第二章极限习题及答案:函数的连续性

合集下载

函数的连续性练习题及解答

函数的连续性练习题及解答

函数的连续性练习题及解答函数的连续性练习题1.证明方程 x ?cosx =0 在区间(0.π2)内有实根。

2.函数 y =x 2?1x 2?3x+2 的间断点是。

3.函数 f (x )=?x ?1,当x ≤1时3?x,当x >1时的间断点是。

4.函数 f (x )=?3x, 当?1<="" 当1 x=1处连续,则a= 。

5.设 f (x )=?sin ?(x+1)x+1, 当x ≠?1时;2k, 当x =?1时在x=-1处连续,则k= 。

6.函数 f (x )=x 2?x sin πx 的可取间断点的个数为。

7.函数f (x )=|x|sin ?(x ?1)x (x ?1)(x ?2)在下列区间有界的是。

A.(0,1) B.(1,2)C.(0,2)D.(2,3)8.设f (x )=arctanx,g (x )=sin2x+π3, 求g{f (?1)]。

9.设f (x )=lim u →+∞1u ln (ee uu +xx uu ) (xx >0) (1)求f(x);(2)讨论f(x)的连续性。

10.求下列函数的间断点,并确定所属类型:y =e 1x ?x+1x ?1 。

11.确定常数k,使下面函数f(x)在x=0处连续。

f(x)=?sinx x+xsin1x,x≠0k, x=0。

12.求函数 y=sinx x的间断点,并指出其类型。

13.求函数 y=x2?1x2?5x+4 的间断点,并指出其类型。

14.讨论函数f(x)=lim n→∞1?x2n1+x2n的连续性,若f(x)有间断点,判别其类型。

15.设函数f(x)=?x, x≤16x?5,x>1 ,试讨论f(x)在x=1处的连续性,并写出f(x)的连续区间。

16.设函数 f(x)=?1+e x,x<0x+2a,x≥0 ,问常数a为何值时,函数f(x)在(-∞,+∞)内连续。

17.问a为何值时,函数f(x)=?x2+1,|x|≤a,2|x|, |x|>a连续?18.证明:若函数y=f(x)对于一切正实数x1,x2满足f(x1·x2)=f(x1)+f(x2),且f(x)在x=1处连续,则f(x)在任一点x0(x0>0)处连续。

《高等数学一》第二章 极限与连续 历年试题模拟试题课后习题(汇总)(含答案解析)

《高等数学一》第二章 极限与连续  历年试题模拟试题课后习题(汇总)(含答案解析)

第二章极限与连续[单选题]1、若x0时,函数f(x)为x2的高阶无穷小量,则=()A、0B、C、1D、∞【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】本题考察高阶无穷小.根据高阶无穷小的定义,有.[单选题]2、与都存在是函数在点处有极限的().A、必要条件B、充分条件C、充要条件D、无关条件【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】时,极限存在的充分必要条件为左、右极限都存在并且相等,所以若函数在点处有极限,则必有与都存在.但二者都存在,不一定相等,所以不一定有极限.[单选题]3、().A、B、1C、D、0【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】[单选题]4、如果则().A、0B、1C、2【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】根据重要极限,[单选题]5、().A、0B、∞C、2D、-2【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】分子分母同除以,即[单选题]().A、0B、∞C、2D、-2【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】[单选题]7、设,则(). A、B、2C、D、0【从题库收藏夹删除】【正确答案】B【您的答案】您未答题【答案解析】[单选题]8、当时,与等价的无穷小量是(). A、C、D、【从题库收藏夹删除】【正确答案】B【您的答案】您未答题【答案解析】由于故与等价,推广,当时,[单选题]9、时,与等价的无穷小量是(). A、B、C、D、【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】由于,故与等价,推广,当时,[单选题]函数的间断点是().A、x=6、x=-1B、x=0、x=6C、x=0、x=6、x=-1D、x=-1、x=0【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】由于,所以的间断点是x=0,x=6,x=-1. [单选题]11、设,则是的().A、可去间断点B、跳跃间断点C、无穷间断点D、连续点【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】,即的左右极限存在且相等,但极限值不等于函数值,故为可去型间断点.[单选题]12、计算().A、B、C、D、【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】[单选题]13、计算().B、C、D、1【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】[单选题]14、().A、1B、﹣1C、2D、﹣2【从题库收藏夹删除】【正确答案】B【您的答案】您未答题析】[单选题]15、下列各式中正确的是().A、B、C、D、【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】A,当时,极限为,错误;B,,错误;C,,错误,D正确. [单选题]16、函数的间断点个数为().A、0B、1C、2D、3【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】在x=0和x=1处,无定义,故间断点为2个.[单选题]17、下列变量在的变化过程中为无穷小量的是()A、B、C、D、arctanx【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】,.[单选题]18、()A、0B、1C、不存在,但不是∞D、∞【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】[单选题]19、函数,则x=0是f(x)的( )A、可去间断点B、跳跃间断点C、无穷间断点D、连续点【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】故为可去间断点.[单选题]20、().A、-1B、2C、1D、0【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】为有界函数,故原式=. [单选题]21、().A、B、C、D、【从题库收藏夹删除】【正确答案】B【您的答案】您未答题【答案解析】[单选题]22、下列极限存在的是().A、B、C、D、【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】当x趋近于0时,为有界函数,故极限存在. [单选题]23、下列变量在的变化过程中为无穷小量的是().A、B、C、D、【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】,,,不存在,[单选题]极限=( )A、0B、2/3C、3/2D、9/2【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】[单选题]25、函数f(x)=的所有间断点是( )A、x=0B、x=1C、x=0,x=-1D、x=0,x=1【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】x=1时,分母为0,无意义。

高等数学作业集第2章极限与连续及答案

高等数学作业集第2章极限与连续及答案

x+ x �
(4) 1 + x − 1 − x � x , 1 阶,等价 x = x1/8 ,1/8 阶,
12.求下列极限 (1) lim
x →+∞
x sin x 2x + 3
x sin x 2x + 3 1 sin x lim = � 0 (无穷小与有界量的乘积) x →+∞ x (2 + 3 / x)
(1/ 2) n 4 4n +1 + 2n 4 + (1/ 2) n 4 + nlim →+∞ 解: = lim lim = = n →+∞ 3 ⋅ 4 n − 3n n →+∞ 3 − (3 / 4) n 3 − lim(3 / 4) n 3
n →∞
(3) lim ( n + 1 − n − n )
2 1/2
− 1 (3) cos( x 2 ) − 1 ,(4) tan( x3 )
x�
3 3 (4) tan( x ) � x [3 阶]; (3) x [1/2 阶]; (2) (1 + x 2 )1/2 − 1 � x 2 / 2 [2 阶];
cos( x 2 ) − 1 � − x 4 / 2 [4 阶]

