空间数据质量特性与质量控制.
如何进行空间数据质量评估与管理
如何进行空间数据质量评估与管理空间数据质量评估与管理在现代社会中扮演着至关重要的角色。
随着地理信息系统技术的发展和应用领域的扩大,人们对于空间数据的准确性、一致性和可靠性的要求也越来越高。
本文将探讨如何进行空间数据质量评估与管理,以确保数据的高质量。
一、空间数据质量的概念空间数据质量是指地理信息系统中空间数据的准确性、精确性、完整性、一致性、可靠性和实用性的程度。
一个高质量的空间数据集必须满足这些要求,并且能够应对各种应用场景的需求。
二、空间数据质量评估的方法1. 数据源审查:对于从不同数据源获取的空间数据进行审查,评估其数据质量和可靠性。
可以比较不同数据源的数据准确性,选择最可靠的数据源作为基础数据。
2. 数据预处理:对于空间数据中存在的错误、缺失和重复等问题进行预处理。
通过数据清洗、数据纠错和数据集成等手段,提高数据质量。
3. 数据一致性检验:对于空间数据中的相同属性,比较其值的一致性。
通过进行空间数据一致性检验,可以识别和解决数据集中的不一致问题,保证数据的一致性和正确性。
4. 数据精度评估:通过与现实世界进行对比,评估空间数据的精度和准确性。
可以采用地面实地测量、高精度仪器设备测量等方法,与空间数据进行比对。
5. 数据可视化分析:通过地图制作和可视化分析等手段,直观地展示空间数据的质量情况。
可以通过色彩渐变、标记点和线等方式,显示数据的精度范围和误差。
三、空间数据质量管理的策略1. 数据质量策略:制定科学合理的数据质量策略,明确数据质量指标和要求。
根据应用需求,确定数据质量评估的频率和方式,确保数据的高质量和可靠性。
2. 数据质量监控:建立数据质量监控体系,定期对空间数据进行监测和评估。
通过数据质量监控,及时发现和解决数据质量问题,保证数据的及时更新和有效性。
3. 数据质量培训:加强对数据操作人员的培训和管理,提高其对空间数据质量重要性的认识。
通过培训和知识传授,提高数据操作人员的技能和能力,减少数据质量问题的发生。
保证空间数据质量的措施
保证空间数据质量的措施空间数据是指以地理位置为基础,包括位置信息和属性信息的数据。
其准确性和一致性对于许多应用是至关重要的,例如智慧城市、环境保护、交通管理等。
因此,保证空间数据的质量至关重要。
本文将介绍一些保证空间数据质量的措施。
数据采集数据采集是保证空间数据质量的第一步。
合理的数据采集方法和技术可以大大提高数据质量。
以下是一些数据采集的措施:1.采用高精度测量设备。
可以使用高精度的地理位置测量设备,如全球卫星定位系统(GPS)等,以确保位置数据的准确性。
2.标准化采集过程。
采集过程需要标准化,包括采集员的培训、采集器的标准设置、采集数据的格式等,以减少人为因素对数据的影响。
3.数据有效性验证。
采集后需要对数据进行有效性验证,检查是否有数据丢失、拓扑关系是否错误等。
数据处理数据处理是保证空间数据质量的关键步骤。
以下是一些数据处理的措施:1.进行数据清洗。
清洗数据是指将错误、重复或缺失的数据从数据集中删除或纠正。
这可以通过使用自动化工具、手动编辑等多种方法来实现。
2.进行数据校验。
对数据进行校验,以确保其准确性和一致性。
这可以通过使用数据规则、拓扑规则等方法来实现。
3.进行空间数据质量评估。
评估数据集的空间数据质量,可以通过使用一些工具和指标,如空间相关性、完整性、一致性、拓扑正确性等等。
数据发布数据发布是保证空间数据质量的最后一步。
以下是一些数据发布的措施:1.定期更新数据。
尽量在保证数据质量的前提下,定期更新数据,并及时发布新版本数据。
2.提供元数据。
提供元数据可以使数据更容易被理解和使用,同时也可以提高数据质量。
3.开放数据。
将数据开放给社区或其他利益相关者使用,可以使数据更广泛地使用和受益。
总结空间数据的质量对于许多应用是至关重要的。
数据采集、处理和发布是保证空间数据质量的三个关键因素。
在数据采集过程中,需要使用高精度设备,标准化采集过程并进行数据有效性验证。
在数据处理过程中,需要进行数据清洗、校验和空间数据质量评估。
空间数据质量控制与评估方法
空间数据质量控制与评估方法随着信息技术的快速发展,空间数据在各个领域中的应用也越来越广泛。
然而,由于空间数据的特殊性,其准确性和可靠性成为了一个重要的问题。
因此,空间数据质量控制和评估方法的研究就显得尤为重要。
空间数据质量控制主要涉及数据的准确性、一致性和完整性等方面。
准确性是指数据与真实情况的吻合程度,一致性是指数据之间的内在关系是否保持一致,完整性是指数据是否完整且没有缺失。
而评估方法则是通过一系列指标来对空间数据的质量进行评估。
在实际应用中,空间数据质量控制和评估方法具有很高的复杂性。
首先,空间数据通常是大规模的,涵盖的地理范围广泛,因此需要考虑数据的空间关系。
其次,空间数据常常包含多个属性,例如位置、形状、颜色等,对于不同属性的数据质量控制和评估方法也不尽相同。
此外,空间数据在不同应用场景下具有不同的特点,需要根据具体的需求进行适当的质量控制和评估。
对于空间数据的准确性控制和评估,常用的方法包括基于真实场景的比对、基于精度要求的检验等。
基于真实场景的比对通常是通过与现场实际情况进行对比来判断数据的准确性。
例如,在测绘领域中,通过采集实地数据与地图数据进行比对,可以发现地图数据中可能存在的错误和偏差。
基于精度要求的检验是根据数据使用者的需求,进行相应的准确性检验。
例如,在导航系统中,需要保证位置数据的准确性以提供准确的导航路线。
空间数据的一致性控制和评估主要涉及数据之间的关系是否保持一致。
