八年级数学第一次月考试卷

合集下载

八年级上册数学第一次月考试卷(含答案)

八年级上册数学第一次月考试卷(含答案)

八年级上册数学第一次月考试卷一、选择题(每小题3分,共30分)1.下列图形中具有稳定性的是( )A.三角形 B.四边形 C.五边形 D.六边形2.下列长度的三条线段能组成三角形的是( )A.1,2,3 B.4,5,10 C.8,15,20D.5,8,153.如图,把一副含30°角和45°角的直角三角板拼在一起,那么图中∠ADE的度数为( ) A.100°B.120°C.135°D.150°,第3题)(第6题)4.已知等腰三角形的两边长分别是5和11,则是这个等腰三角形的周长为( ) A.21 B.16 C.27 D.21或275.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等6.,如图,小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块7.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A. B.C D.8.如图,∠AOB是一钢架,∠AOB=15°,为使钢架更加牢固,需在其内部添加一些钢管EF、FG、GH…添的钢管长度都与OE相等,则最多能添加这样的钢管多少根()根(第8题),(第9题)A.4 B.5 C.6 D.79.如图,在△ABC中,∠A=60°,BD,CD分别平分∠ABC,∠ACB,M,N,Q分别在射线DB,DC,BC上,BE,CE分别平分∠MBC,∠BCN,BF,CF分别平分∠EBC,∠ECQ ,则∠F =( )A .30°B .35°C .15°D .25°10.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D.若AC =9,AB =15,且S △ABC =54,则△ABD 的面积是( )A.3105B.4135C .45D .35二.填空题(每小题3分,共18分)11.若一个n 边形的内角和是外角和的2倍,则边数n =12. 已知AD 是△ABC 的一条中线,AB =9,AC =7,则AD 的取值范围是 13.如图:作∠AOB 的角平分线OP 的依据是 .(填全等三角形的一种判定方法)(第13题图)(第15题图)14.△ABC 是三边都不相等的三角形,以B ,C 为两个顶点作位置不同的三角形,使所作的三角形与△ABC 全等,这样的三角形最多可以画出 个.15.如图,AD 是△ABC 的高,∠BAD =40°,∠CAD =65°,若AB =5,BD =3,则BC 的长为 .16.已知点A(-4,4),一个以A 为顶点的45°角绕点A 旋转,角的两边分别交x 轴正半轴,y 轴负半轴于点E ,F ,连接EF.当△AEF 是直角三角形时,点E 的坐标是三.解答题(8小题,共72分)17.(8分)一个正多边形每一个内角比外角多90°,求这个多边形所有对角线的条数。

八年级上学期数学第一次月考试卷(含答案)

八年级上学期数学第一次月考试卷(含答案)

八年级上学期数学第一次月考试卷(满分150分时间:120分钟)一.单选题。

(每小题4分,共40分)1.在下列实数中,无理数有().A.﹣1B.3.14C.√2D.152.在平面直角坐标系中,点P(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.﹣8的立方根是()A.﹣2B.﹣12C.12D.24.用式子表示16的平方根,正确的是()A.±√16=±4B.√16=4C.√16=±4D.±√16=45.根据下列描述,能确定准确位置的是()A.某影城3号厅2排B.经十路中段C.南偏东40°D.东经117°,北纬36°6.点P在第二象限内,P到x轴的距离是5,到y轴的距离是3,则点P的坐标为()A.(﹣5,3)B.(﹣3,﹣5)C.(﹣3,5)D.(3,﹣5)7.与点P(2,b)和点Q(a,﹣3)关于y轴对称,则a+b的值是()A.﹣1B.﹣5C.1D.58.下列运算正确的是()A.√2+√3=√5B.2×√3=√6C.3√2-√2=3D.√12÷√3=29.如图,已知小华的坐标为(﹣2,﹣1),小亮的坐标为(﹣1,0),则小东的坐标应该是()A.(﹣3,﹣2)B.(1,1)C.(1,2)D.(3,2)10.已知直线MN∥x轴,M点的坐标为(1,3),且线段MN=4,则点N的坐标为()A.(5,3)B.(3,5)C.(5,3)或(﹣3,3)D.(3,5)或(3,﹣3)二.填空题。

(每小题4分,共24分)11.如果用有序数对(1,4)表示第一单元4号的住户,则第二单元6号住户用有序数对表示为 .12.36的算式平方根是 .13.在平面直角坐标系中,点(﹣3,1)关于x 轴对称的点的坐标是 . 14.在平面直角坐标系中,点M (a+1,a -1)在x 轴上,则a= . 15.对于任意不相等的两个数a ,b ,定义一种运算如下:a ×b=√a+b a -b,如3×2=√3+23-2,那么6×3= .16.已知a ,b 都是实数,若|a -2|+√b -4=0,则√ab a= . 三.解答题。

八年级数学第一次月考卷01(考试版:八年级上册第十一章~第十二章】人教版-25年初中上学期第一次月考

八年级数学第一次月考卷01(考试版:八年级上册第十一章~第十二章】人教版-25年初中上学期第一次月考

2024-2025学年八年级数学上学期第一次月考卷01(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版八年级上册第十一章~第十二章。

5.难度系数:0.85。

一、选择题(本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下列长度的三条线段能组成三角形的是()A.6,2,3B.3,3,3C.4,3,8D.4,3,72.如图,生活中都把自行车的几根梁做成三角形的支架,这是利用三角形的()A.全等形B.稳定性C.灵活性D.对称性3.如图,CM是△ABC的中线,AB=10cm,则BM的长为()A.7cm B.6cm C.5cm D.4cm4.画△ABC的BC边上的高AD,下列画法中正确的是()A.B.C.D.5.一个多边形的内角和等于540°,则它的边数为()A.4B.5C.6D.86.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS7.如图,△ABE≌△ACF,若AB=5,AE=2,则EC的长度是( )A.2B.3C.4D.58.如图,若要用“HL”证明Rt△ABC≌Rt△ABD,则还需补充条件()A.∠BAC=∠BAD B.∠C=∠D C.AC=AD D.BC=AD9.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,CD=3,则点D到AB的距离是()A.6B.2C.3D.410.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2的度数为()A.210°B.250°C.270°D.300°11.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①②③去12.如图1,∠DEF=20°,将长方形纸片ABCD沿直线EF折叠成图2,再沿折痕为BF折叠成图3,则∠CFE 的度数为()A.100°B.120°C.140°D.160°二、填空题(本题共6小题,每小题2分,共12分.)13.在Rt△ABC中,∠C=90°,∠A=40°,则∠B= .14.如图,CD是△ABC的高,∠ACB=90°.若∠A=35°,则∠BCD的度数是.15.如图所示的两个三角形全等,则∠1的度数是.16.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是.17.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=15°,∠ACP=50°,则∠P=°.18.如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1、B1B上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=α,则∠A2023B2023O=.三、解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:|―2|―6×―+(―4)2+8.20.(6分)解不等式组2x+1>x―123x―1≤5,并写出它的所有正整数解.21.(8分)如图,AC和BD相交于点0,OA=OC,OB=OD,求证:DC//AB.22.(8分)如图△ABC中,∠A=40°,∠ABC=∠C.(1)作∠ABC的平分线,交AC于点D(用直尺和圆规按照要求作图,不写作法,保留作图痕迹);(2)在(1)的条件下,求∠BDC的大小.23.(10分)某校学生处为了了解全校1200名学生每天在上学路上所用的时间,随机调查了30名学生,下面是某一天这30名学生上学所用时间(单位:分钟):20,20,30,15,20,25,5,15,20,10,15,35,45,10,20,25,30,20,15,20,20,10,20,5,15,20,20,20,5,15.通过整理和分析数据,得到如下不完全的统计图.根据所给信息,解答下列问题:(1)补全条形统计图;(2)这30名学生上学所用时间的中位数为______ 分钟,众数为______ 分钟;(3)若随机问这30名同学中其中一名学生的时间,最有可能得到的回答是______ 分钟;(4)估计全校学生上学所用时间在20分钟及以下的人数.24.(10分)中央大街工艺品店销售冰墩墩徽章和冰墩墩摆件,若购买4个冰墩墩徽章和2个冰墩墩摆件需要130元,购买3个冰墩墩徽章和5个冰墩墩摆件需要220元.(1)求每个冰墩墩徽章和每个冰墩墩摆件各需要多少钱?(2)若某旅游团计划买冰墩墩徽章和冰墩墩摆件共50个,所用钱数不超过1150元,则该旅游团至少买多少个冰墩墩徽章?25.(12分)如图,已知△ABC中,AC=CB=20cm,AB=16cm,点D为AC的中点.(1)如果点P在线段AB上以6cm/s的速度由A点向B点运动,同时,点Q在线段BC上由点B向C点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△APD与△BQP是否全等?说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△APD与△BQP全等?(2)若点Q以②中的运动速度从点B出发,点P以原来的运动速度从点A同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?26.(12分)如图,在△ABC中,∠BAC=90°,AB=AC,点D为BC的中点.点E是直线AB上的一动点,连接DE,作DF⊥DE交直线AC于点F.(1)如图1,若点E与点A重合时,请你直接写出线段DE与DF的数量关系;(2)如图2,若点E在线段AB上(不与A、B重合)时,请判断线段DE与DF的数量关系并说明理由;(3)若点E在AB的延长线上时,线段DE与DF的数量关系是否仍然满足上面(2)中的结论?请利用图3画图并说明理由.。

八年级数学第一学期第一次月考试题

八年级数学第一学期第一次月考试题

第一学期第一次月考试卷八年级数学题号 一 二 三 总分 得分题号 1234 5678910答案A.-2B.±2C.-4D.±4 2.下列算式正确的是( )A.-√(−3)2=-3B.(-√6)2=36C.√16=±4D.√121=±√11 3.如图,矩形ABCD 恰好可分成7个形状大小相同的小矩形,如果小矩形的面积是3,则矩形ABCD 的周长是( ) A.7 B.9 C.19 D.21 4.已知整数m 满足m <√38<m +1,则m 的值为( ) A.4 B.5 C.6 D.7 5.在-√4,3.14,π,√10,1.5⋅5⋅,27中无理数的个数是( ) A.2个 B.3个 C.4个 D.56.若25x 2-mxy +81y 2是一个完全平方式,那么m 的值为( ) A.±45 B.90 C.±90 D.-907.下列运算正确的是( )A.a 6÷a 3=a 2B.2a 3+3a 3=5a 6C.(-a 3)2=a 6D.(a +b )2=a 2+b 2 8.若(x 3)m =x 9,则m 的值为( )A.1B.2C.3D.4 9.计算(-xy 2)3的结果是( )A.x 3y 6B.-x 3y 6C.-x 4y 5D.x 4y 5 10.如果设5a =m ,5b =n ,那么5a -b 等于( ) A.m +n B.mn C.m -n D.mn二、填空题(本大题共10小题,共30分)11.若m 是√16的算术平方根,则m +3= ______ .12.在5,0.1,227,-√3,3π.,√16中,无理数有 ______ 个. 13.实数a 在数轴上的位置如图,则|a -√3|= ______ . 14.若a m =2,a n =3,则a m -n 的值为 ______ .15.已知2m -3n =-4,则代数式m (n -4)-n (m -6)的值为 ______ . 16.计算:(43)2014×(-34)2015= ______ . 17.计算:(-2a 2)•3a 的结果是 ______ . 18.计算2a 2b (2a -3b +1)= ______ . 19.计算(3x +9)(6x +8)= ______ .20.若a +2是一个数的算术平方根,则a 的取值范围是 ______ .三、解答题(本大题共6小题,21题20分,22、23每题6分,24题8分,25、26每题10分) 21. 计算(1)(x -2y )(x +2y -1)+4y 2(2)(a 2b )[(ab 2)2+(2ab )3+3a 2].(3)√4+√−13-√925×√1+(43)2 (4)(-a 2)3•(b 3)2•(ab )422. 求式中的x 的值: 3(x -1)2=12.23.已知一个数的平方根是3a +2和a +10,求a 的值.24.化简求值:(2x -1)2-(3x +1)(3x -1)+5x (x -1),x =-19.25.已知(x 3+mx +n )(x 2-3x +1)展开后的结果中不含x 3和x 2项. (1)求m 、n 的值; (2)求(m +n )(m 2-mn +n 2)的值.26.已知a x=5,a x+y=30,求a x+a y的值.。

