多层钢筋混凝土框架设计(7 风荷载内力计算)

多层钢筋混凝土框架设计(7 风荷载内力计算)
多层钢筋混凝土框架设计(7 风荷载内力计算)

七风荷载内力计算

基本风压w0=0.4kN/m2,地面粗糙度为B类。本章计算以左风为例。(一)风荷载计算

w k=βzμsμz w0,建筑物高度<30m,故βz=1.0

迎风时μs1=+0.8,背风时μs2=-0.5,则μs=0.8+0.5=1.3

计算过程见下表

计算简图(单位:kN)

14.60

15.44

16.85

13.98

17.04

(二)内力计算

1.抗侧刚度和反弯点高度确定 计算过程见下表

2.剪力在各层分配(单位:kN )

==

5

n

i i Pi P V ,Pi k

ik V D

D V ?=

V P5V P4V P3V P2V P1

3.柱端弯矩计算(单位:kN?m )

4.风荷载作用下的内力图

M 图(单位:kN ?m )

62.98

51.34

32.5132.51

24.71

24.71

14.826.27

19.12

8.67

7.77

4.73

3.95

2.181.11

42.16

41.69

28.77

28.45

19.88

19.65

12.77

12.624.36

4.3157.21

57.21

57.23

34.9522.2837.9

15.6222.289.2818.26

27.54

16.98

3.69

13.296.536.5357.23

22.28

15.62

27.5416.9837.99.283.6934.95

22.28

18.26

6.53

13.29

6.53

V N

V ,N 图(单位:kN )

5.梁端柱边弯矩(单位:kN?m )

28.11

19.18

13.25

8.51

2.91

35.13

36.8321.39

22.46

12.17

12.5 5.62

5.8

13.74

21.57

9.22

18.06

6.55

13.73

4.11

9.43

1.51

1.4

4.15

17.39

12.38

1.51

2.84

6.27

9.41

一榀框架结构荷载计算书

毕业设计 题目一榀框架计算书 班级土木工程2006级高本学生姓名孟凡龙 指导老师

2011.5 摘要 本工程为济南某综合教学楼楼,主体三层,钢筋混凝土框架结构。梁板柱均为现浇,建筑面积约为3000m2,宽35米,长为60米,建筑方案确定。建筑分类为乙类公共类建筑,二类场地,抗震等级三级。 .

目录 第一章框架结构设计任务书 (1) 1.1工程概况 (1) 1.2设计资料 (2) 1.3设计内容 (2) 第二章框架结构布置及结构计算图确定 (2)

2.1梁柱界面确定 (2) 2.2结构计算简图 (2) 第三章荷载计算 (5) 3.1恒荷载计算: (5) 3.1.1屋面框架梁线荷载标准值 (5) 3.1.2楼面框架梁线荷载标准值 (5) 3.1.3屋面框架节点集中荷载标准值 (6) 3.1.4楼面框架节点集中荷载标准值 (7) 3.1.5恒荷载作用下结构计算简图 (8) 3.2活荷载标准值计算 (9) 3.2.1屋面框架梁线荷载标准值 (9) 3.2.2楼面框架梁线荷载标准值 (9) 3.2.3屋面框架节点集中荷载标准值 (9) 3.2.4楼面框架节点集中荷载标准值 (10) 3.2.5活荷载作用下的结构计算简图 (10) 3.3风荷载计算 (11) 第四章结构内力计算 (15) 4.1恒荷载作用下的内力计算 (15) 4.2活荷载作用下的内力计算 (25) 4.3风荷载作用下内力计算 (33) 第五章内力组合 (34) 5.1框架横梁内力组合 (38) 5.2柱内力组合 (46) 第六章配筋计算 (60) 6.1梁配筋计算 (60) 6.2 柱配筋计算 (75) 6.3楼梯配筋计算 (80) 6.4基础配筋计算 (84) 第七章电算结果 (80) 7.1结构电算步骤 (86) 7.2结构电算结果 (87) 参考文献 (112)

等效风荷载计算方法分析

等效静力风荷载的物理意义 从风洞试验获取屋面风荷载气动力信息,到得到结构的风振响应整个过程来看,计算过程中涉及到风洞试验和随机振动分析等复杂过程,不易为工程设计人员所掌握,因此迫切需要研究简便的建筑结构抗风设计方法。 等效静力风荷载理论 就是在这一背景下提出的。其基本思想是将脉动风的 动力效应以其等效的静力形式表达出来,从而将复杂的动力分析问题转化为易于被设计人员所接受的静力分析问题。等效静力风荷载是联系风工程研究和结构设计的纽带[3] ,是结构抗风设计理论的 核心内容,近年来一直是结构风工程师研究的热点之一。 等效静力风荷载的物理意义可以用单自由度体系的简谐振动来说明 [45, 108] 。 k c P(t) x(t) 图1.3 气动力作用下的单自由度体系 对如图1.3的单自由度体系,在气动力 P t 作用下的振动方程为: mx cx kx P t (1.4.1) 考虑粘滞阻尼系统,则振动方程可简化为: 2 00 2 22P t x f x f x m (1.4.2) 式中 12 f k m 为该系统的自振频率, 2c km 为振动系统的临界阻尼比。 假设气动力为频率为 f 的简谐荷载,即 20i ft P t F e ,那么其稳态响应为: 202 00 1 2i ft F k x t e f f i f f (1.4.3) 进一步化简有: 2 i ft x t Ae (1.4.4) 其中 02 2 2 1 2F k A f f f f , 2 2arctan 1 f f f f , A 为振幅, 为气动力和 位移响应之间的相位角。 现在假设该系统在某静力 F 作用下产生幅值为A 的静力响应,那么该静力应该为:

9、2.6风荷载标准值计算

2.6风荷载标准值计算 作用在屋面梁和楼面梁节点处的集中风荷载标准值: 为了简化计算起见,通常将计算单元范围内外墙面的分布风荷载,化为等量的作用于楼面集中风荷载,计算公式如下: 0)(/2k z z i j W w h h B βμ=+ 式中: 基本风压200.5/kN m w =;结构基本周期1(0.06~0.09)0.24~0.36n s s T ==,取 10.30.25s s T =>考虑风振影响。作用在屋面梁和楼面梁节点处的集中风荷载标准值 为:w=βz ·μs ·μz ·ωo ,对于矩形平面μs =1.3;μz 可査荷载规范底层柱高取h=4.3+0.45=4.75m 。计算过程如下表中所示W k =β z μ s μz 0ω. 。0ωT 12 =0.5 ×0.32 =0.045, 由于地面粗糙度为C 类,0ωT 12 应乘以0.62,得0.0279查表ξ=1.15 ;H/B=16.45 /82.5=0.20 查表V=0.40。 (1)各楼层位置处的zi β值计算结果zi β=1+ξVZ/H z μ 表2.6-1 (2)各楼层位置处的风荷载标准值Fi= Ai zi βμs z μωo 表2.6-2

水平风荷载作用下框架内力分析 1) 柱端弯矩 如图2.6-2 h y V M )(1上-= 图2.6-2柱端弯矩计算图 2)梁端弯矩:根据结点平衡求出 对于边柱如图2.6-3 下上i i i M M M += 3)对于中柱如图:2.4-3 Vyh M =下

按两端线刚度分配 右左左 下上左) (i i i M M M i i i ++= 图2.6-3 梁端弯矩计算 4)水平荷载引起的梁端剪力、柱轴力 如图2.6-4所示: 梁端剪力: l M M V i i 右 左+= 柱轴力:边柱 ∑==N i R R V N 1 中柱 ∑=-=N i R R R V V N )(21 图2.6-4 梁端剪力计算 1/1轴框架各柱的杆端弯矩、梁端弯矩计算过程见下表2.6-3表2.6-4 表2.6-3 表2.6-4 梁端弯矩剪力 右 左右 下上右) (i i i M M M i i i ++=

一榀框架计算内力计算

第8章 一榀框架计算 8.7框架内力计算 框架结构承受的荷载主要有恒载、活载、风荷载、地震作用。其中恒载、活载为竖向荷载,风荷载和地震为水平作用。手算多层多跨框架结构的内力和侧移时,采用近似方法。求竖向荷载作用下的内力采用分层法,求水平荷载作用下的内力采用反弯点法、D 值法。在计算各项荷载作用下的效应时,一般按标准值进行计算,然后进行荷载效应组合。 8.7.2框架内力计算 1.恒载作用下的框架内力 (1)计算简图 将图8-12(a )中梁上梯形荷载折算为均布荷载。其中a=1.8m ,l=6.9m , =1800/69000.26a l α==,顶层梯形荷载折算为均布荷载值: 2 3 2 3 12+=120.26+0.2621.31=18.8kN m q αα-?-??()(),顶层总均布荷载为18.8+4.74=23.54kN m 。其他层计算方法同顶层,计算值为21.63kN m 。中间跨只作用有均布荷载,不需折算。由于该框架为对称结构,取框架的一半进行简化计算,计算简图见8-19。 (2)弯矩分配系数 节点A 1:101044 1.18 4.72A A A A S i ==?= 111144 1.33 5.32A B A B S i ==?= 12120.940.94 1.61 5.796A A A A S i =?=??= ()0.622 1.3330.84415.836A S =++=∑ 1010 4.72 0.29815.836 A A A A A S S μ= ==∑

图8-19 恒载作用下计算简图(括号内数值为梁柱相对线刚度) 1111 5.32 0.33615.836 A B A B A S S μ= ==∑ 1212 5.796 0.36615.836 A A A A A S S μ= ==∑ 节点B 1:11112 1.12 2.24B D B D S i ==?= 18.076B S =∑

扣件式钢管脚手架风荷载标准值计算

扣件式钢管脚手架风荷载标准值计算 在编制扣件式钢管脚手架安全施工组织设计时,作用于脚手架的水平风荷载,往往是计算的难点之一。我们依据《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)(以下简称《脚手架规范》)和国家现行《建筑结构荷载规范》(GBJ9-87)(以下简称《荷载规范》)的有关规定,对风荷载的计算参数进行分析,找出规律性的内涵,以便准确地计算,确保施工安全。 脚手架规范第4.2.3条规定:作用于脚手架的水平风荷载标准值,应按下式计算: ωk=0.7μzμsω0 式中ωk——风荷载标准值(kN/m2) μz——风压高度变化系数; μs——脚手架风荷载体型系数 ·ω0——基本风压(kN/m2)。 计算风荷载标准值除修正系数外,还有三个参数,现分析归纳如下: 一、基本风压ω0及修正系数 基本风压ω0应按荷载规范“全国基本风压分布图”的规定采用。 荷载规范规定:风荷载标准值ωk=βzμzμsω0,即风荷载标准值中还应乘以风振系数βz,以考虑风压脉动对高层建筑结构的影响。脚手架规范编制时,考虑到脚手架附着在主体结构上,故取βz=1。

