聊城大学实变函数期末试题
实变函数测试题与答案范本
实变函数测试题与答案范本一、选择题1. 下列函数中,是实变函数的是:A. f(x) = √(x^2 - 1)B. f(x) = log(x)C. f(x) = cos(x)D. f(x) = 1/x答案:C. f(x) = cos(x)2. 设函数 f(x) 的定义域为 (-∞, 4],则下列函数定义中错误的是:A. f(x) = x^2B. f(x) = √(4 - x)C. f(x) = 1/(x - 3)D. f(x) = 2^x答案:C. f(x) = 1/(x - 3)3. 函数 f(x) = |x - 2| 的图像在 x = 2 处是否存在间断点?A. 存在间断点B. 不存在间断点答案:B. 不存在间断点二、计算题1. 求函数 f(x) = x^3 + 2x^2 - x 的零点。
解答:将 f(x) = 0,得到方程 x^3 + 2x^2 - x = 0。
对该方程进行因式分解得:x(x + 1)(x - 1) = 0。
解得 x = 0,x = -1,x = 1 为函数 f(x) 的零点。
2. 计算函数 f(x) = log(x^2 + 3x) 的导数。
解答:对 f(x) = log(x^2 + 3x) 进行求导。
使用链式法则,有 f'(x) = [1/(x^2 + 3x)] * (2x + 3)。
化简得到:f'(x) = (2x + 3)/(x^2 + 3x)。
三、证明题证明:若函数 f(x) 在区间 [a, b] 上连续且单调递增,那么 f(x) 在 [a, b] 上存在唯一的反函数。
解答:首先证明 f(x) 在 [a, b] 上是单射。
假设存在x1 ≠ x2,但 f(x1) = f(x2)。
由于 f(x) 在 [a, b] 上单调递增,可推出x1 ≠ x2,矛盾。
因此,f(x)在 [a, b] 上是单射。
接下来证明 f(x) 在 [a, b] 上是满射。
由于 f(x) 在 [a, b] 上连续,根据介值定理,f(x) 在 [a, b] 上取得最大值 M 和最小值 m。
实变函数期末考试题
实变函数期末考试题考试题目:本次实变函数期末考试题旨在考察学生对实变函数的理解、分析和应用能力。
考试时间为120分钟,共分为两部分,选择题和解答题。
请同学们仔细阅读每个问题,并在考试纸上作答。
祝各位同学好运!第一部分:选择题选择题共有10道题,每题4分,共40分。
请在A、B、C、D四个选项中选择正确答案,并填涂在答题纸上。
1. 设函数f(x) = x^2 + 2x - 1,那么f'(x)的导函数是:A. 2x + 2B. 2x + 1C. 2x - 1D. 2x + 22. 实变函数f(x) = e^x,则f''(x)的导函数是:A. e^xB. e^x - 1C. e^x + 1D. e^x + e^x3. 设函数f(x) = 3x^2 + 5,那么f(0)的值为:A. 5B. 3C. 0D. 84. 函数f(x) = |x - 2|的定义域为:A. (2, +∞)B. (-∞, 2)C. [2, +∞)D. (-∞, +∞)5. 函数f(x) = log(2x - 1)的定义域为:A. (1/2, +∞)B. (-∞, 1/2)C. [1/2, +∞)D. (-∞, +∞)6. 函数f(x) = sin(2x)的最小正周期为:A. πB. 2πC. π/2D. π/47. 函数f(x) = arctan(x)的值域为:A. (-∞, +∞)B. (-π/2, π/2)C. (-π/4, π/4)D. [0, π/2)8. 设函数f(x) = ln(x),则f'(x)的导数为:A. 1/xB. xC. x - 1D. 1/(x - 1)9. 函数f(x) = x^3在闭区间[0, 1]上的最大值为:A. 27B. 9C. 1D. 310. 函数f(x) = sqrt(x)在闭区间[0, 4]上的最小值为:A. 0B. 1C. 2D. 4第二部分:解答题解答题共有3道题,共60分。
(完整版)实变函数试题库1及参考答案
实变函数试题库及参考答案(1) 本科一、填空题1.设,A B 为集合,则()\A B B U A B U (用描述集合间关系的符号填写) 2.设A 是B 的子集,则A B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是 4.有限个开集的交是5.设1E 、2E 是可测集,则()12m E E U 12mE mE +(用描述集合间关系的符号填写) 6.设nE ⊂¡是可数集,则*m E 07.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈¡,()E x f x a ⎡⎤≥⎣⎦是 ,则称()f x 在E 上可测8.可测函数列的上极限也是 函数9.设()()n f x f x ⇒,()()n g x g x ⇒,则()()n n f x g x +⇒ 10.设()f x 在E 上L 可积,则()f x 在E 上 二、选择题1.下列集合关系成立的是( )A ()\B A A =∅I B ()\A B A =∅IC ()\A B B A =UD ()\B A A B =U2.若nR E ⊂是开集,则( )A E E '⊂B 0E E =C E E =DE E '=3.设(){}n f x 是E 上一列非负可测函数,则( )A ()()lim lim n n E En n f x dx f x dx →∞→∞≤⎰⎰ B ()()lim lim n n E E n n f x dx f x dx →∞→∞≤⎰⎰C ()()lim lim n n E En n f x dx f x dx →∞→∞≤⎰⎰ D ()()lim lim n n EE n n f x dx f x →∞→∞≤⎰⎰三、多项选择题(每题至少有两个以上的正确答案) 1.设[]{}0,1E =中无理数,则( )A E 是不可数集B E 是闭集C E 中没有内点D 1mE =2.设nE ⊂¡是无限集,则( )A E 可以和自身的某个真子集对等B E a ≥(a 为自然数集的基数)C E '≠∅D *0mE >3.设()f x 是E 上的可测函数,则( )A 函数()f x 在E 上可测B ()f x 在E 的可测子集上可测C ()f x 是有界的D ()f x 是简单函数的极限4.设()f x 是[],a b 上的有界函数,且黎曼可积,则( )A ()f x 在[],a b 上可测B ()f x 在[],a b 上L 可积C ()f x 在[],a b 上几乎处处连续D ()f x 在[],a b 上几乎处处等于某个连续函数四、判断题1. 可数个闭集的并是闭集. ( )2. 可数个可测集的并是可测集. ( )3. 相等的集合是对等的. ( )4. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是可测集. ( ) 五、定义题1. 简述无限集中有基数最小的集合,但没有最大的集合.2. 简述点集的边界点,聚点和内点的关系.3. 简单函数、可测函数与连续函数有什么关系?4. [],a b 上单调函数与有界变差函数有什么关系?六、计算题1. 设()[]230,1\xx E f x xx E⎧∈⎪=⎨∈⎪⎩,其中E 为[]0,1中有理数集,求()[]0,1f x dx ⎰.2. 设{}n r 为[]0,1中全体有理数,(){}[]{}12121,,00,1\,,n n n x r r r f x x r r r ∈⎧⎪=⎨∈⎪⎩L L ,求()[]0,1lim n n f x dx →∞⎰.七、证明题1.证明集合等式:(\)A B B A B =U U2.设E 是[0,1]中的无理数集,则E 是可测集,且1mE =3.设(),()f x g x 是E 上的可测函数,则[|()()]E x f x g x >是可测集4.设()f x 是E 上的可测函数,则对任何常数0a >,有1[|()|]|()|E mE x f x a f x dx a≥≤⎰5.设()f x 是E 上的L -可积函数,{}n E 是E 的一列可测子集,且lim 0n n mE →∞=,则lim ()0nE n f x dx →∞=⎰实变函数试题库及参考答案(1) 本科一、填空题1.=2.≤3.闭集4.开集5.≤6.=7.可测集8.可测9.()()f x g x + 10.可积 二、单选题 ABB三、多选题ACD AB ABD ABC 四、判断题 × √√√ 五、定义题1.答:因为任何无限集均含有可数集,所以可数集是无限集中基数最小的,但无限集没有基数最大的,这是由于任何集合A ,A 的幂集2A 的基数大于A 的基数.2.答: 内点一定是聚点,边界点不一定是聚点,点集的边界点或为孤立点或为聚点.3.答:连续函数一定是可测函数;简单函数一定是可测函数;简单函数可表示成简单函数或连续函数的极限4.答:单调函数是有界变差函数,有界变差函数可表示成两个单调增函数之差.六、解答题1.