北京市西城区2016— 2017学年度第一学期期末试卷
北京市西城区2016 — 2017学年度第一学期期末试卷-理数-含答案
北京市西城区2016 — 2017学年度第一学期期末试卷高三数学(理科) 2017.1第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|02}A x x =<<,2{|10}B x x =-≤,那么AB =(A ){|01}x x <≤ (B ){|12}x x -<≤ (C ){|10}x x -<≤(D ){|12}x x <≤2.下列函数中,定义域为R 的奇函数是(A )21y x =+(B )tan y x = (C )2xy =(D )sin y x x =+3.已知双曲线2221(0)y x b b-=>的一个焦点是(2,0),则其渐近线的方程为(A )0x ±= (B 0y ±= (C )30x y ±=(D )30x y ±=4.在极坐标系中,过点(2,)6P π且平行于极轴的直线的方程是(A )sin 1=ρθ (B )sin =ρθ(C )cos 1=ρθ(D )cos =ρθ5.某四棱锥的三视图如图所示,该四棱锥的四个侧面的面积中最大的是 (A )3(B )(C )6(D )6.设,a b 是非零向量,且≠±a b .则“||||=a b ”是“()()+⊥-a b a b ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件7.实数,x y 满足3,0,60.x x y x y ⎧⎪+⎨⎪-+⎩≤≥≥若z ax y =+的最大值为39a +,最小值为33a -,则a的取值范围是 (A )[1,0]- (B )[0,1](C )[1,1]-(D )(,1][1,)-∞-+∞8.在空间直角坐标系O xyz -中,正四面体P ABC -的顶点A ,B 分别在x 轴,y 轴上移动.若该正四面体的棱长是2,则||OP 的取值范围是 (A)1] (B )[1,3] (C)1,2] (D)1]第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.复数1i1i+=-____.10.设等比数列{}n a 的各项均为正数,其前n 项和为n S .若11a =,34a =,则n a =____;6S =____.11.执行如图所示的程序框图,输出的S 值为____.12.在△ABC 中,角,,A B C 的对边分别为,,a b c .若3c =,3C π=,sin 2sin B A =,则a =____.13.设函数30,()log ,,x a f x x x a =>⎪⎩≤≤ 其中0a >.① 若3a =,则[(9)]f f =____;② 若函数()2y f x =-有两个零点,则a 的取值范围是____.14.10名象棋选手进行单循环赛(即每两名选手比赛一场).规定两人对局胜者得2分,平局各得1分,负者得0分,并按总得分由高到低进行排序.比赛结束后,10名选手的得分各不相同,且第二名的得分是最后五名选手得分之和的45.则第二名选手的得分是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数2π()sin(2)2cos 16f x x x ωω=-+-(0)ω>的最小正周期为π. (Ⅰ)求ω的值; (Ⅱ)求()f x 在区间7π[0,]12上的最大值和最小值.16.(本小题满分14分)如图,在四棱锥P ABCD -中,//AD BC , 90BAD ︒∠=,PA PD =,AB PA ⊥,2AD =,1AB BC ==.(Ⅰ)求证:平面PAD ⊥平面ABCD ;(Ⅱ)若E 为PD 的中点,求证://CE 平面PAB ; (Ⅲ)若DC 与平面PAB 所成的角为30︒,求四棱锥P ABCD -的体积.17.(本小题满分13分)手机完全充满电量,在开机不使用的状态下,电池靠自身消耗一直到出现低电量警告之间所能维持的时间称为手机的待机时间.为了解A ,B 两个不同型号手机的待机时间,现从某卖场库存手机中随机抽取A ,B 两个型号的手机各7台,在相同条件下进行测试,统计结果如下:其中,a ,b 是正整数,且a b <.(Ⅰ)该卖场有56台A 型手机,试估计其中待机时间不少于123小时的台数; (Ⅱ)从A 型号被测试的7台手机中随机抽取4台,记待机时间大于123小时的台数为X ,求X 的分布列;(Ⅲ)设A ,B 两个型号被测试手机待机时间的平均值相等,当B 型号被测试手机待机时间的方差最小时,写出a ,b 的值(结论不要求证明).18.(本小题满分13分)已知函数()ln sin (1)f x x a x =-⋅-,其中a ∈R .(Ⅰ)如果曲线()y f x =在1x =处的切线的斜率是1-,求a 的值; (Ⅱ)如果()f x 在区间(0,1)上为增函数,求a 的取值范围.19.(本小题满分14分)已知直线:l x t =与椭圆22:142x y C +=相交于A ,B 两点,M 是椭圆C 上一点.(Ⅰ)当1t =时,求△MAB 面积的最大值;(Ⅱ)设直线MA 和MB 与x 轴分别相交于点E ,F ,O 为原点.证明:||||OE OF ⋅为定值.20.(本小题满分13分)数字1,2,3,,(2)n n ≥的任意一个排列记作12(,,,)n a a a ,设n S 为所有这样的排列构成的集合.集合12{(,,,)|n n n A a a a S =∈任意整数,,1i j i j n <≤≤,都有}i j a i a j --≤;集合12{(,,,)|n n n B a a a S =∈任意整数,,1i j i j n <≤≤,都有}i j a i a j ++≤.(Ⅰ)用列举法表示集合3A ,3B ; (Ⅱ)求集合nn A B 的元素个数;(Ⅲ)记集合n B 的元素个数为n b .证明:数列{}n b 是等比数列.北京市西城区2016 — 2017学年度第一学期期末高三数学(理科)参考答案及评分标准2017.1一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.D 3.B 4.A 5.C 6.C 7.C 8.A 二、填空题:本大题共6小题,每小题5分,共30分.9.i 10.12n -;63 11. 3-12 13[4,9) 14.16 注:第10,13题第一空2分,第二空3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)解:(Ⅰ)因为2π()sin(2)(2cos 1)6f x x x ωω=-+-ππ(sin 2coscos 2sin )cos 266x x x ωωω=-+ [4分]12cos 22x x ωω=+ πsin(2)6x ω=+, [ 6分]所以()f x 的最小正周期 2ππ2T ω==, 解得 1ω=. [ 7分] (Ⅱ)由(Ⅰ)得 π()sin(2)6f x x =+.因为 7π12x ≤≤0,所以 ππ4π2663x +≤≤. [ 9分] 所以,当ππ262x +=,即π6x =时,()f x 取得最大值为1; [11分]当π4π263x +=,即7π12x =时,()f x 取得最小值为2-. [13分]解:(Ⅰ)因为90BAD ∠=,所以AB AD ⊥, [ 1分]又因为 AB PA ⊥,所以 AB ⊥平面PAD . [ 3分] 所以 平面PAD ⊥平面ABCD . [ 4分] (Ⅱ)取PA 的中点F ,连接BF ,EF . [ 5分] 因为E 为PD 的中点,所以//EF AD ,12EF AD =,又因为 //BC AD ,12BC AD =,所以 //BC EF ,BC EF =.所以四边形BCEG 是平行四边形,//EC BF . [7分]又 BF ⊂平面PAB ,CE ⊄平面PAB ,所以//CE 平面PAB . [ 8分] (Ⅲ)过P 作PO AD ⊥于O ,连接OC .因为PA PD =,所以O 为AD 中点, 又因为平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD .如图建立空间直角坐标系O xyz -. [ 9分] 设PO a =.由题意得,(0,1,0)A ,(1,1,0)B ,(1,0,0)C ,(0,1,0)D -,(0,0,)P a . 所以(1,0,0)AB −−→=,(0,1,)PA a −−→=-,(1,1,0)DC −−→=. 设平面PCD 的法向量为(,,)x y z =n ,则0,0,AB PA −−→−−→⎧⋅=⎪⎨⎪⋅=⎩n n即0,0.x y az =⎧⎨-=⎩令1z =,则y a =.所以(0,,1)a =n . [11分] 因为DC 与平面PAB 所成角为30,所以|1|cos ,|2||||DC DC DC −−→−−→−−→⋅〈〉===|n n n , 解得 1a =. [13分]所以四棱锥P ABCD -的体积11121113322P ABCD ABCD V S PO -+=⨯⨯=⨯⨯⨯=.[14分]解:(Ⅰ)被检测的7台手机中有5台的待机时间不少于123小时,因此,估计56台A 型手机中有556407⨯=台手机的待机时间不少于123小时. [ 3分] (Ⅱ)X 可能的取值为0,1,2,3. [ 4分]4711(0)35C P X ===; 133447C C 12(1)35C P X ===; 223447C C 18(2)35C P X ===; 3447C 4(3)35C P X ===. [ 8分] 所以,X 的分布列为:[10分](Ⅲ)若A ,B 两个型号被测试手机的待机时间的平均值相等,当B 型号被测试手机的待机时间的方差最小时,124a =,125b =. [13分]18.(本小题满分13分)解:(Ⅰ)函数()f x 的定义域是(0,)+∞, [ 1分]导函数为1()cos(1)f x a x x'=-⋅-. [ 2分] 因为曲线()y f x =在1x =处的切线的斜率是1-,所以 (1)1f '=-, 即 11a -=-, [ 3分] 所以 2a =. [ 4分] (Ⅱ)因为()f x 在区间(0,1)上为增函数,所以 对于任意(0,1)x ∈,都有1()cos(1)0f x a x x'=-⋅-≥. [ 6分] 因为(0,1)x ∈时,cos(1)0x ->,所以 11()cos(1)0cos(1)f x a x a x x x '=-⋅-⇔⋅-≤≥. [ 8分] 令 ()cos(1)g x x x =⋅-,所以()cos(1)sin (1)g x x x x '=--⋅-. [10分] 因为 (0,1)x ∈时,sin (1)0x -<,所以 (0,1)x ∈时,()0g x '>,()g x 在区间(0,1)上单调递增,所以()(1)1g x g <=. [12分] 所以 1a ≤.即a 的取值范围是(,1]-∞. [13分]19.(本小题满分14分)解:(Ⅰ)将1x =代入22142x y +=,解得2y =±, 所以||AB = [ 2分] 当M 为椭圆C 的顶点()2,0-时,M 到直线1x =的距离取得最大值3, [ 4分]所以 △MAB面积的最大值是2. [ 5分] (Ⅱ)设,A B 两点坐标分别为(),A t n ,(),B t n -,从而 2224t n +=. [ 6分]设()00,M x y ,则有220024x y +=,0x t ≠,0y n ≠±. [ 7分]直线MA 的方程为 00()y ny n x t x t--=--, [ 8分] 令0y =,得000ty nx x y n -=-,从而 000ty nx OE y n-=-. [ 9分]直线MB 的方程为00()y ny n x t x t++=--, [10分] 令0y =,得000ty nx x y n +=+,从而 000ty nx OF y n+=+. [11分]所以000000=ty nx ty nx OE OF y n y n -+⋅⋅-+222200220=t y n x y n--()()222202204242=n y n y y n ---- [13分]22022044=y n y n -- =4.所以OE OF ⋅为定值. [14分]20.(本小题满分13分)解:(Ⅰ)3{(1,2,3)}A =,3{(1,2,3),(1,3,2),(2,1,3),(3,2,1)}B =. [ 3分] (Ⅱ)考虑集合n A 中的元素123(,,,,)n a a a a .由已知,对任意整数,,1i j i j n <≤≤,都有i j a i a j --≤, 所以 ()()i j a i i a j j -+<-+, 所以 i j a a <.由,i j 的任意性可知,123(,,,,)n a a a a 是1,2,3,,n 的单调递增排列,所以{(1,2,3,,)}n A n =. [ 5分]又因为当k a k =*(k ∈N ,1)k n ≤≤时,对任意整数,,1i j i j n <≤≤, 都有 i j a i a j ++≤. 所以 (1,2,3,,)n n B ∈, 所以 n n A B ⊆. [ 7分]所以集合nn A B 的元素个数为1. [ 8分](Ⅲ)由(Ⅱ)知,0n b ≠.因为2{(1,2),(2,1)}B =,所以22b =.当3n ≥时,考虑n B 中的元素123(,,,,)n a a a a .(1)假设k a n =(1)k n <≤.由已知,1(1)k k a k a k ++++≤, 所以1(1)1k k a a k k n ++-+=-≥, 又因为11k a n +-≤,所以11k a n +=-. 依此类推,若k a n =,则11k a n +=-,22k a n +=-,…,n a k =.① 若1k =,则满足条件的1,2,3,,n 的排列123(,,,,)n a a a a 有1个. ② 若2k =,则2a n =,31a n =-,42a n =-,…,2n a =. 所以 11a =.此时 满足条件的1,2,3,,n 的排列123(,,,,)n a a a a 有1个. ③ 若2k n <<,只要1231(,,,)k a a a a -是1,2,3,,1k -的满足条件的一个排列,就可以相应得到1,2,3,,n 的一个满足条件的排列.此时,满足条件的1,2,3,,n 的排列123(,,,,)n a a a a 有1k b -个. [10分](2)假设n a n =,只需1231(,,,)n a a a a -是1,2,3,,1n -的满足条件的排列,此时 满足条件的1,2,3,,n 的排列123(,,,,)n a a a a 有1n b -个. 综上 23111n n b b b b -=+++++,3n ≥. 因为 3221142b b b =++==,且当4n ≥时,23211(11)2n n n n b b b b b b ---=++++++=, [12分] 所以 对任意*n ∈N ,3n ≥,都有12n n b b -=. 所以 {}n b 成等比数列. [13分]。
西城区2016-2017学年度第一学期期末试卷答案
