数据包络分析法dea模型

合集下载

DEA

DEA
p
u r yrj 0 vi xij0
i 1 r 1 m
p
则模型(1)转化为:
s.t.
u r yrj vi xij
i 1 r 1 m
(1)
1, j 1,2,..., n
vi,ur≥0,
i=1,2,„,m;
r=1,2,„,p
上述模型中xij,yrj为已知数(可由历史资料或预测数据得
四、CCR和BCC的基本思想
数据包络分析法发展出的众多模型中,应用最为广泛的是规模报酬不变( CCR)模型(Charnes、Coper and Rhode 1978)和规模报酬可变(BCC )模型(Banker、Charnes and Cooper 1984)。二者的区别在于CCR模 型的假设前提为规模报酬不变(constant returns to scale,CRS),而 BCC模型假设规模报酬可变(variable returns to scale,VRS)。在使用 数据包络模型过程中,会根据需要选择不同的导向——投入导向模式和产 出导向模式。以投入为导向的数据包络模型是从投入角度对效率问题进行 研究,即在产出一定的情况下如何尽可能使投入减少,而以产出为导向的 数据包络模型研究的是从产出角度进行分析,即在投入一定的情况下如何 使产出最大。
60u1 12u 2 即 maxh1 4 v1 15v2 8 v3 60u1 12u 2 1 h1 4 v1 15v2 8 v3 22u1 6 u 2 1 h2 15v1 4 v2 2 v3 24u1 8 u 2 1 h3 27 v1 5 v2 4v3
p
(2)
写成向量形式有:
maxh j0 T Y0 T Y j T X j 0 T s.t. X 0 1 0, 0 j 1,2,...,n

DEA数据包络分析模型

DEA数据包络分析模型

引言概述:正文内容:大点一:超效率的DEA模型小点1:超效率的概念和定义小点2:超效率在实际应用中的意义小点3:超效率的计算方法和模型推导小点4:超效率与非超效率的比较分析小点5:超效率的应用案例和实践经验大点二:动态DEA模型小点1:动态DEA模型的原理和概念小点2:动态DEA模型与静态DEA模型的差异小点3:动态DEA模型在时序数据分析中的应用小点4:动态DEA模型的求解方法和算法小点5:动态DEA模型的实际案例和研究成果大点三:拓展DEA模型小点1:DEA模型的非线性扩展方法小点2:DEA模型在不完全信息环境中的应用小点3:DEA模型与其他评估模型的融合方法小点4:DEA模型在多层次系统中的应用小点5:拓展DEA模型的进一步研究方向和挑战大点四:DEA模型的经验研究小点1:DEA模型在产业效率评估中的应用小点2:DEA模型在环境效率评估中的应用小点3:DEA模型在金融机构评估中的应用小点4:DEA模型在服务业评估中的应用小点5:DEA模型在公共政策评估中的应用大点五:DEA模型的未来发展趋势小点1:DEA模型与的结合前景小点2:DEA模型在大数据分析中的应用小点3:DEA模型在跨国公司比较中的应用小点4:DEA模型在可持续发展评估中的应用小点5:DEA模型的改进和发展方向展望总结:通过本文的详细阐述,我们可以看出DEA数据包络分析模型作为一种非参数评估方法,具有广泛的应用前景和潜力。

在实际应用中,超效率的DEA模型可以帮助我们更好地评估和管理资源利用效率,动态DEA模型可以更准确地分析时序数据变化趋势。

同时,拓展DEA模型的应用和经验研究也为我们提供了更多解决实际问题的方法和思路。

随着和大数据技术的不断发展,DEA模型也将面临更大的机遇和挑战。

我们期待DEA模型在未来的发展中,能够更好地服务于社会经济发展和可持续发展的需求。

数据包络分析DEA

数据包络分析DEA

算法优化
并行计算
针对大规模数据的DEA分析,可以采用并行计算技术, 以提高计算效率。通过将数据分成若干个子集,并行计 算可以同时处理多个子集,显著缩短计算时间。
智能优化算法
将智能优化算法应用于DEA模型的求解过程,可以找到 更优的解。例如,遗传算法、粒子群算法等智能优化算 法可以用于求解DEA模型,以获得更准确的分析结果。
05
DEA实践案例
案例一:某制造企业的DEA分析
总结词
提高生产效率
详细描述
某制造企业通过DEA分析,评估了各生产车间的效率 ,找出了瓶颈环节,并针对性地优化了生产流程,提 高了整体生产效率。
案例二:某金融机构的DEA分析
总结词
优化资源配置
详细描述
某金融机构利用DEA分析,对各业务部门进行了效率 评估,根据评估结果调整了资源分配,使得资源能够更 加合理地配置到高效率部门,提高了整体业绩。
数据包络分析(DEA
目 录
• DEA概述 • DEA模型 • DEA的优缺点 • DEA的改进方向 • DEA实践案例
01
DEA概述
DEA定义
总结词
数据包络分析(DEA)是一种非参数的线性规划方法,用于评估一组决策单元(DMU)的相对效率。
详细描述
DEA使用数学规划模型,通过输入和输出数据,对一组决策单元进行相对效率评估。它不需要预先设 定函数形式,能够处理多输入和多输出的情况,并且可以对每个决策单元进行效率评分。
规模收益与技术效率
总结词
规模收益与技术效率是DEA分析中重要的概 念。
详细描述
规模收益指的是随着投入的增加,产出的增 加比例。技术效率则是指在给定投入下,实 际产出与最优产出之间的比率。在DEA分析 中,技术效率可以进一步分解为配置效率和 纯技术效率。

数据包络分析DEA

数据包络分析DEA

数据包络分析DEA数据包络分析(Data Envelopment Analysis,DEA)是一种用来衡量决策单元(decision-making unit,DMU)效率的定量方法。

DEA是由Charnes、Cooper和Rhodes于1978年提出的,该方法主要用于评价相对效率,即将一个或多个输入变量转换为一个或多个输出变量的能力。

它可以在多个指标和多个决策单元之间进行效率比较。

DEA的基本概念是通过线性规划来求解每个决策单元的效率得分。

具体来说,通过找到每个DMU的最佳投入组合和输出组合来计算得分,使得该DMU的得分最大化同时满足其他DMU的得分小于等于1、DEA是一种基于相对效率评估的方法,不需要假设预先设定的效率标准,可以避免传统经验评估方法中存在的主观偏差。