解:因为0mE =,所以()3,.f x x a e =于[]0,1,于是()[][]30,10,1f x dx x dx =⎰⎰,而3x 在[]0,1上连续,从而黎曼可积,故由黎曼积分与勒贝格积分的关系,[]()41331000,11|44x x dx R x dx ===⎰⎰ 因此()[]0,114f x dx =⎰.2.解:显然()n f x 在[]0,1上可测,另外由()n f x 定义知,()0,.n f x a e =于[]0,1()1n ≥ 所以()[][]0,10,100nf x dx dx ==⎰⎰因此()[]0,1lim0nn f x dx →∞=⎰七、证明题 1.证明(\)()c A B B A B B =U I U ()()()c c A B A B B A B B B A B ===I U I U I U U U2.证明 设F 是[0,1]中的有理数集,则F 是可数集,从而*0m F =,因此F 是可测集,从而c F 可测,又[0,1]\[0,1]cE F F ==I ,故E 是可测集.由于E F =∅I ,所以1[0,1]()0m m E F mE mF mF ===+=+U ,故1mF =3.证明 设{}n r 为全体有理数所成之集,则()11[|()()][|()()][|()][|()]n n n n n E x f x g x E x f x r g x E x f x r E x g x r ∞∞==>=≥>=≥<I U U因为(),()f x g x 是E 上的可测函数,所以[|()]n E x f x r ≥,[|()]n E x g x r <是可测集,1,2,n =L ,于是由可测集性质知[|()()]E x f x g x >是可测集4.证明 因为()f x 在E 上可测,所以|()|f x 在E 上非负可测,由非负可测函数积分性质,[|()|][|()|]|()||()|E x f x a E x f x a Eadx f x dx f x dx ≥≥≤≤⎰⎰⎰而[|()|][|()|]E x f x a adx a mE x f x a ≥=⋅≥⎰,所以1[|()|]|()|E mE x f x a f x dx a≥≤⎰5.证明 因为lim 0n n mE →∞=,所以0,1N δ∀>∃≥,当n N ≥时,n mE δ<,又()f x 在E 上L -可积,所以由积分的绝对连续性,0,0,εδ∀>∃>当,e E me δ⊂<时|()|ef x dx ε<⎰于是当n N ≥时,n mE δ<,因此|()|nE f x dx ε<⎰,即lim ()0nE n f x dx →∞=⎰。
实变函数测试题与答案
实变函数测试题与答案实变函数试题⼀,填空题1. 设1,2n A n ??=,1,2n = ,则lim n n A →∞= . 2. ()(),,a b -∞+∞ ,因为存在两个集合之间的⼀⼀映射为3. 设E 是2R 中函数1cos ,00,0x y x x ?≠?=?? =?的图形上的点所组成的集合,则E '= ,E ?= . 4. 若集合nE R ?满⾜E E '?, 则E 为集.5. 若(),αβ是直线上开集G 的⼀个构成区间, 则(),αβ满⾜:, .6. 设E 使闭区间[],a b 中的全体⽆理数集, 则mE = .7. 若()n mE f x →()0f x ??=??, 则说{}()n f x 在E 上 .8. 设nE R ?, 0n x R ∈,若 ,则称0x 是E 的聚点.9. 设{}()n f x 是E 上⼏乎处处有限的可测函数列, ()f x 是E 上⼏乎处处有限的可测函数, 若0σ?>, 有, 则称{}()n f x 在E 上依测度收敛于()f x .10. 设()()n f x f x ?,x E ∈, 则?{}()n f x 的⼦列{}()j n f x , 使得 .⼆, 判断题. 正确的证明, 错误的举反例. 1. 若,A B 可测, A B ?且A B ≠,则mA mB <. 2. 设E 为点集, P E ?, 则P 是E 的外点.3. 点集11,2,,E n ?=的闭集.4. 任意多个闭集的并集是闭集.三, 计算证明题1. 证明:()()()A B C A B A C --=-2. 设M 是3R 空间中以有理点(即坐标都是有理数)为中⼼,有理数为半径的球的全体, 证明M 为可数集.3. 设nE R ?,i E B ?且i B 为可测集, 1,2i = .根据题意, 若有()()*0,i m B E i -→→∞, 证明E 是可测集.4. 设P 是Cantor 集, ()[]32ln 1,(),0,1x x P f x x x P ?+ ∈?=? ∈-??.求10(L)()f x dx ?.5. 设函数()f x 在Cantor 集0P 中点x 上取值为3 x , ⽽在0P 的余集中长为13n 的构成区间上取值为16n , ()1,2n = , 求1()f x dx ?.6. 求极限: 13230lim(R)sin 1n nx nxdx n x →∞+?.实变函数试题解答⼀填空题 1. []0,2.2. ()()()tan ,,.2x x a x a b b a ππ=--∈??-??3. {}1(,)cos ,0(0,)1x y y x y y x ??=≠≤; ?. 4. 闭集.6. b a -.7. ⼏乎处处收敛于()f x 或 a.e.收敛于()f x . 8. 对000,(,)U x δδ?> 有{}()0E x -=?.9. lim ()()0n n mE f x f x σ→∞-≥= 10. ()()n f x f x → a.e.于E . ⼆判断题1. F . 例如, (0,1)A =, []0,1B =, 则A B ?且A B ≠,但1mA mB ==.2. F . 例如, 0(0,1)?, 但0不是(0,1)的外点.3. F . 由于{}0E E '=?.4. F . 例如, 在1R 中, 11,1n F n n ??=-, 3,4n = 是⼀系列的闭集, 但是3(0,1)n n F ∞== 不是闭集.5. T . 因为若E 为有界集合, 则存在有限区间I , I <+∞,使得E I ?, 则**,m E m I I ≤=<+∞ 于*m E =+∞ . 三, 计算证明题. 1. 证明如下:()()()()()()()()S SS S S A B C A B CA B C A B C A B A C A B A C --=- = = = =-2. M 中任何⼀个元素可以由球⼼(,,)x y z , 半径为r 唯⼀确定, x ,y , z 跑遍所有的正有理数, r 跑遍所有的有理数. 因为有理数集于正有理数集为可数集都是可数集, 故M 为可数集.3. 令1i i B B ∞== , 则i E B B ??且B 为可测集, 于是对于i ?, 都有i B E B E -?-, 故()()**0i m B E m B E ≤-≤-,令i →∞, 得到()*0m B E -=, 故B E -可测. 从⽽()E B B E =--可测.4. 已知0mP =, 令[]0,1G P =-, 则()132030(L)()(L)ln 1(L)(L)()(L)(L)(R)()133PGGPGf x dx x dx x dxf x dxx dx x dxf x dxx=++ =0+ =+ = ==.5. 将积分区间[]0,1分为两两不相交的集合: 0P , 1G , 2G ,其中0P 为Cantor 集, n G 是0P 的余集中⼀切长为13n 的构成区间(共有12n -个)之并. 由L 积分的可数可加性, 并且注意到题中的00mP =, 可得11111111()()()()()1()61126631112916nn P G P G n nP G n n n n nn n n n f x dx f x dx f x dx f x dx f x dx f x dx dx mG ∞=∞=∞=-∞∞==∞==+ =+ =+=0+===∑??∑?∑∑∑6. 因为323sin 1nx nx n x +在[]0,1上连续, 13230(R)sin 1nx nxdx n x +?存在且与13230(L)sin 1nx nxdx n x +?的值相等. 易知323232323211sin .11122nx nx nx nx n x n x n x x x≤≤?≤+++ 由于12x 在()0,1上⾮负可测,且⼴义积分1012dx x收敛,则12x在()0,1上(L)可积,由于3lim sin 01n nx nx n x →∞=+, ()0,1x ∈,于是根据勒贝格控制收敛定理,得到1133232300132301lim(R)sin lim(L)sin 11lim sin 100n n n nx nx nxdx nxdx n x n xnx nx dx n x dx →∞→∞→∞=++?? = ?+?? ==.⼀、判定下列命题正确与否,简明理由(对正确者予以证明,对错误者举处反例)(15分,每⼩题3分)1.⾮可数的⽆限集为c势集2.开集的余集为闭集。
实变函数期末考试题库