西城区 2016-2017 学年度第一学期期末试卷答案九年级语文参照答案及评分标准一、基础·运用(共21分)1.答案 : ( 1)C( 2 分)( 2)震惊( 2 分 , 字形正确 1 分,书写 1 分)( 3)A( 2 分)( 4) D( 2 分)2. 答案 : ( 1)C(1 分)(2)B(1分)3.答案:B( 2 分)4.答案示例:梅花,斗霜傲雪,象征着红军战士坚强不屈的革命质量。
菊花,不畏严霜,象征着红军战士不畏艰险的革命精神。
松树,坚韧挺秀,象征着红军战士不卑不亢的革命精神。
评分标准: 2 分。
5. 答案:( 1)自缘身在最高层(2)河山破裂风飘絮(3)神清气爽宠辱偕忘( 4)①似曾相逢燕回来②衡阳雁去无留神③马作的卢飞速评分标准:共7 分。
每空 1 分,有错字不得分。
二、文言文阅读(共9分)6.答案: C( 2 分)7.答案示例:( 1)就:凑近。
( 2)旋:随即、马上。
评分标准:共 2 分。
每题 1 分。
8.答案示例:不像用胶泥烧制的字模,印完后再用火烤,使药物融化。
评分标准: 3 分。
9.答案示例:简略神速(快捷、效率高)、储存方便、节俭成本。
评分标准: 2 分。
答出随意两点可得 2 分。
三、名著阅读(共 10 分)10. 答案示例一:“行动标准”选择第○9 条《论语》选择第一则相通之处:孔子以为,“孝”表现为不让父亲母亲为自己的身体担忧(或关爱父亲母亲身体健康)。
“能和父亲母亲共锻炼”既表现自己对身体健康的重视,也表现为对父亲母亲的陪同和关爱。
答案示例二:“行动标准”选择第○8 条《论语》选择第二则相通之处:孔子以为“孝” 表现为服侍父亲母亲不单要知足衣食所需,还要心存孝顺之意。
“倾听父亲母亲聊旧事”就能表现儿女对父亲母亲内心的敬爱,知足父亲母亲的精神需求。
答案示例三:“行动标准”选择第○ 6 条《论语》选择第三则相通之处:孔子以为“孝顺”父亲母亲难在保持欢乐的神情,不单在内心“敬”,也应当表此刻表面和语言上。
2016-2017年 北京西城区初二数学上学期期末试题(含答案word直接打印)
北京市西城区2016-2017学年度第一学期期末试卷八 年 级 数 学 2017.1一、选择题(本题共30分,每小题3分)各题有四个选项,只有一个..是符合题意的. 1.下列二次根式中,最简二次根式是( ).A.B.18 2. 2015年9月14日,意大利物理学家马尔科•德拉戈收到来自激光干涉引力波天文台(LIGO )的系统自动提示邮件,一股宇宙深处的引力波到达地球,在位于美国华盛顿和烈文斯顿的两个LIGO 探测器上产生了-18410⨯米的空间畸变(如图中的引力波信号图像所示),也被称作“时空中的涟漪”,人类第一次探测到了引力波的存在,“天空和以前不同了……你也听得到了.”这次引力波的信号显著性极其大,探测结果只有三百五十万分之一的误差. 三百五十万分之一约为0.000 000 285 7.将0.000 000 285 7用科学记数法表示应为( ). A .-82.85710⨯ B. -72.85710⨯ C . -62.85710⨯ D. -60.285 710⨯ 3.以下图形中,不是..轴对称图形的是( ).4. 如图,在△ABC 中,∠B =∠C =60︒,点D 在AB 边上,DE ⊥AB ,并与AC 边交于点E . 如果AD=1,BC=6,那么CE 等于( ). A. 5B. 4C. 3D. 2 5.下列各式正确的是( ). A. 6212121= x x x x --⋅= B. 62331 x x x x --÷== C. 323322 () x xy x y y --== D. 13223y x x y -⎛⎫= ⎪⎝⎭6.化简211x x --正确的是( ).A. 221(1)1111x x x x x --==--- B. 221(1)111x x x x x --==--- C. 21(1)(1)111x x x x x x -+-==+-- D.21(1)(1)1111x x x x x x -+-==--+7. 在△ABD 与△ACD 中,∠BAD =∠CAD ,且B 点,C 点在AD 边两侧,则不一定...能使△ABD 和△ACD 全等的条件是( ). A. BD =CD B. ∠B =∠C C. AB =AC D. ∠BDA =∠CDA8.下列判断错误的是( ).A. 当a ≠0时,分式2a有意义B. 当3a =-时,分式239a a +-有意义 C. 当12a =-时,分式2a +1a 的值为0 D. 当1a =时,分式21a a-的值为19. 如图,AD 是△ABC 的角平分线,∠C =20︒,AB BD AC +=,将△ABD 沿AD 所在直线翻折,点B 在AC 边上的落点记为点E ,那么∠AED 等于( ). A. 80︒ B.60︒ C. 40︒ D. 30︒10. 在课堂上,张老师布置了一道画图题:画一个Rt △ABC ,使∠B =90°,它的两条边分别等于两条已知线段.小刘和小赵同学先画出了∠MBN =90°之后,后续画图的主要过程分别如下图所示.那么小刘和小赵同学作图确定三角形的依据分别是( ).A. SAS ,HLB. HL ,SASC. SAS ,AASD. AAS ,HL小刘同学小赵同学二、填空题(本题共18分,每小题3分)11. 0(π-3)=________.12.在实数范围内有意义,那么x的取值范围是_________.13. 在平面直角坐标系xOy中,点(5,1)-关于y轴对称的点的坐标为_________.14. 中国新闻网报道:2022年北京冬奥会的配套设施——“京张高铁”(北京至张家口高速铁路)将于2019年底全线通车,届时,北京至张家口高铁将实现1小时直达. 目前,北京至张家口的列车里程约200千米,列车的平均时速为v千米/时,那么北京至张家口“京张高铁”运行的时间比现在列车运行的时间少________小时.(用含v的式子表示)15. 如图所示的“钻石”型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂..黑一个...小三角形,使它与阴影部分合起来所构成的完整图形是一个轴对称图形.(1)画出其中一种涂色方式并画出此时的对称轴;(2)满足题意的涂色方式有_____种.16. 对于实数p,我们规定:用<p>表示不小于p的最小整数,例如:<4>=4,<3>=2. 现对72进行如下操作:(1)对36只需进行_______次操作后变为2;(2)只需进行3次操作后变为2的所有正整数中,最大的是________.三、解答题(本题共52分) 17. (本题6分,每小题3分)分解因式:(1)3225a b a b -; (2)231212a a -+.解: 解:18. (本题6分)化简并求值:222142442a a a a a a a a ---⎛⎫-÷ ⎪++++⎝⎭,其中1a =-.19. (本题6分)解方程:2217111x x x +=-+-. 解:小华在学习二次根式时遇到如下计算题,他是这样做的:请你先把他在第一步中出现的其它错误圈画出来(不必改正),再.完成此题的解答.......过程...解:21. (本题6分)如图,△P AO和△PBQ是等边三角形,连接AB,OQ.求证:AB =OQ.证明:阅读下列材料:小铭和小雨在学习过程中有如下一段对话:小铭:“我知道一般当m ≠n 时,2m n +≠2m n +.可是我见到有这样一个神奇的等式:2()a b a b b -+=2()a b a b b-+(其中a ,b 为任意实数,且b ≠0).你相信它成立吗?”小雨:“我可以先给a ,b 取几组特殊值验证一下看看.” 完成下列任务:(1)请选择两组你喜欢的、合适的a ,b 的值,分别代入阅读材料中的等式,写出代入后得到的具体等式并验证它们是否成立(在相应方框内打勾);① 当a = ,b = 时,等式 (□成立;□不成立);② 当a = ,b = 时,等式 (□成立;□不成立).(2)对于任意实数a ,b (b ≠0),通过计算说明2()ab a b b -+=2()a b a b b-+是否成立. 解:23. (本题5分)阅读下列材料:为了了解学校初二年级学生的阅读情况,小廉所在实践小组的同学们设计了相应的调查问卷,他们共发放问卷300张,收回有效问卷290张,并利用统计表整理了每一个问题的数据,绘制了统计图.他们的调查问卷中,有关“阅读载体的选择”和“阅读过书的类型”两个问题的统计情况如下表所示.表1:表2:根据以上材料解答下列问题:(1)根据表1中的统计数据,选择合适的统计图对其进行数据的描述;(2)通过表2中统计出的数据你能得到哪些结论?请你说出其中的一条即可.解:(1)(2)24. 先阅读以下材料,再从24.1、24.2两题中任选一题....作答(若两题都做以第一题为准).............24.1题5分(此时卷面满分100分),24.2题7分(卷面总分不超过100分).请先在以下相应方框内打勾,再解答相应题目.24.1解决下列两个问题:(1)如图2,在△ABC中,AB=3,AC=4,BC=5,EF垂直且平分BC,点P在直线EF上,直接写出P A+PB的最小值,回答P A+PB取最小值时点P的位置并在图中标出来......;解:P A+PB的最小值为,P A+PB取最小值时点P的位置是;(2)如图3,点M,N分别在直线AB两侧,在直线AB上找一点P,使得MPB NPB∠=∠.要求画图,并简要叙述确定点P位置的步骤.(无需尺规作图,保留画图痕迹,无需证明)解:确定点P位置的简要步骤:.24.2借鉴阅读材料中解决问题的三个步骤完成以下尺规作图....: 已知三条线段h ,m ,c ,求作△ABC ,使其BC 边上的高AH =h ,中线AD =m ,AB = c .(1)请先画草图(画出一个即可),并叙述简要的作图思路(即实现目标图的大致作图步骤);(4分) 解:(2)完成尺规作图(不要求写作法.......,作出一个满足条件的三角形即可).(3分)25. (本题6分)在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE =DA(如图1). (1)求证:∠BAD=∠EDC;(2)点E关于直线BC的对称点为M,连接DM,AM.①依题意将图2补全;②小姚通过观察、实验提出猜想:在点D运动的过程中,始终有DA=AM.小姚把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明DA=AM,只需证△ADM错误!未找到引用源。
北京市西城区2016—2017学年度第一学期期末试卷及答案
北京市西城区2016—2017学年度第一学期期末试卷高三英语2017. 1 本试卷共11页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分:听力理解(共三节,30分)第一节(共5小题;每小题1.5分,共7.5分)听下面5段对话。
每段对话后有一道小题,从每题所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你将有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话你将听一遍。
例:What is the man going to read?A. A newspaper.B. A magazine.C. A book.答案是A。
1. Where are the two speakers?A. At the cinema.B. At the airport.C. At the gym.2. What does the man do?A. A secretary.B. A manager.C. A driver.3. What‟s the woman‟s problem?A. The man fails to help her.B. Her partner is absent today.C. The experiment is hard for her.4. Why doesn‟t the man want to go to the English corner?A. He is not free on Sunday.B. H e doesn‟t want to meet the people there.C. He is afraid of speaking English in public.5. What made the woman upset?A. She was laughed at by her neighbor.B. She was worried about her neighbor.C. She was misunderstood by her neighbor.第二节(共10小题;每小题1.5分,共15分)听下面4段对话或独白。
西城区2016-2017学年度第一学期期末试卷
西城区2016-2017学年度第一学期期末试卷九年级语文一、基础·运用(共21分)1.阅读下面的文字,完成第(1)-(4)题。
(共8分)2016年是中国工农红军长征胜利80周年。
从1934年10月至1936年10月,红军第一、第二、第四方面军和第二十五军进行了伟大的二万五千里长征。
长征途中,英勇的红军血战湘江,四渡赤水,巧渡金沙江,强渡大渡河,飞夺泸定桥,转战乌蒙山,击退了穷凶极恶的追兵阻敌。
红军翻过空气稀薄的冰山雪岭,穿越渺无人烟的沼泽草地,征服了严酷恶劣.的自然环境。
长征的胜利,是理想的胜利,是信念的胜利。
“风雨浸衣骨更硬,野菜充饥志越坚。
官兵一致同甘苦,革zh èn h àn )世界、彪炳史册的长征, , , 。
(1)对文中加点字的注音和对画线字笔顺的判断,全都正确的一项是(2分)A. 劣(l üè) “万”字的第二笔是撇B. 劣(l üè) “万”字的第二笔是横折勾C. 劣(li è) “万”字的第二笔是横折勾D. 劣(li è) “万”字的第二笔是撇(2)根据文中注音在答题卡的田字格内用正楷填写汉字。
(2分)答:(3)对画线成语中字的解释和在方框处填写标点,全都正确的一项是(2分)A.“穷凶极恶”的“穷”是达到极点的意思。
。
”B.“穷凶极恶”的“穷”是达到极点的意思。
”。
C.“穷凶极恶”的“穷”是没有出路的意思。
。
”D.“穷凶极恶”的“穷”是没有出路的意思。
”。
(4)根据语意,将下列语句依次填入文末横线处,最恰当的一项是(2分)①实现了中国革命事业从挫折走向胜利的伟大转折②开启了为实现民族独立、人民解放而斗争的新的进军③宣告了敌人消灭红军图谋的彻底失败A.②①③B. ②③①C.③②①D. ③①②2.长征即将胜利,毛泽东带领红军越过岷山之后,回顾长征,心潮澎湃,写下了《七律 长征》。
阅读《七律 长征》,完成第(1)-(2)题。
12.2016-2017学年第一学期初三数学期末试题答案 - 西城