DEA的应用范围非常广泛,包括政府、企业、银行、学校等各个领域。

它可以评估和比较不同DMU之间的相对效率,并为找到效率改进的潜力提供指导。

DEA还可以用于评估决策单元的技术效率和规模效率。

技术效率表示在给定的投入下,决策单元能够获得的最大输出水平。

规模效率反映了决策单元是否在最优规模下运营。

DEA的优点在于它能够考虑多个输入和输出因素,并将各个因素的权重纳入计算中。

它不需要对输入和输出进行单一的加权求和,而是通过优化模型来获得最佳权重。

此外,DEA的计算过程较为简单直观,可以提供DMU的效率得分及其组成部分的详细信息。

这些信息可以帮助决策者确定效率改进的方向,并制定相应的策略。

当然,DEA也有一些限制。

首先,DEA是一种非参数方法,对输入和输出数据的精确度要求较高。

缺乏精确度的数据可能会导致评估结果不准确。

其次,DEA只能评估相对效率,而无法提供绝对效率的标准。

最后,DEA在处理多个输入输出时可能会存在规模失效的问题,即DMU的规模过大或过小时可能导致评估结果偏差。

总的来说,DEA是一种有效的工具,用于评估和比较决策单元的效率。

它可以帮助决策者确定效率改进的方向,并提供有关决策单元效率的详细信息。

data_envelopment_analysis_(dea)model_概述说明

data_envelopment_analysis_(dea)model_概述说明

data envelopment analysis (dea)model 概述说明1. 引言1.1 概述数据包络分析(Data Envelopment Analysis,简称DEA)是一种常用的效率评估方法,可以应用于不同领域的决策问题中。

该方法通过对输入和输出变量进行分析和比较,来评估各个决策单元(如公司、机构或个人等)的相对效率和优劣程度。

DEA模型以线性规划为基础,通过构建有效前沿来衡量各个决策单元在给定输入产出下的相对效率,并提供改善不高效决策单元的参考建议。

由于其能够同时考虑多个输入和输出变量,并克服了传统评价方法中刻板印象的缺点,因此在许多实际应用中得到广泛使用。

1.2 文章结构本文主要围绕DEA模型展开论述,并分为五个部分。

引言部分主要介绍文章概述、结构和目的。

接下来是数据包络分析模型概述,包括该模型的定义、背景以及应用领域。

然后,我们将重点介绍DEA模型的要点一,包括输入输出变量选择方法、效率评估方法以及模型解释和结果分析。

紧接着是DEA模型的要点二,包括线性规划模型与非线性规划模型对比、超效率与相对效率分析方法以及DEA模型的优缺点与局限性。

最后,在结论部分对文章的主要内容进行总结,并展望DEA模型在未来的应用前景。

1.3 目的本文旨在全面概述数据包络分析(DEA)模型的基本原理、应用领域以及相关要点。

通过阐明该模型在多个方面的优势和局限性,读者可以更好地理解和运用DEA模型进行效率评估,并为决策提供科学参考。

另外,本文也将讨论DEA模型在未来的发展前景,为相关研究和实践提供指导。

2. 数据包络分析模型概述:2.1 定义和背景:数据包络分析(Data Envelopment Analysis, DEA)是一种非参数效率评价方法,其目的是通过比较多个决策单元(如企业、组织或个人)的输入与输出之间的关系来评估它们的相对效率。

该方法最早由Cooper等人在1978年提出,并得到了广泛应用。

数据包络分析法(DEA模型)

数据包络分析法(DEA模型)

11srrjrmjiijiyuhvx 模型中ijx,ijy为已知数(可由历史资料或预测数据得到),于是问题实际上是确定一组最佳的权向量v和u,使第j个决策单元的效率值hj最大。这个最大的效率评价值是该决策单元相对于其他决策单元来说不可能更高的相对效率评价值。我们限定所有的hj值(j=1,2,…,n)不超过1,即max hj≤1。这意味着,若第k个决策单元hk=1,则该决策单元相对于其他决策单元来说生产率最高,或者说这一系统是相对而言有效的;若hk<1,那么该决策单元相对于其他决策单元来说,生产率还有待于提高,或者说这一生产系统还不是有效的。 根据上述分析,第j0个决策单元的相对效率优化评价模型为: 000111112121,1,2,...,..,,,0,,,0maxsrrjrmjiijisrrjrmiijiTmTsjnstvvvvuuuuyuhvxyuvxLL 这是一个分式规划模型,我们必须将它化为线性规划模型才能求解。为此令 011miijitvx,rrtu,iiwtv 则模型转化为: 00111010,1,2,...,..1,0,1,2,..;1,2,...,maxsjrrjrsmiijrrjrimiijiirjnstimrsyhywxwxw 写成向量形式有:

一、 数据包络分析法 数据包络分析是一种基于线性规划的用于评价同类型组织(或项目)工作绩效相对有效性的特殊工具手段。这类组织例如学校、医院、银行的分支机构、超市的各个营业部等,各自具有相同(或相近)的投入和相同的产出。衡量这类组织之间的绩效高低,通常采用投入产出比这个指标,当各自的投入产出均可折算成同一单位计量时,容易计算出各自的投入产出比并按其大小进行绩效排序。但当被衡量的同类型组织有多项投入和多项产出,且不能折算成统一单位时,就无法算出投入产出比的数值。例如,大部分机构的运营单位有多种投入要素,如员工规模、工资数目、运作时间和广告投入,同时也有多种产出要素,如利润、市场份额和成长率。在这些情况下,很难让经理或董事会知道,当输入量转换为输出量时,哪个运营单位效率高,哪个单位效率低。 1.1数据包络分析法的主要思想 一个经济系统或者一个生产过程可以看成一个单元在一定可能范围内,通过投入一定数量的生产要素并产出一定数量的“产品”的活动。虽然这些活动的具体内容各不相同,但其目的都是尽可能地使这一活动取得最大的“效益”。由于从“投入”到“产出”需要经过一系列决策才能实现,或者说,由于“产出”是决策的结果,所以这样的单元被称为“决策单元”(Decision Making Units,DMU)。可以认为每个DMU都代表一定的经济含义,它的基本特点是具有一定的输入和输出,并且在将输入转换成输出的过程中,努力实现自身的决策目标。 1.2数据包络分析法的基本模型 我们主要介绍DEA中最基本的一个模型——2CR模型。 设有n个决策单元( j = 1,2,…,n ),每个决策单元有相同的 m 项投入(输入),输入向量为 120,1,2,,,,,TjjjmjjnxxxxLL 每个决策单元有相同的 s 项产出(输出),输出向量为 120,1,2,,,,,TjjjsjjnyyyyLL 即每个决策单元有m种类型的“输入”及s种类型的“输出”。 ijx表示第j个决策单元对第i种类型输入的投入量; ijy表示第j个决策单元对第i种类型输出的产出量; 为了将所有的投入和所有的产出进行综合统一,即将这个生产过程看作是一个只有一个投入量和一个产出量的简单生产过程,我们需要对每一个输入和输出进行赋权,设输入和输出的权向量分别为:1212,,,,,,,TTmsvvvvuuuuLL。iv为第i类型输入的权重,ru为第r类型输出的权重。 这时,则第j个决策单元投入的综合值为1miijivx,产出的综合值为1srrjruy,我们定义每个决策单元jDMU的效率评价指数:

dea模型解读指标

dea模型解读指标

dea模型解读指标DEA(数据包络分析)模型是一种基于投入产出数据的相对有效性评价方法。

在DEA模型中,有几个关键要素:1.生产可能集:生产可能集描述了在给定输入条件下,生产者能够产生的所有可能的输出组合。

2.测度:测度是用于衡量生产者在不损失任何其他投入的情况下,能够产生的最大产出。

3.偏好:偏好表示生产者对不同产出组合的喜好。

4.变量类型:DEA模型中涉及的两类变量分别是输入变量和输出变量。

输入变量是生产者控制的要素,而输出变量是生产者生产的商品或服务。

5.问题层次:问题层次是指在DEA模型中,生产者需要在不同的决策层次上进行选择,例如生产规模、生产组合等。

6.数据是否确定:DEA模型要求输入和输出数据是确定的,但实际上很难做到完全确定,因此通常采用近似方法进行求解。


根据这些关键要素,DEA模型可以形成不同的子模型,用于解决不同的问题。

DEA模型的应用领域非常广泛,包括农业、金融、医疗等。


在股市技术分析中,DEA和DIF(差离率)都是常用的指数参数。

DEA是DIF在一个时间段内的平均值,它能够帮助投资者判断大势是多头市场还是空头市场。

当DIF与DEA均为负值时,大势属于空头市场。

此外,当DEA线与K线趋势发生背离时,被视为反转信号。

在盘局时,DEA的失误率较高,但通过与RSI(相对强弱指数)和KD(随机指标)等其他技术指标结合使用,可以适当弥补这一缺憾。


总之,DEA模型是一种有效的数据分析方法,可以用于评估生产者的相对有效性。

在股市技术分析中,DEA和DIF指标可以帮助投资者判断市场趋势。

然而,投资者在使用这些指标时,还需结合其他技术和基本面分析,以获得更全面的决策依据。

数据包络分析法

数据包络分析法

数据包络分析法数据包络分析法(Data Envelopment Analysis,DEA)是一种用于衡量相对效率的多变量线性规划模型。

它通过评估决策单元(包括企业、组织等)的输入和输出来确定其综合效率,并进行效率排名和效率改进。

DEA模型是一种非参数方法,它不依赖于任何事先假设的技术效率分析方法,因此广泛应用于经济学、管理学和运营研究等领域。

DEA模型的基本思想是通过比较各个决策单元之间的输入和输出,找到最佳的决策单元作为参考,然后计算其他决策单元相对于参考单元的效率。

在DEA模型中,一个决策单元被视为效率的,如果它能够以与其他决策单元相同或更少的输入产生与其他决策单元相同或更多的输出。

换句话说,DEA模型可以帮助识别相对高效的决策单元,并确定其优化潜力。

DEA模型的核心是构建一个线性规划问题,以确定各个决策单元的效率得分。

在该模型中,决策单元的输入和输出被表示为一个矩阵,通常称为数据包络。

输入矩阵包含各个决策单元的输入变量,输出矩阵包含各个决策单元的输出变量。

通过线性规划问题,可以计算每个决策单元的效率得分,并根据得分进行排名。

DEA模型可以分为两种类型:CCR模型和BCC模型。

CCR模型是最早提出的一种DEA模型,它假设决策单元之间的技术效率是相同的。

而BCC模型更加灵活,它允许决策单元之间的技术效率不同,通过引入凸壳约束来捕捉这种差异。

CCR模型和BCC模型可以根据具体问题的需求选择使用。

在实际应用中,DEA模型可以用于评估企业、组织或其他决策单元的效率,并为其提供改进策略和决策依据。

DEA模型还可以在竞争环境中确定最佳实践,提供参考标准和目标设置。

此外,DEA模型还具有一些扩展和改进的方法,如动态DEA模型和组合DEA模型等,用于处理更复杂的问题。

然而,DEA模型也存在一些局限性。

首先,它仅适用于相对效率的评估,无法提供绝对效率的度量。

其次,DEA模型对输入和输出的选择和权重敏感,可能会导致不稳定的结果。

DEA简介-数据包络分析

DEA简介-数据包络分析


举例来说,譬如在评价某高校各个学院的时候, 输入可以是学院的全年的资金,教职员工的总人 数,教学用占用教室的总次数,各类职称的教师 人数等等;输出可以是培养博士研究生、硕士研 究生、大学生本科生的人数,学生的质量,教师 的教学工作量,学校的科研成果(数量与质量)等 等.

