智能视频监控中目标跟踪算法研究及应用设计

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

淮南师范学院本科毕业论文 1 智能视频监控中目标跟踪算法研究及应用

摘要:视频监控中目标跟踪算法的研究及应用是实现视频监控系统的关键技术之一。实际视频监控系统中的场景往往是错综复杂、变化无常的,实现具有鲁棒性、准确性和实时性的运动目标检测和跟踪是当前智能视频监控技术努力的方向。本文研究了静态场景下运动目标跟踪的相关算法,给出了运动目标跟踪的实现方案,由于Lucas Kanade光流跟踪算法对目标仅仅跟踪其质心,存在跟踪目标容易丢失且鲁棒性不高的缺点;最小绝对差算法企图搜索目标模板、计算量大、实时性差;针对这两种算法在目标跟踪方面的不足,对其进行了相应的改进和完善。通过Lucas Kanade光流跟踪算法预测目标质心位置、并设定目标搜索区域减小最小绝对差算法计算量;将模板匹配定位之后更正的目标质心做为下一帧Lucas Kanade光流跟踪算法跟踪的特征点,可以减小单一光流法预测目标质心带来的误差,实现可靠的跟踪。

关键词:运动目标跟踪;Lucas Kanade光流法;模板匹配

Abstract:Video target tracking algorithm research and Application is one of the key techniques which implements intelligent video surveillance system(IVSS). The real video surveillance system applied environment is usually complex, full of variety. The realization of moving object detection and tracking with veracity, real-time performanceand robustness is the direction for current IVSS study.This paper studied under static scene tracking algorithms movement are given, and the implementation scheme of moving object tracking Kanade light flow, because Lucas to target tracking algorithm only tracking its existing track the target centroid, easy to lose and robustness is not high weaknesses; Minimum absolute difference algorithm map search target template, large amount of calculation, real-time poor; In view of these two algorithm in target tracking deficiency, analyses the corresponding improvement and perfection. By Lucas Kanade light flow forecast target centroid position tracking algorithm, and set a target of reducing the search area computation minimum absolute difference algorithm; Will the template matching after the target centroid position correction as the next frame Lucas Kanade light streaming tracking algorithm tracking feature points can reduce a single light flow method for forecasting the errors caused by target centroid, achieve reliable tracking.

Key words :Sports target tracking;Lucas Kanade light flow method;Background model

智能视频监控中目标跟踪算法研究及应用 2

1.引言

1.1 研究背景和意义

随着计算机技术、通信技术、图像处理技术的不断发展,目标检测与跟踪技术在移动机器人、战车与坦克、飞机、导弹、舰船等军事领域和航空航天、科学探测、天文观测以及视频监控等民用领域具有越来越广泛的应用,也称为自动控制、信号与信息处理、计算机视觉和模式事变等领域的研究热点。

视频监控系统是公共安全技术防范系统的重要组成部分,它被广泛应用于国防、国家安全、治安等多个方面,主要涉及军工、公安、交通、金融、电力、电信、供水、供气等重要部门。由于视频图像监控具有很强的直观性、实时性和可逆性,使得它在解决经营纠纷、预防和制止犯罪、处理治安和刑事案件、为公安侦察破案提供线索等方面有着其他防范设施难以发挥的作用。

目前,基于视频序列的目标检测与跟踪技术在国内外各个领域和方面均得到了十分广泛的应用。在军事方面,军用卫星、战区导弹防御、侦察机、导弹制导、火控系统及小型自寻的导引头等军事武器均广泛应用了图像目标的识别与跟踪技术,大大提高武器系统的运动攻击性能及作战指标。美国空军“幼畜”导弹是最著名的一种电视制导导弹,由于目标的识别与跟踪技术的应用,该导弹可做到自动发现并锁定目标,并对目标实施摧毁,大大提高了作战效能;武装直升机和现代坦克战车队也都借助到高性能光电稳定瞄准具等先进光电设备,如高清晰度前视红外传感器、高分辨率和高倍率的CCD传感器等光电设备,结合目标的识别与跟踪技术大大提高了其再战场中的生存能力、提高有效打击力、增加全天候作战效能。

在民用方面,图像目标的识别与跟踪在科学探测、航空和航天对地观察、摄影和地形测绘上同样发挥着十分重要的作用。随着科学的发展和生活水平的提高,一些高档的手持、肩扛拍照和摄像系统也广泛地应用了人脸识别与跟踪技术,提高了系统的成像质量。运动目标的识别与跟踪在智能交通、身份识别等领域也得到了十分广泛的应用,创造了很好的社会价值。

因此,目前世界各国政府和学者,密切关注新一代的监控技术——智能视频监控技术。它同以往的监控技术有着本质的区别,其主要特征是采用计算机视觉的方法,在几乎不需要人为干预的情况下,赋予计算机类似于人的理解动态场景的视觉能力,通过对视频序列中运动物体的检测与跟踪以及对运动行为与语义概念之间关系的表达与分析,形成对场景中运动物体行为及其相互关系的高层次语义上的解释,使计算机知道什么时候,在什么场景中,是什么人在做什么,并用自然语言来描述所发生的一切。更形象地说,智能视频监控系统[1]能够看,看被监控场景中目标物体的行为;能

2

相关文档
最新文档