2 3 − x x2 2 3 − =1 + 0 − 0 =1 x x2

(5) lim
4 x3 + 3x 2 x →∞ 5 x 4 + 2 x
4 x3 + 3x 2 1 4 + 3(1/ x) 1 4 + 3(1/ x) 4 解: lim =lim =lim �lim =0 × =0 x →∞ 5 x 4 + 2 x x →∞ x 5 + 2(1/ x 3 ) x →∞ x x →∞ 5 + 2(1/ x 3 ) 5

高等数学习题详解-第2章 极限与连续(精品范文).doc

高等数学习题详解-第2章 极限与连续(精品范文).doc

【最新整理,下载后即可编辑】习题2-11. 观察下列数列的变化趋势,写出其极限: (1) 1n n x n =+ ; (2)2(1)n n x =--;(3)13(1)nn x n=+-; (4)211n x n=-. 解:(1) 此数列为12341234,,,,,,23451n n x x x x x n =====+ 所以lim 1n n x →∞=。

(2) 12343,1,3,1,,2(1),n n x x x x x =====-- 所以原数列极限不存在。

(3)1234111131,3,3,3,,3(1),234n n x x x x x n=-=+=-=+=+-所以lim 3n n x →∞=。

(4)12342111111,1,1,1,,1,4916n x x x x x n =-=-=-=-=- 所以lim 1n n x →∞=-2.下列说法是否正确:(1)收敛数列一定有界 ; (2)有界数列一定收敛; (3)无界数列一定发散;(4)极限大于0的数列的通项也一定大于0. 解:(1) 正确。

(2) 错误 例如数列{}(-1)n 有界,但它不收敛。

(3) 正确。

(4) 错误 例如数列21(1)nn x n ⎧⎫=+-⎨⎬⎩⎭极限为1,极限大于零,但是11x =-小于零。

*3.用数列极限的精确定义证明下列极限:(1) 1(1)lim1n n n n-→∞+-=;(2) 222lim 11n n n n →∞-=++; (3)323125lim -=-+∞→n n n证:(1) 对于任给的正数ε,要使1(1)111n n n x n n ε-+--=-=<,只要1n ε>即可,所以可取正整数1N ε≥.因此,0ε∀>,1N ε⎡⎤∃=⎢⎥⎣⎦,当n N >时,总有1(1)1n n n ε-+--<,所以1(1)lim 1n n n n-→∞+-=. (2) 对于任给的正数ε,当3n >时,要使222222332211111n n n n n x n n n n n n n n nε---+-=-==<<<+++++++,只要2n ε>即可,所以可取正整数2max ,3N ε⎧⎫=⎨⎬⎩⎭.因此,0ε∀>,2max ,3N ε⎧⎫∃=⎨⎬⎩⎭,当n N >时,总有22211n n n ε--<++,所以222lim 11n n n n →∞-=++. (3)对于任给的正数ε,要使25221762()()131333(31)313n n x n n n n ε+--=--=<=<----,只要123n ε->即可,所以可取正整数213N ε≥+.因此,0ε∀>,213N ε⎡⎤∃=+⎢⎥⎣⎦,当n N >时,总有522()133n n ε+--<-,所以323125lim-=-+∞→n n n . 习题2-21. 利用函数图像,观察变化趋势,写出下列极限: (1)21lim x x →∞ ; (2) -lim x x e →∞; (3) +lim x x e -→∞; (4) +lim cot x arc x →∞; (5) lim2x →∞;(6) 2-2lim(1)x x →+; (7) 1lim(ln 1)x x →+; (8) lim(cos 1)x x π→- 解:(1)21lim 0x x →∞= ;(2) -lim0x x e →∞=;(3) +lim 0x x e -→∞=; (4) +lim cot 0x arc x →∞=; (5) lim 22x →∞= ;(6) 2-2lim(1)5x x →+=; (7) 1lim(ln 1)1x x →+=; (8) lim(cos 1)2x x π→-=- 2. 函数()f x 在点x 0处有定义,是当0x x →时()f x 有极限的( D )(A ) 必要条件 (B ) 充分条件 (C ) 充要条件 (D ) 无关条件解:由函数极限的定义可知,研究()f x 当0x x →的极限时,我们关心的是x 无限趋近x 0时()f x 的变化趋势,而不关心()f x 在0x x =处有无定义,大小如何。

第二章 极限与连续(五)

第二章    极限与连续(五)
三、连续函数的运算法则及初等函数的连续性 定理: 定理:若函数f(x)与g(x)在点x0处连续,则这两个函数的和 定理: 定理:连续函数的复合函数仍是连续函数.
f ( x) f(x)+g(x),差f(x)-g(x),积f(x)·g(x),商 ,在点x0处也连续. g( x)
定理: 定理:连续增(减)函数的反函数x=f -1(y) 是连续增(减)函数. 定理: 定理:一切初等函数在其定义区间内都是连续的.
y
y=f(x)
f (ξ1)≥f(x)
f (ξ2)≤f(x)
o a 上页
(a≤x≤b)
补充例题 首页
ξ1
返回
ξ2
b 下页
x
(a≤x≤b)
结束 铃
§2.6 函数的连续性
四、在闭区间上连续函数的性质 定理(介值定理) 定理(介值定理):设函数f(x)在闭区间[a,b]上连续,且在这 区间的端点取不同的函数值f (a)=A与f (b)=B,那么不 论C是A与B之间怎样一个数,在开区间(a,b)内至少有一 个点,使得f(ξ)=C.
定理: 定理:连续增(减)函数的反函数x=f -1(y) 是连续增(减)函数. 定理: 定理:一切初等函数在其定义区间内都是连续的. 计算初等函数极限的方法: 如果f(x)是初等函数,且x0是其定义域内的一点,则有
x→x0
lim f ( x) = f ( x0 )
返回
补充例题
首页
上页
下页Βιβλιοθήκη 结束铃§2.6 函数的连续性
∆ → x 0
y lim ∆ = 0
x→x0
lim f ( x) = f ( x0 )
例: 证明线性函数y=ax+b在(-∞,+∞)内连续,并求x0点的极限.