2022-2023学年度第一学期八年级第一次月考 (数学)(含答案)063108

2022-2023学年度第一学期八年级第一次月考 (数学)(含答案)063108

2022-2023学年度第一学期八年级第一次月考 (数学)试卷考试总分:115 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 下列各组数不能构成一个三角形的三边长的是( )A.,,B.,,C.,,D.,,2. 如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是 ( )A.锐角三角形B.钝角三角形C.直角三角形D.都有可能3. 如图,从下列四个条件:①;②;③;④中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是( )A.B.C.D.4. 若正多边形的一个外角是,则该正多边形的内角和为 A.B.C.D.5. 在中,,则( )A.B.C.D.123234345456BC =C B ′AC =C A ′∠CA =∠CB A ′B ′AB =A ′B ′123472∘()360∘540∘720∘900∘Rt △ABC ∠C =,∠B =90∘35∘∠A =45∘55∘65∘75∘6. 如图,中,则下列结论正确的是( )A.B.C.D.7. 如图,已知为中点,,,,那么下列结论中不正确的是( )A.B.C.D.8. 如图,在中,,平分于点,,则的长为 ( )A.B.C.D. 9.以下四种沿折叠的方法中,不一定能判定纸带两条边线,互相平行的是 A.图,展开后测得B.图,展开后测得且C.图,测得△ABC ∠B =∠C,BD =CF,BE =CD,∠EDF =α,2α+∠A =180∘α+∠A =90∘2α+∠A =90∘α+∠A =180∘2D AB EA ⊥AB CB ⊥AB AE =AB =2BC ∠E =30∘∠EAF =∠ADEDE =AC∠C +∠E =90∘△ABC ∠C =90∘AD ∠BAC ,DE ⊥AB E DE =3,BD =2CD BC 78910AB a b ()1∠1=∠22∠1=∠2∠3=∠43∠1=∠2D.图,展开后再沿折叠,两条折痕的交点为,测得,10. 如图所示,在中,分别是,的角平分线,且交于点,于,下列结论:①;②;③;④.其中正确的结论是( )A.①②③B.①②④C.②③④D.①②③④二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )11. 如图,点在线段上,若在的同侧作等边 和等边 ,连接、,若 ,则的度数为________.12. 一个三角形的两边长为和,则第三边的取值范围是________.13. 如图,在中,,平分.若,则________.14. 如图,在中,点,,分别是,,的中点,若的面积等于,则的面积为________.三、 解答题 (本题共计 9 小题 ,每题 5 分 ,共计45分 )15. 已知:如图,点,,,在同一条直线上, ,,求证: .4CD O OA =OB OC =OD△ABC AD ,CF ∠BAC ,∠ACB AD ,CF I IE ⊥BC E ∠BIE =∠CID =IE(AB+BC +AC)S △ABC 12BE =(AB+BC −AC)12AC =AF +DC C AB AB △ACM △BCN AN BM ∠MBA =28∘∠ANC 57a △ABC AD ⊥BC AE ∠BAC ∠1=,∠2=30∘20∘∠B =△ABC D E F BC AD EC △ABC 36△BEF A E F C DF =BE ∠B =∠D AD//BC.AE =CF16.【操作】填写下表:正边形内角和每一个内角的度数【猜想】根据上表数据猜想,正边形的每一个内角的度数都是________;(用含的代数式表示)【应用】是否存在一个正边形,它的每一个内角都是?若存在,求出的值;若不存在,请说明理由. 17. 在平面直角坐标系中,描出以下各点:.在平面直角坐标系中画出.计算的面积. 18.如图,是的直径,是的切线,切点为,交于点,点是的中点.试判断直线与的位置关系,并说明理由;若的直径为,,,求图中阴影部分的面积. 19. 如图,在中,是边上的高,平分,,.你会求的度数吗?你能发现与,之间的关系吗?20. 如图,正方形的边长为,边上有一动点,连结,线段绕点顺时针旋转后,得到线段,且交于,连结,过点作的延长线于点.求证:;(1)n n =4360∘90∘n =5n =6(2)n n (3)n 130∘n A(−2,−1),B(−4,2),C(3,5)(1)△ABC (2)△ABC AB ⊙O AC ⊙O A BC ⊙O D E AC (1)DE ⊙O (2)⊙O 4∠B =50∘AC =5△ABC AD BC AE ∠BAC ∠B =80∘∠C =46∘(1)∠DAE (2)∠DAE ∠B ∠C ABCD 1AB P PD PD P 90∘PE PE BC F DF E EQ ⊥AB Q (1)PQ =AD求证:;问:点在何处时,,并说明理由.在条件下,求的值.21.如图,,,,,垂足为.求证:;求的度数.22. 如图,在中,是边上的中线,是边上一点,过点作交的延长线于点.求证:;当,,时,求的长.23. 如图,直线,点是,之间(不在直线,上)的一个动点.若与都是锐角,如图甲,写出与,之间的数量关系并说明原因;若把一块三角尺(,)按如图乙方式放置,点,,是三角尺的边与平行线的交点,若,求的度数;将图乙中的三角尺进行适当转动,如图丙,直角顶点始终在两条平行线之间,点在线段上,连接,且有,求与之间的数量关系.(1)PQ =AD (2)P △PFD ∼△BFP (3)(2)cos ∠DFP ∠BAD =∠CAE =90∘AB =AD AE =AC AF ⊥CB F (1)△ABC ≅△ADE (2)∠FAE △ABC AD BC E AB C CF //AB ED F (1)△BDE ≅△CDF (2)AD ⊥BC AE =1CF =2AC PQ//MN C PQ MN PQ MN (1)∠1∠2∠C ∠1∠2(2)∠A =30∘∠C =90∘D E F ∠AEN =∠A ∠BDF (3)C G CD EG ∠CEG =∠CEM ∠GEN ∠BDF参考答案与试题解析2022-2023学年度第一学期八年级第一次月考 (数学)试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】A【考点】三角形三边关系【解析】看哪个选项中两条较小的边的和大于最大的边即可.【解答】解:,因为,所以本组数不能构成三角形.故本选项符合题意;,因为,所以本组数能构成三角形.故本选项不符合题意;,因为,所以本组数能构成三角形.故本选项不符合题意;,因为,所以本组数能构成三角形.故本选项不符合题意.故选.2.【答案】C【考点】三角形的高【解析】【解答】解:因为直角三角形的三条高线的交点是直角顶点,而其他三角形三条高线的交点都不在顶点上,所以如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,那么这个三角形是直角三角形.故选.3.【答案】B【考点】全等三角形的性质与判定【解析】根据全等三角形的判定定理,可以推出当①②③为条件,④为结论时 ,根据判断出,根据全等三角形的性质得出;当①②④为条件,③为结论时:由判断出,根据全等三角形的性质得出, 从而得出.【解答】A 1+2=3B 2+3>4C 4+3>5D 4+5>6A C SAS △A'CB'≅△ACB AB =A'B'SSS △A'CB'≅△ACB ∠A'CB'=∠ACB ∠A'CA =∠B'CB解:当①②③为条件,④为结论时:∵,∴,即,∵,,∴,∴;当①②④为条件,③为结论时:∵,,,∴,∴,∴,即.若②③④为条件,通过两边及其一边的对角无法判定三角形相似,从而无法得出结论.故选.4.【答案】B【考点】多边形内角与外角【解析】外角和是,除以一个外角度数即为多边形的边数.根据多边形的内角和公式可求得该多边形的内角和.【解答】解:∵正多边形的每一个外角都是,∴正多边形的边数为:,∴该正多边形的内角和为:.故选.5.【答案】B【考点】三角形内角和定理【解析】此题暂无解析【解答】解:因为三角形内角和为,所以.故选.6.【答案】A【考点】全等三角形的判定∠CA =∠CB A ′B ′∠CA+∠AC =∠CB+∠AC A ′B ′B ′B ′∠C =∠ACB A ′B ′BC =C B ′AC =C A ′△C ≅△ACB(SAS)A ′B ′AB =A ′B ′BC =C B ′AC =C A ′AB =A ′B ′△C ≅△ACB(SSS)A ′B ′∠C =∠ACB A ′B ′∠C −∠AC =∠ACB−∠AC A ′B ′B ′B ′∠CA =∠CB A ′B ′B 360∘72∘=536072(5−2)×=180∘540∘B 180∘∠A =−∠B−∠C180∘=−−180∘35∘90∘=55∘B【解答】解:在和中,,∴,∴,∵,∴,∵,∴.故选.7.【答案】A【考点】全等三角形的性质与判定【解析】本题条件较为充分,,,,为中点可得两直角三角形全等,然后利用三角形的性质问题可解决.做题时,要结合已知条件与全等的判定方法对选项逐一验证.【解答】解:,,,∵为中点,∴,又,,∴,,,,故正确;∵,∴,∴,即,∴,,∴,,,,故,正确.故选.8.【答案】C【考点】角平分线的性质全等三角形的判定【解析】△BDE △CFD BE =CD∠B =∠C BD =CF△BDE ≅△CFD(SAS)∠BED =∠CDF ∠EDC =∠B+∠BED =∠EDF +∠FDC∠B =∠EDF =α∠B =∠C =α2a +∠A =180∘A EA ⊥AB BC ⊥AB EA =AB =2BC D AB ∵EA ⊥AB BC ⊥AB ∴∠EAB =∠ABC =90∘D AB AB =2AD EA =AB =2BC ∴AD =BC Rt △EAD ≅Rt △ABC ∴DE =AC ∠C =∠ADE ∠E =∠FAD C ∠EAF +∠DAF =90∘∠EAF +∠E =90∘∠EFA =−=180∘90∘90∘DE ⊥AC ∠EAF +∠DAF =90∘∠C +∠DAF =90∘∠C =∠EAF ∠C =∠ADE ∴∠EAF =∠ADE ∠C +∠E =90∘B D A解:∵在和中,,∴,∴.∵,∴.故选.9.【答案】C【考点】全等三角形的性质与判定平行线的判定【解析】根据平行线的判定定理,进行分析,即可解答.【解答】解:、,根据内错角相等,两直线平行进行判定,故正确;、∵且,由图可知,,∴,∴(内错角相等,两直线平行),故正确;、测得,∵与即不是内错角也不是同位角,∴不一定能判定两直线平行,故错误;、在和中,,∴,∴,∴(内错角相等,两直线平行),故正确.故选.10.【答案】A【考点】全等三角形的性质与判定三角形内角和定理角平分线的性质【解析】①由为三条角平分线的交点,于,得到,由于,即,由已知条件得到,于是得到;即①成立;②由△ADE △ADC ∠DAE =∠DACDA =DA ∠AED =∠ACD△ADE ≅△ADC CD =DE BD =2CD BC =BD+CD =3DE =9C A ∠1=∠2B ∠1=∠2∠3=∠4∠1+∠2=180∘∠3+∠4=180∘∠1=∠2=∠3=∠4=90∘a//b C ∠1=∠2∠1∠2D △AOC △BOD OA =OB∠AOC =∠BOD OC =OD△AOC ≅△BOD ∠CAO =∠DBO a//b C I △ABC IE ⊥BC E ∠ABI =∠IBD ∠CID+∠ABI =90∘∠CIE+∠DIE+∠IBD =90∘∠IBD+∠BID+∠DIE =90∘∠BIE =∠CID是三内角平分线的交点,得到点到三边的距离相等,根据三角形的面积即可得到即②成立;③如图过作于,于,有是三内角平分线的交点,得到,通过,得到,同理,,于是得到即③成立;④由③证得,,于是得到与不一定全等,即④错误.【解答】解:①,故正确,②∵是三内角平分线的交点,∴点到三边的距离相等,∴,即②正确;③如图过作于,于,∵是三内角平分线的交点,∴,在与中,,∴,∴,同理,,∴,∴,即③正确;④只有在 的条件下, ,即④错误.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )11.【答案】【考点】全等三角形的性质【解析】此题暂无解析【解答】此题暂无解答12.【答案】【考点】I △ABC I △ABC I IH ⊥AB H IG ⊥AC G I △ABC IE =IH =IG △AHT ≅△AGI R t R t AH =AG BE =BF CE =CG IH =IE ∠FHI =∠IED =90∘△IHF △DEI ∠ABC +∠ACB+∠BAC =,180∘∠IBE =∠ABC ,12∠IAC =∠BAC 12∠ICA =∠ACB ,12∠IBE +∠IAC +∠ICA =,90∘∠CID =∠IAC +∠ICA =−∠IBE =∠BIE.90∘①I △ABC I △ABC =++S △ABC S △ABI S △BCI S △ACI =⋅AB ⋅IE+BC ⋅IE+AC ⋅IE 121212=IE(AB+BC +AC)12I IH ⊥AB H IG ⊥AC G I △ABC IE =IH =IG Rt △AHI Rt △AGI {AI =AI ,IH =IG ,Rt △AHI ≅Rt △AGI AH =AG BE =BH CE =CG BE+BH =AB+BC −AH−CE =AB+BC −ACBE =(AB+BC −AC)12∠ABC =60∘AC =AF +DCA 28∘2<a <12三角形三边关系【解析】根据三角形三边关系,两边之和大于第三边,两边之差小于第三边即可求解.【解答】解:三角形的两边长分别为,,则第三边的取值范围是,即.故答案为:.13.【答案】【考点】三角形的外角性质三角形内角和定理【解析】此题暂无解析【解答】解:∵平分,∴,∴,在 中,,故答案为:.14.【答案】【考点】三角形的面积【解析】此题暂无解析【解答】此题暂无解答三、 解答题 (本题共计 9 小题 ,每题 5 分 ,共计45分 )15.【答案】证明:∵,∴,且,,∴(),∴,∴,57a 7−5<a <7+52<a <122<a <1250∘AE ∠BAC ∠1=∠EAD+∠2∠EAD =∠1−∠2=−30∘20∘=1Rt △ABD ∠B =−∠BAD 90∘=−−=90∘30∘10∘50∘50∘9AD//BC ∠A =∠C ∠B =∠D DF =BE △ADF ≅△CBE AAS AF =CE AF −EF =CE−EF∴.【考点】全等三角形的性质与判定平行线的性质【解析】【解答】证明:∵,∴,且,,∴(),∴,∴,∴.16.【答案】解:填表如下:正边形内角和每一个内角的度数根据可得,,解得.因为为整数,所以不存在一个正边形,它的每一个内角都是.【考点】多边形的内角和多边形内角与外角【解析】根据得,正边形的每一个内角度数为.故答案为:.【解答】解:填表如下:正边形内角和每一个内角的度数根据得,正边形的每一个内角度数为.AE =CF AD//BC ∠A =∠C ∠B =∠D DF =BE △ADF ≅△CBE AAS AF =CE AF −EF =CE−EF AE =CF (1)n n =4360∘90∘n =5540∘108∘n =6720∘120∘(n−2)×180∘n (3)(2)=(n−2)×180∘n 130∘n =7.2n n 130∘(2)(1)n (n−2)×180∘n (n−2)×180∘n(1)n n =4360∘90∘n =5540∘108∘n =6720∘120∘(2)(1)n (n−2)×180∘n(n−2)×180∘故答案为:.根据可得,,解得.因为为整数,所以不存在一个正边形,它的每一个内角都是.17.【答案】解:如图所示:的面积.【考点】网格中点的坐标三角形的面积【解析】无无【解答】解:如图所示:的面积.18.【答案】解:直线与相切.理由如下:(n−2)×180∘n (3)(2)=(n−2)×180∘n 130∘n =7.2n n 130∘(1)△ABC (2)△ABC =7×6−×2×312−×3×712−×5×612=42−3−10.5−15=13.5(1)△ABC (2)△ABC =7×6−×2×312−×3×712−×5×612=42−3−10.5−15=13.5(1)DE ⊙O连接,,如图,∵是的切线,∴,∴.∵点是的中点,点为的中点,∴,∴,.∵,∴,∴.在和中,∴,∴,∴,∵为的半径,∴直线与相切.∵,是的切线,∴,∵点是的中点,∴ ,,∴图中阴影部分的面积为.【考点】全等三角形的性质与判定切线的判定三角形中位线定理扇形面积的计算求阴影部分的面积三角形的面积【解析】连接、,根据切线的性质得到根据三角形中位线定理得到,证明根据全等三角形的性质、切线的判定定理证明;【解答】解:直线与相切.理由如下:连接,,如图,OE OD AC ⊙O AB ⊥AC ∠OAC =90∘E AC O AB OE//BC ∠1=∠B ∠2=∠3OB =OD ∠B =∠3∠1=∠2△AOE △DOE OA =OD ,∠1=∠2,OE =OE ,△AOE ≅△DOE(SAS)∠ODE =∠OAE =90∘DE ⊥OD OD ⊙O DE ⊙O (2)DE AE ⊙O DE =AE E AC AE =AC =1252∠AOD =2∠B =2×=50∘100∘S =+−S △AOE S △DOE S 扇形AOD =2−S △AOE S 扇形AOD=2××2×−1252100×π×22360=5−π109(1)OE OD ∠OAC =90∘OE//BC△AOE ≅△DOE (1)DE ⊙O OE OD∵是的切线,∴,∴.∵点是的中点,点为的中点,∴,∴,.∵,∴,∴.在和中,∴,∴,∴,∵为的半径,∴直线与相切.∵,是的切线,∴,∵点是的中点,∴ ,,∴图中阴影部分的面积为.19.【答案】解:在中,,,∴.∵平分,∴.∵是边上的高,∴,∴;∵是的高,∴,∵,∴,∵,,∴,∵是的角平分线,∴,∵,∴当时,;∴.AC ⊙O AB ⊥AC ∠OAC =90∘E AC O AB OE//BC ∠1=∠B ∠2=∠3OB =OD ∠B =∠3∠1=∠2△AOE △DOE OA =OD ,∠1=∠2,OE =OE ,△AOE ≅△DOE(SAS)∠ODE =∠OAE =90∘DE ⊥OD OD ⊙O DE ⊙O (2)DE AE ⊙O DE =AE E AC AE =AC =1252∠AOD =2∠B =2×=50∘100∘S =+−S △AOE S △DOE S 扇形AOD =2−S △AOE S 扇形AOD=2××2×−1252100×π×22360=5−π109(1)△ABC ∠B =80∘∠C =46∘∠BAC =−−=180∘80∘46∘54∘AE ∠BAC ∠BAE =∠BAC =1227∘AD BC ∠BAD =−∠B =−=90∘90∘80∘10∘∠DAE =∠BAE−∠BAD =−=27∘10∘17∘(2)AD △ABC ∠ADC =90∘∠C =β∠DAC =−β90∘∠B =α∠C =β∠BAC =−∠B−∠C =−α−β180∘180∘AE △ABC∠EAC =∠BAC =(−α−β)=−α−β1212180∘90∘1212∠B >∠C α>β∠DAE =∠DAC −∠EAC=−β−(−α−β)90∘90∘1212=(α−β)12∠DAE =(∠B−∠C)12【考点】三角形的外角性质三角形内角和定理【解析】(1)先根据三角形内角和定理求出的度数,再根据平分求出的度数,根据求出的度数,由即可得出结论;(2)设,,,同(1)即可得出结论;【解答】解:在中,,,∴.∵平分,∴.∵是边上的高,∴,∴;∵是的高,∴,∵,∴,∵,,∴,∵是的角平分线,∴,∵,∴当时,;∴.20.【答案】证明:根据题意得:,,∴,∵四边形是正方形,∴,∴,∴,∵,∴,在和中,,∴,∴;解:∵,∴,∵,,∴,∴,∴,∴,∠BAC AE ∠BAC ∠BAE AD ⊥BC ∠BAD ∠DAE =∠BAE−∠BAD ∠C =α∘∠B =β∘α>β(1)△ABC ∠B =80∘∠C =46∘∠BAC =−−=180∘80∘46∘54∘AE ∠BAC ∠BAE =∠BAC =1227∘AD BC ∠BAD =−∠B =−=90∘90∘80∘10∘∠DAE =∠BAE−∠BAD =−=27∘10∘17∘(2)AD △ABC ∠ADC =90∘∠C =β∠DAC =−β90∘∠B =α∠C =β∠BAC =−∠B−∠C =−α−β180∘180∘AE △ABC∠EAC =∠BAC =(−α−β)=−α−β1212180∘90∘1212∠B >∠C α>β∠DAE =∠DAC −∠EAC=−β−(−α−β)90∘90∘1212=(α−β)12∠DAE =(∠B−∠C)12(1)PD =PE ∠DPE =90∘∠APD+∠QPE =90∘ABCD ∠A =90∘∠ADP +∠APD =90∘∠ADP =∠QPE EQ ⊥AB ∠A =∠Q =90∘△ADP △QPE ∠A =∠Q∠ADP =∠QPE PD =PE△ADP ≅△QPE(AAS)PQ =AD (2)△PFD ∼△BFP =PB BF PD PF ∠ADP =∠EPB ∠CBP =∠A △DAP ∼△PBF=PD PF AP BF=AP BF PB BF PA =PB A =AB =11∴∴当,即点是的中点时,.解:∵为的中点,,,,,,,在中,,在中在中.【考点】相似三角形的性质与判定锐角三角函数的定义正方形的性质全等三角形的性质【解析】(1)由题意得:,,又由正方形的边长为,易证得,然后由全等三角形的性质,求得线段的长;(2)易证得,又由,根据相似三角形的对应边成比例,可得证得,则可求得答案.【解答】证明:根据题意得:,,∴,∵四边形是正方形,∴,∴,∴,∵,∴,在和中,PA =AB =1212PA =12P AB △PFD ∼△BFP (3)P AB ∴PA =PB =AB =1212∵△DAP ∼△PBF ∴=BF PB AP AD ∴=BF 12121∴BF =14∴CF =CB−BF =1−=1434Rt △PBF PF =P +B B 2F 2−−−−−−−−−−√===+()122()142−−−−−−−−−−−−√516−−−√5–√4Rt △DCF DF =+CD 2CF 2−−−−−−−−−−√==+12()342−−−−−−−−−√54Rt △DPF cos ∠DFP =PF DF ==5–√4545–√5PD =PE ∠DPE =90∘ABCD 1△ADP ≅△QPE PQ △DAP ∽△PBF △PFD ∽△BFP PA =PB (1)PD =PE ∠DPE =90∘∠APD+∠QPE =90∘ABCD ∠A =90∘∠ADP +∠APD =90∘∠ADP =∠QPE EQ ⊥AB ∠A =∠Q =90∘△ADP △QPE,∴,∴;解:∵,∴,∵,,∴,∴,∴,∴,∴∴当,即点是的中点时,.解:∵为的中点,,,,,,,在中,,在中在中.21.【答案】证明:∵,∴,,∴,在和中,∴.解:∵,,∴.由知,∴. ∠A =∠Q∠ADP =∠QPE PD =PE△ADP ≅△QPE(AAS)PQ =AD (2)△PFD ∼△BFP =PB BF PD PF ∠ADP =∠EPB ∠CBP =∠A △DAP ∼△PBF =PD PF AP BF=AP BF PB BFPA =PB PA =AB =1212PA =12P AB △PFD ∼△BFP(3)P AB∴PA =PB =AB =1212∵△DAP ∼△PBF ∴=BF PB AP AD ∴=BF 12121∴BF =14∴CF =CB−BF =1−=1434Rt △PBF PF =P +B B 2F 2−−−−−−−−−−√===+()122()142−−−−−−−−−−−−√516−−−√5–√4Rt △DCF DF =+CD 2CF 2−−−−−−−−−−√==+12()342−−−−−−−−−√54Rt △DPF cos ∠DFP =PF DF==5–√4545–√5(1)∠BAD =∠CAE =90∘∠BAC +∠CAD =90∘∠CAD+∠DAE =90∘∠BAC =∠DAE △ABC △ADE AB =AD,∠BAC =∠DAE,AC =AE,△ABC ≅△ADE(SAS)(2)∠CAE =90∘AC =AE ∠E =45∘(1)△ABC ≅△ADE ∠BCA =∠E =45∘∵,∴,∴,∴.【考点】全等三角形的判定全等三角形的性质三角形内角和定理【解析】此题暂无解析【解答】证明:∵,∴,,∴,在和中,∴.解:∵,,∴.由知,∴.∵,∴,∴,∴.22.【答案】证明:∵,∴,.∵是边上的中线,∴,∴.解:∵,∴,∴.∵,,∴.【考点】全等三角形的判定全等三角形的性质平行线的性质【解析】(1)根据平行线的性质得到=,=,由是边上的中线,得到=,于是得到结论;(2)根据全等三角形的性质得到==,求得===,于是得到结论.【解答】证明:∵,AF ⊥BC ∠CFA =90∘∠CAF =45∘∠FAE =∠FAC +∠CAE =+=45∘90∘135∘(1)∠BAD =∠CAE =90∘∠BAC +∠CAD =90∘∠CAD+∠DAE =90∘∠BAC =∠DAE △ABC △ADE AB =AD,∠BAC =∠DAE,AC =AE,△ABC ≅△ADE(SAS)(2)∠CAE =90∘AC =AE ∠E =45∘(1)△ABC ≅△ADE ∠BCA =∠E =45∘AF ⊥BC ∠CFA =90∘∠CAF =45∘∠FAE =∠FAC +∠CAE =+=45∘90∘135∘(1)CF //AB ∠B =∠FCD ∠BED =∠F AD BC BD =CD △BDE ≅△CDF(AAS)(2)△BDE ≅△CDF BE =CF =2AB =AE+BE =1+2=3AD ⊥BC BD =CD AC =AB =3∠B ∠FCD ∠BED ∠F AD BC BD CD BE CF 2AB AE+BE 1+23(1)CF //AB∴,.∵是边上的中线,∴,∴.解:∵,∴,∴.∵,,∴.23.【答案】解:.理由如下:如图,过作,∵,∴,∴,,∴,即.∵,∴,由可得,,∴,∴.设,则,由可得,,∴,∴,∴.即.【考点】平行线的判定与性质平行线的性质角的计算【解析】无无无【解答】解:.理由如下:如图,过作,∵,∴,∴,,∴,即.∵,∴,由可得,,∠B =∠FCD ∠BED =∠F AD BC BD =CD △BDE ≅△CDF(AAS)(2)△BDE ≅△CDF BE =CF =2AB =AE+BE =1+2=3AD ⊥BC BD =CD AC =AB =3(1)∠C =∠1+∠2C CD//PQ PQ//MN PQ//CD//MN ∠1=∠ACD ∠2=∠BCD ∠ACB =∠ACD+∠BCD =∠1+∠2∠C =∠1+∠2(2)∠AEN =∠A =30∘∠MEC =30∘(1)∠C =∠MEC +∠PDC =90∘∠PDC =−∠MEC =90∘60∘∠BDF =∠PDC =60∘(3)∠CEG =∠CEM =x ∠GEN =−2x 180∘(1)∠C =∠CEM +∠CDP ∠CDP =−∠CEM =−x 90∘90∘∠BDF =−x 90∘==2∠GEN ∠BDF −2x 180∘−x 90∘∠GEN =2∠BDF (1)∠C =∠1+∠2C CD//PQ PQ//MN PQ//CD//MN ∠1=∠ACD ∠2=∠BCD ∠ACB =∠ACD+∠BCD =∠1+∠2∠C =∠1+∠2(2)∠AEN =∠A =30∘∠MEC =30∘(1)∠C =∠MEC +∠PDC =90∘∴,∴.设,则,由可得,,∴,∴,∴.即.∠PDC =−∠MEC =90∘60∘∠BDF =∠PDC =60∘(3)∠CEG =∠CEM =x ∠GEN =−2x 180∘(1)∠C =∠CEM +∠CDP ∠CDP =−∠CEM =−x 90∘90∘∠BDF =−x 90∘==2∠GEN ∠BDF −2x 180∘−x 90∘∠GEN =2∠BDF。

