两角和与差的余弦公式证明

合集下载

两角和与差的正弦余弦和正切公式

两角和与差的正弦余弦和正切公式

利用三角函数的倍角公式推导
总结词
通过三角函数的倍角公式,我们可以推导出 两角和与差的正弦、余弦和正切公式。
详细描述
三角函数的倍角公式指出,对于任意角度α, sin(2α)、cos(2α)和tan(2α)的值可以通过
sin(α)、cos(α)、tan(α)的函数关系来表达。 利用这个公式,我们可以推导出两角和与差
总结词
通过三角函数的减法定理,我们可以推导出 两角和与差的正弦、余弦和正切公式。
详细描述
三角函数的减法定理指出,对于任意角度α、 β,sin(α-β)、cos(α-β)和tan(α-β)的值可 以通过sin(α)、cos(α)、sin(β)、cos(β)、 tan(α)和tan(β)的函数关系来表达。利用这 个定理,我们可以推导出两角和与差的正弦、 余弦和正切公式。
地理学问题
在地理学中,很多问题涉及到地 球的自转、公转等角度计算,如 时差、太阳高度角等,利用三角 函数公式可以方便地计算。
经济学问题
在经济学中,很多问题涉及到利 率、汇率等与角度相关的问题, 利用三角函数公式可以方便地描 述这些变化规律。
04
三角函数公式的扩展
利用三角函数的和差化积公式扩展
总结词
利用三角函数的积化和差公式扩展
总结词
利用三角函数的积化和差公式,可以将两角和与差的 正弦、余弦和正切公式进行扩展,得到更一般化的公 式形式。
详细描述
三角函数的积化和差公式可以将两个角度的正弦或余 弦的乘积转化为其他角度的正弦、余弦和正切的和或 差的形式,从而扩展了原有的公式。例如,利用积化 和差公式,可以将两角和的余弦表示为单个角度余弦 的函数,进一步推导得到更一般化的公式。
VS
详细描述

两角和与差的余弦公式的五种推导方式之对照

两角和与差的余弦公式的五种推导方式之对照

两角和与差的余弦公式的五种推导方式之对照第一种推导方式:我们知道余弦函数的定义为:cosθ = adj/hyp其中,adj表示邻边的长度,hyp表示斜边的长度。

现在考虑两个角度的和,即θ1+θ2、根据余弦函数的定义,我们可以得到:cos(θ1 + θ2) = adj1/hyp1现在我们将θ1和θ2分别表示为它们的余弦函数:cosθ1 = adj1/hyp1cosθ2 = adj2/hyp2将这两个式子相加,得到:cosθ1 + cosθ2 = (adj1 + adj2) / (hyp1 + hyp2)这就是两角和的余弦公式。

第二种推导方式:我们知道余弦函数的定义为:cosθ = adj/hyp我们还知道余弦函数的复合角公式,即:cos(θ1 + θ2) = cosθ1⋅cosθ2 - sinθ1⋅sinθ2现在我们将θ1和θ2表示为它们的余弦函数和正弦函数:cosθ1 = adj1/hyp1cosθ2 = adj2/hyp2sinθ1 = opp1/hyp1sinθ2 = opp2/hyp2将这些式子代入复合角公式中,得到:cos(θ1 + θ2) = (adj1/hyp1)⋅(adj2/hyp2) -(opp1/hyp1)⋅(opp2/hyp2)= (adj1⋅adj2 - opp1⋅opp2) / (hyp1⋅hyp2)这就是第二种推导方式。

第三种推导方式:我们知道余弦函数的定义为:cosθ = adj/hyp我们还知道正弦函数的平方与余弦函数的平方之和等于1,即:sin²θ + cos²θ = 1现在我们考虑θ1和θ2的和,即(θ1+θ2)。

我们可以得到:cos(θ1 + θ2) = adj1+2/hyp1+2现在我们将θ1+2表示为(θ1+θ2)的余弦函数和正弦函数:cos(θ1 + θ2) = adj1+2/hyp1+2= (adj1⋅cosθ2 - opp1⋅sinθ2) / (hyp1⋅cosθ2 + hyp2⋅sinθ2) = (adj1⋅adj2 - opp1⋅opp2) / (hyp1⋅ hyp2)这就是第三种推导方式。

两角和与差的余弦公式

两角和与差的余弦公式

两角和与差的余弦公式余弦公式是用来计算三角形中一个角的余弦值的公式。

它通常用于计算三角形的边长或角度。

余弦公式有两种形式,分别对应两角和与差:1.两角和的余弦公式:在三角形ABC中,设边长分别为a、b、c,对应的内角为A、B、C。

假设我们要计算角C的余弦值。

根据余弦定理,有以下公式:cos(C) = cos(A+B) = cos(A)cos(B) - sin(A)sin(B)2.两角差的余弦公式:在三角形ABC中,设边长分别为a、b、c,对应的内角为A、B、C。