第二章 极限与连续 习题及答案

第二章    极限与连续 习题及答案

第二章 极限与连续一、填空 1、⎪⎭⎫⎝⎛+→x x x x x sin 11sinlim 0= 。

2、)arcsin(lim 2x x x x -++∞→= 。

3、nn n n 1sin)1()12(531lim3+-+++∞→ = 。

4、[]xx x 20)1ln(1lim ++→= 。

5、设()x f x 1lim →存在,且()()x f x x x f x 12lim 2→+=,则()x f x 1lim →= 。

6、设xx x k x 2)(lim -∞←-=xx x 2sin lim ∞→ ,则k= .7、设3)1sin(lim 221=-++→x bax x x ,则a = ,b = .8、当0→x 时,x x sin 1tan 1--+∽kx 41,则k = 。

9、如果函数()⎪⎩⎪⎨⎧=<<+-=010)11(1x ax xx x f x在其定义域上连续,则a = 。

10、函数23122+--=x x x y 的间断点为 ,其中可去间断点为 ,补充定义 使其连续。

二、选择1、下列命题正确的是( )A 、无限多个无穷小之和仍是无穷小。

B 、两个无穷大的和仍是无穷大C 、无穷大与有界变量(但不是无穷小)的乘积一定是无穷大。

D 、两个无穷大的积仍是无穷大。

2、已知xe xf 1)(=,则x =0是函数的( )A 、无穷型间断点B 、跳跃间断点C 、可去间断点D 、其它类型间断点3、x x ln arctan sin lim 0+→=( ) A 、1 B 、-1 C 、0 D 、不存在4、对于函数21x y -= )1,1(-∈x ,下列结论中不正确的是( ) A 、是连续函数 B 、是有界函数C 、是有最大值和最小值D 、有最大值无最小值5、设)(x f 在(-+∞∞,)内有定义,且⎪⎩⎪⎨⎧=≠==∞→00)1()(,)(lim x x x f x g a x f x则( )A 、0=x 必是)(x g 的第一类间断点B 、0=x 必是)(x g 的第二类间断点C 、0=x 必是)(x g 的连续点D 、)(x g 在点0=x 处的连续性与a 的取值有关6、函数)(x f 在0x x =点有定义是它在该点有极限的( ) A 、充分条件 B 、必要条件 C 、充要条件 D 、无关条件7、函数()()1121)(3++--=x x x x x f 在( )过程中为无穷大量A 、1→xB 、2→xC 、1-→xD 、∞→x8、若21)(lim0=→x ax f x ,则=→x bx f x )(lim 0( )A 、a b 2B 、ab21 C 、2ab D 、b a 29、若)0(0+x f 与)0(0-x f 均存在,则( ) A 、)(lim 0x f x x →存在且等于)(0x fB 、)(lim 0x f x x →存在但不一定等于)(0x fC 、)(lim 0x f x x →不一定存在D 、)(lim 0x f x x →必不存在10、函数)1ln()(x x f +=在下列( )区间上有界 A 、(-1,0) B 、),0(+∞ C 、]0,1(- D 、(2,3) 三、计算1、nnnnnnn 1)54321(lim ++++∞→2、xx x x sin 1sinlim20→3、422lim 22----+→x x x x4、xxx x sin 3sin 5arcsin lim0-→5、设xxx f )31()2(-=-,)(lim x f x ∞→6、讨论函数()⎪⎪⎪⎩⎪⎪⎪⎨⎧=>+<≤---+=00021ln 10111)(222x x x x x x x x x f 在分断点的连续性7、xx e e xx x sin lim sin 0--→8、[]{}n n n n ln )2ln(lim -+∞→四、证明题1、试证明曲线12--=x xe y x 在0=x 与1=x 至少与x 轴有一个交点2、设函数)(x f 在区间[]b a ,上连续,且b b f a a f ><)(,)(,证明:存在),(b a ∈ξ使得ξξ=)(f应用实例银行复利的计算一个人为了积累养老金,他每个月按时到银行存100元,银行的年利率为4%,且可以任意分段按复利计算,试问此人在5年后共积累了多少养老金?如果存款和复利按日计算,则他又有多少养老金?如果复利和存款连续计算呢?解 按月存款和计算时,每月的利息为30011004121=⨯,记k x 为第k 月末时的养老金数,则由题意得1001=x ⎪⎭⎫ ⎝⎛++=300111001002x233001110030011100100⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=x13001110030011100100-⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++=n n x5年末养老金为⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-⨯=1)30011(30000300111300111100606060x (元) 当复利和存款按日计算时,记k y 为第k 天的养老金数,则每天的存款额为3651200=a ,每天的利率为365004=r 。

《高等数学一》第二章极限与连续历年试题模拟试题课后习题集(汇总)(含规范标准答案解析)

《高等数学一》第二章极限与连续历年试题模拟试题课后习题集(汇总)(含规范标准答案解析)

第二章极限与连续[单选题]1、若x0时,函数f(x)为x2的高阶无穷小量,则=()A、0B、C、1D、∞【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】本题考察高阶无穷小.根据高阶无穷小的定义,有.[单选题]2、与都存在是函数在点处有极限的().A、必要条件B、充分条件C、充要条件D、无关条件【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】时,极限存在的充分必要条件为左、右极限都存在并且相等,所以若函数在点处有极限,则必有与都存在.但二者都存在,不一定相等,所以不一定有极限.[单选题]3、().A、B、1C、D、0【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】[单选题]4、如果则().A、0B、1C、2D、5【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】根据重要极限,[单选题]5、().A、0B、∞C、2D、-2【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】分子分母同除以,即[单选题]6、().A、0B、∞C、2【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】[单选题]7、设,则(). A、B、2C、D、0【从题库收藏夹删除】【正确答案】B【您的答案】您未答题【答案解析】[单选题]8、当时,与等价的无穷小量是().A、C、D、【从题库收藏夹删除】【正确答案】B【您的答案】您未答题【答案解析】由于故与等价,推广,当时,[单选题]9、时,与等价的无穷小量是(). A、B、C、D、【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】由于,故与等价,推广,当时,[单选题]10、函数的间断点是().A、x=6、x=-1B、x=0、x=6C、x=0、x=6、x=-1D、x=-1、x=0【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】由于,所以的间断点是x=0,x=6,x=-1.[单选题]11、设,则是的().A、可去间断点B、跳跃间断点C、无穷间断点D、连续点【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】,即的左右极限存在且相等,但极限值不等于函数值,故为可去型间断点.[单选题]12、计算(). A、B、C、D、【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】[单选题]13、计算(). A、B、C、D、1【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】[单选题]14、().A、1B、﹣1C、2D、﹣2【从题库收藏夹删除】【正确答案】B【您的答案】您未答题【答案解析】[单选题]15、下列各式中正确的是().A、B、C、D、【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】A,当时,极限为,错误;B,,错误;C,,错误,D正确.[单选题]16、函数的间断点个数为().A、0B、1C、2D、3【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】在x=0和x=1处,无定义,故间断点为2个. [单选题]17、下列变量在的变化过程中为无穷小量的是()A、B、C、D、arctan x【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】,. [单选题]18、()A、0B、1C、不存在,但不是∞D、∞【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】[单选题]19、函数,则x=0是f(x)的( )A、可去间断点B、跳跃间断点C、无穷间断点D、连续点【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】故为可去间断点.[单选题]20、().A、-1B、2C、1D、0【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】为有界函数,故原式=. [单选题]21、().A、B、C、D、【从题库收藏夹删除】【正确答案】B【您的答案】您未答题【答案解析】[单选题]22、下列极限存在的是().A、B、C、D、【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】当x趋近于0时,为有界函数,故极限存在. [单选题]23、下列变量在的变化过程中为无穷小量的是().A、B、C、D、【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】,,,不存在,[单选题]24、极限=( )A、0B、2/3C、3/2D、9/2【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】[单选题]25、函数f(x)=的所有间断点是( )A、x=0B、x=1C、x=0,x=-1D、x=0,x=1【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】x=1时,分母为0,无意义。