北京市西城区2016— 2017学年度第一学期期末试卷九年级数学参考答案及评分标准2017.1一、选择题(本题共30分,每小题3分)(2)作图的依据:线段垂直平分线上的点与线段两个端点的距离相等;不在同一直线上的三个点确定一个圆.三、解答题(本题共72分,第17﹣26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式=4×··············································· 4分············································································· 5分18.(1)证明:∵等边△ABC,∴∠BAC=60°,AB=AC.∵线段AD绕点A顺时针旋转60°,得到线段AE,∴∠DAE=60°,AE=AD.∴∠BAD+∠EAB=∠BAD+∠DAC.∴∠EAB =∠DAC.∴△EAB≌△DAC.∴∠AEB =∠ADC. ····························································· 3分(2)解:∵∠DAE =60°,AE =AD ,∴△EAD 为等边三角形. ∴∠AED =60°,又∵∠AEB =∠ADC =105°.∴∠BED =45°. ·······································19.解:(1)y =x 2+4x +3=x 2+4x +22-22+3=(x +2)2-1 ··········································································· 2分(2)列表:·················································(3)答案不唯一,如:当x <-2时,y 随x 的增大而减小,当x >-2时,y 随x 的增大而增大.······················································································· 5分20.(1)证明:∵CE=CD ,∴∠CDE =∠CED . ∴∠ADB =∠CEA . ∵∠DAC =∠B ,∴△ABD ∽△CAE . ····························· 3分(2)解:由(1)△ABD ∽△CAE ,∴BDAB =. ∵BD =2, ∴ ············································································· 5分 21.解:设剪掉的正方形纸片的边长为x cm . ················································ 1分由题意,得(30-2x )(20-2x )=264.··················································· 3分 整理,得x 2-25x + 84=0.解方程,得14x =,221x =(不符合题意,舍去). ······································· 4分答:剪掉的正方形的边长为4cm . ·························································· 5分 22.解:(1)本题答案不唯一,如:以AB 所在直线为x 轴,以抛物线的对称轴为y 轴建立平面直角坐标系xOy ,如图所示.∴A (-4,0),B (4,0),C (0,6).设这条抛物线的表达式为(4)(4)y a x x =-+.∵抛物线经过点C , ∴-16a =6. ∴38a =-.∴抛物线的表达式为2368y x =-+(-4≤x ≤4). ·························· 4分 (2)当x =1时,458y =. ∵4.4+0.5=4.9<458, ∴这辆货车能安全通过这条隧道. ··········································· 5分23.(1)证明:连接OC ,∵AB 是⊙O 的直径,∴∠ACB =90°,即∠1+∠3=90°. ∵OA =OC , ∴∠1=∠2.∵∠DCB =∠BAC =∠1. ∴∠DCB +∠3=90°. ∴OC ⊥DF .∴DF 是⊙O 的切线. ·························································· 2分(2)解:在Rt △OCD 中,OC =3,sinD=35. ∴OD =5,AD =8. ∵弧CE=弧CB , ∴∠2=∠4. ∴∠1=∠4.∴OC ∥AF . ∴△DOC ∽△DAF .∴OC ODAF AD=. ∴245AF =. ··········································································· 5分24.本题答案不唯一,如:(1)测量工具有:简单测角仪,测量尺等; ····(2)设CD 需要测量的几何量如下:①在点A ,点B 处用测角仪测出仰角α,β;②测出A ,B 两点之间的距离s ; ···········(3)求解思路如下:a .设CD 的高度为x m .在Rt △DBC 中,由∠DBC =β,可得tan xBC β=; 同理,在Rt △DAC 中,由∠DBC =α,可得tan xAC α=; b .由AB =AC –BC 得tan tan x x s αβ=-,x 可求. ························· 5分 25.(1)证明:∵直径DE ⊥AB 于点F ,∴AF =BF .∴AM =BM . ······································································· 2分(2)连接AO ,BO ,如图.由(1)可得 AM =BM , ∵AM ⊥BM ,∴∠MAF =∠MBF =45°. ∴∠CMN =∠BMF =45°. ∵AO =BO ,DE ⊥AB , ∴∠AOF =∠BOF AOB . ∵∠N =15°,∴∠ACM =∠CMN +∠N =60°.即∠ACB =60°.∵∠ACB AOB . ∴∠AOF =∠ACB =60°. ∵DE =8, ∴AO =4.在Rt △AOF 中,由sin AFAOB AO∠=,得AF=在Rt △AMF 中,AM =BM=. 在Rt △ACM 中,由tan AMACM CM∠=,得CM= ∴BC =CM + BM=······················································ 5分26.解:(1)补全表格如下:······················································································· 3分(2)解:设一元二次方程()22340m x m x m -+-=对应的二次函数为:()2234y x m x m =-+-,∵一元二次方程()22340mx m x +--=有一个负实根,一个正实根, 且负实根大于-1, ∴240(1)(23)(1)40m m m -<⎧⎨--+⋅-->⎩解得02m <<.∴m 的取值范围是02m <<. ··············································· 5分27.解:(1)抛物线y = -x 2+mx +n 的对称轴为直线x =-3,AB =4. ∴ 点A (-5,0),点B (-1,0).∴抛物线的表达式为y = -(x + 5) ( x + 1)∴y = -x 2 -6x -5. ······································································· 2分 (2)依题意,设平移后的抛物线表达式为:y = -x 2+bx .∴抛物线的对称轴为直线2bx =,抛物线与x 正半轴交于点C (b ,0). ∴b > 0.∵△OCP 是等腰直角三角形,∴点P 的坐标(2b ,2b ). ∴ 2()()222b b b b =-+.解得 b = 2.∴点P 的坐标(1,1). ··························································· 5分(3)当m =4时,抛物线表达式为:y = -x 2+4x +n .∴抛物线的对称轴为直线x =2.∵点M (x 1,,y 1)和N (x 2,,y 2)在抛物线上,且x 1< 2 ,x 2>2,∴点M 在直线x =2的左侧,点N 在直线x =2的右侧. ∵x 1+ x 2> 4, ∴2-x 1<x 2- 2.∴点P 到直线x =2的距离比点M 到直线x =2的距离比点N 到直线x =2的距离近,如图所示.∴y 1>y 2. ························································································· 7分 28.解:(1)证明:在Rt △ABC 中,∵CD 是斜边AB 上的中线. ∴CD =21AB . 在△ABF 中,点M ,N 分别是边AF ,BF 的中点, ∴MN =21AB ,∴CD = MN . ································································· 2分(2)答:CN 与EN 的数量关系CN = EN ,CN 与EN 的位置关系CN ⊥EN . ········································ 3分 证明:连接EM ,DN ,如图.与(1)同理可得CD = MN ,EM = DN .在Rt △ABC 中,CD 是斜边AB 边上的中线,∴CD ⊥AB .在△ABF 中,同理可证EM ⊥AF . ∴∠EMF =∠CDB = 90︒.∵D ,M ,N 分别为边AB ,AF ,BF 的中点, ∴DN ∥AF ,MN ∥AB .∴∠FMN =∠MND ,∠BDN =∠MND . ∴∠FMN =∠BDN .∴∠EMF +∠FMN =∠CDB +∠BCN . ∴∠EMN =∠NDC . ∴△EMN ≌△DNC . ∴CN = EN ,∠1 =∠2. ∵∠1 +∠3 +∠EMN = 10︒, ∴∠2 +∠3 +∠FMN = 90︒.∴∠2 +∠3 +∠DNM = 90︒,即∠CNE = 90︒.∴CN ⊥EN . ································································ 5分(3)EN 的最大值为22b a +,最小值为22ba -. ································· 7分 29.解:(1)①90︒,60︒. ········································································ 2分②本题答案不唯一,如:B (0,2).·············································· 3分(2)解:①∵直线l : y =kx +b (k >0)经过点D (1-,0),∴(1)0k b -+=.∴b k =-.∴直线l: y kx k=+-.对于⊙C外的点P,点P关于⊙C的“视角”为60°,则点P在以C为圆心,2为半径的圆上.又直线l关于⊙C的“视角”为60°,此时,点P是直线l上与圆心C的距离最短的点.∴CP⊥直线l.则直线l是以C为圆心,2为半径的圆的一条切线,如图所示.作CH⊥x轴于点H,∴点H的坐标为(1,0),∴DH =∴∠CDH=30°,∠PDH=60°,可求得点P的坐标(1,3).进而求得k ······················································································· 6分(3)圆心C的横坐标x C的取值范围是1133Cx-+<<.······················································································· 8分。
北京西城区2016—2017学第一学期期末试卷.doc
北京市西城区2016—2017学年度第一学期期末试卷高三语文参考答案及评分参考2017.1一、(24分)1.(2分)B 2.(2分)A3.(2分)二、古典家具的科学价值(或科学性) 三、古典家具的历史价值4.(3分)D 5.(3分)C 6.(3分)A7.(6分)①体现在设计理念方面,能充分反映中国传统的文化思想和审美情趣。
②体现在装饰图案的设计方面,是语言、绘画、书法等多种艺术的相互融合、相辅相成。
③体现在整体形式与风格方面,明清家具具有质朴纯正、简洁明快的艺术禀性和优美形式。
8.(3分)C二、(24分)9.(3分)C 10.(3分)D 11.(3分)C12.(6分)①空出袋子,慢慢地将狼装入其中,再三装它都没成功。
②又何必吝惜一副身躯给我吃掉,从而让我保全小命呢?【评分标准】①句4分,②句2分。
两句的关键词为“空”“实”“纳”“克”“啖”“全”,每个关键词1分,句子翻译意思对即可。
13.(3分)【答案示例】中山狼:忘恩负义、恩将仇报、过河拆桥、易反易复小人心东郭先生:妇人之仁、善恶不分、心慈手软、自作自受(咎由自取)、好了疮疤忘了痛丈人:足智多谋、除恶务尽、路见不平拔刀相助【评分标准】答对一处得1分,意思对即可。
14.(6分)【答案示例】东郭先生明知狼“性贪而狠”还去救它,此谓善恶不分;在丈人将狼骗入囊中并示意他杀狼时,东郭先生还心怀“仁慈”,此谓“好了疮疤忘了痛”。
因此“实愚”。
东郭先生的行为不是因为“仁”或“兼爱”,而是因为没有原则的“滥善”,因为他不能明辨是非的愚蠢。
因此“非仁”。
左伯桃“绝食”“解衣”是为了成全朋友而主动选择牺牲自己,他对处境及自身行为的后果有清醒的判断。
因此“非愚”。
面对困境,他没有自私自利,而是舍己为人;这种行为源自友情,也源自“仁爱”这种高尚的道德。
因此“实仁”。
【评分标准】东郭“非仁实愚”2分;善恶不分、好了疮疤忘了痛、无原则的滥善,答出这三点中的任两点即可得此2分。
2016-2017年-北京西城区初二数学上学期期末试题(含答案word直接打印)