假设我们要计算角C与角A的差的余弦值。

根据余弦定理,有以下公式:cos(C-A) = cos(C)cos(A) + sin(C)sin(A)这两个公式可以用来计算三角形中的角度,也可以用来计算边长。

下面我们通过一些例子来说明如何应用这两个公式。

例1:已知三角形ABC,边长分别为AB=5,BC=7,AC=8、计算角C的余弦值。

解:根据余弦公式,我们需要先计算出角A和角B的余弦值,然后代入两角和的余弦公式中。

根据余弦定理,有以下公式:cos(C) = (AB^2 + AC^2 - BC^2) / (2 * AB * AC)代入具体数值,得到:cos(C) = (5^2 + 8^2 - 7^2) / (2 * 5 * 8)=(25+64-49)/80=40/80=0.5所以角C的余弦值为0.5例2:已知三角形ABC,边长分别为AB=4,AC=5,BC=6、计算角C与角A的差的余弦值。

解:根据余弦定理,我们需要先计算出角C和角A的余弦值,然后代入两角差的余弦公式中。

使用余弦定理计算角C的余弦值:cos(C) = (AB^2 + AC^2 - BC^2) / (2 * AB * AC)=(4^2+5^2-6^2)/(2*4*5)=(16+25-36)/40=5/40=0.125使用余弦定理计算角A的余弦值:cos(A) = (BC^2 + AC^2 - AB^2) / (2 * BC * AC)=(6^2+5^2-4^2)/(2*6*5)=(36+25-16)/60=45/60=0.75代入两角差的余弦公式,得到:cos(C-A) = cos(C)cos(A) + sin(C)sin(A)= (0.125)(0.75) + (sqrt(1 - 0.125^2))(sqrt(1 - 0.75^2))综上所述,这就是两角和与差的余弦公式的用法。

两角和与差的余弦公式

两角和与差的余弦公式

两角和与差的余弦公式余弦公式是三角学中常用的定理,用来计算三角形的角度和边长。

其中,两角和与差的余弦公式是一种特殊形式的余弦公式,用来计算两个角的和与差的余弦值。

在本文中,我们将详细介绍两角和与差的余弦公式,并且给出其证明及应用示例。

一、两角和与差的余弦公式的表述对于任意两个角A和B,其和与差的余弦值分别可以表示为:①余弦和公式:cos(A + B) = cosA * cosB - sinA * sinB②余弦差公式:cos(A - B) = cosA * cosB + sinA * sinB其中,cosA、cosB、sinA、sinB分别表示角A和角B的余弦和正弦值。

二、两角和与差的余弦公式的证明1.证明余弦和公式:我们先来证明余弦和公式cos(A + B) = cosA * cosB - sinA * sinB。

根据三角函数的定义,我们有:cos(A + B) = cos(α + β)= [exp(i(α + β)) + exp(-i(α + β))] / 2 (欧拉公式)= [exp(iα) * exp(iβ) + exp(-iα) * exp(-iβ)] / 2 (指数幂法则)= [(cosα + i * sinα) * (cosβ + i * sinβ) + (cosα - i * sinα) * (cosβ - i * sinβ)] / 2 (令exp(iα) = cosα + i *sinα,同样对于exp(iβ))= [(cosα * cosβ + i * cosα * sinβ + i * sinα * cosβ + i^2 * sinα * sinβ) + (cosα * cosβ - i * cosα * sinβ - i * sinα *cosβ - i^2 * sinα * sinβ)] / 2= [(cosα * cosβ + sinα * sinβ) + i * (cosα * sinβ + sinα * cosβ)] + [- (cosα * cosβ + sinα * sinβ) + i * (cosα * sinβ + sinα * cosβ)] / 2= (cosα * cosβ + sinα * sinβ)= cosA * cosB - sinA * sinB故余弦和公式成立。

两角和与差的三角函数公式知识点

两角和与差的三角函数公式知识点

两角和与差的三角函数公式知识点两角和与差的三角函数公式属于高中数学的重要内容,主要通过利用三角函数的性质,研究两个角的和与差的三角函数值之间的关系。

在解决三角方程、证明恒等式等问题时,这些公式的应用非常广泛。

本文将从公式的定义、推导及应用方面进行详细解析。

一、两角和的三角函数公式1.余弦和公式:cos(A+B) = cosAcosB - sinAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A+B。

我们知道,其对应的三条直角边分别是x、x'、x"和y、y'、y",根据三角函数的定义,我们可以得到如下关系:x = cosA,y = sinAx' = cosB,y' = sinBx" = cos(A+B),y" = sin(A+B)那么,点P、Q和R的连线所对应的三角形的三个内角之和应该等于180°,即有:∠POR+∠POQ+∠QOR=180°∠A+∠B+∠(A+B)=180°2A+B=180°将以上结果代入三角函数的定义中,我们可以得到:cos(A+B) = x" = x'x - y'y = cosAcosB - sinAsinB2.正弦和公式:sin(A+B) = sinAcosB + cosAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A+B。