荷载规范规定的基本风压是根据重现期为30年确定的,而脚手架使用期较短,遇到强劲风的概率相对要小得多,基本风压ω0乘以0.7修正系数是参考英国脚手架标准计算确定的。 二、风压高度变化系数μz 荷载规范规定:风压高度变化系数,应根据地面粗糙度类别按《荷载规范》采用。 地面粗糙度可分为A、B、C三类 A类指近海海面、海岛、海岸、湖岸及沙漠地区; B类指田野、乡村、丛林、丘陵及房屋比较烯疏的中、小城镇和大城市郊区 C类指有密集建筑群的在城市市区。 选用风压高度变化系数,应注意以下两种情况: 1.立杆稳定计算,应取离地面5m高度计算风压高度变化系数。经计算,风荷载虽然在脚手架顶部最大,但此处脚手架结构所产生的轴压力很小,综合计算值最小;5m高度处组合风荷载产生计算值虽较小,但脚手架自重产生的轴压力接近最大,综合计算值最大。根据以上分析,立杆稳定性计算部位为底部。 2.连墙件计算,应取脚手架上部计算风压高度变化系数。连墙件的轴向力设计值与风压高度变化系数成正比函数关系,即架体升高,风压高度变化系数增大,连墙作轴向力设计值随之增大,架体顶部达到最大。连墙件稳定承载力及扣件抗滑承载力验算,应取连墙件最大轴向力设计值。 三、风荷载体型系数μs 风荷载体型系数按《脚手架规范》4.2.4规定计算。

框架结构一榀框架手算计算书

某培训中心综合楼计算书 1 工程概况 拟建5层培训中心,建筑面积4500m 2,拟建房屋所在地的设防参数,基本雪压S 0=0.3kN ·m 2,基本风压ω0=0.45kN ·m 2地面粗糙度为B 类。 2 结构布置及计算简图 主体5层,首层高度3.6m,标准层3.3m,局部突出屋面的塔楼为电梯机房层高3.0m,外墙填充墙采用300mm,空心砖砌筑,内墙为200mm 的空心砖填充,屋面采用130mm ,楼板采用100mm 现浇混凝土板,梁高度按梁跨度的1/12~1/8估算,且梁的净跨与截面高度之比不宜小于4,梁截面宽度可取梁高的1/2~1/3,梁宽同时不宜小于1/2柱宽,且不应小于250mm,柱截面尺寸可由A c ≥ c N f N ][μ 确定本地区为四级抗震,所以8.0=c μ,各层重力荷载近似值 取13kN ·m -2,边柱及中柱负载面积分别为7.8 6.9226.91?÷=m 2 和7.8(6.92 2.72)37.44?÷+÷=m 2. 柱采用C35的混凝土(f c =16.7N ·mm 2,f t =1.57N ·mm 2) 第一层柱截面 边柱 A C = 31.326.9113105 1702810.816.7????=?mm 2 中柱 A C = 31.2537.4413105 2276950.816.7 ????=?mm 2 如取正方形,则边柱及中柱截面高度分别为339mm 和399mm 。 由上述计算结果并综合其它因素,本设计取值如下: 1层: 600mm ×600mm ; 2~5层:500mm ×500mm 表1 梁截面尺寸(mm)及各层混凝土等级强度 1 3.60.45 2. 2 1.10.1 5.05h m =++--=。

第三章 框架内力计算

第三章 框架内力计算 3.1 恒载作用下的框架内力 3.1.1 弯矩分配系数 (1)弯矩分配系数: 节点:A1 10 3.472 0.2394(0.868 1.3330.424)A A μ= =++ 11 5.332 0.3684(0.868 1.3330.424) A B μ= =++ 12 5.696 0.3934(0.868 1.3330.424) A A μ= =++ 节点:B1 11 5.332 0.24721.612 3.555B A μ= =+? 12 5.696 0.26321.61B B μ== 117.11 0.32921.61B D μ== 1040.868 0.16121.61 B B μ?== 节点:A2 2123 1.424 0.3414.181 A A A A μμ== = 22 1.333 0.3184.181A B μ== 节点:B2 22 5.332 0.22423.834 B A μ= = 2123 1.4244 0.23923.834 B B B B μμ?== = 22 3.5552 0.29823.834 B D μ?= = 节点:A4 44 1.3334 0.484(1.333 1.424)4 A B μ?==+? 43 1.424 0.5172.757A A μ= = 节点:B4 44 5.332 0.29418.138B A μ= = 43 1.4244 0.31418.138 B B μ?==

44 3.5552 0.39218.138 B D μ?= = A3与B3与相应的A2,B2相同。 (2)杆件固端弯矩 横梁固端弯矩: i)顶层横梁 自重作用: 22444411 4.087.217.631212 A B B A M M ql kN m =-=-=-??=-? 2244 11 2.84 1.35 1.7333 B D M ql kN m =-=-??=-? 44441/20.863D B B D M M kN m ==-? 板传来的恒载作用: 2 223344441(12//)12 A B B A M M ql a l a l =-=--+222331 20.57.2(12 2.1/7.2 2.1/6)75.6912 kN m =- ??-?+=-? 224455 11.80 2.7 4.489696B D M ql kN m =-=-??=-? 224411 11.8 2.7 2.693232 D B M ql kN m =-=-??=-? ii)二~四层横梁 自重作用: 22111111 4.087.217.631212 A B B A M M ql kN m =-=- =-??=-? 221111 2.84 1.35 1.7333 B D M ql kN m =-=-??=-? 11111/20.863D B B D M M kN m ==-? 板传来的恒载作用: 2 223344441(12//)12 A B B A M M ql a l a l =-=--+ 21 15.517.20.85557.2912 m =- ???=- 221155 8.62 2.7 3.279696B D M ql kN m =-=-??=-?kN ? 221111 8.62 2.7 1.963232 D B M ql kN m =-=-??=-? 纵梁引起柱端附加弯矩:(边框架纵梁偏向外侧,中框架梁偏向内侧)

