),二“用”(公式).要熟记公式的特点,两项式时考虑平方差公式,三项式时考虑完全平 方公式.
2024年中考数学总复习专题02整式复习划重点 学霸炼技法
3.x 个单价为 a 元的商品与 y 个单价为 b 元的商品总价为
(_a_x_+__b_y_)_元.
第11页
返回目录
专题二 整式
中考·数学
考点 2 整式的相关概念 1.单项式: (1)定义:表示数与字母的___积_____的式子叫做单项式,单 独的一个数或一个字母也是单项式. (2)性质:单项式中的____数__字__因__数__叫做这个单项式的系数;
[教材复习] 考点 1 代数式及其求值 1.代数式 用运算符号连接数和字母组成的式子,单独一个数或一个表
示数的字母也叫代数式.
第7页
返回目录
专题二 整式
中考·数学
2.列代数式 把问题中与数量有关的词语,用含有数字、字母和运算符号
的式子表示出来.关键是找出问题中的数量关系及公式,如:
“路程=速度×时间”“售价=标价×折扣”等;其次要抓
第4页
返回目录
专题二 整式
中考·数学
◎能推导乘法公式:(a+b)(a-b)=a2-b2,(a±b)2=a2±2ab +b2,了解公式的几何背景,并能利用公式进行简单计 算; ◎能用提公因式法、公式法(直接利用公式不超过二次)进行 因式分解(指数是正整数).
Hale Waihona Puke 第5页返回目录专题二 整式
中考·数学
[对接教材]
第16页
返回目录
专题二 整式
中考·数学
考点 3 整式的运算
1.整式的加减
(1)合并同类项:①字母和字母的指数不变;②系数相加减
作为新的系数,如:3x2y+4x2y=7x2y.
(2)去括号法则:括号前是“+”号,去括号时,括号内各项
不变号:a+(b+c)=a____+____b___+_____c;
2024年中考数学二轮复习:整式(附答案解析)
2024年中考数学二轮复习:整式
一.选择题(共10小题)
1.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()
A.﹣3B.3C.0D.1
2.已知a=8131,b=2741,c=961,则a,b,c的大小关系是()
A.a>b>c B.a>c>b C.a<b<c D.b>c>a 3.若x,y均为正整数,且2x+1•4y=128,则x+y的值为()
A.3B.5C.4或5D.3或4或5 4.若(a m b n)3=a9b15,则m、n的值分别为()
A.9;5B.3;5C.5;3D.6;12
5.不论x、y为什么实数,代数式x2+y2+2x﹣4y+7的值()
A.总不小于2B.总不小于7
C.可为任何实数D.可能为负数
6.如果x2﹣(m+1)x+1是完全平方式,则m的值为()
A.﹣1B.1C.1或﹣1D.1或﹣3
7.下列等式中正确的个数是()
①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A.0个B.1个C.2个D.3个
8.已知x+y﹣3=0,则2y•2x的值是()
A.6B.﹣6C.18D.8
9.已知x=3y+5,且x2﹣7xy+9y2=24,则x2y﹣3xy2的值为()
A.0B.1C.5D.12
10.下列说法中,正确的是()
A.−34x2的系数是34B.32πa2的系数是32
C.3ab2的系数是3a D.25xy2的系数是25
二.填空题(共5小题)
11.多项式12|U−(+2)x+7是关于x的二次三项式,则m=.12.计算:(﹣3)2013•(−13)2011=.