在地理信息系统中,常用的一致性检验方法包括拓扑关系检验、拓扑修复等。
拓扑关系检验是通过检测数据之间的拓扑关系是否保持一致来评估数据的一致性。
拓扑修复则是针对一致性问题进行修复,例如通过修复边界错误或交叉错误来保持数据的一致性。
空间数据的完整性控制和评估也是非常重要的。
数据的完整性主要包含数据的缺失和遗漏情况。
在地理信息系统中,常用的方法包括通过数据采集、空间插值等手段来补充缺失的数据。
此外,还可以通过数据的连续性和一致性来评估数据的完整性。
空间数据与数据质量
空间数据与数据质量一、引言空间数据是指与地理位置相关的数据,它包含了地理坐标、地理特征、地理属性等信息。
随着技术的发展和数据的广泛应用,空间数据在各个领域中扮演着重要的角色。
然而,空间数据的质量问题向来是一个关注的焦点。
本文将探讨空间数据的概念、特点以及数据质量的评估和提升方法。
二、空间数据的概念和特点1. 空间数据的概念空间数据是指与地理位置相关的数据,它包含了地理坐标、地理特征、地理属性等信息。
空间数据可以分为矢量数据和栅格数据两种形式。
矢量数据以点、线、面等几何对象来表示地理要素,如地图中的道路、河流等;栅格数据以像素矩阵的形式来表示地理要素,如遥感影像等。
2. 空间数据的特点空间数据具有以下特点:(1)地理位置相关性:空间数据与地理位置密切相关,可以通过地理坐标来描述地理要素的位置。
(2)多维性:空间数据包含了地理特征、地理属性等多个维度的信息,可以提供更为全面的地理分析。
(3)时空关联性:空间数据可以通过时间维度来描述地理要素的变化和演化,反映地理现象的时空关联关系。
三、数据质量的评估指标评估空间数据的质量是保证数据可靠性和有效性的重要手段。
以下是常用的空间数据质量评估指标:1. 精度:精度是指数据与真实情况之间的差异程度。
对于矢量数据,可以通过与实地调查数据进行比对来评估精度;对于栅格数据,可以通过与高分辨率遥感影像进行比对来评估精度。
2. 完整性:完整性是指数据是否包含了所有需要的信息。
完整性评估可以通过检查数据是否缺失关键属性或者要素来进行。
3. 一致性:一致性是指数据内部的逻辑关系是否一致。
一致性评估可以通过检查数据中的逻辑关系是否符合预期来进行。
4. 可用性:可用性是指数据是否易于使用和访问。
可用性评估可以通过数据格式、数据结构、数据接口等方面来进行。
5. 及时性:及时性是指数据的更新频率和延迟程度。
及时性评估可以通过数据更新的时间间隔和更新策略来进行。
四、数据质量的提升方法为了提高空间数据的质量,可以采取以下方法:1. 数据采集过程中的质量控制:在数据采集阶段,应采取严格的质量控制措施,包括合理的采样设计、准确的测量方法和设备校准等,以确保数据的准确性和可靠性。
空间数据与数据质量
空间数据与数据质量一、引言空间数据是指以地理位置为基础的数据,包括地图数据、卫星遥感数据、GPS 轨迹数据等等。
随着数字化时代的到来,空间数据的应用范围越来越广泛,涉及到城市规划、交通管理、环境监测、农业生产等各个领域。
然而,由于空间数据的特殊性,其质量对于数据应用的准确性和可靠性至关重要。
本文将详细介绍空间数据的概念、数据质量的评估指标以及提高数据质量的方法。
二、空间数据的概念空间数据是以地理位置为基础的数据,其包含了地理坐标、地理特征、地理属性等信息。
地理坐标用于确定地理位置,地理特征描述了地理现象的形态和特点,地理属性则是对地理现象的属性进行描述。
空间数据可以通过地图、遥感图像、GPS轨迹等形式进行表示和表达。
三、数据质量的评估指标评估空间数据的质量需要考虑多个指标,以下是常用的评估指标:1. 精度:精度是指空间数据的准确性和精确性。
准确性是指空间数据与实际地理现象之间的一致性,而精确性是指空间数据中地理位置的精细程度。
常用的评估方法包括与实地调查对比、误差分析等。
2. 完整性:完整性是指空间数据中是否包含了全部的地理信息。
评估完整性可以通过检查数据是否缺失、是否存在空值等方式进行。
3. 一致性:一致性是指空间数据中各个要素之间的逻辑关系是否一致。
评估一致性可以通过检查数据中的逻辑错误、冲突等方式进行。
4. 可用性:可用性是指空间数据是否能够满足用户的需求。
评估可用性可以通过用户满意度调查、数据访问速度等方式进行。
四、提高数据质量的方法为了提高空间数据的质量,可以采取以下方法:1. 数据采集过程中的质量控制:在数据采集过程中,应严格控制数据的质量。
例如,在采集GPS轨迹数据时,可以通过增加采样频率、使用高精度的GPS设备等方式提高数据的质量。
2. 数据清洗和处理:对于已有的空间数据,可以进行数据清洗和处理,去除错误和冲突的数据,提高数据的一致性和准确性。
例如,可以使用数据清洗算法对数据进行自动清洗,或者通过人工审核的方式进行数据清洗。
浅谈空间数据质量管理
障, 同时 也 将 对 各 类 不 同 部 门 的 决 策 和 减 涉 及 到 矿 产 、 地籍、 测 绘 等 多个 行 业 。 具 体 的影响 。 础数 据库 建 设 、 土 地 利 用 现 状 数 据库 建 设 、 2 0 世纪 7 0 年代以来 , 由于 微 电子 、 软 件 办 公 业 务 网 络 系统 建 设 等 , 每 一 个 都 是 庞 技术的重 大突破 , 推 动 了 信 息 技 术 的 迅 猛 大 而 复 杂 的 系 统 工程 。 而 国土 资 源 信 息 化
探 讨 空阍 数据 质量 管理 的重 要作 用。 关键 词 : 空闯数据 国土 资源信息化 数据质量 管理
中 图分 类 号 : P 2 0 8
文 献 标 识码 : A
