2006年高考江苏卷数学试题及参考答案
2002至2006江苏高考数学试卷及答案
2002年普通高等学校招生全国统一考试(江苏卷)数学第I 卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)函数xxx f cos 2sin )(=的最小正周期是( )。
A.2πB. πC. π2D. π4 (2)圆1)1(22=+-y x 的圆心到直线x y 33=的距离是( )。
A.21B. 23C. 1D.3(3)不等式0|)|1)(1(>-+x x 的解集是( )A. }10|{<≤x xB. }10|{-≠<x x x 且C. }11|{<<-x xD.}11|{-≠<x x x 且(4)在)2,0(π内,使x x cos sin >成立的x 取值范围为( )A. )45,()2,4(ππππ⋃ B. ),4(ππ C. )45,4(ππ D. )23,45(),4(ππππ⋃ (5)设集合},214|{},,412|{Z k k x x N Z k k x x M ∈+==∈+==,则( )A. N M =B. N M ⊂C. N M ⊃D. φ=N M (6)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么,这个圆锥轴截面顶角的余弦值是( )。
A.43 B. 54 C. 53 D. 53- (7)函数b a x x x f ++=||)(是奇函数的充要条件是( ) A.ab=0 B. a+b=0 C. a=b D. 022=+b a (8)已知10<<<<a y x ,则有( )。
A. 0)(log <xy aB. 1)(log 0<<xy aC. 2)(log 1<<xy aD.2)(log >xy aA(9)函数111--=x y A. 在(+∞-,1)内单调递增 B. 在(+∞-,1)内单调递减 C. 在(+∞,1)内单调递增 D. 在(+∞,1)内单调递减(10) 极坐标方程θρcos =与1cos =θρ(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有( )。
2006年江苏省高考试题(数学)含详解汇总
2006年普通高等学校招生全国统一考试数 学(江苏卷)参考公式: 一组数据的方差])()()[(1222212x x x x x x n S n -++-+-=其中x 为这组数据的平均数一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰.有一项...是符合题目要求的。
(1)已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =(A )0 (B )1 (C )-1 (D )±1 (2)圆1)3()1(22=++-y x 的切线方程中有一个是(A )x -y =0 (B )x +y =0 (C )x =0 (D )y =0(3)某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为(A )1 (B )2 (C )3 (D )4(4)为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点(A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(5)10)31(xx -的展开式中含x 的正整数指数幂的项数是(A )0 (B )2 (C )4 (D )6(6)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足||||MN MP MN NP ⋅+⋅=0,则动点P (x ,y )的轨迹方程为(A )x y 82= (B )x y 82-= (C )x y 42= (D )x y 42-= (7)若A 、B 、C 为三个集合,C B B A ⋂=⋃,则一定有(A )C A ⊆ (B )A C ⊆ (C )C A ≠ (D )φ=A (8)设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是 (A )||||||c b c a b a -+-≤- (B )aa a a 1122+≥+ (C )21||≥-+-ba b a (D )a a a a -+≤+-+213 (9)两相同的正四棱锥组成如图1为1的正方体内,使正四棱锥的底面ABCD 某一个平面平行,且各顶点...的几何体体积的可能值有(A )1个 (B )2个 (C )3个 (D )无穷多个(10)右图中有一个信号源和五个接收器。
2006年普通高等学校招生全国统一考试江苏卷
几何分布的期望与方差几何分布:(1)E p ξ=1,(2)D p pξ=-12。
(1)由P k q p k ()ξ==-1,知E p pq q p kq p q q kq p k k ξ=++++=+++++--231232121 ()下面用倍差法(也称为错位相减法)求上式括号内的值。