华师大版八年级下册数学第一次月考试卷及答案

华师大版八年级下册数学第一次月考试卷及答案

华师大版八年级下册数学第一次月考试题一、单选题1.在211133122x xy a x x y mπ+++,,,,中,分式的个数是()A .2B .3C .4D .52.下列分式是最简分式的是()A .222a a bB .23aa a-C .22a b a b ++D .222a ab a b --3.下面哪个点不在函数23y x =-+的图像上()A .(3,0)B .(0.5,2)C .(-5,13)D .(1,1)4.将分式2+x x y中的x ,y 的做同时扩大到原来的3倍,则分式的值()A .扩大到原来的3倍B .缩小到原来的13C .保持不变D .无法确定5.一次函数y=-5x+3的图象经过的象限是()A .一、二、三B .二、三、四C .一、二、四D .一、三、四6.若分式2||244x x x --+的值为0,则x 的值为()A .2B .-2C .2或-2D .2或37.若点p (2k -1,1-k )在第四象限,则k 的取值范围为()A .k >1B .k <12C .k >12D .12<k <18.在同一平面直角坐标系中,若点A(a ,3a ﹣b),B(b ,2a+b ﹣2)关于x 轴对称,则a ,b 值为()A .25,25B .-23,23C .25,-25D .23,-239.王大爷散步,从家中走20分钟到离家900米的公园,与朋友聊天10分钟后,用15分钟返回家中.下面图形表示王大爷离时间x (分)与离家距离y (米)之间的关系是()A .B .C .D .10.关于x 的方程:11ax =+的解是负数,则a 的取值范围是()A .1a <B .1a <且0a ≠C .1a D .1a且0a ≠11.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A 型陶笛比B 型陶笛的单价低20元,用2700元购买A 型陶笛与用4500购买B 型陶笛的数量相同,设A 型陶笛的单价为x 元,依题意,下面所列方程正确的是()A .270020x -=4500x B .2700x =450020x -C .270020x +=4500x D .2700x =450020x +12.已知四条直线3y kx =-,1y =-,3y =和1x =所围成的四边形的面积是12,则k 的值为()A .1或-2B .2或-1C .3D .4二、填空题13.用科学记数法表示:-0.0000601=______.14.分式2x y xy +,23yx,26x y xy -的最简公分母为____________.15.函数y =x 的取值范围是:___________.16.若方程233x m x x =+--有增根,则m 的值为________.17.如果2310x x -+=,则221x x +的值为_________18.将直线21y x =+平移后经过点(2,1),则平移后的直线解析式为______________.三、解答题19.(π-3.14)0+(12)-1-|-4|+2-220.(22x 4x 2x 4x 4x 2----++)÷x x 2-21.解方程2373226x x +=++.22.先化简,再求值:222(1)24a a a a a -++÷--,然后选取一个你喜欢的a 值代入求值.23.某校初一年学生乘车到距学校40千米的社会实践基地进行社会实践.一部分学生乘旅游车,另一部分学生乘中巴车,他们同时出发,结果乘中巴车的同学晚到8分钟.已知旅游车速度是中巴车速度的1.2倍,求中巴车的速度是多少千米/小时?24.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y (米)与时间t (分钟)之间的函数关系如图所示.(1)根据图象信息,当t =分钟时甲乙两人相遇,甲的速度为米/分钟,乙的速度为米/分钟;(2)图中点A 的坐标为;(3)求线段AB 所直线的函数表达式;(4)在整个过程中,何时两人相距400米?25.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨,则每吨按政府补贴优惠价a 元收费;若每月用水量超过14吨,则超过部分每吨按市场调节价b 元收费.小刘家3月份用水10吨,交水费20元;4月份用水16吨,交水费35元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小刘预计他家5月份用水不会超过22吨,那么小刘家5月份最多交多少元水费?26.已知,如图,直线y=8﹣2x与y轴交于点A,与x轴交于点B,直线y=x+b与y轴交于点C,与x轴交于点D,如果两直线交于点P,且AC:CO=3:5(AO>CO)(1)求点A、B的坐标(2)求直线y=x+b的函数解析式(3)求四边形COBP的面积S参考答案1.B【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:在211133122x xy ax x y mπ+++,,,,,中,分式有131ax x y m++,,∴分式的个数是3个.故选:B .2.C 【解析】根据分式的基本性质进行约分,化出最简分式即可进行判断.【详解】解:选项A 中,221=2a a b ab,不符合题意,故选项A 错误;选项B 中,21=33a a a a --,不符合题意,故选项B 错误;选项C 中,22a ba b ++不能约分,符合题意,故选项C 正确;选项D 中,222=a ab aa b a b--+,不符合题意,故选项D 错误;故选C .3.A 【分析】把每个选项中点的横坐标代入函数解析式,判断纵坐标是否相符,即可得出结论.【详解】解:A .当x =3时,y =−2x +3=−3,点不在函数图象上;B .当x =0.5时,y =−2x +3=2,点在函数图象上;C .当x =−5时,y =−2x +3=13,点在函数图象上;D .当x =1时,y =−2x +3=1,点在函数图象上.故选:A .4.A 【解析】将x 变为3x ,y 变为3y 计算后与原式比较即可得到答案.【详解】222(3)93333()x x x x y x y x y==⨯+++,故分式的值扩大到原来的3倍,故选:A .【点睛】此题考查分式的基本性质,正确掌握积的乘方运算,分解因式是解题的关键.【解析】根据一次函数与系数的关系进行判断.【详解】解:∵k=-5<0,∴一次函数经过第二、四象限,∵b=3>0,∴一次函数与y 轴交于正半轴,∴一次函数y=-5x+3的图象经过第一、二、四象限.故选:C .6.B 【分析】根据分式的值为零的条件可以求出x 的值.【详解】解:根据题意得:∵分式2||244x x x --+的值为0,∴||20x -=,且2440x x -+≠,∴x=-2,故选B.7.D 【分析】根据点P 在第四象限的特征,列出不等式组21010k k ->⎧⎨-<⎩,解不等式组即可.【详解】解:∵点P (21,1)k k --在第四象限,∴21010k k ->⎧⎨-<⎩,解得:112k <<.故选D .【分析】直接利用关于x 轴对称点的性质得出a b ,的方程组进而得出答案.【详解】∵点A(a ,3a b -),B(b ,22a b +-)关于x 轴对称,∴()322a b a b a b =⎧⎨-=-+-⎩,解得:2525a b ⎧=⎪⎪⎨⎪=⎪⎩.故选:A .【点睛】本题主要考查了关于x 轴对称点的性质,正确把握横纵坐标的关系是解题关键.9.D 【解析】【分析】对四个图依次进行分析,符合题意者即为所求.【详解】解:A 、从家中走20分钟到离家900米的公园,与朋友聊天20分钟后,用20分钟返回家中,故本选项错误;B 、从家中走20分钟到离家900米的公园,与朋友聊天0分钟后,用20分钟返回家中,故本选项错误;C 、从家中走30分钟到离家900米的公园,与朋友聊天0分钟后,用20分钟返回家中,故本选项错误;D 、从家中走20分钟到离家900米的公园,与朋友聊天10分钟后,用15分钟返回家中,故本选项正确.故选D .【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.【解析】【详解】解:解方程得x=a-1,∵x <0,∴a-1<0即a <1,又a≠0则a 的取值范围是a <1且a≠0.故选B .11.D 【解析】【分析】设A 型陶笛的单价为x 元,则B 型陶笛的单价为(x+20)元,根据用2700元购买A 型陶笛与用4500购买B 型陶笛的数量相同,列方程即可.【详解】设A 型陶笛的单价为x 元,则B 型陶笛的单价为(x+20)元,由题意得2700450020x x =+故选:D 【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.12.A 【解析】【分析】首先用k 表示出直线3y kx =-与1y =-,3y =和1x =的交点坐标,即可用k 表示出四边形的面积.得到一个关于k 的方程,解方程即可解决.【详解】解:如图:在3y kx =-中,令1y =-,解得2x k=;令3y =,6x k=;当0k <时,四边形的面积是:126[(1)(1)]4122k k-+-⨯=,解得2k =-;当0k >时,可得126[(1)(1)]4122k k-+-⨯=,解得1k =.即k 的值为2-或1.故选:A .【点睛】本题考查待定系数法,一次函数的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.13.-6.01×10-5【解析】【分析】绝对值小于1的数可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】-0.0000601=-6.01×10-5.故答案为-6.01×10-5.【点睛】本题考查了负整数指数科学计数法,对于一个绝对值小于1的非0小数,用科学记数法写成10n a -⨯的形式,其中110a ≤<,n 是正整数,n 等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0)14.226x y 【解析】【详解】解:2x y xy -,23y x,26x y xy +最简公分母为6x 2y 2故答案为:226x y .【点睛】本题考查最简公分母,掌握概念正确计算是解题关键.15.0x ≥且1x ≠【解析】【分析】根据二次根式有意义的条件和分母不为零计算即可;【详解】解:∵函数1y x =--有意义,∴0x ≥,10x -≠,∴0x ≥且1x ≠.故答案为:0x ≥且1x ≠.【点睛】本题主要考查了函数自变量取值范围,解题的关键是结合二次根式的非负性计算.16.3【解析】【分析】先去分母化为整式方程,利用分母为0的根代入求m 即可【详解】试题分析:两边同乘x-3,得x=2(x-3)+m ,∵原分式方程有增根,∴x-3=0,∴x=3,∴m=3.【点睛】本题考查分式方程的增根,掌握分式方程有增根的解法是先求分母化为整式方程,利用分母为0得出整式方程的根求出参数是解题关键.17.7【解析】【分析】先化简已知式,然后利用完全平方公式计算.【详解】将方程两边同除以x ,则有:x-3+1x =0,即x+1x =3;因此(x+1x )2=x 2+21x +2=9,所以x 2+21x =7.【点睛】掌握整式的除法,解题的关键是记住每一项都除以同一个数,最后利用完全平方求出.18.y=2x ﹣3【解析】【详解】解:设平移后直线的解析式为y=2x+b .把(2,1)代入直线解析式得1=2×2+b ,解得b=﹣3.所以平移后直线的解析式为y=2x ﹣3.故答案是y=2x ﹣3.19.34【解析】【分析】先计算0指数幂和负指数幂和绝对值,然后相加减即可.【详解】解:原式=1 1244 +-+114=-+34=-.【点睛】本题考查的是实数的运算,熟知负整数指数幂、0指数幂的计算法则是解答此题的关键.20.82 x+【解析】【分析】先将括号里的分式进行因式分解约分,再通分加减,然后把除法运算转换为乘法运算进行约分化简即可【详解】原式=()()()2222222x x x xx x x⎡⎤+----⋅⎢⎥+-⎢⎥⎣⎦=22222x x xx x x+--⎛⎫-⋅⎪-+⎝⎭=()() ()()2222222x x xx x x+---⋅-+=82 x+【点睛】本题主要考查了分式的运算,熟练掌握分式运算的方法是解题关键21.x=﹣2是原方程的根【解析】【分析】察可得方程最简公分母为2(x+3),去分母,转化为整式方程求解,结果要检验.【详解】原方程的两边同时乘以2(x+3),得:4+3(x+3)=7,解这个方程,得x =﹣2,检验:将x =﹣2代入2(x+3)时,该式等于2,∴x =﹣2是原方程的根.【点睛】本题考查了解分式方程,解题的关键是掌握(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根.22.a+2,1【解析】【分析】根据分式的运算法则进行化简,再代入使分式有意义的a 值即可求解.【详解】222(1)24a a a a a -++÷--=()()()()122(1)2222a a a a a a a a +-⎡⎤-+÷⎢⎥--+-⎣⎦=()()2222222(1)a a a a a a a a +-⎛⎫--+⋅ ⎪---⎝⎭=()()2222(1)a a a a a a a +--⋅--=()()22(1)2(1)a a a a a a a +--⋅--=a+2代入a=-1,原式=1【点睛】此题主要考查分式的化简求值,解题的关键是熟知其运算法则.23.中巴车的速度为50千米/小时【解析】【分析】根据中巴车走40千米所用时间860=旅游车走40千米所用时间列出方程,求出方程的解即可.【详解】解:设中巴车速度为x 千米/小时,则旅游车的速度为1.2x 千米/小时.依题意得404081.260 x x-=,解得x=50,经检验:x=50是原方程的解,且符合题意,∴1.2x=60(千米/小时),答:中巴车的速度为50千米/小时,旅游车的速度为60千米/小时.24.(1)24,40,60;(2)(40,1600);(3)线段AB所表示的函数表达式为y=40x;(4)在整个过程中,第20分钟和28分钟时两人相距400米【解析】【分析】(1)根据图象信息,当24t=分钟时甲乙两人相遇,甲60分钟行驶2400米,根据速度=路程÷时间可得甲的速度,进而求出乙的速度;(2)求出乙从图书馆回学校的时间即A点的横坐标;(3)运用待定系数法求解即可;(4)分相遇前后两种情况解答即可.【详解】解:(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲的速度为2400÷60=40(米/分钟).∴甲、乙两人的速度和为2400÷24=100米/分钟,∴乙的速度为100﹣40=60(米/分钟).故答案为:24,40,60;(2)乙从图书馆回学校的时间为2400÷60=40(分钟),40×40=1600,∴A点的坐标为(40,1600).故答案为:(40,1600);(3)设线段AB所表示的函数表达式为y=kx+b,∵A(40,1600),B(60,2400),∴401600602400k bk b+=⎧⎨+=⎩,解得40kb=⎧⎨=⎩,∴线段AB所表示的函数表达式为y=40x;(4)两种情况:①迎面:(2400﹣400)÷100=20(分钟),②走过:(2400+400)÷100=28(分钟),∴在整个过程中,第20分钟和28分钟时两人相距400米.【点睛】本题考查了一次函数的应用,路程、速度、时间的关系,用待定系数法确定函数的解析式,属于中考常考题型.读懂题目信息,从图象中获取有关信息是解题的关键.25.(1)政府补贴优惠价为2元,市场调节价是3.5元;(2)y=3.5x-21;(3)56元.【解析】【分析】(1)由10<14,根据单价=总价÷用水量,即可求出a值,由16>14,根据总价=14×2+超出14吨部分×b,即可得出关于b的一元一次方程,解之即可得出结论;(2)分0≤x≤14和x>14两种情况考虑,当0≤x≤14时,根据总价=2×用水量,即可得出y 关于x的函数关系式;当x>14时,根据总价=14×2+3.5×超出14吨部分,即可得出y关于x的函数关系式;(3)由22>14确定选项y=3.5x﹣21(x>14),根据一次函数的性质结合x的取值范围,即可得出小刘家5月份最多交的水费钱数.【详解】解:(1)∵3月份用水10吨,10<14,∴政府补贴优惠价为:a=20÷10=2(元);∵4月份用水16吨,16>14,∴14×2+(16﹣14)b=35,解得:b=3.5.答:每吨水的政府补贴优惠价为2元,市场调节价为3.5元.(2)当0≤x≤14时,y=2x;当x>14时,y=14×2+(x﹣14)×3.5=3.5x﹣21.∴y=()() 20143.52114x xx x≤≤⎧⎪⎨->⎪⎩.(3)∵小刘预计5月份用水不超过22吨,即x≤22,∴为求最多交多少水费,应选择:y=3.5x﹣21(x>14).∵k=3.5>0,∴y随x增大而增大,∴当x=22时,y最大=3.5×22﹣21=56.答:预计小刘家5月份最多交56元水费.【点睛】本题考查了一次函数的应用、一次函数的性质以及解一元一次不等式,属于常考题型,解题的关键是:(1)根据数量关系列式计算;(2)根据数量关系,找出y 关于x 的函数关系式;(3)利用一次函数的性质,解决最值问题.26.(1)A (0,8),B (4,0);(2)y=x+5;(3)14.5【解析】【分析】(1)对于直线y=8﹣2x 令0x =求出A 点坐标;令0y =求出B 点坐标;(2)由(1)知A 点坐标为()0,8,根据AC :CO=3:5可得出C 点坐标,代入y=x+b 即可求算函数解析式;(3)先联立解方程求算P 点坐标,再用AOB ∆的面积减去ACP ∆的面积即可求算四边形COBP 的面积.【详解】(1)∵直线y=8﹣2x 与y 轴交于点A ,与x 轴交于点B令0x =解得8y =∴A 点坐标为()0,8令0y =解得4x =∴B 点坐标为()4,0(2)∵A 点坐标为()0,8,AC :CO=3:5∴C 点坐标为()0,5将C ()0,5代入y=x+b 解得:5b =∴直线解析式为:5y x =+(3)联立解方程:825y x y x =-⎧⎨=+⎩解得:16x y =⎧⎨=⎩∴P点坐标为()1,6∴11843114.522AOB ACPCOBPS S S∆∆=-=⨯⨯-⨯⨯=四【点睛】本题考查一次函数综合题目,难度中等.掌握函数解析式的求算以及割补法算面积是解题关键.。