《微积分》各章习题及详细答案

《微积分》各章习题及详细答案

第一章 函数极限与连续一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim22x x x x 。

3、0→x 时,x x sin tan -是x 的 阶无穷小。

4、01sin lim 0=→xx kx 成立的k 为 。

5、=-∞→x e xx arctan lim 。

6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b .7、=+→xx x 6)13ln(lim 0 。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。

12、函数xxx f +=13arcsin )(的定义域是__________。

13、lim ____________x →+∞=。

14、设8)2(lim =-+∞→xx ax a x ,则=a ________.15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。

(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。

高数极限习题测验及答案

高数极限习题测验及答案

练习题1. 极限xx x x x x x x xx x x x x x 1lim)4(11lim)3(15865lim )2(31lim )1(2312232---+-+-+++-∞→→→∞→(5) 已知011lim 2=⎪⎪⎭⎫⎝⎛--++∞→b ax x x x , 求常数a , b .(6) x x x x sin 1sin lim 20→ (7) 211lim 22x x x x ⎪⎪⎭⎫⎝⎛+-∞→(8) xx x21lim 0-→ (9)x x x sin )31ln(lim 0-→(10)⎪⎪⎭⎫⎝⎛-∞→1lim 1xx e x2. 函数的连续性(1) 确定b 的值, 使函数⎩⎨⎧<≥+==-002)(1x e x b x x f y x 在x =0点连续.(2) 确定a , b 的值, 使函数1lim)(2212+-+==-∞→nn n x bxax xx f y 在整个实数轴上连续.(3) 讨论下列函数的连续性, 并判断其间断点的类型.①x xx f sin )(=② ⎪⎪⎩⎪⎪⎨⎧=≠+-=0001212)(11x x x f xx3. 连续函数的性质 (1) 设1)(1-+++=-x xx x f n n ,证明:)(x f 有一个不大于1的正根.(2) 若),()(∞+-∞∈C x f , 且A x f x =∞→)(lim , 证明: ),()(∞+-∞在x f 内有界.提高1º),()(∞+-∞在x f 内至少有一个最值存在. 2º 对于最值与A 间的任意值C , 存在21,ξξ, 使得C f f ==)()(21ξξ.2. 函数的连续性(1) 确定b 的值, 使函数⎩⎨⎧<≥+==-002)(1x ex b x x f y x在x =0点连续.解:1)(lim )(lim )0(-→→====-+e x f b x f f x x(2) 确定a , b 的值, 使函数1lim)(2212+-+==-∞→nn n x bxax xx f y 在整个实数轴上连续.解:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=++-=-+<->==121121111)(2x b a x ba x bx ax x x x f yb a x f x f b a f x x -====-+=-+→→)(lim 1)(lim 21)1(11 b a x f x f b a f x x +==-==++-=--→-→-)(lim 1)(lim 21)1(_111,0-==b a(3) 讨论下列函数的连续性, 并判断其间断点的类型.①x x x f sin )(=解: x =0为可去间断点.②⎪⎪⎩⎪⎪⎨⎧=≠+-=0001212)(11x x x f xx解:1)(lim 1)(lim 0-=≠=-+→→x f x f x x , x =0为跳跃间断点.3. 连续函数的性质 (1) 设1)(1-+++=-x xx x f n n ,证明:)(x f 有一个不大于1的正根.解: 若n=1, 则显然有解x =1. 若n>1, 则01)1(,01)0(>-=<-=n f f , 由零点定理可知在(0, 1)内至少有一个根..(2) 若),()(∞+-∞∈C x f , 且A x f x =∞→)(lim , 证明: ),()(∞+-∞在x f 内有界.解: 由A x f x =∞→)(lim 可知: 0>∃X , 当X x >时, 1)(<-A x f , 故1)(+<A x f由),()(∞+-∞∈C x f 可知]1,1[)(+--∈X X C x f , 故01>∃M ,当1+<X x 时, 1)(M x f <取}1,max{1+=A M M 即可.提高1º),()(∞+-∞在x f 内至少有一个最值存在. 2º 对于最值与A 间的任意值C , 存在21,ξξ, 使得C f f ==)()(21ξξ.证明: 若A x f ≡)(, 则显然结论成立.设存在A x f >)(0, 则存在X >0, 当X x ≥时, 有2)()(0Ax f A x f -<- 于是: )(2)()(00x f A x f x f <+< 由],[)(X X C x f -∈, 可知存在],[X X -∈ξ{})(],[:)(max )(0x f X X x x f f ≥-∈=ξ从而),()(∞+-∞在x f 内有最大值)(ξf .对于任意的C , )(ξf C A <<, 存在X 1>0, 当1X x ≥时, 有 C AC x f <+<2)( 于是有CAC X f <+<±2)(1. 分别在闭区间],[],,[11X X ξξ-上使用介值定理即可得结论2º.。