第1页(共12页)。
中考复习《整式》
《三》整式(1)单项式:由数与字母的组成的代数式叫做单项式(单独一个数或也是单项式).单项式中的叫做这个单项式的系数;单项式中的所有字母的叫做这个单项式的次数.(2) 多项式:几个单项式的叫做多项式.在多项式中,每个单项式叫做多项式的 ,其中次数最高的项的叫做这个多项式的次数.不含字母的项叫做 .(3) 整式:与统称整式.4. 同类项:在一个多项式中,所含相同并且相同字母的也分别相等的项叫做同类项. 合并同类项的法则是 ___.5. 幂的运算性质: a m·a n= ; (a m)n= ; a m÷a n=_____; (ab)n= .二.例题讲解例1.下列整式中,哪些是单项式,哪些是多项式?说出各单项式的系数、次数;各多项式是几次几项式。
-12,-2a,x2yz,m2-n2,x2+2x+1,-3x2+2y2-xy,0.5,4-3a2b-ab2-b3。
例2.指出下列各式中的单项式、多项式和整式:13,,,,-x,5a,abc,,ax2+bx+c,a3+b3。
例3.当x=- ,y=- 时,求x2y+xy2-y3的值。
例4.m是大于-1 的负整数,n是绝对值为2的有理数,求: m3-2n2m2+6n3m的值。
例5.已知:3x m y2m-1z- x2y-4是六次三项式,求m的值。
例6.已知| a-5|=0,且(a-5)|b+7|=a+5,求b的值。
三.实战练习:1.下列代数式中:x2-2x-1,,,π,m-n,,- ,x,,。
单项式有________________,多项式是_____________整式有____________。
2.填表:3.3x2-4x+5是___________次________项式。
4.(k-2)x2-5x+9是关于x的一次多项式,则k=______。
5.把多项式-5x6+x2y2-2x3y+6x2y3按y降幂排列为________________,其中最高次项____________。
中考总复习第三讲整式
3.整式的运算
(1)整式的加减:几个整式相加减,通常用括号 把每一个整式括起来,再用加减号连接.整式加减的 一般步骤是: (i)如果遇到括号.按去括号法则 先去括号:括号前是“十”号,把括号和它前面的 “+”号去掉。括号里各项都不变符号,括号前是 “一”号,把括号和它前面的“一”号去掉.括号里 各项都改变符号.
多项式与多项式相乘,先用一个多项式的每一项乘以另一个多 项式的每一项,再把所得的积相加. 遇到特殊形式的多项式乘法,还可以直接算:
( x a)(x b) x (a b) x ab,
2
(a b)(a b) a 2 b 2 , (a b) 2 a 2ab b 2 , (a b)(a ab b ) a b .
D.
例5 计算:9xy· (-
x2y)=
;
(2006年江苏省)先化简,再求值: [(x-y)2+(x+y)(x-y)]÷2x其中 x=3,y=-1.5.
(3)多项式的降幂排列与升幂排列 把一个多项式技某一个字母的指数从大列小的顺序排列起 来,叫做把这个多项式按这个字母降幂排列
(4)同类项
所含字母相同,并且相同字母的指数也分别相同的 项,叫做同类顷. 要会判断给出的项是否同类 项,知道同类项可以合并.即 其中的X可以代表单项式中的字母部分,代表 其他式子。
2 2 3 3
(3)整式的乘方
单项式乘方,把系数乘方,作为结果的系数,再把 乘方的次数与字母的指数分别相乘所得的幂作为结果 的因式。 单项式的乘方要用到幂的乘方性质与积的乘方性 质: m n mn
(a ) a (m, n是整数), (ab) a b (n是整数)
n n n
中考数学复习《整式的加减》专项练习题-带有答案
中考数学复习《整式的加减》专项练习题-带有答案一、选择题1.下列各式中,不是整式的是()C.0 D.x+yA.3a B.12x2.单项式−3πxy2z3的系数和次数分别是()A.−π,5B.−1,6C.−3π,6D.−3,73.下列式子中,与−3a2b是同类项的是()A.−3ab2B.−ba2C.2ab2D.2a3b4.多项式2x2y|m|−(m−2)xy+1是关于x.y的四次二项式,则m的值为()A.2 B.-2 C.±2 D.±15.下列各式去括号正确的是()A.−(a−3b)=−a−3b B.a+(5a−3b)=a+5a−3bC.−2(x−y)=−2x−2y D.−y+3(y−2x)=−y+3y−2x6.要使多项式3x2−2(5+x−2x2)+mx2化简后不含x的二次项,则m的值为()A.−7B.7 C.1 D.−37.多项式2x2−7x+3减去5x2−x−4的结果是()A.−3x2−6x+7B.−3x2−8x−1C.7x2−8x+7D.−3x2−6x−18.下列计算结果正确的是()A.x2y−2xy2=−xy2B.3a2+5a2=8a4C.−3(2a−b)=−6a+b D.4m+2n−(n−m)=5m+n二、填空题9.整数n=时,多项式3x2+n+2x2−n+1是三次三项代数式.x2y3按字母x升幂排列是.10.将多项式2−3xy2+5x3y−1311.已知:x2+3x−4=0,则代数式2x2+6x+4的值是x n y4可以合并成一项,则n m= .12.若单项式2x2y m与−1313.