文章 编号 : 1 6 7 2 - 3 7 9 1 ( 2 0 1 3 ) 0 7 ( a ) - O 0 2 0 - 0 2
2 数据质量定义及空 间数据的特点
2 . 1数据质 量 数据 质量 是 数 据 对 于 明示 和 隐 含 的 应
共 享速 度 的 加 快 和 空 间数 据 应 用 领 域 的 不 开 发 , 市 场 经 济 条 件 下 资 源 配 置 的 问题 亟 用 需 求 的 满 足 程 度 ; 可 从 两 个 方面 来 理 解 断扩大 , 特 别 是 当 通过 对空 间数 据 的 分 析 , 需要 破解 ……面对前所未 有的压 力, 国 土 数 据 质量 的 定 义 。 来 支持辅助管理 、 设计 、 规划或决 策时 , 由 资 源 管 理 部 门 认 识 到 应 尽 快 并 且 是 必须 建
1 研究背景
1. 1 空间 数据 及信 息化
空间数据质量控制
DEMO THREE
ArcGIS Data Reviewer
一.ArcGIS Data Reviewer简介 二.自动化的数据检查 三.批量化的数据检查
四.可视化的数据检查
五.小结
可视化的数据检查
• 提交记录
子类
要素类或表中的对象分组 行为一致 子类型字段定义
- 字段类型为整型 - 各个字段可设置不同的缺省值和属性域
目录
一.空间数据质量控制简介 二.ArcGIS Data Reviewer 三.总结与讨论
ArcGIS Data Reviewer
一.ArcGIS Data Reviewer简介 二.自动化的数据检查 三.批量化的数据检查
ReViewer 主要构成内容 自动化和可视化质检工具集
ReViewer 工作空间
ReViewer 会话
ReViewer 表
ArcGIS Data Reviewer简介
自动化、可视化质检工具
ArcGIS Data Reviewer简介
ReViewer 工作空间
Geodatabase
作为其他解决方案的一个组件
Esri Production Mapping Esri Nautical Solution Esri Defense Solution Esri Aernautical Solution
独立扩展
17
质量控制流程图
检查 修正 审核
标记例外
接受
查找
记录
• 产品信息
– /software/arcgis/extensions/arcgisdata-reviewer/index.html – ArcGIS Data ReViewer Checks 海报 – 白皮书
浅谈空间数据质量管理
浅谈空间数据质量管理摘要:随着测绘技术的不断进步和空间数据库的日益庞大,空间数据已经发展成为GIS的血液,它的质量将对于数据交换、共享和使用都有很大的影响,同时也将直接影响着GIS应用、分析、决策的正确性和可靠性,因此空间数据质量问题越来越受到广大用户的关注,如何对其进行有效的质量控制,对其进行全面、科学的度量和评价显得越来越重要。
本文利用其中的“土地利用现状数据库建设”项目,探讨空间数据质量管理的重要作用。
关键词:空间数据国土资源信息化数据质量管理1 研究背景1.1 空间数据及信息化随着现代地理信息技术的发展、信息共享速度的加快和空间数据应用领域的不断扩大,特别是当通过对空间数据的分析,来支持辅助管理、设计、规划或决策时,由于它的空间分析功能与决策作用主要依赖于GIS中的空间数据,因此,空间数据自身的质量将显得越来越重要,它的优劣程度将直接影响GIS分析与决策的结果。
因此,对空间数据进行质量控制研究,保证空间数据的质量,就是为GIS生存和发展提供保障,同时也将对各类不同部门的决策和减少GIS设计与开发的盲目性等方面有深远的影响。
20世纪70年代以来,由于微电子、软件技术的重大突破,推动了信息技术的迅猛发展和广泛应用,引发了一场新的全球性信息革命。
信息技术已经成为继蒸汽机技术和电力技术之后,又一项对经济社会发展产生深刻影响的通用性技术。
信息化水平已成为衡量一个国家和地区现代化水平的重要标志。
加快信息化建设,这是国土资源管理在新形势的迫切需要。
目前,国土资源管理的任务更加艰巨,形势十分紧迫。
工业化和城市化加速扩张和有限的土地资源、矿产资源的矛盾日渐加大;关于资源利益方面的诉求一直高居不下,土地资源的非法使用、乱采滥挖矿产资源的现象仍然严重;在经济全球化的发展背景下的国土资源利用开发,市场经济条件下资源配置的问题亟需要破解……面对前所未有的压力,国土资源管理部门认识到应尽快并且是必须建立一个全新的管理理念,通过应用现阶段的全世界的日新月异的技术,提高管理的效率。
如何进行空间数据的质量控制
如何进行空间数据的质量控制空间数据的质量控制是现代社会中不可或缺的一个环节。
随着科技的不断发展和应用,我们越来越依赖于精确、可靠的空间数据来进行各种决策和规划。
而空间数据的质量控制涉及到多个方面,包括采集、处理、分析和应用等。
下面将从不同的角度探讨如何进行空间数据的质量控制。
首先,空间数据的采集是质量控制的第一步。
在采集过程中,要考虑多种因素对数据质量的影响,如传感器精度、数据完整性和采样密度等。
传感器精度是指采集设备的精确度,它直接影响到数据的准确性。
如果传感器精度较低,那么采集到的数据就可能存在一定的偏差,进而影响后续分析和应用的结果。
因此,在采集过程中要选择合适的设备,确保传感器的精度能够满足需求。
另外,数据完整性也是非常重要的一个因素。
所谓数据完整性,是指采集到的数据是否涵盖了所研究区域的全部信息。
如果数据不完整,就会导致分析结果的偏差。
因此,在采集过程中要注意确保数据的完整性,可以采用采样点的交叉验证或者遥感图像的覆盖率来评估数据的完整性。