同样,根据三角函数的定义,我们可以得到如下关系:x = cosA,y = sinAx' = cosB,y' = sinBx" = cos(A+B),y" = sin(A+B)那么,点P、Q和R的连线所对应的三角形的三个边长之和应该等于2,即有:PR+PQ+QR=2∠POR+∠POQ+∠QOR=360°∠A+∠B+∠(A+B)=360°2A+B=360°将以上结果代入三角函数的定义中,我们可以得到:sin(A+B) = y" = xy' + yx' = sinAcosB + cosAsinB二、两角差的三角函数公式1.余弦差公式:cos(A-B) = cosAcosB + sinAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A-B。

两角和与差的余弦公式的六种推导方法

两角和与差的余弦公式的六种推导方法

两角和与差的余弦公式的六种推导方法沈阳市教育研究院王恩宾两角和与差的余弦公式是三角函数恒等变换的基础,其他三角函数公式都是在此公式基础上变形得到的,因此两角和与差的余弦公式的推导作为本章要推导的第一个公式,往往得到了广大教师的关注. 对于不同版本的教材采用的方法往往不同,认真体会各种不同的两角和与差的余弦公式的推导方法,对于提高学生的分析问题、提出问题、研究问题、解决问题的能力有很大的作用.下面将两角和与差的余弦公式的五种常见推导方法归纳如下:方法一:应用三角函数线推导差角公式的方法设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β.过点P作PM⊥x轴,垂足为M,那么OM即为α-β角的余弦线,这里要用表示α,β的正弦、余弦的线段来表示OM.过点P作PA⊥OP1,垂足为A,过点A作AB⊥x轴,垂足为B,再过点P作PC⊥AB,垂足为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是OM=OB+BM=OB+CP =OA cosα+AP sinα=cosβcosα+sinβsinα.综上所述,.说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解.但这种推导方法对于如何能够得到解题思路,存在一定的困难.此种证明方法的另一个问题是公式是在均为锐角的情况下进行的证明,因此还要考虑的角度从锐角向任意角的推广问题.方法二:应用三角形全等、两点间的距离公式推导差角公式的方法设P1(x1,y1),P2(x2,y2),则有|P1P2 |= .在直角坐标系内做单位圆,并做出任意角α,α+β和,它们的终边分别交单位圆于P2、P3和P4点,单位圆与x轴交于P1,则P1(1,0)、P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、.∵,且,∴,∴,∴,∴,∴,.说明:该推导方法巧妙的将三角形全等和两点间的距离结合在一起,利用单位圆上与角有关的四个点,建立起等式关系,通过将等式的化简、变形就可以得到符合要求的和角与差角的三角公式.在此种推导方法中,推导思路的产生是一个难点,另外对于三点在一条直线和三点在一条直线上时这一特殊情况,还需要加以解释、说明.方法三:应用余弦定理、两点间的距离公式推导差角公式的方法设,则.在△OPQ中,∵,∴,∴.说明:此题的解题思路和构想都是容易实现的. 因为要求两角和与差的三角函数,所以构造出和角和差角是必须实现的. 构造出的和角或差角的余弦函数又需要和这两个角的三角函数建立起等式关系,因此借助于余弦定理、两点间的距离公式建立起等式关系容易出现,因此此种方法是推导两角和与差的余弦的比较容易理解的一种方法. 但此种方法必须是在学习完余弦定理的前提下才能使用,因此此种方法在必修四中又无法使用. 另外也同样需要考虑三点在一条直线上的情况.方法四:应用三角形面积公式推导推导差角公式的方法设α、β是两个任意角,把α、β两个角的一条边拼在一起,顶点为O,过B点作OB 的垂线,交α另一边于A,交β另一边于C,则有S△OAC=S△OAB+S△OBC..根据三角形面积公式,有,∴.∵,,,∴,∵,∴sin(α+β)=sinαcosβ+sinβcosα.根据此式和诱导公式,可继续证出其它和角公式及差角公式.(1)sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosα;(2)cos(α+β)=sin[90-(α+β)]=sin[(90-α)-β]=sin(90-α)cosβ-sinβcos(90-α)=cosαcosβ-sinαsinβ;(3)cos(α-β)=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβ.说明:此种推导方法通过三角形的面积的和巧妙的将两角和的三角函数与各个角的三角函数和联系在一起,体现了数形结合的特点. 缺点是公式还是在两个角为锐角的情况下进行的证明,因此同样需要将角的范围进行拓展.(五)应用数量积推导余弦的差角公式在平面直角坐标系xOy内,作单位圆O,以Ox为始边作角α,β,它们的终边与单位圆的交点为A,B,则=(cosα,sinα),=(cosβ,sinβ).由向量数量积的概念,有.由向量的数量积的坐标表示,有.于是,有.说明:应用数量积推导余弦的差角公式无论是构造两个角的差,还是得到每个角的三角函数值都是容易实现的,而且从向量的数量积的定义和坐标运算两种形式求向量的数量积将二者之间结合起来,充分体现了向量在数学中的桥梁作用.附方法六:等积法推导余弦的差角公式广东佛山袁锦前如图:在△ABC中,AD⊥BC于D,BE⊥AC于E,设∠DAC=α,∠ABD=β,求:cos(α-β)解:在△ABD中,BD=c·cosβ,AD=b·cosα在△ACD中,CD= b c·sinα,AD= c·sinβ11cos cos sin sin 22ABD ACDSSbc bc αβαβ∴+=+ ()1cos cos sin sin 2bc αβαβ=+ …………………………..○1 又∵2BAD πβ∠=-()c sin =c sin 22BE ππβααβ⎡⎤⎛⎫⎡⎤∴=⋅-+⋅--⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦()c cos αβ=⋅-()11cos 22ABCSAC BE bc αβ∴=⋅=- …………………………………………○2 由○1○2可得: ()cos =cos cos sin sin αβαβαβ-+。