风荷载标准值计算方法

按老版本规范风荷载标准值计算方法: 1.1风荷载标准值的计算方法 幕墙属于外围护构件,按建筑结构荷载规范(GB50009-2001 2006年版)计算: w k =β gz μ z μ s1 w ……7.1.1-2[GB50009-2001 2006年版] 上式中: w k :作用在幕墙上的风荷载标准值(MPa); Z:计算点标高:15.6m; β gz :瞬时风压的阵风系数; 根据不同场地类型,按以下公式计算(高度不足5m按5m计算): β gz =K(1+2μ f ) 其中K为地面粗糙度调整系数,μ f 为脉动系数 A类场地:β gz =0.92×(1+2μ f ) 其中:μ f =0.387×(Z/10)-0.12 B类场地:β gz =0.89×(1+2μ f ) 其中:μ f =0.5(Z/10)-0.16 C类场地:β gz =0.85×(1+2μ f ) 其中:μ f =0.734(Z/10)-0.22 D类场地:β gz =0.80×(1+2μ f ) 其中:μ f =1.2248(Z/10)-0.3 对于B类地形,15.6m高度处瞬时风压的阵风系数: β gz =0.89×(1+2×(0.5(Z/10)-0.16))=1.7189 μ z :风压高度变化系数; 根据不同场地类型,按以下公式计算: A类场地:μ z =1.379×(Z/10)0.24 当Z>300m时,取Z=300m,当Z<5m时,取Z=5m; B类场地:μ z =(Z/10)0.32 当Z>350m时,取Z=350m,当Z<10m时,取Z=10m; C类场地:μ z =0.616×(Z/10)0.44 当Z>400m时,取Z=400m,当Z<15m时,取Z=15m; D类场地:μ z =0.318×(Z/10)0.60 当Z>450m时,取Z=450m,当Z<30m时,取Z=30m; 对于B类地形,15.6m高度处风压高度变化系数: μ z =1.000×(Z/10)0.32=1.1529 μ s1 :局部风压体型系数; 按《建筑结构荷载规范》GB50009-2001(2006年版)第7.3.3条:验算围护 构件及其连接的强度时,可按下列规定采用局部风压体型系数μ s1 : 一、外表面 1. 正压区按表7.3.1采用; 2. 负压区 -对墙面,取-1.0 -对墙角边,取-1.8 二、内表面 对封闭式建筑物,按表面风压的正负情况取-0.2或0.2。 本计算点为大面位置。 按JGJ102-2003第5.3.2条文说明:风荷载在建筑物表面分布是不均匀的,在檐口附近、边角部位较大。根据风洞试验结果和国外的有关资料,在上述区域风吸力系数可取-1.8,其余墙面可考虑-1.0,由于围护结构有开启的可能,所以

【建筑工程设计】一榀框架计算土木工程毕业设计手算全过程

【建筑工程设计】一榀框架计算土木工程毕业设 计手算全过程

一框架结构设计任务书 1.1 工程概况: 本工程为成都万达购物广场----成仁店,钢筋混凝土框架结构。梁板柱均为现浇,建筑面积约为5750m2,宽27米,长为45米,建筑方案确定。建筑分类为乙类公共类建筑,二类场地,抗震等级三级。 图1-1 计算平面简图 1.2 设计资料 1)气象条件: 基本风压3155KN/m2 2)抗震设防: 设防烈度7度 3)屋面做法: 20厚水泥砂浆面层 一层油毡隔离层 40厚挤塑聚苯板保温层 15厚高分子防水卷材 20厚1:3水泥砂浆找平 1:6水泥焦渣1%找坡层,最薄处30厚 120厚现浇钢筋混凝土板 粉底 4)楼面做法: 8~13厚铺地砖面层

100厚钢筋砼楼板 吊顶 1.3设计内容 1)确定梁柱截面尺寸及框架计算简图 2)荷载计算 3)框架纵横向侧移计算; 4)框架在水平及竖向力作用下的内力分析; 5)内力组合及截面设计; 6)节点验算。 二框架结构布置及结构计算简图确定 2.1 梁柱截面的确定 通过查阅规范,知抗震等级为3级,允许轴压比为[μ]=0.85

由经验知n=12~14kn/m2 取n=13kn/m2 拟定轴向压力设计值N=n?A=13kn/m2×81m2×5=5265KN 拟定柱的混凝土等级为C30,f c=14.3N/mm2柱子尺寸拟定700mm× 700mm μ===0.75<[μ]=0.85 满足 初步确定截面尺寸如下: 柱:b×h=700mm×700mm 梁(BC跨、CE、EF跨)=L/12=9000/12=750mm 取h=800mm,b=400mm 纵梁=L/12=9000/15=600mm 取h=600mm,b=300mm 现浇板厚取h=120mm