记S q q kq k k =++++-12321qS q q k q kq k k k =+++-+-2121 ()两式相减,得()1121-=++++--q S q q q kq k k kS q q kq q k k k=----1112()由01<<p ,知01<<q ,则lim k kq →∞=0,故 1231112122+++++==-=-→∞p q kq S q p k k k lim () 从而E pξ=1 也可用无穷等比数列各项和公式S a q q =-<111(||)(见教科书91页阅读材料),推导如下: 记S q q kq k =+++++-12321qS q q k q k =+++-+-2121 ()相减,()111121-=+++++=--q S q q q qk 则S q p=-=11122() 还可用导数公式()'x nx n n =-1,推导如下:12321+++++-x x kx k=+++++=+++++x x x x x x x x k k '()'()'()'()'2323=-=----=-()'()()()()x x x x x x 1111122 上式中令x q =,则得 1231112122+++++=-=-q q kq q p k () (2)为简化运算,利用性质D E E ξξξ=-22()来推导(该性质的证明,可见本刊6页)。
可见关键是求E ξ2。
E p qp q p k q p k ξ22222123=+++++-=+++++-p q q k q k ()12322221对于上式括号中的式子,利用导数,关于q 求导:k q kq k k 21-=()',并用倍差法求和,有 12322221+++++-q q k q k=+++++()'q q q kq k 2323=-=-+--=--=+-=-[()]'()()()()()q q q q q q q q q q p p 11211111122242433则E p p p p p ξ23222=-=-(),因此D E E p p p p pξξξ=-=--=-22222211()() 利用上述两个结论,可以简化几何分布一类的计算问题。
2006年高考.江苏卷.数学试题及详细解答
2006年普通高等学校招生全国统一考试数 学(江苏卷)参考公式:一组数据的方差])()()[(1222212x x x x x x nS n -++-+-= 其中x 为这组数据的平均数一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰.有一项...是符合题目要求的。
(1)已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =(A )0 (B )1 (C )-1 (D )±1(2)圆1)3()1(22=++-y x 的切线方程中有一个是(A )x -y =0 (B )x +y =0 (C )x =0 (D )y =0(3)某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为(A )1 (B )2 (C )3 (D )4(4)为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点(A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (5)10)31(x x -的展开式中含x 的正整数指数幂的项数是 (A )0 (B )2 (C )4 (D )6(6)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足||||MN MP MN NP ⋅+⋅=0,则动点P (x ,y )的轨迹方程为(A )x y 82= (B )x y 82-= (C )x y 42= (D )x y 42-=(7)若A 、B 、C 为三个集合,C B B A ⋂=⋃,则一定有(A )C A ⊆ (B )A C ⊆ (C )C A ≠ (D )φ=A(8)设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是 (A )||||||c b c a b a -+-≤- (B )a a a a 1122+≥+(C )21||≥-+-ba b a (D )a a a a -+≤+-+213 (9)两相同的正四棱锥组成如图1为1的正方体内,使正四棱锥的底面ABCD 某一个平面平行,且各顶点...的几何体体积的可能值有(A)1个 (B )2个(C )3个 (D )无穷多个(10)右图中有一个信号源和五个接收器。
2006年江苏高考数学试题(理科)及答案
P (2,5) 、 F1 ' (0,-6)、 F2 ' (0,6)
x2 y2 设所求双曲线的标准方程为 a12 - b12
1 (a1
0,b1
0) ,由题意知半焦距 c1
6,
2a1 | P' F1 '| | P' F2 '| 112 22 12 22 4 5 , ∴ a1 2 5 ,
b12
c12
a12
(D) a 3 a 1 a 2 a
9.两个相同的正四棱锥组成如图 1 所示的几何体,可放入棱长为 1
D
的正方体内,使正四棱锥的底面 ABCD 与正方体的某一面平行,且 A 各顶点均在正方体的面上,则这样的几何体体积的可能值有
C
(A)1 个
(B)2 个
B
(C)3 个
(D)无穷多个
10.右图中有一信号源和五个接收器。接收器与信号源在一个串联线路中时,就
B.1
C.-1
3)2 1的切线方程中有一个是(C)
B. x y 0
C. x 0
D. 1 D. y 0
3.某人 5 次上班途中所花时间(单位:分钟)分别为 x 、 y 、10、11、9。已知这组数据的平均数为 10,
方差为 2,则 x y 的值为(D)
A.1
B.2
C.3
D.4
4.为了得到函数 y
2sin( x 3