除了采集过程,空间数据的处理也是质量控制的关键环节。
在数据处理过程中,要注意数据的精度保持和去噪。
精度保持是指在数据处理过程中尽量减小数据质量的丢失,保持数据的准确性。
而去噪则是指去除数据中由于环境和传感器等原因引起的噪声和异常值。
这些噪声和异常值可能会对分析和应用结果造成较大的影响,因此需要采用适当的方法进行去除。
另外,空间数据的分析也是质量控制的重要环节。
在数据分析过程中,需要注意数据的合理性和一致性。
数据的合理性是指分析结果是否符合现实情况,在进行分析时需要根据实际情况进行合理的假设和推断。
而数据的一致性是指同一数据的不同分析结果是否一致,需要进行交叉验证和比较来确保数据分析的一致性。
同时,在数据分析过程中要充分利用专业知识和科学方法,确保分析结果的可信度和可靠性。
最后,空间数据的应用也需要进行质量控制。
在数据应用过程中,要注意数据的可重复性和可追溯性。
地理信息技术专业中的空间数据质量控制方法介绍
地理信息技术专业中的空间数据质量控制方法介绍在地理信息技术专业中,空间数据质量控制是一个非常重要的环节。
保证空间数据的准确性和可靠性对于地理信息系统的应用具有至关重要的意义。
本文将介绍几种常见的空间数据质量控制方法,包括数据采集、数据处理和数据验证三个方面。
一、数据采集数据采集是空间数据质量控制的第一步,其目的是获取准确的原始数据。
在进行数据采集时,应该注意以下几个方面:1.选择合适的数据采集设备和技术。
根据采集任务的特点,选择合适的设备和技术进行数据采集,如GPS定位、遥感影像采集等。
2.确保数据采集设备的准确性和稳定性。
校准仪器,及时进行设备维护,以保证采集的数据准确无误。
3.制定数据采集规范和操作流程。
建立标准的采集规范和操作流程,对数据采集人员进行培训和指导,以确保数据采集的一致性和准确性。
二、数据处理数据处理是对采集到的原始数据进行整理、清洗和转换的过程,其目的是消除数据中的误差和噪声,提高数据的质量。
在进行数据处理时,应该注意以下几个方面:1.数据清洗。
通过对数据进行筛选、去重、去噪等操作,消除数据中的错误和冗余部分。
2.数据配准和校正。
对不同数据源的数据进行配准和校正,使其在空间位置上达到一致,提高数据的精度和准确性。
3.数据转换和投影。
根据实际需求,将数据转换为统一的坐标系统和数据格式,以便于后续的分析和应用。
三、数据验证数据验证是对处理后的数据进行质量评估和验证的过程,其目的是确保数据的可信度和有效性。
在进行数据验证时,应该注意以下几个方面:1.数据一致性检查。
对数据进行一致性检查,包括数据的拓扑关系、属性信息等,以确保数据的完整性和一致性。
2.数据精度评估。
通过与实地调查、高精度数据或其他可靠数据源的对比,评估数据的精度和准确性。
3.数据质量报告。
生成数据质量报告,对数据进行全面的质量评估和分析,并提出质量改进的建议。
综上所述,地理信息技术专业中的空间数据质量控制是一个关键的环节,涉及数据采集、数据处理和数据验证三个方面。
空间数据质量特性与质量控制
空间数据质量特性与质量控制范志坚1,2,方源敏1,汪虹2(1.昆明理工大学国土资源工程学院昆明 650093;2.云南省基础地理信息中心昆明 650034)摘要:本文主要讨论空间数据质量特性、质量控制所涉及的内容。
结合笔者最近从事空间数据库建库的具体实践和工作体会,探讨从位置精度、属性精度、时间精度、数据完整性和逻辑一致性等方面对数据质量进行全面控制,最终建成一个质量可靠的空间数据库。
关键词:地理信息系统;空间数据库;空间数据;质量特性;质量控制Quality characteristic and Quality control of Spatial dataFan Zhi-jian1,2,Fang Yuan-min1,Wang-Hong2(1.Faculty of Land Resources Engineering,Kunming University of Science and Technology,Kunming650093,China;2.Yunnan Provincial Geomatics center,Kunming 650034,China)Abstract:This paper mainly talks over contents which are involved with quality characteristic and quality control of spatial data.Integrating with concrete practice and work experience which the writer has recently been engaged in establishing spatial database,a very comprehensive control of data quality should be discussed from aspects of positional accuracy、attribute accuracy、temporal accuracy、data compression、as well as logic conformance and so on.Finally,a dependable spatial database should be set up.Key words:GIS;spatial database;spatial data;quality characteristic;quality control0 引言空间数据库是随着地理信息系统(GIS)的开发和应用而发展起来的数据库新技术,它是地理信息系统的重要组成部份,是地理信息系统应用部份的前题和基础。