数学八年级上册第一次月考试卷

数学八年级上册第一次月考试卷

数学八年级上册第一次月考试卷一、选择题(每题3分,共30分)1. 下列长度的三条线段能组成三角形的是()A. 3,4,8.B. 5,6,11.C. 1,2,3.D. 5,6,10.2. 一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是()A. 14.B. 15.C. 16.D. 17.3. 三角形的一个外角小于与它相邻的内角,这个三角形是()A. 直角三角形。

B. 钝角三角形。

C. 锐角三角形。

D. 不确定。

4. 若等腰三角形的顶角为80°,则它的底角度数为()A. 80°.B. 50°.C. 40°.D. 20°.5. 如图,在△ABC中,∠A = 60°,∠B = 40°,则∠C等于()A. 80°.B. 70°.C. 60°.D. 100°.6. 下列图形中具有稳定性的是()A. 正方形。

B. 长方形。

C. 直角三角形。

D. 平行四边形。

7. 在△ABC中,∠A:∠B:∠C = 1:2:3,则∠C的度数为()A. 30°.B. 60°.C. 90°.D. 120°.8. 如图,已知AB = AC,AD = AE,欲证△ABD≌△ACE,须补充的条件是()A. ∠B = ∠C.B. ∠D = ∠E.C. ∠1 = ∠2.D. ∠CAD = ∠DAC.9. 如图,△ABC≌△DEF,若AB = DE,∠B = ∠E,则下列结论错误的是()A. AC = DF.B. ∠A = ∠D.C. BC = EF.D. ∠C = ∠D.10. 已知△ABC≌△A'B'C',且△ABC的周长为20,AB = 8,BC = 5,则A'C'等于()A. 7.B. 8.C. 5.D. 15.二、填空题(每题3分,共15分)11. 三角形的内角和等于______。

2023-2024学年第126中学八年级第一学期第一次月考数学试卷及参考答案

2023-2024学年第126中学八年级第一学期第一次月考数学试卷及参考答案

第126中学八年级上学期第一次月考数学试卷满分:100分 考试时间:100分钟一、单选题(每小题3分,共30分)1.下列长度的三条线段不能组成三角形的是( ) A .1,2,3B .2,3,4C .3,4,5D .4,5,62.到三角形三条边距离相等的点是此三角形( ) A .三条角平分线的交点 B .三条中线的交点 C .三条高的交点D .三边中垂线的交点3.具备下列条件的△ABC 中,不是直角三角形的是( ) A .∠A+∠B=∠C B .∠A=12∠B=13∠CC .∠A :∠B :∠C=1:2:3D .∠A=2∠B=3∠C4.如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快画了一个与书本上完全一样的三角形,那么聪聪画图的依据是( )A .SSSB .SASC .ASAD .AAS5.如图,ABC 中,AB AC =,点E 在线段AB 上,且满足AE EC =.若32ACE ∠=︒,则BCE ∠的度数是( )A .40︒B .32︒C .42︒D .45︒6.等腰三角形两边长分别是2和7,则它的周长是( ) A .9B .11C .16D .11或167.如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于()A.120°B.115°C.110°D.105°8.如图,△ABC≌△EFD,且AB=EF,EC=4,CD=3,则AC等于()A.3 B.4 C.7 D.89.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AB=DE,∠A=∠D,∠B=∠EC.AC=DF,BC=EF,∠A=∠D D.AB=DE,BC=EF,AC=ED10.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请你试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=∠1+∠2 D.3∠A=2(∠1+∠2)二、填空题(每小题3分,共15分)11.如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是__________________.12.如图,将一副直角三角板,按如图所示的方式摆放,则∠α的度数是___________.13.如图,∠A+∠B+∠C+∠D+∠E+∠F=_______°.14.若一个多边形的内角和为1800°,则这个多边形是__________.(填形状)AB BC CA的长分别为30,40,15,点P是ABC三个内角平分线的交点,则15.如图,ABC的三边,,::S S S _____.PAB PBC PCA三、解答题(共55分)16.(6分)小明计算一个多边形的内角和时误把一个外角加进去了,得其和为2620°.(1)求这个多加的外角的度数.(2)求这个多边形的边数.17.(4分)如图,电信部门要在公路m,n之间的S区域修一座电视信号发射塔P.按照设计要求,发射塔P 到区域S内的两个城镇A,B的距离必须相等,到两条公路m,n的距离也必须相等.发射塔P建在什么位置?在图中用尺规作图的方法作出它的位置并标出(不写作法但保留作图痕迹).18.(6分)如图,在△ABC中,∠BAC是钝角,完成下列画图.(不必尺规作图)(1)∠BAC的平分线AD;(2)AC边上的中线BE;(3)AC 边上的高BF .19.(6分)如图所示,已知AD ,AE 分别是△ADC 和△ABC 的高和中线,AB =6cm ,AC =8cm ,BC =10cm ,∠CAB =90°.试求: (1)AD 的长; (2)△ABE 的面积;(3)△ACE 和△ABE 的周长的差.20.(4分)如图,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,AE =CF .求证:∠D =∠B .21.(5分)如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A =∠D ,AB =DC(1)求证:△ABE ≌DCE ;(2)当∠AEB =50°,求∠EBC 的度数. 22.(8分)在ABC 中,70A ∠=︒.(1)如图①,ABC ∠、ACB ∠的平分线相交于点O ,则BOC ∠=________︒;(2)如图②,ABC 的外角CBD ∠、BCE ∠的平分线相交于点O ',则BO C '∠=_________︒; (3)探究探究一:如图③,ABC 的内角ABC ∠的平分线与其外角ACD ∠的平分线相交于点O ,设A n ∠=︒,求BO C ∠的度数.(用n 的代数式表示)探究二:已知,四边形ABCD 的内角ABC ∠的平分线所在直线与其外角DCE ∠的平分线所在直线相交于点O ,A n ∠=︒,D m ∠=︒①如图④,若180A D ∠+∠≥︒,则BOC ∠=__________(用m 、n 的代数式表示) ②如图⑤,若180A D ∠+∠<︒,则BOC ∠=___________(用m 、n 的代数式表示) 23.(7分)如图,DE ⊥AB 于E ,DF ⊥AC 于F,若BD=CD 、BE=CF , (1)求证:AD 平分∠BAC ;(2)已知AC=20, BE=4,求AB 的长.24.(9分)在ABC 中,90,ACB AC BC ∠=︒=,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E ,(1)当直线MN 绕点C 旋转到图1的位置时,显然有:DE AD BE =+(不必证明); (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE AD BE =-;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请直接写出这个等量关系.参考答案:1.A2.A3.D4.C5.C6.C7.C8.C9.C10.B 11.三角形的稳定性.12.75︒13.36014.十二边形15.6:8:316.(1)100;(2)1617.18.19.⑴4.8cm;⑵12cm²;⑶2cm. 20.21.(2)∠EBC=25°22.(1)125;(2)55;(3)探究一:12n︒;探究二:①()1902n m︒+︒-︒;②()1902n m︒-︒+︒23.(1)(2)1224.(1)证明(3)DE=BE-AD。

八年级数学上学期第一次月考试题及答案

八年级数学上学期第一次月考试题及答案

八年级数学月考试卷 班级 姓名 分数一、选择题 (每题3分)1. 如图1,在①AB=AC ②AD=AE ③∠B=∠C ④BD=CE 四个条件中,能证明△ABD 与△ACE 全等的条件顺序是( )A. ① ② ③B. ② ③ ④C. ① ② ④D. ③ ② ④DCB AE(3图)2. 下列条件中,能让△ABC ≌△DFE 的条件是( )A. AB=DE ,∠A=∠D ,BC=EF; B. AB=BC ,∠B=∠E ,BE=EF; C. AB=EF ,∠A=∠D , AC=DF; D. BC=EF ,∠C=∠F , AC=DF.3. 如图,CD ⊥AB,BE ⊥AC,垂足为D 、E ,BE 、CD 相交于O 点,∠1=∠2,图中全等的三角形共有( )A.1对B.2对C. 3对D.4对4. 两个直角三角形全等的条件是( )A.一个锐角对应相等 ;B.一条对边对应相等;C .两直角边对应相等;D.两个角对应相等5. 如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A.1处 B.2处 C.3处D.4处(7图)(5图)6. 在△ABC 和△A ′B ′C ′中,AB=A ′B ′,∠B=∠B ′,补充条件后仍不一定能保证△ABC ≌△A ′B ′C ′,则补充的这个条件是:( )A 、BC=B ′C ′ B 、∠A=∠A ′ C 、AC=A ′C ′D 、∠C=∠C ′DC B A21OEA7. 如图,OA=OC ,OB=OD ,则图中全等三角形共有( )A 、2对B 、3对C 、4对D 、5对8. 两个三角形有两个角对应相等,正确的说法是( )A 、两个三角形全等B 、如果一对等角的角平分线相等,两三角形就全等C 、两个三角形一定不全等D 、如果还有一个角相等,两三角形就全等9. 已知△ABC 在直角坐标系中的位置如图所示,如果△A'B'C' 与△ABC 关于y 轴对称,那么点A 的对应点A'的坐标为( ).A .(-4,2)B .(-4,-2)C .(4,-2)D .(4,2)10. 在△ABC 中,∠B 的平分线与∠C 的平分线相交于O ,且∠BOC=130°,则∠A=[ ]A 50°B 60°C 80°D 100°二、填空题 (每题3分)11. 如图,已知AB =AD ,需要条件_________可得△ABC ≌△ADC ,根据是________.12. 已知线段AB ,直线CD ⊥AB 于O ,AO =OB ,若点M 在直线CD 上,则MA =______,若NA =NB ,则N 在___________上.13. 如图,已知∠CAB=∠DBA 要使△ABC ≌△BAD,只要增加的一个条件是________ (只写一个)。

初二数学第一次月考试卷及答案

初二数学第一次月考试卷及答案

初二数学第一次月考试卷及答案八年级数学第一次月考试卷一、选择题:(本大题共12小题,每题3分,共36分)1、25的平方根是( )A 、5B 、5-C 、5±D 、5±2、下列说法错误的是 ( )A 、无理数的相反数依旧无理数B 、开不尽根号的数差不多上无理数C 、正数、负数统称有理数D 、实数与数轴上的点一一对应3、以下列各组数为边长,能组成直角三角形的是( )A .8,15,17B .4,5,6C .5,8 ,7D .8,39,404、有下列说法:(1)带根号的数是无理数;(2)不带根号的数一定是无理数;(3)负数没有立方根;(4)是17的平方根,其中正确的有( )A .0个B . 1个C .2个D .3个5、下列各式中, 差不多化简的是 ( ) A. 31 B. 20 C. 22 D. 121 6、假如一个数的立方根是那个数本身,那么那个数是( ) A 、1 B 、1- C 、1± D 、0,1±7、当14+a 的值为最小值时,a 的取值为( )A 、-1B 、0C 、41- D 、1 8、满足53<<-x 的整数x 是( ) A 、3,2,1,0,1,2-- B 、3,2,1,0,1-C 、3,2,1,0,1,2--D 、2,1,0,1-9、2)6(-的平方根是( )A 、-6B 、36C 、±6D 、±610、小刚预备测量一段河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( )A. 2m;B. 2.5m;C. 2.25m;D. 3m.11、已知一直角三角形的木版,三边的平方和为1800cm 2,则斜边长为 ( )(A ) 80cm (B ) 30cm (C ) 90cm (D ) 120cm12、若9,422==b a ,且0<ab ,则b a -的值为 ( )(A ) 2- (B ) 5± (C ) 5 (D ) 5-2a+2 二、填空题:(本大题共4小题,每题3分,共12分)13、5-的相反数是_________,绝对值是________,倒数是_________;14、2)3(-=________,327- =_________, 0)5(-的立方根是 ;15、比较大小:2_______2, -2________-4.2,3-π______016、若03)2(12=-+-+-z y x ,则z y x ++= 。