已知三点 P(5,2)、 F1 (-6,0)、 F2 (6,0)。 (Ⅰ)求以 F1 、 F2 为焦点且过点 P 的椭圆的标准方程; (Ⅱ)设点 P、 F1 、 F2 关于直线 y=x 的对称点分别为 P 、 F1' 、 F2' ,求以 F1' 、 F2' 为焦点且过点 P 的双
江苏高考数学试题理科及答案
2006年江苏高考数学试题(理科)及答案2006年江苏高考数学试题(理科)一. 选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰有一项是符合题目要求的。
1. 已知a R ∈,函数()sin ||,f x x a x R =-∈为奇函数,则a = (A )0 (B )1 (C )1- (D )1± 2.圆22(1)(3)1x y -+=的切线方程中有一个是(A )0x y -= (B )0x y += (C )0x = (D )0y =3.某人5次上班途中所花的时间(单位:分钟)分别为,,10,11,9x y ,已知这组数据的平均数为10,方差为2,则||x y -的值为(A )1 (B )2 (C )3 (D )44.为了得到函数2sin(),36x y x R π=+∈的图象,只需把函数2sin ,y x x R=∈的图象上所有的点(A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的13倍(纵坐标不变) (B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的13倍(纵坐标不变) (C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)5.101)3x x -的展开式中含x 的正整数指数幂的项数是(A )0 (B )2 (C )4 (D )6A BC D 6.已知两点(2,0),(2,0)M N -,点P 为坐标平面内的动点,满足||||0MN MP MN NP ⋅+⋅=,则动点(,)P x y 的轨迹方程为(A )28y x = (B )28y x =- (C )24y x = (D )24y x =- 7.若A 、B 、C 为三个集合,A B B C =,则一定有 (A )A C ⊆ (B)C A ⊆ (C)A C ≠ (D)A =∅8.设,,a b c 是互不相等的正数,则下列不等式中不恒成立....的是(A )||||||a b a c b c -≤-+- (B )2211aa a a +≥+(C )1||2a b a b-+≥- (D 312a a a a++≤+-9.两个相同的正四棱锥组成如图1所示的几何体,可放入棱长为1的正方体内,使正四棱锥的底面ABCD 与正方体的某一面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有(A )1个 (B )2个 (C )3个 (D )无穷多个10.右图中有一信号源和五个接收器。
2006年江苏高考数学试题(理科)及答案
C 6.已知两点(2,0),(2,0)M N -,点P 为坐标平面内的动点,满足||||0MN MP MN NP ⋅+⋅=,则动点(,)P x y 的轨迹方程为(A )28y x = (B )28y x =- (C )24y x = (D )24y x =- 7.若A 、B 、C 为三个集合,A B B C =,则一定有 (A )A C ⊆ (B)C A ⊆ (C)A C ≠ (D)A =∅8.设,,a b c 是互不相等的正数,则下列不等式中不恒成立....的是(A )||||||a b a c b c -≤-+- (B )2211aa a a +≥+(C )1||2a b a b-+≥- (D 9.两个相同的正四棱锥组成如图1所示的几何体,可放入棱长为1的正方体内,使正四棱锥的底面与正方体的某一面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有(A )1个 (B )2个 (C )3个 (D )无穷多个10.右图中有一信号源和五个接收器。
接收器与信号源在一个串联线路中时,就能接收到信号,否则就不能接收到信号。
若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所得六组中每级的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是(A )445 (B )136 (C )415 (D )815O1O二.填空题:本大题共6小题,每小题5分,共30分。
不需要写出解答过程,请把答案直接填写在答题卡相应.....位置上...。
11.在ABC ∆中,已知12,60,45BC A B ==︒=︒,则AC= 12.设变量,x y 满足约束条件2211x y x y x y -≤⎧⎪-≥-⎨⎪+≥⎩,则23z x y =+的最大值为13.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有 种不同的方法(用数字作答)。
14.cot 20cos10tan702cos40︒︒︒︒-︒= 15.对正整数n ,设曲线(1)n y x x =-在2x =处的切线与y 轴交点的纵坐标为na ,则数列{}1na n +的前n 和的公式是16.不等式21log (6)3x x++≤的解集为 三.解答题:本大题共5小题,共70分。
2006年江苏省数学高考试卷(含答案)
绝密★启用前2006年普通高等学校招生全国统一考试(江苏卷)数学第I卷(选择题共60分)参考公式:一组数据的方差其中为这组数据的平均数一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰有一项是符合题目要求的。