根据输入数据和输出数据来评价决策单元 的优劣,即所谓评价部门(或单位)间的 相对有效性.
DEA方法的特点:

Байду номын сангаас
适用于多输出-多输入的有效性综合评价问题,在处理多 输出-多输入的有效性评价方面具有绝对优势

DEA方法并不直接对数据进行综合,因此决策单元的最优 效率指标与投入指标值及产出指标值的量纲选取无关,应 用DEA方法建立模型前无须对数据进行无量纲化处理(当
然也可以)

无无须任何权重假设,而以决策单元输入输出的实际数据 求得最优权重,排除了很多主观因素,具有很强的客观性
其对偶规划为(DCCR),并引入松弛变 量为:
min t s.t. j x j x0 , j 1 t ( DC 2 R ) j y j y0 , j 1 0, j 1, 2, , t , j

min t s.t. j x j x0 s j 1 t 1 y y0 j j ( DC 2 R ) s j 1 j 0, j 1, , t , 0 s s
从创新型企业创新绩效影响因素中的研发 投入、自主产权、创新业绩、创新管理等 四个方面建立创新型企业创新绩效评价指 标体系。 文献中指标体系包括4 个一级指标和22个二 级指标,具体情况见表1。

数据包络分析法DEA模型

数据包络分析法DEA模型

数据包络分析法DEA模型数据包络分析法(Data Envelopment Analysis,DEA)是一种用来评估相对效率的技术,可以帮助决策者评价各个决策单元(DecisionMaking Unit,DMU)的相对效率水平。

DEA模型以线性规划为基础,通过构建虚拟标杆来评估各个DMU的相对效率。

DEA模型的核心思想是利用多个输入与输出指标来评估各个DMU的效率,同时考虑到各个DMU之间的相互关联。

具体来说,DEA模型通过将每个DMU的输入与输出指标与其他DMU进行比较,建立最优化模型,并基于最优化解来评估各个DMU的相对效率。

这种相对效率评估的方法可以避免了传统的相对效率评估方法中需要事先设定权重的问题。

DEA模型的基本步骤如下:1.确定输入与输出指标:首先需要明确评估的DMU的输入与输出指标。

输入指标代表着DMU在生产过程中所投入的资源,而输出指标代表着DMU在生产过程中所实现的结果。

2. 构建基本的DEA模型:根据所选定的指标,可以使用线性规划模型构建DEA模型。

DEA模型可以有不同的变体,如CCR模型(Charnes, Cooper, & Rhodes, 1978)或BCC模型(Banker, Charnes & Cooper, 1984)。

CCR模型假设各个输入与输出指标之间存在恒定的比例关系,而BCC模型则放宽了这一假设。

3.计算DMU的相对效率:通过求解DEA模型,可以得到各个DMU的相对效率得分。

相对效率得分表示DMU的输出相对于其输入的效率水平。

相对效率得分一般介于0和1之间,接近1表示DMU的效率较高,接近0表示DMU的效率较低。

4. 评估相对效率得分的稳定性:为了评估相对效率得分的稳定性,可以通过引入Bootstrap方法,通过重新抽样来计算得到效率得分的方差。

DEA模型的优势在于它可以将各个DMU的相对效率进行直接的比较,而不需要设定权重或者建立其中一种理论模型。

数据包络分析DEA方法

数据包络分析DEA方法

二、数据包络分析(DEA)方法数据包络分析(data envelopment analysis, DEA)是由著名运筹学家Charnes, Cooper和Rhodes于1978年提出的,它以相对效率概念为基础,以凸分析和线性规划为工具,计算比较具有相同类型的决策单元(Decision making unit,DMU)之间的相对效率,依此对评价对象做出评价 。

DEA方法一出现,就以其独特的优势而受到众多学者的青睐,现已被应用于各个领域的绩效评价中[2],[3]。

在介绍DEA方法的原理之前,先介绍几个基本概念:1.决策单元一个经济系统或一个生产过程都可以看成是一个单位(或一个部门)在一定可能范围内,通过投入一定数量的生产要素并产出一定数量的―产品‖的活动。

虽然这种活动的具体内容各不相同,但其目的都是尽可能地使这一活动取得最大的―效益‖。

由于从―投入‖到―产出‖需要经过一系列决策才能实现,或者说,由于―产出‖是决策的结果,所以这样的单位(或部门)被称为决策单元(DMU)。

因此,可以认为,每个DMU(第i个DMU常记作DMU i)都表现出一定的经济意义,它的基本特点是具有一定的投入和产出,并且将投入转化成产出的过程中,努力实现自身的决策目标。

在许多情况下,我们对多个同类型的DMU更感兴趣。

所谓同类型的DMU,是指具有以下三个特征的DMU集合:具有相同的目标和任务;具有相同的外部环境;具有相同的投入和产出指标。

2.生产可能集设某个DMU在一项经济(生产)活动中有m项投入,写成向量形式为;产出有s项,写成向量形式为。

于是我们可以用来表示这个DMU的整个生产活动。

定义1.称集合为所有可能的生产活动构成的生产可能集。

在使用DEA方法时,一般假设生产可能集T满足下面四条公理:公理1(平凡公理): 。

公理2(凸性公理):集合T为凸集。

如果, 且存在满足则。

公理3(无效性公理):若,则。

,公理4 (锥性公理):集合T为锥。

数据包络分析法dea模型

数据包络分析法dea模型

数据包络分析法d e a模型Company number【1089WT-1898YT-1W8CB-9UUT-92108】一、 数据包络分析法数据包络分析是一种基于线性规划的用于评价同类型组织(或项目)工作绩效相对有效性的特殊工具手段。