两角和与差的余弦公式证明

两角和与差的余弦公式证明

两角和与差的余弦公式的五种推导方法之对比沈阳市教育研究院王恩宾两角和与差的余弦公式是三角函数恒等变换的基础,其他三角函数公式都是在此公式基础上变形得到的,因此两角和与差的余弦公式的推导作为本章要推导的第一个公式,往往得到了广大教师的关注•对于不同版本的教材采用的方法往往不同,认真体会各种不同的两角和与差的余弦公式的推导方法,对于提高学生的分析问题、提出问题、研究问题、解决问题的能力有很大的作用•下面将两角和与差的余弦公式的五种常见推导方法归纳如下:方法一:应用三角函数线推导差角公式的方法设角a的终边与单位圆的交点为P i,Z POP i= 则/ POX = a— 3.\ 11「A 计R ;过点P作PM丄x轴,垂足为M,那么OM即为a— 3角的余弦线,这里要用表示a, 3的正弦、余弦的线段来表示OM .过点P作PA丄OP i,垂足为A,过点A作AB丄x轴,垂足为B,再过点P作PC丄AB,垂足为C,那么cos 3= OA, sin 3= AP,并且/ PAC=Z P i Ox= a,于是OM = OB + BM = OB + CP = OAcos a+ APsin a= cos 3^os a+ sin 传in a.cos (0)= cos OJCOE0+ sin -asin p说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解•但这种推导方法对于如何能够得到解题思路,存在一定的困难•此种证明方法的另一个问题是公式是在二’:均为锐角的情况下进行的证明,因此还要考虑二-的角度从锐角向任意角的推广问题•综上所述,方法二:应用三角形全等、两点间的距离公式推导差角公式的方法在直角坐标系内做单位圆,并做出任意角 a a + B 和「,它们的终边分别交单位圆于P 2、P 3 和 P 4 点,单位圆与X 轴交于P i ,贝y P i (1,0)、P 2(cos a, sin a 、P 3(C0S (a +® , sin( a +3))、h 「*一三"一广 1 ....N 彤鸟*耳巧皿+ 0 ,且闵I = |^| = |0^| = |0^| = 1...△好。

两角和与差的正弦余弦正切公式及二倍角公式

两角和与差的正弦余弦正切公式及二倍角公式

两角和与差的正弦余弦正切公式及二倍角公式1.两角和的正弦公式:设角A和角B的正弦分别为sinA和sinB,则它们的和角C的正弦为sinC。

根据三角函数的定义,有sinA = a/c和sinB = b/c,其中a、b、c分别为三角形ABC的对边、邻边和斜边。

根据正弦公式,sinC = c/c =1、所以,两角和的正弦公式为sin(A + B) = sinC = 12.两角和的余弦公式:设角A和角B的余弦分别为cosA和cosB,则它们的和角C的余弦为cosC。

根据三角函数的定义,有cosA = b/c和cosB = a/c。

根据余弦公式,cosC = cos(A + B) = cos(AcosB - BsinA) = cosAcosB + sinAsinB = (b/c)(a/c) + (a/c)(b/c) = 2ab/c²。

3.两角和的正切公式:设角A和角B的正切分别为tanA和tanB,则它们的和角C的正切为tanC。

根据三角函数的定义,有tanA = a/b和tanB = b/a。

根据正切公式,tanC = tan(A + B) = (tanA + tanB) / (1 - tanAtanB) = (a/b + b/a) / (1 - (a/b)(b/a)) = (a² + b²) / (ab - ab) = a² + b² / ab。

4.两角差的正弦公式:设角A和角B的正弦分别为sinA和sinB,则它们的差角C的正弦为sinC。

根据三角函数的定义,有sinA = a/c和sinB = b/c。

根据差角公式,sinC = sin(A - B) = sin(AcosB + BsinA) = sinAcosB - cosAsinB = a/c(b/c) - (b/c)(a/c) = 2a b/c²。