《微积分》各章习题及详细答案

《微积分》各章习题及详细答案

第一章 函数极限与连续一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim22x x x x 。

3、0→x 时,x x sin tan -就是x 的 阶无穷小。

4、01sin lim 0=→xx kx 成立的k 为 。

5、=-∞→x e xx arctan lim 。

6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。

7、=+→xx x 6)13ln(lim 0 。

8、设)(x f 的定义域就是]1,0[,则)(ln x f 的定义域就是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 就是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 就是等价无穷小,则常数________=a 。

12、函数xxx f +=13arcsin )(的定义域就是__________。

13、lim ____________x →+∞=。

14、设8)2(lim =-+∞→xx ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题1、设)(),(x g x f 就是],[l l -上的偶函数,)(x h 就是],[l l -上的奇函数,则 中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C))]()()[(x h x g x f +;(D))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。

(A)α就是比β高阶的无穷小; (B)α就是比β低阶的无穷小; (C)α与β就是同阶无穷小; (D)βα~。

第二章-极限与连续--基础练习题(含解答)

第二章-极限与连续--基础练习题(含解答)

第二章-极限与连续--基础练习题(含解答)第二章极限与连续基础练习题(作业)§2.1数列的极限一、观察并写出下列数列的极限:468,,极限为135711112.1,,,,,极限为023451.2,2n1n为奇数2n3.an极限为1n21n为偶数2n§2.2函数的极限一、画出函数图形,并根据函数图形写出下列函数极限:某1.lime某极限为零2.limtan某某2无极限3.limarctan某某极限为2ln某4.lim某0无极限,趋于某12某1,2二、设f(某)某某3,1某2,问当某1,某2时,f(某)的极限是否存在?某21,某2某12f(某)lim(2某1)3limf(某)lim(某某3)3;lim某1某1某1limf(某)3.某1某222limf(某)lim(某某3)53limf(某)lim(某1)3;某2某2某2limf(某)不存在。

某2三、设f某11e1某,求某0时的左、右极限,并说明某0时极限是否存在.某0limf某lim某011e11某1某0某0limf某lim某011elimf(某)不存在。

某0四、试讨论下列函数在某0时极限是否存在.1.绝对值函数f 某|某|,存在极限为零2.取整函数f某[某]不存在3.符号函数f某gn 某不存在§2.3无穷小量与无穷大量一、判断对错并说明理由:1.某in1是无穷小量.某110;当某1时,某inin1不是无穷小量。

某某错,无穷小量需相对极限过程而言,在某个极限过程中的无穷小量在其它极限过程中可能不再是无穷小量。

当某0时,某in2.同一极限过程中两个无穷小量的商,未必是该极限过程中的无穷小量.对,两个无穷小量的商是“0/0”型未定式,即可能是无穷小量,也可能是无穷大量或其它有极限但极限不为零的变量。

3.无穷大量一定是无界变量,而无界变量未必是无穷大量.对,无穷大量绝对值无限增大因此一定是无界变量,但无界变量可能是个别点无限增大,变量并不能一致地大于任意给定的正数。

2023年大学_高等应用数学试题及答案

2023年大学_高等应用数学试题及答案

2023年高等应用数学试题及答案高等应用数学试题第一章函数1.1函数的概念习题1.11.2初等函数习题1.21.3分段函数习题1.31.4常用的经济函数习题1.4复习题一第二章极限与连续2.1数列极限习题2.12.2函数极限习题2.22.3无穷小与无穷大习题2.32.4极限的四则运算习题2.42.5两个重要极限习题2.52.6函数的连续性习题2.6复习题二第三章导数与微分3.1导数的概念习题3.13.2导数的基本公式和基本运算法则习题3.23.3复合函数的导数习题3.33.4反函数的.层数和隐函数的层数习题3.43.5高阶层数习题3.53.6微分习题3.6复习题三第四章导数的应用4.1中值定理习题4.14.2罗必塔法则习题4.24.3函数单调性习题4.34.4函数的极值与最值习题4.44.5函数图形的描绘习题4.54.6导数在经济工作中的应用习题4.6复习题四第五章不定积分第六章定积分第七章多元函数微积分第八章矩阵附录一习题参考答案附录二简易积分表高等应用数学内容简介《高等应用数学》是教育部高职高专规划教材,是以教育部高职高专应用数学课程的基本要求为依据,吸收国外先进职业教育思想编写的,分上、下两册。

本书为下册本书,本书共分为八章。

主要内容包括:函数;极限与连续;导数与微分;导数的应用;不定积分;定积分;多元函数微积分;矩阵。

每节后附有相关习题,每章后附有复习题。

本书最大的特点是应用性较强,适用面较广,财经类、工程技术类、管理类人员都可用。

高等应用数学目录。

(完整版)《微积分》各章习题及详细答案

(完整版)《微积分》各章习题及详细答案

第一章 函数极限与连续一、填空题1、已知x xf cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim22x x x x . 3、0→x 时,x x sin tan -是x 的 阶无穷小。

4、01sin lim 0=→xx k x 成立的k 为 .5、=-∞→x e x x arctan lim .6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b .7、=+→xx x 6)13ln(lim 0 。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________. 9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a .12、函数x xx f +=13arcsin )(的定义域是__________。

13、lim ____________x →+∞=.14、设8)2(lim =-+∞→xx ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。

(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~.3、函数⎪⎩⎪⎨⎧=-≥≠-+-+=0)1(0,1111)(3x k x x x x x f 在0=x 处连续,则=k 。

函数的极限及函数的连续性典型例题

函数的极限及函数的连续性典型例题

函数的极限及函数的连续性典范例题之邯郸勺丸创作创作时间:二零二一年六月三十日一、重点难点分析:①此定理非常重要, 利用它证明函数是否存在极限. ②要掌握罕见的几种函数式变形求极限.③函数f(x)在x=x0处连续的充要条件是在x=x0处左右连续. ④计算函数极限的方法, 若在x=x0处连续, 则. ⑤若函数在[a,b]上连续, 则它在[a,b]上有最年夜值, 最小值. 二、典范例题例1.求下列极限①②③④解析:①. ②. ③. ④. 例2.已知, 求m,n.解:由可知x2+mx+2含有x+2这个因式, ∴ x=-2是方程x2+mx+2=0的根, ∴ m=3代入求得n=-1. 例3.讨论函数的连续性.解析:函数的界说域为(-∞,+∞), 由初等函数的连续性知, 在非分界点处函数是连续的, 又, ∴, ∴ f(x)在x=1处连续. 由, 从而f(x)在点x=-1处不连续. ∴ f(x)在(-∞,-1),(-1,+∞)上连续, x=-1为函数的不连续点. 例4.已知函数, (a,b为常数). 试讨论a,b为何值时, f(x)在x=0处连续.解析:∵且, ∴, ∴a=1, b=0. 例5.求下列函数极限①②解析:①. ②. 例6.设, 问常数k为何值时, 有存在?解析:∵, . 要使存在, 只需, ∴ 2k=1, 故时,存在. 例7.求函数在x=-1处左右极限, 并说明在x=-1处是否有极限?解析:由,, ∵, ∴ f(x)在x=-1处极限不存在. 三、训练题:1.已知, 则2.的值是_______. 3. 已知, 则=______. 4.已知, 2a+b=0, 求a与b的值. 5.已知, 求a的值. 参考谜底:1. 3 2.3. 4. a=2, b=-4 5. a=0创作时间:二零二一年六月三十日。