如何对地理空间数据进行质量控制
如何对地理空间数据进行质量控制地理空间数据质量控制是现代地理信息科学领域的重要课题之一。
随着地理空间数据在各个领域的广泛应用,质量控制的重要性愈发凸显。
本文将从数据采集、数据处理和数据验证三个方面来探讨如何对地理空间数据进行质量控制。
一、数据采集对地理空间数据进行质量控制的第一步是确保采集到的数据具有高准确性和完整性。
在数据采集前,需要明确采集目的和需求,确定采集区域和时间,并制定详细的采集计划。
采集人员需要经过专业培训,掌握地理数据采集的方法和技巧。
在数据采集过程中,应使用高精度的测量仪器和设备,确保采集到的地理数据具有高度准确性。
同时,采集环境应尽量避免干扰和干扰源,避免造成数据误差。
二、数据处理数据采集完毕后,需要进行数据处理,包括数据清洗、数据整合和数据转换等步骤。
数据清洗是指对采集到的数据进行筛选、去除冗余和修正错误,保证数据的准确性和一致性。
数据整合是指将不同来源、不同格式的数据进行整合,形成统一的数据集。
数据转换是指将数据从一种形式或格式转换为另一种形式或格式,以满足特定需求。
在数据处理过程中,应根据专业知识和经验,采用合适的方法和工具进行数据处理,以确保数据处理结果的准确性和可靠性。
同时,需要进行必要的质量检查和验证,以确保数据处理结果符合预期要求。
三、数据验证数据验证是对处理后的数据进行质量检查和验证,以确认数据的准确性和可靠性。
数据验证可以通过与实际情况的对比、与其他已验证数据的对比或使用专业的验证工具来进行。
在数据验证过程中,可以采用可视化手段,如地图、图表等,对数据进行分析和比较,以发现数据的潜在问题和错误。
同时,可以进行统计分析和空间分析,对数据进行进一步的验证和评估。
数据验证的结果应以适当的方式记录和报告,以供后续使用和参考。
对于不符合要求的数据,需要进行修正或重新采集,直到符合要求为止。
总之,对地理空间数据进行质量控制是确保数据的准确性和可靠性的关键步骤。
通过规范的采集、处理和验证流程,可以有效地提高地理空间数据的质量,为各个领域的应用提供可靠的数据支撑。
简述空间数据误差来源与数据质量控制方法
简述空间数据误差来源与数据质量控制方法空间数据是指以地理位置为主要特征的数字化信息,是现代地理空间信息技术的核心技术和重要基础设施。
空间数据具有客观性、可重复性、模糊度和相对性等特点。
因此,它在时空维度上贴近实际,有助于对社会实体在空间尺度上进行研究和分析。
然而,由于现有技术和设备的局限性,空间数据的误差问题也很常见。
这可能是由于采集设备的性能,例如未考虑斜坡陡峭的技术限制,性能,例如精度限制和采样间隔,甚至是误报,例如超限引起的,以及由于人为原因导致的误报,如设置误差和输入误报。
此外,抽样误差也是影响空间数据质量的主要原因。
空间数据中存在着大量潜在误差,例如观测时间,测量、模型和计算误差。
采样误差是由于采样率不一致或采样无效率造成的,从而影响空间数据的准确性和完整性。
此外,由于计算机技术的发展,许多地理空间分析技术可以运用在空间数据中,它可以将空间数据的属性和空间结构相结合,更好地呈现出有用的信息,但是这些信息也受到数据误差的影响。
因此,可以采取一些措施来控制空间数据质量,以减少误差对空间数据产品的影响。
针对不同来源的空间数据误差,可以采取不同的数据质量控制方法。
首先,可以采用数据质量检查方法,以及具有负责任的质量控制策略来检测和控制空间数据的质量。
其次,可以使用模糊集理论和蒙特卡洛模拟等技术,对数据的误差进行定量化衡量,并使用现有的空间分析技术和空间可视化技术,对数据的质量进行可视化分析。
此外,可以使用多元统计分析和模糊集理论相结合的方法,从数据的视角对空间数据误差进行定量化分析,以及通过优化方法来分析空间数据的分类特征和空间模式,进一步提高空间数据的质量。
综上所述,空间数据误差可能有多种来源,如技术误差、人为误差和抽样误差等,而这些误差也会影响空间数据的质量。
因此,应采取有效的数据质量控制策略,包括数据质量检查、定量化衡量、可视化分析及定量分析,以及通过优化技术对空间数据进行分类和模式分析,以降低空间数据误差对空间数据产品质量的影响,进而保证空间数据的准确性和完整性。
空间数据误差和质量控制
实例
c1 25
20
15
10
5
0 0
10
20
单位图幅的总缺陷数C控制图
UCL=23.44 CL=12.73
LCL=2.03 30 Number
c2 16 12
8 4 0 -4
0
10
Hale Waihona Puke 20单位图幅位置精度的总缺陷数C控制图
UCL=12.32 CL=5.37
LCL=-1.58 30 Number
谢谢
22
2 重缺陷——单位产品的重要质量特性不符合规定, 或者单位产品的质量特性严重不附和规定,对用户 有重大影响。
3 一般缺陷——单位产品的一般质量特性不符合规 定,或者单位产品质量特性不符合规定,对用户使 用有轻微影响。
(五) 质量评定
1 单位产品质量评定 2 检验批质量判定 3 检查验收报告
(三) 空间数据之间关系正确的 检验
检测时可将回放图与源图套合或采用屏 幕漫游目视检查以及计算机程序检查面 状要素是否封闭、线状要素是否连续、 同一地物在不同图幅的分类、图层属性 是否相同。
(四) 缺陷分类
1 严重缺陷——单位产品的极重要质量特性不符合 规定,或单位产品的质量特性极不符号规定,以致 不经返工处理不能提供用户使用。