《实变函数》期末考试试题汇编目录《实变函数》期末考试模拟试题(一) (2)《实变函数》期末考试模拟试题(二) (7)《实变函数》期末考试模拟试题(三) (13)《实变函数》期末考试模拟试题(四) (18)《实变函数》期末考试模拟试题(五) (27)《实变函数》期末考试模拟试题(六) (30)《实变函数》期末考试模拟试题(七) (32)《实变函数》期末考试模拟试题(八) (36)《实变函数》期末考试模拟试题(九) (41)《实变函数》期末考试模拟试题(十) (47)《实变函数》期末考试题(一) (57)《实变函数》期末考试题(二) (63)《实变函数》期末考试模拟试题(一)(含解答)一、选择题(单选题)1、下列集合关系成立的是( A )(A )(\)A B B A B ⋃=⋃ (B )(\)A B B A ⋃= (C )(\)B A A A ⋃⊆ (D )(\)B A A ⊆ 2、若n E R ⊂是开集,则( B )(A )E E '⊂ (B )E 的内部E = (C )E E = (D )E E '= 3、设P 是康托集,则( C )(A )P 是可数集 (B )P 是开集 (C )0mP = (D )1mP = 4、设E 是1R 中的可测集,()x ϕ是E 上的简单函数,则( D ) (A )()x ϕ是E 上的连续函数 (B )()x ϕ是E 上的单调函数 (C )()x ϕ在E 上一定不L 可积 (D )()x ϕ是E 上的可测函数5、设E 是n R 中的可测集,()f x 为E 上的可测函数,若()d 0Ef x x =⎰,则( A )(A )在E 上,()f z 不一定恒为零 (B )在E 上,()0f z ≥ (C )在E 上,()0f z ≡ (D )在E 上,()0f z ≠ 二、多项选择题(每题至少有两个或两个以上的正确答案) 1、设E 是[0,1]中的无理点全体,则(C 、D )(A )E 是可数集 (B )E 是闭集 (C )E 中的每一点都是聚点 (D )0mE > 2、若1E R ⊂至少有一个内点,则( B 、D )(A )*m E 可以等于零 (B )*0m E > (C )E 可能是可数集 (D )E 是不可数集3、设[,]E a b ⊂是可测集,则E 的特征函数()E X x 是 (A 、B 、C ) (A )[,]a b 上的简单函数 (B )[,]a b 上的可测函数 (C )E 上的连续函数 (D )[,]a b 上的连续函数4、设()f x 在可测集E 上L 可积,则( B 、D )(A )()f z +和()f z -有且仅有一个在E 上L 可积 (B )()f z +和()f z -都在E 上L 可积 (C )()f z 在E 上不一定L 可积 (D )()f z 在E 上一定L 可积5、设()f z 是[,]a b 的单调函数,则( A 、C 、D )(A )()f z 是[,]a b 的有界变差函数 (B )()f z 是[,]a b 的绝对连续函数 (C )()f z 在[,]a b 上几乎处处连续 (D )()f z 在[,]a b 上几乎处处可导 三、填空题(将正确的答案填在横线上)1、设X 为全集,A ,B 为X 的两个子集,则\A B=C A B ⋂ 。
实变函数(复习资料,带答案)
实变函数(复习资料,带答案)《实变函数》试卷⼀⼀、单项选择题(3分×5=15分) 1、下列各式正确的是()(A )1lim n k n n k n A A ∞∞→∞===??; (B )1lim n k n k n n A A ∞∞==→∞=??;(C )1lim n k n n k nA A ∞∞→∞===??; (D )1lim n k n k nn A A ∞∞==→∞=??;2、设P 为Cantor 集,则下列各式不成⽴的是()(A )=P c (B) 0mP = (C) P P ='(D) P P =3、下列说法不正确的是()(A) 凡外侧度为零的集合都可测(B )可测集的任何⼦集都可测(C) 开集和闭集都是波雷⽿集(D )波雷⽿集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下⾯不成⽴的是( )(A )若()()n f x f x ?, 则()()n f x f x → (B){}sup ()n nf x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ?,则()f x 可测5、设f(x)是],[b a 上有界变差函数,则下⾯不成⽴的是()(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上⼏乎处处存在导数(C ))('x f 在],[b a 上L 可积 (D)-=b aa fb f dx x f )()()('⼆. 填空题(3分×5=15分)1、()(())s s C A C B A A B ??--=_________2、设E 是[]0,1上有理点全体,则'E =______,oE =______,E =______. 3、设E 是n R 中点集,如果对任⼀点集T 都_________________________________,则称E 是L 可测的 4、)(x f 可测的________条件是它可以表成⼀列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的⼀切分划,使_____________________________________,则称()f x 为[],a b 上的有界变差函数。
实变函数期末考试题
上单调函数的不连续点所成之集的测度等于n上的广11 ()k E f ak∞=≥+=_________.7.设f是[a上的单调函数,则8.设f是可测集E上的非负可测函数,则_________.9.区间[上的有界是10.设F (x)是定义在的充要条件是:1jk j k A∞∞==; B.1jk j kA∞∞==C.1lim k j k k j kA A ∞∞→∞===; D. 1lim k j k k j kA A ∞∞→∞===。
2.设f (x )是E 上的可测函数,则对任意实数a ,有 ( )A. E [x ; f (x ) >a ]是开集;B. E [x ; f (x ) ≥ a ]是闭集;C. E [x ; f (x ) >a ]是可测集;D. E [x ; f (x ) = a ]是零测集。
3.下列断言中错误的是 ( )A. 有理点集为零测集;B. Cantor 集为零测集;C. 零测集的子集是零测集;D. 无穷个零测集的并是零测集。
4.设f (x )为可测集E 上的可测函数,若()Ef x dx <+∞⎰,则下列断言错误的是 ( )A. f (x )在E 上L-积分存在;B. f (x )在E 上L-可积;C. f (x )在E 上未必L-可积;D. f (x )在E 上a.e.有限。
5.设{}k f 是nE ⊂上的可测函数列,lim ()k k f x →∞存在,则lim ()k k f x →∞是 ( )A.简单函数;B.连续函数;C.可测函数;D.单调函数。
6.设f 是[,]a b 上有界变差函数,则有 ( )A. ()f x 连续;B. ()f x '存在;C .()f x ' a.e.存在;D. ()f x ''存在。
7.设E 是可测集,A 是不可测集,0mE =,则E A 是 ( ).A 可测集且测度为零; .B 可测集但测度未必为零; .C 不可测集; .D 以上都不对。
(完整版)实变函数(复习资料_带答案)
《实变函数》试卷一一、单项选择题(3分×5=15分) 1、下列各式正确的是( )(A )1lim n k n n k n A A ∞∞→∞===⋃⋂; (B )1lim n k n k n n A A ∞∞==→∞=⋂⋃;(C )1lim n k n n k nA A ∞∞→∞===⋂⋃; (D )1lim n k n k nn A A ∞∞==→∞=⋂⋂;2、设P 为Cantor 集,则下列各式不成立的是( )(A )=P c (B) 0mP = (C) P P =' (D) P P =ο3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( )(A )若()()n f x f x ⇒, 则()()n f x f x → (B){}sup ()n nf x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ⇒,则()f x 可测5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( )(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数(C ))('x f 在],[b a 上L 可积 (D)⎰-=b aa fb f dx x f )()()('二. 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E 是[]0,1上有理点全体,则'E =______,oE =______,E =______.3、设E 是n R 中点集,如果对任一点集T 都_________________________________,则称E 是L 可测的4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________,则称()f x 为[],a b 上的有界变差函数。