这类组织例如学校、医院、银行的分支机构、超市的各个营业部等,各自具有相同(或相近)的投入和相同的产出。

衡量这类组织之间的绩效高低,通常采用投入产出比这个指标,当各自的投入产出均可折算成同一单位计量时,容易计算出各自的投入产出比并按其大小进行绩效排序。

但当被衡量的同类型组织有多项投入和多项产出,且不能折算成统一单位时,就无法算出投入产出比的数值。

例如,大部分机构的运营单位有多种投入要素,如员工规模、工资数目、运作时间和广告投入,同时也有多种产出要素,如利润、市场份额和成长率。

在这些情况下,很难让经理或董事会知道,当输入量转换为输出量时,哪个运营单位效率高,哪个单位效率低。

数据包络分析法的主要思想一个经济系统或者一个生产过程可以看成一个单元在一定可能范围内,通过投入一定数量的生产要素并产出一定数量的“产品”的活动。

虽然这些活动的具体内容各不相同,但其目的都是尽可能地使这一活动取得最大的“效益”。

由于从“投入”到“产出”需要经过一系列决策才能实现,或者说,由于“产出”是决策的结果,所以这样的单元被称为“决策单元”(Decision Making Units ,DMU )。

可以认为每个DMU 都代表一定的经济含义,它的基本特点是具有一定的输入和输出,并且在将输入转换成输出的过程中,努力实现自身的决策目标。

数据包络分析法的基本模型我们主要介绍DEA 中最基本的一个模型——2C R 模型。

设有n 个决策单元( j = 1,2,…,n ),每个决策单元有相同的 m 项投入(输入),输入向量为每个决策单元有相同的 s 项产出(输出),输出向量为即每个决策单元有m 种类型的“输入”及s 种类型的“输出”。

数据包络分析(DEA)

数据包络分析(DEA)

3
未来展望
随着大数据和人工智能技术的不断发展,DEA将 与这些技术结合,进一步提高评估效率和准确性。
02 DEA的基本原理
线性规划模型
线性规划模型是数据包络分析 (DEA)的基础,用于描述决策 单元(DMU)在多输入和多输出
条件下的最优配置。
DEA模型通过构建输入和输 出的权重,使得决策单元的 效率最大化,同时满足一系
列约束条件。
线性规划模型能够处理多输入 和多输出的情况,并且可以比 较不同决策单元之间的效率水
平。
决策单元与输入/输出指标
01 02 03 04
决策单元(DMU)是DEA分析的基本单位,通常代表一个组织、企业或 项目。
输入指标反映决策单元在生产过程中所投入的资源,如人力、物力、 财力等。
输出指标反映决策单元在生产过程中的产出或效益,如产量、销售额 、利润等。
决策单元的数量
无法处理多阶段或多过程生产
DEA方法的准确性在很大程度上取决于决策 单元(DMU)的数量,过少可能导致结果不 准确。
DEA方法主要适用于单阶段或多阶段生产 系统,对于多过程生产系统可能无法准确 评估。
DEA的未来发展方向
考虑不确定性
将不确定性因素纳入DEA模型中,以 提高评估的稳健性和准确性。
政策制定
政府可以利用DEA评估公共部门的效率,制定更有效的政策,优化 公共资源的配置。
DEA的历史与发展
1 2
起源
DEA由美国著名运筹学家Charnes和Cooper等 人于1978年提出,最初用于评估公共部门和营 利组织的效率。
发展
随着DEA理论的不断完善和应用领域的拓展, DEA逐渐被用于金融、医疗、教育等更多领域。
04 DEA的应用案例

数据包络分析DEA

数据包络分析DEA

数据包络分析DEA数据包络分析(Data Envelopment Analysis, DEA)是一种非参数的效率评价方法,用于评估一个单位(如公司、机构等)在多个输入和输出指标下的相对效率。

它是由美国经济学家Sherman和Charnes在1978年提出的,并在过去几十年里得到了广泛应用和发展。

DEA方法的基本思想是将各个单位看作是一个生产或投入过程,将输入和输出分别表示为向量,通过构建一个包络面来评估单位的效率。

包络面是一个用于衡量相对效率的边界,单位在包络面内表示其相对有效,而在包络面上或外表示其相对无效。

DEA方法的核心是建立一个线性规划模型,即包络模型。

在该模型中,首先要定义各个单位的输入和输出指标,并建立它们之间的关系。

然后,利用线性规划方法计算单位的相对效率和最优权重,得出单位的有效性评估结果。

DEA方法具有以下几个特点:1.非参数性:相比于传统的参数模型,DEA方法不需要提前对模型的具体函数形式进行假设,也不需要预设任何关于生产函数或投入产出关系的具体形式,因此更加灵活和适应不同情况下的评估需求。

2.相对效率评价:DEA方法不仅可以评估单位的绝对效率水平,还可以比较不同单位之间的相对效率差距。

通过对有效单位的分析,可以为相对无效单位提供参考和改进方向,从而提高整体效率。

3.多输入输出:DEA方法可以同时考虑多个输入和输出指标,充分利用了多指标评估的信息,更加全面地揭示了单位的效率。

4.联合效率评价:DEA方法可以对多个相关单位进行联合评估,比如对多个子公司或分支机构进行整体效率评估。

这有利于掌握单位间的协同效应和资源配置效果,并提出相应的管理建议。

DEA方法的应用范围非常广泛,几乎涵盖了所有需要评估效率的领域。

在商业领域,DEA方法可以用于评估公司的生产效率、经营绩效等;在金融领域,它可以用于评估银行或证券公司的投入产出效率、风险管理效能等;在公共管理领域,DEA方法可以应用于衡量政府部门或公共服务机构的效率,如医院、学校等。

数据包络分析DEA教程

数据包络分析DEA教程

数据包络分析DEA教程一、DEA的基本原理1.效率评价问题效率评价问题通常涉及多个输入与输出指标,要评估一些单位的综合效率。

DEA提供一种比较的视角,将待评估的单位看作是生产(或转换)效率的多个前沿,通过比较这些前沿的相对效率来评估各单位的效率水平。

2.DEA的基本思想DEA的基本思想是将多个输入与输出指标封装为数据包络,将待评估的单位与其他单位进行比较,通过比较单位投入产出之间的相对差异来评估其效率水平,找到最优前沿。

二、DEA模型1.输入型DEA模型输入型DEA模型根据单位投入的数量来评估其产出水平。

其基本形式为:Maximize θSubject to∑(sij*yj) - θ∑(rij*xj) ≤ 0∑(sij*yj) - θ∑(ri'j*xj) ≤ 0sij ≥ 0, θ ≥ 0其中,θ表示单位的效率水平,sij表示单位i对j的投入产出比例,xj表示单位j的投入数量,yj表示单位j的产出数量,rij表示单位i对j的投入产出比例。

