动点例题解析及答案

合集下载

(完整版)初一动点问题答案

(完整版)初一动点问题答案

线段与角的动点问题1.如图,射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/秒的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当P运动到线段AB上且P A=2PB时,点Q运动到的位置恰好是线段OC的三等分点,求点Q的运动速度;(2)若点Q运动速度为3cm/秒,经过多长时间P、Q两点相距70cm?【解答】解:(1)P在线段AB上,由P A=2PB及AB=60,可求得P A=40,OP=60,故点P运动时间为60秒.若CQ=OC时,CQ=30,点Q的运动速度为30÷60=(cm/s);若OQ=OC,CQ=60,点Q的运动速度为60÷60=1(cm/s).(2)设运动时间为t秒,则t+3t=90±70,解得t=5或40,∵点Q运动到O点时停止运动,∴点Q最多运动30秒,当点Q运动30秒到点O时PQ=OP=30cm,之后点P继续运动40秒,则PQ=OP=70cm,此时t=70秒,故经过5秒或70秒两点相距70cm.2.如图,直线l上依次有三个点O,A,B,OA=40cm,OB=160cm.(1)若点P从点O出发,沿OA方向以4cm/s的速度匀速运动,点Q从点B出发,沿BO 方向匀速运动,两点同时出发①若点Q运动速度为1cm/s,则经过t秒后P,Q两点之间的距离为|160﹣5t|cm(用含t的式子表示)②若点Q运动到恰好是线段AB的中点位置时,点P恰好满足P A=2PB,求点Q的运动速度.(2)若两点P,Q分别在线段OA,AB上,分别取OQ和BP的中点M,N,求的值.【解答】解:(1)①依题意得,PQ=|160﹣5t|;故答案是:|160﹣5t|;②如图1所示:4t﹣40=2(160﹣4t),解得t=30,则点Q的运动速度为:=2(cm/s);如图2所示:4t﹣40=2(4t﹣160),解得t=7,则点Q的运动速度为:=(cm/s);综上所述,点Q的运动速度为2cm/s或cm/s;(2)如图3,两点P,Q分别在线段OA,AB上,分别取OQ和BP的中点M,N,求的值.OP=xBQ=y,则MN=(160﹣x)﹣(160﹣y)+x=(x+y),所以,==2.3.如图,射线OM上有三点A、B、C,满足OA=60cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/秒的速度匀速运动.(1)当点P运动到AB的中点时,所用的时间为90秒.(2)若另有一动点Q同时从点C出发在线段CO上向点O匀速运动,速度为3cm/秒,求经过多长时间P、Q两点相距30cm?【解答】解:(1)当点P运动到AB的中点时,点P运动的路径为60cm+30cm=90cm,所以点P运动的时间==90(秒);故答案为90;(2)当点P和点Q在相遇前,t+30+3t=60+60+10,解得t=25(秒),当点P和点Q在相遇后,t+3t﹣30=60+60+10,解得t=40(秒),答:经过25秒或40秒时,P、Q两点相距30cm.4.如图,在数轴上点A表示的数是﹣3,点B在点A的右侧,且到点A的距离是18;点C 在点A与点B之间,且到点B的距离是到点A距离的2倍.(1)点B表示的数是15;点C表示的数是3;(2)若点P从点A出发,沿数轴以每秒4个单位长度的速度向右匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒,在运动过程中,当t为何值时,点P与点Q之间的距离为6?(3)在(2)的条件下,若点P与点C之间的距离表示为PC,点Q与点B之间的距离表示为QB,在运动过程中,是否存在某一时刻使得PC+QB=4?若存在,请求出此时点P 表示的数;若不存在,请说明理由.【解答】解:(1)点B表示的数是﹣3+18=15;点C表示的数是﹣3+18×=3.故答案为:15,3;(2)点P与点Q相遇前,4t+2t=18﹣6,解得t=2;点P与点Q相遇后,4t+2t=18+6,解得t=4;(3)假设存在,当点P在点C左侧时,PC=6﹣4t,QB=2t,∵PC+QB=4,∴6﹣4t+2t=4,解得t=1.此时点P表示的数是1;当点P在点C右侧时,PC=4t﹣6,QB=2t,∵PC+QB=4,∴4t﹣6+2t=4,解得t=.此时点P表示的数是.综上所述,在运动过程中存在PC+QB=4,此时点P表示的数为1或.5.将一副三角板放在同一平面内,使直角顶点重合于点O.(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.【解答】解:(1)∠AOD=∠BOC=155°﹣90°=65°,∠DOC=∠BOD﹣∠BOC=90°﹣65°=25°;(2)∠AOD=∠BOC,∠AOB+∠DOC=180°;(3)∠AOB+∠COD+∠AOC+∠BOD=360°,∵∠AOC=∠BOD=90°,∴∠AOB+∠DOC=180°.6.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=30°;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=∠AOE.求∠BOD 的度数.【解答】解:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=30°,故答案为:30°;(2)∵OE平分∠AOC,∴∠COE=∠AOE=COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=5x°,∵∠DOE=90°,∠BOC=60°,∴6x=30或5x+90﹣x=120∴x=5或7.5,即∠COD=5°或7.5°∴∠BOD=65°或52.5°.7.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=130°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:此时直线ON是否平分∠AOC?请直接写出结论:直线ON平分(平分或不平分)∠AOC.(2)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为13或49.(直接写出结果)(3)将图1中的三角板绕点O顺时针旋转,请探究:当ON始终在∠AOC的内部时(如图3),∠AOM与∠NOC的差是否发生变化?若不变,请求出这个差值;若变化,请举例说明.【解答】解:(1)平分,理由:延长NO到D,∵∠MON=90°∴∠MOD=90°∴∠MOB+∠NOB=90°,∠MOC+∠COD=90°,∵∠MOB=∠MOC,∴∠NOB=∠COD,∵∠NOB=∠AOD,∴∠COD=∠AOD,∴直线NO平分∠AOC;(2)分两种情况:①如图2,∵∠BOC=130°∴∠AOC=50°,当直线ON恰好平分锐角∠AOC时,∠AOD=∠COD=25°,∴∠BON=25°,∠BOM=65°,即逆时针旋转的角度为65°,由题意得,5t=65°解得t=13(s);②如图3,当NO平分∠AOC时,∠NOA=25°,∴∠AOM=65°,即逆时针旋转的角度为:180°+65°=245°,由题意得,5t=245°,解得t=49(s),综上所述,t=13s或49s时,直线ON恰好平分锐角∠AOC;(3)∠AOM﹣∠NOC=40°,理由:∵∠AOM=90°﹣∠AON∠NOC=50°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(50°﹣∠AON)=40°.9.已知∠AOC=40°,∠BOD=30°,∠AOC和∠BOD均可绕点O进行旋转,点M,O,N在同一条直线上,OP是∠COD的平分线.(1)如图1,当点A与点M重合,点B与点N重合,且射线OC和射线OD在直线MN的同侧时,求∠BOP的余角的度数;(2)在(1)的基础上,若∠BOD从ON处开始绕点O逆时针方向旋转,转速为5°/s,同时∠AOC从OM处开始绕点O逆时针方向旋转,转速为3°/s,如图2所示,当旋转6s 时,求∠DOP的度数.【解答】解:(1)∵∠AOC=40°,∠BOD=30°,∴∠COD=180°﹣40°﹣30°=110°,∵OP是∠COD的平分线,∴∠DOP=∠COD=55°,∴∠BOP=85°,∴∠BOP的余角的度数为5°;(2)∠DOP的度数为49°,旋转6s时,∠MOA=3×6°=18°,∠NOB=5×6°=30°,∴∠COM=22°,∠DON=60°,∴∠COD=180°﹣∠COM﹣∠DON=98°,∵OP是∠COD的平分线,∴∠DOP=∠COD=49°.10.如图1,点O为直线AB上一点,过点O作射线OC,将一直角三角形的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请说明理由;(2)若∠BOC=120°.将图1中的三角板绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为10或40(直接写出结果);(3)在(2)的条件下,将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.【解答】解:(1)直线ON平分∠AOC.理由如下:设ON的反向延长线为OD,∵OM平分∠BOC,∴∠MOC=∠MOB,又∵OM⊥ON,∴∠MOD=∠MON=90°,∴∠COD=∠BON,又∵∠AOD=∠BON,∴∠COD=∠AOD,∴OD平分∠AOC,即直线ON平分∠AOC.(2)∵∠BOC=120°∴∠AOC=60°,∴∠BON=∠COD=30°,即旋转60°时ON平分∠AOC,由题意得,6t=60°或240°,∴t=10或40;(3)∵∠MON=90°,∠AOC=60°,∴∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.即∠AOM=∠NOC+30°.11.如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC:∠BOC=2:1,将一直角三角板的直角顶点放在点O处,一边ON在射线OA上,另一边OM在直线AB的下方.(1)将图1中的三角板绕点O按顺时针方向旋转至图2的位置,使得OM落在射线OA上,此时ON旋转的角度为90°;(2)继续将图2中的三角板绕点O按顺时针方向旋转至图3的位置,使得OM在∠BOC 的内部,则∠BON﹣∠COM=30°;(3)在上述直角三角板从图1旋转到图3的位置的过程中,若三角板绕点O按每秒钟15°的速度旋转,当OM恰为∠BOC的平分线时,此时,三角板绕点O的运动时间为(24n+16)秒,简要说明理由.【解答】解:(1)如图2,依题意知,旋转角是∠MON,且∠MON=90°.故填:90;(2)如图3,∠AOC:∠BOC=2:1,∴∠AOC=120°,∠BOC=60°,∵∠BON=90°﹣∠BOM,∠COM=60°﹣∠BOM,∴∠BON﹣∠COM=90°﹣∠BOM﹣60°+∠BOM=30°,故填:30;(3)16秒.理由如下:如图4.∵点O为直线AB上一点,∠AOC:∠BOC=2:1,∴∠AOC=120°,∠BOC=60°.∵OM恰为∠BOC的平分线,∴∠COM′=30°.∴∠AOM+∠AOC+∠COM′=240°.∵三角板绕点O按每秒钟15°的速度旋转,∴三角板绕点O的运动最短时间为=16(秒).∴三角板绕点O的运动时间为(24n+16)(n是整数)秒.故填:(24n+16).第9页。

初二动点题经典例题

初二动点题经典例题

初二动点题经典例题篇一:标题:初二动点题经典例题正文:在初中数学中,动点问题是一个较为重要的知识点。

特别是在初二阶段,同学们需要掌握动点问题的基本概念、解题方法和技巧。

今天,我们将分享一些初二动点题的经典例题,希望能够帮助同学们更好地理解和掌握动点问题的解题方法。

例题 1: 已知圆心为 O、半径为 2 的圆与 x 轴正半轴交于 A,与 y 轴负半轴交于 B,点 C 在 x 轴正半轴上,点 D 在 y 轴正半轴上,CD⊥AB,问 CD 长度是否等于圆心角 AOB 的平分线弧长?解析:本题是一道圆与轴的交点问题。

根据圆的性质可知,圆心 O 是线段 AB 的中点,因此 CD 长度等于半径 2 的一半,即 CD=1。

此外,圆心角 AOB 的平分线弧长即为半径 2,因此 CD 长度等于圆心角 AOB 的平分线弧长。

拓展:在本题中,如果我们将 CD 的长度设为 x,则可以列出方程:x2 = 4(12 - x2)。

通过解方程,我们可以得到 x = 1,即 CD 的长度等于 1。

此外,在本题中,我们还利用了圆的性质,即圆心 O 是线段 AB 的中点,因此 CD 是线段 AB 的一半。

这种利用圆的性质求解动点问题的方法,在初中数学中是非常常见的。

例题 2: 已知点 P(x,y) 是圆 C:x2 + y2 = 4 圆上任意一点,圆 C 与 x 轴正半轴交于 A,与 y 轴负半轴交于 B,点 C 在 x 轴正半轴上,点 D 在 y 轴正半轴上,CD⊥AB,问 CD 长度是否等于圆 C 的半径?解析:本题是一道圆与轴的交点问题。

根据圆的性质可知,圆 C 的圆心 O 是线段 AB 的中点,因此 CD 长度等于半径 2 的一半,即 CD=1/2。

此外,圆 C 与x 轴正半轴交于 A,与 y 轴负半轴交于 B,因此 CD 的长度等于圆 C 所对的圆心角 AOB 的平分线弧长。

拓展:在本题中,如果我们将 CD 的长度设为 x,则可以列出方程:x2 = 4(12 - x2)。

专题66 反比例函数中的动点最值问题(解析版)

专题66 反比例函数中的动点最值问题(解析版)