(完整版)实变函数期末考试卷A及参考答卷
2011—2012学年第1学期数计学院09级数学与应用数学专业(1、2班)《实变函数》期末考试卷(A)考生考试诚信承诺书在我填写考生信息后,表示我已阅读和理解《龙岩学院考试纪律与违纪处分办法》的有关规定,承诺在考试中自觉遵规守纪,如有违反将接受处理;我保证在本科目考试中,本人所提供的个人信息是真实、准确的。
考生签名:实变函数期末考试卷(A )2009级本科1、2班用 考试时间2012年01月 04日一 填空题(每小题3分,满分24分) 1 我们将定义在可测集qE ⊂上的所有L 可测函数所成的集合记为()M E .任取()f M E ∈,都可以确定两个非负可测函数:()()()(),0,0,0.f x x E f fx x E f +∈>⎧=⎨∈≤⎩当时当时 和()()()()0,0,,0.x E f fx f x x E f -∈>⎧=⎨-∈≤⎩当时当时分别称为f 的正部和负部。
请你写出()()(),,f x fx f x +-和()f x 之间的关系:()f x =,()f x =。
2 上题()M E 中有些元素ϕ被称为非负简单函数,指的是:12k E E E E =是有限个互不相交的可测集的并集,在i E 上()i x c ϕ≡(非负常数)(1,2,,i k =).ϕ在E 上的L 积分定义为:()Ex dx ϕ=⎰,这个积分值可能落在区间中,但只有当时才能说ϕ是L 可积的。
3 若()f M E ∈是非负函数,则它的L 积分定义为:()Ef x dx =⎰,这个积分值可能落在区间中,但只有当时才能说f 是L 可积的。
4 ()M E 中的一般元素f 称为是积分确定的,如果f +和f -, 即()Efx dx +⎰和()E f x dx -⎰的值;但只有当时才能说f 是L 可积的,这时将它的积分定义为:()Ef x dx =⎰。
5 从()M E 中取出一个非负函数列(){}n f x ,则法图引理的结论是不等式:;如果再添上条件和就试卷 共 8 页 第 2 页得到列维定理的结论:。
(完整)实变与泛函期末试题答案
06-07第二学期《实变函数与泛函分析》期末考试参考答案1. 设()f x 是),(+∞-∞上的实值连续函数, 则对于任意常数a , })(|{a x f x E >=是一开集, 而})(|{a x f x E ≥=总是一闭集. (15分)证明 (1) 先证})(|{a x f x E >=为开集. (8分)证明一 设E x ∈0,则a x f >)(0,由)(x f 在),(+∞-∞上连续,知0>∃δ,使得),(00δδ+-∈x x x 时,a x f >)(, 即E x U ⊂),(0δ,故0x 为E 的内点。
由0x 的任意性可知,})(|{a x f x E >=是一开集.证明二 })(|{a x f x E >=可表为至多可数的开区间的并(由证明一前半部分), 由定理可知E 为开集.(2) 再证})(|{a x f x E ≥=是一闭集。
(7分)证明一 设0x E '∈, 则0x 是E 的一个聚点, 则E ∃中互异点列},{n x 使得)(0∞→→n x x n . ………………………..2分由E x n ∈知a x f n ≥)(, 因为f 连续, 所以a x f x f x f n n n n ≥==∞→∞→)(lim )lim ()(0,即E x ∈0.……………………………………………………………………………………6分由0x 的任意性可知,})(|{a x f x E ≥=是一闭集. …………………………………7分 证明二 对})(|{a x f x E ≥=, {|()}E x f x a E ∂⊂=⊂,……………………… 5分 知E E E E =∂= ,E 为闭集。
…………………………………………………… 7分 证明三 由(1)知,})(|{a x f x E >=为开集, 同理})(|{a x f x E <=也为开集, 所以})(|{a x f x CE ≥=闭集, 得证。
(完整版)实变函数期末复习
实变函数期末复习选择题1.设,...,],)(,[21121=-+=n nA nn 则 ( ) A.],[lim 10=∞→n n A B.],(lim 10=∞→n n A C.],(lim 30=∞→n n A D.),(lim 30=∞→n n A2.设N i i x i x A i ∈+≤≤=},:{23,则=∞=I 1i i A ( ) A.(-1,1) B.[0,1] C.∅ D.{0}3.集合E 的全体聚点所组成的集合称为E 的 ( )A.开集B.边界C.导集D.闭包4.若}{n A 是一闭集列,则Y ∞=1n n A是 ( )A.开集B.闭集C.既非开集又非闭集D.无法判断5若)(x f 可测,则它必是 ( )A.连续函数B.单调函数C.简单函数D.简单函数列的极限 6关于简单函数与可测函数下述结论不正确的是 ( )A.简单函数一定是可测函数B.简单函数列的极限是可测函数C.简单函数与可测函数是同一概念D.简单函数列的极限与可测函数是同一概念7设)(x f 是可测集E 上的非负可测函数,则)(x f ( )A.必可积B.必几乎处处有限C.必积分确定D.不一定积分确定8设E 是可测集,则下列结论中正确的是 ( )A.若)}({x f n 在E 上a.e 收敛于一个a.e 有限的可测函数)(x f ,则)(x f n 一致收敛于)(x fB.若)}({x f n 在E 上基本上一致收敛于)(x f ,则)(x f n a.e 收敛于)(x fC.若)}({x f n 在E 上a.e 收敛于一个a.e 有限的可测函数)(x f ,则)(x f n 基本上一致收敛于)(x fD.若)}({x f n 在E 上a.e 收敛于一个a.e 有限的可测函数)(x f ,则)(x f n ⇒)(x f9设)(x f 是可测集E 上可积,则在E 上 ( )A.)(x f +与)(x f - 只有一个可积B.)(x f +与)(x f - 皆可积C.)(x f +与)(x f - 一定不可积D.)(x f +与)(x f - 至少有一个可积 10.)(x f 在可测集E 上)(L 可积的必要条件是,)(x f 为 ( )A 、连续函数B 、几乎处处连续函数C 、单调函数D 、几乎处处有限的可测函数11设)(x D 为狄立克雷函数,则⎰=10)()(dx x D L ( )A 、 0B 、 1C 、1/2D 、不存在 12设}{nE 是一列可测集,ΛΛ⊃⊃⊃⊃n E E E 21,且+∞<1mE ,则有 ( )(A )n n n n mE E m ∞→∞==⎪⎭⎫ ⎝⎛⋂lim 1 (B) n n n n mE E m ∞→∞=≤⎪⎭⎫ ⎝⎛⋃lim 1 (C )n n n n mE E m ∞→∞=<⎪⎭⎫ ⎝⎛⋂lim 1; (D )以上都不对 13设),0(n A n =, N n ∈, 则=∞→n n A lim( ) A 、Φ B 、[0, n] C 、R D 、(0, ∞)14设)1,0(n A n =, N n ∈, 则=∞→n n A lim ( )A 、(0, 1)B 、(0, n1) C 、{0} D 、Φ、 填空题1、设A 为一集合,B 是A 的所有子集构成的集合;若A =n, 则B =2、设A 为一集合,B 是A 的所有子集构成的集合;若A 是一可数集, 则B =3、若c A =, c B =, 则=⋃B A4、若c A =, B 是一可数集, 则=⋃B A5、若c A =, n B =, 则=⋃B A6、若}{n A 是一集合列, 且c A n =, =⋃∞=n n A 1 7、设}{i S 是一列递增的可测集合,则=∞→)lim (n n S m _______。
实变函数期末复习题及答案