(1)已知,函数为奇函数,则a=(A)0 (B)1 (C)-1 (D)±1(2)圆的切线方程中有一个是(A)x-y=0 (B)x+y=0 (C)x=0 (D)y=0 (3)某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x-y|的值为(A)1 (B)2 (C)3 (D)4(4)为了得到函数的图像,只需把函数的图像上所有的点(A)向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍(纵坐标不变)(B)向右平移个单位长度,再把所得各点的横坐标缩短到原来的倍(纵坐标不变)(C)向左平移个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(D)向右平移个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(5)的展开式中含x的正整数指数幂的项数是(A)0 (B)2 (C)4 (D)6(6)已知两点M(-2,0)、N(2,0),点P为坐标平面内的动点,满足=0,则动点P(x,y)的轨迹方程为(A)(B)(C)(D)(7)若A、B、C为三个集合,,则一定有(A)(B)(C)(D)(8)设a、b、c是互不相等的正数,则下列等式中不恒成立的是(A)(B)(C)(D)ADCB(9)两相同的正四棱锥组成如图1所示的几何体,可放棱长为1的正方体内,使正四棱锥的底面ABCD与正方体的某一个平面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有图1(A)1个(B)2个(C)3个(D)无穷多个(10)右图中有一个信号源和五个接收器。
接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号。
2006年普通高等学校夏季招生考试数学(文理合卷)江苏卷(新课程)
2005年普通高等学校夏季招生考试数学(文理合卷)江苏卷(新课程)参考公式: 一组数据的方差])()()[(1222212x x x x x x n S n -++-+-=其中x 为这组数据的平均数一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰.有一项...是符合题目要求的。
(1)已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =(A )0 (B )1 (C )-1 (D )±1 (2)圆1)3()1(22=++-y x 的切线方程中有一个是(A )x -y =0 (B )x +y =0 (C )x =0 (D )y =0(3)某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为(A )1 (B )2 (C )3 (D )4(4)为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点(A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(5)10)31(xx -的展开式中含x 的正整数指数幂的项数是 (A )0 (B )2 (C )4 (D )6 (6)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点, 满足MP MN MP MN ⋅+⋅|||| =0,则动点P (x ,y )的轨迹方程为(A )x y 82= (B )x y 82-= (C )x y 42= (D )x y 42-= (7)若A 、B 、C 为三个集合,C B B A ⋂=⋃,则一定有(A )C A ⊆ (B )A C ⊆ (C )C A ≠ (D )φ=A (8)设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是 (A )||||||c b c a b a -+-≤- (B )aa a a 1122+≥+ (C )21||≥-+-ba b a (D )a a a a -+≤+-+213 (9)两相同的正四棱锥组成如图1所示的几何体,可放棱长为1的正方体内,使正四棱锥的底面ABCD 与正方体的某一个平面平行,且各顶点...均在正方体的面上,则这样的几何体体积的可能值有(A )1个 (B )2个 (C )3个 (D )无穷多个(10)下图中有一个信号源和五个接收器。
2006年高考数学试题之2006年高考数学试题(江苏卷)
2006年普通高等学校招生全国统一考试数 学(江苏卷)参考公式:一组数据的方差])()()[(1222212x x x x x x n S n -++-+-=其中x 为这组数据的平均数一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰有一...项.是符合题目要求的。