3. 空间数据之间的关系
1 空间实体的点线面类型定义必须正确。 2 保证多边形空间实体的封闭性。 3 保证线状空间实体的连接性。 4 保证组合实体与基础图形要素之间的正
确相关性,比如组合实体“建筑物”由 建筑物外墙线、其标识码、门牌号等基 本要素组成。
5 保证编码不重复(组合实体、基础图形要素) 6保证符合组合实体间和基础图形要素之间的关
系原则,其中包括:
空间数据与数据质量
空间数据与数据质量一、引言空间数据是指与地理位置相关的数据,它包括地理信息系统(GIS)所使用的各种数据类型,如地理坐标、地形、地貌、地物属性等。
在现代社会中,空间数据在各个领域中扮演着重要的角色,如城市规划、环境保护、交通管理等。
然而,空间数据的质量对于数据的有效性和可靠性至关重要。
本文将详细介绍空间数据的质量标准和相关的数据质量评估方法。
二、空间数据质量标准1. 精确性:空间数据的精确性是指数据与真实世界的一致性程度。
精确性可以通过比较实际测量值和数据值之间的差异来评估。
例如,通过测量实际地理坐标与空间数据中的坐标进行比较,可以评估空间数据的精确性。
2. 完整性:空间数据的完整性是指数据中是否包含了所有需要的信息。
完整性可以通过检查数据是否存在缺失、空值或者错误值来评估。
例如,在一个城市地图中,如果某个区域的地理要素缺失或者错误,就会影响到数据的完整性。
3. 一致性:空间数据的一致性是指数据中的各个要素之间是否具有逻辑上的一致性。
一致性可以通过检查数据之间的关联关系和逻辑关系来评估。
例如,在一个道路网络数据中,道路之间的连接关系和道路等级应该是一致的。
4. 可用性:空间数据的可用性是指数据是否易于获取和使用。
可用性可以通过检查数据的格式、存储方式和访问方式来评估。
例如,如果数据存储在一个难以访问的数据库中,就会影响到数据的可用性。
5. 可信度:空间数据的可信度是指数据的可靠性和可信程度。
可信度可以通过检查数据的来源、采集方法和数据处理过程来评估。
例如,如果数据来源于可靠的测量仪器和专业人员的采集,就可以提高数据的可信度。
三、空间数据质量评估方法1. 数据采集:在进行空间数据质量评估之前,首先需要进行数据采集。
数据采集可以通过现场测量、遥感技术、地理信息系统等方法进行。
采集到的数据应该包括地理坐标、地物属性、地形、地貌等信息。
2. 数据清洗:数据清洗是指对采集到的数据进行预处理,去除错误、重复、缺失等问题。
空间数据规范控制与质量检查
创建Session、获得Session列表、获取质检状态列表。
ArcGIS Data Reviewer API for Flex/Javascript
Batch Validation Manager
Report Feature Widget
Dashboard widget
ReViewer 会话
与编辑会话类似
与数据的交互
执行质检、存储结果 质检库多个质检会话
ArcGIS Data Reviewer
质检表
数据检查的核心 记录异常或错误 记录更正和核查状态 错误导航
ArcGIS Data Reviewer使用
一.检查项 二.自动化的数据检查 三.批量化的数据检查 四.可视化的数据检查
ArcGIS Data Reviewer for Desktop
安装授权
ArcGIS Data Reviewer
处理和评估空间数据质量的系统
检查 自动化检查 批量化检查 可视化检查
修正 ArcGIS Editor 工具 记录修正状态
审核 记录审核验证结果
ArcGIS Data Reviewer
检查项
自动数据检查
a) 选择检查项 b) 配置检查项 c) 运行检查项 d) 选择参与检查要素
自动数据检查
两个选项
浏览要素 直接写入ReViewer Table
浏览要素
一次查看一条记录 将所有记录都写入ReViewer Table 或者只写入当前记录
批数据检查
创建新的批处理工作文件 打开已经存在的批处理工作文件 插入批出工作文件
安装授权
ArcGIS Data Reviewer for Server
空间数据的采集和质量控制
空间数据的采集和质量控制1. 空间数据的意义和应用空间数据是指描述地球上特定位置的数据,主要包括地理位置、坐标和属性特征等信息。
空间数据的采集和质量控制在现代科技和社会发展中具有极其重要的意义和广泛的应用。
首先,空间数据是地理信息系统(Geographic Information System,GIS)的基础。
GIS是一种将地理数据与计算机技术相结合的专门系统,可以用于地理分析、空间模拟、决策支持和资源管理等方面。
而空间数据就是构建GIS系统的核心要素,它为地理信息系统的建立提供了基础数据。
其次,空间数据在城市规划、土地利用和环境保护等方面起到重要作用。
通过对空间数据的采集和分析,可以获得城市的地形、道路、建筑物、水资源和植被等信息,有助于城市规划和土地利用的科学决策。
同时,空间数据还可以用于环境监测和保护,利用遥感技术和卫星数据可以对地球表面的环境变化进行监测和分析,从而提供科学依据和决策支持。
最后,空间数据在交通运输、导航和位置服务等领域也有广泛应用。
通过对空间数据的采集和处理,可以实现交通导航和位置定位,提供准确的路线规划和位置信息,方便人们出行和导航。
2. 空间数据的采集方法空间数据的采集主要借助于遥感技术、全球定位系统(Global Positioning System,GPS)和地理信息技术等手段。
首先,遥感技术是一种利用航空或卫星传感器获取地球表面信息的技术。
通过遥感技术可以获取到高分辨率的影像数据,包括可见光、红外线和微波等波段。