实变函数综合练习题《实变函数》综合训练题(一)(含解答)一、选择题(单选题)1、下列集合关系成立的是( A )(A )(\)A B B A B ⋃=⋃ (B )(\)A B B A ⋃= (C )(\)B A A A ⋃⊆ (D )(\)B A A ⊆ 2、若nE R ⊂是开集,则( B )(A )E E '⊂ (B )E 的内部E = (C )E E = (D )E E '= 3、设P 是康托集,则( C )(A )P 是可数集 (B )P 是开集 (C )0mP = (D )1mP = 4、设E 是1R 中的可测集,()x ϕ是E 上的简单函数,则( D )(A )()x ϕ是E 上的连续函数 (B )()x ϕ是E 上的单调函数 (C )()x ϕ在E 上一定不L 可积 (D )()x ϕ是E 上的可测函数5、设E 是nR 中的可测集,()f x 为E 上的可测函数,若()d 0Ef x x =⎰,则( A )(A )在E 上,()f z 不一定恒为零 (B )在E 上,()0f z ≥ (C )在E 上,()0f z ≡ (D )在E 上,()0f z ≠ 二、多项选择题(每题至少有两个或两个以上的正确答案) 1、设E 是[0,1]中的无理点全体,则(C 、D )(A )E 是可数集 (B )E 是闭集 (C )E 中的每一点都是聚点 (D )0mE > 2、若1E R ⊂至少有一个内点,则( B 、D )(A )*m E 可以等于零 (B )*0m E > (C )E 可能是可数集 (D )E 是不可数集3、设[,]E a b ⊂是可测集,则E 的特征函数()E X x 是 (A 、B 、C ) (A )[,]a b 上的简单函数 (B )[,]a b 上的可测函数 (C )E 上的连续函数 (D )[,]a b 上的连续函数4、设()f x 在可测集E 上L 可积,则( B 、D ) (A )()f z +和()f z -有且仅有一个在E 上L 可积 (B )()f z +和()f z -都在E 上L 可积 (C )()f z 在E 上不一定L 可积 (D )()f z 在E 上一定L 可积5、设()f z 是[,]a b 的单调函数,则( A 、C 、D )(A )()f z 是[,]a b 的有界变差函数 (B )()f z 是[,]a b 的绝对连续函数 (C )()f z 在[,]a b 上几乎处处连续 (D )()f z 在[,]a b 上几乎处处可导 三、填空题(将正确的答案填在横线上)1、设X 为全集,A ,B 为X 的两个子集,则\A B=C A B ⋂ 。
实变函数期末考试题库
实变函数期末考试题库一、选择题1. 下列函数符合实变函数的定义的是:()A. f(x) = x^2 - 5x + 6, x ∈ [0, ∞)B. f(x) = √(x + 2), x ∈ (-∞, 3]C. f(x) = 1/x, x ∈ (-∞, 0)D. f(x) = |x|, x ∈ R2. 实变函数的定义域是指函数所能取的值的范围。
下列函数的定义域是:()A. f(x) = 2x + 1, x ∈ ZB. f(x) = √(x^2 - 4), x ∈ RC. f(x) = log(x), x ∈ (-∞, ∞)D. f(x) = 1/(x - 2), x ∈ R - {2}3. 下列函数中,连续性具有间断点的是:()A. f(x) = 3x - 2, x ∈ (-∞, 10)B. f(x) = |x|, x ∈ RC. f(x) = {x^2, x < 0; 2x, x ≥ 0}, x ∈ RD. f(x) = 1/x, x ∈ (-∞, 0) U (0, ∞)4. 设f(x)和g(x)为两个实变函数,下列函数中不是实变函数的是:()A. f(x) + g(x)B. f(x)g(x)C. f(x)/g(x), g(x) ≠ 0D. g(f(x))5. 若f(x)为实变函数,则下列函数中一定是实变函数的是:()A. f(x)/xB. √f(x)C. ∣f(x)∣D. f(x + 1)二、填空题1. 若f(x)在x = a处连续,则f(x)在x = a处一定是__________函数。
答:连续2. 设f(x) = 2x^2 + bx +1,若f(x)在x = -1处连续,则b的取值范围是__________。
答:33. 设f(x) = (x - 1)/(x + 3) + e^x,则f(x)的定义域是__________。
答:(-∞, -3) U (-3, ∞)4. 设函数f(x) = |2x - 5|,则f(x)在点x = ________处不连续。
实变函数试题库及参考答案
实变函数试题库及参考答案Last updated on the afternoon of January 3, 2021实变函数试题库及参考答案(1) 本科一、填空题1.设,A B 为集合,则()\A B B A B (用描述集合间关系的符号填写) 2.设A 是B 的子集,则A B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是 4.有限个开集的交是 5.设1E 、2E 是可测集,则()12m E E 12mE mE +(用描述集合间关系的符号填写) 6.设nE ⊂是可数集,则*m E 07.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈,()E x f x a ⎡⎤≥⎣⎦是 ,则称()f x 在E 上可测8.可测函数列的上极限也是 函数9.设()()n f x f x ⇒,()()n g x g x ⇒,则()()n n f x g x +⇒ 10.设()f x 在E 上L 可积,则()f x 在E 上 二、选择题1.下列集合关系成立的是( ) 2.若n R E ⊂是开集,则( )3.设(){}n f x 是E 上一列非负可测函数,则( ) 三、多项选择题(每题至少有两个以上的正确答案) 1.设[]{}0,1E =中无理数,则( )A E 是不可数集B E 是闭集C E 中没有内点D 1mE =2.设nE ⊂是无限集,则( )A E 可以和自身的某个真子集对等B E a ≥(a 为自然数集的基数)3.设()f x 是E 上的可测函数,则( )A 函数()f x 在E 上可测B ()f x 在E 的可测子集上可测C ()f x 是有界的D ()f x 是简单函数的极限 4.设()f x 是[],a b 上的有界函数,且黎曼可积,则( )A ()f x 在[],a b 上可测B ()f x 在[],a b 上L 可积C ()f x 在[],a b 上几乎处处连续D ()f x 在[],a b 上几乎处处等于某个连续函数 四、判断题1. 可数个闭集的并是闭集. ( )2. 可数个可测集的并是可测集. ( )3. 相等的集合是对等的. ( )4. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是可测集. ( ) 五、定义题1. 简述无限集中有基数最小的集合,但没有最大的集合.2. 简述点集的边界点,聚点和内点的关系.3. 简单函数、可测函数与连续函数有什么关系?4. [],a b 上单调函数与有界变差函数有什么关系? 六、计算题1. 设()[]230,1\x x E f x xx E⎧∈⎪=⎨∈⎪⎩,其中E 为[]0,1中有理数集,求()[]0,1f x dx ⎰.2. 设{}n r 为[]0,1中全体有理数,(){}[]{}12121,,00,1\,,n n n x r r r f x x r r r ∈⎧⎪=⎨∈⎪⎩,求()[]0,1lim n n f x dx →∞⎰.七、证明题1.证明集合等式:(\)A B B A B =2.设E 是[0,1]中的无理数集,则E 是可测集,且1mE = 3.设(),()f x g x 是E 上的可测函数,则[|()()]E x f x g x >是可测集 4.设()f x 是E 上的可测函数,则对任何常数0a >,有1[|()|]|()|E mE x f x a f x dx a≥≤⎰ 5.设()f x 是E 上的L -可积函数,{}n E 是E 的一列可测子集,且lim 0n n mE →∞=,则实变函数试题库及参考答案(1) 本科一、填空题1.=2.≤3.闭集4.开集5.≤6.=7.可测集8.可测9.()()f x g x + 10.可积 二、单选题 ABB 三、多选题ACD AB ABD ABC 四、判断题 × √√√ 五、定义题1.答:因为任何无限集均含有可数集,所以可数集是无限集中基数最小的,但无限集没有基数最大的,这是由于任何集合A ,A 的幂集2A 的基数大于A 的基数.2.答: 内点一定是聚点,边界点不一定是聚点,点集的边界点或为孤立点或为聚点.3.答:连续函数一定是可测函数;简单函数一定是可测函数;简单函数可表示成简单函数或连续函数的极限4.答:单调函数是有界变差函数,有界变差函数可表示成两个单调增函数之差. 六、解答题1.解:因为0mE =,所以()3,.f x x a e =于[]0,1,于是()[][]30,10,1f x dx x dx =⎰⎰,而3x 在[]0,1上连续,从而黎曼可积,故由黎曼积分与勒贝格积分的关系, 因此()[]0,114f x dx =⎰. 2.解:显然()n f x 在[]0,1上可测,另外由()n f x 定义知,()0,.n f x a e =于[]0,1()1n ≥ 所以()[][]0,10,100nf x dx dx ==⎰⎰因此()[]0,1lim0nn f x dx →∞=⎰七、证明题 1.证明2.证明 设F 是[0,1]中的有理数集,则F 是可数集,从而*0m F =,因此F 是可测集,从而c F 可测,又[0,1]\[0,1]c E F F ==,故E 是可测集.由于EF =∅,所以1[0,1]()0m m EF mE mF mF ===+=+,故1mF =3.证明 设{}n r 为全体有理数所成之集,则因为(),()f x g x 是E 上的可测函数,所以[|()]n E x f x r ≥,[|()]n E x g x r <是可测集,1,2,n =,于是由可测集性质知[|()()]E x f x g x >是可测集4.证明 因为()f x 在E 上可测,所以|()|f x 在E 上非负可测,由非负可测函数积分性质,而[|()|][|()|]E x f x a adx a mE x f x a ≥=⋅≥⎰,所以5.证明 因为lim 0n n mE →∞=,所以0,1N δ∀>∃≥,当n N ≥时,n mE δ<,又()f x 在E 上L -可积,所以由积分的绝对连续性,0,0,εδ∀>∃>当,e E me δ⊂<时|()|ef x dx ε<⎰于是当n N ≥时,n mE δ<,因此|()|nE f x dx ε<⎰,即lim ()0nE n f x dx →∞=⎰。