例题精讲【例1】.如图,直线与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为________解:当x=0时,y=×0+4=4,∴点B的坐标为(0,4);当y=0时,x+4=0,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴点C的坐标为(﹣3,2),点D坐标为(0,2).作点C关于x轴的对称点C′,连接C′D交x轴于点P,此时PC+PD的值最小,如图所示.∵点C的坐标为(﹣3,2),∴点C′的坐标为(﹣3,﹣2).设直线C′D的解析式为y=kx+b(k≠0),将C′(﹣3,﹣2),D(0,2)代入y=kx+b得:,解得:,∴直线C′D的解析式为y=x+2.当y=0时,x+2=0,解得:x=﹣,∴点P的坐标为(﹣,0),即点P的坐标为(﹣1.5,0).变式训练【变1-1】.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB 的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小解:设点P的坐标为(x,),∵PB⊥y轴于点B,点A是x轴正半轴上的一个定点,∴四边形OAPB是个直角梯形,∴四边形OAPB的面积=(PB+AO)•BO=(x+AO)•=+=+•,∵AO是定值,∴四边形OAPB的面积是个减函数,即点P的横坐标逐渐增大时四边形OAPB的面积逐渐减小.故选:C.【变1-2】.如图,一次函数y=2x与反比例函数y=(k>0)的图象交于A,B两点,点M在以C(2,0)为圆心,半径为1的⊙C上,N是AM的中点,已知ON长的最大值为,则k的值是.解:方法一、联立,∴,∴,∴A(),B(),∴A与B关于原点O对称,∴O是线段AB的中点,∵N是线段AM的中点,连接BM,则ON∥BM,且ON=,∵ON的最大值为,∴BM的最大值为3,∵M在⊙C上运动,∴当B,C,M三点共线时,BM最大,此时BC=BM﹣CM=2,∴(,∴k=0或,∵k>0,∴,方法二、设点B(a,2a),∵一次函数y=2x与反比例函数y=(k>0)的图象交于A,B两点,∴A与B关于原点O对称,∴O是线段AB的中点,∵N是线段AM的中点,连接BM,则ON∥BM,且ON=,∵ON的最大值为,∴BM的最大值为3,∵M在⊙C上运动,∴当B,C,M三点共线时,BM最大,此时BC=BM﹣CM=2,∴=2,∴a1=或a2=0(不合题意舍去),∴点B(,),∴k=,故答案为:.【例2】.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x 轴上,则PM+PN的最小值是2.解:∵正方形OABC 的边长是6,∴点M 的横坐标和点N 的纵坐标为6,∴M (6,),N (,6),∴BN =6﹣,BM =6﹣,∵△OMN 的面积为10,∴6×6﹣×6×﹣×6×﹣×(6﹣)2=10,∴k =24,∴M (6,4),N (4,6),作M 关于x 轴的对称点M ′,连接NM ′交x 轴于P ,则NM ′的长=PM +PN 的最小值,∵AM =AM ′=4,∴BM ′=10,BN =2,∴NM ′===2,故答案为2.变式训练【变2-1】.已知在平面直角坐标系中有两点A (0,1),B (﹣1,0),动点P 在反比例函数y =的图象上运动,当线段PA 与线段PB 之差的绝对值最大时,点P 的坐标为(1,2)或(﹣2,﹣1).解:如图,设直线AB的解析式为y=kx+b,将A(0,1)、B(﹣1,0)代入,得:,解得:,∴直线AB的解析式为y=x+1,直线AB与双曲线y=的交点即为所求点P,此时|PA﹣PB|=AB,即线段PA与线段PB 之差的绝对值取得最大值,由可得或,∴点P的坐标为(1,2)或(﹣2,﹣1),故答案为:(1,2)或(﹣2,﹣1).【变2-2】.如图,一次函数y1=mx+n(m≠0)的图象与双曲线y2=(k≠0)相交于A(﹣1,2)和B(2,b)两点,与y轴交于点C,与x轴交于点D.(1)求双曲线的解析式;(2)经研究发现:在y轴负半轴上存在若干个点P,使得△CPB为等腰三角形.请直接写出P点所有可能的坐标.解:(1)∵点A(﹣1,2)在双曲线y2=(k≠0)上,∴k=﹣1×2=﹣2,∴反比例函数解析式为y2=﹣,(2)∵点B在双曲线y2=﹣上,∴2b=﹣2,∴b=﹣1,∴B(2,﹣1),将点A(﹣1,2),B(2,1)代入一次函数y1=mx+n(m≠0)中,得,∴,∴一次函数的解析式为y=﹣x+1;令x=0,则y=1,∴C(0,1),设P(0,p)(p<0),∵B(2,﹣1),∴BC==2,BP=,CP=1﹣p,∵△CPB为等腰三角形,∴①当BC=BP时,2=,∴p=1(舍)或p=﹣3,∴P(0,﹣3),②当BC=CP时,2=1﹣p,∴p=1﹣2,∴P(0,1﹣2),③当BP=CP时,=1﹣p,∴p=﹣1,∴P(0,﹣1),故满足条件的点P的坐标为(0,﹣3)或(0,1﹣2)或(0,﹣1).1.如图,点N是反比例函数y=(x>0)图象上的一个动点,过点N作MN∥x轴,交直线y=﹣2x+4于点M,则△OMN面积的最小值是()A.1B.2C.3D.4解:设点N的坐标为(,m),则点M的坐标为(2﹣m,m)(m>0),∴MN=﹣(2﹣m)=m+﹣2,=MN•m=m2﹣m+3=(m﹣2)2+2,∴S△OMN∴当m=2时,△OMN面积最小,最小值为2.故选:B.2.如图,在△ABC中,AB=AC=a,∠BAC=18°,动点P、Q分别在直线BC上运动,且始终保持∠PAQ=99°.设BP=x,CQ=y,则y与x之间的函数关系用图象大致可以表示为()A.B.C.D.解:∵AB=AC=a,∠BAC=18°,∴∠ABC=∠ACB=(180°﹣18°)=81°,∴∠ABC=∠APB+∠PAB=81°,∵∠PAQ=99°,∠BAC=18°,∴∠PAB+∠QAC=99°﹣18°=81°,∴∠APB=∠QAC,同理可得∠PAB=∠AQC,∴△APB∽△QAC,∴=,即=,整理得,y=,∵x、y都是边的长度,是正数,∴y与x之间的函数关系用图象表示是反比例函数在第一象限内的部分,纵观各选项,只有A符合.故选:A.3.如图,已知A、B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过点P作PM ⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,点P运动的时间为t,则S关于t的函数图象大致为()A.B.C.D.解:①点P在AB上运动时,此时四边形OMPN的面积S=K,保持不变,故排除B、D;②点P在BC上运动时,设路线O→A→B→C的总路程为l,点P的速度为a,则S=OC×CP=OC×(l﹣at),因为l,OC,a均是常数,所以S与t成一次函数关系.故排除C.故选:A.4.已知点A是双曲线y=在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为一边作等边△ABC.随着点A的运动,点C的位置也不断变化,但始终在一个函数的图象上运动,则这个函数的表达式为y=﹣.解:设A(a,),∵点A与点B关于原点对称,∴OA=OB,∵△ABC为等边三角形,∴AB⊥OC,OC=AO,∵AO=,∴CO=,过点C作CD⊥x轴于点D,则可得∠AOD=∠OCD(都是∠COD的余角),设点C的坐标为(x,y),则tan∠AOD=tan∠OCD,即=,解得:y=﹣a2x,在Rt△COD中,CD2+OD2=OC2,即y2+x2=3a2+,将y=﹣a2x代入,(a4+1)x2=3×可得:x2=,故x=,y=﹣a2x=﹣a,则xy=﹣3,故可得:y=﹣(x>0).故答案为:y=﹣(x>0).5.如图,点P是双曲线C:y=(x>0)上的一点,过点P作x轴的垂线交直线AB:y=x﹣2于点Q,连接OP,OQ.当点P在曲线C上运动,且点P在Q的上方时,△POQ面积的最大值是3.解:∵PQ⊥x轴,∴设P(x,),则Q(x,x﹣2),∴PQ=﹣x+2,=(﹣+2)•x=﹣(x﹣2)2+3,∴S△POQ∵﹣<0,∴△POQ面积有最大值,最大值是3,故答案为3.6.如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,2),将线段AB绕点A顺时针旋转90°得到线段AC,反比例函数y=(k≠0,x>0)的图象经过点C.已知点P是反比例函数y=(k≠0,x>0)图象上的一个动点,则点P到直线AB距离最短时的坐标为(,).解:(1)设直线AB的解析式为y=ax+b,将点A(1,0),点B(0,2)代入得,解得,∴直线AB为y=﹣2x+2;∵过点C作CD⊥x轴,∵线段AB绕点A顺时针旋转90°得到线段AC,∴△ABO≌△CAD(AAS),∴AD=OB=2,CD=OA=1,∴C(3,1),∴k=3,∴y=;设与AB平行的直线y=﹣2x+h,联立﹣2x+h=,∴﹣2x2+hx﹣3=0,当△=h2﹣24=0时,h=2或﹣2(舍弃),此时点P到直线AB距离最短,解方程﹣2x2+2x﹣3=0得x==,∴P(,),故答案为P(,).7.如图,在平面直角坐标系中,点A,B在反比例函数y=(k≠0)的图象上运动,且始终保持线段AB=4的长度不变.M为线段AB的中点,连接OM.则线段OM长度的最小值是(用含k的代数式表示).解:如图,因为反比例函数关于直线y=x对称,观察图象可知:当线段AB与直线y=x 垂直时,垂足为M,此时AM=BM,OM的值最小,∵M为线段AB的中点,∴OA=OB,∵点A,B在反比例函数y=(k≠0)的图象上,∴点A与点B关于直线y=x对称,∵AB=4,∴可以假设A(m,),则B(m+4,﹣4),∴(m+4)(﹣4)=k,整理得k=m2+4m,∴A(m,m+4),B(m+4,m),∴M(m+2,m+2),∴OM===,∴OM的最小值为.故答案为.8.如图,点A是反比例函数y=在第一象限的图象上的一点,过点A作AB⊥y轴于点B.连接AO,以点A为圆心,分别以AB,AO为半径作直角扇形BAC和OAD,并连接CD,则阴影部分面积的最小值是2π+2.解:如图,过点D作DE垂直于CA的延长线于点E,则∠AED=90°,由题意可知,AB=AC,AO=AD,∠BAC=∠DAO=90°,∵AB⊥y轴,∴∠ABO=90°,∴∠BAO+∠OAE=90°,∠DAE+∠OAE=90°,∴∠BAO=∠DAE,∴△BAO≌△EAD(AAS),∴DE=OB.∵点A是反比例函数y=在第一象限的图象上的一点,∴OB•AB=4,∴S△AOB=OB•AB=2,∴S△ACD=AC•DE=OB•AB=2,∴S阴影=S△ACD+S扇形OAD=2+=2+∵(AB﹣OB)2≥0,∴AB2﹣2AB•OB+OB2≥0,∴AB2+OB2≥2AB•OB,∴S阴影≥2+×2AB•OB=2+2π.故答案为:2+2π.9.如图,点A是反比例函数y=(k>0)图象第一象限上一点,过点A作AB⊥x轴于B 点,以AB为直径的圆恰好与y轴相切,交反比例函数图象于点C,在AB的左侧半圆上有一动点D,连接CD交AB于点E.记△BDE的面积为S1,△ACE的面积为S2,连接BC,△ACB是等腰直角三角形,则若S1﹣S2的值最大为1,则k的值为4+4.解:如图连接BC、O′C,作CH⊥x轴于H.由题意⊙O′与反比例函数图象均关于直线y=x对称,∴点A、C关于直线y=x对称,设A(m,2m)则C(2m,m),∴BO′=CH=m,BO′∥CH,∴四边形BHCO′是平行四边形,∵BH=CH,∠BHC=90°,∴四边形BHCO′是正方形.∴∠ABC=45°,∴△ACB是等腰直角三角形,∵S1﹣S2=S△DBC﹣S△ACB,△ABC的面积是定值,∴△DBC的面积最大时,S1﹣S2的值最大,∴当DO′⊥BC时,△DBC的面积最大,∴m•(m+m)﹣•2m•m=1,∴m2=2(+1),∵k=2m2,∴k=4+4,故答案为:等腰直角三角形,4+4.10.如图,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A 点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,P为x轴上一点,求使PA+PB的值最小时点P的坐标.解:(1)设A点的坐标为(a,b),则由,得ab=2=k,∴反比例函数的解析式为;(2)由条件知:两函数的交点为,解得:,,∴A点坐标为:(2,1),作出A点关于x轴对称点C点,连接BC,P点即是所求则点C(2,﹣1),∵B(1,2),设直线BC的解析式为:y=kx b,解得:,∴直线BC的解析式为:y=﹣3x+5,当y=0时,x=,∴点P(,0).11.如图,正比例函数y=2x的图象与反比例函数y=的图象交于A、B两点,过点A作AC垂直x轴于点C,连接BC,若△ABC面积为2.(1)求k的值(2)x轴上是否存在一点D,使△ABD是以AB为斜边的直角三角形?若存在,求出点D的坐标,若不存在,说明理由.解:(1)∵反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴△BOC的面积=△AOC的面积=2÷2=1,又∵A是反比例函数y=图象上的点,且AC⊥x轴于点C,∴△AOC的面积=|k|,∴|k|=1,∵k>0,∴k=2.故这个反比例函数的解析式为y=;(2)x轴上存在一点D,使△ABD为直角三角形.将y=2x与y=联立成方程组得:,解得:,,∴A(1,2),B(﹣1,﹣2),∵△ABD是以AB为斜边的直角三角形∴∠ADB=90°,如图3,∵O为线段AB的中点,∴OD=AB=OA,∵A(1,2),∴OC=1,AC=2,由勾股定理得:OA==,∴OD=,∴D(,0).根据对称性,当D为直角顶点,且D在x轴负半轴时,D(﹣,0).故x轴上存在一点D,使△ABD以AB为斜边的直角三角形,点D的坐标为(,0)或(﹣,0).12.如图,一次函数y=x+2的图象与反比例函数y=的图象交于点A(1,a),B两点.(1)求反比例函数的解析式及点B的坐标;(2)在x轴上找一点C,使|CA﹣CB|的值最大,求满足条件的点C的坐标及△ABC的面积.解:(1)∵直线y=x+2经过点A(1,a),∴a=3,∵反比例函数y=经过A(1,3),∴k=3,∴y=,由,解得或,∴B(﹣3,﹣1).(2)作点B关于x轴的对称点B′,连接AB′,延长AB′交x轴于点C,点C即为所求;∵A(1,3),B′(﹣3,1),∴直线AB′的解析式为y=x+,∴C(﹣5,0),=S△CBB′+S△BB′A=×2×2+×2×4=6.∴S△ABC13.如图,一次函数y=2x﹣3的图象与反比例函数y=的图象相交于点A(﹣1,n),B 两点.(1)求反比例函数的解析式与点B的坐标;(2)连接AO、BO,求△AOB的面积;(3)点D是反比例函数图象上的一点,当∠BAD=90°时,求点D的坐标.解:(1)∵点A(﹣1,n)在一次函数y=2x﹣3的图象上,∴n=﹣5,∴点A(﹣1,﹣5),∵点A(﹣1,﹣5)在反比例函数的图象上,∴k=﹣1×(﹣5)=5,∴;联立,解得:,,∴点;(2)设y=2x﹣3与y轴的交点为点E,则点E(0,﹣3),∴OE=3,=S△AOE+S△BOE=×3×1+×3×=;∴S△AOB(3)设点,如图,分别过点D,B作y轴的平行线DM,BN,过点A作MN⊥DM于M,交BN于N,则MN⊥BN,∴∠M=∠N=90°,∴∠DAM+∠ADM=90°,∵∠BAD=90°,∴∠BAN+∠DAM=90°,∴∠BAN=∠ADM,∴△BAN∽△ADM,∴=,即=,解得:a1=﹣10,a2=﹣1(舍),∴.14.如图,直线y=2x+3与y轴交于A点,与反比例函数y=(x>0)的图象交于点B,过点B作BC⊥x轴于点C,且C点的坐标为(1,0).(1)求反比例函数的解析式;(2)点D(a,1)是反比例函数y=(x>0)图象上的点,在x轴上是否存在点P,使得PB+PD最小?若存在,求出点P的坐标;若不存在,请说明理由.解:(1)∵BC⊥x轴于点C,且C点的坐标为(1,0),∴在直线y=2x+3中,当x=1时,y=2+3=5,∴点B的坐标为(1,5),又∵点B(1,5)在反比例函数y=上,∴k=1×5=5,∴反比例函数的解析式为:y=;(2)将点D(a,1)代入y=,得:a=5,∴点D坐标为(5,1)设点D(5,1)关于x轴的对称点为D′(5,﹣1),过点B(1,5)、点D′(5,﹣1)的直线解析式为:y=kx+b,可得:,解得:,∴直线BD′的解析式为:y=﹣x+,根据题意知,直线BD′与x轴的交点即为所求点P,当y=0时,得:﹣x+=0,解得:x=,故点P的坐标为(,0).15.如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(x>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该反比例函数的解析式和点E的坐标.(2)设过(1)中的直线EF的解析式为y=ax+b,直接写出不等式ax+b<的解集.(3)当k为何值时,△AEF的面积最大,最大面积是多少?解:(1)∵四边形OABC为矩形,OA=3,OC=2,∴AB=2,BC=3,∵F为AB的中点,∴点F坐标为(3,1),∵点F在反比例函数y=(x>0)的图象上,∴k=3×1=3,∴反比例函数解析式为y=,∵点E在BC上,∴E点纵坐标为2,在y=中,令y=2,可求x=,∴E点坐标为(,2);(2)不等式ax+b<的解集即直线在反比例函数下方时对应的自变量的取值范围,由(1)可知点E、F两点的横坐标分别为、3,∴不等式ax+b<的解集为:0<x<或x>3;(3)由题意可知点E的纵坐标为为2,点F的横坐标为3,且E、F在反比例函数y=(x>0)的图象上,∴可设E(,2),F(3,),∴AF=,CE=,∴BE=BC﹣CE=3﹣,=AF•BE=••(3﹣)=﹣k2+=﹣(k﹣3)2+,∴S△AEF∵﹣<0,是关于k的开口向下的抛物线,∴S△AEF有最大值,最大值为,∴当k=3时,S△AEF即当k的值为3时,△AEF的面积最大,最大面积为.16.如图,直线OA:y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A 点,过A点作轴的垂线,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.解:(1)设点A的坐标为(a,b),则,解得:k=2.∴反比例函数的解析式为y=.(2)联立直线OA和反比例函数解析式得:,解得:.∴点A的坐标为(2,1).设A点关于x轴的对称点为C,则C点的坐标为(2,﹣1),连接BC较x轴于点P,点P即为所求.如图所示.设直线BC的解析式为y=mx+n,由题意可得:B点的坐标为(1,2),∴,解得:.∴BC的解析式为y=﹣3x+5.当y=0时,0=﹣3x+5,解得:x=.∴P点的坐标为(,0).17.已知:如图,一次函数y=﹣2x+10的图象与反比例函数y=的图象相交于A、B两点(A在B的右侧),点A横坐标为4.(1)求反比例函数解析式及点B的坐标;(2)观察图象,直接写出关于x的不等式﹣2x+10﹣>0的解集;(3)反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.解:(1)把x=4代入y=﹣2x+10得y=2,∴A(4,2),把A(4,2)代入y=,得k=4×2=8.∴反比例函数的解析式为y=,解方程组,得,或,∴点B的坐标为(1,8);(2)观察图象得,关于x的不等式﹣2x+10﹣>0的解集为:1<x<4或x<0;(3)存在,理由:①若∠BAP=90°,过点A作AH⊥OE于H,设AP与x轴的交点为M,如图1,对于y=﹣2x+10,当y=0时,﹣2x+10=0,解得x=5,∴点E(5,0),OE=5.∵A(4,2),∴OH=4,AH=2,∴HE=5﹣4=1.∵AH⊥OE,∴∠AHM=∠AHE=90°.又∵∠BAP=90°,∴∠AME+∠AEM=90°,∠AME+∠MAH=90°,∴∠MAH=∠AEM,∴△AHM∽△EHA,∴,即,∴MH=4,∴M(0,0),可设直线AP的解析式为y=mx,则有4m=2,解得m=,∴直线AP的解析式为y=x,解方程组,得,,∴点P的坐标为(﹣4,﹣2).②若∠ABP=90°,同理可得:点P的坐标为(﹣16,﹣).综上所述:符合条件的点P的坐标为(﹣4,﹣2)、(﹣16,﹣).18.反比例函数(k为常数.且k≠0)的图象经过点A(1,3),B(3,m).(1)求反比例函数的解析式及B点的坐标;(2)在x轴上找一点P,使PA+PB的值最小,①求满足条件的点P的坐标;②求△PAB的面积.解:(1)把A(1,3)代入y=得,k=3,∴反比例函数的关系式为:y=;把B(3,m)代入y=得,m=1,∴点B的坐标为(3,1);(2)①如图所示,作点B关于x轴的对称点B′,则B′(3,﹣1),连接AB′交x轴于点P,此时PA+PB最小.设直线AB′的关系式为y=kx+b,把A(1,3),B′(3,﹣1)代入得,,解得,,∴直线AB′的关系式为y=﹣2x+5,当y=0时,x=,即:P(,0),也就是,OP=,②S△P AB=S梯形ABNM﹣S△AMP﹣S△BPN=(1+3)×2﹣(﹣1)×3﹣(3﹣)×1=.19.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A (1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)①在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标;②在x轴上找一点M,使|MA﹣MB|的值为最大,直接写出M点的坐标.解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=3,∴A(1,3),把点A(1,3)代入反比例y=,得k=3,∴反比例函数的表达式y=,解得或,故B(3,1).(2)作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小∴D(3,﹣1)设直线AD的解析式为y=mx+n,则,解得,∴直线AD的解析式为y=﹣2x+5,令y=0,则x=,∴P点坐标为(,0);(3)直线y=﹣x+4与x轴的交点即为M点,此时|MA﹣MB|的值为最大,令y=0,则x=4,∴M点的坐标为(4,0).20.如图,四边形ABCD是正方形,点A的坐标是(0,1),点B的坐标是(0,﹣2),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过A、C两点,两函数图象的另一个交点E的坐标是(m,3).(1)分别求出一次函数与反比例函数的解析式.(2)求出m的值,并根据图象回答:当x为何值时,一次函数的值大于反比例函数的值.(3)若点P是反比例函数图象上的一点,△AOP的面积恰好等于正方形ABCD的面积,求点P坐标.解:(1)∵点A的坐标为(0,1),点B的坐标为(0,﹣2),∴AB=1+2=3,∵四边形ABCD为正方形,∴BC=AB=3,∴C(3,﹣2),把C(3,﹣2)代入y=,得k=3×(﹣2)=﹣6,∴反比例函数解析式为y=﹣;把C(3,﹣2),A(0,1)代入y=ax+b,得,解得,∴一次函数解析式为y=﹣x+1;(2)∵反比例函数y=﹣的图象过点E(m,3),∴m=﹣2,∴E点的坐标为(﹣2,3);由图象可知,当x<﹣2或0<x<3时,一次函数落在反比例函数图象上方,即当x<﹣2或0<x<3时,一次函数的值大于反比例函数的值;(3)设P(t,﹣),∵△AOP的面积恰好等于正方形ABCD的面积,∴×1×|t|=3×3,解得t=18或t=﹣18,∴P点坐标为(18,﹣)或(﹣18,).21.如图,点A是反比例函数y=(x>0)的图象上的一个动点,AC⊥x轴于点C;E是线段AC的中点,过点E作AC的垂线,与y轴和反比例函数的图象分别交于点B、D两点;连接AB、BC、CD、DA.设点A的横坐标为m.(1)求点D的坐标(用含有m的代数式表示);(2)判断四边形ABCD的形状,并说明理由;(3)当m为何值时,四边形ABCD是正方形?并求出此时AD所在直线的解析式.解:(1)∵点A的横坐标为m,∴点A的纵坐标为,∵E是AC的中点,AC⊥x轴,∴E(m,),∵BD⊥AC,AC⊥x轴,∴BD∥x轴,∴点B,E,D的纵坐标相等,为,∴点D的横坐标为2m,∴D(2m,);(2)四边形ABCD是菱形,∵B(0,),E(m,),D(2m,),∴EB=ED=m,∵AE=EC,∴四边形ABCD是平行四边形,∵BD⊥AC,∴平行四边形ABCD是菱形;(3)∵平行四边形ABCD是菱形,∴当AC=BD时,四边形ABCD是正方形,∴2m=,∴m=2,或m=﹣2(舍),∴A(2,4),D(4,2),设直线AD的解析式为y=kx+b,∴,∴,∴直线AD解析式为y=﹣x+6,∴当m=2时,四边形ABCD是正方形,此时直线AD解析式为y=﹣x+6.22.如图,一次函数y=﹣x+2的图象与两坐标轴分别交于A,B两点,与反比例函数y=交于点C、D,且点C坐标为(﹣2,m).(1)求反比例函数的解析式;(2)若点M在y轴正半轴上,且与点B,C构成以BC为腰的等腰三角形,求点M的坐标.(3)点P在第二象限的反比例函数图象上,若tan∠OCP=3,求点P的坐标.解:(1)∵点C(﹣2,m)在一次函数y=﹣x+2的图象上,∴m=﹣(﹣2)+2,解得:m=4,∴C(﹣2,4),将C(﹣2,4)代入y=,得k=﹣8,∴反比例函数为y=﹣;(2)如图1,过点C作CH⊥y轴于H,在直线y=﹣x+2中,当x=0时,则y=2,∴B(0,2),由(1)知,C(﹣2,4),∴BC==2,当BM=BC=2时,OM=2+2,∴M(0,2+2),当BC=MC时,点C在BM的垂直平分线,∴M(0,6),综上所述,点M的坐标为(0,2+2)或(0,6)(3)作OQ⊥PC于Q,过Q作HG⊥x轴于G,CH∥x轴,交HG于H,则△CHQ∽△QGO,∴,∵tan∠OCP=3,∴,设CH=x,则GQ=3x,HQ=4﹣3x,∴OG=3HQ=12﹣9x=x+2,解得x=1,∴Q(﹣3,3),∴直线CQ的解析式为y=x+6,∴x+6=﹣,解得x1=﹣2,x2=﹣4,∵点P与C不重合,∴P(﹣4,2).。