两艘船从同一港口出发,甲船顺水而下,乙船逆水而上,已知两船在静水中的速度都是50km/h,水流速度是akm/h.则3h后两船相距千米.三、解答题14.化简:(1)8a+5b−(3a+4b)(2)5xy2+3x2y−2(3xy2+x2y)15.先化简,再求值:2(−a2+2ab)−3(ab−a2),其中a=2,b=−1.16.已知多项式(3ax+2)−(6x+3)的值与x的大小无关,求代数式2a3−3a+5的值.17.已知多项式-3x m+1y3+x3y-3x4-1是五次四项式,单项式3x3n y2的次数与这个多项式的次数相同. (1)求m,n的值.(2)把这个多项式按x降幂排列.18.已知:A=−3x2+2xy+1,B=3x2−4xy.(1)计算:A+B;(2)若(x+1)2+|y−2|=0,求A+B的值.参考答案1.B2.C3.B4.A5.B6.A7.A8.D9.±1x2y3+5x3y10.2−3xy2−1311.1212.1613.30014.(1)8a+5b−(3a+4b)=8a+5b-3a-4b=5a+b;(2)5xy2+3x2y−2(3xy2+x2y)= 5xy2+3x2y−6xy2−2x2y= x2y−xy2 .15.解:原式=a2+ab.∴当a=2,b=−1时,原式=2 16.解:(3ax+2)−(6x+3)=3ax+2−6x−3=(3a−6)x−1∵多项式(3ax+2)−(6x+3)的值与x的大小无关∴3a−6=0解得a=2则2a3−3a+5=2×23−3×2+5=15.17.(1)解:由题意得:m+1+3=5,3n+2=5∴m=1,n=1(2)解:-3x4+x3y-3x2y3-118.(1)解:原式=−3x2+2xy+1+3x2−4xy=−3x2+3x2+2xy−4xy+1=1−2xy;(2)解:根据题意得,x+1=0,y−2=0∴x=−1,y=2∴原式=1−2×(−1)×2=1+4=5.。
中考数学复习专项知识总结—整式(中考必备)
中考数学复习专项知识总结—整式(中考必备)1、定义(1)单项式:用数或字母的乘积表示的式子叫做单项式。
单独的一个数或一个字母也是单项式。
单项式中的数字因数叫做这个单项式的系数。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
(2)多项式:几个单项式的和叫做多项式。
其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。
多项式里,次数最高项的次数,叫做这个多项式的次数。
单项式与多项式统称整式。
(3)同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
(4)合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。
2、整式的运算(1)整式的加减:几个整式相加减,如有括号就先去括号,然后再合并同类项。
去括号法则:同号得正,异号得负。
即括号外的因数的符号决定了括号内的符号是否改变:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
(2)整式的乘除运算①同底数幂的乘法:a m·a n=a m+n。
同底数幂相乘,底数不变,指数相加。
①幂的乘方:(a m)n=a mn。
幂的乘方,底数不变,指数相乘。
①积的乘方:(ab)n=a n b n。
积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
①单项式与单项式的乘法:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
①单项式与多项式的乘法:p(a+b+c)=pa+pb+pc。
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
①多项式与多项式的乘法:(a+b)(p+q)=ap+aq+bp+bq。
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
平方差公式:(a+b)(a-b)=a2-b2。
中考复习整式
积是乙球的 n3倍.
地球、木星、太阳可以近似地看做是球体,木
星、太阳的半径分别约是地球的10倍和 102 倍,
它们的体积分别约是地球的_1_0_3_、(_1_0_2_)3__=_1_0_6倍.
计算下列各式: (2) (a - b)3 • (a - b)4
次数。 例如:-4x2y的系数为-4,次数为2。 x的指数是2,y
的指数是1,指数相加得3.
二、多项式
• (1)多项式的概念
•
几个单项式的和叫做多项式。在多项式中,
每个单项式叫做多项式的项,其中不含字母的项叫
做常数项.一个多项式有几项就叫做几项式。
•
例:在多项式2x-3中,2x和-3是他的项,其
中-3是常项数;在多项式-5x2 +2x+18中它的项分
= 314a
(2) 214a – 39a – 61a =214a – (39a + 61a) =214a – 100a =114a
六、整式的运算及其逆运算
• 1.整式的乘法:
• (1)同底数幂相乘,底数不变,指数相加.
• 即am·an= am+n
am+n = am·an (m.n都是正整数).