聊城大学实变函数期末试题
《实变函数》一、单项选择题1、下列各式正确的是( C D )(A )1lim n k n n k n A A ∞∞→∞===⋃⋂; (B )1lim n k n k n n A A ∞∞==→∞=⋂⋃(C )1lim n n n n k nA A ∞∞→∞===⋂⋃; (D )1lim n n n k nn A A ∞∞==→∞=⋃⋂;2、设P 为Cantor 集,则下列各式不成立的是( D )(A )=P c (B) 0mP = (C) P P ='(D) P P =ο3、下列说法不正确的是( B )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测 (C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( A ) (A )若()()n f x f x ⇒, 则()()n f x f x → (B) {}sup ()n nf x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ⇒,则()f x 可测5. 下列说法不正确的是( C )(A) 0P 的任一领域内都有E 中无穷多个点,则0P 是E 的聚点 (B) 0P 的任一领域内至少有一个E 中异于0P 的点,则0P 是E 的聚点 (C) 存在E 中点列{}n P ,使0n P P →,则0P 是E 的聚点 (D) 内点必是聚点6.设)(x f 在E 上L 可积,则下面不成立的是( C )(A))(x f 在E 上可测 (B))(x f 在E 上a.e.有限 (C))(x f 在E 上有界 (D))(x f 在E 上L 可积7. 设}{n E 是一列可测集,12n E E E ⊆⊆⊆⊆L L ,则有(B )。
(A )1lim n n n n m E mE ∞=→∞⎛⎫⋃> ⎪⎝⎭ (B) 1lim n n n n m E mE ∞=→∞⎛⎫⋃= ⎪⎝⎭(C )1lim n n n n m E mE ∞=→∞⎛⎫⋂= ⎪⎝⎭;(D )以上都不对9、设1[,2(1)],1,2,n n A n n=+-=L ,则( B )(A) lim [0,1]n n A →∞= (B )=∞→n n A lim (0,1](C) lim (0,3]n n A →∞= (D )lim (0,3)n n A →∞=10、设E 是[]0,1上有理点全体,则下列各式不成立的是( D )(A )'[0,1]E = (B) oE =∅ (C) E =[0,1] (D) 1mE = 11、下列说法不正确的是( C )(A) 若B A ⊂,则B m A m **≤ (B ) 有限个或可数个零测度集之和集仍 为零测度集 (C) 可测集的任何子集都可测 (D )凡开集、闭集皆可测 12、设}{n E 是一列可测集,ΛΛ⊃⊃⊃⊃n E E E 21,且+∞<1mE ,则有( A )(A )n n n n mE E m ∞→∞==⎪⎭⎫ ⎝⎛⋂lim 1 (B) n n n n mE E m ∞→∞=≤⎪⎭⎫⎝⎛⋃lim 1(C )n n n n mE E m ∞→∞=<⎪⎭⎫⎝⎛⋂lim 1;(D )以上都不对13、设f(x)是],[b a 上绝对连续函数,则下面不成立的是( B )(A) )(x f 在],[b a 上的一致连续函数 (B) )(x f 在],[b a 上处处可导 (C ))(x f 在],[b a 上L 可积 (D) )(x f 是有界变差函数 14.设,M N 是两集合,则 ()M M N --=( C )(A) M (B) N (C) M N ⋂ (D) ∅ 16. 下列断言( B )是正确的。
实变函数期末考试卷A及参考答卷
实变函数期末考试卷A及参考答卷Document number:NOCG-YUNOO-BUYTT-UU986-1986UT2011—2012学年第1学期数计学院09级数学与应用数学专业(1、2班) 《实变函数》期末考试卷(A)试卷共 8 页第 1 页考生考试诚信承诺书在我填写考生信息后,表示我已阅读和理解《龙岩学院考试纪律与违纪处分办法》的有关规定,承诺在考试中自觉遵规守纪,如有违反将接受处理;我保证在本科目考试中,本人所提供的个人信息是真实、准确的。
考生签名:实变函数期末考试卷(A )2009级本科1、2班用 考试时间2012年01月 04日一 填空题(每小题3分,满分24分) 1 我们将定义在可测集qE ⊂上的所有L 可测函数所成的集合记为()M E .任取()f M E ∈,都可以确定两个非负可测函数:()()()(),0,0,0.f x x E f fx x E f +∈>⎧=⎨∈≤⎩当时当时 和()()()()0,0,,0.x E f fx f x x E f -∈>⎧=⎨-∈≤⎩当时当时分别称为f 的正部和负部。
请你写出()()(),,f x fx f x +-和()f x 之间的关系:()f x =,()f x =。
2 上题()M E 中有些元素ϕ被称为非负简单函数,指的是:12k E E E E =是有限个互不相交的可测集的并集,在i E 上()i x c ϕ≡(非负常数)(1,2,,i k =).ϕ在E 上的L 积分定义为:()Ex dx ϕ=⎰,这个积分值可能落在区间中,但只有当时才能说ϕ是L 可积的。
3 若()f M E ∈是非负函数,则它的L 积分定义为:()Ef x dx =⎰,这个积分值可能落在区间中,但只有当时才能说f是L 可积的。
4 ()M E 中的一般元素f 称为是积分确定的,如果f +和f -,即()Efx dx +⎰和()E f x dx -⎰的值;但只有当时才能说f 是L 可积的,这时将它的积分定义为:()Ef x dx =⎰。
实变函数测试题与参考答案
实变函数试题一,填空题1. 设1,2n A n ⎡⎤=⎢⎥⎣⎦,1,2n =,则lim n n A →∞= . 2. ()(),,a b -∞+∞,因为存在两个集合之间的一一映射为3. 设E 是2R 中函数1cos ,00,0x y x x ⎧≠⎪=⎨⎪ =⎩的图形上的点所组成的集合,则E '= ,E ︒= .4. 若集合nE R ⊂满足E E '⊂,则E 为 集. 5. 若(),αβ是直线上开集G 的一个构成区间,则(),αβ满足:, .6. 设E 使闭区间[],a b 中的全体无理数集,则mE = .7. 若()n mE f x →()0f x ⎡⎤=⎣⎦,则说{}()n f x 在E 上 .8. 设nE R ⊂,0nx R ∈,若 ,则称0x 是E 的聚点.9. 设{}()n f x 是E 上几乎处处有限的可测函数列,()f x 是E 上几乎处处有限的可测函数,若0σ∀>,有 ,则称{}()n f x 在E 上依测度收敛于()f x . 10. 设()()n f x f x ⇒,x E ∈,则∃{}()n f x 的子列{}()jn fx ,使得.二,判断题.正确的证明,错误的举反例. 1. 若,A B 可测,A B ⊂且A B ≠,则mA mB <. 2. 设E 为点集,P E ∉,则P 是E 的外点.3. 点集11,2,,E n ⎧⎫=⎨⎬⎩⎭的闭集. 4. 任意多个闭集的并集是闭集.5. 若nE R ⊂,满足*m E =+∞,则E 为无限集合. 三,计算证明题1.证明:()()()A B C A B A C --=-2.设M 是3R 空间中以有理点(即坐标都是有理数)为中心,有理数为半径的球的全体,证明M 为可数集.3.设nE R ⊂,i E B ⊂且i B 为可测集,1,2i =.根据题意,若有()()*0,i m B E i -→ →∞,证明E 是可测集.4. 设P 是Cantor 集,()[]32ln 1,(),0,1x x P f x x x P ⎧+ ∈⎪=⎨ ∈-⎪⎩.求10(L)()f x dx ⎰.5. 设函数()f x 在Cantor 集0P 中点x 上取值为3x ,而在0P 的余集中长为13n 的构成区间上取值为16n ,()1,2n =,求1()f x dx ⎰.6. 求极限:13230lim(R)sin 1n nx nxdx n x →∞+⎰.实变函数试题解答一填空题 1.[]0,2.2.{}1(,)cos ,0(0,)1x y y x y y x ⎧⎫=≠≤⎨⎬⎩⎭;∅.3.闭集.4.b a -.5.几乎处处收敛于()f x 或a.e.收敛于()f x .6.