2021高考数学二轮专题复习高考小题集训二含解析

合集下载

山西省晋城市2021届新高考数学仿真第二次备考试题含解析

山西省晋城市2021届新高考数学仿真第二次备考试题含解析

山西省晋城市2021届新高考数学仿真第二次备考试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设2log 3a =,4log 6b =,0.15c -=,则( ) A .a b c >> B .b a c >>C .c a b >>D .c b a >>【答案】A 【解析】 【分析】先利用换底公式将对数都化为以2为底,利用对数函数单调性可比较,a b ,再由中间值1可得三者的大小关系. 【详解】()2log 31,2a =∈,()422log 6log 1,log 3b ==,()0.150,1c -=∈,因此a b c >>,故选:A.【点睛】本题主要考查了利用对数函数和指数函数的单调性比较大小,属于基础题.2.设正项等比数列{}n a 的前n 项和为n S ,若23S =,3412a a +=,则公比q =( ) A .4± B .4C .2±D .2【答案】D 【解析】 【分析】由23S =得123a a +=,又23412()12a a a a q +=+=,两式相除即可解出q .【详解】解:由23S =得123a a +=,又23412()12a a a a q +=+=,∴24q =,∴2q =-,或2q =,又正项等比数列{}n a 得0q >, ∴2q =, 故选:D . 【点睛】本题主要考查等比数列的性质的应用,属于基础题.3.函数()()()sin 0,0f x x ωϕωϕπ=+><<的图象如图所示,为了得到()cos g x x ω=的图象,可将()f x 的图象( )A .向右平移6π个单位 B .向右平移12π个单位C .向左平移12π个单位D .向左平移6π个单位 【答案】C 【解析】 【分析】根据正弦型函数的图象得到()sin 23f x x π⎛⎫=+ ⎪⎝⎭,结合图像变换知识得到答案. 【详解】 由图象知:7212122T T ππππ=-=⇒=,∴2ω=. 又12x π=时函数值最大,所以2221223k k πππϕπϕπ⨯+=+⇒=+.又()0,ϕπ∈, ∴3πϕ=,从而()sin 23f x x π⎛⎫=+⎪⎝⎭,()cos 2sin 2sin 22123g x x x x πππ⎡⎤⎛⎫⎛⎫==+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 只需将()f x 的图象向左平移12π个单位即可得到()g x 的图象,故选C. 【点睛】已知函数()sin (0,0)y A x B A ωϕω=++>>的图象求解析式 (1)max min max min ,22y y y y A B -+==.(2)由函数的周期T 求2,.T πωω= (3)利用“五点法”中相对应的特殊点求ϕ,一般用最高点或最低点求.4.若单位向量1e u r ,2e u u r 夹角为60︒,12a e e λ=-r u r u u r,且3a =r λ=( )A .-1B .2C .0或-1D .2或-1【答案】D 【解析】【分析】利用向量模的运算列方程,结合向量数量积的运算,求得实数λ的值. 【详解】由于3a =r ,所以23a =r ,即()2123e e λ-=u r u u r ,2222112222cos6013e e e e λλλλ-⋅+=-⋅+=o u r u r u u r u u r ,即220λλ--=,解得2λ=或1λ=-.故选:D 【点睛】本小题主要考查向量模的运算,考查向量数量积的运算,属于基础题.5.已知椭圆E :22221x y a b+=(0)a b >>的左、右焦点分别为1F ,2F ,过2F 的直线240x y +-=与y 轴交于点A ,线段2AF 与E 交于点B .若1||AB BF =,则E 的方程为( )A .2214036x y +=B .2212016x y +=C .221106x y +=D .2215x y +=【答案】D 【解析】 【分析】由题可得()()20,42,0,A F ,所以2c =,又1||AB BF =,所以122225a BF BF AF =+==,得5a =,故可得椭圆的方程.【详解】由题可得()()20,42,0,A F ,所以2c =,又1||AB BF =,所以122225a BF BF AF =+==,得5a =,1b ∴=,所以椭圆的方程为2215x y +=.故选:D 【点睛】本题主要考查了椭圆的定义,椭圆标准方程的求解.6.某工厂利用随机数表示对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,……,599,600.从中抽取60个样本,下图提供随机数表的第4行到第6行:若从表中第6行第6列开始向右读取数据,则得到的第6个样本编号是( )A .324B .522C .535D .578【答案】D 【解析】 【分析】因为要对600个零件进行编号,所以编号必须是三位数,因此按要求从第6行第6列开始向右读取数据,大于600的,重复出现的舍去,直至得到第六个编号. 【详解】从第6行第6列开始向右读取数据,编号内的数据依次为:436,535,577,348,522,535,578,324,577,L ,因为535重复出现,所以符合要求的数据依次为436,535,577,348,522,578,324,L ,故第6个数据为578.选D.【点睛】本题考查了随机数表表的应用,正确掌握随机数表法的使用方法是解题的关键. 7.已知11()x x f x e e x --=-+,则不等式()(32)2f x f x +-≤的解集是( ) A .[)1,+∞ B .[)0,+∞ C .(],0-∞ D .(],1-∞【答案】A 【解析】 【分析】构造函数()()1g x f x =-,通过分析()g x 的单调性和对称性,求得不等式()(32)2f x f x +-≤的解集. 【详解】构造函数()()()11111x x g x f x ex e --=-=-+-,()g x 是单调递增函数,且向左移动一个单位得到()()11x x h x g x e x e=+=-+, ()h x 的定义域为R ,且()()1xx h x e x h x e-=--=-, 所以()h x 为奇函数,图像关于原点对称,所以()g x 图像关于()1,0对称. 不等式()(32)2f x f x +-≤等价于()()13210f x f x -+--≤, 等价于()()320g x g x +-≤,注意到()10g =,结合()g x 图像关于()1,0对称和()g x 单调递增可知3221x x x +-≤⇒≥. 所以不等式()(32)2f x f x +-≤的解集是[)1,+∞. 故选:A 【点睛】本小题主要考查根据函数的单调性和对称性解不等式,属于中档题. 8.已知倾斜角为θ的直线l 与直线230x y +-=垂直,则sin θ=( )A .BC .D 【答案】D 【解析】 【分析】倾斜角为θ的直线l 与直线230x y +-=垂直,利用相互垂直的直线斜率之间的关系,同角三角函数基本关系式即可得出结果. 【详解】解:因为直线l 与直线230x y +-=垂直,所以1tan 12θ⎛⎫⋅-=- ⎪⎝⎭,tan 2θ=.又θ为直线倾斜角,解得sin θ. 故选:D. 【点睛】本题考查了相互垂直的直线斜率之间的关系,同角三角函数基本关系式,考查计算能力,属于基础题. 9.已知集合(){}*,|4,M x y x y x y N =+<∈、,则集合M 的非空子集个数是( )A .2B .3C .7D .8【答案】C 【解析】 【分析】先确定集合M 中元素,可得非空子集个数. 【详解】由题意{(1,1),(1,2),(2,1)}M =,共3个元素,其子集个数为328=,非空子集有7个. 故选:C . 【点睛】本题考查集合的概念,考查子集的概念,含有n 个元素的集合其子集个数为2n ,非空子集有21n -个. 10.已知1F ,2F 是椭圆22221(0)x y C a b a b +=>>:的左、右焦点,过2F 的直线交椭圆于,P Q 两点.若2211||,||,||,||QF PF PF QF 依次构成等差数列,且1||PQ PF =,则椭圆C 的离心率为A .23B .34C .5D【解析】 【分析】 【详解】如图所示,设2211||,||,||,||QF PF PF QF 依次构成等差数列{}n a ,其公差为d.根据椭圆定义得12344a a a a a +++=,又123a a a +=,则1111111()(2)(3)4()2a a d a d a d aa a d a d ++++++=⎧⎨++=+⎩,解得25d a =,12342468,,,5555a a a a a a a a ====.所以18||5QF a =,16||5PF a =,24||5PF a =,6||5PQ a =.在12PF F △和1PFQ V 中,由余弦定理得2222221246668()()(2)()()()55555cos 4666225555a a c a a a F PF a a a a +-+-∠==⋅⋅⋅⋅,整理解得105c e a ==.故选D . 11.定义在R 上的函数()f x 满足(4)1f =,()f x '为()f x 的导函数,已知()y f x '=的图象如图所示,若两个正数,a b 满足(2)1f a b +<,11b a ++则的取值范围是( )A .(11,53) B .1(,)(5,)3-∞⋃+∞ C .(1,53)D .(,3)-∞【答案】C 【解析】 【分析】先从函数单调性判断2a b +的取值范围,再通过题中所给的,a b 是正数这一条件和常用不等式方法来确定11b a ++的取值范围.由()y f x '=的图象知函数()f x 在区间()0,∞+单调递增,而20a b +>,故由()(2)14f a b f +<=可知24a b +<.故1421725111b a a a a +-+<=-+<+++, 又有11712133322b b b b a ++>=-+>+--,综上得11b a ++的取值范围是(1,53). 故选:C 【点睛】本题考查了函数单调性和不等式的基础知识,属于中档题.12.党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是( )A .B .C .D .【答案】D 【解析】根据四个列联表中的等高条形图可知,图中D 中共享与不共享的企业经济活跃度的差异最大, 它最能体现共享经济对该部门的发展有显著效果,故选D . 二、填空题:本题共4小题,每小题5分,共20分。

2022年高考数学二轮复习高考小题集训(二)

2022年高考数学二轮复习高考小题集训(二)

高考小题集训(二)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2021·全国乙卷理]设2(z +z )+3(z -z )=4+6i ,则z =( ) A .1-2i B .1+2i C .1+i D .1-i2.[2021·湖南长郡十五校联考]已知集合P ={x |x 2-5x -6≤0},Q ={x |3x ≥1},则P ∩Q =( )A .{x |-1≤x ≤0}B .{x |0≤x ≤1}C .{x |0≤x ≤6}D .{x |-6≤x ≤0}3.已知抛物线x 2=2py (p >0)上一点M (m ,1)到焦点的距离为32,则其焦点坐标为( )A .⎝⎛⎭⎫0,12B .⎝⎛⎭⎫12,0C .⎝⎛⎭⎫14,0D .⎝⎛⎭⎫0,14 4.密位制是度量角的一种方法.把一周角等分为6 000份,每一份叫做1密位的角.以密位作为角的度量单位,这种度量角的单位制,叫做角的密位制.在角的密位制中,采用四个数码表示角的大小,单位名称密位二字可以省去不写.密位的写法是在百位数与十位数字之间画一条短线,如密位7写成“0-07”,478密位写成“4-78”,1周角等于6 000密位,记作1周角=60-00,1直角=15-00.如果一个半径为2的扇形,它的面积为76π,则其圆心角用密位制表示为( )A .12-50 B. 17-50 C. 21-00 D. 35-00 5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,S 是棱A 1B 1上任意一点,四棱锥S -ABCD 的体积与正方体ABCD -A 1B 1C 1D 1的体积之比为( )A .12B .13C .14D .不确定6.高铁是当代中国重要的一类交通基础设施,乘坐高铁已经成为人们喜爱的一种出行方式,已知某市市郊乘车前往高铁站有①,②两条路线可走,路线①穿过市区,路程较短但交通拥挤,所需时间(单位为分钟)服从正态分布N (50,100);路线②走环城公路,路程长,但意外阻塞较少,所需时间(单位为分钟)服从正态分布N (60,16),若住同一地方的甲、乙两人分别有70分钟与64分钟可用,要使两人按时到达车站的可能性更大,则甲乙选择的路线分别是( )A .①②B .②①C .①①D .②②7.[2021·河北衡水中学调研]已知函数f (x )=x 2,设a =log 54,b =log 15 13,c =215 ,则f (a ),f (b ),f (c )的大小关系为( )A .f (a )>f (b )>f (c )B .f (b )>f (c )>f (a )C .f (c )>f (b )>f (a )D .f (c )>f (a )>f (b )8.[2021·山东烟台二模]已知函数f (x )是定义在区间(-∞,0)∪(0,+∞)上的偶函数,且当x ∈(0,+∞)时,f (x )=⎩⎪⎨⎪⎧2|x -1|,0<x ≤2f (x -2)-1,x >2 ,则方程f (x )+18 x 2=2根的个数为( )A .3B .4C .5D .6二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.某鱼业养殖场新进1 000尾鱼苗,测量其体长(单位:毫米),将所得数据分成6组,则下列说法正确的是( )A .m =250B .鱼苗体长在[90,100)上的频率为0.16C .鱼苗体长的中位数一定落在区间[85,90)内D .从这批鱼苗中有放回地连续抽取50次,每次一条,则所抽取鱼苗体长落在区间[80,90)上的次数的期望为3010.[2021·广东珠海一模]已知三棱柱ABC -A 1B 1C 1的底面是边长为3的等边三角形,侧棱与底面垂直,其外接球的表面积为16π,下列说法正确的是( )A .三棱柱ABC -A 1B 1C 1的体积是932B .三棱柱ABC -A 1B 1C 1的表面积是18C .直线AB 1与直线A 1C 1所成角的余弦值是31326D .点A 到平面A 1BC 的距离是13211.[2021·新高考Ⅱ卷]已知直线l :ax +by -r 2=0与圆C :x 2+y 2=r 2,点A (a ,b ),则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离 C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切 12.[2021·河北秦皇岛二模]已知()2-3x 6=a 0+a 1x +a 2x 2+…+a 6x 6,则下列选项正确的是( )A .a 3=-360B .(a 0+a 2+a 4+a 6)2-(a 1+a 3+a 5)2=1C .a 1+a 2+…+a 6=(2-3 )6D .展开式中系数最大的为a 2三、填空题:本题共4小题,每小题5分,共20分.13.[2021·新高考Ⅱ卷]已知双曲线x 2a 2 -y 2b2 =1(a >0,b >0)的离心率为2,则该双曲线的渐近线方程为________________.14.函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=a (x +1)-2x ,则f (f (3))=________.15.在△ABC 中,AB =4,∠ABC =30°,D 是边BC 上的一点,若AD → ·AB → =AD → ·AC →,则AD → ·AB →的值为________.16.[2021·全国甲卷文]已知函数f (x )=2cos (ωx +φ)的部分图象如图所示,则f ⎝⎛⎭⎫π2 =________.1.解析:设z =a +b i (a ,b ∈R ),则z =a -b i ,代入2(z +z )+3(z -z )=4+6i ,可得4a +6b i =4+6i ,所以a =1,b =1,故z =1+i.故选C.答案:C2.解析:集合P ={x |x 2-5x -6≤0}={x |-1≤x ≤6}, Q ={x |3x ≥1}={x |x ≥0}, ∴P ∩Q ={x |0≤x ≤6}. 故选C. 答案:C3.解析:∵抛物线x 2=2py (p >0)上一点M (m ,1)到焦点的距离为32,∴由抛物线的定义知y M +p 2 =32 ,即1+p 2 =32 ,所以p =1,所以p 2 =12 ,∴抛物线的焦点坐标为⎝⎛⎭⎫0,12 . 故选A. 答案:A4.解析:设扇形所对的圆心角为α,α所对的密位为n ,则12 α×22=76 π,解得α=712π,由题意可得n 6 000 =712π2π ,解得n =724×6 000=1 750,因此,该扇形圆心角用密位制表示为17-50. 故选B. 答案:B5.解析:设正方体的棱长为a ,则正方体的体积V =a 3, 易知四棱锥S -ABCD 的高为S 点到底面的距离,即侧棱长,所以四棱锥S -ABCD 体积为V ′=13 S ABCD ·AA 1=13 a 2·a =a 33,所以V ′∶V =13,故四棱锥S -ABCD 的体积与正方体ABCD -A 1B 1C 1D 1的体积之比为13.故选B. 答案:B6.解析:对于甲,若有70分钟可走,走第一条线路赶到的概率为P (X ≤70)=Φ⎝⎛⎭⎫70-5010 =Φ(2),走第二条线路赶到的概率为P (X ≤70)=Φ⎝⎛⎭⎫70-604 =Φ(2.5),∵Φ(2)<Φ(2.5),所以甲应走线路②;对于乙,若有64分钟可走,走第一条线路的概率为P (X ≤64)=Φ⎝⎛⎭⎫64-5010 =Φ(1.4),走第二条线路赶到的概率为P (X ≤64)=Φ⎝⎛⎭⎫64-604 =Φ(1),∵Φ(1.4)>Φ(1),所以乙应走线路①.故选B. 答案:B7.解析:∵函数f (x )=x 2在[0,+∞)上是增函数,b =log 15 13=log 53<a =log 54<1,∴c =215>20=1,∴c >a >b >0,∴f (c )>f (a )>f (b ). 故选D. 答案:D8.解析:方程f (x )+18 x 2=2根的个数⇔函数y =f (x )与函数y =-18x 2+2的图象交点个数,图象如下:由图象可知两函数图象有6个交点.故选D. 答案:D9.解析:对于A ,因为[95,100)分组对应小矩形的高为0.01,组距为5, 所以[95,100)分组对应的频率为0.01×5=0.05,n =1 000×0.05=50, 则m =1 000-100-100-350-150-50=250,故选项A 正确;对于B ,鱼苗体长在[90,100)上的频率为150+501 000=0.2,故选项B 错误;对于C ,因为鱼的总数为1 000,100+100+250=450,100+100+250+350=800, 所以鱼苗体长的中位数一定落在区间[85,90)内,故选项C 正确;对于D ,由表中的数据可知,鱼苗体长落在区间[80,90)上的概率为P =250+3501 000=0.6,设所抽取鱼苗体长落在区间[80,90)上的次数为X , 则X 服从二项分布,即X ~B (50,0.6), 则E (X )=50×0.6=30,故选项D 正确. 故选ACD. 答案:ACD 10.解析:如图所示,三棱柱的上下底面正三角形中心分别为D 1,D ,因为三棱柱ABC -A 1B 1C 1的底面是边长为3的等边三角形,侧棱与底面垂直, 所以其外接球的球心O 为高DD 1的中点, 设外接球半径为R ,由4πR 2=16π得R =2,又因为BD =23 ×32×3=3 ,故OD =1,所以DD 1=2,所以三棱柱的体积V =34 ·32·2=932.三棱柱的表面积S =3×3×2+2×34 ×32=18+932.因为AC ∥A 1C 1,所以∠B 1AC 是AC 与AB 1成的角也就是A 1C 1与AB 1成的角,因为AB 1=B 1C =13 ,AC =3,所以cos ∠B 1AC =B 1A 2+AC 2-B 1C 22B 1A ·AC =31326,所以直线AB 1与直线A 1C 1所成角的余弦值是31326.设A 到平面A 1BC 的距离是h ,由VA -A 1BC =VA 1-ABC 得13 ×h ×12 ×432 ×3=13×2×34×32,解得h =612943.故选AC. 答案:AC11.解析:圆心C (0,0)到直线l 的距离d =r 2a 2+b2 ,若点A (a ,b )在圆C 上,则a 2+b 2=r 2,所以d =r 2a 2+b2 =|r |,则直线l 与圆C 相切,故A 正确;若点A (a ,b )在圆C 内,则a 2+b 2<r 2,所以d =r 2a 2+b2 >|r |,则直线l 与圆C 相离,故B 正确;若点A (a ,b )在圆C 外,则a 2+b 2>r 2,所以d =r 2a 2+b2 <|r |,则直线l 与圆C 相交,故C 错误;若点A (a ,b )在直线l 上,则a 2+b 2-r 2=0即a 2+b 2=r 2,所以d =r 2a 2+b 2=|r |,直线l 与圆C 相切,故D 正确.故选ABD. 答案:ABD12.解析:(2-3 x )6展开式通项公式为:T k +1=C k 6 ·26-k ·(-3 x )k , 对于A ,令k =3,则a 3=C 36 ×23×(-3 )3=-4803 ,A 错误; 对于B ,令x =1,则a 0+a 1+…+a 6=(2-3 )6; 令x =-1,则a 0-a 1+a 2-…+a 6=(2+3 )6;∴(a 0+a 2+a 4+a 6)2-(a 1+a 3+a 5)2=(a 0+a 1+a 2+…+a 6)(a 0-a 1+a 2-…+a 6)=[]()2-3×()2+3 6=1,B 正确;对于C ,令x =0得:a 0=26,∴a 1+a 2+…+a 6=()2-3 6-26,C 错误; 对于D ,∵a 0,a 2,a 4,a 6为正数,a 1,a 3,a 5为负数,又a 0=26=64,a 2=C 26 ×24×3=720,a 4=C 46 ×22×32=540,a 6=33=27, ∴展开式中系数最大的为a 2,D 正确. 故选BD.答案:BD13.解析:因为双曲线x 2a 2 -y 2b 2 =1(a >0,b >0)的离心率为2,所以e =c 2a 2 =a 2+b 2a 2 =2,所以b 2a2 =3,所以该双曲线的渐近线方程为y =±bax =±3 x .答案:y =±3 x14.解析:f (0)=a -1=0,a =1,当x <0时,-x >0,f (-x )=-x +1-2-x =-f (x ),即f (x )=x -1+2-x,f (x )=⎩⎪⎨⎪⎧x +1-2x,x >00,x =0x -1+2-x ,x <0,f (3)=4-23=-4,f (-4)=-5+24=11,f (f (3))=11.答案:11 15.解析:因为AD → ·AB → =AD → ·AC → ,所以AD → ·(AB → -AC → )=AD → ·CB →=0, 所以AD ⊥CB ,由题得AD =2,∠BAD =60°,所以AD → ·AB →=2×4×cos 60°=4. 答案:416.解析:解法一(五点作图法) 由题图可知34 T =13π12 -π3 =3π4(T 为f (x )的最小正周期),即T =π,所以2πω=π,即ω=2,故f (x )=2cos (2x +φ).点⎝⎛⎭⎫π3,0 可看作“五点作图法”中的第二个点,故2×π3 +φ=π2 ,得φ=-π6,即f (x )=2cos ⎝⎛⎭⎫2x -π6 , 所以f ⎝⎛⎭⎫π2 =2cos ⎝⎛⎭⎫2×π2-π6 =-3 . 解法二(代点法) 由题意知,34 T =13π12 -π3 =3π4 (T 为f (x )的最小正周期),所以T =π,2πω=π,即ω=2.又点⎝⎛⎭⎫π3,0 在函数f (x )的图象上,所以2cos ⎝⎛⎭⎫2×π3+φ =0,所以2×π3 +φ=π2 +k π(k ∈Z ),令k =0,则φ=-π6,所以f (x )=2cos ⎝⎛⎭⎫2x -π6 ,所以f ⎝⎛⎭⎫π2 =2cos ⎝⎛⎭⎫2×π2-π6 =-2cos π6=-3 . 解法三(平移法) 由题意知,34 T =13π12 -π3 =3π4(T 为f (x )的最小正周期),所以T =π,2πω=π,即ω=2.函数y =2cos 2x 的图象与x 轴的一个交点是⎝⎛⎭⎫π4,0 ,对应函数f (x )=2cos (2x +φ)的图象与x 轴的一个交点是⎝⎛⎭⎫π3,0 ,所以f (x )=2cos (2x +φ)的图象是由y =2cos 2x 的图象向右平移π3 -π4 =π12个单位长度得到的,所以f (x )=2cos (2x+φ)=2cos 2⎝⎛⎭⎫x -π12 =2cos ⎝⎛⎭⎫2x -π6 ,所以f ⎝⎛⎭⎫π2 =2cos ⎝⎛⎭⎫2×π2-π6 =-2cos π6=-3 . 答案:-3。

2021高考数学二轮专题训练2.52课时突破解析几何高考小题第2课时圆锥曲线的方程与性质课件2021

2021高考数学二轮专题训练2.52课时突破解析几何高考小题第2课时圆锥曲线的方程与性质课件2021

直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,
且d1+d2=6,则双曲线的方程为( )
A. x 2 y 2 =1
4 12
C. x 2 y 2 =1
39
B. x 2 y 2 =1
12 4
D. x 2 y 2 =1
93
【解析】选C.因为双曲线的离心率为2,所以 c
n
2a
在Rt△MPF2中,|MF2|2=|PF2|2-|PM|2=m2-n2,
在Rt△MF1F2中,
|MF2|2=|F1F2|2-|MF1|2=(2c)2-(2n)2=4c2-4n2,
所以m2-n2=4c2-4n2,即16a2+3×4a2=4c2,
所以
c
2
=7,所以离心率e=
a2
c =2 . 7
y2
=1(m>0)的两个焦点,若C上存在点M满足MF1⊥MF2,则
实数m的取值范围是( )
A.
0,1 2
C.
0,1 2
∪(2,+∞)
B.[2,+∞)Leabharlann D.1 2,1
∪(1,2]
【解析】选C.分椭圆的焦点在x轴上和y轴上两种情况讨论.
①若焦点在x轴上,即m>1,当M为短轴的端点时,∠F1MF2取最大值,要使MF1⊥MF2,则
所以m2=1,所以 13
n n
> >
00,,所以-1<n<3.
若双曲线的焦点在y轴上,则双曲线的标准方程为 n y 3 2m 2m x 22n1, 即 n m 3 2m n 2 > > 0 0 , ,
即n>3m2且n<-m2,此时n不存在.