遥感数据可以提供大范围、连续性和实时性的信息,方便对地球表面进行全面的监测和分析。
其次,GPS是一种由美国政府开发的卫星导航系统,通过将GPS接收器与卫星信号进行定位计算,可以实现全球范围内的位置定位。
GPS可以提供准确的位置信息,对空间数据的采集和质量控制具有重要作用。
另外,地理信息技术也是空间数据采集的重要手段之一。
地理信息技术包括地图制作、地理数据库管理和空间分析等技术,可以帮助对地理空间信息进行高效的采集和处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间数据质量特性与质量控制范志坚1,2,方源敏1,汪虹2(1.昆明理工大学国土资源工程学院昆明 650093;2.云南省基础地理信息中心昆明 650034)摘要:本文主要讨论空间数据质量特性、质量控制所涉及的内容。
结合笔者最近从事空间数据库建库的具体实践和工作体会,探讨从位置精度、属性精度、时间精度、数据完整性和逻辑一致性等方面对数据质量进行全面控制,最终建成一个质量可靠的空间数据库。
关键词:地理信息系统;空间数据库;空间数据;质量特性;质量控制Quality characteristic and Quality control of Spatial dataFan Zhi-jian1,2,Fang Yuan-min1,Wang-Hong2(1.Faculty of Land Resources Engineering,Kunming University of Science and Technology,Kunming650093,China;2.Yunnan Provincial Geomatics center,Kunming 650034,China)Abstract:This paper mainly talks over contents which are involved with quality characteristic and quality control of spatial data.Integrating with concrete practice and work experience which the writer has recently been engaged in establishing spatial database,a very comprehensive control of data quality should be discussed from aspects of positional accuracy、attribute accuracy、temporal accuracy、data compression、as well as logic conformance and so on.Finally,a dependable spatial database should be set up.Key words:GIS;spatial database;spatial data;quality characteristic;quality control0 引言空间数据库是随着地理信息系统(GIS)的开发和应用而发展起来的数据库新技术,它是地理信息系统的重要组成部份,是地理信息系统应用部份的前题和基础。
空间数据库为此建立了如实体、关系、数据独立性、完整性、数据操作、资源共享等一系列基本概念。
以空间数据存储和操作为对象的空间数据库,把被管理的数据从一维推向了二维、三维甚至更高维。
空间数据库是一种应用于空间数据处理与信息分析领域的具有工程性质的数据库,它所管理的对象主要是空间实体。
在空间数据库中,空间数据质量的好坏,直接影响到空间数据库的经济效益和社会效益。
要得到高质量的空间数据,最重要的是在空间数据生产和使用过程中进行质量管理和质量控制。
通过质量管理和质量控制,可以分析影响产品质量的原因,进而提高空间数据的质量。
空间数据的质量是空间数据库生存和发展的保障,缺少质量指标的空间数据将无法得到用户的信任,且直接影响到地理信息系统应用、分析、决策的正确性和可靠性。
由此可知,空间数据质量是空间数据库的生命线。
1 空间数据库中的误差空间数据库建立后,数据库中的误差包含了原始数据的误差和数据库建库所引入的误差。
1.1 原始数据的误差原始数据是指空间数据库建设时所包含的基本的数字化数据。
它未经过任何地理信息系统的分析处理。
原始数据的误差可分为源误差、处理误差和应用误差等三种类型。
源误差:源误差是指数据采集和录入中产生的误差。
包括遥感数据、测量数据、属性记录、GPS数据、地图、地图数字化精度等的误差。
处理误差:处理误差是指数据录入后进行空间数据处理过程中产生的误差。
包括几何改正、坐标变换和比例变换、投影变换、几何数据的编辑、属性数据的编辑、空间分析(如多边形叠置、数据层叠加时的冗余多边形等)、图形化简(数据压缩和曲线光滑)、数据格式转换、计算机裁切误差、空间内插、矢量-栅格数据的相互转换等。
使用误差:使用误差是指空间数据被使用过程中出现的误差。
包括数据的完备程度、时间的有效性(即现势性)、拓扑关系的正确性、缺乏数据的质量报告、由应用模型引起的误差等。
以上三种误差中,数据处理误差远远小于源误差,使用误差看来不属于数据本身的误差,但是这些因素直接影响到应用的效果,所以也应列为空间数据误差的范畴。
1.2 空间数据库建库所引入的误差空间数据库中的多源数据,经过基础地理信息数据库系统管理平台的各种分析、处理后,可以形成新的数据和最后产品。