风荷载标准值计算方法

按老版本规范风荷载标准值计算方法: 1.1风荷载标准值的计算方法 幕墙属于外围护构件,按建筑结构荷载规范(GB50009-20012006年版)计算: w k =B gz u z y si W 0 ……7.1.1-2[GB50009-2001 2006 年版] 上式中: w k :作用在幕墙上的风荷载标准值(MPa); Z :计算点标高:15.6m ; B gz :瞬时风压的阵风系数; 根据不同场地类型,按以下公式计算(高度不足5m 按5m 计算): 1. 正压区 2. 负压区 - 对墙面, - 对墙角边, 二、内表面 对封闭式建筑物,按表面风压的正负情况取 -0.2或0.2 本计算点为大面位置 按JGJ102-2003第5.3.2条文说明:风荷载在建筑物表面分布是不均匀的, 在檐口附近、边角部位较大。根据风洞试验结果和国外的有关资料, 在上述区域 B gz =K(1+2 卩 f ) 其中K 为地面粗糙度调整系数, 1 f 为脉动系数 A 类场地: B gz =0.92 X (1+2 卩 f ) 其中: ■0 12 1 f =0.387 X (Z/10). B 类场地: B gz =0.89 X (1+2 [1 f ) 其中: 1 f =0.5(Z/10) -0.16 C 类场地: B gz =0.85 X (1+ 2 1 f ) 其中: 1 f =0.734(Z/10) -0.22 D 类场地: B gz =0.80 X (1+2 1 f ) 其中: 1 f =1.2248(Z/10) -0. 3 对于B 类地形, B gz =0.89 X (1+2 X (0.5(Z/10) 卩Z :风压咼度变化系数; 根据不同场地类型,按以下公式计算: 类场地: ))=1.7189 类场地: 类场地: 类场地: 0 24 卩 z =1.379 X (Z/10). 当 Z>300m 时,取 Z=300m 当 Z<5m 时,取 Z=5m 0.32 卩 z =(Z/10) 当 Z>350m 时,取 Z=350m 当 Z<10ni 时,取 Z=10m 卩 z =0.616 X (Z/10) 0.44 当 Z>400m 时,取 Z=400m 当 Z<15ni 时,取 Z=15m 卩 z =0.318 X (Z/10) 0.60 当 Z>450m 时,取 Z=450m 当 Z<30ni 时,取 Z=30m 15.6m 高度处风压高度变化系数: 对于B 类地形, 卩 z =1.000 X (Z/10) 卩S1:局部风压体型系数; 按《建筑结构荷载规范》GB50009-2001(2006年版)第7.3.3条:验算围护 构 件及其连接的强度时,可按下列规定采用局部风压体型系数卩 一、外表面 S1 : 按表7.3.1采用; 取-1.0 取-1.8 15.6m 高度处瞬时风压的阵风系数:

风荷载标准值

风荷载标准值 关于风荷载计算 风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,力,位移,加速度等)是高层建筑设计 计算的重要因素。 脉动风和稳定风 风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特 点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。脉动风的作用就是引起高层建筑的振动 (简称风振)。 以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。平均风对 结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件力。阵风对结构的 作用是动力的,结构在脉动风的作用下将产生风振。 注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析 脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法 为依据。 从风振的性质看顺风向和横风向风力 顺风向风力分为平均风和阵风。平均风相当于静力,不引起振动。阵风相当于动力,引起振动但是引 起的是一种随机振动。也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风 振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。 横风向,既有周期性振动又有随机振动。换句话说就是既有周期性风力又有脉动风。反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。 有的计算方法 根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面: (1)对于顺风向的平均风,采用静力计算方法 (2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算 (3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷载,对结构进行动力计算 风荷载标准值的表达可有两种形式,其一为平均风压加上由脉 动风引起导致结构风振的等效风压;另一种为平均风压乘以风振系数。由于在结构的风振计算中,一般往往是第1振型起主要作

一榀框架结构设计手算+电算

一榀框架结构设计手算+电算

前言 毕业设计是学生在毕业之前在专业知识上面的一次检验,是学生从学校学习到工作岗位的过渡,在毕业设计阶段,要求要学会综合应用以前大学四年学到的专业课程,还有必要的设计规范和施工图集。通过学习、研究与实践,使理论深化、知识拓宽、专业技能延伸。通过毕业设计的实践,使学生能够深刻理解框架结构体系的布置特点、结构传力途径以及计算简图的确定方法,掌握风荷载及地震作用的计算方法、框架结构内力与位移计算的实用方法;掌握现浇多层框架结构的抗震概念设计,框架的截面设计原理、抗震构造要求及地基基础的设计方法;熟练阅读工程地质报告,熟悉施工图的内容、工作步骤及表达方法,培养学生综合运用所学专业知识来分析和解决实际工程问题的能力。 本次设计要求布图合理,图线清晰,尺寸齐全,注文工整,能最大程度的表达设计意图,符合国家制图标准及有关设计规范的规定。结构设计计算书要求方法合理,计算正确,排版工整,逻辑通顺。 由于时间和水平有限,不足之处,请各位专家、老师给予批评指正。