二次函数动点问题专题练习答案

二次函数动点问题专题练习答案

二次函数动点问题专题练习答案1. 运用二次函数知识解决问题(1)当自变量 x 取何值时,二次函数 y = ax²+ bx +c 的值达到最小值(或最大值)?答:当自变量 x 取 -b/2a 时,二次函数 y = ax²+ bx +c 的值达到最小值(或最大值)。

(2)若已知抛物线上两点坐标为(x1, y1), (x2, y2), 试写出该抛物线二次函数的一般式,并求出该抛物线的解析式。

答:设抛物线二次函数为y=ax²+bx+c则有以下方程组:ax1²+bx1+c =y1ax2²+bx2+c =y2-可列出-x1²·a + x1·b + c - y1 = 0x2²·a + x2·b + c - y2 = 0x3²·a + x3·b + c - y3 = 0-即-| x1² x1 1 || x2² x2 1 | = 0| x3² x3 1 |由于已知 2 个点,可以得到3个方程组代入高斯消元法得到a、b、c三个系数,因此解析式y=ax²+bx+c2. 解决实际问题的应用题以一个具体问题为例,说明如何解决动点问题。

【例题】马路边缘水坑中心挖开,呈抛物面,最深处为4m、直径10m。

现在要在中心位置挖一道V字形沟渠,宽5m,深2m,请问水从沟渠可以流多少吨?若要确保塌方风险不会增加,每日流出水量不得超过150m³?解:先画出示意图假设某一时刻水位高度为 h,抛物线面积为 S,则有S = πr² + 2·(2·h)·(πr/2)因为题目已知直径为10m,则半径为 5m,即 r=5所以,S = 25π + 10h设 h = -x² + 4 (因为最深处为4m),并且将 V 字形沟渠截面看作若干个矩形的叠加,则矩形面积为:A = (5 - x) · 2 = 10 - 2x而矩形面积与水位高度 h 存在联系,即:S = A + πx²代入 h = -x² + 4 和S = 25π + 10h,解得:x ≈ 2.036因此,此时的流量为:V = A · x ≈ 20.364 m³/s即使每日流出水量达到最大 150m³,也可以满足问题的需求。

初二动点题经典例题

初二动点题经典例题

初二动点题经典例题1. 一个匀速运动的点A,从时刻t1=0开始,以速度v1=20m/s向右匀速运行,另一个点B,从时刻t2=3s开始,以速度v2=30m/s向左匀速运动。

已知AB的距离为50m。

在何时和何处两点相遇?解析:假设两点在时刻t相遇,此时A和B的距离为50m,即20t=50-30(t-3),解得t=4s,代入任意一个点的运动方程,得到相遇点的位置为A:80m处,B:-30m处。

2. 一个小球从山顶垂直落下,同时一架小飞机从山顶正东方向以恒定的速度飞行,计划以恰好与小球在同一位置。

假设小球到达地面时,小飞机飞行距离为5000m,小球落地时间为5s,小飞机速度为300m/s,请问小飞机飞行的距离和时间。

解析:小球落地时间为5s,根据重力加速度为9.8m/s^2,可以求出小球落地时的速度v=49m/s,所以小球垂直落下的高度为h=1/2×g×t^2=122.5m。

小飞机在水平方向的速度为300m/s,所以小飞机需要飞行的时间为122.5/300=0.408s,小飞机飞行的距离为0.408×300=122.4m。

3. 一个小球从高50米的平台上自由落下,同时在离这个平台250米的地面上有一个接力棒接球手张三,假设张三向上抛接球时的初速度为5m/s,小球和张三同时开始运动,请问小球和张三在哪个时刻相遇?解析:首先计算小球自由落体运动到地面的时间t1=sqrt(2h/g)=3.19s,再根据张三所在位置与小球落地位置的距离和张三抛球的速度,计算出张三抛球到小球落地位置所需的时间t2=25s,因此小球和张三的距离一开始是250+50=300m,小球下落的距离为1/2*g*t1^2=784.5m,因此当小球运动了t=t2-t1=21.81s时,它的位置离地面为300-784.5+1/2*g*t^2=-215.09m,可以得到张三和小球在21.81s时相遇。

初一数学动点问题20题及答案

初一数学动点问题20题及答案

初一数学动点问题20题及答案数轴上动点问题1.已知:如图,数轴上点A表示的数为6,点B表示的数为2,点C表示的数为﹣8,动点P从点A出发,沿数轴向左运动,速度为每秒1个单位长度.点M为线段BC中点,点N为线段BP中点.设运动时间为t秒.(1)线段AC的长为__________个单位长度;点M表示的数为;(2)当t=5时,求线段MN的长度;(3)在整个运动过程中,求线段MN的长度.(用含t的式子表示).2.已知数轴上点A,B,C所表示的数分别是x,﹣6,4.(1)线段BC的长为_________,线段BC的中点D所表示的数是;(2)若AC=8,求x的值;(3)在数轴上有两个动点P,Q,P的速度为1个单位长度/秒,Q的速度为2个单位/秒,点P,Q分别从点B,C同时出发,在数轴上运动,则经过多少时间后P,Q两点相距4个单位?3.动点A、B同时从数轴上的原点出发向相反的方向运动,且A、B的速度之比是1:4(速度单位:长度单位/秒),3秒后,A、B两点相距15个单位长度.(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置.(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间?4.如图A、B两点在数轴上分别表示﹣10和20,动点P从点A出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向右运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?5.已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=_______,b=_______;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,更多好题请进入:437600809,请问经过多少秒甲追上乙?6.在数轴上有A、B两动点,点A起始位置表示数为﹣3,点B起始位置表示数为12,点A的速度为1单位长度/秒,点B的运动速度是点A速度的二倍.(1)若点A、B同时沿数轴向左运动,多少秒后,点B与点A相距6单位长度?(2)若点A、点B同时沿数轴向左运动,是否有一个时刻,表示数﹣3的点是线段AB 的中点?如果有,求出运动时间;如果没有,说明理由.7.如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H 同时出发,问点P运动多少秒时追上点H?8.如图,数轴上的点A,B对应的数分别为﹣10,5.动点P,Q分别从A,B同时出发,点P以每秒3个单位长度的速度沿数轴向右匀速运动,点Q以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)求线段AB的长;(2)直接用含t的式子分别表示数轴上的点P,Q对应的数;(3)当PQ=AB时,求t的值.9.如图,已知数轴上点A表示的数为6,B是你数轴上一点,且AB=10,动点P从点O 出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B所表示的数______;当t=3时,OP=_______.(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R 同时出发,问点R运动多少秒时追上点P?10.如图.点A、点C是数轴上的两点,0是原点,0A=6,5AO=3CO.(1)写出数轴上点A、点C表示的数;(2)点P、Q分别从A、C同时出发,点P以每秒1个单位长度的速度沿数轴向右匀速运动,点Q以每4个单位长度的速度沿数轴向左匀速运动,问运动多少秒后,这两个动点到原点O的距离存在2倍关系?11.已知数轴上两点A,B对应的数分别为﹣1,3,P为数轴上的动点,其对应的数为x.(1)数轴上是否存在点P,使P到点A、点B的之和为5?若存在,请求出x的值;若不存在,说明理由;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动.问,它们同时出发几分钟时点P到点A、点B的距离相等?12.A、B两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如下.(1)根据题意,填写下列表格;(2)A、B两点能否相遇?如果相遇,求相遇时的时刻及在数轴上的位置;如果不能相遇,请说明理由;(3)A、B两点能否相距18个单位长度?如果能,求相距18个单位长度的时刻;如不能,请说明理由.13.如图1,点A,B是在数轴上对应的数字分别为﹣12和4,动点P和Q分别从A,B 两点同时出发向右运动,点P的速度是5个单位/秒,点Q的速度是2个单位/秒,设运动时间为t秒.(1)AB=.(2)当点P在线段BQ上时(如图2):①BP=______________(用含t的代数式表示);②当P点为BQ中点时,求t的值.。