在这个过程中还会产生新的误差,这些误差包括:计算误差、拓扑叠加分析引起的数据误差以及GIS中的误差传播问题。
计算误差:计算机能否按需要的精度存储和处理数据,主要取决于计算机字长。
在计算机字长不够的情况下进行许多大数据的运算时,会出现较大的舍入误差。
图形图像处理的算法选择也与计算误差相关。
数据处理过程中引入的计算误差一般还是较小,特别是与数据源误差相比,此项误差是可以忽略不计的。
拓扑叠加分析引起的数据误差:叠加分析是地理信息系统中很常用的一种分析方法。
通过同一地区不同内容的多幅地图的叠加组合,产生新的图形和属性信息。
在这个过程中,往往产生拓扑匹配、位置和属性方面的数据质量问题。
由于叠加时,多边形的边界可能不完全重合,从而产生若干无意义的多边形。
对这些无意义多边形进行处理的结果往往会改变边界线的位置。
叠加后形成的新的多边形,其属性值的确定也可能存在属性组合带来的误差。
地理信息系统中的误差传播问题:地理信息系统中,由于从数据来源、空间数据库建立到空间数据库的操作和使用都引入了各种误差因素,特别是空间数据集成与整合所引入的误差。
因此空间数据库系统应用分析的最终结果中也包含了这些误差因素的影响。
误差传播的研究目的就是研究初始过程和中间过程中引入的误差因素对于最后结果的影响,并模拟误差的变化。
目前,由于对地理信息系统误差传播机理的认识还不够深入,误差传播的很多方面都还处于研究和试验阶段。
但是,对于地理信息系统的专业人士来说,了解数据的各类误差均会以某种方式在系统中传播并将对地理信息系统的最后应用结果的质量产生影响,对理解地理信息系统数据、数据产品和空间数据库的可靠性将是十分有益的。
以上讨论了空间数据库中原始数据本身含有的误差和随后空间数据库操作中引入的误差。
一般来说,原始数据的误差远远大于空间数据库操作中引入的误差,因此,要想控制空间数据库的数据质量,数据获取生产过程中的质量控制及良好的入库空间数据是至关重要的。
2 空间数据质量与评价2.1 空间数据质量空间数据是空间数据库中管理和处理的主要对象。
空间数据是指用来表示空间实体的位置、形状、大小及其分布特征诸多方面信息的数据。
它可以用来描述来自现实世界的目标,它具有定位、定性、时间和空间关系等特性。
定位是指在一个已知的坐标系里空间实体都具有唯一的空间位置;定性是指有关空间实体的自然属性,它伴随着实体的地理位置;时间是指空间目标随时间的变化而变化;空间关系通常又称拓扑关系,在数据库中的表示可以是显示的,也可以是隐式的。
空间数据分矢量数据(DLG)和栅格数据,栅格数据又分为点阵式的影像数据(DOM、DRG)或格网数据(DEM)。
空间数据(几何数据和属性数据)质量是指空间数据的可靠性和精度,通常用空间数据的误差来度量。
空间数据的质量控制是针对空间数据的特点来进行的,主要包括数据完整性、数据逻辑一致性、位置精度、属性精度、时间精度以及一些关于数据的说明。
空间数据的质量控制就是通过采用科学的方法,制定出空间数据的生产技术规程,并采取一系列切实有效的方法在空间数据的生产过程中,针对关键性问题予以精度控制和错误改正,以保证空间数据的质量。
空间数据质量标准要素的具体内容为:空间数据的完整性主要是指数据是否覆盖到应该覆盖的范围,如全国的数据就应该覆盖到全国范围,一个省的居民地就应该包括全省的居民地数据;空间数据的逻辑一致性主要是指数据定义的统一性,在同一个基础地理信息数据库中,数据的定义应该保持一致;空间数据的位置精度主要是指数据的地理位置精度;空间数据的属性精度主要是指数据所载负的地理信息的正确性,比如同一线状地物的分类码赋值是否连续、合理,一条河流的名称及分级是否正确和一致,一个居民地的名称及其行政隶属关系是否正确等等;空间数据的时间精度是数据本身所代表的时间信息的正确性,如50年代的湖泊数据与90年代的湖泊数据就有很大的差别;关于数据的说明称为元数据,是对基础地理信息数据源的注释,如数据种类、投影方式、平高系统、生产单位和时间等;空间数据表达形式的合理性是指数据抽象、数据表达与真实地理世界的吻合性,包括空间特征、专题特征和时间特征表达的合理性等。
2.2 空间数据质量评价空间数据质量是众多影响因素共同作用的结果。
因此质量评价模型的确立应充分考虑这些因素后确立其质量元素。
按照数据质量评价方法的不同,空间数据质量评价可分为直接质量评价和间接质量评价。
直接质量评价是对数据集通过全面检测或抽样检测方式进行质量评价,又称验收度量;间接质量评价是通过对数据源、生产方法、数据处理等间接信息的检查方式进行数据集质量评价,又称预估度量。
为了度量和描述方便起见,空间数据的质量按其元素可分为一级质量元素和二级质量元素。
2.2.1 直接质量评价空间数据质量直接评价是通过表1规定的质量元素来评价的。
表1 空间数据质量元素注:斜体字表示适合各类数据2.2.2 间接质量评价空间数据质量间接评价是通过表2规定的质量元素来评价的。
2.2.3 空间数据质量度量模型采用任何一种质量评价方法都可以用一致的元素来度量空间质量。
由于直接评价方法使用得更多,质量表达得更为准确,更适于用户判定产品适用性,因此常选用直接评价元素来作为数据质量度量的元素,并建立空间数据质量度量模型。
空间数据质量度量模型见表3。
注:斜体字表示适合各类数据2.2.4 空间数据质量评价方法的选取直接质量评价方法为主,间接质量评价方法为辅。
采用直接质量评价方法对数据集进行质量评价后,可不再使用间接质量评价方法,但采用间接方法进行质量评价的,在正式提交成果时,还应使用直接评价方法进行质量评价。
3 空间数据入库时的质量控制原始数据是直接由测绘部门按照数据生产的相关规范进行生产,并以数据的形式提供。