北京市西城区2016-2017学年度第一学期期末试卷八 年 级 数 学 2017.1一、选择题(本题共30分,每小题3分)各题有四个选项,只有一个..是符合题意的. 1.下列二次根式中,最简二次根式是( ). A.1x -B.18C.116D.29a2. 2015年9月14日,意大利物理学家马尔科•德拉戈收到来自激光干涉引力波天文台(LIGO )的系统自动提示邮件,一股宇宙深处的引力波到达地球,在位于美国华盛顿和烈文斯顿的两个LIGO 探测器上产生了-18410⨯米的空间畸变(如图中的引力波信号图像所示),也被称作“时空中的涟漪”,人类第一次探测到了引力波的存在,“天空和以前不同了……你也听得到了.”这次引力波的信号显著性极其大,探测结果只有三百五十万分之一的误差. 三百五十万分之一约为0.000 000 285 7.将0.000 000 285 7用科学记数法表示应为( ). A .-82.85710⨯ B. -72.85710⨯ C . -62.85710⨯ D. -60.285 710⨯ 3.以下图形中,不是..轴对称图形的是( ).4. 如图,在△ABC 中,∠B =∠C =60︒,点D 在AB 边上,DE ⊥AB ,并与AC 边交于点E . 如果AD=1,BC=6,那么CE 等于( ). A. 5B. 4C. 3D. 2 5.下列各式正确的是( ). A. 6212121= x x x x --⋅= B. 62331 x x x x --÷== C. 323322 () x xy x y y --== D. 13223y x x y -⎛⎫= ⎪⎝⎭6.化简211x x --正确的是( ).A. 221(1)1111x x x x x --==--- B. 221(1)111x x x x x --==--- C. 21(1)(1)111x x x x x x -+-==+-- D.21(1)(1)1111x x x x x x -+-==--+7. 在△ABD 与△ACD 中,∠BAD =∠CAD ,且B 点,C 点在AD 边两侧,则不一定...能使△ABD 和△ACD 全等的条件是( ). A. BD =CD B. ∠B =∠C C. AB =AC D. ∠BDA =∠CDA8.下列判断错误的是( ).A. 当a ≠0时,分式2a有意义B. 当3a =-时,分式239a a +-有意义 C. 当12a =-时,分式2a +1a 的值为0 D. 当1a =时,分式21a a-的值为19. 如图,AD 是△ABC 的角平分线,∠C =20︒,AB BD AC +=,将△ABD 沿AD 所在直线翻折,点B 在AC 边上的落点记为点E ,那么∠AED 等于( ). A. 80︒ B.60︒ C. 40︒ D. 30︒10. 在课堂上,张老师布置了一道画图题:画一个Rt △ABC ,使∠B =90°,它的两条边分别等于两条已知线段.小刘和小赵同学先画出了∠MBN =90°之后,后续画图的主要过程分别如下图所示.那么小刘和小赵同学作图确定三角形的依据分别是( ).A. SAS ,HLB. HL ,SASC. SAS ,AASD. AAS ,HL小刘同学 小赵同学二、填空题(本题共18分,每小题3分)11. 0(π-3)=________.12.如果3x-在实数范围内有意义,那么x的取值范围是_________.13. 在平面直角坐标系xOy中,点(5,1)-关于y轴对称的点的坐标为_________.14. 中国新闻网报道:2022年北京冬奥会的配套设施——“京张高铁”(北京至张家口高速铁路)将于2019年底全线通车,届时,北京至张家口高铁将实现1小时直达. 目前,北京至张家口的列车里程约200千米,列车的平均时速为v千米/时,那么北京至张家口“京张高铁”运行的时间比现在列车运行的时间少________小时.(用含v的式子表示)15. 如图所示的“钻石”型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂..黑一个...小三角形,使它与阴影部分合起来所构成的完整图形是一个轴对称图形.(1)画出其中一种涂色方式并画出此时的对称轴;(2)满足题意的涂色方式有_____种.16. 对于实数p,我们规定:用<p>表示不小于p的最小整数,例如:<4>=4,<3>=2. 现对72进行如下操作:(1)对36只需进行_______次操作后变为2;(2)只需进行3次操作后变为2的所有正整数中,最大的是________.三、解答题(本题共52分) 17. (本题6分,每小题3分)分解因式:(1)3225a b a b -; (2)231212a a -+.解: 解:18. (本题6分)化简并求值:222142442a a a a a a a a ---⎛⎫-÷ ⎪++++⎝⎭,其中1a =-.19. (本题6分)解方程:2217111x x x +=-+-. 解:20. (本题6分)小华在学习二次根式时遇到如下计算题,他是这样做的:请你先把他在第一步中出现的其它错误圈画出来(不必改正),再.完成此题的解答.......过程...解:21. (本题6分)如图,△P AO和△PBQ是等边三角形,连接AB,OQ.求证:AB =OQ.证明:22. (本题6分)阅读下列材料:小铭和小雨在学习过程中有如下一段对话:小铭:“我知道一般当m ≠n 时,2m n +≠2m n +.可是我见到有这样一个神奇的等式:2()a b a b b -+=2()a b a b b-+(其中a ,b 为任意实数,且b ≠0).你相信它成立吗?”小雨:“我可以先给a ,b 取几组特殊值验证一下看看.” 完成下列任务:(1)请选择两组你喜欢的、合适的a ,b 的值,分别代入阅读材料中的等式,写出代入后得到的具体等式并验证它们是否成立(在相应方框内打勾);① 当a = ,b = 时,等式 (□成立;□不成立);② 当a = ,b = 时,等式 (□成立;□不成立).(2)对于任意实数a ,b (b ≠0),通过计算说明2()ab a bb -+=2()a b a b b-+是否成立. 解:23. (本题5分)阅读下列材料:为了了解学校初二年级学生的阅读情况,小廉所在实践小组的同学们设计了相应的调查问卷,他们共发放问卷300张,收回有效问卷290张,并利用统计表整理了每一个问题的数据,绘制了统计图.他们的调查问卷中,有关“阅读载体的选择”和“阅读过书的类型”两个问题的统计情况如下表所示.表1:表2:根据以上材料解答下列问题:(1)根据表1中的统计数据,选择合适的统计图对其进行数据的描述;(2)通过表2中统计出的数据你能得到哪些结论?请你说出其中的一条即可.解:(1)(2)24. 先阅读以下材料,再从24.1、24.2两题中任选一题.................作答(若两题都做以第一题为准)24.1题5分(此时卷面满分100分),24.2题7分(卷面总分不超过100分).请先在以下相应方框内打勾,再解答相应题目.24.1 解决下列两个问题:(1)如图2,在△ABC中,AB=3,AC=4,BC=5,EF垂直且平分BC,点P在直线EF上,直接写出P A+PB的最小值,回答P A+PB取最小值时点P的位置并在图中标....出来..;解:P A+PB的最小值为,P A+PB取最小值时点P的位置是;(2)如图3,点M,N分别在直线AB两侧,在直线AB上找一点P,使得MPB NPB∠=∠.要求画图,并简要叙述确定点P位置的步骤.(无需尺规作图,保留画图痕迹,无需证明)解:确定点P位置的简要步骤:.24.2借鉴阅读材料中解决问题的三个步骤完成以下尺规作图....:已知三条线段h,m,c,求作△ABC,使其BC边上的高AH=h,中线AD=m,AB= c.(1)请先画草图(画出一个即可),并叙述简要的作图思路(即实现目标图的大致作图步骤);(4分)Array解:(2)完成尺规作图(不要求写作法.......,作出一个满足条件的三角形即可).(3分)25. (本题6分)在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE =DA(如图1). (1)求证:∠BAD=∠EDC;(2)点E关于直线BC的对称点为M,连接DM,AM.①依题意将图2补全;②小姚通过观察、实验提出猜想:在点D运动的过程中,始终有DA=AM.小姚把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明DA=AM,只需证△ADM是等边三角形;想法2:连接CM,只需证明△ABD≌△ACM即可.请你参考上面的想法,帮助小姚证明DA=AM(一种方法即可).(1)证明:(2)①补全图形.②证明:图1 图2北京市西城区2016-2017学年度第一学期期末试卷八年级数学参考答案及评分标准 2017.1 一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分) 11. 1. 12. x ≥3. 13. (5,1).14. 200(1)v-. 15. (1)见图1(涂色1分,画对称轴1分);(2)3(1分).16. (1)3(2分);(2)256(1分). 三、解答题(本题共52分) 17. (本题6分,每小题3分) 解:(1)32225(5)a b a b a b a b -=-;(2) 231212a a -+23(44)a a =-+ 23(2)a =-. 18. (本题6分)解: 222142442a a a a a a a a ---⎛⎫-÷⎪++++⎝⎭2212=(2)(2)4a a a a a a a ⎡⎤--+-⨯⎢⎥++-⎣⎦ 21=(4)(2)(4)a a a a a a ----+- (2)(2)(1)=(2)(4)a a a a a a a -+--+-4=(2)(4)a a a a -+- 21=2a a +.图1当1a =-时,221112(1)2(1)a a ==-+-+⨯-.19. (本题6分)解:方程两边同乘(1)(1)x x -+,得 2(1)(1)7x x ++-=.去括号,得 2217x x ++-=.移项,合并,得 36x =.系数化1,得 2x =. 经检验,2x =是原方程的根. 所以原方程的解为2x =. 20. (本题6分)解:原式222-⨯=31222+-=1152- 21. (本题6分)证明:如图2.∵ △P AO 和△PBQ 是等边三角形,∴ P A=PO ,PB=PQ ,∠OP A =60°,∠QPB =60°. ∴ ∠OP A =∠QPB .∴ 33OPA QPB ∠-∠=∠-∠.∴ ∠1=∠2. 在△P AB 和△POQ 中,,12,,PA PO PB PQ =⎧⎪∠=∠⎨⎪=⎩∴ △P AB ≌△POQ . ∴ AB=OQ . 22. (本题6分)(1)例如:①当a = 2 ,b = 3 时,等式222121()()3333+=+成立;② 当a = 3 ,b = 5 时,等式223232()()5555+=+成立.(2)解:22222222()()a b a a b a a b b a a ab b b b b b b b --+--++=+==, 22222222()a b a a b ab a a ab b b b b b b --+-++=+=.图2所以等式2()a b a b b -+=2()a b a b b-+成立. 23. (本题5分)解:(1)例如:(画出一种即可)(2)结论略. 24.1 (本题5分)解:(1)4(1分),直线EF 与AC 边的交点(1分),标图1分(图略).(2)先画点M 关于直线AB 的对称点M ',射线NM '与直线AB 的交点即为点P . (见图3) 注:画图1分,回答1分.24.2(本题7分)(1)解:草图如图4. 先由长为h ,m 的两条线段作Rt △ADH ,再由线段c 作边AB 确定点B ,再倍长BD 确定点C .(2)如图5. 注:其他正确图形及作法相应给分.25.(本题6分)(1)证明:如图6. ∵ △ABC 是等边三角形,图3图6∴260BAC B∠=∠=∠=︒.∵AD=DE,∴1E∠=∠.∵1BAD BAC∠=∠-∠,2EDC E∠=∠-∠,∴∠BAD=∠EDC.(2)①补全图形.(见图7)②法1:证明:如图7.由(1)已得34∠=∠.∵点E与点M关于直线BC对称,可得45∠=∠,DE=DM.∵DE=DA,∴35∠=∠,DA=DM.∵∠ADC是△ABD的外角,∴3603ADC B∠=∠+∠=︒+∠.又∵5ADC ADM∠=∠+∠,∴60ADM∠=︒.∴△ADM是等边三角形.∴DA=AM.法2:证明:如图8,在AB边上截取BF=BD,连接CM,DF. 可得△BDF是等边三角形,120AFD DCE∠=∠=︒.∵DA= DE,34∠=∠∴△ADF≌△DEC.∴DF=EC.∵点E与点M关于直线BC对称,可得45∠=∠,CE=CM,图7图8120∠=∠=︒.DCM DCE∴BD= DF=EC= MC,60∠=︒.ACM∴B ACM∠=∠.∵△ABC是等边三角形,∴AB AC=.∴△ABD≌△ACM.∴DA=AM.。
2016-2017西城区初一数学期末试卷及答案(北区)
北京市西城区(北区)2016— 2017学年度第一学期期末试卷七年级数学 2017.1(试卷满分100分,考试时间100分钟)一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.6-的绝对值等于( ).A. 6-B. 6C. 16- D.162.根据北京市公安交通管理局网站的数据显示,截止到2016年2月16日,北京市机动车保有量比十年前增加了3 439 000 辆,将3 439 000 用科学记数法表示应为( ).A .70.343 910⨯B .63.43910⨯C .73.43910⨯D .534.3910⨯3.下列关于多项式22521ab a bc --的说法中,正确的是( ). A.它是三次三项式 B.它是四次两项式 C.它的最高次项是22a bc - D.它的常数项是14.已知关于x 的方程72kx x k -=+的解是2x =,则k 的值为( ).A.3-B.45C. 1D.545. 下列说法中,正确的是( ).A .任何数都不等于它的相反数B .互为相反数的两个数的立方相等C .如果a 大于b ,那么a 的倒数一定大于b 的倒数D .a 与b 两数和的平方一定是非负数A B CD7.下列关于几何画图的语句正确的是 A .延长射线AB 到点C ,使BC =2ABB .点P 在线段AB 上,点Q 在直线AB 的反向延长线上C .将射线OA 绕点O 旋转180︒,终边OB 与始边OA 的夹角为一个平角D . 已知线段a ,b 满足20a b >>,在同一直线上作线段2AB a =,BC b =,那么线段8.将下列图形画在硬纸片上,剪下并折叠后能围成三棱柱的是A B CDA.①,④B. ①,③C. ②,③D. ②,④10.右图中的长方体是由三个部分拼接而成的,每一部分都是由四个同样大小的小正方体组成的,那么其中第一部分所对应的几 何体应是二、填空题(本题共20分,11~14题每小题2分,15~18题每小题3分)11.用四舍五入法将1.893 5取近似数并精确到0.001,得到的值是 .12.计算:135459116''︒-︒= .13.一件童装每件的进价为a元(0a >),商家按进价的3倍定价销售了一段时间后,为了吸引顾客,又在原定价的基础上打六折出售,那么按新的售价销售,每件童装所得的利润用代数式表示应为元.14.将长方形纸片ABCD 折叠并压平,如图所示,点C ,点D 的对应点分别为点C ',点D ',折痕分别交AD ,BC 边于点E ,点F .若30BFC '∠=︒,则CFE ∠= °.15.对于有理数a ,b ,我们规定a b a b b ⊗=⨯+.(1)(3)4-⊗= ; (2)若有理数x 满足 (4)36x -⊗=,则x 的值为 .A B C D16.如图,数轴上A ,B 两点表示的数分别为2-和6,数轴上的点C 满足AC BC =,点D 在线段AC 的延长线上, 若32AD AC =,则BD = ,点D 表示的数为 .17.右边球体上画出了三个圆,在图中的六个□里分别填入1,2,3,4,5,6,使得每个圆周上四个数相加的和都相等. (1)这个相等的和等于 ; (2)在图中将所有的□填完整.18.