七年级数轴动点问题经典例题

七年级数轴动点问题经典例题

七年级数轴动点问题经典例题
数轴动点问题是七年级数学中的一个重要知识点,通过解决这类问题,可以帮
助学生加深对数轴和正数、负数的理解,培养学生的逻辑思维能力和解决问题的能力。

下面将介绍一些经典的数轴动点问题例题,希望能帮助同学们更好地掌握这一知识点。

1. 问题描述:小明从数轴上的0点出发,向右走3个单位,再向左走4个单位,最后再向右走2个单位,他最后停在了数轴上的哪个点?
解析:小明从0点出发,向右走3个单位,到达3点;再向左走4个单位,回
到-1点;最后再向右走2个单位,到达1点。

所以小明最后停在数轴上的点是1。

2. 问题描述:小红站在数轴上的点A,向右走5个单位到达点B,再向左走3
个单位到达点C,再向右走2个单位到达点D,最后向左走4个单位到达点E,小
红最后停在了哪个点?
解析:小红从点A向右走5个单位,到达点B;再向左走3个单位,到达点C;再向右走2个单位,到达点D;最后向左走4个单位,到达点E。

所以小红最后停
在数轴上的点是E。

3. 问题描述:小明站在数轴上的点P,向左走7个单位到达点Q,再向右走4
个单位到达点R,最后向左走3个单位到达点S,小明最后停在了哪个点?
解析:小明从点P向左走7个单位,到达点Q;再向右走4个单位,到达点R;最后向左走3个单位,到达点S。

所以小明最后停在数轴上的点是S。

通过解答上面的例题,我们可以发现,数轴动点问题的解决过程其实就是在数
轴上进行正数和负数的加减运算,通过对问题的分析和计算,可以得到最后点的位置。

希望同学们通过练习这些经典例题,掌握数轴动点问题的解题方法,提高数学能力,为学习数学打下坚实的基础。

数学动点问题例题

数学动点问题例题

数学动点问题是一个常见的题目类型,以下是一例子:
例题:数轴上有线段AB=8(单位长度),CD=12(单位长度),线段AB以6单位/秒,CD以2单位/秒同时向右运动,那么从点B与点C重合到点A与点D重合经过多少秒。

分析:
1. 首先,我们需要理解题目中的基本概念。

在这个问题中,线段AB和CD都在移动,因此它们的位置是不断变化的。

2. 我们需要找出点B和点C重合的时间。

当它们重合时,线段AB 和CD的长度相等,即8单位长度和12单位长度。

3. 接下来,我们需要找出点A和点D重合的时间。

当它们重合时,线段AB和CD的长度再次相等,即8单位长度和12单位长度。

4. 最后,我们需要计算这两个时间之间的差值,即从点B与点C 重合到点A与点D重合经过的秒数。

解答:
1. 当点B与点C重合时,线段AB和CD的长度相等,即8单位长度和12单位长度。

由于AB以6单位/秒运动,CD以2单位/秒运动,因此需要时间t1=(12-8)/(6-2)=1 秒。

2. 当点A与点D重合时,线段AB和CD的长度再次相等,即8单位长度和12单位长度。

由于AB以6单位/秒运动,CD以2单位/秒运动,因此需要时间t2=(12+8)/(6-2)=5 秒。

3. 从点B与点C重合到点A与点D重合经过的秒数为t=t2-t1=5-1=4 秒。

答案:从点B与点C重合到点A与点D重合经过4秒。

初中数学全等三角形中的动态问题(知识点例题解析)

初中数学全等三角形中的动态问题(知识点例题解析)

初中数学全等三角形中的动态问题(知识点+例题解析)初中数学中,动点问题是学习的重、难点,在三角形、矩形等一些几何图形上,设计一个或多个动点,探究全等三角形存在性问题,该类题目具有较强的综合性。

解决动点问题常见的答题思路是:1.注意分类讨论;2.仔细探究全等三角形对应边与对应角的变化;3.利用时间表示出相应线段或边的长度,列出方程求解.【典例解析】【例1-1】(2020·周口市月考)如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E从A点出发以2厘米/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E离开点A后,运动______秒时,△DEB与△BCA全等.【例1-2】(2020·江阴市月考)已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.A.1B.1或3C.1或7D.3或7【变式1-1】(2020·无锡市月考)如图,在△ABC中,∠ACB=90°,AC=7cm,BC=3cm,CD为AB边上的高.点E从点B出发沿直线BC以2cm/s的速度移动,过点E作BC的垂线交直线CD于点F.(1)试说明:∠A=∠BCD;(2)当点E运动多长时间时,CF=AB.请说明理由.【变式1-2】(2020·河北灵寿期末)如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(0,m)、B(n,0),且|m﹣n﹣0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P的运动时间为t秒.(1)求OA、OB的长;(2)连接PB,设△POB的面积为S,用t的式子表示S;(3)过点P作直线AB的垂线,垂足为D,直线PD与x轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.【例2】(2020·惠州市月考)如图,点C在线段BD上,AB⊥BD于B,ED⊥BD于D.∠ACE=90°,且AC =5cm,CE=6cm,点P以2cm/s的速度沿A→C→E向终点E运动,同时点Q以3cm/s的速度从E开始,在线段EC上往返运动(即沿E→C→E→C→…运动),当点P到达终点时,P,Q同时停止运动.过P,Q分别作BD的垂线,垂足为M,N.设运动时间为ts,当以P,C,M为顶点的三角形与△QCN全等时,t的值为_____.【变式2-1】(2020·江阴市月考)如图,在四边形ABCD中,AD=BC=4,AB=CD,BD=6,点E从D 点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿C→B→C 作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动.(1)试证明:AD∥BC.(2)在移动过程中,小芹发现当点G的运动速度取某个值时,有△DEG与△BFG全等的情况出现,请你探究当点G的运动速度取哪些值时,△DEG与△BFG全等.【变式2-2】(2020·重庆巴南月考)如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在cm s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它线段AB上以1/们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的cm s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若运动速度为x/不存在,请说明理由.【变式2-3】(2020·江苏兴化月考)如图,在△ABC中,∠ACB=90°,AC=6,BC=8.点P从点A出发,沿折线AC—CB以每秒1个单位长度的速度向终点B运动,点Q从点B出发沿折线BC—CA以每秒3个单位长度的速度向终点A运动,P、Q两点同时出发.分别过P、Q两点作PE⊥l于E,QF⊥l于F.设点P的运动时间为t(秒):(1)当P、Q两点相遇时,求t的值;(2)在整个运动过程中,求CP的长(用含t的代数式表示);(3)当△PEC与△QFC全等时,直接写出所有满足条件的CQ的长.【例3】(2020·惠州市月考)如图,在△ABC中,AB=AC=18cm,BC=10cm,∠B=∠C,AD=2BD.如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【变式3-1】(2019·山西太原月考)如图1,在长方形ABCD中,AB=CD=5cm,BC=12cm,点P从点B 出发,以2cm/s的速度沿BC向点C运动,设点P的运动时间为ts.(1)PC=___cm;(用含t的式子表示)(2)当t为何值时,△ABP≌△DCP?.(3)如图2,当点P从点B开始运动,此时点Q从点C出发,以vcm/s的速度沿CD向点D运动,是否存在这样的v值,使得某时刻△ABP与以P,Q,C为顶点的直角三角形全等?若存在,请求出v的值;若不存在,请说明理由.【变式3-2】(2020·四川成都)如图,已知四边形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,点E为线段AB的中点.如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为_____厘米/秒时,能够使△BPE与以C、P、Q 三点所构成的三角形全等.【习题精练】=,BC6=,线段PQ=AB,1.(2020·江苏东台月考)如图,有一个直角三角形ABC,∠C=90°,AC10点Q在过点A且垂直于AC的射线AX上来回运动,点P从C点出发,沿射线CA以2cm/s的速度运动,问>,才能使△ABC≌△QPA全等.P点运动___________秒时(t0)2.(2020·江苏泰州月考)如图,AB =12,CA ⊥AB 于A ,DB ⊥AB 于B ,且AC =4m ,P 点从B 向A 运动,每分钟走1m ,Q 点从B 向D 运动,每分钟走2m ,P 、Q 两点同时出发,运动_______分钟后△CAP 与△PQB 全等.3.(2020·常州市月考)如图, ADC 中.∠C =90°,AC =10cm ,BC =5cm .AD ⊥AC ,AB =PQ ,P 、Q 两点分别在AC 、AD 上运动,当AQ =_____时,△ABC 才能和△APQ 全等.4.(2020·江西新余期末)如图,ABC ∆中,90ACB ∠=︒,8cm AC =,15cm BC =,点M 从A 点出发沿A C B →→路径向终点运动,终点为B 点,点N 从B 点出发沿B C A →→路径向终点运动,终点为A 点,点M 和N 分别以每秒2cm 和3cm 的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M 和N 作ME l ⊥于E ,NF l ⊥于F .设运动时间为t 秒,要使以点M ,E ,C 为顶点的三角形与以点N ,F ,C 为顶点的三角形全等,则t 的值为______.5.(2020·武城县月考)如图,已知四边形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,点E为线段AB的中点.如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为多少时,能够使△BPE与以C、P、Q三点所构成的三角形全等?6.(2020·盐城市盐都区月考)如图,有一个直角△ABC,∠C=90°,AC=6,BC=3,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,问:当AP=________时,才能使以点P、A、Q 为顶点的三角形与△ABC全等.7.(2020·四川青羊期中)如图,在△ABC中,已知AB=AC,∠BAC=90°,AH是△ABC的高,AH=4cm,BC=8cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒3厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度向远离C点的方向运动,连接AD、AE,设运动时间为t(t>0)秒.(1)请直接写出CD、CE的长度(用含有t的代数式表示):CD=cm,CE=cm;(2)当t为多少时,△ABD的面积为12cm2?(3)请利用备用图探究,当t为多少时,△ABD≌△ACE?并简要说明理由.8.(2020·郑州市月考)如图,在平面直角坐标系中,O 为坐标原点A 、B 两点的坐标分别A (m ,0),B(0,n ),且|m -n -3|=0,点P 从A 出发,以每秒1个单位的速度沿射线AO 匀速运动,设点P 运动时间为t 秒.(1)求OA 、OB 的长;(2)连接PB ,若△POB 的面积不大于3且不等于0,求t 的范围;(3)过P 作直线AB 的垂线,垂足为D ,直线PD 与y 轴交于点E ,在点P 运动的过程中,是否存在这样的点P ,使△EOP ≌△AOB ?若存在,请求出t 的值;若不存在,请说明理由.9.(2020·宜兴市月考)如图,在△ABC 中,∠BAD =∠DAC ,DF ⊥AB ,DM ⊥AC ,AF =10cm ,AC =14cm ,动点E 以2cm /s 的速度从A 点向F 点运动,动点G 以1cm /s 的速度从C 点向A 点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t .(1)求证:AF =AM ;(2)当t 取何值时,△DFE 与△DMG 全等;(3)求证:在运动过程中,不管t 取何值,都有2AED DGC S S =△△.10.(2020·江苏工业园区期末)如图①,将长方形纸片沿对角线剪成两个全等的直角三角形ABC、EDF,其中AB=8cm,BC=6cm,AC=10cm.现将△ABC和△EDF按如图②的方式摆放(点A与点D、点B与点E 分别重合).动点P从点A出发,沿AC以2cm/s的速度向点C匀速移动;同时,动点Q从点E出发,沿射线ED以acm/s(0<a<3)的速度匀速移动,连接PQ、CQ、FQ,设移动时间为ts(0≤t≤5).=3S△BQC,则a=;(1)当t=2时,S△AQF(2)当以P、C、Q为顶点的三角形与△BQC全等时,求a的值;(3)如图③,在动点P、Q出发的同时,△ABC也以3cm/s的速度沿射线ED匀速移动,当以A、P、Q为顶点的三角形与△EFQ全等时,求a与t的值.11.(2019·江苏期末)如图①,在ABC ∆中,12AB =cm ,20BC =cm ,过点C 作射线//CD AB .点M 从点B 出发,以3cm /s 的速度沿BC 匀速移动;点N 从点C 出发,以a cm /s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动.连接AM 、MN ,设移动时间为t (s ).(1)点M 、N 从移动开始到停止,所用时间为s ;(2)当ABM ∆与MCN ∆全等时,①若点M 、N 的移动速度相同,求t 的值;②若点M 、N 的移动速度不同,求a 的值;(3)如图②,当点M 、N 开始移动时,点P 同时从点A 出发,以2cm /s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM ∆与MCN ∆全等的情形?若存在,求出t 的值;若不存在,说明理由.图①图②12.如图,ABC 中,90ACB ∠=︒,8AC cm =,15BC cm =,点M 从A 点出发沿A →C →B 路径向终点运动,终点为B 点,点N 从B 点出发沿B →C →A 路径向终点运动,终点为A 点,点M 和N 分别以每秒2cm 和3cm 的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M 和N 作ME l ⊥于E ,NF l ⊥于F 设运动时间为t 秒,要使以点M ,E ,C 为顶点的三角形与以点N ,F ,C 为顶点的三角形全等,则t 的值为________.13.(2019·湖北襄州)在平面直角坐标系中,点A(0,5),B(12,0),在y轴负半轴上取点E,使OA=EO,作∠CEF=∠AEB,直线CO交BA的延长线于点D.(1)根据题意,可求得OE=;(2)求证:△ADO≌△ECO;(3)动点P从E出发沿E﹣O﹣B路线运动速度为每秒1个单位,到B点处停止运动;动点Q从B出发沿B﹣O﹣E运动速度为每秒3个单位,到E点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM⊥CD于点M,QN⊥CD于点N.问两动点运动多长时间△OPM与△OQN全等?14.(2019·福建省惠安期中)如图,在△ABC中,BC=8cm,AG∥BC,AG=8cm,点F从点B出发,沿线段BC以4cm/s的速度连续做往返运动,同时点E从点A出发沿线段AG以2cm/s的速度向终点G运动,当点E到达点G时,E、F两点同时停止运动,EF与AC交于点D,设点E的运动时间为t(秒)(1)分别写出当0≤t≤2和2<t≤4时线段BF的长度(用含t的代数式表示);(2)当BF=AE时,求t的值;(3)若△ADE≌△CDF,求所有满足条件的t值.15.(2020·无锡市月考)△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点.如果点P 在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q 的运动速度为_____厘米/秒,△BPD与△CQP全等.16.(2020·广东龙岗期末)直角三角形ABC中,∠ACB=90°,直线l过点C.(1)当AC=BC时,如图①,分别过点A、B作AD⊥l于点D,BE⊥l于点E.求证:△ACD≌△CBE.(2)当AC=8,BC=6时,如图②,点B与点F关于直线l对称,连接BF,CF,动点M从点A出发,以每秒1个单位长度的速度沿AC边向终点C运动,同时动点N从点F出发,以每秒3个单位的速度沿F→C→B→C→F向终点F运动,点M、N到达相应的终点时停止运动,过点M作MD⊥l于点D,过点N 作NE⊥l于点E,设运动时间为t秒.①CM=,当N在F→C路径上时,CN=.(用含t的代数式表示)②直接写出当△MDC与△CEN全等时t的值.17.(2020·青岛市黄岛区月考)如图1,直线AM AN ⊥,AB 平分MAN ∠,过点B 作BC BA ⊥交AN 于点C ;动点E 、D 同时从A 点出发,其中动点E 以2/m s 的速度沿射线AN 方向运动,动点D 以1/m s 的速度运动;已知6AC cm =,设动点D ,E 的运动时间为t .图1备用图(1)试求∠ACB 的度数;(2)当点D 在射线AM 上运动时满足ADB S :2BEC S = :3,试求点D ,E 的运动时间t 的值;(3)当动点D 在直线AM 上运动,E 在射线AN 运动过程中,是否存在某个时间t ,使得ADB 与BEC 全等?若存在,请求出时间t 的值;若不存在,请说出理由.参考答案及解析初中数学中,动点问题是学习的重、难点,在三角形、矩形等一些几何图形上,设计一个或多个动点,探究全等三角形存在性问题,该类题目具有较强的综合性。