经济数学(极限与连续习题及答案)

经济数学(极限与连续习题及答案)

第二章 函数的极限与连续习题 2-11.写出下面数列的前5项,并观察当n —>∞时,哪些数列有极限,极限为多少? 哪些数列没有极限.{}{}{}{}{}{}{}211(1) 1 (2) 21(3) (4) (1)11(1)(5) sin (6) 2n n n nn n n n n n x x n n x x nn x x n π⎧⎫-⎪⎪⎧⎫=-=⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭-⎧⎫==-⎨⎬+⎩⎭⎧⎫+-⎪⎪⎧⎫==⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭解 (1)3231,1615 ,87 ,43 ,21 有极限 , 极限为 1.(2)524,415 ,38 ,23 ,0 没有极限. (3)64,53 ,42 ,31 0, 有极限 , 极限为 1. (4) -1, 2, -3, 4, -5 没有极限.(5)5sin,4sin ,3sin ,2sin ,sin πππππ, 有极限 , 极限为 0 . (6) 0, 1, 0 , 1, 0 没有极限 . 2. 用极限的定义证明:(1) 若k >0,则 1lim0kn n →∞=n 212(2) lim313n n →∞+=+解 (1) 因为对任给的ε> 0,要使不等式110(0)k kk n n ε-=<>11().kn ε>即便可所以对任给的ε> 0, 取正整数 N =11[()]1kε+ , 则当n >N 时, 就恒有 10kn ε-<故由数列极限的定义知, 1lim0kn n →∞=.(2) 因为对任给的ε > 0, 不妨设10ε<3<,要使不等式2121ε31393n n n +-=<++11(3) 9εn >-即便可.所以对任给的ε> 0, 取正整数N = 11[(3)]19ε-+, 则当n > N 时, 就恒有 212313n n ε+-<+故由数列极限的定义知,3213n 12n lim=++∞>-n .3. 设 120.9,0.99,,0.999,lim .nn n n x x x x →∞===求如果要使x n 与其极限之差的绝对值小于 0.0001 , 问n 应满足什么条件?解 因为0.999,lim 1, 0.0001,n n n n x x ε→∞===由则取要使110.000110000n x -<=110.999910000n x >-=只要便可.所以n > 4 .4. 设数列{x n }有界,且lim 0, lim 0.n n n n n y x y →∞→∞==证明证 因为数列{x n }有界, 所以存在正整数M > 0, 使得nx < M,又因为0lim =∞→n n y , 则对任给的M ε> 0, 存在正整数N , 使得当n > N 时, 就恒有0n y M ε-<所以对任给的ε> 0, 存在正整数N , 使得当n >N 时, 就恒有n n n n x y x y M Mεε=<⋅=故由数列极限的定义知, .0lim =∞→n n n y x5. 设数列{x n }收敛, 求证数列{x n }必定有界.解 由数列{x n }收敛, 设Ax n n =∞→lim .因为对于任意ε > 0, 存在正整数N , 使得当n > N 时的一切x n , 就恒有 n x A ε-<即n A x A εε-<<+所以对任给的ε > 0,取正数{}12max ,,,,,,N M x x x A A εε=+-使得当n > N 时 ,就恒有 n x M <故数列{x n }必定有界.习题 2-21. 用极限的定义证明 :2324(1) lim(31)8 (2) lim 4223(3) lim 2 (4) lim 20x x x x x x x x x x →→-→∞→-∞--==-++==解 (1)因为对任给的ε> 0, 要使不等式|(3 x – 1) – 8| =|3(x – 3)| < ε只要取正数δ= ε3就可以了.所以对任给的ε> 0, 取正数δ= ε3,使得当0 < | x – 3|<δ时, 就恒有|(3x – 1) – 8| < ε故由极限定义知 3lim(31)8x x ->-=.(2)因为对任给的ε > 0, 要使不等式244242ε2x x x x -+=-+=+<+只要取正数δ= ε就可以了.所以对任给的ε> 0, 取正数δ= ε, 使得当0<|x + 2|<δ时, 就恒有244ε2x x -+<+ 故由极限定义知 224lim 42x x x →--=-+.(3)因为对任给的ε> 0, 要使不等式2332εx x x +-=<,则 |x |> 3ε, 只要取正数M = 3ε就可以了.所以对任给的ε> 0, 取正数M =3ε, 使得当| x | > M 时, 就恒有 232εx x +-<故由极限定义知 23lim 2x x x ->∞+=.(4)因为对任给的ε> 0 (不妨设0<ε<1), 要使不等式ln 202, ln 2x x x εε-=<<即 ln ln 2M ε=只要取正数就可以了.所以对任给的ε>0,取正数2ln ln ε=M , 使得当x <-M 时, 就恒有20x ε-<故由极限定义知 lim 20x x ->-∞=.2*. 当x →-2时,x 2→4. 问δ等于多少,在0<|x + 2|<δ时, 有| x 2 - 4|< 0.003 ?解 因为当x→-2时,x -2 →-4, 取 ε= 0.003, 要使不等式 | x 2 - 4|=| x + 2| | x – 2 |< ε设21x +<, 即有 -3< x <-1, -5< x -2 <-3 所以当2x -< 5时,取0.0035δ==0.0006, 有240.003x ε-<=.3*. 当x —>∞ 时,102x →-. 问M 等于多少时,在|x |> M 时, 有100.012x -<-?解 因为当x —>∞ 时,要使不等式100.012x -<-2100, 102.x x ->>只要便可 即M = 102.4. 设函数1, 0() 0, 01, 0x x f x x x x -<⎧⎪==⎨⎪+>⎩, 讨论当x —> 0时,f (x )的极限是否存在.解 00lim ()lim (1)1x x f x x --→->=-=-因为00lim ()lim (1)1lim ()lim ()lim ()x x x x x f x x f x f x f x ++-+→->→→->=+=≠即故 不存在.5. 证明函数f (x ) = x | x |, 当x →0时极限为零.22, 0(), 0x x f x x x ⎧≥⎪=⎨-<⎪⎩解 因为--20020lim ()lim ()0lim ()lim 0lim ()0.x x x x x f x x f x x f x ++→→→→→=-====即故6* . 利用定义证明:0, 11lim , 01x x a a a →+∞>⎧=⎨+∞<<⎩. 证 因为当a >1时,对任意ε> 0,不妨设0<ε<1, 要使110x x a a ε-=<1ln ln x a ε->只要取正数便可.所以对于0<ε<1,1ln 0,,ln M x M a ε->>取=当时就恒有10xa ε-<即 1limx x a →+∞=.又因为当0< a < 1时,令11b a =>时,由上述可得1 lim 0x x b →+∞=于是 1lim lim x x x x b a →+∞→+∞==+∞故由极限定义知0, 11lim, 01xx a a a →+∞>⎧=⎨+∞<<⎩. 