如图,正方形ABCD 和正方形DEFG 的边长都是3 cm ,点P 从点D 出发,先到点A ,然后沿箭头所指方向运动 (经过点D 时不拐弯),那么从出发开始连续运动2016 cm 时,它离点 最近,此时它距该点 cm .三、计算题(本题共12分,每小题4分)19.2742()(12)(4)32⨯-÷--÷-. 解:20.3212(3)4()23-÷⨯-.解:21.211312()49(5)64828-⨯+-÷-.解:四、先化简,再求值(本题5分)22.222225(3)(3)2a b ab ab a b ab --++,其中21=a ,3b =. 解:五、解下列方程(组)(本题共10分,每小题5分)23.321123x x x --+=-. 解:24.231445 6.x y x y +=⎧⎨-=⎩,解:六、解答题(本题4分)25. 问题:如图,线段AC 上依次有D ,B ,E 三点,其中点B 为线段AC 的中点,AD BE =, 若4DE =,求线段AC 的长. 请补全以下解答过程.解:∵ D ,B ,E 三点依次在线段AC 上,∴ DE BE =+. ∵ AD BE =,∴ DE DB AB =+=. ∵ 4DE =, ∴ 4AB =.∵ , ∴ 2 AC AB ==.七、列方程(或方程组)解应用题(本题共6分)26. 有甲、乙两班学生,已知乙班比甲班少4人,如果从乙班调17人到甲班,那么甲班人数比乙班人数的3倍还多2人,求甲、乙两班原来各有多少人. 解:八、解答题(本题共13分,第27题6分,第27题7分)27.已知当1x =-时,代数式3236mx nx -+的值为17.(1)若关于y 的方程24my n ny m +=--的解为2y =,求n m 的值;(2)若规定[]a 表示不超过a 的最大整数,例如[]4.34=,请在此规定下求32n m ⎡⎤-⎢⎥⎣⎦的值.解:28.如图,50DOE ∠=︒,OD 平分∠AOC ,60AOC ∠=︒,OE 平分∠BOC . (1)用直尺、量角器画出射线OA ,OB ,OC 的准确位置; (2)求∠BOC 的度数,要求写出计算过程;(3)当DOE α∠=,2AOC β∠=时(其中0βα︒<<,090αβ︒<+<︒),用α,β的代数式表示∠BOC 的度数.(直接写出结果即可) 解:EOD七年级数学参考答案及评分标准 2017.1一、选择题(本题共30分,每小题3分)阅卷说明:15~18题中,第一个空为1分,第二个空为2分;17题第(2)问其他正确答案相应给分.三、计算题(本题共12分,每小题4分)19.2742()(12)(4)32⨯-÷--÷-. 解:原式2242337=-⨯⨯- ………………………………………………………………2分83=-- ………………………………………………………………………3分 11=-.…………………………………………………………………………4分20.3212(3)4()23-÷⨯-.解:原式2227()99=-⨯⨯- ………………………………………………………………3分113=. …………………………………………………………………………4分(阅卷说明:写成43不扣分)21.211312()49(5)64828-⨯+-÷-.解:原式1125(1212)(50)2564828=-⨯-⨯--÷11(2)(2)428=---- ……………………………………………………… 2分1122428=---+114()428=---3414=--3414=-. ………………………………………………………………………4分四、先化简,再求值(本题5分)22.解: 222225(3)(3)2a b ab ab a b ab --++ 22222(155)(3)2a b ab ab a b ab =--++2222215532a b ab ab a b ab =---+ ………………………………………………… 2分 (阅卷说明:去掉每个括号各1分)22124a b ab =-. ……………………………………………………………………3分 当21=a ,3b =时, 原式221112()34322=⨯⨯-⨯⨯ …………………………………………………… 4分9189=-=-. …………………………………………………………………5分 五、解下列方程(组)(本题共10分,每小题5分)23.321123x x x --+=-.解:去分母,得 3(3)2(21)6(1)x x x -+-=-. …………………………………… 2分去括号,得 394266x x x -+-=-.…………………………………………… 3分 移项,得 346926x x x +-=+-. …………………………………………… 4分 合并,得 5x =. ………………………………………………………………… 5分24.231445 6.x y x y +=⎧⎨-=⎩,解法一:由①得 2143x y =-.③ ………………………………………………… 1分 把③代入②,得 2(143)56y y --=.………………………………………2分 去括号,得 28656y y --=. 移项,合并,得 1122y =.系数化为1,得 2y =. …………………………………………………… 3分 把2y =代入③,得 28x =.系数化为1,得 4.x = ………………………………………………………4分所以,原方程组的解为 42.x y =⎧⎨=⎩,……………………………………………5分解法二:①×2得 4628x y +=.③ ………………………………………………… 1分③-②得 6(5)286y y --=-.………………………………………………2分 合并,得 1122y =.系数化为1,得 2y =. …………………………………………………… 3分 ① ②系数化为1,得 4.x = ………………………………………………………4分所以,原方程组的解为 42.x y =⎧⎨=⎩,……………………………………………5分六、解答题(本题4分)25.解:∵ D ,B ,E 三点依次在线段AC 上,∴ DE DB BE =+. ………………………………………………………… 1分 ∵ AD BE =,∴ DE DB AD AB =+=. …………………………………………………… 2分 ∵ 4DE =, ∴ 4AB =.∵ 点B 为线段AC 的中点 , …………………………………………………… 3分 ∴ 2 8 AC AB ==. ……………………………………………………………4分 七、列方程(或方程组)解应用题(本题共6分)26.解:设甲班原来有x 人.……………………………………………………………… 1分 则乙班原来有 (4)x -人.依题意得 []173(4)172x x +=--+.…………………………………………… 3分 去括号,得 17312512x x +=--+. 移项,合并,得 278x =.系数化为1,得 39x =.……………………………………………………………4分 439435x -=-=. ……………………………………………………………… 5分答:甲班原来有39人,乙班原来有35人.……………………………………………6分 八、解答题(本题共13分,第27题6分, 第28题7分)27.解:∵ 当1x =-时,代数式3236mx nx -+的值为17, ∴ 将1x =-代入,得 23617m n -++=.整理,得 3211n m -=. ① ……………………………………………………1分 (1)∵ 关于y 的方程24my n ny m +=--的解为 2y =, ∴ 把2y =代入以上方程,得 442m n n m +=--.整理,得 534m n +=. ② ……………………………………………… 2分由①,②得 321153 4.n m m n -=⎧⎨+=⎩,②-①,得 77m =-.系数化为1,得 1m =-.把1m =-代入①,解得 3n =.∴ 原方程组的解为 13.m n =-⎧⎨=⎩, ……………………………………………… 4分此时3(1)1n m =-=-.…………………………………………………………5分 ①②∴ []32311 5.56222n m n m -⎡⎤⎡⎤⎡⎤-==-=-=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.………………………… 6分 阅卷说明:直接把第(1)问的1m =-,3n =代入得到第(2)问结果的不 给第(2)问的分.28.解:(1)①当射线OA 在DOE ∠外部时,射线OA ,OB ,OC 的位置如图1所示. ②当射线OA 在DOE ∠内部时,射线OA ,OB ,OC 的位置如图2所示. ……………………………………………………………………… 2分 (阅卷说明:画图每种情况正确各1分,误差很大的不给分)(2)①当射线OA 在DOE ∠外部时,此时射线OC 在DOE ∠内部,射线OA ,OD ,OC ,OE ,OB 依次排列,如图1.∵ OD 平分∠AOC ,60AOC ∠=︒,∴ 1302DOC AOC ∠=∠=︒.…………………………………………… 3分∵ 此时射线OA ,OD ,OC ,OE ,OB 依次排列,∴ DOE DOC COE ∠=∠+∠.∵ 50DOE ∠=︒,∴ 503020COE DOE DOC ∠=∠-∠=︒-︒=︒.∵ OE 平分∠BOC ,∴ 222040BOC COE ∠=∠=⨯︒=︒.…………………………………… 4分②当射线OA 在DOE ∠内部时,此时射线OC 在DOE ∠外部,射线OC ,OD ,OA ,OE ,OB 依次排列,如图2.∵ OD 平分∠AOC ,60AOC ∠=︒,∴ 1302COD AOC ∠=∠=︒. ∵ 此时射线OC ,OD ,OA ,OE ,OB 依次排列,50DOE ∠=︒,∴ 305080COE COD DOE ∠=∠+∠=︒+︒=︒.∵ OE 平分∠BOC ,∴ 2280160BOC COE ∠=∠=⨯︒=︒.………………………………… 5分阅卷说明:无论学生先证明哪种情况,先证明的那种情况正确给2分,第二种 情况正确给1分.(3)当射线OA 在DOE ∠外部时,22BOC αβ∠=-;当射线OA 在DOE ∠内部时,22BOC αβ∠=+.……………………………………………7分阅卷说明:两种情况各1分;学生若直接回答22BOC αβ∠=-或22αβ+不扣分.。
北京市西城区2016—2017学年度第一学期期末试卷八年级语文试题答案
北京市西城区2016—2017学年度第一学期期末试卷八年级语文试卷参考答案及评分标准2017.1一.基础·运用(共10分)1.(1)C (2)A (3)B (4)D (5)B评分标准:共10分。
每小题2分。
二.语文积累(共7分)2.家书抵万金三男邺城戍如闻泣幽咽黄发垂髫并怡然自乐僵卧孤村不自哀尚思为国戍轮台评分标准:共7分。
每句1分。
三.语言运用(共5分)3.C评分标准:选C得3分,选B得2分,选A得1分4.B评分标准:共2分。
四.名著阅读(共7分)5.三味书屋;曹先生;瓦西里;朱赫来评分标准:共4分。
每空1分。
6.过去;将来;二强子的车是卖了亲生闺女小福子才买下的,他的老婆又死了,留下两个孩子,只有再把车卖掉,埋葬老婆,养活孩子(或颜色太素了)。
评分标准:共3分。
每空1分。
五.文言文阅读(共10分)7.①歇.消散②颓.坠落③竞.争相、争着④钟.聚集评分标准:共4分。
每个1分。
8.(1)这里实在是人间的仙境啊。
(2)再也没有人能够欣赏这种奇丽的景色了。
评分标准:共4分。
每句2分。
9.齐鲁青未了高峰入云评分标准:共2分。
每个1分。
六.现代文阅读(共21分)(一)《父母在,不远游》(共14分)10.(1)烈日下全县寻找;(2)在雨中彳亍前行;(3)父亲发烧,打听消息;(4)母亲催促父亲救“我”;(5)请人来算卦占卜;(6)在水库边反复绕圈(围着水库反复寻找)。
评分标准:共4分。
每点1分。
答对任意4点即得满分,超字数最多扣1分。
11.不认识:“我”走进家门,母亲没想到“我”还活着。
母亲感到意外、不敢相信。
不敢认:“我”的失踪给父母造成的精神打击很大,父母身心俱疲,容颜变化很大(或母亲的脸上竟然布满了皱纹,憔悴不堪;父亲的头上已是白发如雪,简直老了20岁)。
“我”感到非常震惊和自责。
评分标准:4分。
各2分。
12.示例一:父母对儿子的牵挂表现在语言..上:见“我”假期未归,父亲说了句:“我去他学校看看!”就立刻去学校找“我”,表现了父亲对“我”的担忧,突出了他的牵挂之情。
北京西城区20162017学第一学期期末试卷
北京市西城区2016—2017学年度第一学期期末试卷高二英语 2017.1试卷满分:140分考试时间:120分钟A卷满分90分第一部分I. 听力理解(共三节, 满分22.5分)第一节: (共4小题; 每小题1.5分,满分6分)听下面四段对话,每段对话后有一道小题,从题中所给的A、B、C三个选项中选出最佳选项。
每段对话你将听一遍。
1. What is the man’s suggestion about the woman’s watch?A. Repair it.B. Buy a new one.C. Keep it.2. How does the man go to work now?A. By car.B. By bike.C. By subway.3. What are the speakers talking about?A. A wedding.B. A dress.C. The weather.4. Where will the man go first?A. To the theatre.B. To the library.C. To the office.第二节:(共6小题;每小题1.5分,满分9分)听下面三段对话, 每段对话后有两道小题,从题中所给的A、B、C三个选项中选出最佳选项。
每段对话你将听两遍。
听第5段材料,回答第5至第6小题。
5. Which was the best part of the woman’s tour?A. Hiking.B. Bungee jumping.C. Visiting friends.6. Why did the man stay inside and watch TV?A.It was raining.B. He was too tired.C. He was with his friends.听第6段材料,回答第7至第8小题。
7. Why did David skip classes last week?A. Because he wanted to surf on the Internet.B. Because his parents quarreled a lot at home.C. Because his friend asked him to chat in a café.8. What is the probable relationship between the two speakers?A. Teacher and student.B. Mother and son.C. Good friends.听第7段材料,回答第9至第10小题。
2016-2017北京西城初三第一学期数学期末试卷(含答案)概要1讲解
为(取n3.14)(
).