八年级数学第一次月考试卷

八年级数学第一次月考试卷

八年级数学第一次月考试卷一、 选择题(每题4分,计40分)1、下列二次根式中,是最简二次根式的是( )A 、a 16B 、b 3C 、a bD 、452、在根式2、75、501、271、15中与3是同类二次根式的有( )A 、1个B 、2个C 、3个D 、4个3、化简2)21(-的结果是( )A 、21-B 、12-C 、)12(-±D 、)21(-±4、如果2121--=--x x x x ,那么x 的取值范围是( )A 、1≤x ≤2B 、1<x ≤2C 、x ≥2D 、x >25、对于任意实数a 、b ,下列等式总能成立的是( )A 、b a b a +=+2)(B 、b a b a +=+22C 、22222)(b a b a +=+D 、b a b a +=+2)( 6、若103-=a ,则代数式262--a a 的值是( )A 、-1B 、1C 、 0D 、107、如果04)2(3)2(2=-+++y x y x ,那么y x 2+的值为( ) A 、1 B 、-4C 、1 或-4D 、-1或38、把a a 1-根号外的因式移到根号内,化简的结果是 ( ) A a B a - C a - D a --9、解某一元二次方程,甲看错常数项,所得两根为8和2,乙看错了一次项系数,所得两根为-9和-1,那么该方程是( )A 、016102=+-x xB 、0982=--x xC 、09102=+-x xD 、09102=++x x10、方程2x 2-6x+3=0较小的根为p ,方程2x 2-2x-1=0较大的根为q ,则p+q 等于( )A 、3B 、2C 、1D 、32二、填空题(每题4分,计20分)11、如果代数式1-x x有意义,那么x 的取值范围是______________12、若588+-+-=x x y ,则xy = _______13、若(x 2+y 2-1)2 = 4,则x 2+y 2=______________.14、已知方程02)21(2=--+x x 的两个根x 1和x 2,则2221x x +=___________ 15、某校去年对实验器材的投资为2万元,预计今明两年的投资额为8万元,若设该校区这两年在实验器材投资上的平均增长率为x ,则可列方程为__________________________三、计算(每题6分,计12分)16、315.01812+-- 17、)35)(15()25(2+++-四、解下列方程(每题6分,计24分)18、2x 2-4x-10=0 (用配方法) 19、2x 2+3x=4(公式法)20、(x-2)2=2(x-2) 21、022322=-+x x五、解答题(25分)22、(8分)若x=1是方程mx 2+3x+n=0的根,求(m-n)2+4mn 的值。

01【人教版】八年级上册第一次月考数学试卷(含答案)

01【人教版】八年级上册第一次月考数学试卷(含答案)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!八年级(上)第一次月考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.)1.下面图案中是轴对称图形的有( )A.1个B.2个C.3个D.4个2.点P与点Q关于直线m成轴对称,则PQ与m的位置关系( )A.平行B.垂直C.平行或垂直D.不确定3.下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有( )A.5个B.3个C.4个D.6个4.在下列给出的条件中,不能判定两个三角形全等的是( )A.两边一角分别相等B.两角一边分别相等C.直角边和一锐角分别相等D.三边分别相等5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF6.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC7.如图,在△ABC中,AD⊥BC于点D,BD=CD,若BC=5,AD=4,则图中阴影部分的面积为( )....三、解答题(本大题共10小题,共76分.)19.作图题:画出△ABC关于直线AC对称的△A′B′C′.20.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P 到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)21.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.22.如图,AD是△ABC一边上的高,AD=BD,BE=AC,∠C=75°,求∠ABE的度数.为圆心,以大于DE,则∠ 八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.)1.下面图案中是轴对称图形的有( )A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:第1,2个图形沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,故轴对称图形一共有2个.故选:B.【点评】此题主要考查了轴对称图形,轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.点P与点Q关于直线m成轴对称,则PQ与m的位置关系( )A.平行B.垂直C.平行或垂直D.不确定【考点】轴对称的性质.【分析】点P与点Q关于直线m成轴对称,即线段PQ关于直线m成轴对称;根据轴对称的性质,有直线m垂直平分PQ.【解答】解:点P和点Q关于直线m成轴对称,则直线m和线段QP的位置关系是:直线m垂直平分PQ.故选:B.【点评】此题考查了对称轴的定义,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.3.下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有( )A.5个B.3个C.4个D.6个【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形的概念可知:①两个点;②线段;③角;④长方形;⑤两条相交直线一定是轴对称图形;⑥三角形不一定是轴对称图形.故选A.【点评】本题考查轴对称图形的知识,要求掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.在下列给出的条件中,不能判定两个三角形全等的是( )A.两边一角分别相等B.两角一边分别相等C.直角边和一锐角分别相等D.三边分别相等【考点】全等三角形的判定.【分析】根据判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL分别进行分析.【解答】解:A、两边一角分别相等的两个三角形不一定全等,故此选项符合题意;B、两角一边分别相等可用AAS、ASA定理判定全等,故此选项不合题意;C、两角一边对应相等,可用SAS或AAS定理判定全等,故此选项不合题意;D、三边分别相等可用SSS定理判定全等,故此选项不合题意;故选:A.【点评】本题考查三角形全等的判定方法,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF【考点】全等三角形的判定.【分析】全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.【解答】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选B.【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.6.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AB=AD,BC=CD,再根据等腰三角形三线合一的性质可得AC平分∠BCD,EB=DE,进而可证明△BEC≌△DEC.【解答】解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,EB=DE,∴∠BCE=∠DCE,在Rt△BCE和Rt△DCE中,,∴Rt△BCE≌Rt△DCE(HL),故选:C.【点评】此题主要考查了线段垂直平分线的性质,以及等腰三角形的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.7.如图,在△ABC中,AD⊥BC于点D,BD=CD,若BC=5,AD=4,则图中阴影部分的面积为( )A.5B.10C.15D.20【考点】轴对称的性质.【分析】根据题意,观察可得:△ABC关于AD轴对称,且图中阴影部分的面积为△ABC面积的一半,先求出△ABC的面积,阴影部分的面积就可以得到.【解答】解:根据题意,阴影部分的面积为三角形面积的一半,∵S=×BC•AD=×4×5=10,△ABC∴阴影部分面积=×10=5.故选A.【点评】考查了轴对称的性质,根据轴对称得到阴影部分面积是解题的关键.8.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的( )A.B.C.D.【考点】剪纸问题.【专题】压轴题.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向右对折,向上对折,从正方形的上面那个边剪去一个长方形,左下角剪去一个正方形,展开后实际是从大的正方形的中心处剪去一个较小的正方形,从相对的两条边上各剪去两个小正方形得到结论.故选:B.【点评】本题主要考查学生的动手能力及空间想象能力.二、填空题(本大题共有10小题,每小题2分,共20分.)9.已知△ABC与△A′B′C′关于直线L对称,∠A=40°,∠B′=50°,则∠C= 90° .【考点】轴对称的性质.【分析】根据成轴对称的两个图形全等求得未知角即可.【解答】解:∵△ABC与△A′B′C′关于直线L对称,∴△ABC≌△A′B′C′,∴∠B=∠B′=50°,∵∠A=40°,∴∠C=180°﹣∠B﹣∠A=180°﹣50°﹣40°=90°,故答案为:90°.【点评】本题考查轴对称的性质,属于基础题,注意掌握如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.10.△ABC≌△DEF,且△ABC的周长为12,若AB=5,EF=4,AC= 3 .【考点】全等三角形的性质.【分析】根据全等三角形对应边相等可得BC=EF,再根据三角形的周长的定义列式计算即可得解.【解答】解:∵△ABC≌△DEF,∴BC=EF=4,∵△ABC的周长为12,AB=5,∴AC=12﹣5﹣4=3.故答案为:3.【点评】本题考查了全等三角形的性质,三角形的周长的定义,熟记性质是解题的关键.中,,∵,,故答案为:5或10.【点评】本题考查了全等三角形的判定定理的应用,注意:判定两直角三角形全等的方法有ASA,A AS,SAS,SSS,HL.三、解答题(本大题共10小题,共76分.)19.作图题:画出△ABC关于直线AC对称的△A′B′C′.【考点】作图-轴对称变换.【分析】过点B作BD⊥AC于点D,延长BD至点B′,使DB′=DB,连接AB′,CB′即可.【解答】解:如图,△A′B′C′即为所求.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.20.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P 到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)【考点】作图—应用与设计作图.【分析】根据点P到∠AOB两边距离相等,到点C、D的距离也相等,点P既在∠AOB的角平分线上,又在CD垂直平分线上,即∠AOB的角平分线和CD垂直平分线的交点处即为点P.【解答】解:如图所示:作CD的垂直平分线,∠AOB的角平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.P和P都是所求的点.1【点评】此题主要考查了线段的垂直平分线和角平分线的作法.这些基本作图要熟练掌握,注意保留作图痕迹.21.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】求出BC=EF,根据平行线性质求出∠B=∠E,∠ACB=∠DFE,根据ASA推出△ABC≌△DEF即可.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.【点评】本题考查了平行线的性质和全等三角形的性质和判定的应用,主要考查学生的推理能力. 22.如图,AD是△ABC一边上的高,AD=BD,BE=AC,∠C=75°,求∠ABE的度数.【考点】全等三角形的判定与性质.【分析】根据HL推出Rt△BDE≌Rt△ADC,推出∠C=∠BED=75°,根据等腰三角形的性质和三角形的内角和定理求出∠ABD=∠BAD=45°,∠EBD=15°,即可求出答案.【解答】解:∵AD是△ABC一边上的高,∴∠BDE=∠ADC=90°,在Rt△BDE和Rt△ADC中,,∴Rt△BDE≌Rt△ADC(HL),∴∠C=∠BED=75°,∵∠BDE=90°,AD=BD,∴∠ABD=∠BAD=45°,∠EBD=15°,∴∠ABE=∠ABD﹣∠EBD=45°﹣15°=30°.【点评】本题考查了全等三角形的性质和判定,三角形内角和定理,等腰三角形的性质的应用,解此题的关键是推出△BDE≌△ADC,注意:全等三角形的对应边相等,对应角相等.23.已知:AB=AD,BC=DE,AC=AE,(1)试说明:∠EAC=∠BAD.(2)若∠BAD=42°,求∠EDC的度数.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】(1)利用“边边边”求出△ABC和△ADE全等,根据全等三角形对应角相等可得∠BAC=∠D AE,然后都减去∠CAD即可得证;(2)根据全等三角形对应角相等可得∠B=∠ADE,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠EDC=∠BAD,从而得解.【解答】(1)证明:在△ABC和△ADE中,,∴△ABC≌△ADE(SSS),∴∠BAC=∠DAE,∴∠DAE﹣∠CAD=∠BAC﹣∠CAD,即:∠EAC=∠BAD;(2)解:∵△ABC≌△ADE,∴∠B=∠ADE,由三角形的外角性质得,∠ADE+∠EDC=∠BAD+∠B,∴∠EDC=∠BAD,∵∠BAD=42°,∴∠EDC=42°.【点评】本题考查了全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟练掌握三角形全等的判定方法并准确识图是解题的关键.24.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线(如图1),方法如下:为圆心,以大于DE ,∴∠MOP=∠NOP,∴OP平分∠AOB.【点评】本题考查了用刻度尺作角平分线的方法,全等三角形的判定与性质,难度不大.25.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【考点】全等三角形的判定与性质.【分析】(1)在△CBF和△DBG中,利用SAS即可证得两个三角形全等,利用全等三角形的对应边相等即可证得;(2)根据全等三角形的对应角相等,以及三角形的内角和定理,即可证得∠DHF=∠CBF=60°,从而求解.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.【点评】本题考查了全等三角形的判定与性质,正确证明三角形全等是关键.26.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.【考点】全等三角形的判定与性质.【分析】(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得∠HFB=∠HEC,由得对顶角相等得∠BHF=∠CHE,所以∠ABD=∠ACG.再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,(2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90°,即AG与AD垂直.【解答】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90°,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中,,则∠ 中,,中,,【考点】四边形综合题.【分析】(1)①根据正方形边长为10cm和点P在线段BC上的速度为4cm/秒即可求出CP的长;②分△BPE≌△CPQ和△BPE≌△CQP两种情况进行解答;(2)根据题意列出方程,解方程即可得到答案.【解答】解:(1)①PC=BC﹣BP=10﹣4t;②当△BPE≌△CPQ时,BP=PC,BE=CQ,即4t=10﹣4t,at=6,解得a=4.8;当△BPE≌△CQP时,BP=CQ,BE=PC,即4t=at,10﹣4t=6,解得a=4;(2)当a=4.8时,由题意得,4.8t﹣4t=30,解得t=37.5,∴点P共运动了37.5×4=150cm,∴点P与点Q在点A相遇,当a=4时,点P与点Q的速度相等,∴点P与点Q不会相遇.∴经过37.5秒点P与点Q第一次在点A相遇.【点评】本题考查的是正方形的性质和全等三角形的判定和性质,正确运用数形结合思想和分类讨论思想是解题的关键.。

八年级数学第一次月考阶段性测试(考试范围:苏科版第1-2章,培优卷) (解析版)

八年级数学第一次月考阶段性测试(考试范围:苏科版第1-2章,培优卷) (解析版)