7.设函数21, 2()2, 2x x f x x k x ⎧+≥=⎨+<⎩, 问当k 取何值时,函数f (x )在x —> 2时的极限存在. 解 2lim (), ,x f x ->因为要使存在必须左右极限存在且相等222lim (1)5lim (2)4 1.x x x x k kk ->->+==+=+=+-即解得故 2lim () 5.x f x ->=8. 求(),()x xf x x x x ϕ==当x —> 0时的左、右极限,并说明它们在 x —> 0时的极限是否存在.解 1 , 0(), 0x f x x ≠⎧=⎨=⎩因为不存在 0lim () lim101 , 0()1, 0x x f x x x x ϕ→→==>⎧=⎨-<⎩即而习题 2-31. 1. 求下列极限:3222010203031222042412(1)(1) lim (2) lim2(2)(23)31(3) lim (4) lim()1(13)112((5) lim[ ] (6 ) limx n x x n h x x x n x x n x x x x x n x n n n→→∞→∞→→∞→-++++-+------++++222) (7) x x h x h →→-解 322200424424(1)lim lim 2.22x x x x x x x x x x →→-+-+==++22102010202030303012(1)(1)1(2) lim=lim =.2223(1)(2)(2)(23)2(3) lim lim .1(13)3(3)n n x x n n n n n x x x x x x →∞→∞→∞→∞+++------==-- 233112122222313(1)(4) lim()lim111(2)(1)lim 1.(1)(1)1212 (5) lim[]lim1(1)1lim .22 (6) lim x x x n n n h x x x x x x x x x x n nn n n n n n n →→→→∞→∞→∞-++-=---+-==-++++++++=+=⋅=222000200()2lim lim(2)2.(7)lim(1 2.(8) h h x x x x x x h x xh h x h x h h →→→→→→→→+-+==+===-=-= 4x x →→===2. 求下列数极限:n n n n n n 1(1)(1) lim111(3) lim[]1223(1)(1) 0.1(1)(2) lim 0.nnnn n n →∞→∞→∞→∞→∞+-+++⨯⨯⨯+==+-= 解111(3) (1)1n n n n =-⨯++因为111 lim[]1223(1)11111lim[(1)()()]22311lim(1) 1.1n n n n n n n n →∞→∞→∞+++⨯⨯⨯+=-+-++-+=-=+ 故2. 2. 设 22lim()51x x ax b x →∞--+=--, 求常数a, b 的值.解 222(1)()2lim ()lim 511x x x a x b a x bax b x x →∞→∞--++---+==---由1051, 6.a a b a b -=⎧⎨+=-⎩==-得故3. 3. 若常数k 使233lim 222-++++-→x x k kx x x 存在, 试求出常数k 与极限值. 解 2222233lim lim (2)02x x x kx k x x x x →-→-++++-=+-由己知存在,且 22lim (33)150 15.x x kx k k k →-+++=-==所以得22222315183(2)(3)limlim2(2)(1)3(3)lim 1.1x x x x x x x x x x x x x →-→-→-++++=+-+-+==--则5. 求下列函数的极限:12100(1)1ln(1) (1) lim(2) limln(1)nx x x x x xx x →→∞+--+++解1(1) (1) , 1,n nx t x t +==-令当0x →时, 1t →, 则 1120112221010910910(1)1111limlimlim .1(1)(1)11ln (1)ln(1)(2) lim lim11ln(1)ln (1)112ln ln(1)2 lim lim 1110ln ln(1)nn n n x t t x x x x x t t x nt t t t x x x x x x x x x xx x x x x x --→→→→∞→∞→∞→∞+---===--+++-+-+=+++++-++==+++ 91011ln(1)/ln 1110ln(1)/ln 15xx x xx x-++++=6 .求下列曲线的渐近线: 3222122(1) (2) 232(3) 2 (4) 21x x x y y x x x x xy y x --==+---==-解332(1) (3)(1)23x x y x x x x ==+-+-3321133233lim lim (3)(1)231;lim lim(3)(1)233;x x x x x x x x x x x x x x x x x x →→→-→-==∞+-+-===∞+-+-=- 因为 所以是铅垂渐近线 因为 所以是铅垂渐近线 323222lim lim 1(23)23 lim[]lim 223232.x x x x y x x x x x x x xx x x x x y x →∞→∞→∞→∞==+--+-==-+-+-=- 又因为 且所以是斜渐近线2222222222121102 (2) lim 121;2lim 222lim lim 221,2. (3) lim 21 lim 2x x x x x xxx x x x x y x x x x x x x x x x x -→∞→→→-→--→∞→-=--=-==∞----==∞----=-===∞因为 所以是水平渐近线 又因为 且所以是铅垂渐近线因为 且所1,0.y x ==以是水平渐近线是铅垂渐近线212(4) lim211.2x xx x →=∞-=因为 所以是铅垂渐近线2221lim lim (21)22(21)11lim[]lim lim 2122(21)4241124x x x x x y x x x x x x x x x x x x y x →∞→∞→∞→∞→∞==----===---=+又因为且 所以是斜近渐近线.7. 已知 2200012000lim 0,,.x x x x b a b x a →+++-=≠- 求的值解 2200012000lim x x x x b x a →+++-=- 由己知存在习题 2-41. 1. 利用极限存在准则,计算下列各题:22221111 (1)lim[] (1)(2)()(2)limn n n n n n n →∞→∞+++++++解2222111111(1)4(1)(2)()n n n n n n n ≤++++≤+++ 因为222211lim lim 041111lim[]0.(1)(2)() (2)1sin 1,n n nn n n n n n n n →∞→∞→∞==++++=+++-≤≤≤且 所以因为则有lim lim lim 0.n n n →∞→∞→∞===所以 2.