2021高考数学二轮专题训练2.52课时突破解析几何高考小题第1课时直线与圆课件

2021高考数学二轮专题训练2.52课时突破解析几何高考小题第1课时直线与圆课件
5
3.(2020·天津高考)已知直线x- 3 y+8=0和圆x2+y2=r2(r>0)相交于A,B两点.若 |AB|=6,则r的值为________.
【解析】因为圆心(0,0)到直线x-
y3 +8=0的距离d=
8 =4,
1 3
由|AB|=2 r2 d可2 得6=2 r2,解 4得2 r=5.
答案:5
素养考查
直观想象、逻辑推理
【解析】选C.设P(x,y),则
x y
scxions2+,,y2=1.即点P在单位圆上,点P到直线x-my-
2=0的距离可转化为圆心(0,0)到直线x-my-2=0的距离加上(或减去)半径,所以距
离最大为d=1 2 1. 2
1m2
1m2
当m=0时,dmax=3.
2.(2020·海淀一模)如图,半径为1的圆M与直线l相切于点A,圆M沿着直线l滚动. 当圆M滚动到圆M′时,圆M′与直线l相切于点B,点A运动到点A′,线段AB的长度 为 3 ,则点M′到直线BA′的距离为( )
【解析】根据题意,设点P1(a,b)与点P(1,0)关于直线AB对称,则P1在反射光线所
在直线上,又由A(4,0),B(0,4),则直线AB的方程为x+y=4,
则有
a
b
1
1,解得
a
1 2
b 2
4
,即 aPb 1(344,3),
反射光线所在直线的斜率k=
4
(3 02),
1 2
则其方程为y-0= 1 (x+2),即x-2y+2=0;
149D7EF 0,
取y=0,得x2-2x-20=0,
所以|MN|=|x1-x2|=( x 1 x 2 ) 2 4 x 1 x 2 2 2 4 ( 2 0 ) 2 2 1 .

小题专练24-2021届高考数学二轮复习新高考版含解析

小题专练24-2021届高考数学二轮复习新高考版含解析
【解析】因为an+1= an,所以数列 为等比数列,公比为 ,所以数列 也为等比数列,公比为2,故a1+a3+a5+a7+a9= =31.
【答案】A
6.(考点:双曲线,★★)已知直线y=2b与双曲线 - =1(a>0,b>0)的渐近线在第一象限交于点C,双曲线的左、右焦点分别为F1,F2,若tan∠CF2F1= ,则双曲线的离心率为().
D.直四棱柱的外接球的体积为
10.(考点:椭圆,★★)过椭圆C: + =1(a>b>0)的右焦点F2作x轴的垂线,交椭圆C于A,B两点,直线l过椭圆C的左焦点和上顶点,以AB为直径的圆与l相切,则下列结论正确的是().
A.直线l的斜率为2
B.椭圆C的长轴长为短轴长的 倍
C.椭圆C的离心率为
D.|AF2|与点A到直线x= 的距离之比为
D.f(x)在 的值域为[-1,1]
【解析】根据题意,-1=2sinφ,∴φ=- ,∴f(x)=2sin ,平移后的函数解析式为g(x)=2sin =2sin ,∴ωπ=2kπ,∴ω=2k,k∈Z,又 - ≤ = ,∴ω≤ ,故ω=2,∴f(x)=2sin ,故A正确;令2x- =kπ+ ,k∈Z,得x= + ,k∈Z,当 + = 时,k无整数解,故B错误;令2x- =kπ,k∈Z,得x= + ,k∈Z,∵-π≤ + ≤π,k∈Z,∴k=-2,-1,0,1,故C正确;∵x∈ ,2x- ∈ ,∴f(x)∈[-1,2],故D错误.
A.3B.1C.-1D.-3
【解析】根据诱导公式,sin =cos =sin ,所以原式= = = ,
分子、分母同时除以cosαcos ,得出原式= =-3.

2021年安徽省高考数学二轮解答题专项复习:三角函数及解三角形(含答案解析)

2021年安徽省高考数学二轮解答题专项复习:三角函数及解三角形(含答案解析)
5.在△ABC中,设边a,b,c所对的角分别为A,B,C,且 .
(Ⅰ)若 ,求tanA的值.
(Ⅱ)若△ABC的面积为 ,求a+b的值.
6.在△ABC中, , .
(1)求tanB;
(2)若△ABC的面积 ,求△ABC的周长.
7.在△ABC中,角A,B,C的对边分别为a,b,c.已知bsinA=a(2 cosB).
(1)求角C的大小;
(2)若b a,△ABC的面积为 sinAsinB,求sinA及c的值.
33.在△ABC中,角A,B,C的对边分别为a,b,c,已知a=2,b ,B=2A.
(2)若a=4,且b+c=6,求△ABC的面积.
12.在△ABC中,角A,B,C的对边分别为a,b,c(a,b,c互不相等),且满足bcosC=(2b﹣c)cosB.
(1)求证:A=2B;
(2)若 ,求cosB.
13.已知△ABC中内角A、B、C所对的边分别为a、b、c,且bcosC+ccosB=﹣4cosA,a=2.
(2)若c=6 ,且AB边上的高等于 AB,求sinC的值.
22.函数f(x)=(sinx+cosx)2 cos(2x+π).
(1)求函数f(x)的最小正周期;
(2)已知△ABC的内角A,B,C的对边分别为a,b,c,若 ,且a=2,求△ABC的面积.
23.在△ABC中,内角A,B,C满足 .
(1)求内角A的大小;
(1)求B;
(2)若a=2 ,b ,求△ABC的面积.
8.已知△ABC的内角A,B,C的对边分别为a,b,c.满足2c=a+2bcosA.
(1)求B;
(2)若a+c=5,b=3,求△ABC的面积.

数学二轮复习专题限时集训2统计与统计案例随机事件的概率古典概型几何概型含解析文

数学二轮复习专题限时集训2统计与统计案例随机事件的概率古典概型几何概型含解析文

专题限时集训(二) 统计与统计案例随机事件的概率、古典概型、几何概型1.(2017·全国卷Ⅰ)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数B[评估这种农作物亩产量稳定程度的指标是标准差或方差,故选B.]2.(2019·全国卷Ⅲ)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0。

5 B.0。

6 C.0.7 D.0。

8C[由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C.]3.(2018·全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3 B.0。

4 C.0.6 D.0.7B[设“只用现金支付”为事件A,“既用现金支付也用非现金支付”为事件B,“不用现金支付”为事件C,则P(C)=1-P(A)-P(B)=1-0.45-0。

15=0。

4。

故选B.]4.(2016·全国卷Ⅱ)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为() A.错误!B.错误!C.错误!D.错误!B[如图,若该行人在时间段AB的某一时刻来到该路口,则该行人至少等待15秒才出现绿灯.AB长度为40-15=25,由几何概型的概率公式知,至少需要等待15秒才出现绿灯的概率为错误!=错误!,故选B.]5.(2020·全国卷Ⅲ)设一组样本数据x1,x2,…,x n的方差为0。

2021高考数学二轮复习专题练二基础小题练透热点专练2不等式含解析

2021高考数学二轮复习专题练二基础小题练透热点专练2不等式含解析

高考数学二轮复习专题练:热点专练2 不等式一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A.ac 2<bc 2 B.1a <1b C.b a >a bD.a 2>ab >b 2解析 c =0时,A 不成立; 1a -1b =b -a ab>0,B 错; b a -a b =b 2-a 2ab =(b +a )(b -a )ab<0,C 错; 由a <b <0,∴a 2>ab >b 2,D 正确. 答案 D2.已知关于x 的不等式(ax -1)(x +1)<0的解集是(-∞,-1)∪⎝⎛⎭⎫-12,+∞,则a =( ) A.2B.-2C.-12D.12解析 依题意,-1与-12是(ax -1)(x +1)=0的两根,且a <0,∴-1×⎝⎛⎭⎫-12= (-1)×1a ,则a =-2.答案 B3.若a >0,b >0且2a +b =4,则1ab 的最小值为( )A.2B.12C.4D.14解析 因为a >0,b >0,故2a +b ≥22ab (当且仅当2a =b ,即a =1,b =2时取等号). 又因为2a +b =4, ∴22ab ≤4⇒0<ab ≤2,∴1ab ≥12,故1ab 的最小值为12(当且仅当a =1,b =2时等号成立). 答案 B4.(2020·日照检测)若实数x ,y 满足2x +2y =1,则x +y 的最大值是( ) A.-4B.-2C.2D.4解析 由题意得2x +2y ≥22x ·2y =22x +y (当且仅当x =y =-1时取等号),∴1≥22x +y ,∴14≥2x +y ,∴2-2≥2x +y ,∴x +y ≤-2.∴x +y 的最大值为-2. 答案 B5.(2020·菏泽模拟)若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是( ) A.43B.53C.2D.54解析 由x >0,y >0,得4x 2+9y 2+3xy ≥2·(2x )·(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +3xy ≤30,即xy ≤2,当且仅当x =3,y =233时取等号,∴xy 的最大值为2.答案 C6.(2020·滨州模拟)设x >0,y >0,x +2y =5,则(x +1)(2y +1)xy 的最小值为( )A.2 2B.2 3C.4 2D.4 3解析 ∵x >0,y >0,∴xy >0.∵x +2y =5,∴(x +1)(2y +1)xy =2xy +x +2y +1xy=2xy +6xy =2xy +6xy≥212=43, 当且仅当2xy =6xy, 即x =3,y =1或x =2,y =32时取等号.∴(x +1)(2y +1)xy的最小值为4 3.答案 D7.设a >0,若关于x 的不等式x +ax -1≥5在(1,+∞)上恒成立,则a 的最小值为( ) A.16B.9C.4D.2解析 在(1,+∞)上,x +a x -1=(x -1)+ax -1+1≥2(x -1)×a(x -1)+1=2a +1(当且仅当x =1+a 时取等号).由题意知2a +1≥5.所以a ≥4. 答案 C8.(2020·宜昌模拟)若对任意的x ∈[1,5],存在实数a ,使2x ≤x 2+ax +b ≤6x (a ∈R ,b >0)恒成立,则实数b 的最大值为( ) A.9B.10C.11D.12解析 已知当x ∈[1,5]时,存在实数a ,使2x ≤x 2+ax +b ≤6x 恒成立,则-x 2+2x ≤ax +b ≤-x 2+6x ,令f (x )=-x 2+2x (1≤x ≤5),g (x )=-x 2+6x (1≤x ≤5),作出函数f (x ),g (x )的图象如图所示,要使b 最大,且满足-x 2+2x ≤ax +b ≤-x 2+6x (1≤x ≤5),则直线y =ax +b 必过(1,5),且与函数y =f (x )的图象相切于点B .易得此时b =5-a ,此时的直线方程为y =ax +5-a .由⎩⎪⎨⎪⎧y =ax +5-a ,y =-x 2+2x ,得x 2+(a -2)x +5-a =0.∴Δ=(a -2)2-4(5-a )=0,解得a =-4或a =4(舍去),∴b max =5-(-4)=9.故选A. 答案 A二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分. 9.(2020·德州模拟)对于实数a ,b ,c ,下列命题中正确的是( ) A.若a >b ,则ac <bc B.若a <b <0,则a 2>ab >b 2 C.若c >a >b >0,则a c -a >bc -bD.若a >b ,1a >1b,则a >0,b <0解析 若c >0,则由a >b 得ac >bc ,A 错;若a <b <0,则a 2>ab ,ab >b 2,a 2>ab >b 2,B 正确;若c >a >b >0,则c -b >c -a >0,∴1c -a >1c -b >0,∴a c -a >bc -b ,C 正确;若a >b ,且a ,b 同号,则有1a <1b ,因此由a >b ,1a >1b 得a >0,b <0,D 正确.故选BCD.答案 BCD10.(2020·石家庄一模)若a ,b ,c ∈R ,且ab +bc +ca =1,则下列不等式成立的是( ) A.a +b +c ≤ 3 B.(a +b +c 2)≥3 C.1a +1b +1c≥2 3D.a 2+b 2+c 2≥1解析 由基本不等式可得a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,∴2(a 2+b 2+c 2)≥2(ab +bc +ca )=2,∴a 2+b 2+c 2≥1,当且仅当a =b =c =±33时,等号成立.∴(a +b +c )2=a 2+b 2+c 2+2(ab +bc+ca )≥3,∴a +b +c ≤-3或a +b +c ≥ 3.若a =b =c =-33,则1a +1b +1c=-33<2 3.因此,A ,C 错误,B ,D 正确.故选BD. 答案 BD11.(2020·济南一中期中)设正实数a ,b 满足a +b =1,则( ) A.1a +1b有最小值4 B.ab 有最小值12C.a +b 有最大值 2D.a 2+b 2有最小值12解析 对于A ,因为a ,b 是正实数,且a +b =1,所以有1a +1b =a +b a +a +b b =2+b a +ab ≥2+2b a ·ab=4(当且仅当a =b 时取等号),故A 正确;对于B ,因为a ,b 是正实数,所以有1=a +b ≥2ab ,即ab ≤12(当且仅当a =b 时取等号),故B 不正确;对于C ,因为a ,b 是正实数,所以有a +b2≤(a )2+(b )22=12,即a +b ≤2(当且仅当a =b 时取等号),故C 正确;对于D ,因为a ,b 是正实数,所以有a +b2≤a 2+b 22,即a 2+b 2≥12(当且仅当a =b 时取等号),故D 正确.故选ACD. 答案 ACD12.(2020·烟台模拟)下列说法正确的是( ) A.若x ,y >0,x +y =2,则2x +2y 的最大值为4 B.若x <12,则函数y =2x +12x -1的最大值为-1C.若x ,y >0,x +y +xy =3,则xy 的最小值为1D.函数y =1sin 2x +4cos 2x的最小值为9解析 对于A ,取x =32,y =12,可得2x +2y =32>4,A 错误;对于B ,y =2x +12x -1=-⎝ ⎛⎭⎪⎫1-2x +11-2x +1≤-2+1=-1,当且仅当x =0时等号成立,B 正确;对于C ,易知x =2,y =13满足等式x +y +xy =3,此时xy =23<1,C 错误;对于D ,y =1sin 2x +4cos 2x =⎝⎛⎭⎫1sin 2x +4cos 2x (sin 2x+cos 2x )=cos 2x sin 2x +4sin 2x cos 2x +5≥24+5=9.当且仅当cos2x =23,sin 2x =13时等号成立,D 正确.故选BD. 答案 BD三、填空题:本题共4小题,每小题5分,共20分.13.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.解析 由题设知a -3b =-6,又2a >0,8b >0,所以2a +18b ≥22a ·18b =2·2a -3b 2=14,当且仅当2a =18b ,即a =-3,b =1时取等号.故2a +18b 的最小值为14.答案 1414.(2020·深圳统测)已知x >0,y >0,且x +2y =xy ,若x +2y >m 2+2m 恒成立,则xy 的最小值为________,实数m 的取值范围为________.(本小题第一空2分,第二空3分)解析 ∵x >0,y >0,x +2y =xy ,∴2x +1y =1,∴1=2x +1y ≥22x ·1y,∴xy ≥8,当且仅当x =4,y =2时取等号,∴x +2y =xy ≥8,∴m 2+2m <8,解得-4<m <2. 答案 8 (-4,2)15.(2020·天津卷)已知a >0,b >0,且ab =1,则12a +12b +8a +b 的最小值为__________.解析 因为a >0,b >0,ab =1,所以原式=ab 2a +ab 2b +8a +b =a +b 2+8a +b≥2a +b 2·8a +b=4,当且仅当a +b 2=8a +b ,即a +b =4时,等号成立.故12a +12b +8a +b 的最小值为4.答案 416.(2020·江苏卷)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 解析 法一 由题意知y ≠0.由5x 2y 2+y 4=1,可得x 2=1-y 45y 2,所以x 2+y 2=1-y 45y 2+y 2=1+4y 45y 2=15⎝⎛⎭⎫1y 2+4y 2≥15×21y 2×4y 2=45,当且仅当1y 2=4y 2,即y =±22时取等号.所以x 2+y 2的最小值为45.法二 设x 2+y 2=t >0,则x 2=t -y 2. 因为5x 2y 2+y 4=1,所以5(t -y 2)y 2+y 4=1, 所以4y 4-5ty 2+1=0.由Δ=25t 2-16≥0,解得t ≥45⎝⎛⎭⎫t ≤-45舍去. 故x 2+y 2的最小值为45.答案 45。

高考数学二轮总复习第2篇经典专题突破核心素养提升专题2数列第2讲数列求和及其综合应用课件

高考数学二轮总复习第2篇经典专题突破核心素养提升专题2数列第2讲数列求和及其综合应用课件
n+1,n为奇数, 从而 bn=2n,n为偶数,
b1+b2+b3+…+b2n-1+b2n =(2+4+…+2n)+(22+24+…+22n) =n×(22+2n)+4×1(-1-4 4n) =n(n+1)+43(4n-1);
(2)∵cn=b2n-1·b2n=2n×22n=2n·4n, ∴Sn=2×41+4×42+6×43+…+2n·4n, 4Sn=2×42+4×43+6×44+…+2(n-1)·4n+2n·4n+1, 两式相减得,-3Sn=2×41+2×42+2×43+…+2×4n-2n×4n+1 =8(11--44n)-2n×4n+1
(1)求数列{an}的通项公式; (2)设 bn=24nn+an1,求数列{bnbn+1}的前 n 项和 Tn.
【解析】(1)当 n=1 时,a1=14. 因为 a1+4a2+42a3+…+4n-2an-1+4n-1an=n4,① 所以 a1+4a2+42a3+…+4n-2an-1=n-4 1(n≥2,n∈N*),② ①-②得 4n-1an=14(n≥2,n∈N*), 所以 an=41n(n≥2,n∈N*). 当 n=1 时也适合上式,故 an=41n(n∈N*).
核心拔头筹 考点巧突破
考点一 数列求和
1.裂项相消法就是把数列的每一项分解,使得相加后项与项之间 能够相互抵消,但在抵消的过程中,有的是依次项抵消,有的是间隔项 抵消.常见的裂项方式有:
n(n1+1)=1n-n+1 1; n(n1+k)=1k1n-n+1 k; n2-1 1=12n-1 1-n+1 1; 4n21-1=122n1-1-2n1+1.
②cn=4n3-n 2, Tn=23+362+1303+…+4n3-n 2,① 13Tn=322+363+1304+…+4n3-n 6+43nn-+12,②

高考数学二轮复习专题过关检测—数列(含解析)

高考数学二轮复习专题过关检测—数列(含解析)