西南科技大学城市学院本科生毕业论文Ⅳ 目录 第1章设计资料 (1) 1.1工程概况 (1) 1.2工程地质条件 (1) 1.3气象资料 (2) 1.4抗震设防烈度 (2) 第2章结构布置及计算简图 (3) 2.1材料 (3) 2.2结构平面布置 (3) 2.2.1结构平面布置 (3) 2.3框架梁截面尺寸初步估算 (4) 2.3.1横向框架尺寸 (4) 2.3.2 纵向框架梁尺寸 (5) 2.3.3纵向次梁 (5) 2.3.4卫生间纵向次梁 (5) 2.3.5框架柱截面估算 (6) 第3章现浇楼板设计 (8) 3.1现浇楼板计算 (8)

水平地震作用下的框架侧移验算和内力计算

水平地震作用下的框架侧移验算和力计算 5.1 水平地震作用下框架结构的侧移验算 5.1.1抗震计算单元 计算单元:选取6号轴线横向三跨的一榀框架作为计算单元。 5.1.2横向框架侧移刚度计算 1、梁的线刚度: b /l I E i b c b = (5-1) 式中:E c —混凝土弹性模量s I b —梁截面惯性矩 l b —梁的计算跨度 I 0—梁矩形部分的截面惯性矩 根据《多层及高层钢筋混凝土结构设计释疑》,在框架结构中有现浇层的楼面可以作为梁的有效翼缘,增大梁的有效侧移刚度,减少框架侧移,为考虑这一有利因素,梁截面惯性矩按下列规定取,对于现浇楼面,中框架梁Ib=2.0Io,,边框架梁Ib=1.5Io ,具体规定是:现浇楼板每侧翼缘的有效宽度取板厚的6倍。 2、柱的线刚度: c c c c h I E i /= (5-2) 式中:Ic —柱截面惯性矩 hc —柱计算高度 一品框架计算简图: 3、横向框架柱侧移刚度D 值计算: 212c c c h i D α= (5-3) 式中:c α—柱抗侧移刚度修正系数

K K c +=2α(一般层);K K c ++=25.0α(底层) K —梁柱线刚度比,c b K K K 2∑= (一般层);c b K K K ∑=(底层) ① 底层柱的侧移刚度: 边柱侧移刚度: A 、E 轴柱:68.010 5.61045.41010=??==∑c b i i K 中柱侧移刚度: C 、 D 轴柱:18.1105.6102.345.410 10=??+== ∑)(c b i i K ② 标准层的侧移刚度 边柱的侧移刚度: A 、E 轴柱:51.010 72.821045.4221010=????==∑c b i i K 中柱侧移刚度: C 、 D 轴柱:88.01072.82102.345.42210 10 =???+?== ∑)(c b i i K

4-竖向荷载作用下框架内力计算

4 竖向荷载作用下框架内力计算 4.1横向框架计算单元 竖向荷载作用下,一般选取平面结构单元,按平面计算简图进行内力分析,根据结构布置和楼面荷载分布情况,本设计取6轴线横向框架进行计算,本设计中所有板均为双向板,为了简化计算,对板下部斜向塑性绞线与板边的夹角可近似取45°角,由于框架柱的间距不相等,通过主梁和次梁对板的划分不同,计算单元宽度应按照各个板的实际传荷情况而确定,如图4-1。图中横向阴影所示荷载传给横梁,纵向阴影所示荷载传给纵梁。 图4-1 标准层横向框架计算单元 4.2恒荷载计算 由于本设计次梁较多,在计算框架梁上荷载时应该先计算次梁自重和次梁传递的荷

载,再将次梁自重和次梁传递的荷载,次梁传给主梁的荷载可近似地看成一个集中力,因此在框架节点处还应作用有集中力矩。 4.2.1 标准层次梁恒荷载计算 1、5或7轴线次梁上线荷载 1)AB 跨的次梁上的荷载分布如图4-2所示。 图4-1 AB 跨的次梁上的荷载分布 次梁自重:m kN m m m kN q /13.350.025.0/253 =??=次; 根据《实用建筑结构静力计算手册》(第二版),对于双向板楼面荷载传递按45°塑性绞线方向分为三角形荷载和梯形荷载,三角形荷载和梯形荷载均折算成等效均布面荷载。 三角形荷载:q 8 5,梯形荷载:() q αα?+-3 221,其中,0l a α=。 对于BC 跨中有三角形荷载和梯形荷载同时在同一跨中出现,按理应该按照结构力学的方法进行求解,但为了简化计算,本设计中的三角形荷载和梯形荷载按上述方法计算,且按上述方法计算的荷载也能满足工程精度要求。 44.04800/21001==mm mm α; ( ) () 22323 1211 /18.3/54.444.044.02121m kN m kN q ααq =?+?-=?+-='; m kN m m kN l q q /68.61.2/18.3201 1=?=?'=; m kN m kN m kN q q q AB /49.162/68.6/13.31=?+=+=次; 2)BC 跨的次梁上的荷载分布如图4-2所示。 图4-2 BC 跨的次梁上的荷载分布 31.02400/7502==mm mm α; ()()2232322 /79.3/54.431.031.02121m kN m kN q ααq =?+?-=?+-='; m kN m m kN l q q /84.275.0/79.3202 2=?=?'=; 25.03000/7503==mm mm α; ()()2232323 /04.4/54.425.025.02121m kN m kN q ααq =?+?-=?+-='; m kN m m kN l q q /03.375.0/04.4203 3=?=?'=;