八年级数学第一次月考阶段性测试(江苏专用,10月份培优卷)班级:____________姓名:____________得分:____________注意事项:本试卷满分120分,试题共26题,其中选择6道、填空10道、解答10道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共6小题,每小题2分,共12分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(24-25八年级上·江苏宿迁·阶段练习)下列图形中,不是轴对称图形是()A. B. C. D.【答案】C【分析】此题考查了轴对称图形的概念,根据概念逐一判断即可,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,熟练掌握知识点是解题的关键.【详解】A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意;故选:C.2.(24-25八年级上·江苏无锡·阶段练习)下列说法中,正确说法的个数有()①三个角对应相等的两个三角形全等;②等腰三角形至少有1条对称轴,至多有3条对称轴;③关于某直线对称的两个三角形一定是全等三角形;④一个锐角和一条边相等的两个直角三角形全等.A.1个B.2个C.3个D.4个【答案】B【分析】本题主要考查了全等三角形的判定,等腰三角形的性质以及轴对称图形的性质,根据全等三角形的判定,等腰三角形的性质以及轴对称的图形的性质一一判断即可.【详解】解:三个角对应相等的两个三角形不能判定两个三角形全等,故①错误,等腰三角形至少有1条对称轴(等腰三角形有1条对称轴),至多有3条对称轴(等边三角形有3条对称轴),故②正确;关于某直线对称的两个三角形一定是全等三角形,故③正确;一个锐角和一条边相等的两个直角三角形不一定全等,故④错误.综上,正确说法的有②,③故选:B.3.(23-24八年级上·江苏无锡·期中)如图,点B、C、D共线,AC=BE,AC⊥BE,∠ABC=∠D=90°,AB=13,DE=6,则CD的长是()A.7B.8C.9D.10【答案】A【分析】本题主要考查了全等三角形的性质和判定,利用AAS证明△ABC≌△BDE是解题的关键.先证明△ABC≌△BDE可得BC=DE=6,AB=BD=13,然后根据线段的和差即可解答.【详解】解:∵AC⊥BE,∠ABC=∠D=90°,∴∠A+∠ABE=∠ABE+∠EBD=90°,∴∠A=∠EBD,在△ABC与△BDE中,∠ABC=∠BDE=90°,∠A=∠EBD,AC=BE,∴△ABC≌△BDE AAS,∴BC=DE=6,AB=BD=13,∴CD=BD-BC=13-6=7.故选:A.4.(23-24八年级上·山东临沂·期中)如图,已知等边三角形ABC,点D为线段BC上一点,△ADC沿AD折叠得△ADE,连接BE,若∠ADB=70°,则∠DBE的度数是()A.10°B.20°C.30°D.40°【答案】A【分析】本题考查了折叠的性质,等腰及等边三角形的性质、三角形内角和定理,等边三角形的三个内角都相等,且都等于60°.由折叠性质可得△ADC≌△ADE得到AC=AE,∠CAD=∠EAD,再求出∠BAE,利用等腰三角形的性质和三角形内角和即可求出∠DBE的度数,熟记三角形相关几何性质是解决问题的关键.【详解】解:∵等边△ABC,∴∠C=∠ABC=∠BAC=60°,AC=AB,∵∠ADB=70°,∠ADB=∠C+∠CAD,∴∠CAD=10°,由折叠性质可得△ADC≌△ADE,∴AC=AE,∠CAD=∠EAD=10°,∴∠BAE=∠BAC-∠CAD-∠EAD=40°,∵AB=AE,∴∠AEB =∠ABE =180°-∠BAE 2=180°-40°2=70°,∴∠DBE =∠ABE -∠ABC =70°-60°=10°,故答案为:A .5.(2024八年级上·江苏·专题练习)在△ABC 中,AB =AC ,AB 的垂直平分线与AC 所在直线的夹角为50°,则这个等腰三角形的顶角为()A.40°B.50°C.40°或140°D.50°或130°【答案】C【分析】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.根据题意分两种情况,当△ABC 是锐角三角形时,当△ABC 是钝角三角形时,讨论求解即可;【详解】解:分两种情况:当△ABC 是锐角三角形时,如图:∵DE 是AB 的垂直平分线,∴∠ADE =90°,∵∠AED =50°,∴∠A =90°-∠AED =40°;当△ABC 是钝角三角形时,如图:∵DE 是AB 的垂直平分线,∴∠ADE =90°,∵∠AED =50°,∴∠DAE =90°-∠AED =40°,∴∠DAC =180°-∠DAE =140°;综上所述:这个等腰三角形的顶角为40°或140°,故选:C .6.(22-23八年级上·湖南株洲·期末)如图,AB =6cm ,AC =BD =4cm ,∠CAB =∠DBA =60°,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动,它们运动的时间为t s ,当点Q 的运动速度为( )cm/s 时,在某一时刻,A 、C 、P 三点构成的三角形与B 、P 、Q 三点构成的三角形全等.A.1或43B.1或45C.2或43D.1【答案】A【分析】本题考查了全等三角形的判定的应用,一元一次方程的应用,设点Q 的运动速度是xcm /s ,有两种情况:①AP =BP ,AC =BQ ,②AP =BQ ,AC =BP ,列出方程,求出方程的解即可,采用分类讨论的思想是解此题的关键.【详解】解:设点Q 的运动速度是xcm /s ,∵∠CAB =∠DBA =60°,∴A、C、P三点构成的三角形与B、P、Q三点构成的三角形全等,有两种情况:①AP=BP,AC=BQ,则1×t=6-1×t,解得:t=3,则4=3x,解得:x=4 3;②AP=BQ,AC=BP,则1×t=tx,6-1×t=4,解得:t=2,x=1,故选:A.二、填空题(本大题共10小题,每小题2分,共20分)请把答案直接填写在横线上7.(22-23八年级上·江苏南京·阶段练习)如图,小明不小心把一块三角形的玻璃摔成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带第③块去配,其全等的依据是.(可以用字母简写)【答案】ASA【分析】本题考查全等三角形的判定,根据第③块玻璃的特点可知:有2个角以及两角的夹边是确定,利用ASA即可判定三角形全等.【详解】解:由图可知:第③块玻璃有2个角以及两角的夹边确定,只能得到唯一确定的三角形,即利用ASA 可判定三角形全等.故答案为:ASA8.(22-23八年级上·江苏无锡·阶段练习)如图,已知AC=FE,BC=DE,点A,D,B,F在一条直线上,要使得△ABC≌△FDE,还要添加一个条件,这个条件可以是(只需填写一个即可).【答案】∠C=∠E(答案不唯一)【分析】本题考查的是添加条件判定三角形全等,本题先分析已有条件AC=FE,BC=DE,再根据SAS可添加夹角相等或第三边相等即可判定三角形全等;熟记三角形全等的判定方法是解本题的关键.【详解】解:增加一个条件:∠C=∠E,在△ABC和△FDE中,AC=FE∠C=∠EBC=DE,∴△ABC≌△FDE SAS,故答案为:∠C=∠E(答案不唯一).9.(2024八年级上·全国·专题练习)如图,△AOD≌△BOC,∠A=30°,∠C=50°,∠AOC=145°,则∠COD=.【答案】45°/45度【分析】本题主要考查了全等三角形的性质,三角形内角和定理,有全等三角形的性质可得出∠D=∠C= 50°,再利用三角形内角和定理可得出∠AOD=100°,最后再根据角的和差关系即可得出答案.【详解】解:∵△AOD≌△BOC,∠C=50°,∴∠D=∠C=50°,∵∠A=30°,∴∠AOD=180°-∠A-∠D=180°-30°-50°=100°,∵∠AOC=145°,∴∠COD=∠AOC-∠AOD=145°-100°=45°,故答案为:45°.10.(22-23八年级上·广东韶关·期末)如图,在△ABC中,∠C=90°,BD平分∠ABC,若CD=3cm,则点D到AB的距离为cm.【答案】3【分析】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,过点D作DE ⊥AB于E,根据角平分线性质得到DE=CD,即可得到答案.【详解】解:如图,过点D作DE⊥AB于E,∵∠C=90°,BD平分∠ABC,∴DE=CD,∵CD=3cm,∴DE=3cm,即点D到AB的距离为3cm.故答案为:3.11.(22-23八年级上·江苏南通·阶段练习)如图,在等边△ABC中,BD平分∠ABC,BD=BF,则∠CDF的度数是度.【答案】15【分析】本题主要考查了等边三角形的性质,等边对等角,三角形内角和定理,先由三线合一定理得到BD ⊥AC ,∠CBD =12∠ABC =30°,再由等边对等角得到∠BDF =∠BFD =180°-∠DBF 2=75°,则∠CDF =∠CDB -∠BDF =15°.【详解】解:∵在等边△ABC 中,BD 平分∠ABC ,∴BD ⊥AC ,∠CBD =12∠ABC =30°,∴∠BDC =90°,∵BD =BF ,∴∠BDF =∠BFD =180°-∠DBF 2=75°,∴∠CDF =∠CDB -∠BDF =15°,故答案为:15.12.(19-20八年级上·河北唐山·期中)如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影涂在图中标有数字的格子内.【答案】3【分析】本题考查了轴对称图形的性质,根据轴对称的定义,沿着虚线进行翻折后能够重合,所以阴影应该涂在标有数字3的格子内.【详解】解:根据轴对称的定义,沿着虚线进行翻折后能够重合,∴根据题意,阴影应该涂在标有数字3的格子内;故答案为:3.13.(24-25八年级上·江苏镇江·阶段练习)如图,AD 垂直平分BC 于点D ,EF 垂直平分AB 于点F ,点E 在AC 上,BE +CE =20cm ,则AB =.【答案】20cm/20厘米【分析】本题考查了线段垂直平分线的性质,根据线段垂直平分线的性质得出AE=BE,AB=AC,求出AC =20cm即可.【详解】∵EF垂直平分AB于点F,∴AE=BE,∵BE+CE=20cm,∴AE+CE=20cm,即AC=20cm,∵AD垂直平分BC于点D,∴AB=AC=20cm,故答案为:20cm.14.(2024八年级上·江苏·专题练习)如图,在△ABC中,∠ACB=90°,∠B-∠A=10°,D是AB上一点,将△ACD沿CD翻折后得到△CED,边CE交AB于点F.若△DEF是直角三角形,则∠ACD=.【答案】25°或5°【分析】本题主要考查了三角形内角和定理,图形的折叠,利用分类讨论思想解答是解题的关键.先求出∠A =40°,∠B=50°,再根据折叠的性质可得∠E=∠A=40°,∠ACD=∠ECD,然后分两种情况讨论:当∠DFE=90°时,当∠EDF=90°时,结合三角形内角和定理,即可求解.【详解】解:∵在△ABC中,∠ACB=90°,∴∠A+∠B=90°,又∵∠B-∠A=10°,∴∠A=40°,∠B=50°,由折叠的性质得:∠E=∠A=40°,∠ACD=∠ECD,当∠DFE=90°时,则∠CFB=90°,∴∠BCF=90°-∠B=40°,∴∠ACE=∠ACB-∠BCF=50°,∠ACE=25°;∴∠ACD=12当∠EDF=90°时,∵∠E=40°,∴∠CFB=∠DFE=50°,∴∠BCF=180°-∠CFB-∠B=80°,∴∠ACE=∠ACB-∠BCF=10°,∠ACE=5°;∴∠ACD=12综上所述,∠ACD度数为25°或5°.故答案为:25°或5°.15.(23-24八年级·江苏南通·阶段练习)如图,在∠AOB的内部有一点P,点M、N分别是点P关于OA,OB的对称点,MN分别交OA,OB于C,D点,若△PCD的周长为30cm,则线段MN的长为cm.【答案】30【分析】本题考查轴对称的性质,对称轴上的任何一点到两个对应点之间的距离相等.利用对称性得到CM =PC,DN=PD,把求MN的长转化成△PCD的周长,问题得解.【详解】解:∵点P关于OA、OB的对称点分别为C、D,∴MC=PC,ND=PD,∴MN=CM+CD+ND=PC+CD+PD=30cm.故答案为:30.16.(23-24八年级·江苏无锡·阶段练习)如图,已知点P(2m-1,6m-5)在第一象限角平分线OC上,一直角顶点P在OC上,角两边与x轴y轴分别交于A点,B点,则:(1)点P的坐标为;(2)OA+BO=.【答案】(1,1)2【分析】(1)作PE⊥y轴于E,PF⊥x轴于F,由角平分线的性质得出PE=PF,得出方程2m-1=6m-5,解方程求出m=1,即可得出P点坐标;(2)由ASA 证明ΔBEP ≅ΔAFP ,得出BE =AF ,则OA +OB =OE +OF =2.【详解】解:(1)作PE ⊥y 轴于E ,PF ⊥x 轴于F ,如图所示:根据题意得:PE =PF ,∴2m -1=6m -5,∴m =1,∴P (1,1),故答案为(1,1);(2)由(1)得:∠EPF =90°,∵∠BP A =90°,PE =PF =1,∴∠EPB =∠FP A ,在ΔBEP 和ΔAFP 中,∠PEB =∠PFA =90°PE =PF ∠EPB =∠FP A,∴ΔBEP ≅ΔAFP (ASA ),∴BE =AF ,∴OA +OB =OF +AF +OE -BE =OF +OE ,∵P (1,1),∴OE =OF =1,∴OA +OB =2.故答案为2.【点睛】本题考查了全等三角形的判定与性质、坐标与图形性质、角平分线的性质等知识点;证明三角形全等是解决问题(2)的关键.三、解答题(本大题共10小题,共88分.解答时应写出文字说明、证明过程或演算步骤)17.(22-23八年级上·江苏宿迁·阶段练习)已知如图,四边形ABCD 中,AB =BC ,∠A =∠C ,求证:AD=CD.【答案】见解析【分析】本题考查了等腰三角形的判定方法,即:如果一个三角形有两个角相等,那么这两个角所对的边也相等.连接AC ,使这个四边形变成两个三角形,然后利用等腰三角形的性质,可得AD =CD .【详解】证明:连接AC ,∵△ABC 中,AB =BC ,∴∠BCA =∠BAC .又∵∠BAD =∠BCD ,∠BCD =∠BCA +∠ACD ,∠BAD =∠BAC +∠CAD ;∴∠CAD =∠ACD .∴AD =CD (等角对等边).18.(23-24八年级上·江苏常州·阶段练习)尺规作图:如图,A 是∠MON 的边ON 上的一点,利用直尺和圆规过点A 分别作OM 、ON 的垂线(不写作法,保留作图痕迹).【答案】作图见解析【分析】此题主要考查了基本尺规作图,熟练掌握过直线外一点作已知直线的垂线和过直线上一点作已知直线的垂线的方法和步骤是解决问题的关键.分别利用尺规过直线外一点作已知直线的垂线和过直线上一点作已知直线的垂线即可.【详解】解:(1)过点A 作OM 的垂线,作法如下:①在∠MON 所在的平面内取一点K ,使点K 与点A 在OM 的两侧,②以点A 为圆心,以AK 为半径画弧交OM 于B ,C ;③分别以点B ,C 为圆心,以大于12BC 的长为半径画弧,两弧交于点D ;④过点A ,D 作直线AD 即为所求,如图所示:(2)过点A 作ON 的垂线,作法如下:①以点A 为圆心,以适当的长为半径画弧交ON 于点E ,F ;②分别以点E ,F 为圆心,以大于12EF 的长为半径画弧,两弧交于点H ;③过点A ,H 作直线AH 即为所求,如图所示.19.(23-24八年级上·全国·单元测试)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点△ABC (顶点均在格点上)关于直线DE 对称的△A 1B 1C 1.(2)在DE 上画出点P ,使PB +PC 的值最小.【答案】(1)见解析(2)见解析【分析】本题考查作图-应用与设计作图,轴对称最短问题等知识,解题的关键是正确作出图形,灵活运用所学知识解决问题.(1)利用轴对称变换的性质分别作出A ,B ,C 都是对应点A 1,B 1,C 1即可;(2)连接BC 1交直线DE 于点P ,连接PC ,点P 即为所求.【详解】(1)解:如图,△A 1B 1C 1即为所求;(2)解:如图点P 即为所求.20.(24-25八年级上·江苏无锡·阶段练习)如图,在△ABC 中,点E 是BC 边上的一点,连接AE ,BD 垂直平分AE ,垂足为F ,交AC 于点D .连接DE .(1)若△ABC 的周长为19,△DEC 的周长为7,求AB 的长;(2)若∠ABC =30°,∠C =45°,求∠EAC 的度数.【答案】(1)AB =6(2)30°【分析】本题考查的是线段的垂直平分线的性质,等边对等角,三角形的内角和定理的应用,三角形的外角的性质,掌握以上基础知识是解本题的关键.(1)先证明AB =BE ,AD =DE ,结合△ABC 的周长为19,△DEC 的周长为7,可得AB +BE =19-7=12,从而可得答案;(2)先求解∠BAC =180°-30°-45°=105°,然后利用等边对等角和三角形内角和定理得到∠BAE =∠BEA =12180°-∠ABC =75°,进而求解即可.【详解】(1)解:∵BD 是线段AE 的垂直平分线,∴AB =BE ,AD =DE ,∵△ABC 的周长为19,△DEC 的周长为7,∴AB +BE +CE +CD +AD =19,CD +EC +DE =CD +CE +AD =7,∴AB +BE =19-7=12,∴AB =BE =6;(2)解:∵∠ABC =30°,∠C =45°,∴∠BAC =180°-30°-45°=105°,∵AB =BE∴∠BAE=∠BEA=12180°-∠ABC=75°∴∠EAC=∠BAC-∠BAE=30°.21.(23-24八年级上·江苏扬州·阶段练习)如图甲,已知在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)说明△ADC≌△CEB.(2)说明AD+BE=DE.(3)已知条件不变,将直线MN绕点C旋转到图乙的位置时,若DE=3、AD=5.5,则BE=.【答案】(1)见解析(2)见解析(3)2【分析】本题考查了全等三角形的判定与性质,垂线的定义,直角三角形的性质,熟练掌握以上知识点并灵活运用是解此题的关键.(1)由垂线的定义得出∠ADC=∠CEB=90°,再由同角的余角相等得出∠BCE=∠CAD,最后利用AAS证明△ADC≌△CEB即可;(2)由全等三角形的性质可得AD=CE,BE=CD,即可得证;(3)由垂线的定义得出∠ADC=∠CEB=90°,再由同角的余角相等得出∠BCE=∠CAD,最后利用AAS证明△ADC≌△CEB,得出CE=AD=5.5,BE=CD,即可得解.【详解】(1)证明:∵AD⊥MN于D,BE⊥MN于E.∴∠ADC=∠CEB=90°,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠BCE=∠CAD,∵AC=BC,∴△ADC≌△CEB AAS;(2)证明:∵△ADC≌△CEB,∴AD=CE,BE=CD,∴AD+BE=CE+CD=DE;(3)证明:∵AD⊥MN于D,BE⊥MN于E.∴∠ADC=∠CEB=90°,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠BCE=∠CAD,∵AC=BC,∴△ADC≌△CEB AAS,∴CE=AD=5.5,BE=CD,∴BE=CD=CE-DE=5.5-3=2,故答案为:2.22.(2022八年级上·全国·专题练习)如图,在△ABC中,点E在AB上,点D在BC上,BD=BE,∠BAD=∠BCE,AD与CE相交于点F.(1)证明:BA=BC;(2)求证:△AFC为等腰三角形.【答案】(1)证明过程见解答(2)证明过程见解答【分析】本题主要考查全等三角形的判定与性质,等腰三角形的性质与判定.(1)利用AAS证明△ABD≌△CBE可证得答案;(2)由(1)易得∠BAC=∠BCA,进而可求得∠FAC=∠FCA,即可证明结论.【详解】(1)证明:在△ABD和△CBE中,∠BAD=∠BCE∠B=∠BBD=BE,∴△ABD≌△CBE AAS,∴BA=BC;(2)证明:∵BA=BC,∴∠BAC=∠BCA,∵∠BAD=∠BCE,∴∠FAC=∠FCA,∴FA=FC,∴△AFC为等腰三角形.23.(2024八年级上·全国·专题练习)已知在△ABC中,AB=AC,点D是边AB上一点,∠BCD=∠A.(1)如图1,试说明CD=CB的理由;(2)如图2,过点B作BE⊥AC,垂足为点E,BE与CD相交于点F.①试说明∠BCD=2∠CBE的理由;②如果△BDF是等腰三角形,求∠A的度数.【答案】(1)见解析(2)①见解析;②45°或36°【分析】本题考查等腰三角形的判定及性质,三角形的内角和定理及外角的性质,结合图形分情况讨论是解决问题的关键.(1)根据等腰三角形的性质可得∠ABC=∠ACB,再利用三角形的外角性质可得∠BDC=∠A+∠ACD,从而可得∠BDC=∠ACB,然后根据等量代换可得∠ABC=∠BDC.再根据等角对等边可得CD=CB,即可解答;(2)①根据垂直定义可得∠BEC=90°,从而可得∠CBE+∠ACB=90°,然后设∠CBE=α,则∠ACB=90°-α,利用(1)的结论可得∠ACB=∠ABC=∠BDC=90°-α,最后利用三角形内角和定理可得∠BCD=2α,即可解答;②根据三角形的外角性质可得∠BFD=3α,然后分三种情况:当BD=BF时;当DB=DF时;当FB=FD 时;分别进行计算即可解答.【详解】(1)解:∵AB=AC,∴∠ABC=∠ACB,∵∠BDC是△ADC的一个外角,∴∠BDC=∠A+∠ACD,∵∠ACB=∠BCD+∠ACD,∠BCD=∠A,∴∠BDC=∠ACB,∴∠ABC=∠BDC.∴CD=CB;(2)解:①∵BE⊥AC,∴∠BEC=90°,∴∠CBE+∠ACB=90°,设∠CBE=α,则∠ACB=90°-α,∴∠ACB=∠ABC=∠BDC=90°-α,∴∠BCD=180°-∠BDC-∠ABC=180°-90°-α=2α,-90°-α∴∠BCD=2∠CBE;②∵∠BFD是△CBF的一个外角,∴∠BFD=∠CBE+∠BCD=α+2α=3α,分三种情况:当BD=BF时,∴∠BDC =∠BFD =3α,∵∠ACB =∠ABC =∠BDC =90°-α,∴90°-α=3α,∴α=22.5°,∴∠A =∠BCD =2α=45°;当DB =DF 时,∴∠DBE =∠BFD =3α,∵∠DBE =∠ABC -∠CBE =90°-α-α=90°-2α,∴90°-2α=3α,∴α=18°,∴∠A =∠BCD =2α=36°;当FB =FD 时,∴∠DBE =∠BDF ,∵∠BDF =∠ABC >∠DBF ,∴不存在FB =FD ,综上所述:如果△BDF 是等腰三角形,∠A 的度数为45°或36°.24.(24-25八年级上·江苏无锡·阶段练习)已知:△ABC 中,∠ACB =90°,AC =CB ,D 为直线BC 上一动点,连接AD ,在直线AC 右侧作AE ⊥AD ,且AE =AD .(1)如图1,当点D 在线段BC 上时,过点E 作EH ⊥AC 于H ,连接DE ,求证:EH =AC ;(2)如图2,当点D 在线段BC 的延长线上时,连接BE 交CA 的延长线于点M .求证:BM =EM ;(3)当点D 在直线CB 上时,连接BE 交直线AC 于M ,若AC =4CM ,请直接写出S △ADB S △AEM的值.【答案】(1)见解析(2)见解析(3)25或23【分析】(1)由结合已知得∠EAH =∠ADC ,结合题意证△EAH ≌△ADC (AAS ),利用全等的性质可证;(2)如图2,过点E 作EN ⊥AM ,由垂直得结合已知证△ANE ≌△DCA (AAS ),得到EN =AC ,BC =NE ,再证△BCM ≌△ENM (AAS )即可得到结果;(3)作EG ⊥AM 交AM 的延长线于点G ,先证明△AGE ≌△DCA ,得AG =DC ,EG =AC =BC ,所以CG =DB ,可证明△EGM ≌△BCM ,得GM =CM ,再分两点情况,一是点D 在CB 的延长线上,设AC =4a ,则CM =a ,AM =5a ,CD =6a ,BD =2a ,可求得S △ADM S △AEM =25;二是点D 在线段BC 上,设CM =GM =n ,则BD =CG =2n ,则GE =AC =4CM =4n ,AM =3CM =3n ,于是得S △ADM S △AEM=23.【详解】(1)证明:∵AE ⊥AD ,EH ⊥AC ,∴∠AHE =∠EAD =∠ACB =90°,∴∠DAC +∠ADC =90°,∠DAC +∠EAH =90°,∴∠EAH =∠ADC ,又∵AE =AD ,∠AHE =∠ACD =90°,∴△EAH ≌△ADC (AAS ),∴EH =AC ;(2)证明:如图2,过点E 作EN ⊥AM ,∵AE ⊥AD ,EN ⊥AM ,∴∠ANE =∠EAD =∠ACB =90°,∴∠DAC +∠ADC =90°,∠DAC +∠EAN =90°,∴∠EAN =∠ADC ,又∵AE =AD ,∠ANE =∠ACD =90°,∴△ANE ≌△DCA (AAS ),∴EN =AC ,∵BC =AC ,∴BC =NE ,又∵∠BMC =∠EMN ,∠BCM =∠ENM =90°,∴△BCM ≌△ENM (AAS ),∴BM =EM ;(3)如图,当点D 在直线CB 上时,连接BE 交直线AC 于M ,交AN 的延长线于N ,∵AC =4CM ,设AC =4a ,则CM =a ,BC =AC =4a ,∵AE ⊥AD ,EN ⊥AN ,∴∠ANE =∠EAD =∠ACB =90°,∴∠DAC +∠ADC =90°,∠DAC +∠EAN =90°,∴∠EAN =∠ADC ,又∵AE =AD ,∠ANE =∠ACD =90°,∴△ANE ≌△DCA (AAS ),∴EN =AC =BC =4a ,AN =CD ,又∵∠BMC =∠EMN ,∠BCM =∠ENM =90°,∴△BCM ≌△ENM (AAS ),∴CM =NM =a ,∴AM =AC +CM =5a ,∴CD =AN =AC +CM +MN =6a ,∴BD =CD -BC =2a ,∴S △ABD S △AEM =12BD ⋅AC 12AM ⋅EN =2a ⋅4a 5a ⋅4a =25.如图4,点D 在线段BC 上,同理可证,△BCM ≌△EGM ,△AEG ≌△DAC∴CM =GM ,CD =AG∴GC =2CM∵AC =BC∴AC -AG =BC -CD ,即GC =BD∴设CM =GM =n ,则BD =CG =2n ,∵AC =4CM ,∴GE =AC =4CM =4n ,AM =3CM =3n∴S △ABD S △AEM =12BD ⋅AC 12AM ⋅EG =2n ⋅4n 3n ⋅4n =23综上所述,S △ABD S △AEM=25或23.【点睛】本题考查了全等三角形的判定和性质、三角形面积公式;解题的关键是证明三角形全等并运用性质进行等量换算.25.(22-23八年级上·山东德州·期中)课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC 中,若AB =8,AC =6,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到E ,使DE =AD ,请根据小明的方法思考:(1)由已知和作图能得到△ADC ≌△EDB 的理由是.A.SSSB.SASC.AASD.HL (2)求得AD 的取值范围是.A.6<AD <8B.6≤AD ≤8C.1<AD <7D.1≤AD ≤7【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE =EF ,求证:AC =BF .【答案】(1)B ;(2)C ;(3)见解析【分析】本题考查了三角形的中线,三角形的三边关系定理,等腰三角形性质和判定,全等三角形的性质和判定等知识点,主要考查学生运用定理进行推理的能力.(1)根据AD =DE ,∠ADC =∠BDE ,BD =DC 推出△ADC 和△EDB 全等即可;(2)根据全等得出BE =AC =6,AE =2AD ,由三角形三边关系定理得出2<2AD <14,求出即可;(3)延长AD 到M ,使AD =DM ,连接BM ,根据SAS 证△ADC ≌△MDB ,推出BM =AC ,∠CAD =∠M ,根据AE =EF ,推出∠CAD =∠AFE =∠BFD ,求出∠BFD =∠M ,根据等腰三角形的性质求出即可.【详解】(1)解:∵AD 为BC 边上的中线,∴BD =CD ,∵在△ADC 和△EDB 中AD =DE∠ADC =∠BDE BD =CD,∴△ADC ≌△EDB (SAS ),故选B ;(2)解:∵由(1)知:△ADC ≌△EDB ,∴BE =AC =6,AE =2AD ,∵在△ABE 中,AB =8,由三角形三边关系定理得:8-6<AE <8+6,即2<2AD <14∴1<AD <7,故选C ;(3)证明:如图2,延长AD 到M ,使AD =DM ,连接BM ,∵AD 是△ABC 中线,∴CD =BD ,∵在△ADC 和△MDB 中DC =DB∠ADC =∠MDB DA =DM,∴△ADC ≌△MDB ,∴BM =AC ,∠CAD =∠M ,∵AE =EF ,∴∠CAD =∠AFE ,∵∠AFE =∠BFD ,∴∠BFD =∠M ,∴BF =BM ,∴AC =BF .26.(八年级·江苏盐城·期中)(1)如图1,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,E 、F 分别是边BC 、CD 上的点,且∠EAF =12∠BAD .求证:EF =BE +FD ;(2)如图2,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF =12∠BAD ,(1)中的结论是否仍然成立?(3)如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF =12∠BAD (1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.【答案】(1)见解析;(2)成立;(3)不成立,应当是EF=BE-FD,见解析【分析】本题是三角形综合题,考查了三角形全等的判定和性质等知识,解题的关键是添加辅助线,构造全等三角形解决问题.(1)延长EB到G,使BG=DF,连接AG.利用全等三角形的性质解决问题即可;(2)先证明△ABM≌△ADF(SAS),由全等三角形的性质得出AF=AM,∠2=∠3.△AME≌△AFE SAS,由全等三角形的性质得出EF=ME,即EF=BE+BM,则可得出结论;(3)在BE上截取BG,使BG=DF,连接AG.证明△ABG≌△ADF.由全等三角形的性质得出∠BAG=∠DAF,AG=AF.证明△AEG≌△AEF,由全等三角形的性质得出结论.【详解】证明:延长EB到G,使BG=DF,连接AG.∵∠ABG=∠ABC=∠D=90°,AB=AD,∴△ABG≌△ADF.∴AG=AF,∠1=∠2.∴∠1+∠3=∠2+∠3=∠EAF=12∠BAD.∴∠GAE=∠EAF.又∵AE=AE,∴△AEG≌△AEF.∴EG=EF.∵EG=BE+BG.∴EF=BE+FD(2)(1)中的结论EF=BE+FD仍然成立.∵∠ABC+∠D=180°,∠1+∠ABC=180°,∴∠1=∠D,在△ABM与△ADF中,AB=AD∠1=∠DBM=DF,∴△ABM≌△ADF(SAS),∴AF=AM,∠2=∠3,∵∠EAF=12∠BAD=∠EAF,∴∠3+∠4=∠EAF 即∠MAE=∠EAF在△AME与△AFE中AM=AF∠MAE=∠EAFAE=AE∴△AME≌△AFE(SAS),∴EF=ME,即EF=BE+BM,∴EF=BE+DF;(3)结论EF=BE+FD不成立,应当是EF=BE-FD.证明:在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.∵AB=AD,∴△ABG≌△ADF.∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=12∠BAD.∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF.∴EG=EF,∵EG=BE-BG,∴EF=BE-FD.。