(1)已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =(A)0 (B)1 (C)-1 (D)±1 (2)圆1)3()1(22=++-y x 的切线方程中有一个是(A)x -y =0 (B)x +y =0 (C)x =0 (D)y =0(3)某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为(A)1 (B)2 (C)3 (D)4(4)为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点 (A)向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (B)向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (C)向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (D)向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(5)10)31(xx -的展开式中含x 的正整数指数幂的项数是 (A)0 (B)2 (C)4 (D)6(6)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足⋅+⋅|||| =0,则动点P (x ,y )的轨迹方程为(A)x y 82= (B)x y 82-= (C)x y 42= (D)x y 42-= (7)若A 、B 、C 为三个集合,C B B A ⋂=⋃,则一定有(A)C A ⊆ (B)A C ⊆ (C)C A ≠ (D)φ=A (8)设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是 (A)||||||c b c a b a -+-≤- (B)aa a a 1122+≥+ (C)21||≥-+-ba b a (D)a a a a -+≤+-+213 (9)两相同的正四棱锥组成如图1所示的几何体,可放棱长为的正方体内,使正四棱锥的底面ABCD 平面平行,且各顶点...均在正方体的面上,体积的可能值有 (A)1个 (B)2个 (C)3个 (D)无穷多个(10)右图中有一个信号源和五个接收器。
2006年江苏高考数学试题(理科)及答案
2006年江苏高考数学试题(理科)及答案DA BC D 6.已知两点(2,0),(2,0)M N -,点P 为坐标平面内的动点,满足||||0MN MP MN NP ⋅+⋅=,则动点(,)P x y 的轨迹方程为(A )28y x = (B )28y x =- (C )24y x = (D )24y x =- 7.若A 、B 、C 为三个集合,A B B C =,则一定有 (A )A C ⊆ (B)C A ⊆ (C)A C ≠ (D)A =∅8.设,,a b c 是互不相等的正数,则下列不等式中不恒成立....的是(A )||||||a b a c b c -≤-+- (B )2211a a a a +≥+(C )1||2a b a b-+≥- (D 312a a a a++≤+-9.两个相同的正四棱锥组成如图1所示的几何体,可放入棱长为1的正方体内,使正四棱锥的底面ABCD 与正方体的某一面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有(A )1个 (B )2个 (C )3个 (D )无穷多个10.右图中有一信号源和五个接收器。
接收器与信号源在一个串联线路中时,就能接收到信号,否则就不能接收到信号。
若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所得六组中每级的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是(A )445 (B )136 (C )415 (D )815O1O二.填空题:本大题共6小题,每小题5分,共30分。
不需要写出解答过程,请把答案直接填写在答题卡相应.....位置上...。
11.在ABC ∆中,已知12,60,45BC A B ==︒=︒,则AC= 12.设变量,x y 满足约束条件2211x y x y x y -≤⎧⎪-≥-⎨⎪+≥⎩,则23z x y =+的最大值为13.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有 种不同的方法(用数字作答)。
2006年高考江苏卷数学试题及参考答案
走私、贩卖、运输、制造毒品罪,是指明知是毒品而故意实施走私、贩卖、运输、制造的行为。
本罪是选择性罪名,凡实施了走私、贩卖、运输、制造毒品行为之一的,即以该行为确定罪名。
凡实施了其中两种以上行为的,如运输、贩卖毒品,由定为运输、贩卖毒品罪,不实行数罪并罚。
运输、贩卖同一宗毒品的,毒品数量不重复计算;不是同一宗毒品的,毒品数量累计计算。
居间介绍买卖毒品的,不论是否获利,均以贩卖毒品罪的共犯论处。
走私毒品,又走私其他物品构成犯罪的,按走私毒品和构成的其他走私罪分别定罪,实行数罪并罚。
对多次走私、贩卖、运输、制造毒品,未经处理的,毒品数量累计计算。
所谓“未经处理”的既包括未经刑罚处理,也包括未作行政处理。
但对于犯罪已过追诉时效的,则毒品数量不再累计计算。
已作过处理的,应视为已经结案。
一立案标准我国刑法第347条规定:走私、贩卖、运输、制造毒品,无论数量多少,都应当追究刑事责任,予以刑事处罚。
走私、贩卖、运输、制造毒品,有下列情形之一的,处十五年有期徒刑、无期徒刑或者死刑,并处没收财产:(一)走私、贩卖、运输、制造鸦片一千克以上、海洛因或者甲基苯丙胺五十克以上或者其他毒品数量大的;(二)走私、贩卖、运输、制造毒品集团的首要分子;(三)武装掩护走私、贩卖、运输、制造毒品的;(四)以暴力抗拒检查、拘留、逮捕,情节严重的;(五)参与有组织的国际贩毒活动的。