风荷载标准值

风荷载标准值 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

风荷载标准值 关于风荷载计算 风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,内力,位移,加速度等)是高层建筑设计计算的重要因素。 脉动风和稳定风 风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。脉动风的作用就是引起高层建筑的振动(简称风振)。 以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。平均风对结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件内力。阵风对结构的作用是动力的,结构在脉动风的作用下将产生风振。 注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法为依据。 从风振的性质看顺风向和横风向风力 顺风向风力分为平均风和阵风。平均风相当于静力,不引起振动。阵风相当于动力,引起振动但是引起的是一种随机振动。也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。

横风向,既有周期性振动又有随机振动。换句话说就是既有周期性风力又有脉动风。反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。 有的计算方法 根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面: (1)对于顺风向的平均风,采用静力计算方法 (2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算(3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷 载,对结构进行动力计算 风荷载标准值的表达可有两种形式,其一为平均风压加上由脉动风引起导致结构风振的等效风压;另一种为平均风压乘以风振系数。由于在结构的风振计算中,一般往往是第1振型起主要作用,因而我国与大多数国家相同,采用后一种表达形式,即采用风振系数βz,它综合考虑了结构在风荷载作用下的动力响应,其中包括风速随时间、空间的变异性和结构的阻尼特性等因素。 WK=βzμsμZ W0 W0基本风压 WK 风荷载标准值 βz z高度处的风振系数 μs 风荷载体型系数

风荷载计算方法与步骤

1风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建 筑物所受的风荷载。 1.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值ω(KN/m2)按下式计算: ω 风荷载标准值(kN/m2)=风振系数×风荷载体形系数×风压高度变化系数×基本风压 1.1.1基本风压 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速v0(m/s),再考虑相应的空气密度通过计算确定数值大小。 按公式确定数值大小,但不得小于0.3kN/m2,其中的单位为t/m3,单位为kN/m2。也可以用公式计算基本风压的数值,也不得小于0.3kN/m2。 1.1.2风压高度变化系数 风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。规范以B类地面粗糙程度作为标准地貌,给出计算公式。 粗糙度类别 A B C D 300 350 450 500 0.12 0.15 0.22 0.3 场地确定之后上式前两项为常数,于是计算时变成下式: 1.1.3风荷载体形系数 1)单体风压体形系数 (1)圆形平面;

(2)正多边形及截角三角平面,n为多边形边数; (3)高宽比的矩形、方形、十字形平面; (4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比的十字形、高宽比,长宽比 的矩形、鼓形平面; (5)未述事项详见相应规范。 2)群体风压体形系数 详见规范规程。 3)局部风压体形系数 檐口、雨棚、遮阳板、阳台等水平构件计算局部上浮风荷载时,不宜小于 2.0。未述事项详见相应规范规程。 1.1.4风振系数 对于高度H大于30米且高宽比的房屋,以及自振周期的各种高耸结构都应该考虑脉动风压对结构发生顺向风振的影响。(对于高度H大于30米、高宽比且可忽略扭转的高层建筑,均可只考虑第一振型的影响。) 结构在Z高度处的风振系数可按下式计算: ○1g为峰值因子,去g=2.50;为10米高度名义湍流强度,取值如下: 粗糙度类别 A B C D 0.12 0.14 0.23 0.39 ○2R为脉动风荷载的共振分量因子,计算方法如下: 为结构阻尼比,对钢筋混凝土及砌体结构可取; 为地面粗糙修正系数,取值如下: 粗糙度类别 A B C D 1.28 1.0 0.54 0.26 为结构第一阶自振频率(Hz); 高层建筑的基本自振周期可以由结构动力学计算确定,对于较规则的高层建筑也可采用 下列公式近似计算: 钢结构 钢筋混凝土框架结构

毕业设计新规范框架内力计算

6.3.8 基础顶面恒载计算 由于本工程为五层框架结构,建筑高度较低,跨度基本相等,刚度比较均匀,风荷载影响较小。因此,为了简化计算,本设计的风荷载仅按一榀框架单独承担其受荷面积,忽略空间整体作用。 6.3.8.1 设计资料 基本风压:ω0=0.30KN/m 2,地面粗糙度类别为B 类。KJ6承受风荷载的计算宽度B =(6+6)÷2=6m 6.3.8.2 荷载计算 风荷载近似按阶梯形分布,首先应将其简化为作用在框架节点上的节点荷载。 作用在屋面梁和楼面梁节点处的集中风荷载标准值: ()/2k z s z o i j W h h B 式中 基本风压ω0=0.30KN/m 2 βZ —风振系数,因为建筑物高度H =21m<30m ,因此βZ =1.0; s μ—风荷载体型系数,根据建筑物体型查得 1.3s ; z μ—风压高度变化系数,建设地点位于城市郊区,所以地面粗糙度为B 类; h i —下层柱高; h j —上层柱高,对顶层取女儿墙高度的2倍,即1.24m ; B —迎风面宽度,B =(6+6)÷2=6m 。 计算过程如表6-1所示:

风荷载受荷简图见图6-26所示。 图6-26 框架风载受荷简图 6.3.8.3 框架柱D值计算 梁、柱的相对线刚度见表6-2 所示,侧移刚度D值计算如表6-2 、表6-3所示: 表6-2 KJ-3 2~5层柱D值计算 D 2 b c k K k2K K2 12 ** c D i h (KN/m) 边柱(A轴柱)2.08 2.08 1.68 2 1.24 1.68 0.457 2 1.68 4 2 12 0.457 1.24103855 4.2 中柱(C轴柱)2.082 5.582 6.18 2 1.24 6.18 0.756 2 6.18 4 2 12 0.756 1.24106377 4.2 中柱(D轴柱)2.082 5.582 6.18 2 1.24 6.18 0.756 2 6.18 4 2 12 0.756 1.24106377 4.2