5.两角差的余弦公式:设角A和角B的余弦分别为cosA和cosB,则它们的差角C的余弦为cosC。

两角和与差正弦公式与余弦公式

两角和与差正弦公式与余弦公式

两角和与差正弦公式与余弦公式一、两角和与差正弦公式1.两角和正弦公式在三角函数中,两个角的和的正弦可以用这两个角的正弦和余弦来表示。

公式如下:sin(A+B) = sinA * cosB + cosA * sinB这个公式的意义在于,将一个角的正弦和余弦拆分为两个角的正弦和余弦的乘积之和。

这样可以简化计算过程。

2.两角差正弦公式同样地,两个角的差的正弦也可以用这两个角的正弦和余弦来表示。

公式如下:sin(A-B) = sinA * cosB - cosA * sinB这个公式也可以根据两个角的正弦和余弦的乘积之差来求解。

应用:两角和与差正弦公式在解决三角函数相关问题时非常有用。

比如,当我们需要求解一个角的正弦或余弦时,可以通过拆分成两个角的正弦或余弦的乘积来求解。

这样可以简化计算步骤,提高计算的准确性。

同时,在一些特殊角度的情况下,利用两角和与差正弦公式可以得到一些特定的数值关系,方便我们进行推导和证明。

二、两角和与差余弦公式1.两角和余弦公式和两角和与差正弦公式类似,两个角的和的余弦也可以用这两个角的余弦和正弦来表示。

公式如下:cos(A+B) = cosA * cosB - sinA * sinB这个公式的意义在于,将一个角的余弦和正弦拆分为两个角的余弦和正弦的乘积之差。

2.两角差余弦公式同样地,两个角的差的余弦也可以用这两个角的余弦和正弦来表示。

公式如下:cos(A-B) = cosA * cosB + sinA * sinB这个公式通过两个角的余弦和正弦的乘积之和来求解两个角的差的余弦。

应用:总结:两角和与差正弦公式与余弦公式在解决三角函数相关问题时非常有用。

它们可以帮助我们简化计算过程,得到更为准确的结果。

通过拆分一个角的正弦或余弦为两个角的正弦或余弦的乘积之和(差),可以减少计算步骤,提高计算的准确性。

同时,利用这些公式,我们还可以推导出一些特定的数值关系,帮助我们解决更为复杂的问题。

两角和差的余弦公式

两角和差的余弦公式

两角和差的余弦公式余弦公式是三角学中用于求解两角和差的关系的重要公式。

它可以帮助我们求解两个角度的余弦值之间的关系,从而在解决实际问题中提供便利。

余弦公式的推导过程较为繁琐,但是通过一些基本的几何知识和三角关系,我们可以以一种相对简单的方式得到这个公式。

设有一个三角形ABC,边长分别为a,b,c,而三角形的三个对角分别为A,B,C。

根据余弦定理,我们可以得到:①余弦定理a² = b² + c² - 2bc * cosAb² = a² + c² - 2ac * cosBc² = a² + b² - 2ab * cosC其中A、B、C为三角形对应的内角。

余弦公式实际上是根据余弦定理推导出来的。

余弦公式可以分为两个部分:两角和公式和两角差公式。

②两角和公式以求解cos(A + B)的值为例:首先,我们需要根据余弦定理将余弦值的式子转化为边长的式子。

根据余弦定理,可以得到:cos(A + B) = cosA * cosB - sinA * sinB然后,我们需要利用三角恒等式将cos(A + B)的值转化为a、b、c之间的关系。

根据三角恒等式(余弦的和公式),可以得到:cos(A + B) = cosA * cosB - sinA * sinB = cos(A)cos(B) -sin(A)sin(B)根据余弦公式,可以用边长的比例表示cosA和cosB:cosA = (b² + c² - a²) / 2bccosB = (a² + c² - b²) / 2ac将cosA和cosB的值代入到cos(A + B)的式子中,得到:cos(A + B) = [(b² + c² - a²) / 2bc] * [(a² + c² - b²) / 2ac] - sinA * sinB将sinA和sinB的值代入到cos(A + B)的式子中,得到:cos(A + B) = [(b² + c² - a²)(a² + c² - b²)] / 4abc - (√(1 - (b² + c² - a²)² / 4a²b²))(√(1 - (a² + c² - b²)² / 4a²c²))简化上式后可得:cos(A + B) = [(b² + c² - a²)(a² + c² - b²)] / 4abc - [(b² + c² - a²)(a² + c² - b²)] / 4abc最后得到:cos(A + B) = (b² + c² - a²)(a² + c² - b²) / 4abc通过类似的步骤,也可以推导出两角差公式。

两角和与差的余弦公式的推导

两角和与差的余弦公式的推导

两角和与差的余弦公式的推导余弦公式是三角形中的一项基本公式,用于计算三边长度和夹角的关系。

两角和与差的余弦公式是在余弦公式的基础上,推导出两个角度和的余弦公式和两个角度差的余弦公式。

设三角形的边长分别为a、b、c,夹角分别为A、B、C。

1.推导两角和的余弦公式首先,根据余弦定理,我们有以下关系式:a² = b² + c² - 2bc cosAb² = a² + c² - 2ac cosBc² = a² + b² - 2ab cosC现在我们考虑求解cos(A+B)的值。

根据三角函数的和差化积公式,我们有:cos(A+B) = cosA cosB - sinA sinB首先,我们考虑cosA*cosB的项。

将上述余弦定理的第一个式子代入,我们有:cosA*cosB = [b² + c² - a²]/[2bc] * [a² + c² - b²]/[2ac]= (b² + c² - a²)(a² + c² - b²) / (4abc²)接下来,我们考虑sinA*sinB的项。