八年级数学上册第一次月考试卷【含答案】

八年级数学上册第一次月考试卷【含答案】

八年级数学上册第一次月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果 a = 3,b = 5,那么 a + b 等于多少?A. 6B. 8C. 9D. 103. 下列哪个数是质数?A. 12B. 13C. 15D. 184. 如果一个三角形的两边分别是3和4,那么第三边的长度可能是多少?A. 1B. 2C. 5D. 65. 下列哪个数是负数?A. -3B. 0C. 3D. 6二、判断题(每题1分,共5分)1. 2的平方等于4。

()2. 0是最小的自然数。

()3. 1是最大的质数。

()4. 两条对角线相等的四边形一定是矩形。

()5. 任何两个奇数相加的和都是偶数。

()三、填空题(每题1分,共5分)1. 一个数的平方是9,这个数是______。

2. 两个质数相乘的积是35,这两个质数是______和______。

3. 如果一个等腰三角形的底边长是8,腰长是10,那么这个三角形的周长是______。

4. 下列各数中,最大的合数是______。

5. 下列各数中,最小的负整数是______。

四、简答题(每题2分,共10分)1. 请写出2的所有因数。

2. 请写出3的所有倍数,不超过20。

3. 请写出5的所有质因数。

4. 请解释什么是等腰三角形。

5. 请解释什么是因数分解。

五、应用题(每题2分,共10分)1. 一个长方形的长是10,宽是5,请计算这个长方形的面积。

2. 一个正方形的边长是6,请计算这个正方形的周长。

3. 如果一个数的平方是16,请计算这个数的立方。

4. 请计算下列各数的和:2 + 3 + 4 + 5 + 6。

5. 请计算下列各数的差:10 3 2 1。

六、分析题(每题5分,共10分)1. 请分析下列各数中,哪些是偶数,哪些是奇数:1, 2, 3, 4, 5, 6, 7, 8, 9, 10。

2. 请分析下列各数中,哪些是质数,哪些是合数:2, 3, 4, 5, 6, 7, 8, 9, 10, 11。

人教版八年级上册数学《第一次月考》试卷及完整答案

人教版八年级上册数学《第一次月考》试卷及完整答案

人教版八年级上册数学《第一次月考》试卷及完整答案班级:_________ 姓名:______________一、选择题(本大题共10小题,每题3分,共30 分)1•已知a 8131, b 2741, c 961,则a、b、c的大小关系是()A. a>b>cB. a> c> b2 •估计7+1的值()A.在1和2之间C.在3和4之间3. 下列运算正确的是()A. 4= ± 2 BC. ( 4)2=- 4 D C. a v b v cD. b> c> aB. 在2和3之间D. 在4和5之间.(.4)=4.(-4 ) 2=- 44. 若6- 13的整数部分为x,小数部分为y,则(2x + 13)y的值是()A. 5—3“』13B. 3C. 3\;13 —5D. —35. 已知关于x的不等式3x - m+1>0的最小整数解为2,则实数m的取值范围是( )A. 4< m v 7B. 4v m v 7C. 4< m< 7D. 4v m< 76. 比较2, 5 , 37的大小,正确的是( )A. 2 5 37B. 2 37 5C. 37 2 5D. 37 5 2现添加以下的哪个条件仍不能判定△ ABE^A ACD(A.Z B=Z CB. AD=AEC. BD=CE7.如图,点D, E分别在线段AB AC上, CD与BE相交于O点,已知AB=AC8•如图,在Rt △ PQR 中,/ PRQ90°, RP= RQ 边QR 在数轴上•点Q 表示的数为1,点R 表示的数为3,以Q 为圆心,QP 的长为半径画弧交数轴负半轴于9. 如图,由四个全等的直角三角形拼成的图形,设 CE a ,HG b ,则斜边BD 的长是( )二、填空题(本大题共6小题,每小题3分,共18分)1 .若 2x =5,2y =3,则 22x+y = _______ . 2. 16 的算术平方根是 ___________ .3 .若 J m 3 (n 1)20,则 m- n 的值为 ____________ .4. ______________________________________________________ 如图,在 Rt △ ABC 中,/ B = 90°, A 吐3,BO4,将厶ABC 折叠,使点B 恰好落在边AC 上,与点B'重合,AE 为折痕,则EB = ________________________________ .点P i ,则P i 表示的数是( )A.— 2B.— 2 2C. 1— 2 2D. 2 2 — 1A. a bB. a b10.下列选项中,不能判定四边形ABCD 是平行四边形的是(B . AB //CD , AB CDD .AB DC , AD BC )C. AD //BC ,AB DC/ ABC=90 , F 为AB 延长线上一点,点 E 在BC上,且 AE=CF 若/ BAE=25,则/ ACF=1 •解下列方程:3x y m 13•若方程组x 3y 3 m 的解满足x 为非负数,y 为负数• (1) 请写出x y _______________ ; (2) 求m 的取值范围;(3) 已知m n 4,且n 2,求2m 3n 的取值范围.4. 如图,△ ABC 与△ DCB 中,AC 与 BD 交于点 E,且/ A=Z D, AB=DC(1) 求证:△ ABE^ DCE6 •如图,AC 平分 DCB , CBEAC 49,贝U BAE 的度数为三、解答题(本大题共6小题, 72分)3x (1)2xy 5 5y 263(x y) y(2)22(x 142y) 5(x y) 52•先化简,再求值:a 21,其中 a -2 1 -(2) 当/ AEB=50,求/ EBC的度数.5. 如图,直线l i:y i=-x+2与x轴,y轴分别交于A, B两点,点P (m 3)为直线l i 上一点,另一直线丨2:y2= — x+b过点P.(1)求点P坐标和b的值;(2)若点C是直线l —与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q在运动过程中,△ APQ勺面积S与t的函数关系式;②求出t为多少时,△ APQ勺面积小于3;③是否存在t的值,使△ APC为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.6. 某开发公司生产的960件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用20天,而甲工厂每天加工的数量是乙工厂每天加工的2数量的-,公司需付甲工厂加工费用为每天80元,乙工厂加工费用为每天3120 元.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天15元的午餐补助费,请你帮公司选择一种既省时又省钱的加工方案,并说明理由.参考答案一、 选择题(本大题共10小题,每题3分,共30 分)1、 A2、 C3、 B4、 B5、 A6、 C7、 D8、 C9、 C 10、C二、 填空题(本大题共6小题,每小题3分,共18 分)1、 752、 4_3、 44、 1.55、 70& 82 .2、a 11,23、( 1) 1; (2) n o 2;( 3) -2 v 2m-3 n v 184、略(2). / EBC=2573275、( 1) b=2 ; ( 2)©A APQ 的面积S 与t 的函数关系式为S=- - t+ —或S=-t - :②7v t v 9或9v t v 11,③存在,当t 的值为3或9+3 & 或9 -22三、解答题(本大题共6小题,共72分)1、( 1)x (2)y3 &或6时,△ APQ为等腰三角形.6、(1)甲工厂每天加工16 件产品,乙工厂每天加工24 件产品. (2)甲、乙两工厂合作完成此项任务既省时又省钱.见解析.。