高考数学二轮复习专题过关检测—数列一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021·内蒙古包头一模)在数列{a n }中,a 1=2,a n+1-a n -2=0,则a 5+a 6+…+a 14=( ) A.180B.190C.160D.1202.(2021·北京朝阳期末)已知等比数列{a n }的各项均为正数,且a 3=9,则log 3a 1+log 3a 2+log 3a 3+log 3a 4+log 3a 5=( ) A.52B.53C.10D.153.(2021·湖北荆州中学月考)设等比数列{a n }的前n 项和为S n ,若S10S 5=12,则S15S 5=( )A.12B.13C.23D.344.(2021·北京师大附属中学模拟)我国明代著名乐律学家明宗室王子朱载堉在《律学新说》中提出十二平均律,即是现代在钢琴的键盘上,一个八度音程从一个c 键到下一个c 1键的8个白键与5个黑键(如图),从左至右依次为:c ,#c ,d ,#d ,e ,f ,#f ,g ,#g ,a ,#a ,b ,c 1的音频恰成一个公比为√212的等比数列的原理,也即高音c 1的频率正好是中音c 的2倍.已知标准音a 的频率为440 Hz,则频率为220√2 Hz 的音名是( )A.dB.fC.eD.#d5.(2021·四川成都二诊)已知数列{a n}的前n项和S n=n2,设数列{1a n a n+1}的前n项和为T n,则T20的值为()A.1939B.3839C.2041D.40416.(2021·河南新乡二模)一百零八塔位于宁夏吴忠青铜峡市,是始建于西夏时期的喇嘛式实心塔群,是中国现存最大且排列最整齐的喇嘛塔群之一.一百零八塔,因塔群的塔数而得名,塔群随山势凿石分阶而建,由下而上逐层增高,依山势自上而下各层的塔数分别为1,3,3,5,5,7,…,该数列从第5项开始成等差数列,则该塔群最下面三层的塔数之和为()A.39B.45C.48D.517.(2021·陕西西安铁一中月考)在1到100的整数中,除去所有可以表示为2n(n∈N*)的整数,则其余整数的和是()A.3 928B.4 024C.4 920D.4 9248.已知函数f(n)={n2,n为奇数,-n2,n为偶数,且a n=f(n)+f(n+1),则a1+a2+a3+…+a100等于()A.0B.100C.-100D.10 200二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2021·辽宁沈阳三模)已知等比数列{a n}的前n项和S n=4n-1+t,则()A.首项a1不确定B.公比q=4C.a2=3D.t=-1410.(2021·山东临沂模拟)已知等差数列{a n}的前n项和为S n,公差d=1.若a1+3a5=S7,则下列结论一定正确的是()A.a5=1B.S n的最小值为S3C.S1=S6D.S n存在最大值11.已知数列{a n}是等差数列,其前30项和为390,a1=5,b n=2a n,对于数列{a n},{b n},下列选项正确的是() A.b10=8b5 B.{b n}是等比数列C.a1b30=105D.a3+a5+a7a2+a4+a6=20919312.(2021·广东广州一模)在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;……第n(n∈N*)次得到数列1,x1,x2,x3,…,x k,2.记a n=1+x1+x2+…+x k+2,数列{a n}的前n项和为S n,则()A.k+1=2nB.a n+1=3a n-3C.a n =32(n 2+3n )D.S n =34(3n+1+2n-3) 三、填空题:本题共4小题,每小题5分,共20分.13.(2021·山西太原检测)在等差数列{a n }中,若a 2,a 2 020为方程x 2-10x+16=0的两根,则a 1+a 1 011+a 2 021等于 .14.(2021·江苏如东检测)已知数列{a n }的前n 项和为S n ,且S n =2a n -2,则数列{log 2a n }的前n 项和T n = .15.将数列{2n-1}与{3n-2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为 .16.(2021·新高考Ⅰ,16)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20 dm ×12 dm 的长方形纸,对折1次共可以得到10 dm ×12 dm,20 dm ×6 dm 两种规格的图形,它们的面积之和S 1=240 dm 2,对折2次共可以得到5 dm ×12 dm,10 dm ×6 dm,20 dm ×3 dm 三种规格的图形,它们的面积之和S 2=180 dm 2,以此类推.则对折4次共可以得到不同规格图形的种数为 ;如果对折n 次,那么∑k=1nS k =dm 2.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)(2021·海南海口模拟)已知正项等比数列{a n },a 4=116,a 5a 7=256. (1)求数列{a n }的通项公式; (2)求数列{|log 2a n |}的前n 项和.18.(12分)(2021·全国甲,理18)已知数列{a n}的各项均为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等差数列;②数列{√S n}是等差数列;③a2=3a1.19.(12分)(2021·山东济宁二模)已知数列{a n}是正项等比数列,满足a3是2a1,3a2的等差中项,a4=16.(1)求数列{a n}的通项公式;(2)若b n=(-1)n log2a2n+1,求数列{b n}的前n项和T n.20.(12分)(2021·山东临沂一模)在①S nn =a n+12,②a n+1a n=2S n,③a n2+a n=2S n这三个条件中任选一个,补充在下面的问题中,并解答该问题.已知正项数列{a n}的前n项和为S n,a1=1,且满足.(1)求a n;(2)若b n=(a n+1)·2a n,求数列{b n}的前n项和T n.21.(12分)(2021·山东泰安一中月考)为了加强环保建设,提高社会效益和经济效益,某市计划用若干年更换1万辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,更换的新车为电力型车和混合动力型车.今年年初投入了电力型公交车128辆,混合动力型公交车400辆,计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入a 辆.(1)求经过n 年,该市被更换的公交车总数F (n );(2)若该市计划用7年的时间完成全部更换,求a 的最小值.22.(12分)(2021·广东广州检测)已知数列{a n }满足a 1=23,且当n ≥2时,a 1a 2…a n-1=2a n-2.(1)求证:数列{11−a n}是等差数列,并求数列{a n }的通项公式;(2)记T n =12a 1a 2…a n ,S n =T 12+T 22+…+T n 2,求证:当n ∈N *时,a n+1-23<S n .答案及解析1.B 解析 因为a n+1-a n =2,a 1=2,所以数列{a n }是首项为2,公差为2的等差数列.所以a n =2+(n-1)×2=2n.设{a n }的前n 项和为S n ,则S n =n(2+2n)2=n 2+n.所以a 5+a 6+…+a 14=S 14-S 4=190.2.C 解析 因为等比数列{a n }的各项均为正数,且a 3=9,所以log 3a 1+log 3a 2+log 3a 3+log 3a 4+log 3a 5=log 3(a 1a 2a 3a 4a 5)=log 3(a 35)=log 3(95)=log 3(310)=10.3.D 解析 由题意可知S 5,S 10-S 5,S 15-S 10成等比数列.∵S 10S 5=12,∴设S 5=2k ,S 10=k ,k ≠0,∴S 10-S 5=-k ,∴S 15-S 10=k2,∴S 15=3k2,∴S 15S 5=3k22k =34. 4.D 解析 因为a 的音频是数列的第10项,440=220√2×212=220√2×(2112)10−4,所以频率为220√2 Hz 是该数列的第4项,其音名是#d.5.C 解析 当n=1时,a 1=S 1=1;当n ≥2时,a n =S n -S n-1=n 2-(n-1)2=2n-1.而a 1=1也符合a n =2n-1,所以a n =2n-1.所以1an a n+1=1(2n-1)(2n+1)=12(12n-1-12n+1),所以T n =12(1−13+13-15+⋯+12n-1-12n+1)=121-12n+1=n2n+1,所以T 20=202×20+1=2041. 6.D 解析 设该数列为{a n },依题意,可知a 5,a 6,…成等差数列,且公差为2,a 5=5.设塔群共有n 层,则1+3+3+5+5(n-4)+(n-4)(n-5)2×2=108,解得n=12.故最下面三层的塔数之和为a 10+a 11+a 12=3a 11=3×(5+2×6)=51.7.D 解析 由2n ∈[1,100],n ∈N *,可得n=1,2,3,4,5,6,所以21+22+23+24+25+26=2×(1−26)1−2=126.又1+2+3+ (100)100×1012=5 050,所以在1到100的整数中,除去所有可以表示为2n (n ∈N *)的整数,其余整数的和为5 050-126=4 924.8.B 解析 由已知得当n 为奇数时,a n =n 2-(n+1)2=-2n-1,当n 为偶数时,a n =-n 2+(n+1)2=2n+1.所以a 1+a 2+a 3+…+a 100=-3+5-7+…+201=(-3+5)+(-7+9)+…+(-199+201)=2×50=100.9.BCD 解析 当n=1时,a 1=S 1=1+t ,当n ≥2时,a n =S n -S n-1=(4n-1+t )-(4n-2+t )=3×4n-2.由数列{a n }为等比数列,可知a 1必定符合a n =3×4n-2, 所以1+t=34,即t=-14.所以数列{a n }的通项公式为a n =3×4n-2,a 2=3, 数列{a n }的公比q=4.故选BCD . 10.AC 解析 由已知得a 1+3(a 1+4×1)=7a 1+7×62×1,解得a 1=-3.对于选项A,a 5=-3+4×1=1,故A 正确.对于选项B,a n =-3+n-1=n-4,因为a 1=-3<0,a 2=-2<0,a 3=-1<0,a 4=0,a 5=1>0,所以S n 的最小值为S 3或S 4,故B 错误.对于选项C,S6-S1=a2+a3+a4+a5+a6=5a4,又因为a4=0,所以S6-S1=0,即S1=S6,故C正确.对于选项D,因为S n=-3n+n(n-1)2=n2-7n2,所以S n无最大值,故D错误.11.BD解析设{a n}的公差为d,由已知得30×5+30×29d2=390,解得d=1629.∴a n=a1+(n-1)d=16n+12929.∵b n=2a n,∴b n+1b n =2a n+12a n=2a n+1-a n=2d,故数列{b n}是等比数列,B选项正确.∵5d=5×1629=8029≠3,∴b10b5=(2d)5=25d≠23,∴b10≠8b5,A选项错误.∵a30=a1+29d=5+16=21,∴a1b30=5×221>105,C选项错误.∵a4=a1+3d=5+3×1629=19329,a5=a1+4d=5+4×1629=20929,∴a3+a5+a7a2+a4+a6=3a53a4=a5a4=209193,D选项正确.12.ABD解析由题意,可知第1次得到数列1,3,2,此时k=1,第2次得到数列1,4,3,5,2,此时k=3,第3次得到数列1,5,4,7,3,8,5,7,2,此时k=7,第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时k=15,……第n次得到数列1,x1,x2,x3,…,x k,2,此时k=2n-1,所以k+1=2n,故A项正确.当n=1时,a 1=1+3+2=6,当n=2时,a 2=a 1+2a 1-3=3a 1-3,当n=3时,a 3=a 2+2a 2-3=3a 2-3,……所以a n+1=3a n -3,故B 项正确. 由a n+1=3a n -3,得a n+1-32=3(a n -32),又a 1-32=92,所以{a n -32}是首项为92,公比为3的等比数列,所以a n -32=92×3n-1=3n+12,即a n =3n+12+32,故C 项错误.S n =(322+32)+(332+32)+…+(3n+12+32)=343n+1+2n-3,故D 项正确.13.15 解析 因为a 2,a 2 020为方程x 2-10x+16=0的两根,所以a 2+a 2 020=10.又{a n }为等差数列,所以a 1+a 2 021=a 2+a 2 020=2a 1 011=10,即a 1 011=5. 所以a 1+a 1 011+a 2 021=3a 1 011=15. 14.n(n+1)2解析 因为S n =2a n -2,所以当n ≥2时,S n-1=2a n-1-2,两式相减,得a n =2a n -2a n-1,即a n =2a n-1.当n=1时,可得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,所以a n =2n . 所以log 2a n =n ,所以T n =n(n+1)2.15.3n 2-2n 解析 数列{2n-1}的项均为奇数,数列{3n-2}的所有奇数项均为奇数,所有偶数项均为偶数,并且显然{3n-2}中的所有奇数均能在{2n-1}中找到,所以{2n-1}与{3n-2}的所有公共项就是{3n-2}的所有奇数项,这些项从小到大排列得到的新数列{a n }是以1为首项,以6为公差的等差数列.所以{a n }的前n 项和为S n =n×1+n(n-1)2×6=3n 2-2n.16.5 240(3−n+32n) 解析 对折3次共可以得到52 dm ×12 dm,5 dm ×6 dm,10 dm ×3 dm,20dm ×32dm 四种规格的图形,面积之和S 3=4×30=120 dm 2;对折4次共可以得到54 dm ×12 dm,52dm ×6 dm,5 dm ×3 dm,10 dm ×32dm,20 dm ×34dm 五种规格的图形,S 4=5×15=75 dm 2.可以归纳对折n 次可得n+1种规格的图形,S n =(n+1)·2402ndm 2.则∑k=1nS k =S 1+S 2+…+S n =240221+322+423+…+n+12n . 记T n =221+322+423+…+n+12n , ① 则12T n =222+323+…+n2n +n+12n+1.②①与②式相减,得T n -12T n =12T n =221+122+123+…+12n −n+12n+1=32−n+32n+1. 故T n =3-n+32n .故∑k=1nS k =240·T n =240(3−n+32n).17.解 (1)设正项等比数列{a n }的公比为q (q>0).由等比数列的性质可得a 5a 7=a 62=256,因为a n >0,所以a 6=16.所以q 2=a6a 4=256,即q=16.所以a n =a 6q n-6=16×16n-6=16n-5. (2)由(1)可知log 2a n =log 216n-5=4n-20,设b n =|log 2a n |=|4n-20|,数列{b n }的前n 项和为T n . ①当n ≤5,且n ∈N *时,T n =n(16+20-4n)2=18n-2n 2;②当n ≥6,且n ∈N *时,T n =T 5+(4+4n-20)(n-5)2=18×5-2×52+(2n-8)(n-5)=2n 2-18n+80.综上所述,T n={18n-2n2,n≤5,且n∈N*,2n2-18n+80,n≥6,且n∈N*.18.证明若选①②⇒③,设数列{a n}的公差为d1,数列{√S n}的公差为d2.∵当n∈N*时,a n>0,∴d1>0,d2>0.∴S n=na1+n(n-1)d12=d12n2+(a1-d12)n.又√S n=√S1+(n-1)d2,∴S n=a1+d22(n-1)2+2√a1d2(n-1)=d22n2+(2√a1d2-2d22)n+d22-2√a1d2+a1,∴d12=d22,a1-d12=2√a1d2-2d22,d22-2√a1d2+a1=0,∴d22=d12,d2=√a1,即d1=2a1,∴a2=a1+d1=3a1.若选①③⇒②,设等差数列{a n}的公差为d.因为a2=3a1,所以a1+d=3a1,则d=2a1,所以S n=na1+n(n-1)2d=na1+n(n-1)a1=n2a1,所以√S n−√S n-1=n√a1-(n-1)√a1=√a1.所以{√S n}是首项为√a1,公差为√a1的等差数列.若选②③⇒①,设数列{√S n}的公差为d,则√S2−√S1=d,即√a1+a2−√a1=d.∵a2=3a1,∴√4a1−√a1=d,即d=√a1,∴√S n=√S1+(n-1)d=√a1+(n-1)√a1=n√a1,即S n =n 2a 1,当n ≥2时,a n =S n -S n-1=n 2a 1-(n-1)2a 1=(2n-1)a 1, 当n=1时,a 1符合式子a n =(2n-1)a 1,∴a n =(2n-1)a 1,n ∈N *,∴a n+1-a n =2a 1, 即数列{a n }是等差数列.19.解 (1)设正项等比数列{a n }的公比为q (q>0).因为a 3是2a 1,3a 2的等差中项,所以2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q ,因为a 1≠0,所以2q 2-3q-2=0,解得q=2或q=-12(舍去).所以a 4=a 1q 3=8a 1=16,解得a 1=2.所以a n =2×2n-1=2n . (2)由(1)可知a 2n+1=22n+1,所以b n =(-1)n log 2a 2n+1=(-1)n log 222n+1=(-1)n (2n+1), 所以T n =(-1)1×3+(-1)2×5+(-1)3×7+…+(-1)n (2n+1), -T n =(-1)2×3+(-1)3×5+(-1)4×7+…+(-1)n+1·(2n+1), 所以2T n =-3+2[(-1)2+(-1)3+…+(-1)n]-(-1)n+1(2n+1)=-3+2×1−(−1)n-12+(-1)n (2n+1)=-3+1-(-1)n-1+(-1)n (2n+1)=-2+(2n+2)(-1)n ,所以T n =(n+1)(-1)n -1. 20.解 (1)若选①,则2S n =na n+1.当n=1时,2S 1=a 2,又S 1=a 1=1,所以a 2=2. 当n ≥2时,2S n-1=(n-1)a n ,所以2a n =na n+1-(n-1)a n ,即(n+1)a n =na n+1,所以an+1n+1=a n n(n ≥2).又a 22=1,所以当n ≥2时,an n =1,即a n =n.又a 1=1符合上式,所以a n =n.若选②,则当n=1时,2S 1=a 2a 1,可得a 2=2. 当n ≥2时,2S n-1=a n a n-1,可得2a n =a n a n+1-a n a n-1. 由a n >0,得a n+1-a n-1=2.又a 1=1,a 2=2,所以{a 2n }是首项为2,公差为2的等差数列,{a 2n-1}是首项为1,公差为2的等差数列,所以a n =n.若选③,因为a n 2+a n =2S n ,所以当n ≥2时,a n-12+a n-1=2S n-1,两式相减得a n 2+a n -a n-12-a n-1=2a n ,即(a n +a n-1)(a n -a n-1-1)=0.由a n >0,得a n -a n-1-1=0,即a n -a n-1=1,所以{a n }是首项为1,公差为1的等差数列,所以a n =n.(2)由(1)知b n =(n+1)·2n ,所以T n =2×2+3×22+4×23+…+(n+1)·2n , 2T n =2×22+3×23+4×24+…+(n+1)·2n+1, 两式相减,得-T n =4+22+23+ (2)-(n+1)·2n+1=4+4(1−2n-1)1−2-(n+1)·2n+1=4-4+2n+1-(n+1)·2n+1=-n·2n+1,所以T n =n·2n+1.21.解 (1)设a n ,b n 分别为第n 年投入的电力型公交车、混合动力型公交车的数量,依题意,数列{a n }是首项为128,公比为1+50%=32的等比数列,数列{b n }是首项为400,公差为a 的等差数列.所以数列{a n }的前n 项和S n =128×[1−(32)n ]1−32=256[(32)n-1],数列{b n }的前n 项和T n =400n+n(n-1)2a.所以经过n 年,该市被更换的公交车总数F (n )=S n +T n =256[(32)n-1]+400n+n(n-1)2a.(2)若用7年的时间完成全部更换,则F (7)≥10 000, 即256[(32)7-1]+400×7+7×62a ≥10 000,即21a ≥3 082,所以a ≥3 08221.又a ∈N *,所以a 的最小值为147.22.证明 (1)因为当n ≥2时,a 1a 2…a n-1=2a n-2,所以a 1a 2…a n =2an+1-2,两式相除,可得a n =1a n+1-11a n-1,所以11−a n=a n+11−a n+1=11−an+1-1,所以11−an+1−11−a n=1(n ≥2).又a 1=23,所以a 2=34,11−a 1=3,11−a 2=4,所以11−a 2−11−a 1=1,所以11−an+1−11−a n=1(n ∈N *),所以数列{11−a n}是首项为3,公差为1的等差数列.所以11−a n=3+(n-1)×1=n+2,所以a n =n+1n+2.(2)因为T n =12a 1a 2…a n =12×23×34×…×n+1n+2=1n+2,所以T n 2=1(n+2)2>1(n+2)(n+3)=1n+2−1n+3,所以S n=T12+T22+…+T n2>13−14+14−15+…+1n+2−1n+3=13−1n+3=1-1n+3−23=n+2 n+3−23=a n+1-23,所以当n∈N*时,a n+1-23<S n.。

(2021年整理)高三数学第二轮专题复习系列(2)--函数

(2021年整理)高三数学第二轮专题复习系列(2)--函数

(完整版)高三数学第二轮专题复习系列(2)--函数编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)高三数学第二轮专题复习系列(2)--函数)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)高三数学第二轮专题复习系列(2)--函数的全部内容。

(完整版)高三数学第二轮专题复习系列(2)--函数编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)高三数学第二轮专题复习系列(2)—-函数这篇文档能够给您的工作和学习带来便利。

同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力.本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <(完整版)高三数学第二轮专题复习系列(2)-—函数> 这篇文档的全部内容。

高三数学第二轮专题复习系列(2)——函数一、本章知识结构:二、高考要求(1)了解映射的概念,理解函数的概念.(2)了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图像的绘制过程.(3)了解反函数的概念及互为反函数的函数图像间关系,会求一些简单函数的反函数.(4)理解分数指数的概念,掌握有理指数幂的运算性质.掌握指数函数的概念、图像和性质.(5)理解对数的概念,掌握对数的运算性质.掌握对数函数的概念、图像和性质.(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.三、热点分析函数是高考数学的重点内容之一,函数的观点和思想方法贯穿整个高中数学的全过程,包括解决几何问题。