A.9280mm
B.6280mm
C.6140mm
D.457mm
9•当太阳光线与地面成
40°角时,在地面上的一棵树的影长为
10m,树高h(单位:m)的范围是().
A.3VhV5
B.5Vh系
xOy中,开口向下的抛物线y=ax2+bx +c的一部
则需要增加的一个条件是(写出一个即可).
13.如图,OO的半径为1,FA,PB是OO的两条切线,切点分别
为A,B.连接OA,OB,AB,PO,若/AFB=60°,则厶FAB的
周长为.
14.如图,在平面直角坐标系xOy中,直线y1kx m(k0)的抛物
2
y2ax bx c(a 0)交于点A(0,4),B(3,1),当y1<y2时,
是.
15.如图,在△ABC中,/BAC=65°将厶ABC绕点A逆时针旋转,得到△
接CV.若CC//AB,则/BAB=°
16.考古学家发现了一块古代圆形残片如图所示,为了修复这块残片,需要找出圆心
示,它与x轴交于A(1,0),与y轴交于点B(0,3),贝U a的取值范围
A.
aV0
B.
—3VaV0
3
9
3
C.
aV
—
D.
vaV
—
2
2
2
、填空题(本题共18分,每小题3分)
分图象如图所
是( ).
2
11.二次函数y x 2x m的图象与x轴只有一个公共点,则m的值为
12.如图,在△ABC中,点E,F分别在AB,AC上,若△AEFABC,
北京市西城区2016— 2017学年度第一学期期末试卷
(全优试卷)北京市西城区第一学期期末试卷高三数学文科试题
北京市西城区2016 — 2017学年度第一学期期末试卷高三数学(文科)2017.1第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|02}A x x =<<,2{|10}B x x =->,那么A B =(A ){|01}x x << (B ){|12}x x << (C ){|10}x x -<<(D ){|12}x x -<<2.下列函数中,定义域为R 的奇函数是 (A )21y x =+(B )tan y x =(C )2xy =(D )sin y x x =+3.执行如图所示的程序框图,输出的S 值为 (A )1 (B )0 (C )3- (D )10-4.已知双曲线2221(0)y x b b-=>的一个焦点是(2,0),则其渐近线的方程为(A)0x ±= (B0y ±= (C )30x y ±=(D )30x y ±=5.实数x ,y 满足10,10,20,x x y x y +⎧⎪-+⎨⎪+-⎩≤≥≥则4y x -的取值范围是(A )(,4]-∞(B )(,7]-∞(C )1[,4]2-(D )1[,7]2-7.某四棱锥的三视图如图所示,该四棱锥的表面积是 (A)20+(B)14+(C )26 (D)12+6.设,a b 是非零向量,且≠±a b .则“||||=a b ”是“()()+⊥-a b a b ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件8.8名象棋选手进行单循环赛(即每两名选手比赛一场).规定两人对局胜者得2分,平局各得1分,负者得0分,并按总得分由高到低进行排序.比赛结束后,8名选手的得分各不相同,且第二名的得分与最后四名选手得分之和相等.则第二名选手的得分是 (A )14 (B )13(C )12(D )11第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.复数1i1i+=-____. 10.在平面直角坐标系xOy 中,已知点(1,1)A ,(3,1)B -,则△AOB 的面积是____. 11.已知圆22(1)4x y -+=与抛物线22(0)y px p =>的准线相切,则p =____. 12.函数y =____;最小值是____. 13.在△ABC 中,角,,A B C 的对边分别为,,a b c .若3c =,3C π=,sin 2sin B A =,则a =____.14.设函数30,()log ,,x a f x x x a =>⎪⎩≤≤其中0a >.① 若3a =,则[(9)]f f =____;② 若函数()2y f x =-有两个零点,则a 的取值范围是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)在等差数列{}n a 中,23a =,3611a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设12nn n a b a =+,其中*n ∈N ,求数列{}n b 的前n 项和n S .16.(本小题满分13分)已知函数2π()sin(2)2cos 16f x x x ωω=-+-(0)ω>的最小正周期为π. (Ⅰ)求ω的值; (Ⅱ)求()f x 在区间7π[0,]12上的最大值和最小值.17.(本小题满分13分)手机完全充满电量,在开机不使用的状态下,电池靠自身消耗一直到出现低电量警告之间所能维持的时间称为手机的待机时间.为了解A ,B 两个不同型号手机的待机时间,现从某卖场库存手机中随机抽取A ,B 两个型号的手机各5台,在相同条件下进行测试,统计结果如下:已知 A ,B 两个型号被测试手机待机时间的平均值相等. (Ⅰ)求a 的值;(Ⅱ)判断A ,B 两个型号被测试手机待机时间方差的大小(结论不要求证明); (Ⅲ)从被测试的手机中随机抽取A ,B 型号手机各1台,求至少有1台的待机时间超过122小时的概率. (注:n 个数据12,,,n x x x 的方差2222121[()()()]n s x x x x x x n=-+-++-,其中x 为数据12,,,n x x x 的平均数)18.(本小题满分14分)如图,在四棱锥P ABCD -中,//AD BC ,90BAD ︒∠=,PA PD =,AB PA ⊥,2AD =,1AB BC ==.(Ⅰ)求证:AB PD ⊥;(Ⅱ)若E 为PD 的中点,求证://CE 平面PAB ; (Ⅲ)设平面PAB平面PCD PM =,点M 在平面ABCD 上.当PA PD ⊥时,求PM 的长.19.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点是1F ,2F ,点P 在椭圆C 上,且12||||4PF PF +=.(Ⅰ)求椭圆C 的方程;(Ⅱ)设点P 关于x 轴的对称点为Q ,M 是椭圆C 上一点,直线MP 和MQ 与x 轴分别相交于点E ,F ,O 为原点.证明:||||OE OF ⋅为定值.20.(本小题满分13分)对于函数()f x ,若存在实数0x 满足00()f x x =,则称0x 为函数()f x 的一个不动点. 已知函数32()3f x x ax bx =+++,其中,a b ∈R . (Ⅰ)当0a =时,(ⅰ)求()f x 的极值点;(ⅱ)若存在0x 既是()f x 的极值点,又是()f x 的不动点,求b 的值; (Ⅱ)若()f x 有两个相异的极值点1x ,2x ,试问:是否存在a ,b ,使得1x ,2x 均为()f x 的不动点?证明你的结论.北京市西城区2016 — 2017学年度第一学期期末高三数学(文科)参考答案及评分标准2017.1一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.D 3.C 4.B 5.A6.C 7.A 8.C二、填空题:本大题共6小题,每小题5分,共30分. 9.i 10.211.212.(0,)+∞;413[4,9) 注:第12,14题第一空2分,第二空3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)解:(Ⅰ)设等差数列{}n a 的公差为d ,则有113,2711.a d a d +=⎧⎨+=⎩[4分] 解得12a =,1d =.[6分]所以数列{}n a 的通项公式为1(1)1n a a n d n =+-=+.[7分](Ⅱ)111122n n n a n b a n +=+=++.[8分] 因为数列11{}2n +是首项为14,公比为12的等比数列,[9分]所以11[1()](3)421212n n n n S -+=+-[11分] 2131122n n n +++=-.[13分]16.(本小题满分13分)解:(Ⅰ)因为2π()sin(2)(2cos 1)6f x x x ωω=-+-ππ(sin 2coscos 2sin )cos 266x x x ωωω=-+ [ 4分]12cos 222x x ωω=+ πsin(2)6x ω=+, [ 6分]所以()f x 的最小正周期2ππ2T ω==, 解得1ω=. [ 7分] (Ⅱ)由(Ⅰ)得 π()sin(2)6f x x =+. 因为7π12x ≤≤0,所以ππ4π2663x +≤≤. [ 9分] 所以,当ππ262x +=,即π6x =时,()f x 取得最大值为1; [11分]当π4π263x +=,即7π12x =时,()f x 取得最小值为 [13分]17.(本小题满分13分) 解:(Ⅰ)A 05244120123(h)5x ++++=+=,[2分]B 2370(120)1205a x -++++-=+,[3分] 由A B x x =,解得127a =.[4分](Ⅱ)设A ,B 两个型号被测试手机的待机时间的方差依次为2A s ,2B s ,则22A Bs s <.[7分] (Ⅲ)设A 型号手机为1A ,2A ,3A ,4A ,5A ;B 型号手机为1B ,2B ,3B ,4B ,5B ,“至少有1台的待机时间超过122小时”为事件C .[8分]从被测试的手机中随机抽取A ,B 型号手机各1台,不同的抽取方法有25种.[10分]抽取的两台手机待机时间都不超过122小时的选法有:11(A ,B ),14(A ,B ),31(A ,B ),34(A ,B ),共4种. [11分]因此4(C)25P =,所以21(C)1(C)25P P =-=. 所以至少有1台的待机时间超过122小时的概率是2125.[13分]18.(本小题满分14分) 解:(Ⅰ)因为90BAD ∠=,所以AB AD ⊥,[1分] 又因为AB PA ⊥,[2分]所以AB ⊥平面PAD ,[3分]所以AB PD ⊥.[4分](Ⅱ)取PA 的中点F ,连接BF ,EF .[5分]因为E 为棱PD 中点,所以//EF AD ,12EF AD =,又因为//BC AD ,12BC AD =,所以//BC EF ,BC EF =.所以四边形BCEG 是平行四边形,//EC BF .[8分]又BF ⊂平面PAB ,CE ⊄平面PAB , 所以//CE 平面PAB .[9分](Ⅲ)在平面ABCD 上,延长AB ,CD 交于点M .因为M AB ∈,所以M ∈平面PAB ;又M CD ∈,所以M ∈平面PCD ,所以平面PAB平面PCD PM =.[11分]在△ADM 中,因为//BC AD ,12BC AD =, 所以 22AM AB ==.[12分]因为PA PD ⊥,所以△APD 是等腰直角三角形,所以PA =.[13分]由(Ⅰ)得AM ⊥平面PAD ,所以AM PA ⊥.在直角△PAM中,PM .[14分] 19.(本小题满分14分)解:(Ⅰ)由椭圆的定义,得12||||24PF PF a +==,2a =.[2分]将点P 的坐标代入22214x y b +=,得22114b+=,解得b =[4分]所以,椭圆C 的方程是22142x y +=.[5分](Ⅱ)依题意,得1)Q -.设()00,M x y ,则有220024x y +=,0x ≠01y ≠±.[6分]直线MP的方程为1y x -=,[7分]令0y =,得0001x x y -=-,[8分]所以OE =.直线MQ的方程为1y x +=,[9分]令0y =,得0001x x y +=+,[10分]所以OF =.所以22002021y x OE OF y -⋅- 2200202(42)=1y y y ---[12分] =4.所以OE OF ⋅为定值.[14分]20.(本小题满分13分)解:(Ⅰ)()f x 的定义域为(,)-∞+∞,且2()32f x x ax b '=++.[1分]当0a =时,2()3f x x b '=+.(ⅰ)① 当0b ≥时,显然()f x 在(,)-∞+∞上单调递增,无极值点.[2分]② 当0b <时,令()0f x '=,解得x =.[3分] ()f x 和()f x '的变化情况如下表:(ⅱ)若0x x =是()f x 的极值点,则有2030x b +=;若0x x =是()f x 的不动点,则有30003x bx x ++=.从上述两式中消去b ,整理得300230x x +-=.[6分]设3()23g x x x =+-.所以2()610g x x '=+>,()g x 在(,)-∞+∞上单调递增. 又(1)0g =,所以函数()g x 有且仅有一个零点1x =,即方程300230x x +-=的根为01x =, 所以 2033b x =-=-.[8分](Ⅱ)因为()f x 有两个相异的极值点1x ,2x ,所以方程2320x ax b ++=有两个不等实根1x ,2x ,所以24120a b ∆=->,即230a b ->.[9分]全优试卷假设存在实数a ,b ,使得1x ,2x 均为()f x 的不动点,则1x ,2x 是方程 32(1)30x ax b x ++-+=的两个实根,显然1x ,20x ≠.对于实根1x ,有32111(1)30x ax b x ++-+=.①又因为211320x ax b ++=.②①3⨯-②1x ⨯,得 211(23)90ax b x +-+=.同理可得222(23)90ax b x +-+=.所以,方程2(23)90ax b x +-+=也有两个不等实根1x ,2x .[11分] 所以1223b x x a-+=-. 对于方程2320x ax b ++=,有 1223a x x +=-, 所以2233a b a--=-, 即2932a b -=-, 这与230a b ->相矛盾!所以,不存在a ,b ,使得1x ,2x 均为()f x 的不动点.[13分]。