由正弦定理可得:sinA = a sinC / csinB = b sinC / csinA*sinB = (a sinC / c) * (b sinC / c)= (a b sin²C) / c²将上述两个项代入cos(A+B)的式子中,我们有:cos(A+B) = (b² + c² - a²)(a² + c² - b²) / (4abc²) - (a b sin²C) / c²整理上述式子,可以得到两角和的余弦公式:cos(A+B) = (b² + c² - a²)(a² + c² - b²) - a² b² sin²C / c²) / (4abc²)2.推导两角差的余弦公式同样地,根据三角函数的和差化积公式,我们有:cos(A-B) = cosA cos(-B) - sinA sin(-B)由于sin(-B) = -sinBcos(A-B) = cosA cosB + sinA sinB利用余弦定理,我们可以将cosA和cosB表示为:cosA = (b² + c² - a²) / (2bc)cosB = (c² + a² - b²) / (2ac)将上述两个项代入cos(A-B)的式子中,我们有:cos(A-B) = [(b² + c² - a²) / (2bc)] * [(c² + a² - b²) /(2ac)] + [(a sinC / c) * (b sinC / c)]= [(b² + c² - a²)(c² + a² - b²) + ab sin²C] / (2abc²)整理上述式子,可以得到两角差的余弦公式:cos(A-B) = [(b² + c² - a²)(c² + a² - b²) + ab sin²C] /(2abc²)通过上述推导,我们得到了两角和与差的余弦公式。

两角和与差的正弦、余弦和正切公式

两角和与差的正弦、余弦和正切公式

1
1
A.3
B.2
C.
2 2
√D.
3 3
∵cos α+cosα-π3=1, ∴cos α+12cos α+ 23sin α=32cos α+ 23sin α

3
3 2 cos
α+21sin
α
= 3cosα-π6=1,
∴cosα-π6= 33.
(2)化简:①sin x+ 3cos x= 2sinx+π3 .
∴β>α,而 α,β∈0,π2, ∴0<β-α<π2, ∴β-α=π3, 即选项D正确,C错误.
(2)在△ABC 中,C=120°,tan A+tan B=233,则 tan Atan B 的值为
1 A.4
√B.13
1
5
C.2
D.3
∵C=120°,∴tan C=- 3. ∵A+B=π-C, ∴tan(A+B)=-tan C. ∴tan(A+B)= 3, tan A+tan B= 3(1-tan Atan B), 又∵tan A+tan B=233, ∴tan Atan B=13.
A.a>b>c
B.b>a>c
C.c>a>b
√D.a>c>b
(sin2256°
由两角和与差的正、余弦公式及诱导公式,可得
a=cos 50°cos 127°+cos 40°cos 37°
=cos 50°cos 127°+sin 50°sin 127°
=cos(50°-127°)=cos(-77°)
=cos 77°=sin 13°,
第四章
考试要求
1.会推导两角差的余弦公式. 2.会用两角差的余弦公式推导出两角差的正弦、正切公式. 3.掌握两角和与差的正弦、余弦、正切公式,并会简单应用.

三角函数两角和差公式证明过程

三角函数两角和差公式证明过程

三角函数两角和差公式证明过程一、两角和的余弦公式cos(A + B)=cos Acos B-sin Asin B的证明。

1. 利用单位圆证明(几何法)- 在单位圆x^2+y^2 = 1上,设角A、B的终边分别与单位圆交于点P_1(cos A,sin A)和P_2(cos B,sin B)。

- 则→OP_1=(cos A,sin A),→OP_2=(cos B,sin B)。

- 角A + B的终边与单位圆交于点P。

- 根据向量的数量积定义,→OP_1·→OP_2=|→OP_1||→OP_2|cos(A - B),因为|→OP_1|=|→OP_2| = 1,所以→OP_1·→OP_2=cos(A - B)。

- 又因为→OP_1·→OP_2=cos Acos B+sin Asin B,所以cos(A - B)=cos AcosB+sin Asin B。

- 令B=-B,则cos(A + B)=cos Acos(-B)+sin Asin(-B)。

- 由于cos(-B)=cos B,sin(-B)=-sin B,所以cos(A + B)=cos Acos B-sin Asin B。

2. 利用复数证明(代数法)- 设z_1=cos A + isin A,z_2=cos B + isin B。

- 根据复数乘法法则z_1z_2=(cos A + isin A)(cos B + isin B)- 展开得z_1z_2=cos Acos B-sin Asin B+i(sin Acos B+cos Asin B)。