2021新高考数学二轮总复习学案:第1讲 选择题、填空题的解法含解析

2021新高考数学二轮总复习学案:第1讲 选择题、填空题的解法含解析

第1讲选择题、填空题的解法方法思路概述高考选择题、填空题注重多个知识点的小型综合,渗透各种数学思想和方法,体现利用基础知识深度考基础、考能力的导向;使作为中低档题的选择题、填空题成为具备较佳区分度的基本题型.因此能否在选择题、填空题上获取高分,对高考数学成绩影响重大.解答选择题、填空题的基本策略是准确、迅速.(1)解题策略:小题巧解,不需“小题大做”,在准确、迅速、合理、简洁的原则下,充分利用题设和选择支这两方面提供的信息作出判断.先定性后定量,先特殊后一般,先间接后直接,多种思路选最简.对于选择题可先排除后求解,既熟悉通法又结合选项支中的暗示及知识能力,运用特例法、筛选法、图解法等技巧求解.(2)解决方法:主要分直接法和间接法两大类,具体方法为直接法,特值、特例法,筛选法,数形结合法,等价转化法,构造法,代入法等.解法分类指导方法一直接法直接法,就是直接从题设的条件出发,运用有关的概念、性质、公理、定理、法则和公式等,通过严密的推理和准确的计算,然后对照题目所给出的选择支“对号入座”作出相应的选择.多用于涉及概念、性质的辨析或运算较简单的定性题目.【例1】(1)(2020山东泰安一模,2)已知复数=1-b i,其中a,b∈R,i是虚数单位,则|a+b i|=()A.-1+2iB.1C.5D.(2)(多选)(2020山东济宁模拟,11)已知函数f(x)=cos-2sin cos(x∈R),现给出下列四个命题,其中正确的是()A.函数f(x)的最小正周期为2πB.函数f(x)的最大值为1C.函数f(x)在上单调递增D.将函数f(x)的图象向左平移个单位长度,得到的函数解析式为g(x)=sin 2x【对点训练1】(1)(2020福建福州模拟,理6)已知数列{a n}为等差数列,若a1,a6为函数f(x)=x2-9x+14的两个零点,则a3a4=()A.-14B.9C.14D.20(2)(2020浙江,17)已知平面单位向量e1,e2满足|2e1-e2|≤,设a=e1+e2,b=3e1+e2,向量a,b的夹角为θ,则cos2θ的最小值是.方法二特值、特例法特值、特例法是在题设普遍条件都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,从而“小题小做”或“小题巧做”.当题目已知条件中含有某些不确定的量时,可将题目中变化的不定量选取一些符合条件的特殊值(或特殊函数,特殊角,特殊数列,特殊图形,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出探求的结论.这样可大大地简化推理、论证的过程.【例2】(1)(2020山东模考卷,8)若a>b>c>1,且ac<b2,则()A.log a b>log b c>log c aB.log c b>log b a>log a cC.log c b>log a b>log c aD.log b a>log c b>log a c(2)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,=4,=-1,则=.【对点训练2】(1)(2020浙江高考压轴卷,8)已知a,b∈R,且a>b,则()A. B.sin a>sin bC. D.a2>b2(2)在平面直角坐标系中,设A,B,C是曲线y=上三个不同的点,且D,E,F分别为BC,CA,AB的中点,则过D,E,F三点的圆一定经过定点.方法三等价转化法在应用等价转化法解决问题时,没有一个统一的模式去进行.可以在数与数、形与形之间进行转换;可以在宏观上进行等价转换;也可以在函数、方程、不等式之间进行等价转化.但都需要保持命题的真假不变.等价转化法的转化原则是将陌生的问题转化为熟悉的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为直观的问题,比如从超越式到代数式、从无理式到有理式,从分式到整式.【例3】(1)函数f(x)=有且只有一个零点的充分不必要条件是()A.a<0B.0<a<C.<a<1D.a≤0或a>1(2)已知f(x)与函数y=-a sin x关于点,0对称,g(x)与函数y=e x关于直线y=x对称,若对任意x1∈(0,1],存在x2∈,2,使g(x1)-x1≤f(x2)成立,则实数a的取值范围是()A.-∞,B.,+∞C.-∞,D.,+∞【对点训练3】(1)在四面体P-ABC中,△ABC为等边三角形,边长为3,PA=3,PB=4,PC=5,则四面体P-ABC的体积为()A.3B.2C. D.(2)(2020福建福州模拟,16)已知函数f(x)=ax-ln x-1,g(x)=,用max{m,n}表示m,n中的最大值,设φ(x)=max{f(x),g(x)}.若φ(x)≥在(0,+∞)上恒成立,则实数a的取值范围为.方法四数形结合法数形结合就是根据数学问题的题设和结论之间的内在联系,既分析其数量关系,又揭示其几何意义,使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法.每个几何图形中蕴含着一定的数量关系,而数量关系常常又通过图形的直观性作出反映和描述,数与形之间可以相互转化,将问题化难为易,化抽象为具体.数形结合的思想方法通过借数解形、以形助数,能使某些较复杂的数学问题迎刃而解.【例4】(1)(2020山东模考卷,6)已知点A为曲线y=x+(x>0)上的动点,B为圆(x-2)2+y2=1上的动点,则|AB|的最小值是()A.3B.4C.3D.4(2)(2020山东,5)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%(2)(2020山东,5)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%【对点训练4】(1)已知函数f(x)=若存在实数a,b,c,满足f(a)=f(b)=f(c),其中c>b>a,则(a+b)f(c)的取值范围是()A.(24,36)B.(48,54)C.(24,27)D.(48,+∞)(2)(多选)(2020山东济南一模,12)已知函数f(x)=(sin x+cos x)|sin x-cos x|,下列说法正确的是()A.f(x)是周期函数B.f(x)在区间上是增函数C.若|f(x1)|+|f(x2)|=2,则x1+x2=(k∈Z)D.函数g(x)=f(x)+1在区间[0,2π]上有且仅有1个零点方法五构造法利用已知条件和结论的特殊性构造出新的数学模型,从而简化推理与计算过程,使较复杂的数学问题得到简捷的解决.构造法是建立在观察联想、分析综合的基础之上的,从曾经遇到过的类似问题中寻找灵感,构造出相应的函数、概率、几何等具体的数学模型,使问题得到快速解决.【例5】(1)(2020全国Ⅱ,理11)若2x-2y<3-x-3-y,则()A.ln(y-x+1)>0B.ln(y-x+1)<0C.ln|x-y|>0D.ln|x-y|<0(2)(2020山东烟台模拟,16)设定义域为R的函数f(x)满足f'(x)>f(x),则不等式e x-1f(x)<f(2x-1)的解集为.【对点训练5】(1)(2020天津和平区一模,7)函数f(x)是定义在R上的奇函数,对任意两个正数x1,x2(x1<x2),都有,记a=25f(0.22),b=f(1),c=-log53(lo5),则a,b,c大小关系为()A.c>b>aB.b>c>aC.a>b>cD.a>c>b(2)(2020浙江,9)已知a,b∈R且ab≠0,对于任意x≥0均有(x-a)(x-b)(x-2a-b)≥0,则()A.a<0B.a>0C.b<0D.b>0方法六排除法(针对选择题)数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的选项,找到符合题意的正确结论.排除法(又叫筛选法)就是通过观察分析或推理运算各项提供的信息或通过特例,对于错误的选项逐一剔除,从而获得正确的结论.【例6】(1)(2020全国Ⅱ,文5)已知单位向量a,b的夹角为60°,则在下列向量中,与b垂直的是()A.a+2bB.2a+bC.a-2bD.2a-b(2)(2020浙江高考压轴卷,7)函数f(x)=(其中e为自然对数的底数)的图象大致为()【对点训练6】(1)(多选)(2020山东联考,9)在下列函数中,最小值是2的是()A.y=x+B.y=2x+2-xC.y=sin x+,x∈D.y=x2-2x+3(2)(2020浙江,4)函数y=x cos x+sin x在区间[-π,π]上的图象可能是()方法七估算法选择题提供了正确的选择支,解答又无需过程.因此,有些题目,不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量,但是加强了思维的层次.【例7】(2019全国Ⅰ,文4,理4)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是≈0.618,称为黄金分割比例,著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105 cm,头顶至脖子下端的长度为26 cm,则其身高可能是()A.165 cmB.175 cmC.185 cmD.190 cm【对点训练7】已知正数x,y满足2x+y<4,则的取值范围是()A.B.C.∪(5,+∞)D.∪[5,+∞)专题方法归纳1.解选择题、填空题的基本方法比较多,但大部分选择题、填空题的解法是直接法,在解题时要根据题意灵活运用上述一种或几种方法“巧解”,在“小题小做”“小题巧做”上做文章,切忌盲目地采用直接法.2.由于选择题供选选项多、信息量大、正误混杂、迷惑性强,稍不留心就会误入“陷阱”,应该从正反两个方向肯定、否定、筛选、验证,既谨慎选择,又大胆跳跃.3.解填空题不要求求解过程,从而结论是判断正确的唯一标准,因此解填空题时要注意以下几个方面:(1)要认真审题,明确要求,思维严谨、周密,计算要准确;(2)要尽量利用已知的定理、性质及已有的结论;(3)要重视对所求结果的检验.4.作为平时训练,解完一道题后,还应考虑一下能不能用其他方法进行“巧算”,并注意及时总结,这样才能有效地提高解题能力.第1讲选择题、填空题的解法解法分类指导【例1】(1)D(2)BD解析(1)由=1-b i,得2-a i=i(1-b i)=b+i,∴a=-1,b=2,则a+b i=-1+2i,∴|a+b i|=|-1+2i|=,故选D.(2)由题得,f(x)=cos-sin sin2x-cos2x=sin,∴函数f(x)的最小正周期为π,最大值为1,故A不正确,B正确;当x时,2x-,函数f(x)在上先单调递减后单调递增,故C错误;将函数f(x)的图象向左平移个单位长度,得到的函数解析式为g(x)=f=sin2x,故D正确.对点训练1(1)D(2)解析(1)令f(x)=0,则方程x2-9x+14=0,解得方程的两个根为2,7.∵等差数列{a n}中,a1,a6为函数f(x)=x2-9x+14的两个零点,∴a1=2,a6=7,或a1=7,a6=2,当a1=2,a6=7时,d==1,则a3=4,a4=5,所以a3a4=20;当a1=7,a6=2时,d==-1,则a3=5,a4=4,所以a3a4=20.故选D.(2)|2e1-e2|2,解得e1·e2又e1·e2≤1,所以e1·e2≤1.cosθ==,设e1·e2=x,则x≤1.cos2θ=,得cos2,所以cos2θ的最小值是【例2】(1)B(2)解析(1)因为a>b>c>1,且ac<b2,令a=16,b=8,c=2,则log c a=4>1>log a b,故A,C错;log c b=3>log b a=,故D错,B正确.(2)所求的问题是个定值问题,“在△ABC中”和在特殊△ABC中所求的值相等,所以将所给条件“在△ABC中”特殊化为“在等边△ABC中”.如下图,=(x,3y)·(-x,3y)=-x2+9y2=4;=(x,y)·(-x,y)=-x2+y2=-1;解得x2=,y2=则=(x,2y)(-x,2y)=-x2+4y2=对点训练2(1)C(2)(1,0)解析(1)对于A,取a=1,b=-1,则a>b成立,但,故A 错误;对于B,取a=π,b=0,则a>b 成立,但sin π=sin0,故B 错误; 对于C,因y=在R 上单调递减,若a>b ,则,故C 正确;对于D,取a=1,b=-2,则a>b 成立,但a 2<b 2,故D 错误. (2)曲线y=的对称中心为(1,0),设过对称中心的直线与曲线交于A ,B 两点,则A ,B 的中点为对称中心(1,0),所以过D ,E ,F 三点的圆一定经过定点(1,0). 【例3】(1)A (2)C 解析(1)当x>0时,函数f (x )过点(1,0),又函数f (x )有且只有一个零点,可推出,当x ≤0时,函数y=-2x +a 没有零点,即在(-∞,0]内,函数y=2x 与直线y=a 无公共点.由数形结合,可得a ≤0或a>1.又因{a|a<0}⫋{a|a ≤0或a>1},故选A .(2)依题意得f (x )=a sin(1-x ),g (x )=ln x ,设h (x )=g (x )-x=ln x-x ,x ∈(0,1],∵h'(x )=-1≥0,∴h (x )在(0,1]上单调递增, ∴h (x )max =h (1)=ln1-1=-1. 故原题等价于存在x ∈,2,使得a sin(1-x )≥-1,∵sin(1-x )≤0,∴a 故只需a 而y=在x ∈,2上单调递减,而,∴a 故选C .对点训练3(1)C (2) 解析(1)如图,延长CA 至D ,使得AD=3,连接DB ,PD ,因为AD=AB=3,故△ADB 为等腰三角形.又∠DAB=180°-∠CAB=120°,故∠ADB=(180°-120°)=30°,所以∠ADB+∠DCB=90°,即∠DBC=90°,故CB ⊥DB.因为PB=4,PC=5,BC=3,所以PC 2=PB 2+BC 2,所以CB ⊥PB.因为DB ∩PB=B ,DB ⊂平面PBD ,PB ⊂平面PBD ,所以CB ⊥平面PBD.所以V 三棱锥P-CBD=V 三棱锥C-PBD =CB×S △PBD .因为A 为DC 的中点,所以V 三棱锥P-ABC =V 三棱锥P-CBD =3×S △PBD =S △PBD .因为DA=AC=AP=3,故△PDC 为直角三角形,所以PD=又DB=AD=3,而PB=4,故DB 2=PD 2+PB 2,即△PBD 为直角三角形,所以S △PBD =4=2,所以V 三棱锥P-ABC =故选C .(2)当x ∈(0,3)时,g (x )=,当x ∈[3,+∞)时,g (x )=,所以φ(x )在[3,+∞)必成立,问题转化为φ(x )在(0,3)恒成立,由ax-ln x-1恒成立,可得a 在x ∈(0,3)恒成立,设h (x )=,x ∈(0,3),则h'(x )=,当0<x<1时,h'(x )>0,当1<x<3时,h'(x )<0,所以h (x )在(0,1)内单调递增,在(1,3)内单调递减,所以h (x )max =h (1)=,所以a,故实数a 的取值范围为【例4】(1)A (2)C 解析(1)作出对勾函数y=x+(x>0)的图象如图,由图象知函数的最低点坐标为A (2,4),圆心坐标为C (2,0),半径R=1,则由图象知当A ,B ,C 三点共线时,|AB|最小,此时最小值为4-1=3,故选A .(2)设既喜欢足球又喜欢游泳的学生比例数为x.由维恩图可知,82%-x+60%=96%,解得x=46%,故选C.对点训练4(1)B(2)AC解析(1)画出f(x)=的图象,如图所示.∵a<b<c,∴由二次函数的性质可得a+b=6.由图可知,4<c<log29+1,∴f(4)<f(c)<f(log29+1),f(4)=8,f(log29+1)==9,∴8<f(c)<9,48<6f(c)<54,即(a+b)f(c)的取值范围是(48,54),故选B.(2)由题得,f(x)=(sin x+cos x)|sin x-cos x|==图象如图所示,由图可知,f(x)是周期为2π的周期函数,故A正确;f(x)在区间上不是单调函数,故B错误;若|f(x1)|+|f(x2)|=2,则x1+x2=(k∈Z),故C正确;函数g(x)=f(x)+1在区间[0,2π]上有且仅有2个零点,故D错误.故选AC.【例5】(1)A(2)(1,+∞)解析(1)∵2x-2y<3-x-3-y,∴2x-3-x<2y-3-y.∵f(t)=2t-3-t在R上为增函数,且f(x)<f(y),∴x<y,∴y-x>0,∴y-x+1>1,∴ln(y-x+1)>ln1=0.故选A.(2)设F(x)=,则F'(x)=f'(x)>f(x),∴F'(x)>0,即函数F(x)在定义域上单调递增.∵e x-1f(x)<f(2x-1),,即F(x)<F(2x-1),∴x<2x-1,即x>1,∴不等式e x-1f(x)<f(2x-1)的解集为(1,+∞).对点训练5(1)C(2)C解析(1)构造函数g(x)=,则函数在(0,+∞)内单调递减,∵0.22<1<log35,则f(0.22)>f(1)>f(log35)=-f(lo5),∵a=25f(0.22),b=f(1),c=-log53×f(lo5),∴25f(0.22)>f(1)>-log53×f(lo5),∴a>b>c.(2)当a<0时,在x≥0上,x-a≥0恒成立,所以只需满足(x-b)(x-2a-b)≥0恒成立,此时2a+b<b,由二次函数的图象可知,只有b<0时,满足(x-b)(x-2a-b)≥0,b>0不满足条件;当b<0时,在[0,+∞)上,x-b≥0恒成立,所以只需满足(x-a)(x-2a-b)≥0恒成立,此时两根分别为x=a和x=2a+b,①当a+b>0时,此时0<a<2a+b,当x≥0时,(x-a)·(x-2a-b)≥0不恒成立;②当a+b<0时,此时2a+b<a,若满足(x-a)(x-2a-b)≥0恒成立,只需满足a<0;③当a+b=0时,此时2a+b=a>0,满足(x-a)(x-2a-b)≥0恒成立.综上可知,满足(x-a)(x-b)(x-2a-b)≥0在x≥0恒成立时,只有b<0.故选C.【例6】(1)D(2)A解析(1)由题意可知,a·b=|a|·|b|cos60°=对于A,(a+2b)·b=a·b+2b2=0,不符合题意;对于B,(2a+b)·b=2a·b+b2=2≠0,不符合题意;对于C,(a-2b)·b=a·b-2b2=-0,不符合题意;对于D,(2a-b)·b=2a·b-b2=0,故2a-b与b垂直.故选D.(2)∵f(-x)==f(x),∴f(x)是偶函数,故f(x)图象关于y轴对称,排除C,D;又x=1时,f(1)=<0,排除B,故选A.对点训练6(1)BD(2)A解析(1)对于A,若x<0,则最小值不为2,故A错误;对于B,y=2x+2-x≥2,当且仅当x=0时等号成立,故B正确;对于C,对x,y=sin x+2,但等号成立需sin x=,方程无解,故C错误;对于D,y=x2-2x+3=(x-1)2+2≥2,当x=1时取等号,故D正确.故选BD.(2)因为f(-x)=(-x)cos(-x)+sin(-x)=-(x cos x+sin x)=-f(x),x∈[-π,π],所以函数f(x)是奇函数,故排除C,D,当x时,x cos x+sin x>0,所以排除B.故选A.【例7】B解析设人体脖子下端至肚脐长为x cm,则,得x≈42.07,又其腿长为105cm,所以其身高约为42.07+105+26=173.07(cm),接近175cm.故选B.对点训练7A解析作出表示的可行域如图所示,直线2x+y=4与坐标轴的交点为B(2,0),C(0,4).设z=,∵A(0,0), ∴z A=1;∵B(2,0),∴z B=;∵C(0,4),∴z C=5.由题知,无法取到B,C两点,的取值范围是。