初二动点问题(含答案)

初二动点问题(含答案)

二、例题:1、如图1,梯形ABCD 中,AD ∥ BC ,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P 从A 开始沿AD 边以1cm/秒的速度移动,点Q 从C 开始沿CB 向点B 以2 cm/秒的速度移动,如果P ,Q 分别从A ,C 同时出发,设移动时间为t 秒。

当t= 时,四边形是平行四边形; 当t= 时,四边形是等腰梯形.2、如图2,正方形ABCD 的边长为4,点M 在边DC 上,且DM=1,N 为对角线AC 上任意一点,则DN+MN 的最小值为3、如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ;(2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.4、在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE⊥MN 于E.(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.C B A E D图1N MAB C D E M N 图2 A C B E D N M 图35、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t. 求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值A D F C GB 图1 AD FG B 图3A D F C GB 图28、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?。

七年级动点问题大全

七年级动点问题大全

七年级动点问题大全(一)例1:如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|a+2|+(b+3a)2=0(1)求A、B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①分别表示甲、乙两小球到原点的距离(用t表示);①求甲、乙两小球到原点的距离相等时经历的时间.例2:如图,有一数轴原点为O,点A所对应的数是-12,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)在(2)的条件下,从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。

例3动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.例4:已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?例5数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置?例6:在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A 点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数例7、已知数轴上有A、B、C三点,分别代表- 24,- 10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。

动点轨迹经典例题(含答案) 易懂版

动点轨迹经典例题(含答案)   易懂版

(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。

4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

1. P 是椭圆5922y x +=1上的动点,过P 作椭圆长轴的垂线,垂足为M ,则PM 中点的轨迹中点的轨迹方程为:( )A 、159422=+y xB 、154922=+y xC 、120922=+y x D 、53622y x +=1 2. 圆心在抛物线)0(22>=y x y 上,并且与抛物线的准线及x 轴都相切的圆的方程是( )A 041222=---+y x y x B 01222=+-++y x y xC 01222=+--+y x y xD 041222=+--+y x y x 1:已知ABC ∆的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。

七年级 数轴上的动点问题典型例题

七年级 数轴上的动点问题典型例题

七年级数轴上的动点问题典型例题一、问题描述1.小明和小红分别从数轴上的点A(3)和点B(-1)开始,以相同的速度向相对方向前进。

已知小明和小红分别以每秒2个单位和每秒3个单位的速度前进,问多长时间后他们会相遇?2.小明和小红分别从数轴上的点A(3)和点B(-1)开始,以相同的速度向相对方向前进。

已知小明和小红分别以每秒2个单位和每秒3个单位的速度前进,问多长时间后他们会相距6个单位?3.小华从数轴上的点A(3)出发,以每秒4个单位的速度向右前进;小明从数轴上的点B(-1)出发,以每秒5个单位的速度向左前进。

问多长时间后他们会相遇?4.数轴上的点A、B、C分别表示3艘船在同一时刻的位置。

A、B船以每小时15公里的速度向左,C船以每小时20公里的速度向右。

问多长时间后他们会相遇?二、解题思路1.我们需要明确小明和小红分别在数轴上的运动方向和速度,查看问题中的关键数据,我们可以发现小明和小红以相对方向运动,因此速度的合成应该是小明和小红速度之差。

那么根据问题描述,小明和小红的速度差为3-2=1个单位/秒,因此他们相遇的时间应该是数轴上两点之间的距离除以他们的速度之差,即\( \frac{3-(-1)}{3-2} =\frac{4}{1} = 4\) 秒。

2.我们来解决小明和小红相距6个单位的问题。

同样根据他们速度之差的关系,我们知道他们每秒之间的距离是1个单位,那么相距6个单位就需要6秒的时间,即\(6 \div 1 = 6\) 秒。

3.对于小华和小明相遇的问题,我们同样需要计算他们的速度之差,即5-4=1个单位/秒,然后计算他们的相遇时间,即\( \frac{(-1)-3}{5-4} = \frac{-4}{1} = -4\) 秒。

但是,由于数轴上无法出现负的时间,因此小华和小明在4秒后相遇。

4.我们解决三艘船的相遇问题。

根据题目描述,我们发现三艘船的速度和运动方向不同,因此要分别计算船与船之间的相遇时间。

第6讲: 动点问题解析版

第6讲: 动点问题解析版

第6讲: 动点问题解析版【例题1】甲、乙两人沿同一条直路走步,如果两人分别从这条直路上的A ,B 两处同时出发,都以不变的速度相向而行,图1是甲离开A 处后行走的路程y (单位:)m 与行走时间x (单位:)min 的函数图象,图2是甲、乙两人之间的距离y (单位:)m 与甲行走时间x (单位:)min 的函数图象,则a b -= .【解析】从图1,可见甲的速度为120602=, 从图2可以看出,当67x =时,二人相遇,即:()6601207V +⨯=乙,解得:乙的速度80V =乙, 乙的速度快,从图2看出乙用了b 分钟走完全程,甲用了a 分钟走完全程,120120160802a b -=-=,故答案为12. 【例题2】如图1,在△ABC 中,∠A =30°,点P 从点A 出发以2cm /s 的速度沿折线A -C -B 运动,点Q 从点A 出发以a(cm /s )的速度沿AB 运动,P ,Q 两点同时出发,当某一点运动到点B 时,两点同时停止运动.设运动时间为x(s ),△APQ 的面积为y(cm 2),y 关于x 的函数图象由C 1,C 2两段组成,如图2所示. (1)求a 的值;(2)求图2中图象C 2段的函数表达式;(3)当点P 运动到线段BC 上某一段时△APQ 的面积大于当点P 在线段AC 上任意一点时△APQ 的面积,求x 的取值范围.【例题3】已知,矩形ABCD 中,4AB cm =,8BC cm =,AC 的垂直平分线EF 分别交AD 、BC 与点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿AFB ∆和CDE ∆各边匀速运动一周,即点P 自A F B A →→→停止,点Q 自C D E C →→→停止,在运动过程中,已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值. 【解答】(1)证明:四边形ABCD 是矩形, //AD BC ∴,EAO FCO ∴∠=∠,AC 的垂直平分线EF ,OA OC ∴=, 在AOE ∆和COF ∆中,EAO FCO OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()AOE COF ASA ∴∆≅∆,OE OF ∴=, OA OC =,∴四边形AFCE 是平行四边形, EF AC ⊥,∴四边形AFCE 是菱形. AF FC ∴=,设AF xcm =,则CF xcm =,(8)BF x cm =-,四边形ABCD 是矩形90B ∴∠=︒, ∴在Rt ABF ∆中,由勾股定理得:2224(8)x x +-=,解得5x =,即5AF cm =;(2)显然当P 点在AF 上时,Q 点在CD 上,此时A 、C 、P 、Q四点不可能构成平行四边形;同理P 点在AB 上时,Q 点在DE 或CE 上或P 在BF ,Q 在CD 时不构成平行四边形,也不能构成平行四边形.因此只有当P 点在BF 上、Q 点在ED 上时,才能构成平行四边形, ∴以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,PC QA =, 点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒, 5PC t ∴=,124QA t =-, 5124t t ∴=-,解得43t =∴以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,43t =秒. 【例题4】将一矩形纸片OABC 放在平面直角坐标系中,(0,0)O ,(6,0)A ,(0,3)C .动点Q从点O 出发以每秒1个单位长的速度沿OC 向终点C 运动,运动23秒时,动点P 从点A 出发以相等的速度沿AO 向终点O 运动.当其中一点到达终点时,另一点也停止运动.设点P 的运动时间为t (秒).(1)用含t 的代数式表示OP ,OQ ;是否存在t ,使得PQ 与AC 平行?若存在,求出t 值;若不存在,请说明理由.(2)求POQ ∆面积的最大值.(3)如图,将POQ ∆沿PQ 翻折,点O 恰好落在CB 边上的点D 处,且点D 的坐标(1,3),求t 的值.【解析】(1)(0,0)O ,(6,0)A ,(0,3)C , 6OA ∴=,3OC =, 四边形OABC 是矩形,3AB OC ∴==,6BC OA ==,(6,3)B ∴,动点Q 从O 点以每秒1个单位长的速度沿OC 向终点C 运动,运动23秒时,动点P 从点A 出发以相等的速度沿AO 向终点O 运动. ∴当点P 的运动时间为t (秒)时, AP t =,23OQ t =+,则6OP OA AP t =-=-;存在,PQ 与AC 平行, 当OP OQOA OC=时,//PQ AC ,即26363t t +-=,149t =; (2)22112181850(6)()2()22323239POQ S OP OQ t t t t t ∆==-+=-++=--+,Q 运动到点C 时,27333t =-=, P 运动到点O 时,6t =,102-<,∴当703t时,S 随t 的增大而增大, ∴当73t =时,S 的最大值为112; (3)(1,3)D ,1CD ∴=,设OQ a =,则DQ a =,3CQ a =-,在Rt CQD ∆中,222CQ CD DQ +=,222(3)1a a ∴-+=,53a =,2533OQ t =+=,1t =.【例题5】如图,等边ABC ∆的边长为10cm ,动点M 从点B 出发,沿B A C B →→→的方向以6/cm s 的速度运动,动点N 从点C 出发,沿C A B C →→→方向以4/cm s 的速度运动. (1)若动点M 、N 同时出发,经过几秒MN 第一次垂直于AB ?(2)若动点M 、N 同时出发,且其中一点到达终点时,另一点即停止运动,那么运动到第几秒钟时,点A 、M 、N 以及ABC ∆的边上一点D 恰能构成一个平行四边形?求出时间t 并请指出此时点D 的具体位置.【解析】(1)如图1, MN AB ⊥,60A ∠=︒, 30ANM ∴∠=︒, 2AN AM ∴=, 1042(106)t t ∴-=-54t ∴=; (2)如图2,当点M 在AB 上,点N 在AC 上时, 四边形AMDN 是平行四边形, 106AM DN t ∴==-,//AM DN , 60A DNC ∴∠=∠=︒,且60DCN ∠=︒, DNC ∴∆是等边三角形, DN CN CD ∴==, 1064t t ∴-=, 1t ∴=,4CD cm ∴=,∴点D 在BC 上,且离C 点4cm ;如图3,当点M 在AC 上,点N 在AB 上时, 四边形AMDN 是平行四边形, 410AN DM t ∴==-,//AN DM ,60A DMC ∴∠=∠=︒,且60DCM ∠=︒, DMC ∴∆是等边三角形, DM CM CD ∴==,410206t t ∴-=-,3t ∴=,2CD cm ∴=,∴点D 在BC 上,且离C 点2cm ; 如图4,当点M 在BC 上,点N 在AB 上时, 四边形ADMN 是平行四边形, 410AN DM t ∴==-,//AN DM ,60A MDC ∴∠=∠=︒,且60DCM ∠=︒, DMC ∴∆是等边三角形, DM CM CD ∴==,410620t t ∴-=-,5t ∴=,10CD cm ∴=,∴点D 与点A 重合,不合题意舍去;综上所述:运动到第1秒或第3秒时,点A 、M 、N 以及ABC ∆的边上一点D 恰能构成一个平行四边形,点D 在BC 上,离C 点4cm 或点D 在BC 上,离C 点2cm .【例题6】已知,如图①,在▱ABCD 中,AB =3cm ,BC =5cm ,AC ⊥AB ,△ACD 沿AC 的方向匀速平移得到△PNM ,速度为1cm /s ;同时,点Q 从点C 出发,沿CB 方向匀速移动,速度为1cm /s ,当△PNM 停止平移时,点Q 也停止移动,如图②,设移动时间为t (s )(0<t <4),连接PQ ,MQ ,MC ,解答下列问题: (1)当t 为何值时,PQ ∥MN ?(2)设△QMC 的面积为y (cm 2),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使S △QMC :S 四边形ABQP =1:4?若存在,求出t 的值;若不存在,请说明理由.(4)是否存在某一时刻t ,使PQ ⊥MQ ?若存在,求出t 的值;若不存在,请说明理由.【解析】(1)在Rt △ABC 中,AC ==4,由平移的性质得MN ∥AB , ∵PQ ∥MN , ∴PQ ∥AB ,∴=,∴=,t =, (2)过点P 作PE ⊥BC 于E ,如图 ∵△CPE ∽△CBA , ∴=, ∴=, ∴PE =﹣t ,∵PE ⊥BC , ∴S △QMC =S △QPC ,∴y =S △QMC =QC •PE =t (﹣t )=t ﹣t 2(0<t <4),(3)∵S △QMC :S 四边形ABQP =1:4,∴S △QPC :S 四边形ABQP =1:4, ∴S △QPC :S △ABC =1:5, ∴(t ﹣t 2):6=1:5,∴t =2,(4)若PQ ⊥MQ ,则∠PQM =∠PEQ , ∵∠MPQ =∠PQE ,∴△PEQ ∽△MQP ,∴=, ∴PQ 2=MP •EQ ,∴PE 2+EQ 2=MP •EQ ,∵CE =,∴EQ =CE ﹣CQ =﹣t =, ∴()2+()2=5×,∴t 1=0(舍去),t 2=,∴t =时,PQ ⊥MQ .精品练习1.如图,在矩形ABCD 中,5AD =,3AB =,点E 从点A 出发,以每秒2个单位长度的速度沿AD 向点D 运动,同时点F 从点C 出发,以每秒1个单位长度的速度沿CB 向点B 运动,当点E 到达点D 时,点E ,F 同时停止运动.连接BE ,EF ,设点E 运动的时间为t ,若BEF ∆是以BE 为底的等腰三角形,则t 的值为.【解析】如图,过点E 作EG BC ⊥于G , ∴四边形ABGE 是矩形,3AB EG ∴==,2AE BG t ==,5BF EF t ==-,|2(5)||35|FG t t t =--=-, 222EF FG EG ∴=+,22(5)(35)9t t ∴-=-+,t ∴=2如图,直线334y x =--交x 轴于点A ,交y 轴于点B ,点P 是x 轴上一动点,以点P 为圆心,以1个单位长度为半径作P ,当P 与直线AB 相切时,点P 的坐标是 7(3-,0)或17(3P -,0) .【解析】直线334y x =--交x 轴于点A ,交y 轴于点B ,∴令0x =,得3y =-,令0y =,得4x =-, (4,0)A ∴-,(0B .3)-,4OA ∴=,3OB =, 5AB ∴=,设P 与直线AB 相切于D ,连接PD ,则PD AB ⊥,1PD =,90ADP AOB ∠=∠=︒,PAD BAO ∠=∠,APD ABO ∴∆∆∽,∴PD AP OB AB =,∴135AP =,53AP ∴=, 73OP ∴=或173OP =,7(3P ∴-,0)或17(3P -,0),故答案为:7(3-,0)或17(3P -,0).3小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离与小王的行驶时间之间的函数关系.请你根据图象进行探究:(1)小王和小李的速度分别是多少?(2)求线段所表示的与之间的函数解析式,并写出自变量的取值范围.【解析】(1)由图可得,小王的速度为:,小李的速度为:,()y km ()x h BC y x x 30310/km h ÷=(30101)120/km h -⨯÷=答:小王和小李的速度分别是、; (2)小李从乙地到甲地用的时间为:,当小李到达甲地时,两人之间的距离为:,点的坐标为, 设线段所表示的与之间的函数解析式为,,得,即线段所表示的与之间的函数解析式是.4如图,在平面直角坐标系中,四边形的顶点坐标分别为,,,.动点从点出发,以每秒3个单位长度的速度沿边向终点运动;动点从点同时出发,以每秒2个单位长度的速度沿边向终点运动.设运动的时间为秒,.(1)直接写出关于的函数解析式及的取值范围: ;(2)当的值;(3)连接交于点,若双曲线经过点,问的值是否变化?若不变化,请求出的值;若变化,请说明理由.【解析】(1)过点作于点,如图1所示.当运动时间为秒时时,点的坐标为,点的坐标为, ,,, .故答案为:.(2)当, 整理,得:,解得:,.(3)经过点的双曲线的值不变.10/km h 20/km h 3020 1.5h ÷=10 1.515km ⨯=∴C (1.5,15)BC y x y kx b =+01.515k b k b +=⎧⎨+=⎩3030k b =⎧⎨=-⎩BC y x 3030(1 1.5)y x x =-OABC (0,0)O (12,0)A (8,6)B (0,6)C P O OA A Q B BC C t 2PQ y =y t t 22580100(04)y t t t =-+PQ =t OB PQ D (0)ky k x=≠D k k P PE BC ⊥E t (04)t P (3,0)t Q (82,6)t -6PE ∴=|823||85|EQ t t t =--=-2222226|85|2580100PQ PE EQ t t t ∴=+=+-=-+22580100(04)y t t t ∴=-+22580100(04)y t t t =-+PQ =222580100t t -+=2516110t t -+=11t =2115t =D (0)ky k x=≠k连接,交于点,过点作于点,如图2所示. ,,. ,,,. ,.在中,,, ,, 点的坐标为,, 经过点的双曲线的值为.5如图①,在平面直角坐标系中,二次函数的图象与坐标轴交于,,三点,其中点的坐标为,点的坐标为,连接,.动点从点出发,在线段上以每秒1个单位长度的速度向点作匀速运动;同时,动点从点出发,在线段上以每秒1个单位长度的速度向点作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为秒.连接.(1)填空:, ; (2)在点,运动过程中,可能是直角三角形吗?请说明理由;(3)点在抛物线上,且的面积与的面积相等,求出点的坐标.【解析】(1)设抛物线的解析式为.OB PQ D D DF OA ⊥F 6OC =8BC=10OB ∴==//BQ OP BDQ ODP ∴∆∆∽∴2233BD BQ t OD OP t ===6OD ∴=//CB OA DOF OBC ∴∠=∠Rt OBC ∆63sin 104OC OBC OB ∠===84cos 105BC OBC OB ∠===424cos 655OF OD OBC ∴=∠=⨯=318sin 655DF OD OBC =∠=⨯=∴D 24(518)5∴D (0)k y k x =≠k 24184325525⨯=213y x bx c =-++A B C A (3,0)-B (4,0)AC BC P A AC C Q O OB B t PQ b =13c =P Q APQ ∆M AOM ∆AOC ∆M (3)(4)y a x x =+-将代入得:,, (2)在点、运动过程中,不可能是直角三角形. 理由如下:连结.在点、运动过程中,、始终为锐角, 当是直角三角形时,则. 将代入抛物线的解析式得:, ., ,在中,依据勾股定理得:在中,依据勾股定理可知:在中依据勾股定理可知:,在中,,即 解得:,由题意可知:不合题意,即不可能是直角三角形. 是与的公共边点到的距离等于点到的距离即点到的距离等于 所以的纵坐标为4或把代入得,解得, 把代入得,解得, 或,或,13a =-211433y x x =-++13b ∴=4c =P Q APQ ∆QC P Q PAQ ∠PQA ∠∴APQ ∆90APQ ∠=︒0x =4y =(0,4)C ∴AP OQ t ==5PC t ∴=-Rt AOC ∆5AC =Rt COQ ∆2216CQ t =+Rt CPQ ∆222PQ CQ CP =-Rt APQ ∆222AQ AP PQ -=2222CQ CP AQ AP ∴-=-2222(3)16(5)t t t t +-=+--4.5t =04t 4.5t ∴=APQ ∆(3)AO AOM ∆AOC ∆∴M AO C AO M AO CO M 4-4y =211433y x x =-++2114433x x -++=10x =21x =4y =-211433y x x =-++2114433x x -++=-1197x +=2197x -=(1,4)M 197(M +4)-197(M -4)-。