2.输出型DEA模型输出型DEA模型根据单位产出的数量来评估其投入水平。

其基本形式为:Minimize φSubject to∑(rij*xj) - φ∑(sij*yj) ≤ 0∑(ri'j*xj) - φ∑(sij*yj) ≤ 0rij ≥ 0, φ ≥ 0其中,φ表示单位的效率水平,rij表示单位i对j的投入产出比例。

三、DEA计算方法1.线性规划法(LP)线性规划法是计算DEA模型的一种常用方法,通过构建线性规划模型来求解最优解。

该方法的主要步骤包括构建线性规划模型、求解模型和解析结果。

2.消除负数法(ENH)消除负数法是一种计算DEA模型的简化方法,通过解决线性规划模型中存在的负数问题来求解最优解。

该方法的主要步骤包括构建线性规划模型、消除负数、再次求解和解析结果。

四、DEA的应用领域1.产业评估DEA可以用于评估不同行业或不同地区的产业绩效,帮助决策者了解各个行业或地区的生产效率,找到低效单位并提出改进措施。

数据包络分析法dea模型)

数据包络分析法dea模型)

一、数据包分析法数据包分析是一种基于性划的用于价同型〔或目〕工作效相有效性的特殊工具手段。

例如学校、医院、行的分支机构、超市的各个部等,各自具有相同〔或相近〕的投入和相同的出。

衡量之的效上下,通常采用投入出比个指,当各自的投入出均可折算成同一位量,容易算出各自的投入出比并按其大小行效排序。

但当被衡量的同型有多投入和多出,且不能折算成一位,就无法算出投入出比的数。

例如,大局部机构的运位有多种投入要素,如工模、工数目、运作和广告投入,同也有多种出要素,如利、市份和成率。

在些情况下,很理或董事会知道,当入量出量,哪个运位效率高,哪个位效率低。

数据包分析法的主要思想一个系或者一个生程可以看成一个元在一定可能范内,通投入一定数量的生要素并出一定数量的“品〞的活。

然些活的具体内容各不相同,但其目的都是尽可能地使一活取得最大的“效益〞。

由于从“投入〞到“出〞需要一系列决策才能,或者,由于“出〞是决策的果,所以的元被称“决策元〞〔DecisionMakingUnits ,DMU〕。

可以每个DMU都代表一定的含,它的根本特点是具有一定的入和出,并且在将入成出的程中,努力自身的决策目。

数据包分析法的根本模型我主要介DEA中最根本的一个模型——C2R模型。

m投入〔有n个决策元〔j=1,2,⋯,n〕,每个决策元有相同的入〕,入向量每个决策元有相同的s出〔出〕,出向量即每个决策元有m种型的“入〞及s种型的“出〞。

x ij表示第j个决策元第i种型入的投入量;yij表示第j个决策元第i种型出的出量;了将所有的投入和所有的出行合一,即将个生程看作是一个只有一个投入量和一个出量的生程,我需要每一个入和出行,入和出的向量分:T,uu1,u2,,us T型入的重,u rvv1,v2,,vm。

v i第i 第r型出的重。

,第j个决策元投入的合m sv i x ij,出的合u r y rj,i1r1我定每个决策元DMUj的效率价指数:模型中xij,y ij数〔可由史料或数据得到〕,于是上是确定一最正确的向量 v 和u ,使第j 个决策元的效率 hj 最大。

(完整版)数据包络分析法DEA总结

(完整版)数据包络分析法DEA总结

DEA(Data Envelopment Analysis)数据包络分析目录一、DEA的起源与发展(参考网络等相关文献) (2)二、基本概念 (2)1.决策单元(Decision Making Unit,DMU) (2)2.生产可能集(Production Possibility Set,PPS) (3)3.生产前沿面(Production Frontier) (3)4.效率(Efficiency) (4)三、模型 (5)R模型 (5)2.BBC模型 (5)3.FG模型 (5)4.ST模型 (5)5.加性模型(additive model,简称ADD) (5)6.基于松弛变量的模型(Slacks-based Measure,简称SBM) (5)7.其他模型 (5)四、指标选取 (6)五、DEA的步骤(参考于网络) (6)六、优缺点(参考一篇博客) (7)七、非期望产出 (7)1.非期望产出的处理方法: (8)2.非期望产出的性质: (8)八、DEA几个注意点 (9)九、DEA相关文献的总结 (9)1.能源环境效率 (9)2.碳减排与经济增长 (10)3.关于工业、制造业、产业的DEA (10)4.关于企业的DEA (11)5.其他 (12)一、DEA的起源与发展(参考网络等相关文献)数据包络分析(DEA)是一种常用的效率评估的方法,用以评价一组具有多个投入、多个产出的决策单元(Decision Making Units,DMUs)之间的相对效率。

1978年,A.Chames(查恩斯),W.Cooper(库伯)和E.Rhodes(罗兹)提出了第一个DEA模型,这个模型被命名为CCR模型。

该模型在评价多投入多产出DMU的规模有效性和技术有效性方面十分有效。

1985年,A.Chames,W.Cooper,B.Golany(格拉尼),L.Seiford(赛福德)和J.Stutz(斯图茨)给出另一个模型,称为C2GS2模型,这一模型用来研究生产部门间的“技术有效性”。

dea模型参数

dea模型参数

dea模型参数(最新版)目录一、DEA 模型概述二、DEA 模型的参数三、DEA 模型参数的应用四、DEA 模型参数的优缺点正文一、DEA 模型概述DEA 模型,即数据包络分析模型(Data Envelopment Analysis),是一种用于评价决策单元(如企业、医院等)效率的非参数统计方法。