2021届山东省高考数学大二轮专题复习讲义(新高考)专题2第3讲 导数的热点问题

2021届山东省高考数学大二轮专题复习讲义(新高考)专题2第3讲 导数的热点问题

第3讲导数的热点问题「考情研析」利用导数探求函数的极值、最值是函数的基本问题,高考中常与函数的零点、方程的根及不等式相结合,难度较大.解题时要注意分类讨论思想和转化与化归思想的应用.热点考向探究考向1利用导数讨论方程根的个数例1(2020·海南省海口市模拟)已知函数f(x)=k(x-1)e x,其中k≠0.(1)求f(x)的单调区间;(2)若k>0,讨论关于x的方程|ln x|=f(x)在区间(0,2)上实根的个数.根据参数确定函数零点的个数,基本思想也是“数形结合”,即通过研究函数的性质(单调性、极值、函数值的极限位置等)大致勾画出函数图象,然后通过函数性质得出其与x轴交点的个数或两个函数图象交点的个数,基本步骤是“先数后形”.已知函数f(x)=ln x2-ax+bx(a>0,b>0),对任意x>0,都有f(x)+f⎝⎛⎭⎪⎫4x=0.(1)讨论f(x)的单调性;(2)当f(x)存在三个不同的零点时,求实数a的取值范围.考向2利用导数证明不等式例2(2020·山东省泰安市三模)已知函数f(x)=ln x-ax+1有两个零点.(1)求a的取值范围;(2)设x1,x2是f(x)的两个零点,证明:f′(x1·x2)<1-a.利用导数方法证明不等式的基本思想是构造函数,通过研究函数的单调性、极值、最值,通过一般函数值与特殊值的比较得出所证不等式.已知函数f(x)=λln x-e-x(λ∈R).(1)若函数f(x)是单调函数,求λ的取值范围;(2)求证:当0<x1<x2时,都有e1-x2-e1-x1>1-x2 x1.考向3利用导数研究不等式恒成立问题角度1函数不等式恒成立问题例3(2020·河南省开封市三模)已知函数f(x)=ax e x-ln x+b在x=1处的切线方程为y=(2e-1)x-e.(1)求a,b的值;(2)若f(x)≥mx恒成立,求实数m的取值范围.利用导数求解不等式恒成立问题中参数的方法(1)分离参数法:若能够将参数分离,且分离后含x变量的函数关系式的最值易求,则用分离参数法.即①λ≥f(x)恒成立,则λ≥f(x)max;②λ≤f(x)恒成立,则λ≤f(x)min.(2)最值转化法:若参数不易分离或分离后含x变量的函数关系式的最值不易求,则常用最值转化法.可通过求最值建立关于参数的不等式求解.如f(x)≥0,则只需f(x)min≥0.(2020·辽宁省大连市一模)设函数f(x)=x-1x,g(x)=t ln x(t∈R).(1)讨论函数h(x)=f(x)+g(x)的单调区间;(2)若当x∈(0,1)时,f(x)的图象恒在函数g(x)的图象的下方,求正实数t的取值范围.角度2含量词的不等式问题例4(2020·山东省聊城市模拟)已知函数f(x)=x2e ax+1+1-a(a∈R),g(x)=e x-1-x.(1)求函数f(x)的单调区间;(2)∀a∈(0,1),是否存在实数λ,∀m∈[a-1,a],∃n∈[a-1,a],使f[(n)]2-λg(m)<0成立?若存在,求λ的取值范围;若不存在,请说明理由.含量词的不等式问题的解法(1)f(x)>g(x)对一切x∈I恒成立⇔[f(x)-g(x)]min>0(x∈I).(2)存在x∈I,使f(x)>g(x)成立⇔[f(x)-g(x)]max>0(x∈I).(3)对任意x1,x2∈D,使f(x1)≥g(x2)⇔f(x)min≥g(x)max.(4)存在x1,x2∈D,使f(x1)≥g(x2)⇔f(x)max≥g(x)min.(5)对任意x1∈D1,存在x2∈D2,使f(x1)≥g(x2)⇔f(x)min≥g(x)min(f(x)定义域为D1,g(x)定义域为D2).已知函数f(x)=ln x-ax,g(x)=ax2+1,其中e为自然对数的底数.(1)讨论函数f(x)在区间[1,e]上的单调性;(2)已知a∉(0,e),若对任意x1,x2∈[1,e],有f(x1)>g(x2),求实数a的取值范围.真题押题『真题检验』1.(2020·新高考卷Ⅰ)已知函数f(x)=a e x-1-ln x+ln a.(1)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a的取值范围.2.(2020·全国卷Ⅰ)已知函数f(x)=e x+ax2-x.(1)当a=1时,讨论f(x)的单调性;(2)当x≥0时,f(x)≥12x3+1,求a的取值范围.3.(2020·全国卷Ⅰ)已知函数f(x)=e x-a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f (x )有两个零点,求a 的取值范围.4.(2020·全国卷Ⅱ)已知函数f (x )=sin 2x sin2x .(1)讨论f (x )在区间(0,π)的单调性;(2)证明:|f (x )|≤338;(3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22nx ≤3n4n . 5.(2020·全国卷Ⅲ)已知函数f (x )=x 3-kx +k 2.(1)讨论f (x )的单调性;(2)若f (x )有三个零点,求k 的取值范围.『押题』6.已知函数f (x )=e x ,h (x )=x +ln x ,g (x )=(x -a +1)e a .(1)设F (x )=xf (x )-ah (x ),讨论F (x )极值点的个数;(2)判断方程f (x )=g (x )的实数根的个数,并证明e 2+e 4+e 6+…+e 2n ≥n 2+3n 2e .7.已知函数f (x )=x ln x +ax 在x =x 0处取得极小值-1.(1)求实数a 的值;(2)设g (x )=xf (x )+b (b >0),讨论函数g (x )的零点个数.专题作业1.已知函数f (x )=(x -1)e x .(1)求函数f (x )的单调区间和零点;(2)若f (x )≥ax -e 恒成立,求a 的取值范围.2.(2020·江西省重点中学协作体高三第一次联考)已知函数f (x )=sin x +ln x -1.(1)求函数f (x )在点⎝ ⎛⎭⎪⎫π2,ln π2处的切线方程; (2)当x ∈(0,π)时,讨论函数f (x )的零点个数.3.已知函数f (x )=ax 2+ln x .(1)讨论f (x )的单调性;(2)若∃x ∈(0,+∞)使f (x )>0成立,求a 的取值范围.4.(2020·山东省潍坊市二模)已知函数f (x )=1x +a ln x ,g (x )=e x x .(1)讨论函数f (x )的单调性;(2)证明:a =1时,f (x )+g (x )-⎝ ⎛⎭⎪⎫1+e x 2ln x >e. 5.已知函数f (x )=a ln x -x +2,a ∈R .(1)求函数f (x )的单调区间;(2)若对任意的x 1∈[1,e],总存在x 2∈[1,e],使得f (x 1)+f (x 2)=4,求实数a 的值.6.已知函数f (x )=e x -ln (x +1)-a 的图象在x =0处与x 轴相切.(1)求f (x )的解析式,并讨论其单调性;(2)若x >t ≥0,证明:e x -t +ln (t +1)>ln (x +1)+1.7.已知函数f (x )=x -a e x +b (a >0,b ∈R ).(1)求f (x )的最大值;(2)若函数f (x )有两个不同的零点x 1,x 2,证明:x 1+x 2<-2ln a .8.已知函数f (x )=e xx 2-mx +1. (1)当m ∈(-2,2)时,求函数f (x )的单调区间;(2)若m ∈⎝ ⎛⎦⎥⎤0,12,则当x ∈[1,m +1]时,记f (x )的最小值为M ,g (x )=x 的最大值为N ,判断M 与N 的大小关系,并写出判断过程.第3讲 导数的热点问题「考情研析」 利用导数探求函数的极值、最值是函数的基本问题,高考中常与函数的零点、方程的根及不等式相结合,难度较大.解题时要注意分类讨论思想和转化与化归思想的应用.热点考向探究考向1 利用导数讨论方程根的个数例1 (2020·海南省海口市模拟)已知函数f (x )=k (x -1)e x ,其中k ≠0.(1)求f (x )的单调区间;(2)若k >0,讨论关于x 的方程|ln x |=f (x )在区间(0,2)上实根的个数.解 (1)由条件,得f ′(x )=k e x -k e x (x -1)e 2x=k (2-x )e x , 令f ′(x )=0,得x =2.当k >0时,由f ′(x )>0,得x <2,由f ′(x )<0,得x >2.所以f (x )的单调递增区间是(-∞,2),单调递减区间是(2,+∞).当k <0时,由f ′(x )>0,得x >2,由f ′(x )<0,得x <2.所以f (x )的单调递增区间是(2,+∞),单调递减区间是(-∞,2).(2)因为|ln 1|=f (1)=0,所以x =1是方程|ln x |=f (x )的一个实根.当0<x <1时,由(1)知f (x )单调递增,所以f (x )<f (1)=0.而|ln x |=-ln x >0,所以方程|ln x |=f (x )在区间(0,1)上无实根.当1<x <2时,|ln x |=ln x .设F (x )=ln x -k (x -1)e x ,则F ′(x )=1x -2k -kx e x =e x +kx 2-2kx x e x . 设u (x )=e x +kx 2-2kx ,当1<x <2时,u ′(x )=e x +2kx -2k >0,所以u (x )在(1,2)上单调递增.①当u (1)=e -k ≥0,即k ≤e 时,在区间(1,2)上,总有u (x )>u (1)≥0,从而F ′(x )>0,所以F (x )在(1,2)上单调递增,F (x )>F (1)=0,即原方程在(1,2)上无实根.②当u (1)=e -k <0,即k >e 时,因为u (2)=e 2>0,所以存在x 0∈(1,2),满足u (x 0)=0,所以在(1,x 0)上,u (x )<0,F (x )单调递减,在(x 0,2)上,u (x )>0,F (x )单调递增,又因为F (1)=0,F (2)=ln 2-k e 2,所以当F (2)>0,即e <k <e 2ln 2时, 原方程在(1,2)上有唯一实根,当F (2)≤0,即k ≥e 2ln 2时,原方程在(1,2)上无实根.综上所述,当0<k ≤e 或k ≥e 2ln 2时,原方程在(0,2)上仅有一个实根;当e <k <e 2ln 2时,原方程在(0,2)上有两个实根.根据参数确定函数零点的个数,基本思想也是“数形结合”,即通过研究函数的性质(单调性、极值、函数值的极限位置等)大致勾画出函数图象,然后通过函数性质得出其与x 轴交点的个数或两个函数图象交点的个数,基本步骤是“先数后形”.已知函数f (x )=ln x 2-ax +b x (a >0,b >0),对任意x >0,都有f (x )+f ⎝ ⎛⎭⎪⎫4x =0. (1)讨论f (x )的单调性;(2)当f (x )存在三个不同的零点时,求实数a 的取值范围.解 (1)由f (x )+f ⎝ ⎛⎭⎪⎫4x =ln x 2-ax +b x +ln 2x -4a x +xb 4=0,得b =4a ,则f (x )=ln x 2-ax +4a x ,f ′(x )=1x -a -4a x 2=-ax 2+x -4a x 2(x >0), 若Δ=1-16a 2≤0,即a ≥14时,f (x )在(0,+∞)上单调递减, 若Δ=1-16a 2>0,即0<a <14时, h (x )=-ax 2+x -4a 有两个零点,零点为x 1=1-1-16a 22a >0,x 2=1+1-16a 22a>0, 又h (x )=-ax 2+x -4a 的图象开口向下,所以当0<x <x 1时,h (x )<0,f ′(x )<0,f (x )单调递减,当x 1<x <x 2时,h (x )>0,f ′(x )>0,f (x )单调递增,当x >x 2时,h (x )<0,f ′(x )<0,f (x )单调递减.综上所述,当a ≥14时,f (x )在(0,+∞)上单调递减;当0<a <14时,f (x )在⎝ ⎛⎭⎪⎫0,1-1-16a 22a 和⎝ ⎛⎭⎪⎫1+1-16a 22a ,+∞上单调递减, 在⎝ ⎛⎭⎪⎫1-1-16a 22a ,1+1-16a 22a 上单调递增. (2)由(1)知,当a ≥14时,f (x )单调递减,不可能有三个不同的零点.当0<a <14时,f (x )在(0,x 1)和(x 2,+∞)上单调递减,f (x )在(x 1,x 2)上单调递增, f (2)=ln 22-2a +2a =0,又x 1x 2=4,有x 1<2<x 2,f (x )在(x 1,x 2)上单调递增,f (x 1)<f (2)=0,f (x 2)>f (2)=0. f (x )=ln x 2-ax +4a x ,f ⎝ ⎛⎭⎪⎫1a 2=-ln 2a 2-1a +4a 3, 令g (a )=-ln 2a 2-1a +4a 3,g ′(a )=-4a 2a 2+1a 2+12a 2=12a 4-2a +1a 2. 令m (a )=12a 4-2a +1,m ′(a )=48a 3-2单调递增.由m ′(a )=48a 3-2=0,求得a =1324 >14.当0<a <14时,m (a )单调递减,m (a )>m ⎝ ⎛⎭⎪⎫14=364-12+1>0, f ⎝ ⎛⎭⎪⎫1a 2=g (a )=-ln 2a 2-1a +4a 3在⎝ ⎛⎭⎪⎫0,14上单调递增. 故f ⎝ ⎛⎭⎪⎫1a 2=g (a )<g ⎝ ⎛⎭⎪⎫14=3ln 2-4+116<0, 故f ⎝ ⎛⎭⎪⎫1a 2<0,又f (x 2)>0,1a 2>x 2, 由零点存在性定理知f (x )在区间⎝ ⎛⎭⎪⎫x 2,1a 2上有一个根,设为x 0,又f (x 0)+f ⎝ ⎛⎭⎪⎫4x 0=0,得f ⎝ ⎛⎭⎪⎫4x 0=0,由x 2<x 0<1a 2及x 1x 2=4得0<4x 0<x 1,4x 0是f (x )的另一个零点, 故当0<a <14时,f (x )存在三个不同的零点4x 0,2,x 0. 考向2 利用导数证明不等式例2 (2020·山东省泰安市三模)已知函数f (x )=ln x -ax +1有两个零点.(1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:f ′(x 1·x 2)<1-a .解 (1)由f (x )=0,可得a =1+ln x x ,转化为函数g (x )=1+ln x x 与直线y =a 的图象在(0,+∞)上有两个不同交点.g ′(x )=-ln x x 2(x >0),故当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g ′(x )<0. 故g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以g (x )max =g (1)=1.又g ⎝ ⎛⎭⎪⎫1e =0,当x →+∞时,g (x )→0,故当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g (x )<0; 当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,g (x )>0. 可得a ∈(0,1).(2)证明:f ′(x )=1x -a ,由(1)知x 1,x 2是ln x -ax +1=0的两个根,故ln x 1-ax 1+1=0,ln x 2-ax 2+1=0⇒a =ln x 1-ln x 2x 1-x 2. 要证f ′(x 1·x 2)<1-a ,只需证x 1·x 2>1,即证ln x 1+ln x 2>0,即证(ax 1-1)+(ax 2-1)>0,即证a >2x 1+x 2,即证ln x 1-ln x 2x 1-x 2>2x 1+x 2. 不妨设0<x 1<x 2,故ln x 1x 2<2(x 1-x 2)x 1+x 2=2⎝ ⎛⎭⎪⎫x 1x 2-1x 1x 2+1, (*) 令t =x 1x 2∈(0,1),h (t )=ln t -2(t -1)t +1, h ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0, 则h (t )在(0,1)上单调递增,则h (t )<h (1)=0,故(*)式成立,即要证不等式得证.利用导数方法证明不等式的基本思想是构造函数,通过研究函数的单调性、极值、最值,通过一般函数值与特殊值的比较得出所证不等式.已知函数f (x )=λln x -e -x (λ∈R ).(1)若函数f (x )是单调函数,求λ的取值范围;(2)求证:当0<x 1<x 2时,都有e 1-x 2-e 1-x 1>1-x 2x 1. 解 (1)函数f (x )的定义域为(0,+∞),∵f (x )=λln x -e -x ,∴f ′(x )=λx +e -x =λ+x e -x x ,∵函数f(x)是单调函数,∴f′(x)≤0或f′(x)≥0在(0,+∞)上恒成立,①当函数f(x)是单调递减函数时,f′(x)≤0,∴λ+x e-xx≤0,即λ+x e-x≤0,λ≤-x e-x=-xe x,令φ(x)=-xe x ,则φ′(x)=x-1e x,当0<x<1时,φ′(x)<0,当x>1时,φ′(x)>0,则φ(x)在(0,1)上单调递减,在(1,+∞)上单调递增,∴当x>0时,φ(x)min=φ(1)=-1e ,∴λ≤-1e;②当函数f(x)是单调递增函数时,f′(x)≥0,∴λ+x e-xx≥0,即λ+x e-x≥0,λ≥-x e-x=-xe x,由①得φ(x)=-xe x在(0,1)上单调递减,在(1,+∞)上单调递增,又φ(0)=0,x→+∞时,φ(x)→0,且φ(x)<0,∴λ≥0.综上,λ≤-1e或λ≥0.(2)证明:由(1)可知,当λ=-1e 时,f(x)=-1e ln x-e-x在(0,+∞)上单调递减,∵0<x1<x2,∴f(x1)>f(x2),即-1e ln x1-e-x1>-1e ln x2-e-x2,∴e1-x2-e1-x1>ln x1-ln x2.要证e1-x2-e1-x1>1-x2x1,只需证ln x1-ln x2>1-x2x1,即证ln x1x2>1-x2x1,令t=x1x2,t∈(0,1),则只需证ln t>1-1t,令h(t)=ln t+1t -1,则当0<t<1时,h′(t)=t-1t2<0,∴h(t)在(0,1)上单调递减,又h(1)=0,∴h (t )>0,即ln t >1-1t ,得证. 考向3 利用导数研究不等式恒成立问题 角度1 函数不等式恒成立问题例3 (2020·河南省开封市三模)已知函数f (x )=ax e x -ln x +b 在x =1处的切线方程为y =(2e -1)x -e.(1)求a ,b 的值;(2)若f (x )≥mx 恒成立,求实数m 的取值范围.解 (1)f ′(x )=a e x +ax e x -1x ,∵函数f (x )=ax e x -ln x +b 在x =1处的切线方程为y =(2e -1)x -e ,∴⎩⎨⎧ f (1)=a e +b =e -1,f ′(1)=2a e -1=2e -1,∴a =1,b =-1. (2)由f (x )≥mx 得,x e x -ln x -1≥mx (x >0),即m ≤x e x -ln x -1x ,令φ(x )=x e x -ln x -1x, 则φ′(x )=x 2e x +ln x x 2, 令h (x )=x 2e x +ln x ,易知h (x )在(0,+∞)上单调递增,又h ⎝ ⎛⎭⎪⎫1e =1e 2e -1<e 2e 2-1=0,h (1)=e>0, 故h (x )在⎝ ⎛⎭⎪⎫1e ,1上存在零点x 0,即h (x 0)=x 20e x 0+ln x 0=0, 即x 0e x 0=-ln x 0x 0=⎝ ⎛⎭⎪⎫ln 1x 0·e ,由于y =x e x 在(0,+∞)上单调递增,故x 0=ln 1x 0=-ln x 0, 即e x 0=1x 0,且φ(x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, ∴φ(x )min =φ(x 0)=1+x 0-1x 0=1,∴m ≤1.利用导数求解不等式恒成立问题中参数的方法(1)分离参数法:若能够将参数分离,且分离后含x变量的函数关系式的最值易求,则用分离参数法.即①λ≥f(x)恒成立,则λ≥f(x)max;②λ≤f(x)恒成立,则λ≤f(x)min.(2)最值转化法:若参数不易分离或分离后含x变量的函数关系式的最值不易求,则常用最值转化法.可通过求最值建立关于参数的不等式求解.如f(x)≥0,则只需f(x)min≥0.(2020·辽宁省大连市一模)设函数f(x)=x-1x,g(x)=t ln x(t∈R).(1)讨论函数h(x)=f(x)+g(x)的单调区间;(2)若当x∈(0,1)时,f(x)的图象恒在函数g(x)的图象的下方,求正实数t的取值范围.解(1)h(x)=f(x)+g(x)=x-1x+t ln x(x>0),则h′(x)=1+1x2+tx=x2+tx+1x2(x>0).①当t≥0时,h′(x)>0,∴h(x)的单调递增区间是(0,+∞),无减区间;②当t<0时,令H(x)=x2+tx+1,Δ=t2-4,Δ≤0,即-2≤t<0时,H(x)≥0,即h′(x)≥0;∴h(x)的单调递增区间是(0,+∞),无减区间,Δ>0时,即t<-2,设x1=-t-t2-42,x2=-t+t2-42,∵x1+x2=-t>0,x1x2=1>0,∴0<x1<x2,∴(0,x1)∪(x2,+∞),时H(x)>0,即h′(x)>0,∴h(x)的单调递增区间是(0,x1),(x2,+∞),同理,单调递减区间是(x1,x2).综上,①当t≥-2时,h(x)的单调递增区间是(0,+∞),无减区间,②当t<-2时,h(x)的单调递增区间是(0,x1),(x2,+∞),单调递减区间是(x1,x2),其中x1=-t-t2-42,x2=-t+t2-42.(2)∵函数f(x)的图象恒在g(x)的图象的下方,∴f(x)-g(x)=x-1x-t ln x<0在区间(0,1)上恒成立.设F(x)=x-1x-t ln x,其中x∈(0,1),∴F′(x)=1+1x2-tx=x2-tx+1x2,其中t>0.①当t2-4≤0,即0<t≤2时,F′(x)≥0,∴函数F(x)在(0,1)上单调递增,F(x)<F(1)=0,故f(x)-g(x)<0成立,满足题意.②当t2-4>0,即t>2时,设φ(x)=x2-tx+1,则φ(x)图象的对称轴方程为x=t2>1,φ(0)=1,φ(1)=2-t<0,∴φ(x)在(0,1)上存在唯一实根,设为x0,则当x∈(x0,1),φ(x)<0,F′(x)<0,∴F(x)在(x0,1)上单调递减,此时F(x)>F(1)=0,不符合题意.综上可得,正实数t的取值范围是(0,2].角度2含量词的不等式问题例4(2020·山东省聊城市模拟)已知函数f(x)=x2e ax+1+1-a(a∈R),g(x)=e x-1-x.(1)求函数f(x)的单调区间;(2)∀a∈(0,1),是否存在实数λ,∀m∈[a-1,a],∃n∈[a-1,a],使f[(n)]2-λg(m)<0成立?若存在,求λ的取值范围;若不存在,请说明理由.解(1)f(x)=x2e ax+1+1-a(a∈R)的定义域为(-∞,+∞),f′(x)=x(ax+2)e ax +1,①当a=0时,x>0,f′(x)>0,x<0,f′(x)<0,所以函数f(x)的单调递增区间为(0,+∞),单调递减区间为(-∞,0);②当a >0时,x ∈⎝ ⎛⎭⎪⎫-∞,-2a ,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫-2a ,0,f ′(x )<0,x ∈(0,+∞),f ′(x )>0,所以函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-∞,-2a ,(0,+∞),单调递减区间为⎝ ⎛⎭⎪⎫-2a ,0; ③当a <0时,x ∈(-∞,0),f ′(x )<0,x ∈⎝ ⎛⎭⎪⎫0,-2a ,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫-2a ,+∞,f ′(x )<0,所以函数f (x )的单调递减区间为(-∞,0),⎝ ⎛⎭⎪⎫-2a ,+∞,单调递增区间为⎝ ⎛⎭⎪⎫0,-2a . (2)由g (x )=e x -1-x ,得g ′(x )=e x -1-1,当x >1时,g ′(x )>0,当x <1时,g ′(x )<0,故g (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增,所以g (x )min =g (1)=0,故当m ∈[a -1,a ]时,g (m )min =g (a )=e a -1-a >0,当a ∈(0,1)时,a -1>-2a ,由(1)知,当n ∈[a -1,a ]时,f (n )min =f (0)=1-a >0,所以[f (n )]2min =(1-a )2,若∀m ∈[a -1,a ],∃n ∈[a -1,a ],使[f (n )]2-λg (m )<0成立,即[f (n )]2<λg (m ),则λ>0,且[f (n )]2min <λg (m )min .所以(1-a )2<λ(e a -1-a ),所以λ>(1-a )2e a -1-a. 设h (x )=(1-x )2e x -1-x,x ∈[0,1), 则h ′(x )=(x -1)(3e x -1-x e x -1-x -1)(e x -1-x )2, 令r (x )=3e x -1-x e x -1-x -1,x ∈[0,1],则r ′(x )=(2-x )e x -1-1, 当x ∈(0,1)时,e 1-x >2-x ,所以(2-x )e x -1<1,故r ′(x )<0,所以r (x )在[0,1]上单调递减,所以当x ∈[0,1)时,r (x )>r (1)=0,即r (x )>0,又当x ∈[0,1)时,x -1<0,所以当x ∈[0,1)时,h ′(x )<0,h (x )单调递减,所以当x ∈(0,1)时,h (x )<h (0)=e ,即a ∈(0,1)时,(1-a )2e a -1-a<e ,故λ≥e. 所以当λ≥e 时,∀a ∈(0,1),∀m ∈[a -1,a ],∃n ∈[a -1,a ], 使[f (n )]2-λg (m )<0成立.含量词的不等式问题的解法(1)f (x )>g (x )对一切x ∈I 恒成立⇔[f (x )-g (x )]min >0(x ∈I ).(2)存在x ∈I ,使f (x )>g (x )成立⇔[f (x )-g (x )]max >0(x ∈I ).(3)对任意x 1,x 2∈D ,使f (x 1)≥g (x 2)⇔f (x )min ≥g (x )max .(4)存在x 1,x 2∈D ,使f (x 1)≥g (x 2)⇔f (x )max ≥g (x )min .(5)对任意x 1∈D 1,存在x 2∈D 2,使f (x 1)≥g (x 2)⇔f (x )min ≥g (x )min (f (x )定义域为D 1,g (x )定义域为D 2).已知函数f (x )=ln x -ax ,g (x )=ax 2+1,其中e 为自然对数的底数.(1)讨论函数f (x )在区间[1,e]上的单调性;(2)已知a ∉(0,e),若对任意x 1,x 2∈[1,e],有f (x 1)>g (x 2),求实数a 的取值范围.解 (1)f ′(x )=1x -a =1-ax x ,①当a ≤0时,1-ax >0,则f ′(x )>0,f (x )在[1,e]上单调递增;②当0<a ≤1e 时,1a ≥e ,则f ′(x )≥0,f (x )在[1,e]上单调递增;③当1e <a <1时,1<1a <e ,当x ∈⎣⎢⎡⎦⎥⎤1,1a 时,f ′(x )≥0,f (x )在⎣⎢⎡⎦⎥⎤1,1a 上单调递增,当x ∈⎣⎢⎡⎦⎥⎤1a ,e 时,f ′(x )≤0,f (x )在⎣⎢⎡⎦⎥⎤1a ,e 上单调递减; ④当a ≥1时,0<1a ≤1,则f ′(x )≤0,f (x )在[1,e]上单调递减.综上所述,当a ≤1e 时,f (x )在[1,e]上单调递增;当1e <a <1时,f (x )在⎣⎢⎡⎦⎥⎤1,1a 上单调递增,在⎣⎢⎡⎦⎥⎤1a ,e 上单调递减;当a ≥1时,f (x )在[1,e]上单调递减.