风荷载计算

4.2风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。 4.2.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值按下式计算:式中: 1.基本风压值Wo 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速V0(m/s)按公式确定。但不得小于0.3kN/m2。 对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏感,主要与高层建筑的自振特性有关,目前还没有实用的标准。一般当房屋高度大于60米时,采用100年一遇的风压。 《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。 2.风压高度变化系数μz 《荷载规范》把地面粗糙度分为A、B、C、D四类。 A类:指近海海面、海岸、湖岸、海岛及沙漠地区; B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区; C类:指有密集建筑群的城市市区; D类:指有密集建筑群且房屋较高的城市市区;

风荷载高度变化系数μz 计算公式 A类地区=1.379(z/10)0.24 B类地区= (z/10)0.32 C类地区=0.616(z/10)0.44 D类地区=0.318(z/10)0.6 位于山峰和山坡地的高层建筑,其风压高度系数还要进行修正,可查阅《荷载规范》。 3.风载体型系数μs 风荷载体型系数是指建筑物表面实际风压与基本风压的比值,它表示不同体型建筑物表面风力的大小。一般取决于建筑建筑物的平面形状等。

第五章.竖向荷载作用下的框架内力计算

5.1 计算单元的确定 取6号轴线一榀框架进行计算,计算宽度为(6.6+6.6)/2=6.6m 。如图下图所示 横向框架荷载传递图 5.2 荷载计算 5.2.1 恒荷载的计算 1、五层、 (1)q 、q 0、q 0′、q 0″分别为女儿墙、边跨横梁(走道纵梁)、走道横梁、次梁自重(扣除板自重),为均布荷载形式;β为考虑梁粉刷自重时的放大系数,取β=1.05。 女儿墙:q=3.47×0.9=3.12 kN/m 边跨横梁(走道纵梁):q 0=1.05×0.3×(0.6-0.1)×25=3.94kN/m 走道横梁:q 0′=1.05×0.3×(0.4-0.1)×25=2.36kN/m 次梁:q 0″=1.05×0.2×(0.5-0.1)×25=2.1kN/m (2)q 1、q 1′分别为屋面板自重传给横梁的梯形和三角形荷载等效为均布荷载值 q 1=[1-2×(3.3/6.6×2) 2+(3.3/6.6×2) 3]×4.38×3.3/2=6.44kN/m q 1′=8 5 ×4.38×3.0/2=4.11kN/m (3)q 2、q 2′分别为屋面板自重传给纵梁上的梯形和三角形荷载等效为均布荷载值 梯形:q 2=[1-2×(3.0/6.6×2) 2+(3.0/6.6×2) 3]×4.38×3.0/2=5.96kN/m 三角形:q 2′=8 5 ×4.38×3.3/2=4.52kN/m P 1为由板传给次梁及次梁自重传给纵梁的集中力 P 1= q 1×6.6+ q 0″×6.6/2=49.43kN P 2为由板传给外纵梁及外纵梁、女儿墙自重传给柱子的集中力 P 2=( q 2′+ q 0+q )×3.3×2=76.42 kN P 3为由板传给内纵梁及内纵梁自重传给柱子的集中力。

5风荷载计算

5 风荷载计算 风荷载标准值 主体结构计算时,为了简化计算,作用在外墙面上的风荷载可近似作用在屋面梁和楼面梁处的等效集中荷载替代,垂直于建筑物表面的风荷载标注值按公式5-1计算。 0k z s z ωβμμω???= (5-1) 式中:k ω——风荷载标准值; s μ——风荷载体型系数; z μ——风压高度变化系数; 0ω——基本风压值,本设计中的基本风压取30.00=ω; z β——高度z 处的风振系数; 根据《建筑结构荷载规范》(GB50009—2012)第条规定:地面粗糙度可分为四类:A 类指近海海面和海岛、海岸、湖岸及沙漠地区;B 类指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇;C 类指有密集建筑群的城市市区;D 类指有密集建筑群且房屋较高的城市市区。本设计中地面粗糙度取C 类。 高度z 处的风振系数z β的计算式见公式5-2。 1z z z ξν?βμ=+ (5-2) ξ——脉动增大系数; ν——脉动影响系数; z ?——振型系数; z μ——风压高度变化系数。 根据《建筑结构荷载规范》(GB50009—2012)第节可知:对于框架结构的基本自振周期可以近似按照()10.08~0.10T n n =(n 为建筑层数)估算,应考虑风压脉动对结构发生顺风向风振的影响,本设计中自振周期取10.090.0960.54T n s ==?=,经过计算, 2 1200.300.54=0.087T ω=?。风载体型系数由《建筑结构荷载规范》(GB50009—2012)第节续表可以查得:8.0=s μ(迎风面)和5.0-=s μ(背风面)。 根据《建筑结构荷载规范》(GB50009—2012)第条规定:当结构基本自振周期s T 25.0≥时,以及对于高度超过30m 且高宽比大于1. 5 的高柔房屋,由风引起的结构振动比较明显,而且随着结构自振周期的增长,风振也随之增强。因此在设计中应考虑风振的影响,而且原则上还应考虑多个振型的影响。 由于本工程总高度为,自振周期虽已超过,但不属于高耸结构和大跨度结构,所以根据荷载规范,本工程不考虑顺风向风振的影响。即本工程在高度z 处的风振系数z β近

相关文档
最新文档