- 另一方面,根据复数的三角形式乘法z_1z_2=cos(A + B)+isin(A + B)。

- 比较实部可得cos(A + B)=cos Acos B-sin Asin B。

二、两角和的正弦公式sin(A + B)=sin Acos B+cos Asin B的证明。

1. 利用两角和的余弦公式推导。

两角和差的余弦公式的推导

两角和差的余弦公式的推导

两角和差的余弦公式的推导两角和差的余弦定理是一种重要的数学定理,它提供了一种简单而直接的方法来求解复杂的三角函数问题。

它可以帮助我们更快地完成一些复杂的问题,从而使我们的解决结果更加精确准确。

下面,我们将详细来分析两角和差的余弦定理的推导过程。

首先,我们以平面角$ alpha $$ theta $两角为例,来说明两角和差的余弦定理。

我们知道,两个平面角的余弦和差分别可以用余弦公式表示为:$$cos(alpha pm theta) = cosalpha times costheta pm sin alpha times sintheta$$由此,我们可以将$ cos(alpha pm theta) $表示如下:$$cos(alpha pm theta) = cosalpha times costheta pm(1-cos^2alpha)times (1-cos^2theta)$$接下来,我们可以将上式进行整理,得到如下的公式:$$cos(alpha pm theta) = cos^2alpha + cos^2theta pm 2times cosalpha times costheta$$从上式可以看出,两角和差的余弦定理得到了推导,其中$ cos(alpha pm theta) $表示两角之和或差的余弦值。

经过前面的推导,我们可以得到如下的公式:$$cos(alpha + theta) = cos^2alpha + cos^2theta + 2times cosalpha times costheta$$$$cos(alpha - theta) = cos^2alpha + cos^2theta - 2timescosalpha times costheta$$从上式可以看出,两角的和可以由其余弦及其余弦的平方之和和其余弦的乘积所表示;两角的差可以由其余弦及其余弦的平方之和和其余弦的乘积的相反数所表示。

两角和与差的余弦公式的五种推导方法之对比

两角和与差的余弦公式的五种推导方法之对比

两角和与差的余弦公式的五种推导方法之对比两角和与差的余弦公式是三角函数恒等变换的基础,其他三角函数公式都是在此公式基础上变形得到的,因此两角和与差的余弦公式的推导作为本章要推导的第一个公式,往往得到了广大教师的关注。

对于不同版本的教材采用的方法往往不同,认真体会各种不同的两角和与差的余弦公式的推导方法,对于提高学生的分析问题、提出问题、研究问题、解决问题的能力有很大的作用.下面将两角和与差的余弦公式的五种常见推导方法归纳如下:方法一:应用三角函数线推导差角公式的方法设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β.过点P作PM⊥x轴,垂足为M,那么OM即为α-β角的余弦线,这里要用表示α,β的正弦、余弦的线段来表示OM.过点P作PA⊥OP1,垂足为A,过点A作AB⊥x轴,垂足为B,再过点P作PC⊥AB,垂足为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是OM=OB+BM=OB+CP=OA cosα+AP sinα=cosβcosα+sinβsinα.综上所述,。

说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解。

但这种推导方法对于如何能够得到解题思路,存在一定的困难。

此种证明方法的另一个问题是公式是在均为锐角的情况下进行的证明,因此还要考虑的角度从锐角向任意角的推广问题。

方法二:应用三角形全等、两点间的距离公式推导差角公式的方法设P1(x1,y1),P2(x2,y2),则有|P1P2 |= .在直角坐标系内做单位圆,并做出任意角α,α+β和,它们的终边分别交单位圆于P2、P3和P4点,单位圆与x轴交于P1,则P1(1,0)、P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、.∵,且,∴,∴,∴,∴,∴,.说明:该推导方法巧妙的将三角形全等和两点间的距离结合在一起,利用单位圆上与角有关的四个点,建立起等式关系,通过将等式的化简、变形就可以得到符合要求的和角与差角的三角公式. 在此种推导方法中,推导思路的产生是一个难点,另外对于三点在一条直线和三点在一条直线上时这一特殊情况,还需要加以解释、说明。