2016-2017年-北京西城区初二数学上学期期末试题(含答案word直接打印)
3x北京市西城区2016-2017学年度第一学期期末试卷八年级数学 2017.1 一、选择题(本题共30分,每小题3分)各题有四个选项,只有一个.是符合题意的. 1.下列二次根式中,最简二次根式是( ). A. B. 18 C., 1 D. 9a 2 2. 2015年9月14日,意大利物理学家马尔科?德拉戈收到来自激光干涉引力波天文台 (LIGO 的系统自动提示邮件,一股宇宙深处的引力波到达地球,在位于美国华盛顿 和烈文斯顿的两个LIGO 探测器上产生了 4 10-18米的 空间畸变(如图中的引力波信号图像所示),也被称作 “时空中的涟漪”,人类第一次探测到了引力波的存 在,“天空和以前不同了……你也听得到了 .”这次引 力波的信号显著性极其大,探测结果只有三百五十万分之一的误差.三百五十万分之 一约为0.000 000 285 7 .将0.000 000 285 7用科学记数法表示应为( ) A . 2.857 10-8 B. 2.857 10-7 C .2.857 10-6 D. 0.285 7 10-63.以下图形中,不是.轴对称图形的是( ). ISA™ABC D 4.如图,在厶ABC 中,/ B=ZC=60,点D 在AB 边上,DE 丄AB ,并与AC 边交于点E.如果AD=1, BC=6,那么CE 等于( )A. 5B. 4C. 3D.2 5.下列各式正确的是( )6』2 A. x x x x162 3B. x x x2\33 J2C.(xy ) =x y6-化简討正确的是(7. 在厶ABD 与厶ACD 中,/ BAD=Z CAD ,且B 点,C 点在AD 边两侧,则不一定 能使△ ABD 和厶ACD 全等的条件是().A.BD=CDB. / B=Z CC.AB=ACD. / BDA=/ CDA8.下列判断错误的是( ).A.当a ^ 0时,分式-有意义B.当a - -3时,分式-a 2一~3有意义aa -9C.当 a —丄时,分式 也的值为0D.当a =1时,分式 红 的值为12 a a9.如图,AD 是△ ABC 的角平分线,/ C=20,AB B^AC ,将△ ABD 沿AD 所在直线翻折,点B 在AC 边上的落点记为点E ,那么/ AED 等于().10. 在课堂上,张老师布置了一道画图题:画一个Rt A ABC ,使/ B=90°,它的两条边分别等于两条已知线段小刘和小赵同学先画出了/ MBN=90°之后,后续画图的主要过程分别如下图所示那么小刘和小赵同学作图确定三角形的依据分别是(A X 2 -1 (X -1)21x 2 -1 (x_1)2B.x -1x _1 x -1x -1 x -1 x -1X 2 _1 (x +1)(x —1) =x £ D X 2—1_(X+1)(X —1)_ 1 C.x-1x -1 x -1 X _1A. 80B.60C. 40D. 30 RDCA.SAS,HLB. HL,SASC.SAS,AASD.AAS,HL二、填空题(本题共18分,每小题3 分)11. ( n-3)0= _____ .12. ______________________________________________________ 如果口在实数范围内有意义,那么x的取值范围是____________________________________13. _______________________________________________________________ 在平面直角坐标系xOy中,点(」,1)关于y轴对称的点的坐标为 _______________________14. _____________________________________________________ 中国新闻网报道:2022年北京冬奥会的配套设施一一“京张高铁”(北京至张家口高速铁路)将于2019年底全线通车,届时,北京至张家口高铁将实现1小时直达•目前,北京至张家口的列车里程约200千米,列车的平均时速为v千米/时,那么北京至张家口“京张高铁”运行的时间比现在列车运行的时间少________________________________________________________ 小时.(用含v的式子表示)15. 如图所示的“钻石”型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂黑一个小三角形,使它与阴影部分合起来所构成的完整图形是一个轴对称图形•(1)画出其中一种涂色方式并画出此时的对称轴;(2)满足题意的涂色方式有______ 种.16. 对于实数p,我们规定:用<p>表示不小于p的最小整数,例如:<4>=4, < 3>=2.现对72进行如下操作:第一次第二次第三次P72—-<--/72>=9—^<^>=3—^<V3>=2.即对72只需进行3次操作后变为2.类似地」(1)_____________________ 对36只需进行操作后变为2;(2)只需进行3次操作后变为2的所有正整数中,最大的是 _______ .三、解答题(本题共52分)17. (本题6分,每小题3分)分解因式:(1)a3b _5a2b2; (2)3a2 -12a 12.解:解:18. (本题6分)1 a —2 a —1 ). a — 4 .化简并求值:a2 2a _a2 4a 4 a 2,其a__ .19. (本题6分)解方程:上 1 1X —1 X +1 x -1解:,再完成此题的解答 过程.解:21. (本题6分)如图,△ PAO 和厶PBQ 是等边三角形,连接 AB , 0Q. 求证:AB=OQ. 证明:22. (本题6分)阅读下列材料:小铭和小雨在学习过程中有如下一段对话:小铭:“我知道一般当m 旳时,m 2 n 怖• n 2 •可是我见到有这样一个神奇的等式:20.(本题6分)小华在学习二次根式时遇到如下计算题,他是这样做的:请你先把他在第一步中出现的其它错误圈画出来(不必改正)(a)2+□ =a+(口)2(其中a, b为任意实数,且b工0 .你相信它成立吗?”b b b b小雨:“我可以先给a, b取几组特殊值验证一下看看.”完成下列任务:(1)请选择两组你喜欢的、合适的a, b的值,分别代入阅读材料中的等式,写出代入后得到的具体等式并验证它们是否成立(在相应方框内打勾);①当a=,匕=时,等式(□成立;□不成立);②当a=,匕=时,等式(□成立;□不成立)(2)对于任意实数a,b (b^0,通过计算说明(上)2+仝兰=旦十(匕32是否成立.b b b b解:23. (本题5分)阅读下列材料:为了了解学校初二年级学生的阅读情况,小廉所在实践小组的同学们设计了相应的调查问卷,他们共发放问卷300张,收回有效问卷290张,并利用统计表整理了每一个问题的数据,绘制了统计图.他们的调查问卷中,有关“阅读载体的选择” 和“阅读过书的类型”两个问题的统计情况如下表所示•表1 :表2:根据以上材料解答下列问题:(1)根据表1中的统计数据,选择合适的统计图对其进行数据的描述;(2)通过表2中统计出的数据你能得到哪些结论?请你说出其中的一条即可解:(1)(2)24. 先阅读以下材料,再从24.1、24.2两题中任选一题作答(若两题都做以第一题为准)24.1题5分(此时卷面满分100分),24.2题7分(卷面总分不超过100分).轨们甘怨枫述并下的问右知阳1■点齋刖娇劃£直玻"岡如何虚止察上找到一牛点比使掲卩肿“科■小?”我何可克经述以下歩廉屏决这个问题:(1)鼻草團(五口麻劇}分析恐離:虚直找上衽护一点严,连孩严if ,尸'仏帳据趨目需要,柞点M吳于賣践MB的对聆盍朋携p r M+ PW箱比肖严M 广化曲奇直"爭找,円W十严"的jft. ■卜值;请先在以下相应方框内打勾,再解答相应题目我选择□24』;024.2-24.1解决下列两个问题:(1)如图2,在厶ABC中,AB=3, AC=4, BC=5, EF垂直且平分BC,点P在直线EF上,直接写出PA+PB的最小值,回答FA+PB取最小值时点P的位置并在图中标出来;解:FA+FB的最小值为,FA+FB取最小值时点F的位置是;(2)如图3,点M, N分别在直线AB两侧,在直线AB上找一点P,使得.MPB二.NPB.要求画图,并简要叙述确定点P位置的步骤•(无需尺规作图,保留画图痕迹,无需证明)1.M 解:确定点P位置的简要步骤:屈::24.2借鉴阅读材料中解决问题的三个步骤完成以下尺规作图..:已知三条线段h, m, c,求作△ ABC,使其BC边上的高AH=h,中线AD=m, AB= c.草图(目标示意图)区(1)请先画草图(画出一个即可),并叙述简要的作图思路(即实现目标图的大致作图步骤);(4分)解:(2)完成尺规作图(不要求写作法,作出一个满足条件的三角形即可).(3分)作图区25. (本题6分)在等边△ ABC中,点D在BC边上,点E在AC的延长线上,DE =DA (如图1).(1)求证:/ BAD=Z EDC;(2)点E关于直线BC的对称点为M,连接DM,AM.①依题意将图2补全;②小姚通过观察、实验提出猜想:在点D运动的过程中,始终有DA=AM .小姚把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明DA=AM,只需证△ ADM是等边三角形;想法2:连接CM,只需证明△ ABD^A ACM即可.请你参考上面的想法,帮助小姚证明DA=AM (一种方法即可).(1)证明:图1(2)①补全图形.②证明:北京市西城区2016-2017学年度第一学期期末试卷八年级数学参考答案及评分标准2017.1、选择题(本题共30分,每小题3分)题号12345678910答案A B D B D C A B C A 、填空题(本题共18分,每小题3 分)11. 1. 12. x>3. 13.(5,1). 14.(竺-1).v解:原式=、9+(2 3)2 -2 2 32、212 -4.6 2 = 15- -4. 6 .V42 216. (1) 3 (2 分);(2) 256 (1 分). 三、解答题(本题共52分) 17. (本题6分,每小题3分) 解:(1) a 3b _5a 2b 2 =a 2b(a -5b);(2) 3a 2 -12a 12 =3(a 2 -4a 4) =3(a -2)2. 18.(本题6分)解:I a —2a —1 a —4 a 2 2a a 2 4a 4 a 2a(a 2)(a 2) a - 4 a(a _4) (a 2)( a _ 4) (a —2)( a + 2) —a(a — 1)a —412a(a 2)(a -4) a(a 2)(a-4) a 2a当a 二-1时,1 12 — 2a 22a (-1)2 2 (-1)19.(本题6分)解:方程两边同乘(x-1)(x 1),得2(x 1) (x-1^7. 去括号,得2x ,2・x -1=:7.移项,合并,得 3x =6.系数化1,得x =2. 经检验,x = 2是原方程的根.所以原方程的解为x =2. 20.(本题6分)15. (1)见图1 (涂色1分,画对称轴1分);(2) 3 (1分)图121.(本题6分)证明:如图2「:△ RAO和厶PBQ是等边三角形,••• FA=PO , PB=PQ,/ OPA=600, / QPB=60°.