八年级数学第一次月考试卷【含答案】

八年级数学第一次月考试卷【含答案】

八年级数学第一次月考试卷【含答案】专业课原理概述部分一、选择题1. 若 a > 0,b < 0,则下列哪个选项正确?( )A. a + b > 0B. a b > 0C. a × b > 0D. a ÷ b > 02. 已知一组数据 3, 5, 7, 9, x,其平均数为 6,则 x = ( )A. 1B. 3C. 5D. 73. 在直角坐标系中,点 P(2, -3) 关于 x 轴对称的点坐标是 ( )A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)4. 若一个等差数列的首项是 2,公差是 3,则第 10 项是 ( )A. 29B. 30C. 31D. 325. 下列哪个图形不是轴对称图形?( )A. 矩形B. 正方形C. 圆D. 梯形二、判断题6. 任何两个奇数相加的和一定是偶数。

()7. 如果 a > b,那么a ÷ c > b ÷ c。

()8. 平方根的定义是:一个数的平方根是它的二次方根。

()9. 在三角形中,若两边之和等于第三边,则该三角形是直角三角形。

()10. 互质的两个数的最大公约数是 1。

()三、填空题11. 若 a = 3,b = -2,则 a + b = _______。

12. 一个等边三角形的内角和为 _______ 度。

13. 若一个数是它自己的倒数,那么这个数是 _______。

14. 在直角坐标系中,点 (4, 0) 在 _______ 轴上。

15. 一个等差数列的前 5 项和为 35,首项为 3,则公差为 _______。

四、简答题16. 解释什么是质数,并给出一个例子。

17. 简述等差数列和等比数列的区别。

18. 什么是算术平方根?如何计算一个数的算术平方根?19. 解释直角坐标系中,一个点关于 y 轴对称的概念。

20. 简述三角形面积计算公式。

八年级数学第一个月考试卷

八年级数学第一个月考试卷

一、选择题(每题4分,共40分)1. 下列各数中,属于有理数的是()A. √2B. πC. 0.1010010001...D. -52. 已知a > 0,b < 0,那么下列不等式中正确的是()A. a + b > 0B. a - b < 0C. ab > 0D. a/b < 03. 下列图形中,对称轴是直线x=2的是()A. 正方形B. 等腰三角形C. 圆D. 梯形4. 已知一元二次方程x^2 - 3x + 2 = 0的解为x1和x2,则x1 + x2的值为()A. 3B. 2C. 1D. -35. 下列函数中,自变量的取值范围是全体实数的是()A. y = 2x + 1B. y = √(x^2 - 4)C. y = 1/xD. y = |x|6. 在直角坐标系中,点P(3, 4)关于x轴的对称点是()A. (3, -4)B. (-3, 4)C. (3, -4)D. (-3, -4)7. 已知正方形的对角线长为10cm,那么这个正方形的面积是()A. 50cm^2B. 100cm^2C. 25cm^2D. 20cm^28. 在等腰三角形ABC中,AB=AC,若∠BAC=40°,则∠B的度数是()A. 40°B. 50°C. 70°D. 80°9. 下列关于圆的定理中,正确的是()A. 圆的直径等于圆的半径的两倍B. 圆的周长等于圆的直径乘以πC. 圆的面积等于圆的半径的平方乘以πD. 圆的直径等于圆的半径的平方乘以π10. 若函数y = kx + b(k≠0)的图象经过第一、二、四象限,则k和b的取值范围是()A. k > 0,b > 0B. k < 0,b > 0C. k > 0,b < 0D. k < 0,b < 0二、填空题(每题5分,共50分)11. (1)有理数-3的相反数是__________;(2)在数轴上,点A表示的数是-2,则点A到原点的距离是__________。

江苏南京市联合体2024--2025学年上学期八年级数学月考试卷 (原卷版)

江苏南京市联合体2024--2025学年上学期八年级数学月考试卷 (原卷版)

2024—2025学年八年级数学第一次学科素养训练调查试卷一、选择题(共16分)1. 如图,四个图标分别是剑桥大学、北京大学、浙江大学和北京理工大学的校徽的重要组成部分,其中是轴对称图形的是( )A. B.C. D.2. 已知图中的两个三角形全等,则1∠等于( )A 72° B. 60° C. 50° D. 58°3. 下列条件中,不能判定两个直角三角形全等的是( )A. 两条直角边对应相等B. 斜边和一个锐角对应相等C. 斜边和一条直角边对应相等D. 一条直角边和一个锐角分别相等4. 如图, AD 是 ABC 的角平分线, DE AB ⊥ ,垂足为E , 9ABC S = , 2DE = , 5AB = ,则 AC 长为( )A. 5B. 4C. 3D. 25. 如图,直线l ,m 相交于点O .P 为这两直线外一点,且 2.8OP =.若点P 关于直线l ,m的对称点.分别是点1P ,2P ,则1P ,2P 之间的距离可能是( )A. 5B. 6C. 7D. 86. 如图,在AOB 中,60AOB ∠=°,OA OB =,动点C 从点О出发,沿射线OB 方向移动,以AC 为边向右侧作等边ACD ,连接BD ,则下列结论不一定成立的是( )A. 120OBD ∠=°B. //OA BDC. CB BD AB +=D. AB 平分CAD ∠7. 如图,AOB ADC △≌△(O ∠和D ∠是对应角),90O ∠= ,若OAD α∠=,ABO β∠=.当BC OA ∥时,α与β之间的数量关系为( )A. αβ=B. 2αβ=C. 90αβ+=D. 2180αβ+= 8. 如图,点P 为定角AOB ∠的平分线上的一个定点,且MPN ∠与AOB ∠互补,若MPN ∠在绕点P 旋转的过程中,其两边分别与OA OB ,交于点M N ,,则一下结论:①PM PN =恒成立;②OM ON +的值不变;③四边形PMON 的面积不变;④MN 的长不变;其中正确的个数为( )个A. 1B. 2C. 3D. 4二、填空题(共20分)9. 等腰三角形的一个外角的度数是80°,则它底角的度数为___________°.10. 如图,点E F 、在BC 上,BF CE A D =∠=∠,.请添加一个条件______,使ABF DCE ≌△△.11. 小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是∠BOA 的角平分线.”小明的做法,其理论依据是__12. 如图,ABC 是等边三角形,D ,E 分别是AC BC ,上点,若25AE AD CED =∠=°,,则BAE ∠=_____°.13. 如图,在△ABC 中,BD 平分∠ABC ,ED ∥BC ,AB =9,AD =6,则△AED 的周长为 ___.的14. 如图所示网格是正方形网格,图形的各个顶点均为格点,则P O ∠+∠=______度.15. 在等腰ABC 中,8AB AC ==,点D ,E 分别是BC ,AC 边上的中点,那么DE =_____. 16.如图,∠BAC 的平分线与BC 的垂直平分线相交于点D ,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,AB =11,AC =5,则BE =______________.17. 如图,四边形ABCD 中,AB =AD ,AC =5,∠DAB =∠DCB =90°,则四边形ABCD 的面积为_____.18. 如图,在ABC 中,10AB AC ==,12BC =,8AD =,AD 是BAC ∠的角平分线,若E ,F 分别是AD 和AC 上的动点,则EC EF +的最小值是______.的三、解答题(共64分)19. 如图,在由长度为1个单位长度的小正方形组成的网格中,ABC 的三个顶点A ,B ,C 都在格点上,分别按下列要求在网格中作图:(1)画出与ABC 关于直线l 成轴对称的111A B C △;(2)在直线l 上找出一点P ,使得||PA PC −的值最大;(保留作图痕迹,并标上字母P ) (3)在直线l 上找出一点Q ,使得1QA QC +的值最小.(保留作图痕迹,并标上字母Q ) 20. 如图,已知DE ∥AB ,∠DAE =∠B ,DE =2,AE =4,C 为AE 的中点. 求证:△ABC ≌△EAD .21. 如图,E 在AB 上,A B ∠=∠,AD BE =,AE BC =,F 是CD 的中点.(1)求证:EF CD ⊥;(2)80CEA ∠=°,=60B ∠°,求ECD ∠度数.22. 已知:如图,A ,F ,E ,B 四点共线,AC CE ⊥,BD DF ⊥,=AF BE ,=AC BD .请问BC 和AD 有怎样的关系?说明理由的23. (1)如图1,在ABC 中,AB AC =,直线l 经过点A ,且与BC 平行,请在直线l 上作出所有的点Q ,使得12AQC ACB ∠=∠.(要求:用直尺和圆规作图,保留作图痕迹.)(2)如图2,已知四边形ABCD ,请用直尺和圆规边BC 上求作一点P ,使APB CPD ∠=∠(要求:用直尺和圆规作图,保留作图痕迹.)24. 如图,ABC 中,AD 是高,CE 是中线,点G 是CE 的中点,DG CE ,点G 为垂足.(1)求证:DC BE =;(2)若78AEC ∠=°,求BCE ∠的度数.25. 已知命题“直角三角形斜边上的中线等于斜边的一半”,它的逆命题是个真命题 (1)请写出逆命题和已知、求证逆命题:______.已知:______.求证:______.(2)用两种方法证明逆命题是真命题在26. 已知在ABC 中,AB AC =,点D 是边AB 上一点,BCD A ∠=∠.(1)如图1,试说明CD CB =的理由;(2)如图2,过点B 作BE AC ⊥,垂足为点E ,BE 与CD 相交于点F . ①试说明2BCD CBE ∠=∠的理由;②如果BDF 是等腰三角形,求A ∠的度数.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

班级
: 年级 班 姓名 考号 ___
◆◆◆◆◆◆
◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆
第一次月考
八年级数学试卷(150分)
一、选择题(每小题4分,共48分)
1.下列长度的三条线段中,能组成三角形的是 ( )
A 、3cm ,5cm ,8cm
B 、8cm ,8cm ,18cm
C 、0.1cm ,0.1cm ,0.1cm
D 、3cm ,40cm ,8cm
2.小冬不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1,2,3,4的四块),你认为将其中的哪一块带去,能配一块与原来一样大小的三角形?应该带 ( ) A. 第1块 B. 第2块 C. 第3块 D. 第4块 3.一个多边形从一个顶点出发共引7条对角线,那么这个多边形的内角和为
( )
A. 1440°
B. 1620°
C. 1800°
D. 1980° 4、如图:若△ABE ≌△ACF ,且AB=7,AE=3,则EC 的长为:( ) A 、3 B 、4 C 、4.5 D 、5
5、如图:EA ∥DF ,AE=DF ,要使△AEC ≌△DBF ,则只要:( ) A 、AB=CD B 、EC=BF C 、∠A=∠D D 、AB=BC
6、一个正多边形的一个内角等于144°,则该多边形的边数为:( ) A .8 B .9 C .10 D .11
7、已知△ABC 的∠A=60°,剪去∠A 后得到一个四边形,则∠1+∠2的度数为:( ) A 、270° B 、240° C 、200° D 、180°
8、△ABC ≌△DEF ,AB=2,AC =4,若△DEF 的周长为偶数,则EF 的取值为 ( ) A .3 B .4 C .5 D .3或4或5 9、如图,AD 是△ABC 的中线,那么下列结论中错误的是:( )
A 、BD=CD
B 、BC=2BD=2CD
C 、ACD
ABD S S ∆∆= D 、△ABD ≌△ACD 10.已知等腰三角形的一个外角等于100°,则它的顶角是( ).
A 80°
B 20°
C 80°或20°
D 不能确定 11、如图, A B C D
E ∠+∠+∠+∠+∠+∠
F 等于( )
A. 90 °
B. 180°
C.360°
D.270°
12、 如图所示,在△ABC 中,已知点D, E, F 分别为BC, AD, BE 的中点.且S △ABC =8cm 2 ,则图中△CEF
的面积等于( )
A .22
cm B. 12
cm C. 122cm D. 1
4
2cm
12题图 12题图 13题图 14题图
二、填空题(每小题4分,共24分) 13、如图,在△ABC 中,AD =DE ,AB =BE ,∠A =80°,则∠CED =_____. 14、如图,已知∠1=∠2,请你添加一个条件:___________ ,使△ABD ≌△ACD .
15、如图ABC ∆中,AD 平分BAC ∠,4=AB ,2=AC ,且ABD ∆的面积为3,则ACD ∆的
面积为 。

16、如图,小华从点A 出发向前走10m ,向右转15°,然后继续向前走10m ,再向右转15°,他以同样的方法继续走下去,当他第一次回到点A 时共走了 m 。

17、如图,已知EB AD ⊥,垂足点为F ,若C 40E 25∠=∠=o o ,,则A ∠= .
18、如图2,AB=AC ,BE ⊥AC 于E ,CF ⊥AB 于F ,BE ,CF 交于D ,则有:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③点D 在∠BAC 的平分线上,以上结论正确的是 (填序号).
15题图 16题图 17题图 18题图
三、解答题(共2小题,各9分,共18分)
19、已知等腰三角形的周长是25,一腰上的中线把三角形分成两个,两个三角形的周长的差是4。

求等腰三角形各边的长。

20、 如图,三条公路两两相交构成△ABC : (1).画出△ABC 的边AC 上的高BF
(2).尺规作出∠C 的平分线CD
(3)若想在这三角形地内建一加油站P ,使它 到三条公路的距离相等,请用尺规作图找出加油站P 。

1
2 3
4
2题

A
B C
D
E
A
B C
D B
F
A
C
E
D B
A

图13
E
B
A
C
D
F
D
C
B
A 四、解答题(共4题,各10分,共40分)
21、小红家有一个小口瓶,如图所示),她很想知道它的内径是多少?但是尺子不能伸在里边直接测,于是她想了想,唉!有办法了。

她拿来了两根长度相同的细木条,并且把两根长木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB 的长,就可以知道玻璃瓶的内径是多少,你知道这是为什么吗?请结合图形推理说明理由。

(木条的厚度不计)
22、如图AD 、AE 分别是△ABC 的高和角平分线,∠B=40°,∠C=60°,求∠DA E 的度数.
23、如图所示,在△AFD 和△BEC 中,点A 、E 、F 、C 在同一直线上,有下面的四个条件:①AD=CB ;②AE=CF ;③∠B=∠D;④AD∥BC ,请用其中三个作为条件、余下一个作为结论,编一道数学问题,并写出解答过程。

24、如图所示,BD 平分∠ABC ,AB =BC ,点P 在BD 上,PM ⊥AD ,PN ⊥CD ,M 、N 为垂足.求证:PM =PN 。

五.解答题(共20分,各10分):
25. 如图,在四边形ABCD 中,BC >BA,AD =CD ,BD 平分ABC ∠, 求证: 0
180=∠+∠C A
26. 如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于F ,交AC 的平行线BG 于G 点,
DE ⊥DF ,交AB 于点E ,连结EG 、EF .
(1)求证:BG =CF .
(2)请你判断BE +CF 与EF 的大小关系,并说明理由.
祝你成功!
F E
D C B A G B
C。

相关文档
最新文档