(2)幂的乘方,底数不变,指数相乘.
a + b – c = a + ( b – c)
符号均发生了变化
法则:添上“–
( )”, 括号里的各 项都改变符号.
a + b – c = a – ( – b +c )
试一试
例. 用简便方法计算:
(1)214a+47a+53a;(2)214a – 39a – 61a.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
·新课标
考点随堂练
4已知a+b=m,ab=-4,求(a-2)(b-2)
5已知代数式
3x 4 x 6
2
4 的值为9,求 x x 6的值 3
2
6当x=-2时,ax3+bx+1的值为6,求当x=2时ax3+bx+1的值
·新课标
本单元考点 考点1 整式及其有关概念 考点2 幂的运算性质 考点3 整式的运算
本单元考点
考点1 整式及其有关概念
考点2 幂的运算性质 考点3 整式的运算
·新课标
考点1
整式有关概念
单项式 定义:由数与字母的 积 组成的代数式叫做单项式(单 独一个数或 字母 也是单项式) 单项式的系数指单项式的 数字因数 , 单项式的次数是指所有字母的 指数和 。 多项式 定义:几个单项式的 和 叫做多项式 多项式的项是组成多项式的每个 单项式 。 多项式的次数是 最高 项的次数 多项式的排列包括__________ 升幂排列 和__________ 降幂排列 。 整 式 单项式 与 多项式 统称整式 指数 也分别相等的项. 同类项 定义:所含 字母 相同并且相同字母的 系数 相加,字母及其字母 合并同类项法则:将同类项的______ 不变 . 指数______
2 2 a ab 2 b a 2ba b a ab 2ab 2b 2 2
2 2 3 4 3 5 2 2 2 a ab bc abc 2a b ab c 3 3 3
多项式乘以多项式
2 2 2 3 2 a b c ab 2 2 a 2 a b 3 b 2 c 3abc 单项式除以单项式 3 3
整式除法
多项式除以单项式 完全平方公式
2a b
2 3
乘法公式
2 2 a 2 bc 2ab 2a 2b3 2ab 3abc 2ab
平方差公式
a ba b a 2 b 2
2 3
整式加减
a b a b
a b a b
加减法则
单项式乘以单项式 单项式乘以多项式
a b 2a b a 2b
整式乘法
aa b b2a b a 2 ab 3ab b 2 a 2 4ab b 2
幂 的 乘方
m n mn
a a a m n mn a a a a 0
0
n
n
a
a
n
·新课标
考点随堂练
1下列计算正确的是( D ) A x+x=x2 B x·x=2x C (x2 )3 =x5 D x3 ÷x=x2 D (3a2)=9a4
2下列计算正确的是( C ) A a2· a3=a6 B a3÷a=a3 C (a3)5=a15
考点随堂练
1.下列说法正确的是( A ) 6 6 A.单项式- ab 的系数是- ,次数是 2 7 7 B.单项式 a 的系数是 1,次数是 0 2 C.单项式-5x y 的系数是-5,次数是 2 2 D.2πr 的系数是 2,次数是 3 3 2 4 4 五 四 项式,它的最高次项是 2 多项式 5x y - 2y - xy + x 是 ______ 次 ______ 1 5x3y2 , 二 次 项 系 数 为 - ______ ______ ,把这个多项式按 y 降幂排列得 4 3 2 4 -2y +5x y -xy+x _________________________________ .
·新课标
考点随堂练
2 ÷2x 的值. y + 2 x - y + x + yx - y 3 若 2x-y+ =0,求代数式
解:[(x-y)2+ (x+ y)(x-y)]÷ 2x = (x2-2xy+y2+x2- y2)÷ 2x = (2x2-2xy)÷ 2x =x-y. 由 2x- y+|y+2|=0 得 2x-y=0,y+2=0, 解得 x=-1,y=-2. 把 x=-1,y=-2 代入,得 x-y=-1- (-2)=1.
·新课标
3若3xm + 5 y2 与x3 y
n
的和是单项式,则n
1 m=________. 4
·新课标
考点2
同底数幂相乘 同底数幂相除
m n
幂的运算性质
m n
a a a 1a 0 n n n 积 的 乘方 ab a b 1 p a p a 0 a b b 商 的 乘方 a 0
考点随堂练
1 1 先化简,再求值:[(x-y) +(x+y)(x-y)]÷ x,其中 x=-1,y= . 2
2
1 2 先化简,再求值:a(a-2b)+2(a+b)(a-b)+(a+b) ,其中 a=- ,b=1. 2 解:a(a-2b)+2(a+b)(a-b)+(a+b)2 2 2 2 2
2
解:原式=(x -2xy+y +x -y )÷x =4a2-b2, =(2x2-2xy)÷x =2x-2y. 1 当 a=- ,b=1 时,原式=0. 1 2 当 x=-1,y= 时,2x-2y=-2-1=-3. 2
4计算 -a b c
D 3已知a x 2, a y 3则a 2 x y 2 4 A.1 B. 1 C. D. 3 6 9 3
2 3 2 3
5计算2 x 3
x 1
1则x 1 或 2
ab 6 c
·新课标
考点3
去(添)括号
整式的运算
a b 2a b