该模型主要通过比较决策单元的输入与输出指标,计算其相对效率,从而为决策者提供有关提高效率的建议。

DEA 模型具有较强的实用性和广泛性,可以应用于多个领域,如企业管理、医疗管理、教育管理等。

二、DEA 模型的参数DEA 模型主要包括三个参数,分别是:输入参数、输出参数和效率参数。

1.输入参数:又称投入要素,是指用于生产过程中所需要的各种资源,如劳动力、原材料、资本等。

在 DEA 模型中,输入参数通常用 x 表示。

2.输出参数:又称产出要素,是指生产过程中产生的各种产品或服务,如产品数量、销售额等。

在 DEA 模型中,输出参数通常用 y 表示。

3.效率参数:是指决策单元在特定输入和输出条件下的效率水平。

在DEA 模型中,效率参数通常用 z 表示。

三、DEA 模型参数的应用DEA 模型参数在实际应用中具有重要意义。

通过计算各决策单元的效率参数,可以发现低效率的单位,并为其提供改进措施。

同时,DEA 模型还可以用于评估决策单元在特定时期的效率变化,为决策者提供有关管理效果的反馈。

四、DEA 模型参数的优缺点DEA 模型参数具有以下优缺点:优点:1.DEA 模型参数具有较强的可比性,可以方便地对不同决策单元的效率进行比较。

2.DEA 模型参数计算方法简单,易于理解和操作。

3.DEA 模型参数可以用于评估决策单元在不同时期的效率变化,有助于决策者了解管理效果。

缺点:1.DEA 模型参数无法考虑决策单元之间的差异,可能导致评价结果的不准确。

2.DEA 模型参数计算过程中需要大量数据,对数据质量要求较高。

(1)-数据包络分析法(DEA)概述

(1)-数据包络分析法(DEA)概述

(1)数据包络分析法(DEA)概述数据包络分析(Data Envelopment Ana lysis,简称D EA)方法是运用数学工具评价经济系统生产前沿面有效性的非参数方法,它适应用于多投入多产出的多目标决策单元的绩效评价。

这种方法以相对效率为基础,根据多指标投入与多指标产出对相同类型的决策单元进行相对有效性评价。

应用该方法进行绩效评价的另一个特点是,它不需要以参数形式规定生产前沿函数,并且允许生产前沿函数可以因为单位的不同而不同,不需要弄清楚各个评价决策单元的输入与输出之间的关联方式,只需要最终用极值的方法,以相对效益这个变量作为总体上的衡量标准,以决策单元(DM U)各输入输出的权重向量为变量,从最有利于决策的角度进行评价,从而避免了人为因素确定各指标的权重而使得研究结果的客观性收到影响。

这种方法采用数学规划模型,对所有决策单元的输出都“一视同仁”。

这些输入输出的价值设定与虚拟系数有关,有利于找出那些决策单元相对效益偏低的原因。

该方法以经验数据为基础,逻辑上合理,故能够衡量个决策单元由一定量大投入产生预期的输出的能力,并且能够计算在非DEA有效的决策单元中,投入没有发挥作用的程度。

最为重要的是应用该方法还有可能进一步估计某个决策单元达到相对有效时,其产出应该增加多少,输入可以减少多少等。

1978年由著名的运筹学家查恩斯(A.Charnes),库伯(W.W.Cooper)和罗兹(E.Rhodes)首先提出数据包络分析(Data Envelopment Analysis,简称DEA)的方法,DEA有效性的评价是对已有决策单元绩效的比较评价,属于相对评价,它常常被用来评价部门间的相对有效性(又称之为DEA有效)。

他们的第一个数学模型被命名为CCR模型,又称为模型。

从生产函数角度看,这一模型是用来研究具有多项输入、特别是具有多项输出的“生产部门”时衡量其“规模有效”和“技术有效”较为方便而且是卓有成效的一种方法和手段。

第6讲DEA模型

第6讲DEA模型
产系统还不是有效的。
因此,建立第一个企业的生产效率最高的优化模型如下:

maxh14v610u115v122u82v3
这是一个分式规划,需要 将它化为线性规划才能求
h14v610u115v122u82v31 解。
h215v212u4 1v26u2 2v31 h3272v1 4u15v28u24v31
• DEA也可以用来研究多种方案之间的相对有 效性(例如投资项目评价);研究在做决策之前 去预测一旦做出决策后它的相对效果如何(例如 建立新厂后,新厂相对于已有的一些工厂是否为 有效)。DEA模型甚至可以用来进行政策评价.

特别值得指出的是,DEA方法是纯技术性的,
与市场(价格)可以无关。只需要区分投入与产
➢主成分分析法(PCA) ➢目标规划方法 ➢TOPSIS方法或理想点法 ➢多目标规划法 ➢模糊决策法
一、 DEA方法介绍
数据包络分析方法( DEA,Data Envelopment Analysis )由Charnes、Coopor和Rhodes于1978,以相对效 率概念为基础提出来的一种效率评价方法。该方法的原理主要 是通过保持决策单元(DMU:,Decision Making Units) 的输 入或者输入不变,借助于数学规划和统计数据确定相对有效的 生产前沿面,将各个决策单元投影到DEA的生产前沿面上,并 通过比较决策单元偏离DEA前沿面的程度来评价它们的相对有 效性。
• DEA方法就是评价多指标投入和多指 标产出决策单元相对有效性的多目标决策 方法。
• 为了说明DEA模型的建模思路,我们 看下面的例子。
例: 某公司有甲、乙、丙三个企业,为评价这几个企业 的生产效率,收集到反映其投入(固定资产年净值x1、流 动资金x2、职工人数x3)和产出(总产值y1、利税总额y2 )的有关数据如下表:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、 数据包络分析法
数据包络分析是一种基于线性规划的用于评价同类型组织(或项目)工作绩效相对有效性的特殊工具手段。

这类组织例如学校、医院、银行的分支机构、超市的各个营业部等,各自具有相同(或相近)的投入和相同的产出。

衡量这类组织之间的绩效高低,通常采用投入产出比这个指标,当各自的投入产出均可折算成同一单位计量时,容易计算出各自的投入产出比并按其大小进行绩效排序。

但当被衡量的同类型组织有多项投入和多项产出,且不能折算成统一单位时,就无法算出投入产出比的数值。

例如,大部分机构的运营单位有多种投入要素,如员工规模、工资数目、运作时间和广告投入,同时也有多种产出要素,如利润、市场份额和成长率。

在这些情况下,很难让经理或董事会知道,当输入量转换为输出量时,哪个运营单位效率高,哪个单位效率低。

1.1数据包络分析法的主要思想
一个经济系统或者一个生产过程可以看成一个单元在一定可能范围内,通过投入一定数量的生产要素并产出一定数量的“产品”的活动。

虽然这些活动的具体内容各不相同,但其目的都是尽可能地使这一活动取得最大的“效益”。

由于从“投入”到“产出”需要经过一系列决策才能实现,或者说,由于“产出”是决策的结果,所以这样的单元被称为“决策单元”(Decision Making Units ,DMU )。