(2)g ′(x )=2ax ,依题意知,x ∈[1,e]时,f (x )min >g (x )max 恒成立.已知a ∉(0,e),则①当a ≤0时,g ′(x )≤0,所以g (x )在[1,e]上单调递减,而f (x )在[1,e]上单调递增,所以f (x )min =f (1)=-a ,g (x )max =g (1)=a +1,所以-a >a +1,得a <-12;②当a ≥e 时,g ′(x )>0,所以g (x )在[1,e]上单调递增,而f (x )在[1,e]上单调递减,所以g (x )max =g (e)=a e 2+1,f (x )min =f (e)=1-a e ,所以1-a e>a e 2+1,得a <0,与a ≥e 矛盾.综上所述,实数a 的取值范围是⎝ ⎛⎭⎪⎫-∞,-12.真题押题『真题检验』1.(2020·新高考卷Ⅰ)已知函数f (x )=a e x -1-ln x +ln a .(1)当a =e 时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积;(2)若f (x )≥1,求a 的取值范围.解 (1)当a =e 时,f (x )=e x -ln x +1,∴f ′(x )=e x-1x , ∴f ′(1)=e -1.∵f (1)=e +1,∴切点坐标为(1,1+e),∴曲线y =f (x )在点(1,f (1))处的切线方程为y -e -1=(e -1)·(x -1),即y =(e -1)x +2,∴切线与两坐标轴的交点坐标分别为(0,2),⎝ ⎛⎭⎪⎫-2e -1,0, ∴所求三角形面积为12×2×|-2e -1|=2e -1. (2)解法一:∵f (x )=a e x -1-ln x +ln a ,∴f ′(x )=a e x -1-1x ,且a >0.设g (x )=f ′(x ),则g ′(x )=a e x -1+1x 2>0,∴g (x )在(0,+∞)上单调递增,即f ′(x )在(0,+∞)上单调递增,当a =1时,f ′(1)=0,则f (x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴f (x )min =f (1)=1,∴f (x )≥1成立;当a >1时,1a <1,∴e<1, ∴f ′⎝ ⎛⎭⎪⎫1a f ′(1)=a ()e -1(a -1)<0,∴存在唯一x 0>0,使得f ′(x 0)=a e x 0-1-1x 0=0,且当x ∈(0,x 0)时f ′(x )<0,当x ∈(x 0,+∞)时f ′(x)>0, ∴a e x 0-1=1x 0,∴ln a +x 0-1=-ln x 0,因此f (x )min =f (x 0)=a e x 0-1-ln x 0+ln a=1x 0+ln a +x 0-1+ln a ≥2ln a -1+21x 0·x 0 =2ln a +1>1,∴f (x )>1,∴f (x )≥1恒成立;当0<a <1时,f (1)=a +ln a <a <1,∴f (1)<1,f (x )≥1不恒成立.综上所述,a 的取值范围是[1,+∞).解法二:f (x )=a e x -1-ln x +ln a =e ln a +x -1-ln x +ln a ≥1等价于e ln a +x -1+ln a +x -1≥ln x +x =e ln x +ln x ,令g(x)=e x+x,上述不等式等价于g(ln a+x-1)≥g(ln x),显然g(x)为单调递增函数,∴又等价于ln a+x-1≥ln x,即ln a≥ln x-x+1,令h(x)=ln x-x+1,则h′(x)=1x -1=1-xx,在(0,1)上h′(x)>0,h(x)单调递增;在(1,+∞)上h′(x)<0,h(x)单调递减,∴h(x)max=h(1)=0,ln a≥0,即a≥1,∴a的取值范围是[1,+∞).2.(2020·全国卷Ⅰ)已知函数f(x)=e x+ax2-x.(1)当a=1时,讨论f(x)的单调性;(2)当x≥0时,f(x)≥12x3+1,求a的取值范围.解(1)当a=1时,f(x)=e x+x2-x,f′(x)=e x+2x-1,由于f″(x)=e x+2>0,故f′(x)单调递增,注意到f′(0)=0,故当x∈(-∞,0)时,f′(x)<0,f(x)单调递减,当x∈(0,+∞)时,f′(x)>0,f(x)单调递增.(2)由f(x)≥12x3+1,得e x+ax2-x≥12x3+1,其中x≥0,①当x=0时,不等式为1≥1,显然成立,符合题意;②当x>0时,分离参数a得a≥-e x-12x3-x-1x2,记g(x)=-e x-12x3-x-1x2,g′(x)=-(x-2)⎝⎛⎭⎪⎫e x-12x2-x-1x3,令h(x)=e x-12x2-x-1(x≥0),则h′(x)=e x-x-1,h″(x)=e x-1≥0,故h ′(x )单调递增,h ′(x )≥h ′(0)=0,故函数h (x )单调递增,h (x )≥h (0)=0,由h (x )≥0可得e x -12x 2-x -1≥0恒成立,故当x ∈(0,2)时,g ′(x )>0,g (x )单调递增;当x ∈(2,+∞)时,g ′(x )<0,g (x )单调递减.因此,g (x )max =g (2)=7-e 24,综上可得,实数a 的取值范围是⎣⎢⎡⎭⎪⎫7-e 24,+∞. 3.(2020·全国卷Ⅰ)已知函数f (x )=e x -a (x +2).(1)当a =1时,讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.解 (1)当a =1时,f (x )=e x -(x +2),f ′(x )=e x -1,令f ′(x )<0,解得x <0,令f ′(x )>0,解得x >0,所以f (x )的单调递减区间为(-∞,0),单调递增区间为(0,+∞).(2)解法一:当a ≤0时,f ′(x )=e x -a >0恒成立,f (x )在(-∞,+∞)上单调递增,不符合题意;当a >0时,令f ′(x )=0,解得x =ln a ,当x ∈(-∞,ln a )时,f ′(x )<0,f (x )单调递减,当x ∈(ln a ,+∞)时,f ′(x )>0,f (x )单调递增.∴f (x )的极小值也是最小值为f (ln a )=a -a (ln a +2)=-a (1+ln a ). 又当x →-∞时,f (x )→+∞,当x →+∞时,f (x )→+∞. ∴要使f (x )有两个零点,只要f (ln a )<0即可,则1+ln a >0,可得a >1e .综上,若f (x )有两个零点,则a 的取值范围是⎝ ⎛⎭⎪⎫1e ,+∞. 解法二:若f (x )有两个零点,即e x -a (x +2)=0有两个解,显然x =-2不成立,即a =e xx +2(x ≠-2)有两个解,令h (x )=e xx +2(x ≠-2),则有h ′(x )=e x (x +2)-e x (x +2)2=e x (x +1)(x +2)2,令h ′(x )>0,解得x >-1,令h ′(x )<0,解得x <-2或-2<x <-1,所以函数h (x )在(-∞,-2)和(-2,-1)上单调递减,在(-1,+∞)上单调递增,且当x <-2时,h (x )<0,而当x →-2+(从右侧趋近于-2)时,h (x )→+∞, 当x →+∞时,h (x )→+∞,所以当a =e x x +2有两个解时,有a >h (-1)=1e ,所以满足条件的a 的取值范围是⎝ ⎛⎭⎪⎫1e ,+∞.4.(2020·全国卷Ⅱ)已知函数f (x )=sin 2x sin2x . (1)讨论f (x )在区间(0,π)的单调性; (2)证明:|f (x )|≤338;(3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22nx ≤3n4n .解 (1)f (x )=sin 2x sin2x =2sin 3x cos x , 则f ′(x )=2(3sin 2x cos 2x -sin 4x ) =2sin 2x (3cos 2x -sin 2x )=2sin 2x (4cos 2x -1)=2sin 2x (2cos x +1)(2cos x -1), f ′(x )=0在x ∈(0,π)上的根为x 1=π3,x 2=2π3, 当x ∈⎝ ⎛⎭⎪⎫0,π3时,f ′(x )>0,f (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫π3,2π3时,f ′(x )<0,f (x )单调递减,当x ∈⎝ ⎛⎭⎪⎫2π3,π时,f ′(x )>0,f (x )单调递增.(2)证明:注意到f (x +π)=sin 2(x +π)sin[2(x +π)]=sin 2x sin2x =f (x ), 故函数f (x )是周期为π的函数,结合(1)的结论,计算可得f (0)=f (π)=0,f ⎝ ⎛⎭⎪⎫π3=⎝ ⎛⎭⎪⎫322×32=338,f ⎝ ⎛⎭⎪⎫2π3=⎝ ⎛⎭⎪⎫322×⎝ ⎛⎭⎪⎫-32=-338, 据此可得f (x )max =338,f (x )min =-338, 所以|f (x )|≤338.(3)证明:结合(2)的结论有sin 2x sin 22x sin 24x …sin 22n x =(sin 3x sin 32x sin 34x …sin 32n x )=[sin x (sin 2x sin2x )(sin 22x sin4x )…(sin 22n -1x sin2n x )·sin 22n x ]≤⎝ ⎛⎭⎪⎫sin x ×338×338×…×338×sin 22n x ≤⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫338n =⎝ ⎛⎭⎪⎫34n =3n 4n . 5.(2020·全国卷Ⅲ)已知函数f (x )=x 3-kx +k 2. (1)讨论f (x )的单调性;(2)若f (x )有三个零点,求k 的取值范围. 解 (1)由题意,得f ′(x )=3x 2-k , 当k ≤0时,f ′(x )≥0恒成立, 所以f (x )在(-∞,+∞)上单调递增; 当k >0时,令f ′(x )=0,得x =± k 3,令f ′(x )<0,得-k3<x <k 3,令f ′(x )>0,得x <-k3或x >k 3, 所以f (x )在⎝⎛⎭⎪⎫-k 3,k 3上单调递减,在⎝ ⎛⎭⎪⎫-∞,-k 3,⎝ ⎛⎭⎪⎫k 3,+∞上单调递增. (2)由(1)知,f (x )有三个零点, 则k >0,且⎩⎪⎨⎪⎧f ⎝⎛⎭⎪⎫-k 3>0,f ⎝ ⎛⎭⎪⎫k 3<0,即⎩⎪⎨⎪⎧k 2+23k k3>0,k 2-23kk3<0,解得0<k <427, 当0<k <427时,k >k 3,且f (k )=k 2>0, 所以f (x )在⎝⎛⎭⎪⎫k 3, k 上有唯一一个零点, 同理-k -1<-k 3,f (-k -1)=-k 3-(k +1)2<0, 所以f (x )在⎝ ⎛⎭⎪⎫-k -1,-k 3上有唯一一个零点, 又f (x )在⎝⎛⎭⎪⎫-k 3,k 3上有唯一一个零点, 所以f (x )有三个零点,综上可知,k 的取值范围为⎝ ⎛⎭⎪⎫0,427.『金版押题』6.已知函数f (x )=e x ,h (x )=x +ln x ,g (x )=(x -a +1)e a . (1)设F (x )=xf (x )-ah (x ),讨论F (x )极值点的个数; (2)判断方程f (x )=g (x )的实数根的个数, 并证明e 2+e 4+e 6+…+e 2n≥n 2+3n2e.解 (1)F (x )=x e x -a (x +ln x ),x >0,∴F ′(x )=(x +1)e x-a ⎝ ⎛⎭⎪⎫1+1x =(x +1)(x e x-a )x , ①当a ≤0时,F ′(x )>0,F (x )在(0,+∞)内单调递增,F (x )没有极值点. ②当a >0时,令H (x )=x e x -a ,x ∈[0,+∞),则H ′(x )=(1+x )e x >0,∴H (x )在[0,+∞)上单调递增. 又H (0)=-a <0,H (a )=a (e a -1)>0,∴∃x 0>0,使H (x 0)=0,且当x ∈(0,x 0)时,H (x )<0, 当x ∈(x 0,+∞)时,H (x )>0,从而F ′(x 0)=0,当x ∈(0,x 0)时,F ′(x )<0,F (x )单调递减, 当x ∈(x 0,+∞)时,F ′(x )>0,F (x )单调递增, ∴x =x 0是函数F (x )的极小值点. 综上,当a ≤0时,F (x )无极值点, 当a >0时,F (x )有一个极值点. (2)方程f (x )=g (x )可化为e x -a =x -a +1. 设x -a =t ,则原方程又可化为e t =t +1. 设M (t )=e t -t -1,则M ′(t )=e t -1.∵M ′(0)=0,当t ∈(-∞,0)时,M ′(t )<0,M (t )在(-∞,0)上单调递减, 当t ∈(0,+∞)时,M ′(t )>0,M (t )在(0,+∞)上单调递增; ∴M (t )min =M (0)=0,∴当t ≠0时,M (t )>0, ∴方程e t =t +1只有一个实数根, ∴方程f (x )=g (x )只有一个实数根. ∵对于任意的t ∈R ,e t ≥t +1. ∴e 2-+e 4-+…+e 2n -≥⎝ ⎛⎭⎪⎫2-n +12+1+⎝ ⎛⎭⎪⎫4-n +12+1+…+⎝⎛⎭⎪⎫2n -n +12+1=(2+4+…+2n )-n (n +1)2+n =n (n +1)-n (n +1)2+n =n 2+3n 2, 即e-(e 2+e 4+…+e 2n)≥n 2+3n2,∴e 2+e 4+…+e 2n≥n 2+3n2e.7.已知函数f (x )=x ln x +ax 在x =x 0处取得极小值-1. (1)求实数a 的值;(2)设g (x )=xf (x )+b (b >0),讨论函数g (x )的零点个数. 解 (1)函数f (x )的定义域为(0,+∞),f ′(x )=ln x +1+a , ∵函数f (x )=x ln x +ax 在x =x 0处取得极小值-1, ∴⎩⎨⎧ f ′(x 0)=ln x 0+1+a =0,f (x 0)=x 0ln x 0+ax 0=-1,得⎩⎨⎧a =-1,x 0=1, 当a =-1时,f ′(x )=ln x , 则x ∈(0,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0,∴f (x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴x =1时,函数f (x )取得极小值-1,符合题意, ∴a =-1.(2)由(1)知,函数g (x )=xf (x )+b =x 2ln x -x 2+b (b >0), 定义域为(0,+∞),则g ′(x )=2x ⎝ ⎛⎭⎪⎫ln x -12,令g ′(x )<0,得0<x <e ;令g ′(x )>0,得x > e. ∴g (x )在(0,e)上单调递减,在(e ,+∞)上单调递增. 当x =e 时,函数g (x )取得最小值b -e2. 当b -e 2>0,即b >e2时,函数g (x )没有零点; 当b -e 2=0,即b =e2时,函数g (x )有一个零点;当b -e 2<0,即0<b <e2时,g (e)=b >0⇒g (e)g (e)<0,存在x 1∈(e ,e),使g (x 1)=0,∴g (x )在(e ,e)上有一个零点x 1.设h (x )=ln x +1x -1,则h ′(x )=1x -1x 2=x -1x 2. 当x ∈(0,1)时,h ′(x )<0,则h (x )在(0,1)上单调递减, ∴h (x )>h (1)=0,即当x ∈(0,1)时,ln x >1-1x ,当x ∈(0,1)时,g (x )=x 2ln x -x 2+b >x 2⎝ ⎛⎭⎪⎫1-1x -x 2+b =b -x ,取x m =min{b,1},则g (x m )>0;∴g (e)g (x m )<0,∴存在x 2∈(x m ,e),使得g (x 2)=0. ∴g (x )在(x m ,e)上有一个零点x 2, ∴g (x )在(0,+∞)上有两个零点x 1,x 2, 综上可得,当b >e2时,函数g (x )没有零点; 当b =e2时,函数g (x )有一个零点; 当0<b <e2时,函数g (x )有两个零点.专题作业1.已知函数f (x )=(x -1)e x . (1)求函数f (x )的单调区间和零点;(2)若f (x )≥ax -e 恒成立,求a 的取值范围. 解 (1)f ′(x )=e x +(x -1)e x =x e x , 令f ′(x )=0,解得x =0.所以函数f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增, 即函数f (x )的单调递减区间为(-∞,0),单调递增区间为(0,+∞), 令f (x )=0,解得x =1,所以函数f (x )的零点是x =1. (2)画出f (x )的大致图象,如图所示,设g (x )=ax -e ,则g (x )的图象恒过点(0,-e),设函数f (x )=(x -1)e x 的图象在点P (x 0,y 0)处的切线过点(0,-e), 所以f ′(x 0)=x 0e x 0,f (x 0)=(x 0-1)e x 0, f (x )的图象在P (x 0,y 0)处的切线方程为 y -(x 0-1)e x 0=x 0e x 0·(x -x 0),将(0,-e)代入切线方程,得-e -(x 0-1)e x 0=-x 20e x 0, 整理得(x 20-x 0+1)e x 0=e ,设h (x )=(x 2-x +1)e x -e ⇒h ′(x )=(x 2+x )e x , 令h ′(x )=0,得x =0或x =-1,所以h (x )在(-∞,-1),(0,+∞)上单调递增,在(-1,0)上单调递减. 又h (-1)=3e -e<0,h (0)=1-e<0,h (1)=0,所以x 0=1是方程(x 20-x 0+1)e x 0=e 的唯一解,所以过点(0,-e)且与f (x )的图象相切的直线方程为y =e x -e. 令m (x )=(x -1)e x -e x +e ,则m ′(x )=x e x -e , 当x >1时,m ′(x )>0;当0<x <1时,m ′(x )<0, ∴m (x )≥m (1).又m (1)=0,即m (x )≥0在(0,+∞)上恒成立, 即函数f (x )的图象恒在其切线y =e x -e 的上方, 数形结合可知,a 的取值范围为[0,e].2.(2020·江西省重点中学协作体高三第一次联考)已知函数f (x )=sin x +ln x -1.(1)求函数f (x )在点⎝ ⎛⎭⎪⎫π2,ln π2处的切线方程;(2)当x ∈(0,π)时,讨论函数f (x )的零点个数. 解 (1)因为f ′(x )=cos x +1x ,所以f ′⎝ ⎛⎭⎪⎫π2=2π,所求切线方程为y -ln π2=2π⎝ ⎛⎭⎪⎫x -π2,即y =2πx +ln π2-1.(2)因为f ′(x )=cos x +1x ,所以当x ∈⎝ ⎛⎦⎥⎤0,π2时,f ′(x )>0,则f (x )在⎝ ⎛⎦⎥⎤0,π2上单调递增,且f ⎝ ⎛⎭⎪⎫π2=ln π2>0,f ⎝ ⎛⎭⎪⎫π6=ln π6-12<0,所以f (x )在⎝ ⎛⎦⎥⎤0,π2内有唯一零点;当x ∈⎝ ⎛⎭⎪⎫π2,π时,由f ″(x )=-sin x -1x 2<0,知f ′(x )在⎝ ⎛⎭⎪⎫π2,π上单调递减且f ′⎝ ⎛⎭⎪⎫π2=2π>0,f ′(π)=-1+1π<0,知存在唯一x 0∈⎝ ⎛⎭⎪⎫π2,π使得f ′(x 0)=0,当x ∈⎝ ⎛⎭⎪⎫π2,x 0时,f ′(x )>0,f (x )单调递增;当x ∈(x 0,π)时,f ′(x )<0,f (x )单调递减, 且f ⎝ ⎛⎭⎪⎫π2>0,f (π)=ln π-1>0,所以f (x )在⎝ ⎛⎭⎪⎫π2,π内无零点.综上可知,f (x )在区间(0,π)内有且只有一个零点. 3.已知函数f (x )=ax 2+ln x . (1)讨论f (x )的单调性;(2)若∃x ∈(0,+∞)使f (x )>0成立,求a 的取值范围.解 (1)函数f (x )的定义域为(0,+∞),f ′(x )=2ax +1x =2ax 2+1x ,①a ≥0时,f ′(x )>0,函数f (x )在区间(0,+∞)上单调递增; ②a <0时,由2ax 2+1>0得0<x < -12a. ∴函数f (x )在区间⎝ ⎛⎭⎪⎫0,-12a 上单调递增,函数f (x )在区间⎝⎛⎭⎪⎫-12a ,+∞上单调递减.(2)①a ≥0时,f (e)=a e 2+1>0, ∴∃x ∈(0,+∞)使f (x )>0成立;②a <0时, 需f (x )max =f ⎝⎛⎭⎪⎫-12a =a ⎝⎛⎭⎪⎫-12a 2+ln-12a=-12+ln-12a >0,得a >-12e ,∴a ∈⎝ ⎛⎭⎪⎫-12e ,0,∴由①②得a ∈⎝ ⎛⎭⎪⎫-12e ,+∞.4.(2020·山东省潍坊市二模)已知函数f (x )=1x +a ln x ,g (x )=e xx . (1)讨论函数f (x )的单调性;(2)证明:a =1时,f (x )+g (x )-⎝ ⎛⎭⎪⎫1+e x 2ln x >e.解 (1)f (x )=1x +a ln x ,x ∈(0,+∞). f ′(x )=-1x 2+a x =ax -1x 2.当a ≤0时,f ′(x )<0,函数f (x )在x ∈(0,+∞)上单调递减. 当a >0时,由f ′(x )<0,得0<x <1a ,由f ′(x )>0,得x >1a , 所以函数f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递减,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递增.(2)证明:a =1时,要证f (x )+g (x )-⎝ ⎛⎭⎪⎫1+e x 2ln x >e.即要证1x +e x x -e x 2ln x -e >0⇔e x-e x +1>eln x x ,x ∈(0,+∞). 令F (x )=e x -e x +1,F ′(x )=e x -e ,当x ∈(0,1)时,F ′(x )<0,此时函数F (x )单调递减; 当x ∈(1,+∞)时,F ′(x )>0,此时函数F (x )单调递增. 可得当x =1时,函数F (x )取得最小值F (1)=1. 令G (x )=eln xx ,G ′(x )=e (1-ln x )x 2,当0<x <e 时,G ′(x )>0,此时G (x )为增函数,当x>e时,G′(x)<0,此时G(x)为减函数,所以x=e时,函数G(x)取得最大值G(e)=1.x=1与x=e不同时取得,因此F(x)>G(x),即e x-e x+1>eln xx,x∈(0,+∞).故原不等式成立.5.已知函数f(x)=a ln x-x+2,a∈R.(1)求函数f(x)的单调区间;(2)若对任意的x1∈[1,e],总存在x2∈[1,e],使得f(x1)+f(x2)=4,求实数a 的值.解(1)因为f(x)=a ln x-x+2,所以f′(x)=ax -1=a-xx,x>0,当a≤0时,对任意的x∈(0,+∞),f′(x)<0,所以f(x)的单调递减区间为(0,+∞),无单调递增区间;当a>0时,令f′(x)=0,得x=a,因为x∈(0,a)时,f′(x)>0,x∈(a,+∞)时,f′(x)<0,所以f(x)的单调递增区间为(0,a),单调递减区间为(a,+∞).(2)①当a≤1时,由(1)知,f(x)在[1,e]上是减函数,所以f(x)max=f(1)=1.因为对任意的x1∈[1,e],x2∈[1,e],f(x1)+f(x2)≤2f(1)=2<4,所以对任意的x1∈[1,e],不存在x2∈[1,e],使得f(x1)+f(x2)=4.②当1<a<e时,由(1)知,f(x)在[1,a]上是增函数,在(a,e]上是减函数,所以f(x)max=f(a)=a ln a-a+2.因为对任意的x1∈[1,e],x2∈[1,e],f(x1)+f(x2)≤2f(a)=2a(ln a-1)+4,又1<a<e,所以ln a-1<0,2a(ln a-1)+4<4,所以对任意的x1∈[1,e],不存在x2∈[1,e],使得f(x1)+f(x2)=4.③当a≥e时,由(1)知,f(x)在[1,e]上是增函数,f(x)min=f(1)=1,f(x)max=f(e)=a-e+2,由题意,对任意的x1∈[1,e],总存在x2∈[1,e],使得f(x1)+f(x2)=4,则当x1=1时,要使存在x2∈[1,e],使得f(x1)+f(x2)=4,则f(1)+f(e)≥4,同理当x1=e时,要使存在x2∈[1,e],使得f(x1)+f(x2)=4,则f(e)+f(1)≤4,所以f(1)+f(e)=4.(对任意的x1∈(1,e),令g(x)=4-f(x)-f(x1),x∈[1,e],g(x)=0有解.g(1)=4-f(1)-f(x1)=f(e)-f(x1)>0,g(e)=4-f(e)-f(x1)=f(1)-f(x1)<0,所以存在x2∈(1,e),g(x2)=4-f(x2)-f(x1)=0,即f(x1)+f(x2)=4.)所以由f(1)+f(e)=a-e+3=4,得a=e+1.综上可知,实数a的值为e+1.6.已知函数f(x)=e x-ln (x+1)-a的图象在x=0处与x轴相切.(1)求f(x)的解析式,并讨论其单调性;(2)若x>t≥0,证明:e x-t+ln (t+1)>ln (x+1)+1.解(1)由题意,得f(0)=1-a,即切点为(0,1-a),∴1-a=0,即a=1,∴f(x)=e x-ln (x+1)-1.求导,得f′(x)=e x-1x+1,由题意,知函数f(x)的定义域为(-1,+∞).当-1<x<0时,e x<1,1x+1>1,则f′(x)<0,即f(x)在(-1,0)上单调递减;当x>0时,e x>1,1x+1<1,则f′(x)>0,即f(x)在(0,+∞)上单调递增.(2)证法一:要证原不等式,即证e x-t+ln (t+1)-ln (x+1)-1>0,构造函数g(x)=e x-t+ln (t+1)-ln (x+1)-1,x>0,即证g(x)>0,g′(x)=e x-t-1x+1.∵x >t ≥0,即x -t >0,x +1>1,则e x -t >1,1x +1<1. ∴g ′(x )>0,即g (x )为(0,+∞)上的增函数.∵x >t ≥0,∴g (x )>g (t )=0,即g (x )>0,故原不等式得证.证法二:要证原不等式,即证e x -t -1>ln (x +1)-ln (t +1),由(1)知,当x >0时,f (x )=e x -ln (x +1)-1>f (0)=0,x >t ≥0即x -t >0, ∴f (x -t )=e x -t -ln (x -t +1)-1>0,即e x -t -1>ln (x -t +1), ①又ln (x -t +1)-[ln (x +1)-ln (t +1)]=ln (x -t +1)(t +1)x +1=ln t (x -t )+x +1x +1=ln ⎣⎢⎡⎦⎥⎤t (x -t )x +1+1≥0. ∴ln (x -t +1)≥ln (x +1)-ln (t +1), ②由①②得e x -t -1>ln (x +1)-ln (t +1),故原不等式得证.7.已知函数f (x )=x -a e x +b (a >0,b ∈R ).(1)求f (x )的最大值;(2)若函数f (x )有两个不同的零点x 1,x 2,证明:x 1+x 2<-2ln a .解 (1)令f ′(x )=1-a e x >0,得x <ln 1a ,∴f (x )在⎝ ⎛⎭⎪⎫-∞,ln 1a 上单调递增,在⎝ ⎛⎭⎪⎫ln 1a ,+∞上单调递减, ∴f (x )max =f ⎝ ⎛⎭⎪⎫ln 1a =ln 1a -1+b . (2)证明:由题知⎩⎪⎨⎪⎧x 1-a e x 1+b =0,x 2-a e x 2+b =0, 两式相减得x 1-x 2=a (e x 1-e x 2),即a =x 1-x 2e x 1-ex 2. 故要证x 1+x 2<-2ln a ,。