对000,(,)U x δδ∀> 有{}()0E x -=∅.7.()()n f x f x → a.e.于E . 二判断题1. F .例如,(0,1)A =,[]0,1B =,则A B ⊂且A B ≠,但1mA mB ==.2. F .例如,0(0,1)∉,但0不是(0,1)的外点.3. F .由于{}0E E '=⊄.4. F .例如,在1R 中,11,1n F n n ⎡⎤=-⎢⎥⎣⎦,3,4n =是一系列的闭集,但是3(0,1)n n F ∞==不是闭集.5. T .因为若E 为有界集合,则存在有限区间I ,I <+∞,使得E I ⊂,则**,m E m I I ≤=<+∞ 于*m E =+∞ .三,计算证明题. 1.证明如下:2. M 中任何一个元素可以由球心(,,)x y z ,半径为r 唯一确定,x ,y ,z 跑遍所有的正有理数,r 跑遍所有的有理数.因为有理数集于正有理数集为可数集都是可数集,故M 为可数集.3. 令1i i B B ∞==,则i E B B ⊂⊂且B 为可测集,于是对于i ∀,都有i B E B E -⊂-,故()()**0i m B E m B E ≤-≤-,令i →∞,得到()*0m B E -=,故B E -可测.从而()E B B E =--可测.4. 已知0mP =,令[]0,1G P =-,则()1320221130(L)()(L)ln 1(L)(L)()(L)(L)(R)()133PGGPGf x dx x dx x dxf x dxx dx x dxf x dxx=++ =0+ =+ = ==⎰⎰⎰⎰⎰⎰⎰. 5. 将积分区间[]0,1分为两两不相交的集合:0P ,1G ,2G ,其中0P 为Cantor 集,n G 是0P 的余集中一切长为13n 的构成区间(共有12n -个)之并.由L 积分的可数可加性,并且注意到题中的00mP =,可得6. 因为323sin 1nx nx n x +在[]0,1上连续,13230(R)sin 1nx nxdx n x+⎰存在且与13230(L)sin 1nx nxdx n x +⎰的值相等.易知由于12x 在()0,1上非负可测,且广义积分1012dx x ⎰收敛,则 12x在()0,1上(L)可积,由于323lim sin 01n nx nx n x →∞=+,()0,1x ∈,于是根据勒贝格控制收敛定理,得到1133232300132301lim(R)sin lim(L)sin 11lim sin 100n n n nx nx nxdx nxdx n x n x nx nx dxn x dx →∞→∞→∞=++⎛⎫ = ⎪+⎝⎭ ==⎰⎰⎰⎰.一、判定下列命题正确与否,简明理由(对正确者予以证明,对错误者举处反例)(15分,每小题3分) 1. 非可数的无限集为c 势集 2. 开集的余集为闭集。
实变函数(复习资料_带答案)
《实变函数》试卷一一、单项选择题(3分×5=15分) 1、下列各式正确的是( )(A )1lim n k n n k n A A ∞∞→∞===⋃⋂; (B )1lim n k n k n n A A ∞∞==→∞=⋂⋃;(C )1lim n k n n k nA A ∞∞→∞===⋂⋃; (D )1lim n k n k nn A A ∞∞==→∞=⋂⋂;2、设P 为Cantor 集,则下列各式不成立的是( )(A )=P c (B) 0mP = (C) P P ='(D) P P =3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( )(A )若()()n f x f x ⇒, 则()()n f x f x → (B){}sup ()n nf x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ⇒,则()f x 可测5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( )(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数(C ))('x f 在],[b a 上L 可积 (D)⎰-=b aa fb f dx x f )()()('二. 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E 是[]0,1上有理点全体,则'E =______,oE =______,E =______.3、设E 是nR 中点集,如果对任一点集T 都_________________________________,则称E 是L 可测的 4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________,则称()f x 为[],a b 上的有界变差函数。
实变函数试卷一与参考答案
21考生答题不得超此(A )若()()n f x f x ⇒, 则()()n f x f x → (B) {}sup ()n nf x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ⇒,则()f x 可测5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( ) (A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))('x f 在],[b a 上L 可积 (D) ⎰-=b aa fb f dx x f )()()('二. 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E 是[]0,1上有理点全体,则'E =______,oE =______,E =______.3、设E 是n R 中点集,如果对任一点集T 都有_________________________________,则称E 是L 可测的4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数. (填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________________________,则称()f x 为[],a b 上的有界变差函数。
三、下列命题是否成立?若成立,则证明之;若不成立,则举反例说明.(5分×4=20分)1、设1E R ⊂,若E 是稠密集,则CE 是无处稠密集。
2、若0=mE ,则E 一定是可数集.3、若|()|f x 是可测函数,则()f x 必是可测函数。
4.设()f x 在可测集E 上可积分,若,()0x E f x ∀∈>,则()0Ef x >⎰四、解答题(8分×2=16分).1、(8分)设2,()1,x x f x x ⎧=⎨⎩为无理数为有理数 ,则()f x 在[]0,1上是否R -可积,是否L -可积,若可积,求出积分值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《实变函数》一、单项选择题1、下列各式正确的是( C D )(A )1lim n k n n k n A A ∞∞→∞===⋃⋂; (B )1lim n k n k n n A A ∞∞==→∞=⋂⋃(C )1lim n n n n k nA A ∞∞→∞===⋂⋃; (D )1lim n n n k nn A A ∞∞==→∞=⋃⋂;2、设P 为Cantor 集,则下列各式不成立的是( D )(A )=P c (B) 0m P = (C) P P ='(D) P P =3、下列说法不正确的是( B )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测 (C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( A )(A )若()()n f x f x ⇒, 则()()n f x f x → (B) {}sup ()n nf x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ⇒,则()f x 可测5. 下列说法不正确的是( C )(A) 0P 的任一领域内都有E 中无穷多个点,则0P 是E 的聚点(B) 0P 的任一领域内至少有一个E 中异于0P 的点,则0P 是E 的聚点 (C) 存在E 中点列{}n P ,使0n P P →,则0P 是E 的聚点 (D) 内点必是聚点6.设)(x f 在E 上L 可积,则下面不成立的是( C )(A))(x f 在E 上可测 (B))(x f 在E 上a.e.有限 (C))(x f 在E 上有界 (D))(x f 在E 上L 可积7. 设}{n E 是一列可测集,12n E E E ⊆⊆⊆⊆ ,则有(B )。