•••/ OPA= / QPB.. OPA_. 3=/QPB 一. 3.二/ 仁/2.在厶PAB和厶POQ中,PA =PO,I.1=2, •••△ PAB^A POQ. A AB=OQ.PB =PQ,22.(本题6分)(1)例如:①当2 12 1*=2,b=3 时,等式(3)2 V3(3)2成立;②当a= 3_,b=_5_时,等式3、2 2 3 2 2() ()成立.5 5 5 52 2 2 a b(b - a) _ a -ab b(2)解:Q)2•口拦= 2- 2,b b b2 b b2b22 2 2 2a /b—a、2 ab -2ab a a -ab b b b b b2b2所以等式(旦)2•口 =? •(口)2成立.b b b b23.(本题5分)解:(1)例如:(画出一种即可)阅或載仲的选择■贏珅■O L HII-A■ LMii(2)结论略.24.1 (本题5分)解:(1)4(1分),直线EF与AC边的交点(1分),标图1分(图略)•(2)先画点M关于直线AB的对称点M :射线NM与直线AB的交点即为点P.(见图3)图3注:画图1分,回答1分.24.2 (本题7分)(1)解:草图如图4•先由长为h,m的两条线段作RtAADH,再由线段c作边AB确定点B,再倍长BD确定点C.25.(本题6分)(1)证明:如图6. •••△ ABC是等边三角形,--BAC = . B = . 2 = 60 .•/ AD=DE,二.1 二/E .v . BAD = BAC- 1 , EDC = 2-. E ,•••/ BAD=Z EDC.(2)①补全图形.(见图7)②法1:证明:如图7.由(1)已得• 3-4.v点E与点M关于直线BC对称,可得4= 5 , DE=DM .v DE=DA ,二.3", DA=DM .vZ ADC是厶ABD的外角,••• . ADC = . B . 3=60 . 3.又v . ADC 二.ADM . 5 ,••• . ADM =60 .•••△ ADM是等边三角形.••• DA=AM .法2:证明:如图8,在AB边上截取BF=BD,连接CM , DF.可得△ BDF是等边三角形,• AFD二■ DCE =120 .v DA= DE, 3=4•••△ ADF ◎△ DEC.••• DF=EC .v点E与点M关于直线BC对称,可得 4 "5 , CE=CM ,.DCM 二.DCE =120 .••• BD= DF=EC= MC , ACM =60 . 乙B /ACM .•••△ ABC是等边三角形,••• AB 二AC.•••△ ABD^A ACM.••• DA=AM .图8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市西城区2016— 2017学年度第一学期期末试卷2017.1一、选择题(本题共30分,每小题3分) 1.抛物线y = (x -1)2+2的对称轴为( ).A .直线x = 1B .直线x =﹣1C .直线x =2D .直线x =﹣22.我国民间,流传着许多含有吉祥意义的文字图案,表示对幸福生活的向往,良辰佳节的祝贺.比如下列图案分别表示“福”、“禄”、“寿”、“喜”,其中是.轴对称图形,但不是..中心对称图形的是( ).A B C D 3.如图,在Rt △ABC 中,∠C =90°,AC =4,tan A =21,则BC 的长度为( ).A .2B .8C .34D .544.将抛物线y =-3x 2平移,得到抛物线y =-3 (x -1)2-2,下列平移方式中,正确的是( ). A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位5.如图,在平面直角坐标系xOy 中,以原点O 为位似中心,把线段 AB 放大后得到线段CD .若点A (1,2),B (2,0), D (5,0),则点A 的对应点C 的坐标是( ). A.(2,5) B.(52,5) C. (3,5) D.(3,6)6.如图,AB 是⊙O 的直径,C ,D 是圆上两点,连接AC ,BC ,AD , CD .若∠CAB =55°,则∠ADB 的度数为( ).A. 55°B. 45°C. 35°D. 25°7.如图,AB 是⊙O 的一条弦,OD ⊥AB 于点C ,交⊙O 于点D ,连接OA .若AB = 4,CD =1,则⊙O 的半径为( ).A .5B .5C .3D .528.制造弯形管道时,经常要先按中心线计算“展直长度”,再下料.右图是一段弯形管道,其中∠O =∠O ’=90°,中心线的两条弧的半径都是1000mm ,这段变形管道的展直长度约 为(取π3.14)( ).A .9280mmB .6280mmC .6140mmD .457mm9.当太阳光线与地面成40°角时,在地面上的一棵树的影长为10m ,树高h (单位:m )的范围是( ). A .3<h <5 B .5<h <10 C .10<h <15 D .15<h <2010.在平面直角坐标系xOy 中,开口向下的抛物线y = ax 2+bx +c 的一部分图象如图所示,它与x 轴交于A (1,0),与y 轴交于点B (0,3),则a 的取值范围是( ). A .a <0 B .-3<a <0 C .a <32-D .92-<a <32- 二、填空题(本题共18分,每小题3分)11.二次函数22y x x m =-+的图象与x 轴只有一个公共点,则m 的值为 . 12.如图,在△ABC 中,点E ,F 分别在AB , AC 上,若△AEF ∽△ABC , 则需要增加的一个条件是 (写出一个即可). 13. 如图,⊙O 的半径为1,PA ,PB 是⊙O 的两条切线,切点分别为A ,B .连接OA ,OB ,AB ,PO ,若∠APB=60°,则△PAB 的 周长为 .14. 如图,在平面直角坐标系xOy 中,直线1(0)y kx m k =+≠的抛物线22(0)y ax bx c a =++≠交于点A (0,4),B (3,1),当 y 1≤y 2时,x 的取值范围是 .C DOAB15. 如图,在△ABC 中,∠BAC =65°,将△ABC 绕点A 逆时针旋转,得到△AB 'C ',连接C 'C .若C 'C ∥AB ,则∠BA B '= °.16.考古学家发现了一块古代圆形残片如图所示,为了修复这块残片,需要找出圆心.(1)请利用尺规作图确定这块残片的圆心O ;(2)写出作图的依据: .三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程. 17.计算:4cos303tan60+2sin45cos45 o o o o -.18.如图, D 是等边三角形ABC 内一点,将线段AD 绕点A 顺时针旋转60°,得到线段AE , 连接CD , BE .(1)求证:∠AEB =∠ADC ;(2)连接DE ,若∠ADC =105°,求∠BED 的度数. 19.已知二次函数y =x 2 + 4x + 3.(1)用配方法将二次函数的表达式化为y = a (x -h )2 + k 的形式; (2)在平面直角坐标系xOy 中,画出这个二次函数的图象; (3)根据(2)中的图象,写出一条该二次函数的性质. 20.如图,在△ABC 中,点D 在BC 边上,∠DAC =∠B .点E 在AD 边上, CD =CE .(1)求证:△ABD ∽△CAE ; (2)若AB =6,AC =92,BD =2,求AE 的长. 21.一张长为30cm ,宽20cm 的矩形纸片,如图1所示,将这张纸片的四个角各剪去一个边长相同的正方形后,把剩余部分折成一个无盖的长方体纸盒,如图1所示,如果折成的长方体纸盒的底面积...为264cm 2,求剪掉的正方形纸片的边长.图1图222.一条单车道的抛物线形隧道如图所示.隧道中公路的宽度AB =8 m , 隧道的最高点C 到公路的距离为6 m .(1)建立适当的平面直角坐标系,求抛物线的表达式;(2)现有一辆货车的高度是4.4m ,货车的宽度是2 m,为了保证安全,车顶距离隧道顶部至少0.5m ,通过计算说明这辆货车能否安全通过这条隧道.23.如图,AB 是⊙O 的直径,C 为⊙O 上一点,经过点C 的直线与AB 的延长线交于点D ,连接AC ,BC ,∠BCD =∠CAB .E 是⊙O 上一点,弧CB=弧CE ,连接AE 并延长与DC 的延长线交于点F .(1)求证:DC 是⊙O 的切线; (2)若⊙O 的半径为3, sin D =35,求线段AF 的长.24.测量建筑物的高度在《相似》和《锐角三角函数》的学习中,我们了解了借助太阳光线、利用标杆、平面镜等可以测量建筑物的高度.综合实践活动课上,数学王老师让同学制作了一种简单测角仪:把一根细线固定在量角器的圆心处,细线的另一端系一个重物(如图1);将量角器拿在眼前,使视线沿着量角器的直径刚好看到需测量物体的顶端,这样可以得出需测量物体的仰角α的度数(如图2,3).利用这种简单测角仪,也可以帮助我们测量一些建筑物的高度.天坛是世界上最大的祭天建筑群,1998年被确认为世界文化遗产.它以严谨的建筑分布,奇特的建筑构造和瑰丽的建筑装饰闻名于世.祈年殿是天坛主体建筑,又称祈谷殿(如图4).采用的是上殿下屋的构造形式,殿为圆形,象征天圆;瓦为蓝色,象征蓝天.祈年殿的殿座是圆形的祈谷坛.请你利用所学习的数学知识,设计一个测量方案,解决“测图4图1图2 图3量天坛祈年殿的高度”的问题.要求: (1)写出所使用的测量工具;(2)画出测量过程中的几何图形,并说明需要测量的几何量; (3)写出求天坛祈年殿高度的思路.25.如图,△ABC 内接于⊙O ,直径DE ⊥AB 于点F ,交BC 于点 M , DE 的延长线与AC 的延长线交于点N ,连接AM . (1)求证:AM =BM ;(2)若AM ⊥BM ,DE =8,∠N =15°,求BC 的长. 26.阅读下列材料:有这样一个问题:关于x 的一元二次方程a x 2 + bx + c = 0(a >0)有两个不相等的且非零的实数根.探究a ,b ,c 满足的条件.小明根据学习函数的经验,认为可以从二次函数的角度看一元二次方程,下面是小明的探究过程:①设一元二次方程ax 2 +bx +c = 0(a >0)对应的二次函数为y = ax 2 +bx +c (a >0);②借助二次函数图象,可以得到相应的一元二次中a ,b ,c 满足的条件,列表如下: 方程根的几何意义:请将(2)补充完整方程两根的情况对应的二次函数的大致图象a ,b ,c 满足的条件方程有两个 不相等的负实根20,40,0,20.a b ac ba c >⎧⎪∆=->⎪⎪⎨-<⎪⎪>⎪⎩0,0.a c >⎧⎨<⎩ 方程有两个不相等的正实根(1)参考小明的做法,把上述表格补充完整;(2)若一元二次方程()22340mx m x m -+-=有一个负实根,一个正实根,且负实根大于-1,求实数m 的取值范围.27.在平面直角坐标系xOy中,抛物线y = -x2+ mx +n与x轴交于点A,B(A在B的左侧).(1)抛物线的对称轴为直线x =-3,AB = 4.求抛物线的表达式;(2)平移(1)中的抛物线,使平移后的抛物线经过点O,且与x正半轴交于点C,记平移后的抛物线顶点为P,若△OCP是等腰直角三角形,求点P的坐标;(3)当m =4时,抛物线上有两点M(x1,,y1)和N(x2,,y2),若x1< 2,x2>2,x1+ x2 > 4,试判断y1与y2的大小,并说明理由.28.在Rt△ABC中,∠ACB=90°,AC=BC,C D为AB边上的中线.在Rt△AEF中,∠AEF=90°,AE=EF,AF < AC.连接BF,M,N分别为线段AF,BF的中点,连接MN.(1)如图1,点F在△ABC内,求证:CD = MN;(2)如图2,点F在△ABC外,依题意补全图2,连接CN,EN,判断CN与EN的数量关系与位置关系,并加以证明;(3)将图1中的△AEF绕点A旋转,若AC=a,AF=b(b<a),直接写出EN的最大值与最小值.图1 图2 备用图29.在平面直角坐标系xOy中,给出如下定义:对于⊙C及⊙C外一点P,M,N是⊙C上两点,当∠MPN最大,称∠MPN为点.P.关于⊙C的“视角”.直线l与⊙C相离,点Q在直线l上运动,当点Q关于⊙C的“视角”最大时,则称这个最大的“视角”为直线..l.关于⊙C的“视角”.(1)如图,⊙O的半径为1,①已知点A(1,1),直接写出点A关于⊙O的“视角”;已知直线y = 2,直接写出直线y = 2关于⊙O的“视角”;②若点B关于⊙O的“视角”为60°,直接写出一个符合条件的B点坐标;(2)⊙C的半径为1,①点C的坐标为(1,2),直线l: y=kx+b(k > 0)经过点D(231-+,0),若直线l 关于⊙C的“视角”为60°,求错误!未找到引用源。