走私、贩卖、运输、制造鸦片二百克以上不满一千克、海洛因或者甲基苯丙胺十克以上不满五十克或者其他毒品数量较大的,处七年以上有期徒刑,并处罚金。
走私、贩卖、运输、制造鸦片不满二百克、海洛因或者甲基苯丙胺不满十克或者其他少量毒品的,处三年以下有期徒刑、拘役或者管制,并处罚金;情节严重的,处三年以上七年以下有期徒刑,并处罚金。
单位犯第二款、第三款、第四款罪的,对单位判处罚金,并对其直接负责的主管人员和其他直接责任人员,依照各该款的规定处罚。
利用、教唆未成年人走私、贩卖、运输、制造毒品,或者向未成年人出售毒品的,从重处罚。
2006年江苏高考数学试卷及答案
2020年最新绝密★启用前220年普通高等学校招生全国统一考试(江苏卷)数 学参考公式:一组数据的方差 ])()()[(1222212x x x x x x nS n -++-+-= 其中x 为这组数据的平均数一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰有一项....是符合题目要求的。
(1)已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =(A )0(B )1(C )-1(D )±1(2)圆1)3()1(22=++-y x 的切线方程中有一个是(A )x -y =0 (B )x +y =0 (C )x =0 (D )y =0(3)某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为 (A )1(B )2(C )3(D )4(4)为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点(A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(5)10)31(xx -的展开式中含x 的正整数指数幂的项数是(A )0(B )2(C )4(D )6(6)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足MP MN MP MN ⋅+⋅|||| =0,则动点P (x ,y )的轨迹方程为 (A )x y 82=(B )x y 82-= (C )x y 42=(D )x y 42-=(7)若A 、B 、C 为三个集合,C B B A ⋂=⋃,则一定有(A )C A ⊆(B )A C ⊆ (C )C A ≠ (D )φ=A(8)设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是 (A )||||||c b c a b a -+-≤- (B )aa a a 1122+≥+(C )21||≥-+-ba b a (D )a a a a -+≤+-+213(9)两相同的正四棱锥组成如图1ABCD 与正方体的某一个平面平行,且各顶点...均在正方体的面上,则这样的几何体体积的可能值有 (A )1个 (B )2个(C )3个(D )无穷多个(10)右图中有一个信号源和五个接收器。
2006年江苏高考数学试卷及答案
'.绝密★启用前2006年普通高等学校招生全国统一考试(江苏卷)数 学参考公式:一组数据的方差 ])()()[(1222212x x x x x x nS n -++-+-= 其中x 为这组数据的平均数一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰有一项....是符合题目要求的。
(1)已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =(A )0(B )1(C )-1(D )±1(2)圆1)3()1(22=++-y x 的切线方程中有一个是(A )x -y =0 (B )x +y =0 (C )x =0 (D )y =0(3)某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为 (A )1(B )2(C )3(D )4(4)为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点(A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(5)10)31(xx -的展开式中含x 的正整数指数幂的项数是(A )0(B )2(C )4(D )6(6)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足MP MN MP MN ⋅+⋅|||| =0,则动点P (x ,y )的轨迹方程为 (A )x y 82=(B )x y 82-= (C )x y 42=(D )x y 42-=(7)若A 、B 、C 为三个集合,C B B A ⋂=⋃,则一定有(A )C A ⊆(B )A C ⊆ (C )C A ≠ (D )φ=A(8)设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是 (A )||||||c b c a b a -+-≤- (B )aa a a 1122+≥+(C )21||≥-+-ba b a (D )a a a a -+≤+-+213(9)两相同的正四棱锥组成如图1ABCD 与正方体的某一个平面平行,且各顶点...均在正方体的面上,则这样的几何体体积的可能值有 (A )1个 (B )2个(C )3个(D )无穷多个(10)右图中有一个信号源和五个接收器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