难点探究专题:全等三角形中的动点问题(3类热点题型讲练)(解析版)--初中数学北师大版7年级下册

难点探究专题:全等三角形中的动点问题(3类热点题型讲练)(解析版)--初中数学北师大版7年级下册

第07讲难点探究专题:全等三角形中的动点问题(3类热点题型讲练)目录【题型一利用分类讨论思想求解动点中三角形全等问题】..................................................................................1【题型二利用三角形全等求证线段之间的关系问题】........................................................................................11【题型三利用三角形全等求证角之间的关系问题】.. (21)【题型一利用分类讨论思想求解动点中三角形全等问题】例题:(23-24八年级上·重庆·阶段练习)如图,在长方形ABCD 中,4,6AB AD ==,延长BC 到点E ,使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA →→向终点A 运动,设点P 的运动时间为t 秒,当t 的值为秒时,ABP 与DCE △全等.【答案】1或7【分析】本题考查了全等三角形的判定,判定方法有:ASA,SAS,AAS,SSS,HL .根据题意,分两种情况进行讨论,根据题意得出22BP t ==和1622AP t =-=即可求得.【详解】解:由题意得:AB CD =,若90,2ABP DCE BP CE ∠=∠=︒==,根据SAS 证得ABP DCE ≌△△,∴22BP t ==,即1t =,若90,2BAP DCE AP CE ∠=∠=︒==,根据SAS 证得BAP DCE ≌ ,∴1622AP t =-=,即7t =.∴当t 的值为1或7秒时.ABP 与DCE △全等.故答案为:1或7.【变式训练】1.(23-24八年级上·山东日照·阶段练习)如图,CA AB ⊥,垂足为点A ,12AB =米,6AC =米,射线BM AB ⊥,垂足为点B ,动点E 从A 点出发以2米/秒沿射线AN 运动,点D 为射线BM 上一动点,随着E 点运动而运动,且始终保持ED CB =,当点E 经过秒时(不包括0秒),由点D E B 、、组成的三角形与BCA V 全等.【答案】3秒或9秒或12【分析】本题考查了三角形全等的判定与性质,分四种情况:当点E 在线段AB 上,AC BE =时,ACB BED ≌;当E 在BN 上,AC BE =时,ACB BED ≌;当E 在线段AB 上,AB EB =时;当E 在BN上,AB EB =时,ACB BDE ≌;分别利用三角形全等的性质进行求解即可,熟练掌握三角形全等的判定与性质是解此题的关键.【详解】解:当点E 在线段AB 上,AC BE =时,ACB BED ≌,6AC = ,6BE ∴=,1266AE AB BE ∴=-=-=,∴点E 的运动时间为623÷=(秒);当E 在BN 上,AC BE =时,ACB BED ≌,6AC = ,6BE ∴=,12618AE AB BE ∴=+=+=,∴点E 的运动时间为1829÷=(秒);当E 在线段AB 上,AB EB =时,此时E 在A 点未动,时间为0秒,不符合题意;当E 在BN 上,AB EB =时,ACB BDE ≌,12AB = ,12BE ∴=,121224AE AB BE ∴=+=+=,∴点E 的运动时间为24212÷=(秒);综上所述,当点E 经过3秒或9秒或12秒时(不包括0秒),由点D E B 、、组成的三角形与BCA V 全等,故答案为:3秒或9秒或12.2.(23-24八年级上·北京西城·期中)如图,在平面直角坐标系xOy 中,()5,0A ,()0,7B ,动点P ,Q 分别按照A O B --和B O A --的路线同时开始运动,到各自的终点时停止.直线l 经过原点O ,且l AB ∥,过P ,Q 分别作l 的垂线段,垂足分别为F ,E .若点P 的速度为每秒2个单位长度,点Q 的速度为每秒4个单位长度,运动时间为t 秒,当OPE 与OQF △全等时,t 的值为.【答案】1或2或5【分析】本题主要考查了全等三角形的性质和一元一次方程的应用,解题的关键是恰当分类并利用全等三角形的性质建立方程.判断出OP OQ =再分三种情况讨论,表示出OP ,OQ 建立一元一次方程求解即可.【详解】解:∵()5,0A ,()0,7B ,∴5OA =,7OB =,由题意,OP 和OQ 是两直角三角形的斜边,当OPE 与OQF △全等时,OP OQ =,①当点P 在OA 上,点Q 在OB 上时,根据题意可得∶s t 时,2AP t =,4BQ t =,∴52OP OA AP t =-=-,74OQ OB BQ t =-=-,∴5274t t -=-,解得∶1t =;②当点P ,Q 都在OA 上时,点P ,Q 重合时,两三角形重合时,P 点行程为2t ,Q 点行程为4t ,∴2457t t +=+,解得2t =;③当点P 在OB 上,点Q 在OA 上且点Q 与点A 重合时,25OP t =-,5OQ =∴255t -=.解得:5t =当OPE 与OQF △全等时,满足题意的t 的值为1或2或5.故答案为:1或2或5.3.(23-24八年级下·江苏泰州·阶段练习)如图,在长方形ABCD 中,3cm AB DC ==,2cm BC AD ==,现有一动点P 从点A 出发,以1cm /s 的速度沿长方形的边A B C D A →→→→运动,到达点A 时停止;点Q在边DC 上,DQ BC =,连接AQ .设点P 的运动时间为s t ,则当t =s 时,以长方形的两个顶点及点P 为顶点的三角形与ADQ △全等.(不考虑两个三角形重合的情况)【答案】1或2或7【分析】本题考查了全等三角形的判定和长方形的性质,掌握全等三角形的判定和恰当分类是解题的关键.先确定ADQ △是等腰直角三角形,再分三种情况:点P 在AB 边上,BP BC =或AP AD =,点P 在CD 边上,CP BC =,利用动点运动的路径求解即可.【详解】解:在长方形ABCD 中,90DAB B C D ∠=∠=∠=∠=︒,∵DQ BC =,∴DQ AD =,∴ADQ △是等腰直角三角形,分三种情况:当点P 在AB 边上,BP BC =时,BPC ADQ ≌,则1cm AP AB PB =-=,∴1s t =;当点P 在AB 边上,AP AD =时,DAP ADQ ≌,则2s=t 点P 在CD 边上,CP BC =时,BCP ADQ ≌,则(322)s =7s t =++,综上,当1s t =或2s 或7s 时,以长方形的两个顶点及点P 为顶点的三角形与ADQ △全等.故答案为:1或2或7.4.(23-24八年级上·福建泉州·阶段练习)如图,CA AB ⊥,垂足为点A ,射线BM AB ⊥,垂足为点B ,16cm AB =,8cm AC =.动点E 从A 点出发以4cm/s 的速度沿射线AN 运动,动点D 在射线BM 上,随着E 点运动而运动,始终保持ED CB =.若点E 的运动时间为()0t t >,则当t =秒时,DEB 与BCA V 全等.12cm BC =,现有一动点P 从点A 出发,沿着三角形的边AC CB BA →→运动,回到点A 停止,速度为2cm/s ,设运动时间为s t .(1)如图1,当t =s 时,12BPC ABC S S =;(2)如图2,在DEF 中,90E ∠=︒,8cm DE =,10cm DF =,D A ∠=∠.在ABC 的边上,若另外有一个动点Q ,与点P 同时从点A 出发,沿着边AB BC CA →→运动,回到点A 停止.在两点运动过程中的某一时刻,恰好APQ △与DEF 全等,求点Q 的运动速度.②点P 在AB 上时,过点∴点P 的运动路程为(2)∵在DEF∴①当点P在AC∴点Q的速度为:②当点P在AB上,点∴点Q的速度为:③当点P在AB上,④当点P 在AC 上,点∴点Q 的速度为:综上所述,两点运动过程中的某一时刻,19cm /s 10cm /s 或8cm 56.(2023·广西南宁·二模)如图,在ABC 中,AD 为高,18AC =.点E 为AC 上的一点,2CE AE =,连接BE ,交AD 于O ,若BDO ADC △≌△.(1)猜想线段BO 与AC 的位置关系,并证明;(2)有一动点Q 从点A 出发沿射线AC 以每秒6个单位长度的速度运动,设点Q 的运动时间为t 秒,是否存在t 的值,使得BOQ △的面积为27?若存在,请求出t 的值;若不存在,请说明理由;(3)在(2)条件下,动点P 从点O 出发沿线段OB 以每秒2个单位长度的速度向终点B 运动,P 、Q 两点同时出发,当点P 到达点B 时,P 、Q 两点同时停止运动,设运动时间为t 秒,点F 是直线BC 上一点,且CF AO =,当AOP 与FCQ 全等时,求t 的值.1118(1222BOQ S BO QE ∆=⨯=⨯⨯-解得:32t =(舍去);当2t >时,Q 在射线EC 上,如图1118(612)22BOQ S BO QE t ∆=⨯=⨯⨯-=解得:52t =,此时Q 与C 重合;综上所述,存在t 的值,使得BOQ △(3)由(1)可知,BDO ADC △≌△BOD ACD \Ð=Ð,当点F 在线段BC 延长线上时,如图BOD ACD Ð=ÐQ ,BOD ACD Ð=ÐQ ,AOP FCQ \Ð=Ð,AO CF =Q ,∴当OP CQ =时,AOP FCQ ≌此时,2618t t =-,解得:92t =;综上所述,当AOP 与FCQ 全等时,【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、三角形面积、三角形面积和定理、对顶角相等以及分类讨论等知识,本题综合性强,熟练掌握全等三角形的判定与性质,进行分类讨论是解题的关键.【题型二利用三角形全等求证线段之间的关系问题】例题:(23-24八年级上·北京海淀·阶段练习)在ABC 中,AC BC =,90ACB ∠=︒,点D 在BC 的延长线上,M 是BD 的中点,E 是射线CA 上一动点,且CE CD =,连接AD ,作DF AD ⊥,DF 交EM 延长线于点F .(1)如图1,当点E 在CA 上时,填空:AD ________DF (填“=”、“<”或“>”).(2)如图2,当点E 在CA 的延长线上时,请根据题意将图形补全,判断AD 与DF 的数量关系,并证明你的结论.【答案】(1)=,详见解析;(2)AD DF =,详见解析.【分析】本题考查了全等三角形的判定与性质的综合应用等知识;(1)连接BE ,先证SAS ACD BCE ≌(),得AD BE EBM DAC =∠=∠,,再证ASA EBM FDM ≌(),得BE DF =,即可得出结论;(2)连接BE ,先证SAS ACD BCE ≌(),得AD BE ADC BEC =∠=∠,,再证ASA BME DMF ≌(),得BE DF =,即可得出结论.证明三角形全等是解题的关键.【详解】(1)AD DF =,理由如下:连接BE ,如图1所示:∵90ACB ∠=︒,∴90DCA ∠=︒,在ACD 和BCE 中,CD CE DCA ECB AC BC =⎧⎪∠=∠⎨⎪=⎩,∴SAS ACD BCE ≌(),∴AD BE EBM DAC =∠=∠,,∵9090DAC ADC FDM ADC ∠+∠=︒∠+∠=︒,,∴DAC FDM ∠=∠,∴EBM FDM ∠=∠,∵M 是BD 的中点,∴BM DM =,在EBM △和FDM 中,EBM FDM BM DM EMB FMD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ASA EBM FDM ≌(),∴BE DF =,∴AD DF =,故答案为:=;(2)根据题意将图形补全,如图2所示:AD 与DF 的数量关系:AD DF =,证明如下:连接BE ,∵90ACB ∠=︒,点D 在BC 的延长线上,∴90ACD BCE ∠=∠=︒,在ACD 和BCE 中,CD CE DCA ECB AC BC =⎧⎪∠=∠⎨⎪=⎩,∴SAS ACD BCE ≌(),∴AD BE ADC BEC =∠=∠,,∵90ACB DF AD ∠=︒⊥,,∴90BEC MBE ADC MDF ∠+∠=∠+∠=︒,∴MBE MDF ∠=∠,∵M 是BD 的中点,∴MB MD =,在BME 和 DMF 中,MBEMDF MB MD EMB FMD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ASA BME DMF ≌(),∴BE DF =,∴AD DF =.【变式训练】1.(22-23八年级上·山西大同·阶段练习)如图1,在等腰直角三角形ABC 中,90AB AC BAC =∠=︒,,点P 为BC 边上的一个动点,连接AP ,以AP 为直角边,A 为直角顶点,在AP 右侧作等腰直角三角形PAD ,连接CD .(1)当点P 在线段BC 上时(不与点B 重合),求证:BAP CAD ≌V V .(2)当点P 在线段BC 的延长线上时(如图2),试猜想线段BP 和CD 的数量关系与位置关系分别是什么?请给予证明.【答案】(1)见解析(2)猜想:BP CD BP CD =⊥,,证明见解析【分析】(1)先证明BAP CAD ∠=∠,再根据三角形全等的判定定理证明BAP CAD ≌V V ,即可;(2)先证明BAP CAD ∠=∠,再根据三角形全等的判定定理证明BAP CAD ≌V V ,由全等三角形的性质,即可得证.【详解】(1)90BAC PAD ∠=∠=︒BAC PAC PAD PAC ∴∠-∠=∠-∠即∶BAP CAD∠=∠在BAP △和CAD 中AB AC BAP CAD PA DA =⎧⎪∠=∠⎨⎪=⎩()BAP CAD SAS ∴ ≌(2)猜想∶,BP CD BP CD=⊥90BAC PAD ∠=∠=︒Q BAC PAC PAD PAC∴∠+∠=∠+∠即∶BAP CAD∠=∠在BAP △和CAD 中ABAC BAP CAD PA DA =⎧⎪∠=∠⎨⎪=⎩()BAP CAD SAS ∴ ≌BP CD ∴=(全等三角形的对应边相等)B ACD ∠=∠(全等三角形的对应角相等)90B ACB ∠+∠=︒90ACD ACB ∴∠+∠=︒即∶BP CD⊥综上所述,,BP CD BP CD =⊥.【点睛】本题主要考场三角形全等的判定定理和性质定理,熟练掌握全等三角形的判定定理和性质定理,是解题的关键.2.(23-24八年级上·河北沧州·期末)问题情境:如图,等腰Rt ABC △,D 是斜边BC 上一点,连接AD ,在AD 右侧作AF AD ⊥,且AF AD =,AE 平分DAF ∠交边BC 于点E ,连接EF 和CF ,请直接写出线段BE CF EF 、、的关系:;猜想验证:若D 是斜边BC 上一动点,且AE 平分DAF ∠交边BC 于点E ,其他条件不变,此时上面的结论是否还成立,请说明理由.拓展延伸:若点D 运动到斜边CB 的延长线上,AE 平分DAF ∠交边BC 于点E ,其他条件不变,请直接写出线段BE CF EF 、、的关系:.【答案】问题情景:BE CF EF =+;猜想验证:成立,见解析;拓展延伸:BE EF CF=-【分析】本题主要考查了等腰三角形的性质、全等三角形的判定与性质等知识点,灵活运用全等三角形的判定与性质是解题的关键.问题情景:根据作图过程可解决问题情境;猜想验证:根据等腰直角三角形和已知条件可证明()SAS CAF BAD ≌可得=CF BD ,进而证明()SAS EAF EAD ≌可得EF ED =,然后根据BE BD ED =+即可证明结论;拓展延伸:先根据题意画出图形,然后参照猜想验证进行解答即可.【详解】解:问题情境:BE CF EF =+.