(A )1lim n n n n m E m E ∞=→∞⎛⎫⋃> ⎪⎝⎭ (B) 1lim n n n n m E m E ∞=→∞⎛⎫⋃= ⎪⎝⎭(C )1lim n n n n m E m E ∞=→∞⎛⎫⋂= ⎪⎝⎭;(D )以上都不对 9、设1[,2(1)],1,2,n n A n n=+-= ,则( B )(A) lim [0,1]n n A →∞= (B )=∞→n n A lim (0,1](C) lim (0,3]n n A →∞= (D )lim (0,3)n n A →∞=10、设E 是[]0,1上有理点全体,则下列各式不成立的是( D )(A )'[0,1]E = (B) oE =∅ (C) E =[0,1] (D) 1m E = 11、下列说法不正确的是( C )(A) 若B A ⊂,则B m A m **≤ (B ) 有限个或可数个零测度集之和集仍 为零测度集 (C) 可测集的任何子集都可测 (D )凡开集、闭集皆可测 12、设}{n E 是一列可测集, ⊃⊃⊃⊃n E E E 21,且+∞<1mE ,则有( A )(A )nn n n mEE m ∞→∞==⎪⎭⎫ ⎝⎛⋂lim 1 (B) nn n n mE E m ∞→∞=≤⎪⎭⎫ ⎝⎛⋃lim 1(C )nn n n mEE m ∞→∞=<⎪⎭⎫ ⎝⎛⋂lim 1;(D )以上都不对13、设f(x)是],[b a 上绝对连续函数,则下面不成立的是( B )(A) )(x f 在],[b a 上的一致连续函数 (B) )(x f 在],[b a 上处处可导 (C ))(x f 在],[b a 上L 可积 (D) )(x f 是有界变差函数 14.设,M N 是两集合,则 ()M M N --=( C )(A) M (B) N (C) M N ⋂ (D) ∅16. 下列断言( B )是正确的。
(A )任意个开集的交是开集;(B) 任意个闭集的交是闭集; (C) 任意个闭集的并是闭集;(D) 以上都不对; 17. 下列断言中( C )是错误的。
(A )零测集是可测集; (B )可数个零测集的并是零测集; (C )任意个零测集的并是零测集;(D )零测集的任意子集是可测集;18. 若()f x 是可测函数,则下列断言( A )是正确的(A) ()f x 在[],a b L -可积|()|f x ⇔在[],a b L -可积; (B) [][](),|()|,f x a b R f x a b R -⇔-在可积在可积 (C) [][](),|()|,f x a b L f x a b R -⇔-在可积在可积; (D) ()()(),()f x a R f x L +∞-⇒∞-在广义可积在a,+可积 19、设E 是闭区间[]0,1中的无理点集,则(A ).A 1m E = .B 0m E = .C E是不可测集 .D E 是闭集二、填空题1、()(())s s C A C B A A B ⋃⋂--=∅2、设E 是[]0,1上有理点全体,则'E =[]0,1,oE =∅,E =[]0,1.3、设E 是n R 中点集,如果对任一点集T 都有***()()c m T m T E m T E =⋂+⋂,则称E 是L 可测的.4、)(x f 可测的(充要)条件是它可以表成一列简单函数的极限函数.5、设11[,2],1,2,n A n nn=-= ,则=∞→n n A lim (0,2)6、设E R ⊂,若,E E ⊂'则E 是闭集;若0E E ⊂,则E 是开集;若'E E =,则E 是完备集.7、设{}i S 是一列可测集,则11i ii i m S mS ∞∞==⎛⎫⋃≤ ⎪⎝⎭∑8、设集合N M ⊂,则()M M N --=N9、设P 为Cantor 集,则 =P c ,m P =0,oP =∅。
10、果洛夫定理:设}{,)(n f E m ∞<是E 上一列..e a 收敛于一个..e a 有限的函数f的可测函数,则对任意,0>δ存在子集E E ⊂δ,使}{n f 在δE 上一致收敛且δδ<)\(E E m 。
11、)(x f 在E 上可测,则)(x f 在E 上可积的充要条件是|)(x f |在E 上可积. 12、设P 为Cantor 集,则 =P c ,m P =0,oP =∅。
13、设{}i S 是一列可测集,则11i ii i m S mS ∞∞==⎛⎫⋃≤⎪⎝⎭∑14、鲁津定理:设()f x 是E 上..a e 有限的可测函数,则对任意0δ>,存在闭子集E E δ⊂,使得()f x 在E δ上是连续函数,且(\)m E E δδ<。
15、设()F x 为[],a b 上的有限函数,如果对任意0,0εδ>∃>,使对[],a b 中互不相交的任意有限个开区间(),,1,2,,,i i a b i n = 只要()1nii i ba δ=-<∑,就有1|()()|ni i i Fb F a ε=-<∑则称()F x 为[],a b 上的绝对连续函数。
16、()(),,a b -∞+∞ ,因为存在两个集合之间的一一映射为()()()t a n ,,.2x x a x a b b a ππϕ⎡⎤=--∈⎢⎥-⎣⎦.17、设E 是2R 中函数1cos ,00,0x y x x ⎧≠⎪=⎨⎪ =⎩的图形上的点所组成的 集合,则{}1(,)cos ,0(0,)1E x y y x y y x ⎧⎫'==≠≤⎨⎬⎩⎭ ,E ︒=∅ .18、设E 是闭区间[],a b 中的全体无理数集, 则m E b a =-.19、设nE R⊂,0nx R∈,若0x 的任一邻域内都含有无穷多个属于E 的点,则称0x 是E 的聚点.20设{}()n f x 是E 上几乎处处有限的可测函数列, ()f x 是E 上 几乎处处有限的可测函数, 若0σ∀>, 有lim ()()0n n mE f x f x σ→∞⎡-≥⎤= ⎣⎦, 则称{}()n f x 在E 上依测度收敛于()f x . 三、判断1、设1E R ⊂,若E 是稠密集,则c E 是无处稠密集。
F2、若0=mE ,则E 一定是可数集.F3、若|()|f x 是可测函数,则()f x 必是可测函数。
F4.设()f x 在可测集E 上可积分,若,()0x E f x ∀∈>,则()0Ef x >⎰ F5、A 为可数集,B 为至多可数集,则A ⋃B 是可数集.T6、若0=mE ,则0=E m F7、若|()|f x 是可测函数,则()f x 必是可测函数F8.设()f x 在可测集E 上可积分,若,()0x E f x ∀∈>,则()0Ef x >⎰ F9、任意多个开集之交集仍为开集 F10、若0=mE ,则E 一定是可数集.F 11、..a e 收敛的函数列必依测度收敛。
F12、由于[](){}0,10,10,1-=,故不存在使()[]0,101和,之间11-对应的映射。
F 13、可数个零测度集之和集仍为零测度集。
T14、 若,A B 可测, A B ⊂且A B ≠,则m A m B <.F 15、设E 为点集, P E ∉, 则P 是E 的外点. F16、点集11,2,,E n ⎧⎫=⎨⎬⎩⎭为闭集.F17、任意多个闭集的并集是闭集.F 四、解答题1、设2,(),x x f x a x ⎧=⎨⎩为无理数为有理数,则()f x 在[]0,1上是否R -可积,是否L -可积,若可积,求出积分值。
解:()f x 在[]0,1上不是R -可积的,因为()f x 仅在x a =处连续,即不连续点为正测度集,因为()f x 是有界可测函数,()f x 在[]0,1上是L -可积的因为()f x 与2x ..a e 相等,进一步,[]120,11()3f x dx x dx ==⎰⎰2、求0ln()lim cos xnx n exdx n∞-+⎰解:设ln()()cos xn x n f x exn-+=,则易知当n →∞时,()0n f x →又因'2ln 1ln 0t t t t -⎛⎫=< ⎪⎝⎭,(3t ≥),所以当3,0n x ≥≥时, ln()ln()ln 3ln 3(1)33x n n x x n n x x n nx nn++++=≤≤++从而使得ln 3|()|(1)3xn f x x e-≤+但是不等式右边的函数,在[)0,+∞上是L 可积的,故有0lim ()lim ()0n n nn f x dx f x dx ∞∞==⎰⎰,0lim()lim ()0n n nnf x dx f x dx ∞∞==⎰⎰3、求极限 121322limsin 1n nx nxdx n x→∞+⎰解:记12322()sin 1n nx f x nx n x=+则)(x f n 在[0,1]上连续,因而在[0,1]上(R )可积和(L )可积. 又 ]1,0[,0)(lim ∈=∞→x x f n n111223222221|()||sin |||211n nx nx f x nx xn xn x-=≤≤⋅++ ,2,1],1,0[=∈n x且2121-⋅x在]1,0[上非负可积,故由Lebesgue 控制收敛定理得12111322lim ()()lim sin 001n n n nx R f x dx nxdx dx n x→∞→∞===+⎰⎰⎰4、设,()1,x x f x x ⎧=⎨⎩为无理数为有理数,则()f x 在[]0,1上是否R -可积,是否L -可积,若可积,求出积分值。