两角和与差的余弦公式的五种推导方法之对比

两角和与差的余弦公式的五种推导方法之对比

令狐采学创作两角和与差的余弦公式的五种推导方法之对比令狐采学两角和与差的余弦公式是三角函数恒等变换的基础,其他三角函数公式都是在此公式基础上变形得到的,因此两角和与差的余弦公式的推导作为本章要推导的第一个公式,往往得到了广大教师的关注•对于不同版本的教材采用的方法往往不同,认真体会各种不同的两角和与差的余弦公式的推导方法,对于提高学主的分析问题、提出问题、研究问题、解决问题的能力有很大的作用•下面将两角和与差的余弦公式的五种常见推导方法归纳如下:方法一:应用三角函数线推导差角公式的方法设角0C的终边与单位圆的交点为Pl, /POPl = p,贝IJ ZPOx = a-p.过点P作PM丄x轴,垂足为M,那久()M即为a-p角的余弦线,这里要用表示a,卩的正弦、余弦的线段来表示OM.过点P作PA丄()P1,垂足为A,过点A作AB丄x轴,垂足为B,再过点P作PC丄AB,垂足为C,那么cosp = ()A, sinp =AP,并且ZPAC=/Pl()x = a,于是()M = ()B + BM = ()B + CP=OAcosa + APsina = cospcosa + sinpsina ・cos (Ci- 0)= cos 必cos 播 + sin <Xsin 0综上所述说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解.但这种推导方法对于如何能够得到解题思路,存在一定的困难•此种证明方法的另一个问题是公式是在工©均为锐角的情况下进行的证明,因此还要考虑工©的角度从锐角向任意角的推广问题.方法二:应用三角形全等、两点间的距离公式推导差角公式的方法设Pl(xl, yl), P2(x2, y2),则有|P1P2 | 二-审十(必在直角坐标系内做单位圆,并做出任意角色oc+p和-0, 它们的终边分别交单位圆于P2、P3和P4点,单位圆与x轴交于P1,则P1(1,())、P2(cosa, since)、P3(cos(a+p), sin(a+p))> 片(GQS(-0),siil(-0)).• 今。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两角和与差的余弦公式的五种推导方法之对比
沈阳市教育研究院王恩宾
两角和与差的余弦公式是三角函数恒等变换的基础,其他三角函数公式都是在此公式
基础上变形得到的,因此两角和与差的余弦公式的推导作为本章要推导的第一个公式,往
往得到了广大教师的关注. 对于不同版本的教材采用的方法往往不同,认真体会各种不同
的两角和与差的余弦公式的推导方法,对于提高学生的分析问题、提出问题、研究问题、
解决问题的能力有很大的作用.下面将两角和与差的余弦公式的五种常见推导方法归纳如下:方法一:应用三角函数线推导差角公式的方法
设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β.
过点P作PM⊥x轴,垂足为M,那么OM即为α-β角的余弦线,这里要用表示α,β
的正弦、余弦的线段来表示OM.
过点P作PA⊥OP1,垂足为A,过点A作AB⊥x轴,垂足为B,再过点P作PC⊥AB,垂
足为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是OM=OB+BM=OB
+CP=OA cosα+AP sinα=cosβcosα+sinβsinα.
综上所述,.
说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解. 但这种推
导方法对于如何能够得到解题思路,存在一定的困难. 此种证明方法的另一个问题是公式是在均为锐角的情况下进行的证明,因此还要考虑的角度从锐角向任意角的推
广问题.
方法二:应用三角形全等、两点间的距离公式推导差角公式的方法
设P1(x1,y1),P2(x2,y2),则有|P1P2 |= .
在直角坐标系内做单位圆,并做出任意角α,α+β和,它们的终边分别交单位圆于P2、P3和P4点,单位圆与x轴交于P1,则P1(1,0)、P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、.
∵,且,
∴,∴,


∴,
∴,.
说明:该推导方法巧妙的将三角形全等和两点间的距离结合在一起,利用单位圆上与角有关的四个点,
建立起等式关系,通过将等式的化简、变形就可以得到符合要求
的和角与差角的三角公式. 在此种推导方法中,推导思路的产生是一个难点,另外对于三点在一条直线和三点在一条直线上时这一特殊情况,还需要加以解释、说明.
方法三:应用余弦定理、两点间的距离公式推导差角公式的方法
设,
则.
在△OPQ中,∵,
∴,
∴.
说明:此题的解题思路和构想都是容易实现的. 因为要求两角和与差的三角函数,所以构造出和角和差角是必须实现的. 构造出的和角或差角的余弦函数又需要和这两个角的三角函数建立起等式关系,因此借助于余弦定理、两点间的距离公式建立起等式关系容易出现,因此此种方法是推导两角和与差的余弦的比较容易理解的一种方法. 但此种方法必须是在学习完余弦定理的前提下才能使用,因此此种方法在必修四中又无法使用. 另外也同样需要考虑三点在一条直线上的情况.
方法四:应用三角形面积公式推导推导差角公式的方法
设α、β是两个任意角,把α、β两个角的一条边拼在一起,顶点为O,过B点作OB 的垂线,交α另一边于A,交β另一边于C,则有S△OAC=S△OAB+S△OBC..
根据三角形面积公式,有,
∴.
∵,,,
∴,
∵,∴sin(α+β)=sinαcosβ+sinβcosα.
根据此式和诱导公式,可继续证出其它和角公式及差角公式.
(1)sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosα;
(2)cos(α+β)=sin[90-(α+β)]=sin[(90-α)-β]=sin(90-α)cosβ-sinβcos(90-α)
=cosαcosβ-sinαsinβ;
(3)cos(α-β)=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβ.
说明:此种推导方法通过三角形的面积的和巧妙的将两角和的三角函数与各个角的三角函数和联系在一起,体现了数形结合的特点. 缺点是公式还是在两个角为锐角的情况下进行的证明,因此同样需要将角的范围进行拓展.
(五)应用数量积推导余弦的差角公式
在平面直角坐标系xOy内,作单位圆O,以Ox为始边作角α,β,它们的终边与单位圆的交点为A,B,则
=(cosα,sinα),=(cosβ,sinβ).
由向量数量积的概念,有.
由向量的数量积的坐标表示,有
.
于是,有.
说明:应用数量积推导余弦的差角公式无论是构造两个角的差,还是得到每个角的三角函数值都是容易实现的,而且从向量的数量积的定义和坐标运算两种形式求向量的数量积将二者之间结合起来,充分体现了向量在数学中的桥梁作用.
综上所述,从五种不同的推导两角和与差的余弦公式的过程可以看出,不同的推导方法体现出不同的数学特点,不同的巧妙构思,相同的结果,也进一步体验了数学的博大精深.。

相关文档
最新文档