猜想验证:BE CF EF =+,理由如下:∵ABC 是等腰直角三角形∴,90=∠=︒AC AB BAC ∵AF AD⊥∴90DAF =︒∴DAF CAD BAC CAD ∠-∠=∠-∠,即:CAF BAD∠=∠在CAF V 和BAD 中,AC AB CAF BAD AF AD=∠=∠=,,∴()SAS CAF BAD ≌∴=CF BD ,∵AE 平分DAF ∠,∴EAF EAD∠=∠在EAF △和EAD 中,AF AD EAF EAD AE AE =∠=∠=,,,∴()SAS EAF EAD ≌,∴EF ED =,∴BE BD ED CF EF =+=+,∴BE CF EF =+.拓展延伸:BE EF CF =-,理由如下:∵ABC 是等腰直角三角形∴,90=∠=︒AC AB BAC ∵AF AD⊥∴90DAF =︒∴DAF CAD BAC CAD ∠-∠=∠-∠,即:CAF BAD∠=∠在CAF V 和BAD 中,AC AB CAF BAD AF AD=∠=∠=,,∴()SAS CAF BAD ≌∴=CF BD ,∵AE 平分DAF ∠,∴EAF EAD∠=∠在EAF △和EAD 中,AF AD EAF EAD AE AE =∠=∠=,,,∴()SAS EAF EAD ≌,∴EF ED =,∴BE ED BD EF CF =-=-,∴BE EF CF =-.3.(23-24八年级上·湖北武汉·期末)如图,在等腰Rt ABC △中,90A ∠=︒,AB AC =,点E 为线段AB 上一动点(不与点B 重合),CE CF ⊥且CE CF =.(1)连接BF 交AC 于点M ,设BE m AB =.①当1m =时,如图1,则BM MF =______.②当49m =时,如图2,若18AB =,求MC 的长.(2)如图3,作FP CF ⊥交CA 的延长线于点P ,EQ EC ⊥交BC 于点Q ,连接PQ ,求证:PQ PF EQ =-.∵49BE AB =,AB =∴8,BE AE AB ==∵FCN ACE ∠+∠∴FCN CEA∠=∠∵FNC CAE ∠=∠∵CE CF =,FG EQ =,90CFG CEQ ∠=∠=︒,∴CFG CEQ△≌△∴CG CQ =,FCG ECQ∠=∠∵90ECF FCG ECG ∠=∠+∠=︒,∴90ECQ ECG QCG ∠+∠=∠=︒∵,AB AC AB AC=⊥∴45PCQ PCG∠=︒=∠∵PC PC=∴PCG PCQ△≌△∴PQ PG=∵PG PF FG PF EQ=-=-PQ PF QE∴=-4.(23-24八年级上·广东阳江·期末)如图1,已知:90MCN ∠=︒,点A 、B 在MCN ∠的边CM CN 、上,AC BC =,点D 为直线CN 上一动点,连接AD ,过点A 作AE AD ⊥,且AE AD =,作EF CM ⊥,垂足为F .(1)当点D 在线段BC 上时,证明:EF BC =;(2)如图2,当点D 在线段BC 延长线上时,(1)的结论是否仍然成立?若成立,请证明,若不成立,请说明理由;(3)如图3,在(2)的条件下,作点E 关于直线CM 的对称点E ',连接FE '、DE ',DE '与直线AB 交于点H ,求证:DH HE '=.【答案】(1)见解析(2)成立,见解析(3)见解析【分析】本题主要考查三角形全等的判定及性质,能熟练应用三角形全等证明线段相等是解题的关键.(1)根据“同角的余角相等”证明EAF ADC ∠=∠,再根据“AAS ”证明ACD EFA △≌△即可;(2)类比(1)的方法证明即可;(3)延长BA 交FE 的延长线于点G ,利用“ASA ”证明'BDH GE H △≌△即可得证.【详解】(1)证明: 90MCN ∠=︒,AE AD ⊥,∴90CAD EAF Ð+Ð=°,90CAD ADC ∠+∠=︒,∴EAF ADC ∠=∠,EF CM ⊥,∴90EFA ∠=︒,90EFA ACD ∴∠=∠=︒,在ACD 和EFA △中C EFA ADC EAF AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ACD EFA△≌△∴EF AC =,AC BC =,∴EF BC =.(2)解:结论成立.90MCN ∠=︒,∴=90ACD ∠︒,AE AD ⊥,∴90CAD EAF Ð+Ð=°,90CAD ADC ∠+∠=︒,∴EAF ADC ∠=∠,EF CM ⊥,∴90EFA ∠=︒,90EFA ACD ∴∠=∠=︒在ACD 和EFA △中C EFA ADC EAF AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ACD EFA △≌△,∴EF AC =,AC BC =,∴EF BC =.(3)证明:如图:如图,延长BA 交FE 的延长线于点G ,90MCN ∠=︒,AC BC =,∴45CAB ∠=︒,45FAG CAB Ð=Ð=°,EF CM ⊥,∴45FAG G Ð=Ð=°,∴FG FA =,又 E 、E '关于直线CM 对称,∴EF E F =',EF CM ⊥,∴E 、F 、E '三点共线,由(2)可得,ACD EFA△≌△∴AF CD =,EF AC BC ==,∴GF E F CD BC +=+',即GE BD '=,EF CM ⊥,90MCN ∠=︒,∴'GE BD ∥,∴HDB E ∠=∠',HBD G Ð=Ð,在BDH △和GE H ' 中'HDB E GE BD HBD G ∠=∠⎧⎪=⎨⎪∠=∠⎩'∴BDH GE H' ≌∴DH HE ='.【题型三利用三角形全等求证角之间的关系问题】例题:(23-24八年级上·湖南永州·期中)在ABC 中,AB AC =,90BAC ∠=︒,点D 为AC 上一动点.(1)如图1,点E 、点F 均是射线BD 上的点并且满足AE AF =,90EAF ∠=︒.求证:ABE ACF ≌ ;(2)在(1)的条件下,求证:CF BD ⊥;(3)由(1)我们知道45AFB ∠=︒,如图2,当点D 的位置发生变化时,过点C 作CF BD ⊥于F ,连接AF .那么AFB ∠的度数是否发生变化?请证明你的结论.【答案】(1)见解析(2)见解析(3)45AFB ∠=︒,不变化,理由见解析【分析】本题属于三角形综合题,主要考查了全等三角形的判定与性质,三角形内角和定理的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的性质进行推导.(1)根据90BAC BAE EAD ∠=∠+∠=︒,90EAF CAF EAD ∠=∠+∠=︒得出BAE CAF ∠=∠,即可根据SAS 证明ABE ACF ≌ ;(2)易得90ABE BDA ∠+∠=︒,根据ABE ACF ≌ ,得出ABE ACF ∠=∠,则90BDA ACF ∠+∠=︒,进而得出90CDF ACF ∠+∠=︒,则90BFC ∠=︒,即可求证CF BD ⊥;(3)过点A 作AF 的垂线交BM 于点E ,易得90ABD BDA ∠∠+=︒,90ACF CDF ∠∠+=︒,即可得出ABD ACF ∠∠=,通过求证()ASA ABE ACF ≌ 得出AE AF =,则AEF 是等腰直角三角形,即可求出45AFB ∠=︒.【详解】(1)解:∵90BAC BAE EAD ∠=∠+∠=︒,90EAF CAF EAD ∠=∠+∠=︒∴BAE CAF ∠=∠,在ABE 和ACF △中AB AC BAE CAF AE AF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE ACF ≌△△;(2)解:∵90BAC ∠=︒,∴90ABE BDA ∠+∠=︒,由(1)得ABE ACF ≌ ,∴ABE ACF ∠=∠,∴90BDA ACF ∠+∠=︒,又∵BDA CDF ∠=∠,∴90CDF ACF ∠+∠=︒,∴90BFC ∠=︒,∴CF BD ⊥;(3)解:45AFB ∠=︒,不变化,理由如下:过点A 作AF 的垂线交BM 于点E∵CF BD⊥∴90BAC ∠=︒∴90ABD BDA ∠∠+=︒同理90ACF CDF ∠∠+=︒∵CDF ADB∠∠=∴ABD ACF∠∠=同(1)理得BAE CAF∠∠=在ABE 和ACF 中BAE CAF AB AC ABD ACF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ABE ACF ≌ ∴AE AF=∴AEF 是等腰直角三角形∴45AFB ∠=︒.【变式训练】1.(22-23八年级上·江苏徐州·阶段练习)点P 、Q 分别是边长为4cm 的等边ABC 的边AB 、BC 上的动点,点P 从顶点A ,点Q 从顶点B 同时出发,且它们的速度都是1cm /s .(1)连接AQ 、CP 交于点M ,则在P 、Q 运动的过程中,CMQ ∠变化吗?若变化,则说明理由;若不变,则求出它的度数;(2)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 交点为M ,则CMQ ∠变化吗?若变化,则说明理由;若不变,请求出它的度数.【答案】(1)不变,60CMQ ∠=︒(2)不变,120CMQ ∠=︒【分析】(1)因为点P 从顶点A 、点Q 从顶点B 同时出发,且它们的速度都为1cm /s ,所以AB CA =,BQ AP =,60B CAP ∠=∠=︒,因而运用边角边定理可知ABQ CAP ≌△△.再用全等三角形的性质定理及三角形的角间关系、三角形的外角定理,可求得CMQ ∠的度数.(2)首先利用边角边定理证得PBC QCA ≌△△,再利用全等三角形的性质定理得到BPC CQM ∠=∠,再运用三角形角间的关系求得CMQ ∠的度数.【详解】(1)解:60CMQ ∠=︒不变.等边三角形ABC 中,AB CA =,60B CAP ∠=∠=︒,又由条件得BQ AP =,∴()SAS ABQ CAP ≌△△,∴BAQ ACP ∠=∠,∴60CMQ ACP CAM BAQ CAM BAC ∠=∠+∠=∠+∠=∠=︒;(2)解:120CMQ ∠=︒不变.在等边三角形ABC 中,60ABC CAP ∠=∠=︒,∴120PBC QCA ∠=∠=︒,又由条件得BP CQ =,BC CA =,∴()SAS PBC QCA ≌△△,∴BPC CQM ∠=∠,又 PCB MCQ ∠=∠,∴120CMQ PBC ∠=∠=︒.【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质,根据题意证明三角形全等是解题的关键.2.(23-24八年级上·贵州遵义·期末)在Rt ABC △中,90ACB AC BC ∠=︒=,,点E 为AC 上一动点,过点A 作AD BE ⊥于D ,连接CD .(1)【观察发现】如图①,DAC ∠与DBC ∠的数量关系是;(2)【尝试探究】点E 在运动过程中,CDB ∠的大小是否改变,若改变,请说明理由,若不变,求CDB ∠的度数;(3)【深入思考】如图②,若E 为AC 中点,探索BE 与DE 的数量关系.【答案】(1)DAC DBC∠=∠(2)CDB ∠的大小不变,45CDB ∠=︒(3)5BE DE=【分析】此题考查等腰直角三角形的判定与性质、全等三角形的判定与性质等知识.(1)由90ACB ADB ∠=∠=︒,得9090DAC AED DBC BEC ∠+∠=︒∠+∠=︒,,而AED BEC ∠=∠,所以DAC DBC ∠=∠,于是得到问题的答案;(2)作CF CD ⊥交BD 于点F ,则90ACD BCF ACF ∠=∠=︒-∠,而DAC FBC AC BC ∠=∠=,,即可证明DAC FBC ≌ ,得CD CF =,则45CDB CFD ∠=∠=︒,所以CDB ∠的大小不改变,45CDB ∠=︒;(3)作CG CD ⊥交BD 于点G ,作CH BD ⊥于点H ,可证明CHE ADE ≌ ,得HE DE CH AD ==,,由DAC GBC ≌ ,得AD BG =,则CH BG =,由CG CD CH DG =⊥,,得DH GH =,则CH DH GH ==,所以2BG DH GH DE ===,即可推导出5BE DE =.【详解】(1)∵90ACB AD BE∠=︒⊥,∴90ACB ADB ∠=∠=︒,∴9090DAC AED DBC BEC ∠+∠=︒∠+∠=︒,,∵AED BEC ∠=∠,∴DAC DBC ∠=∠,故答案为:DAC DBC ∠=∠.(2)CDB ∠的大小不改变,如图①,作CF CD ⊥交BD 于点F ,则90DCF ∠=︒,∴90ACD BCF ACF ∠=∠=︒-∠,由(1)得DAC FBC ∠=∠,∵AC BC=∴()ASA DAC FBC ≌,∴CHE ADE ∠=∠,∵E 为AC 中点,∴CE AE =,∵CEH AED ∠=∠,∴()AAS CHE ADE ≌,合),以AD 为一边在AD 的右侧作ADE V ,使AD AE =,DAE BAC ∠=∠,连接CE .(1)如图1,当点D 在线段CB 上时,BD 与CE 有何数量关系,请说明理由.(2)在(1)的条件下,当90BAC ∠=︒时,那么DCE ∠=________度.(3)设BAC DCE ∠α∠β==,.①如图2,当点D 在线段CB 上,90BAC ∠≠︒时,请探究α与β之间的数量关系.并证明你的结论;②如图3,当点D 在线段CB 的延长线上,90BAC ∠≠︒时,请将图3补充完整并直接写出此时α与β之间的数量关系.【答案】(1)BD CE =,理由见解析;(2)90;(3)①180αβ+=︒,证明见解析;②图见解析,αβ=.【分析】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质(1)由题意可得BAD CAE ∠=∠,即可证明BAD CAE ≌,可得BD CE =,ACE B ∠=∠,即可解题;(2)由题意可得BAD CAE ∠=∠,即可证明BAD CAE ≌,可得BD CE =,ACE B ∠=∠,即可解题;(3)①由题意可得BAD CAE ∠=∠,即可证明BAD CAE ≌,可得ACE B ∠=∠,根据180B ACB α∠+∠=︒-即可解题;②由题意可得BAD CAE ∠=∠,即可证明BAD CAE ≌,可得ACE B ∠=∠,根据180ADE AED α∠+∠+=︒,180CDE CED β∠+∠+=︒即可解题;【详解】(1)解:BD CE =,理由:90BAD DAC ∠+∠=︒ ,90DAC CAE ∠+∠=︒,BAD CAE ∴∠=∠,在BAD 和CAE V 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()BAD CAE SAS ∴ ≌,BD CE ∴=;(2)解:BAD CAE △≌△,ACE B ∴∠=∠,90B ACB ∠+∠=︒ ,90DCE ACE ACB ∴∠=∠+∠=︒;故答案为:90;(3)解:①BAD DAC α∠+∠= ,DAC CAE α∠+∠=,BAD CAE ∴∠=∠,在BAD 和CAE V 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()BAD CAE SAS ∴ ≌,ACE B ∴∠=∠,180B ACB α∠+∠=︒- ,180DCE ACE ACB αβ∴∠=∠+∠=︒-=,180αβ∴+=︒;②作出图形,BAD BAE α∠+∠= ,BAE CAE α∠+∠=,BAD CAE ∴∠=∠,在BAD 和CAE V 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()BAD CAE SAS ∴ ≌,AEC ADB ∴∠=∠,180ADE AED α∠+∠+=︒ ,180CDE CED β∠+∠+=︒,CED AEC AED ∠=∠+∠,αβ∴=.。