人教版新高考数学二轮复习习题训练--专题突破练1 常考小题点过关检测(word版含解析)

人教版新高考数学二轮复习习题训练--专题突破练1 常考小题点过关检测(word版含解析)

专题突破练1 常考小题点过关检测一、单项选择题1.(2021·山东潍坊一模)已知集合A={-2,0},B={x|x 2-2x=0},则下列结论正确的是( ) A.A=B B.A ∩B={0} C.A ∪B=A D.A ⊆B2.(2021·广东广州二模)已知集合P={x|-3≤x ≤1},Q={y|y=x 2+2x },则P ∪(∁R Q )=( )A.[-3,-1)B.[-1,1]C.(-∞,-1]D.(-∞,1]3.(2021·河北保定一模)设a ,b ∈R ,则“|a+b i |=|1+i |”是“a=b=1”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件4.(2021·福建福州一中模拟)在复平面内,复数z=a+b i(a ∈R ,b ∈R )对应向量OZ⃗⃗⃗⃗⃗ (O 为坐标原点),设|OZ⃗⃗⃗⃗⃗ |=r ,以x 轴的非负半轴为始边,射线OZ 为终边的角为θ,则z=r (cos θ+isin θ).法国数学家棣莫弗发现棣莫弗定理:z n =[r (cos θ+isin θ)]n =r n (cos n θ+isin n θ),则(-1+√3i)10=( ) A.1 024-104√3i B.-1 024+1 024√3i C.512-512√3iD.-512+512√3i5.(2021·东北三校第一次联考)土楼有圆形、方形、五角形、八角形、日字形、回字形、吊脚楼等类型.某大学建筑系学生对这七种主要类型的土楼依次进行调查研究.在制定调查顺序时,要求将圆形排在第一个或最后一个,方形、五角形相邻,则共有( )种不同的排法. A.480B.240C.384D.1 4406.(2021·河北唐山一模)记(x +12x)4展开式的偶数项之和为P ,则P 的最小值为( )A.1B.2C.3D.47.(2021·江苏南京三模)在正方形ABCD 中,O 为两条对角线的交点,E 为BC 边上的动点.若AE ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ +μDO ⃗⃗⃗⃗⃗⃗ (λ>0,μ>0),则2λ+1μ的最小值为( ) A.2B.5C.92D.1438.(2021·山东日照一中月考)已知f (x )=x 2+4x+1+a ,且对任意x ∈R ,f (f (x ))≥0恒成立,则实数a 的取值范围为( ) A.[√5-12,+∞) B.[2,+∞) C.[-1,+∞)D.[3,+∞)二、多项选择题9.(2021·河北张家口一模)如果平面向量a =(2,-4),b =(-6,12),那么下列结论正确的是( ) A.|b |=3|a |B.a ∥bC.a 与b 的夹角为30°D.a ·b =-6010.(2021·河北唐山二模)已知a>b>0,且ab=4,则 ( )A.2a-b >1B.log 2a-log 2b>1C.2a +2b >8D.log 2a ·log 2b<111.(2021·山东临沂模拟)在下列四个条件中,能成为x>y 的充分不必要条件的是( ) A.xc 2>yc 2 B.1x<1y<0 C.|x|>|y| D.ln x>ln y12.(2021·广东茂名模拟)传说古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.这是因为阿基米德认为这个“圆柱容球”是他最为得意的发现,于是留下遗言:他死后,墓碑上要刻上一个“圆柱容球”的几何图形.如图,设圆柱的体积与球的体积之比为m ,圆柱的表面积与球的表面积之比为n ,若f (x )=(mn x 3-1x )8,则( ) A.f (x )的展开式中的常数项是56 B.f (x )的展开式中的各项系数之和为0 C.f (x )的展开式中的二项式系数最大值是70 D.f (i)=-16,其中i 为虚数单位三、填空题13.(2021·福建厦门双十中学月考)设复数z 满足z=4i 1+i,则z 的共轭复数z 在复平面内对应的点位于第象限.14.(2021·上海嘉定二模)将(x √x)7的二项展开式的各项重新随机排列,则有理项互不相邻的概率为 .15.(2021·浙江嘉兴二模)为满足某度假区游客绿色出行需求,某电力公司在该度假区停车楼建设了集中式智慧有序充电站,充电站共建设901个充电桩,其中包括861个新型交流有序充电桩、37个直流充电桩以及3个专门满足新能源大巴快速补电需求的大功率直流充电桩.现有A ,B ,C ,D ,E ,F 六辆新能源大巴,需要安排在某周一的上午或下午在甲、乙、丙3个新能源大巴大功率直流充电桩充电,每个充电桩在上午和下午均只安排一辆大巴充电.若要求A ,B 两大巴不能同时在上午充电,而C 大巴只能在下午充电,且F 大巴不能在甲充电桩充电,则不同的充电方案一共有 种.(用数字作答) 16.(2021·辽宁葫芦岛一模)在边长为2的正三角形ABC 中,D 是BC 边的中点,AE ⃗⃗⃗⃗⃗ =2EB⃗⃗⃗⃗⃗ ,CE 交AD 于点F.若BF ⃗⃗⃗⃗⃗ =x BC ⃗⃗⃗⃗⃗ +y BA ⃗⃗⃗⃗⃗ ,则x+y= ;BF ⃗⃗⃗⃗⃗ ·DE ⃗⃗⃗⃗⃗ = .专题突破练1 常考小题点过关检测1.B 解析: 由题设得B={0,2},所以A ≠B ,A ∩B={0},A ∪B ≠A ,A 不是B 的子集.2.D 解析: 因为Q={y|y=x 2+2x }={y|y=(x+1)2-1}={y|y ≥-1},所以∁R Q={y|y<-1}, 又P={x|-3≤x ≤1},所以P ∪(∁R Q )={x|x ≤1}.3.B 解析: ∵|a+b i |=|1+i |,∴√a 2+b 2=√12+12,即a 2+b 2=2. ∵a 2+b 2=2a=b=1,而a=b=1⇒a 2+b 2=2,∴“a 2+b 2=2”是“a=b=1”的必要不充分条件,即“|a+b i |=|1+i |”是“a=b=1”的必要不充分条件.4.D 解析: 由题意,得(-1+√3i)10=210cos (10×2π3)+isin 10×2π3=1 024cos 20π3+isin 20π3=1 024(-12+√32i)=-512+512√3i .5.A 解析: 当圆形排在第一个时,有A 55A 22=240种不同的排法.同理,当圆形排在最后一个时,有A 55A 22=240种不同的排法.综上,圆形要排在第一个或最后一个,方形、五角形相邻,则共有480种不同的排法.6.B 解析: 由已知得x ≠0,则x 2>0,所以P=C 41x 3·12x+C 43x·(12x )3=2x 2+12x 2≥2√1=2,当且仅当2x 2=12x 2即x=±√22时等号成立. 7.C 解析: 如图所示,以A 为原点,AB ,AD 所在直线分别为x 轴、y 轴建立平面直角坐标系. 设正方形的边长为1,则A (0,0),B (1,0),C (1,1),D (0,1),于是可得O (12,12).设点E 的坐标为(1,m )(0≤m ≤1),则由AE ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ +μDO⃗⃗⃗⃗⃗⃗ (λ>0,μ>0),可得(1,m )=λ(1,1)+μ(12,-12)(λ>0,μ>0),所以1=λ+12μ(λ>0,μ>0),则2λ+1μ=(2λ+1μ)(λ+12μ)=2+12+μλ+λμ≥52+2√μλ·λμ=92,当且仅当{ λμ=μλ,1=λ+12μ,λ>0,μ>0,即λ=μ=23时取等号,此时2λ+1μ的最小值为92.经检验,此时m=13∈[0,1]符合题意.8.B解析: 由题意,函数f(x)=x2+4x+1+a,令t=f(x),则t=x2+4x+1+a=(x+2)2-3+a≥a-3,又对任意x∈R,f(f(x))≥0恒成立,即f(t)≥0对任意t≥a-3恒成立,当a-3≤-2时,即a≤1时,f(t)min=f(-2)=a-3≥0,解得a≥3,此时无解;当a-3>-2时,即a>1时,f(t)min=f(a-3)=a2-a-2≥0,解得a≥2或a≤-1,所以a≥2.综上可得,实数a的取值范围为[2,+∞).9.ABD解析: 因为a=(2,-4),b=(-6,12),所以b=-3a.所以|b|=3|a|,a∥b,a与b的夹角为180°,a·b=2×(-6)+(-4)×12=-60,故选项A,B,D正确,选项C错误.10.ACD解析: 因为a>b>0,且ab=4,对A,a-b>0,所以2a-b>20=1,故A正确;对B,取a=83,b=32,则log2a-log2b=log2ab=log2169<log22=1,故B错误;对C,2a+2b≥2√2a·2b=2√2a+b,当且仅当a=b时取等号,又因为a+b≥2√ab=4,当且仅当a=b=2时取等号,所以2a+2b≥2√2a+b≥2√24=8,当且仅当a=b=2时取等号,因为a>b>0,所以不能取等号,故C正确;对D,当a>1>b>0时,log2a>0,log2b<0,所以log2a·log2b<1;当a>b>1时,log2a>0,log2b>0,所以log2a·log2b≤(log2a+log2b)24=[log2(ab)]24=1,当且仅当a=b时取等号,因为a>b>0,所以不能取等号,故D正确.11.ABD解析: 对于A选项:若xc2>yc2,则c2≠0,于是x>y,而当x>y,c=0时xc2=yc2,所以“xc2>yc2”是“x>y”的充分不必要条件,故A符合题意;对于B选项:由1x<1y<0可得y<x<0,即能推出x>y;但x>y不能推出1x<1y<0(因为x,y的正负不确定),所以“1x<1y<0”是“x>y”的充分不必要条件,故B符合题意;对于C选项:由|x|>|y|可得x2>y2,则(x+y)(x-y)>0,不能推出x>y;由x>y也不能推出|x|>|y|(如x=1,y=-2),所以“|x|>|y|”是“x>y”的既不充分也不必要条件,故C不符合题意; 对于D选项:若ln x>ln y,则x>y,而由x>y不能推出ln x>ln y,所以“ln x>ln y”是“x>y”的充分不必要条件.故选项D符合题意.12.BC解析: 设内切球的半径为r(r>0),则圆柱的高为2r.于是m=πr2·2r43πr3=32,n=2πr2+2πr·2r4πr2=32,所以mn=1,所以f(x)=(x3-1x)8.对于A,f(x)展开式通项为T r+1=C8r x24-3r·(-1x )r=(-1)r C8r x24-4r,令24-4r=0,解得r=6,所以f(x)展开式中的常数项为(-1)6C86=28,A错误;对于B,f(1)=0,即f(x)展开式的各项系数之和为0,B正确; 对于C,f(x)展开式中二项式系数最大值为C84=70,C正确;对于D,f (i)=(i 3-1i )8=(-i +i)8=0,D 错误. 13.四 解析: 因为z=4i1+i =4i (1-i )(1+i )(1-i )=4i (1-i )2=2i(1-i)=2i -2i 2=2+2i,所以z =2-2i,所以共轭复数z 在复平面内对应的点位于第四象限.14.114解析: (x +1√x )7的展开式的通项为T r+1=C 7r x 7-r ·x -12r =C 7r x 7-32r ,当r=0,2,4,6时,对应的项为有理项,一共4项,当r=1,3,5,7时,对应的项为无理项,一共4项,要使得有理项互不相邻,采用插空法,先把无理项排好,再把有理项插到无理项的5个空档中,共有A 44A 54=2 880种情况,全部的情况有A 88=40 320种,故所求概率P=A 44A 54A 88=2 88040 320=114.15.168 解析: 先排F 大巴,第一种方案,F 大巴在上午充电,有C 21种可能情况,此时再排C大巴,C 大巴在下午充电,有C 31种可能情况,再排A ,B 大巴,又分A ,B 大巴同在下午和一个上午、一个下午两种情况,有(A 22+C 21C 21C 21)种可能情况;第二种方案,F 大巴在下午充电,有C 21种可能情况,此时再排C 大巴,C 大巴在下午充电,有C 21种可能情况,再排A ,B 大巴,只能一个上午、一个下午,有C 21C 31种可能情况.最后再排剩下的两辆大巴,有A 22种可能情况,故共有[C 21C 31(A 22+C 21C 21C 21)+C 21C 21C 21C 31]A 22=168种不同的充电方案. 16.35 -715解析: 如图,过点E 作EM ∥AD 交BC 于点M ,由AE ⃗⃗⃗⃗⃗ =2EB ⃗⃗⃗⃗⃗ ,得EM=13AD ,BM=13BD ,MD=23BD ,又D 是BC 边的中点,得DC=35MC ,∴FD=35EM ,故FD=15AD ,即AF=45AD ,所以AF ⃗⃗⃗⃗⃗ =45AD ⃗⃗⃗⃗⃗ =45(BD ⃗⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ )=45(12BC ⃗⃗⃗⃗⃗ -BA ⃗⃗⃗⃗⃗ )=25BC ⃗⃗⃗⃗⃗ −45BA ⃗⃗⃗⃗⃗ ,所以BF ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AF ⃗⃗⃗⃗⃗ =15BA ⃗⃗⃗⃗⃗ +25BC ⃗⃗⃗⃗⃗ ,故x+y=35.易知DE ⃗⃗⃗⃗⃗ =BE ⃗⃗⃗⃗⃗ −BD ⃗⃗⃗⃗⃗⃗ =13BA ⃗⃗⃗⃗⃗ −12BC ⃗⃗⃗⃗⃗ , 由已知得BA=BC=2,<BC ⃗⃗⃗⃗⃗ ,BA ⃗⃗⃗⃗⃗ >=60°,所以|BA ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ |=2,BA ⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ =2×2×cos 60°=2.所以BF ⃗⃗⃗⃗⃗ ·DE ⃗⃗⃗⃗⃗ =(15BA ⃗⃗⃗⃗⃗ +25BC ⃗⃗⃗⃗⃗ )·(13BA ⃗⃗⃗⃗⃗ -12BC ⃗⃗⃗⃗⃗ )=115BA ⃗⃗⃗⃗⃗ 2−15BC ⃗⃗⃗⃗⃗ 2+130BA ⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ =115×4-15×4+130×2=-715.。

高考数学复习考前专题训练—解答题(二)

高考数学复习考前专题训练—解答题(二)