可以认为每个DMU 都代表一定的经济含义,它的基本特点是具有一定的输入和输出,并且在将输入转换成输出的过程中,努力实现自身的决策目标。

1.2数据包络分析法的基本模型
我们主要介绍DEA 中最基本的一个模型——2C R 模型。

设有n 个决策单元( j = 1,2,…,n ),每个决策单元有相同的 m 项投入(输入),输入向量为
每个决策单元有相同的 s 项产出(输出),输出向量为
即每个决策单元有m 种类型的“输入”及s 种类型的“输出”。

ij x 表示第j 个决策单元对第i 种类型输入的投入量;
ij y 表示第j 个决策单元对第i 种类型输出的产出量;
为了将所有的投入和所有的产出进行综合统一,即将这个生产过程看作是一个只有一个投入量和一个产出量的简单生产过程,我们需要对每一个输入和输出进行赋权,设输入和输出的权向量分别为:
()()1212,,,,,,,T T m s v v v v u u u u ==L L 。

i v 为第i 类型输入的权重,r u 为
第r 类型输出的权重。

这时,则第j 个决策单元投入的综合值为1m i ij i v x =∑,产出的综合值为1s
r rj r u y =∑,
我们定义每个决策单元j DMU 的效率评价指数:
模型中ij x ,ij y 为已知数(可由历史资料或预测数据得到),于是问题实际上是
确定一组最佳的权向量v 和u ,使第j 个决策单元的效率值h j 最大。

这个最大的效率评价值是该决策单元相对于其他决策单元来说不可能更高的相对效率评价值。

我们限定所有的h j 值(j=1,2,…,n)不超过1,即max h j ≤1。

这意味着,若第k 个决策单元h k =1,则该决策单元相对于其他决策单元来说生产率最高,或者说这一系统是相对而言有效的;若h k <1,那么该决策单元相对于其他决策单元来说,生产率还有待于提高,或者说这一生产系统还不是有效的。

根据上述分析,第j 0个决策单元的相对效率优化评价模型为:
这是一个分式规划模型,我们必须将它化为线性规划模型才能求解。

为此令
011
m i ij i t v x ==∑,r r tu μ=,i i w tv =
则模型转化为:
写成向量形式有:
线性规划中一个十分重要,也十分有效的理论是对偶理论,通过建立对偶模型更易于从理论及经济意义上作深入分析,其对偶问题为:
进一步引入松弛变量s +和剩余变量s -,将上面的不等式约束化为等式约束:
设上述问题的最优解为*λ,*s -,*θ,则有如下结论与经济含义:
(1)若*1θ=,且**0,0s s +-==,则决策单元0j DMU 为DEA 有效,即在原线性规
划的解中存在**0,0w μ>>,并且其最优值0*1
j h =。

此时,决策单元0j DMU 的生产活动同时为技术有效和规模有效。

(2),但至少有某个输入或者输出松弛变量大于零。

则此时原线性规划的最优值0*1
j h =,称0j DMU 为弱DEA 有效,它不是同时技术有效和规模有效。

(3)若*1θ<,决策单元0j DMU 不是DEA 有效。

其生产活动既不是技术效率最佳,
而不是规模效率最佳。

(4)另外,我们可以用2C R 模型中j λ的最优值来判别DMU 的规模收益情况。


存在()*1,2,,j
j n λ=L ,使*1j λ=∑成立,则0j DMU 为规模效益不变;若不存在()*1,2,,j j n λ=L ,使*1
j λ=∑成立,则若*1j λ<∑,那么0j DMU 为规模效益递增;若不存在()*1,2,,j j n λ=L ,使*
1j λ=∑成立,则若*1
j λ>∑,那么0
j DMU 为规模效益递减。

技术有效:输出相对输入而言已达最大,即该决策单元位于生产函数的曲线上。

规模有效:指投入量既不偏大,也不过小,是介于规模收入收益由递增到递减之间的状态,即处于规模收益不变的状态。

DMU1、 DMU2、 DMU3都处于技术有效状态;DMU1不为规模有效,实际上它处于规模收益递增状态; DMU3不为规模有效,实际上它处于规模收益递减状态; DMU2
是规模有效的。

如果用DEA 模型来判断DEA 有效性,只有DMU2对应的最优值θ0=1。

可见,在C 2R 模型下的DEA 有效,其经济含义 是:既为“技术有效”,也为“规模
有效”。

例题: 下面是具有3个决策单元的单输入数据和单输出数据.相应决策单元所
对应的点以A,B,C 表示,其中点A 、C 在生产曲线上,点B 在生产曲线下方。

由3个决策单元所确定的生产可能集T 也在图中标出来。

对于决策点A,它是“技术有效”和“规模有效”,它所对应的C 2R 模型为
其最优解为: 1,)0,0,1(00==θλT
对于决策点B,它不是“技术有效”,因为点B 不在生产函数曲线上,也不是“规模有效”,这是因为它的投资规模太大.
其对应的C 2R 模型如下:
其最优解为4/1,)0,0,2/1(00==θλT :
由于θ<1,故B 点不是DEA 有效,由 301112
j j λ==
<∑ ,知该部门的规模收益是递增的.
对于决策点C,,因为点C 是在生产函数曲线上,它是“技术有效”,但由于它的投资规模太大,所以不是“规模有效”.
其对应的C 2R 模型如下:
其最优解为10/7,)0,0,4/7(00==θλT
由于θ<1,故C 点不是DEA 有效,由301714
j j λ==
>∑ ,知该部门的规模收益是递减的.。

相关文档
最新文档