初一物理动点问题例题集

初一物理动点问题例题集

初一物理动点问题例题集1. 问题描述:一个小球从地面上以15 m/s的速度水平向前滚动,经过2秒后撞到一个墙壁停下来。

求小球到墙壁的距离。

解答:根据速度等于位移除以时间的公式,可以得出小球的位移为15 m/s × 2 s = 30 m。

所以小球到墙壁的距离是30米。

2. 问题描述:一辆汽车以20 m/s的速度向前行驶,经过5秒后紧急刹车停下来。

求汽车的加速度。

解答:根据加速度等于速度除以时间的公式,可以得出汽车的加速度为(0 m/s - 20 m/s)/ 5 s = -4 m/s²。

所以汽车的加速度为-4m/s²。

3. 问题描述:一个小球自由落体从2米高的地方下落,求小球下落到地面所用的时间。

解答:根据自由落体的运动规律,可以使用公式 h = 1/2gt²来计算小球下落的时间。

其中,h为高度,g为重力加速度,t为时间。

代入已知的数据,可以得到 2 = 1/2 × 9.8 × t²,解方程得到 t = 0.45秒。

所以小球下落到地面所用的时间为0.45秒。

4. 问题描述:一个人以5 m/s²的加速度向前跑了10秒,求此人的最终速度。

解答:根据加速度等于速度除以时间的公式,可以得出此人的最终速度为5 m/s² × 10 s = 50 m/s。

所以此人的最终速度为50 m/s。

5. 问题描述:一辆小汽车以10 m/s²的加速度加速行驶了5秒,求小汽车行驶的距离。

解答:根据加速度等于速度除以时间的公式,可以得出小汽车的最终速度为10 m/s² × 5 s = 50 m/s。

根据速度等于位移除以时间的公式,可以得出小汽车的位移为50 m/s × 5 s = 250 m。

所以小汽车行驶的距离为250米。

6. 问题描述:一个物体以20 m/s的初速度向上抛出,求物体上抛到最高点的高度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学动点问题及练习题附参考答案所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查。

从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。

二、应用比例式建立函数解析式。

三、应用求图形面积的方法建立函数关系式。

专题二:动态几何型压轴题动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、以动态几何为主线的压轴题。

(一)点动问题。

(二)线动问题。

(三)面动问题。

二、解决动态几何问题的常见方法有:1、特殊探路,一般推证。

2、动手实践,操作确认。

3、建立联系,计算说明。

三、专题二总结,本大类习题的共性: 1.代数、几何的高度综合(数形结合);着力于数学本质及核心内容的考查;四大数学思想:数学结合、分类讨论、方程、函数.2.以形为载体,研究数量关系;通过设、表、列获得函数关系式;研究特殊情况下的函数值。

专题三:双动点问题点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力. 其中以灵活多变而著称的双动点问题更成为今年中考试题的热点,现采撷几例加以分类浅析,供读者欣赏. 1 以双动点为载体,探求函数图象问题。

2 以双动点为载体,探求结论开放性问题。

3 以双动点为载体,探求存在性问题。

4 以双动点为载体,探求函数最值问题。

双动点问题的动态问题是近几年来中考数学的热点题型.这类试题信息量大,对同学们获取信息和处理信息的能力要求较高;解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动。

专题四:函数中因动点产生的相似三角形问题专题五:以圆为载体的动点问题动点问题是初中数学的一个难点,中考经常考察,有一类动点问题,题中未说到圆,却与圆有关,只要巧妙地构造圆,以圆为载体,利用圆的有关性质,问题便会迎刃而解;此类问题方法巧妙,耐人寻味。

例1.如图,已知在矩形ABCD 中,AD =8,CD =4,点E 从点D 出发,沿线段DA 以每秒1个单位长的速度向点A 方向移动,同时点F 从点C 出发,沿射线CD 方向以每秒2个单位长的速度移动,当B ,E ,F 三点共线时,两点同时停止运动.设点E 移动的时间为t (秒). (1)求当t 为何值时,两点同时停止运动;(2)设四边形BCFE 的面积为S ,求S 与t 之间的函数关系式,并写出t 的取值范围; (3)求当t 为何值时,以E ,F ,C 三点为顶点的三角形是等腰三角形; (4)求当t 为何值时,∠BEC =∠BFC .ABCD E FO例2. 正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点, 当M 点在BC 上运动时,保持AM 和MN 垂直, (1)证明:Rt Rt ABM MCN △∽△;(2)设BM x =,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积;(3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求此时x 的值.例3.如图,在梯形ABCD中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (09年济南中考) (1)求BC 的长。

(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.例4.如图,在Rt △AOB 中,∠AOB =90°,OA =3cm ,OB =4cm ,以点O 为坐标原点建立坐标系,设P 、Q 分别为AB 、OB 边上的动点它们同时分别从点A 、O 向B 点匀速运动,速度均为1cm /秒,设P 、Q 移动时间为t (0≤t ≤4)(1)求AB 的长,过点P 做PM ⊥OA 于M ,求出P 点的坐标(用t 表示)(2)求△OPQ 面积S (cm 2),与运动时间t (秒)之间的函数关系式,当t 为何值时,S 有最大值?最大是多少?(3)当t 为何值时,△OPQ 为直角三角形?(4)若点P 运动速度不变,改变Q 的运动速度,使△OPQ 为正三角形,求Q 点运动的速度和此时t 的值.例5:如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足CBDMA BCN为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==.在Rt △MPH 中,.∴y =GP=32MP=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况: ①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意.②GP=GH 时,2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.例6.如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴AC BD CE AB =,∴11x y =, ∴xy 1=. 2222233621419x x x MH PH MP +=-+=+=HM NG PO AB图1xyAEDCB 图2(2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立,∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 例7.如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x .∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.动点练习题答案例1. 解:(1)当B ,E ,F 三点共线时,两点同时停止运动,如图2所示.………(1分)AB C图8H由题意可知:ED =t ,BC =8,FD = 2t -4,FC = 2t . ∵ED ∥BC ,∴△FED ∽△FBC .∴FD EDFC BC=. ∴2428t tt -=.解得t =4. ∴当t =4时,两点同时停止运动;……(3分)(2)∵ED=t ,CF=2t , ∴S =S △BCE + S △BCF =12×8×4+12×2t ×t =16+ t 2. 即S =16+ t 2.(0 ≤t ≤4);………………………………………………………(6分)(3)①若EF=EC 时,则点F 只能在CD 的延长线上,∵EF 2=222(24)51616t t t t -+=-+,EC 2=222416t t +=+,∴251616t t -+=216t +.∴t =4或t=0(舍去); ②若EC=FC 时,∵EC 2=222416t t +=+,FC 2=4t 2,∴216t +=4t 2.∴t = ③若EF=FC 时,∵EF 2=222(24)51616t t t t -+=-+,FC 2=4t 2,∴251616t t -+=4t 2.∴t 1=16+,t 2=16-.∴当t 的值为416-E ,F ,C 三点为顶点的三角形是等腰三角形;………………………………………………………………………………(9分)(4)在Rt △BCF 和Rt △CED 中,∵∠BCD =∠CDE =90°,2BC CFCD ED==, ∴Rt △BCF ∽Rt △CED .∴∠BFC =∠CED .………………………………………(10分) ∵AD ∥BC ,∴∠BCE =∠CED .若∠BEC =∠BFC ,则∠BEC =∠BCE .即BE =BC . ∵BE 2=21680t t -+,∴21680t t -+=64. ∴t 1=16+,t 2=16-.∴当t=16-BEC =∠BFC .……………………………………………(12分)例2. 解:(1)在正方形ABCD 中,490AB BC CD B C ===∠=∠=,°, AM MN Q ⊥, 90AMN ∴∠=°,90CMN AMB ∴∠+∠=°,在Rt ABM △中,90MAB AMB ∠+∠=°, CMN MAB ∴∠=∠,Rt Rt ABM MCN ∴△∽△,图2ABDEFNDACBM(2)Rt Rt ABM MCN Q △∽△,44AB BM xMC CN x CN∴=∴=-,, 244x x CN -+∴=,()222141144282102422ABCNx x y S x x x ⎛⎫-+∴==+=-++=--+ ⎪⎝⎭梯形·, 当2x =时,y 取最大值,最大值为10. (3)90B AMN ∠=∠=Q °,∴要使ABM AMN △∽△,必须有AM ABMN BM=, 由(1)知AM ABMN MC=, BM MC ∴=,∴当点M 运动到BC 的中点时,ABM AMN △∽△,此时2x =.例3.解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形∴3KH AD ==.在Rt ABK △中,sin 4542AK AB =︒==g. cos 4542BK AB =︒==g g在Rt CDH △中,由勾股定理得,3HC == ∴43310BC BK KH HC =++=++=(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形 ∵MN AB ∥ ∴MN DG ∥ ∴3BG AD ==(图①)A D CB K H(图②)ADCB G MN∴1037GC =-=由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥∴NMC DGC =∠∠ 又C C =∠∠∴MNC GDC △∽△∴CN CMCD CG =即10257t t -= 解得,5017t =(3)分三种情况讨论:①当NC MC =时,如图③,即102t t =- ∴103t =②当MN NC =时,如图④,过N 作NE MC ⊥于E ∵90C C DHC NEC =∠=∠=︒∠∠, ∴NEC DHC △∽△∴NC ECDC HC =即553t t -= ∴258t =③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122FC NC t ==∵90C C MFC DHC =∠=∠=︒∠∠, ∴MFC DHC △∽△∴FC MCHC DC = 即1102235tt-=ADCB MN(图③)(图④)AD CBM NH E(图⑤)ADCBH N MF∴6017t =综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形例4.(1)由题意知:BD=5,BQ=t ,QC=4-t ,DP=t ,BP=5-t ∵PQ ⊥BC ∴△BPQ ∽△BDC ∴BC BQ BD BP =即455t t =- ∴920=t 当920=t 时,PQ ⊥BC ……………………………………………………………………3分 (2)过点P 作PM ⊥BC ,垂足为M∴△BPM ∽△BDC ∴355PMt =- ∴)5(53t PM -=……………………4分 ∴⨯=t S 21)5(53t -=815)25(103+--t …………………………………………5分∴当52t =时,S 有最大值158.……………………………………………………6分 (3)①当BP=BQ 时,t t =-5, ∴25=t ……………………………………7分 ②当BQ=PQ 时,作QE ⊥BD ,垂足为E ,此时,BE=2521tBP -=∴△BQE ∽△BDC ∴BD BQ BC BE =即5425tt=- ∴1325=t ……………………9分 ③当BP=PQ 时,作PF ⊥BC ,垂足为F, 此时,BF=221tBQ =∴△BPF ∽△BDC ∴BD BP BC BF =即5542tt-= ∴1340=t ……………………11分 ∴14013t =, 252t =,32513t =,均使△PBQ 为等腰三角形. …………………………12分。

相关文档
最新文档