高考数学复习考前专题训练—解答题(二)1.(2021·广东揭阳一模)已知正项等差数列{a n}的前n项和为S n,满足6S n=a n·a n+1+2(n∈N*),a1<2,(1)求数列{a n}的通项公式;(2)若b n=(-1)n lg(a n·a n+1),记数列{b n}的前n项和为T n,求T33.2.(2021·重庆八中适应性训练)在①cos 2A+2√2cos(B+C)+2=0,②√2+2cos C cos B=cos(C-B)-cos(C+B),③2c tan B=√2b(tan A+tan B)这三个条件中任选一个,补充到下面的横线上并作答.问题:在△ABC中,角A,B,C的对边分别为a,b,c,已知a=√5,c=√2,.(1)求cos C;,求sin∠DBC.(2)在边AC上取一点D,使得cos∠ADB=453.(2021·江苏盐城三模)如图,在三棱柱ABC-A1B1C1中,AC=BB1=2BC=2,∠CBB1=2∠CAB=π,且平面3ABC⊥平面B1C1CB.(1)求证:平面ABC⊥平面ACB1;(2)设点P为直线BC的中点,求直线A1P与平面ACB1所成角的正弦值.4.(2021·广东湛江二模)某高三学生小明准备利用暑假的7月和8月勤工俭学,现有“送外卖员”和“销售员”两份工作可供其选择.已知“销售员”工作每日底薪为50元,每日销售的前5件每件奖励20元,超过5件的部分每件奖励30元.小明通过调查,统计了100名销售员1天的销售记录,其柱状图如图1;“送外卖员”没有底薪,收入与送的单数相关,在一日内:1至20单(含20单)每送一单3元,超过20单且不超过40单的部分每送一单4元,超过40单的部分,每送一单4.5元.小明通过随机调查,统计了100名送外卖员的日送单数,并绘制成如下频率分布直方图(如图2).图1图2(1)分别求出“销售员”的日薪y 1(单位:元)与销售件数x 1的函数关系式,“送外卖员”的日薪y 2(单位:元)与所送单数x 2的函数关系式;(2)若将频率视为概率,根据统计图,试分别估计“销售员”的日薪X 1和“送外卖员”的日薪X 2(同一组中的数据用该组区间的中点值代表)的数学期望,分析选择哪种工作比较合适,并说明你的理由.5.(2021·湖北襄阳模拟)在平面直角坐标系xOy 中:①已知点A (√3,0),直线l :x=4√33,动点P 满足到点A的距离与到直线l 的距离之比为√32;②已知点S ,T 分别在x 轴、y 轴上运动,且|ST|=3,动点P 满足OP⃗⃗⃗⃗⃗ =23OS ⃗⃗⃗⃗⃗ +13OT ⃗⃗⃗⃗⃗;③已知圆C 的方程为x 2+y 2=4,直线l 为圆C 的切线,记点A (√3,0),B (-√3,0)到直线l 的距离分别为d 1,d 2,动点P 满足|PA|=d 1,|PB|=d 2.(1)在①,②,③这三个条件中任选一个,求动点P 的轨迹方程;(2)记(1)中动点P 的轨迹为E ,经过点D (1,0)的直线l'交E 于M ,N 两点,若线段MN 的垂直平分线与y 轴相交于点Q ,求点Q 纵坐标的取值范围.6.(2021·山东烟台一模)已知函数f (x )=a (x 2-x )-ln x (a ∈R ). (1)讨论函数f (x )的单调性; (2)证明:当x>1时,2e x -1lnx≥x 2+1x 2-x.答案及解析1.解 (1)设等差数列{a n }的公差为d ,则由6S n =a n ·a n+1+2,得6S n-1=a n-1·a n +2(n ≥2), 相减得6(S n -S n-1)=a n (a n+1-a n-1), 即6a n =a n ·2d (n ≥2). 又a n >0,所以d=3. 由6S 1=a 1·a 2+2,得6a 1=a 1·(a 1+3)+2,解得a 1=1(a 1=2舍去),由a n =a 1+(n-1)d ,得a n =3n-2. (2)b n =(-1)n lg(a n ·a n+1)=(-1)n (lg a n +lg a n+1),T 33=b 1+b 2+b 3+…+b 33=-lg a 1-lg a 2+lg a 2+lg a 3-lg a 3-lg a 4+…-lg a 33-lg a 34=-lg a 1-lg a 34=-lg 100=-2.2.解 选①:cos 2A+2√2cos(B+C )+2=0,得2cos 2A-1-2√2cos A+2=0,即(√2cos A-1)2=0,解得cos A=√22. 因为0<A<π,所以A=π4.选②:因为√2+2cos C cos B=cos(C-B )-cos(C+B ),所以√2+2cos C cos B=cos C cos B+sin C sin B-cos C cos B+sin C sin B ,即2cos(C+B )=-√2,cos A=√22,因为0<A<π,所以A=π4.选③:2c tan B=√2b (tan A+tan B ),所以2sinBsinCcosB =√2sin B (sinA cosA +sinBcosB ),所以2sin B sinC cos A=√2sin B sin C.因为sin B ≠0,sin C ≠0,所以cos A=√22. 因为A ∈(0,π),所以A=π4.(1)在△ABC 中,由余弦定理:cos A=b 2+c 2-a 22bc =22√2b,可得b=3,所以cosC=a 2+b 2-c 22ab=2√55.(2)因为cos ∠ADB=45,所以cos ∠BDC=-45. 即∠BDC 为钝角,且sin ∠BDC=35.又∠BDC+∠C+∠DBC=180°. 由(1)知,cos C=2√55,sin C=√1-cos 2C =√55.所以sin ∠DBC=sin(∠C+∠BDC )=sin ∠BDC cos ∠C+cos ∠BDC sin ∠C=35×2√55−45×√55=2√525.3.(1)证明 连接AB 1,B 1C.因为AC=2BC=2,所以BC=1.因为2∠CAB=π3,所以∠CAB=π6. 在△ABC 中,BCsinA =ACsinB ,即1sin π6=2sinB ,所以sin B=1.即AB ⊥BC.又因为平面ABC ⊥平面B 1C 1CB ,平面ABC ∩平面B 1C 1CB=BC ,AB ⊂平面ABC ,所以AB ⊥平面B 1C 1CB.又B 1C ⊂平面B 1C 1CB ,所以AB ⊥B 1C.在△B 1BC 中,B 1B=2,BC=1,∠CBB 1=π3,所以B 1C 2=B 1B 2+BC 2-2B 1B·BC·cos π3=3,即B 1C=√3,所以B 1C ⊥BC. 而AB ⊥B 1C ,AB ⊂平面ABC ,BC ⊂平面ABC ,AB ∩BC=B ,所以B 1C ⊥平面ABC.又B 1C ⊂平面ACB 1,所以平面ABC ⊥平面ACB 1.(2)解 以B 为坐标原点,以BC 为x 轴,BA 为y 轴,过B 作平面ABC 的垂线为z 轴,建立如图所示的空间直角坐标系,则B (0,0,0),C (1,0,0),A (0,√3,0).∵B 1C ⊥平面ABC ,∴B 1(1,0,√3),∴BB 1⃗⃗⃗⃗⃗⃗⃗ =(1,0,√3).在三棱柱中,AA 1∥BB 1∥CC 1,可得C 1(2,0,√3),A 1(1,√3,√3),∵P 为BC 中点,∴P (12,0,0).∴A 1P ⃗⃗⃗⃗⃗⃗⃗ =(-12,-√3,-√3),AB 1⃗⃗⃗⃗⃗⃗⃗ =(1,-√3,√3),CB 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,√3).设平面ACB 1的一个法向量为n =(x ,y ,z ), 则{AB 1⃗⃗⃗⃗⃗⃗⃗ ·n =0,CB 1⃗⃗⃗⃗⃗⃗⃗ ·n =0,即{x -√3y +√3z =0,√3z =0,不妨取x=√3,可得y=1,z=0,则n =(√3,1,0). 设直线A 1P 与平面ACB 1所成角为θ,则sin θ=|cos <A 1P ⃗⃗⃗⃗⃗⃗⃗ ,n >|=|A 1P ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n|A 1P ⃗⃗⃗⃗⃗⃗⃗⃗⃗|·|n ||=|-√32-√3+052×2|=3√310.故直线A 1P 与平面ACB 1所成角的正弦值为3√310.4.解 (1)“销售员”的日薪y 1(单位:元)与销售件数x 1的函数关系式为y 1={20x 1+50,x 1≤5,x 1∈N ,30x 1,x 1>5,x 1∈N ,“送外卖员”的日薪y 2(单位:元)与所送单数x 2的函数关系式为y 2={3x 2,x 2≤20,x 2∈N ,4x 2-20,20<x 2≤40,x 2∈N ,4.5x 2-40,x 2>40,x 2∈N .(2)由柱状图知,日平均销售量满足如下表格:所以X 1的分布列为所以E (X 1)=110×0.05+130×0.2+150×0.25+180×0.4+210×0.1=162(元).由频率分布直方图可知,日送单数满足如下表格:所以X 2的分布列如下表:所以E (X 2)=30×0.05+100×0.25+182×0.45+275×0.2+365×0.05=183(元).由以上计算得E (X 2)>E (X 1),做“送外卖员”挣的更多, 故小明选择做“送外卖员”的工作比较合适.5.解 (1)若选①:设P (x ,y ),根据题意,得√(x -√3)2+y 2|x -4√33|=√32,整理得x 24+y 2=1,所以动点P 的轨迹方程为x 24+y 2=1.若选②:设P (x ,y ),S (x',0),T (0,y'), 则√(x ')2+(y ')2=3.(i)因为OP ⃗⃗⃗⃗⃗ =23OS ⃗⃗⃗⃗⃗ +13OT ⃗⃗⃗⃗⃗, 所以{x =23x ',y =13y ',整理,得{x '=32x ,y '=3y , 代入(i)得x 24+y 2=1,所以动点P 的轨迹方程为x 24+y 2=1.若选③:设P (x ,y ),直线l 与圆相切于点H ,则|PA|+|PB|=d 1+d 2=2|OH|=4>2√3=|AB|. 由椭圆的定义,知点P 的轨迹是以A ,B 为焦点的椭圆, 所以2a=4,2c=|AB|=2√3,故a=2,c=√3,b=1. 所以动点P 的轨迹方程为x 24+y 2=1.(2)设Q (0,y 0),当直线l'的斜率不存在时,y 0=0.当直线l'的斜率存在时,设直线l'的斜率为k ,M (x 1,y 1),N (x 2,y 2),线段MN 的中点为G (x 3,y 3).由{x 124+y 12=1,x 224+y 22=1,得(x 1+x 2)(x 1-x 2)4+(y 1+y 2)(y 1-y 2)=0,所以k=y 1-y 2x 1-x 2=-x 1+x 24(y 1+y 2)=-2x34×2y3=-x 34y 3. 线段MN 的垂直平分线的方程为y-y 3=4y3x 3(x-x 3).令x=0,得y 0=-3y 3. 由k=-x 34y3=y 3x 3-1,得y 32=-14x 32+14x 3=-14(x 3-12)2+116.由y 32>0得0<x 3<1,所以0<y 32≤116,则-14≤y 3<0或0<y 3≤14,所以-34≤y 0<0或0<y 0≤34. 综上所述,点Q 纵坐标的取值范围是[-34,34].6.(1)解 函数f (x )的定义域为(0,+∞),f'(x )=a (2x-1)-1x =2ax 2-ax -1x. 令g (x )=2ax 2-ax-1.①当a=0时,g (x )=-1<0,f'(x )=g (x )x <0,故f (x )在(0,+∞)上单调递减;②当a ≠0时,g (x )为二次函数,Δ=a 2+8a.若Δ≤0,即-8≤a<0,则g (x )的图象为开口向下的抛物线且g (x )≤0,所以f'(x )≤0,故f (x )在(0,+∞)单调递减;若Δ>0,即a<-8或a>0.令g (x )=0,得x 1=a -√a 2+8a 4a ,x 2=a+√a 2+8a4a. 当a<-8时,g (x )图象为开口向下的抛物线,0<x 2<x 1,所以当x ∈(0,x 2)或x ∈(x 1,+∞)时,g (x )<0, 所以f'(x )<0,f (x )单调递减;当x ∈(x 2,x 1)时,g (x )>0,所以f'(x )>0,f (x )单调递增; 当a>0时,g (x )图象为开口向上的抛物线,x 1<0<x 2,所以当x ∈(0,x 2)时,g (x )≤0,所以f'(x )<0,故f (x )单调递减; 当x ∈(x 2,+∞)时,g (x )>0,所以f'(x )>0,f (x )单调递增. 综上,当a<-8时,f (x )在(0,a+√a 2+8a 4a )和a -√a 2+8a4a,+∞上单调递减,在(a+√a 2+8a 4a ,a -√a 2+8a4a)上单调递增; 当a>0时,f (x )在(0,a+√a 2+8a 4a )上单调递减,在(a+√a 2+8a 4a,+∞)上单调递增;当-8≤a ≤0时,f (x )在(0,+∞)上单调递减.(2)证明 由(1)知,当a=1时,f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,因此对任意x>1恒有f (x )>f (1),即x 2-x>ln x. 因为0<ln x<x 2-x ,若2e x-1≥x 2+1成立,则2e x -1lnx ≥x 2+1x 2-x 成立. 令φ(x )=e x-1-12(x 2+1)(x ≥1),则φ'(x )=e x-1-x ,φ″(x )=e x-1-1.因为x ≥1,所以φ″(x )≥0,所以φ'(x )在[1,+∞)上单调递增,又φ'(1)=0,所以当x ≥1时,φ'(x )≥0,所以φ(x )在[1,+∞)上单调递增, 又φ(1)=0,所以对任意x>1恒有φ(x )>φ(1)=0,即2e x-1≥x 2+1. 当x>1时,0<ln x<x 2-x ,则1lnx >1x 2-x >0.由不等式的基本性质可得2e x-1lnx≥x2+1x2-x.因此,原不等式成立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考小题集训(二)一、单项选择题1.[2020·山东烟台诊断]已知集合A ={x |x 2-x -2≤0},B ={x |y =x },则A ∪B =( ) A .{x |-1≤x ≤2} B .{x |0≤x ≤2} C .{x |x ≥-1} D .{x |x ≥0}2.[2020·山东淄博实验中学模拟]已知复数z =1-3i3+i,i 为虚数单位,则( )A .|z |=i B.z -=iC .z 2=1 D .z 的虚部为-i3.[2020·山东莱州一中质量检测]命题p :∃x ∈R ,tan x >x 的否定是( ) A .∃x ∈R ,tan x ≤x B .∀x ∈R ,tan x <x C .∀x ∈R ,tan x ≤x D .∃x ∈R ,tan x <x4.[2020·山东临沂质量检测]已知a =5ln 2,b =log 32,c =log 43,则a ,b ,c 的大小关系为( )A .a >c >bB .c >b >aC .a >b >cD .c >a >b5.[2020·山东青岛二中模拟]将函数y =sin 2x 的图象向右平移φ(φ>0)个单位后,图象经过点⎝ ⎛⎭⎪⎫π3,32,则φ的最小值为( )A.π12B.π6C.π3D.5π66.函数f (x )=e x+x -1x +1的部分图象大致是( )7.若函数f (x )=e x(cos x -a )在区间(-π2,π2)上单调递减,则实数a 的取值范围是( )A .(-2,+∞)B .(1,+∞)C .[1,+∞)D .[2,+∞)8.[2020·山东青岛二中模拟]已知双曲线Γ:x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线为l ,圆C :(x -a )2+y 2=8与l 交于A ,B 两点,若△ABC 是等腰直角三角形,且OB →=5OA →(O 为坐标原点),则双曲线的离心率为( )A.2133B.2135C.135 D.133 二、多项选择题9.[2020· 山东烟台诊断测试]设l ,m 是两条不同的直线,α,β是两个不同的平面,且l ⊂α,m ⊂β.下列结论不正确的是( )A .若α⊥β,则l ⊥βB .若l ⊥m ,则α⊥βC .若α∥β,则l ∥βD .若l ∥m ,则α∥β10.设集合M ={2,3,4},N ={1,2,3,4},分别从集合M 和N 中随机取一个元素m 与n .记“点P (m ,n )落在直线x +y =k 上”为事件A k (3≤k ≤8,k ∈N *),若事件A k 的概率最大,则k 的取值可能是( )A .4B .5C .6D .711.定义在⎝⎛⎭⎪⎫0,π2上的函数f (x ),已知f ′(x )是它的导函数,且恒有cos x ·f ′(x )+sin x ·f (x )<0成立,则有( )A .f ⎝ ⎛⎭⎪⎫π6>2f ⎝ ⎛⎭⎪⎫π4 B.3f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π3 C .f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π3 D.2f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π4 12.[2020·山东潍坊模拟]如图,矩形ABCD 中,M 为BC 的中点,将△AMB 沿直线AM 翻折起△AB 1M ,连接B 1D ,N 为B 1D 的中点,则在翻折过程中,下列说法正确的是( )A .存在某个位置,使得CN ⊥AB 1 B .翻折过程中,CN 的长是定值C .若AB =BM ,则AM ⊥B 1DD .若AB =BM =1,当三棱锥B 1-AMD 的体积最大时,三棱锥B 1-AMD 的外接球的表面积是4π三、填空题13.[2020·山东济南模拟]已知平面向量a ,b 满足a =(1,3),|b |=3,a ⊥(a -b ),则a 与b 夹角的余弦值为________.14.[2020·山东滨州模拟]已知sin αcos α1-cos 2α=1,tan(α-β)=13,则tan β=________.15.[2020·山东威海模拟](x +1)(x -2)6展开式中x 2的系数为________.16.[2020·山东省高考第一次模拟]直线l 过抛物线C :y 2=2px (p >0)的焦点F (1,0),且与C 交于A ,B 两点,则p =________,1|AF |+1|BF |=________.高考小题集训(二)1.解析:由题,因为x 2-x -2≤0,则(x -2)(x +1)≤0, 解得-1≤x ≤2,即A ={x |-1≤x ≤2}; 因为x ≥0,则B ={x |x ≥0}, 所以A ∪B ={x |x ≥-1}.故选C. 答案:C2.解析:由题知z =1-3i 3+i =1-3i 3-i 3+i 3-i =3-10i +3i29-i2=-i ,所以|z |=1,z -=i ,z 2=(-i)2=-1,z 的虚部为-1.故选B.答案:B3.解析:命题p :∃x ∈R ,tan x >x 的否定是∀x ∈R ,tan x ≤x ,故选C. 答案:C4.解析:因为0<ln 2<1,所以50<5ln 2,即a >1.因为32<24<33,所以312<2<334,所以12<log 32<34,即12<b <34.c =log 43=12log 23,因为23<32<42,所以232<3<4,所以32<log 23<2,所以34<c <1,所以a >c >b ,故选A.答案:A5.解析:由题知函数y =sin 2x 的图象向右平移φ个单位得到y =sin(2x -2φ),由图象过点⎝ ⎛⎭⎪⎫π3,32,得sin ⎝ ⎛⎭⎪⎫2×π3-2φ=32,则2π3-2φ=π3+2k π,k ∈Z 或2π3-2φ=2π3+2k π,k ∈Z ,即φ=π6-k π,k ∈Z 或φ=-k π,k ∈Z ,又φ>0,所以φ的最小值为π6,故选B.答案:B6.解析:∵f (x )=e x+x -1x +1=e x -2x +1+1,当x →-∞时,y =e x→0,y =-2x +1→0,∴x →-∞时,f (x )→1,排除A ,B ;∵f ′(x )=e x +2x +12,当x →+∞时,y =e x→+∞,y =2x +12→0,∴x →+∞时,f ′(x )→+∞,排除C ,故选D. 答案:D7.解析:f ′(x )=e x(cos x -sin x -a )由题意知cos x -sin x -a ≤0在区间(-π2,π2)上恒成立,即a ≥cos x -sin x ,x ∈(-π2,π2),令h (x )=cos x -sin x =2sin(π4-x ),x ∈(-π2,π2),∴π4-x ∈(-π4,3π4), ∴sin(π4-x )的最大值是1,此时x =-π4.∴h (x )≤2,∴a ≥ 2. 故选D. 答案:D8.解析:由题知双曲线的一条渐近线方程为y =b ax ,圆C 的圆心C (a,0),半径r =22,在等腰Rt △ABC 中,∠ACB =π2,|AC |=|BC |=22,由勾股定理得|AB |=222+222=4,故|OA |=14|AB |=1,|OB |=5|OA |=5.在△OAC ,△OBC 中,由余弦定理得cos ∠AOC =a 2+1-82a =52+a 2-810a ,解得a 2=13.易知圆心C 到直线y =b ax 的距离为2,得ab c =2,结合c 2=a 2+b 2,解得c =133,故离心率为c a =13313=133,故选D. 答案:D9.解析:根据面面垂直的性质,可知A 错误,因为当α⊥β时,l 与β可能平行,可能l 在平面β内,也可能相交但不一定垂直;根据面面垂直的判定,可知B 错误,因为当l ⊥m 时,α与β可能平行,也可能相交但不一定垂直;根据面面平行的性质,可知C 正确;根据面面平行的判定,可知D 错误,因为当l ∥m 时,α与β可能平行,也可能相交.综上,故选ABD.答案:ABD10.解析:由题意,点P (m ,n )的所有可能情况为(2,1)、(2,2)、(2,3)、(2,4)、(3,1)、(3,2)、(3,3)、(3,4)、(4,1)、(4,2)、(4,3)、(4,4),共12个基本事件,则事件A 3:点P (m ,n )落在直线x +y =3包含其中(2,1)共1个基本事件,所以P (A 3)=112;事件A 4:点P (m ,n )落在直线x +y =4包含其中(2,2)、(3,1)共2个基本事件,所以P (A 4)=16;事件A 5:点P (m ,n )落在直线x +y =5包含其中(2,3)、(3,2)、(4,1)共3个基本事件,所以P (A 5)=14;事件A 6:点P (m ,n )落在直线x +y =6包含其中(2,4)、(3,3)、(4,2)共3个基本事件,所以P (A 6)=14;事件A 7:点P (m ,n )落在直线x +y =7包含其中(3,4)、(4,3)共2个基本事件,所以P (A 7)=16;事件A 8:点P (m ,n )落在直线x +y =8包含其中(4,4)共1个基本事件,所以P (A 8)=112.综上可得,当k =5或6时,P (A k )max =P (A 5)=P (A 6)=14.故选BC.答案:BC11.解析:构造函数g (x )=f x cos x ⎝ ⎛⎭⎪⎫0<x <π2,则g ′(x )=f ′x cos x +f x sin x cos x2<0,即函数g (x )在⎝ ⎛⎭⎪⎫0,π2上单调递减,所以g ⎝ ⎛⎭⎪⎫π6>g ⎝ ⎛⎭⎪⎫π3,所以f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π3,同理,g ⎝ ⎛⎭⎪⎫π6>g ⎝ ⎛⎭⎪⎫π4,即2f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π4,故选CD. 答案:CD12.解析:由题意,对于A ,取AB 1的中点E ,连接MN ,EN ,ME ,则EN 为△B 1AD 的中位线,所以EN ∥AD ,则EN ∥MC ,又EN =12AD =MC ,所以四边形MCNE 是平行四边形,所以CN ∥ME ,由于AB 1⊥B 1M ,所以EM 不与AB 1垂直,即CN 不与AB 1垂直,故A 不正确;对于B ,取AB 的中点P ,连接MP ,AC ,则MP 是△ABC 的中位线,MP 的长是定值.由A 中分析可知CN =ME ,又MP =ME ,则CN =MP ,故CN 的长是定值,故B 正确;对于C ,由题意,AM ⊥MD ,若AM ⊥B 1D ,则AM ⊥平面MDB 1,所以AM ⊥MB 1,与AB 1⊥MB 1矛盾,故C 不正确;对于D ,取AM 的中点F ,连接B 1F ,DF ,易知当B 1F ⊥平面AMD 时三棱锥B 1-AMD 的体积最大,此时B 1F ⊥DF ,则B 1F =22,DF =22+⎝⎛⎭⎪⎫222=102,B 1D =⎝ ⎛⎭⎪⎫1022+⎝ ⎛⎭⎪⎫222=3,所以AB 21+B 1D 2=AD 2,所以AB 1⊥B 1D ,又AM ⊥MD ,所以三棱锥B 1-AMD 的外接球的半径为1,所以三棱锥B 1-AMD 的外接球的表面积是4π,故D 正确,综上,故选BD.答案:BD13.解析:由题意得,|a |=2,因为a ⊥(a -b ),所以a ·(a -b )=a 2-a ·b =0,所以a ·b =4,所以a 与b 的夹角的余弦值为a ·b |a ||b |=42×3=23.答案:2314.解析:因为sin αcos α1-cos 2α=1,所以sin αcos α=2sin 2α且cos α≠0,所以tanα=12;又tan(α-β)=13,所以tan β=tan[α-(α-β)]=tan α-tan α-β1+tan αtan α-β=12-131+16=17. 答案:1715.解析:(x -2)6的展开式的通项为T r +1=C r 6x 6-r (-2)r ,当r =5时,得T 6=C 56x (-2)5=6×(-32)x =-192x ,当r =4时,得T 5=C 46x 2(-2)4=15×16x 2=240x 2,故(x +1)(x -2)6展开式中x 2的系数为-192+240=48.答案:48 16.解析:由p2=1,得p =2.当直线l 的斜率不存在时,l :x =1,与y 2=4x 联立解得y=±2,此时|AF |=|BF |=2,所以1|AF |+1|BF |=12+12=1;当直线l 的斜率存在时,设l :y=k (x -1),代入抛物线方程,得k 2x 2-2(k 2+2)x +k 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1x 2=1,1|AF |+1|BF |=|AF |+|BF ||AF |·|BF |=x 1+x 2+2x 1+1x 2+1=x 1+x 2+2x 1x 2+x 1+x 2+1=x 1+x 2+21+x 1+x 2+1=1.答案:2 1。

相关文档
最新文档