・4 6・
中学 数学 月刊
20 0 6年第 7期
2 O 年高考江苏卷数学试题及参考答案 O6
参考公式 :
一
( ) 。= 8 A x ( ) C 一 4 x
( B)
一 一 8 x
组 数 据 , , , 的方 差 。…
三组 , 右 端 的 六 个 接 线 点 也 随 机 地 平 均 分 成 将 三组 , 把 所 得 六 组 中 每 组 的两 个 接 线 点 用 导 再
() D 向右平移÷ 个单位长度, 再把所得各点的
横坐标伸长到原来 的 3 ( 坐标不变 ) 倍 纵
线 连 接 , 这 五 个 接 收 器 能 同时 接 收 到 信 号 的 则 概 率 是 ( )
正方 体 内 , 正 四棱 锥 的底 面 A C 与 正 方 体 使 B D 的 某 一 个 面平 行 , 各 顶 点 均 在 正 方 体 的面 上 , 且 则 这 样 的 几何 体 体 积 的 可 能 值 有 ( )
( A)1 个 ( )2 B 个 ( c)3 个 ( 无 穷 多 个 D)
)
锥 组 成 如
图 1所 示
( ) 人 5 上 班 途 中 所 花 的 时 间 ( 位 : 钟 ) 别 3某 次 单 分 分
为 , , 0 l , . Y 1 , 1 9 已知 这 组 数 据 的 平 均 数 为 1 , 0 方 差 为 2 则 l — Y1 值 为 , 的
( )1 A ( B) 2 ( )3 C ( )4 D
( a B) + — ≥ a+ 1
“
(
)
( )已知 口∈ R, 1 函数 f x ( )一 s x— l , ∈ R 为 i n “l 奇 函数 , n一 则
( )0 A ( B)1 ( C) 一 1
1
一
(
( D) ± 1
ห้องสมุดไป่ตู้
)
“
1
( l c) a— b + l
( A)向左 平 移 个 单 位 长 度 , 把 所 得 各 点 的 再
(0 右 图 中有 一 个 信 号 源 和 五 个 1) 接 收 器 . 收 器 与 信 号 源 在 接 同 一 个 串 联 线 路 中 时 , 能 就
信号 源
横坐标缩短到原来 的÷ 倍 ( 纵坐标不变 )
( ) 向右 平 移 个 单 位 长 度 , 把 所 得 各 点 的 B 再
的几 何 体 , 可 放 人 棱 长 为 1 的
图 1 图 2
(
)
( 为 得 函 Y 2 ( 詈 ,∈ 的 4 了 到 数 一 s 詈+ ) R 图 ) i n
象, 只需 把 函 数 = 2 i , ∈ R 的 图象 上 所 有 s n 的点 ( )
( ) 一 一 4 D x
S一寺[ 1 ) — 。 ( 一 z ) +( +…+( —
)] z,
() 7 若 , c为 三 个 集 合 , U B — B n C, 一 定 B, 则
有
( ) A C ( C B) A
(
)
其 中 ;为 这 组 数 据 的平 均 数 .
一
( ≠ C C)
( ) 一 D A
、
选择题 : 大题 共 l 小题 , 小题 5 , 5 分. 本 0 每 分 共 0
在 每 小 题 给 出 的 四 个选 项 中 , 有 一 项 是 符 合 题 目 恰
要求的.
( ) n b C 互 不 相 等 的 正数 , 下 列 不 等 式 中不 8 设 ,, 是 则 恒 成 立 的 是 ( l A)口一 6 ≤ l l 口一 C + l l b~ C l
() 、 一 ) 的展开式中含 的正整数指数 5 (/ / 了 l ¨
幂 的项 数 是
( )0 A ( )2 B ( )4 C ( )6 D
( A )
则 AC =
( 1 ( B c ) )
.
(熹 D )
(
)
二 、 空 题 : 大 题 共 6小 题 , 小题 5分 , 3 填 本 每 共 0分 . (1 在 △ A C 中 , 知 B 1) B 已 C一 1 , 一 6 。 B= 4 。 2A 0, 5,
≥ 2
( ) ( 一 1 + ( +  ̄ 2 圆 ) /3 ) 一 1的 切 线 方 程 中 。 有 一 个 是
( ) ~ Y 一 0 A ( ) 一 0 C
() D
( )两 个 相 同 9
的 正 四 棱
一
≤ 、
一  ̄ / 广
(
( + y一 0 B) ( ) : 0 D
维普资讯
20 年 第 7期 06
r w — y≤ 2 2 ,
—
中学 数学 月刊
・ 7・ 4
≥ 一 1 。
【 + y≥ 1,
则 一 2 + 3 w y的 最 大 值 为
.
B P c
(3 I )今有 2个 红 球 、 黄 球 、 个 白球 。 色 球 不 加 3个 4 同 以 区 分 , 这 9 球 排 成 一 列 有 将 个 的方 法 ( 数 字 作 答 ) 用 .
接 收 到 信 号 , 则 就 不 能 接 ———_ ] —一 否 [
收 到 信 号 . 将 图 中 左 端 的 若 六 个 接 线 点 随 机 地 平 均 分 成
图 3
横 坐标缩短 到原来 的÷ 倍 ( 坐标 不变) 纵
( 向左 平 移 个 单 位 长 度 , 把 所 得 各 点 的 c) 再 横 坐 标 伸 长 到 原 来 的 3倍 ( 坐 标 不 变 ) 纵
( )已 知两 点 M ( 2 O , ( , ) 点 P 为 坐 标 平 面 6 一 , )N 2 O ,
内的动点 , 满足 l
1 声l .1 +
. 声一
( )
( 2 设 变 量 , 1) Y满 足 约 束 条 件
0 则 动 点 P( )的轨 迹 方 程 为 , x,