求下列极限:0022021sin (1) lim (2) lim cot 2sin 22(3) lim (4) lim sin tan 3sin(1)(5) lim (6) li 1x x x x x kxx xxx x x x x x →→→→∞→--01cos msin sin (7) lim (8) lim 2sin 2x n nx n xx x x xx ππ→→→∞-- 解 00sin sin (1) lim lim .x x kx kxk k x kx →→==0021(2) lim cot 2lim .2tan22x x x x x x →→==0022222221112000sin 2sin 2322(3) lim lim .tan 32tan 333222(4) lim sin lim 2sin / 2.sin(1)sin(1)(5) lim lim lim(1) 2.112sin s 1cos 2(6) lim lim2lim sin sin x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x →→→∞→∞→→→→→→=⋅⋅===--=⋅+=---==20in 22sin cos22sin 112 lim cos .2222x x x x x x x →=⋅=00sin()sin sin (7) limt lim lim = 1.(8) lim 2sin lim sin /.222x t t n n n n n n t x tx x t tx x xx x ππππ→→→→∞→∞+-=-=--== 3.求下列极限:123sec 03(1) lim (1) (2) 121 (3) lim () (4) lim ()23 (5) lim (1cos ) (6) lim x x x x xx x x x x xx x x x x π+→∞→→∞→∞→→++-++2112cot0(12sin ) (7) lim(14) (8) lim(13tan )xxxxx x x x x -→→+-+解 3133333(1) lim (1) lim (1)(1).xx x x e x x x ⋅+→∞→∞+=++=11(3)330222(2) lim(13)lim(13)].11(3) lim() lim(1) .x x x x x x x x x x x e x e x x---→→→→∞→∞=-=-=+=+=23113()2()232222133sec cos 1121132(4) lim ()lim ()lim (1)lim (1)323221213 lim (1)lim (1).22(5) lim(1cos ) lim(1cos )x x x xx x x x x x x x x x xx x x x x x x xe e e x xx x ππ-→∞→∞→∞→∞⋅⋅--⋅----→∞→∞→→--==-⋅+++=-⋅+=⋅=+=+223112sin 22sin 011(44)440132cot 233tan 022000.(6) lim(12sin)lim(12sin).(7) lim(14) lim(14).(8) lim(13tan )lim(13tan).1001 4.lim ()5xx xx xx x xx xx x x xx x x x c x e x x e x x e x x e x e x →→-⋅---→→⋅→→+→∞=+=+=-=-=+=+=+=-已知,.c 求解 220001001lim()5x x x x +→∞+-由510062200010065201210061001 lim (1)lim ()552012.x x x x x c x x x e e c -⋅-→∞→∞+=+⋅--===故习题 2-51.下列函数在什么情况下是无穷小量,什么情况下是无穷大量?3211(1) (2) 1(2) (4) ln(1)x x y y x x y e y x --==-==+解 (1)因为 301lim x x →=∞,所以当0x →时,31y x =是无穷大量. 又因为 31lim 0x x →∞=,所以当x →∞时,31y x =是无穷小量. (2)因为21111lim lim 11x x x x x →-→--==∞+-,所以当1x →-时,21 1x y x -=-是无穷大量. 又因为 211lim lim 011x x x x x →∞→∞-==+-,所以当x →∞时,21 1x y x -=-是无穷小量. (3)因为lim x x e -→-∞=∞,所以当x →-∞时, xy e -=是无穷大量.又因为lim 0x x e -→+∞=,所以当x →+∞时,xy e -=是无穷小量. (4)因为1lim ln(1)lim ln(1)x x x x +→+∞→-+=∞+=∞或,所以当x →+∞,1, ln(1)x y x +→-=+时或时是无穷大量.又因为0lim ln(1)0x x →+=,所以当0 , ln(1)x y x →=+时是无穷小量.2.当0x →时,指出关于x 的同阶无穷小量、高阶的无穷小量、等价的无穷小量.22211,sin ,cos 1,(1),sin .2xx x e x ---解 因为12x x →→==所以当0x +→时,与x1-;又因为 2200sin sin lim lim 0x x x x x x →→==200cos 1lim lim 02x x x x x x →→-=-= 所以当0x +→时,比x 高阶的无穷小量有2sin x ,2sin x ,cos 1x -;又因为 2001(1)122lim lim 12xx x e x x x →→-=⋅=所以当0x →时,与x 等价的无穷小量有21(1)2xe -.3.把下列函数表示为常数(极限值)与一个当x —>∞时的无穷小量之和的形式.3333(1)() (2) ()121x x f x f x x x ==-+解 (1)因为33lim 11x x x →∞=-,所以3331() 111x f x x x ==+--. (2)因为 33311lim lim 0 22142x x x x x →∞→∞-==++且 所以311()242f x x =-+. 4.证明: 当x —>0 时,(1) e x -1 ∽ x ; (2) arcsin x ∽ x .解 (1)100011lim 1lim lim 1ln(1)ln(1)x x x x x te t t e x t t →→→-=-==++令.(2)00arcsin limarcsin lim 1sin x t x tt x x t →→==令.5.利用等价替换原理, 计算下列极限:sin 2002000sin 31(1) lim (2) limsin tan 52ln(123)(3) lim (4) limsin()arcsin 2(5)lim(6) lims (sin )xx x x x n mx x x x e x xx x x x x x x →→→→→→-+-233in 235(7) lim(8) lim42tan x n xx x x x x→+-+解 (1)因为当0x →时,sin33,sin ,tan5522x xx x x x所以 00sin336limlim 5sin tan5522x x x x x x x x x x →→⋅==⋅⋅.(2)因为当sin 2sin 0,12xxx e →-时 所以sin 2001sin 1limlim22x x x ex x x →→-==. (3)因为当220,ln(123)23x x x x x →+-- 时所以 22000ln(123)23lim lim lim(23)2x x x x x x x x x x →→→+--==-=. (4)因为当0,sin 22x x x → 时所以x x →→=00 4x x →→===.(5)因为当0,sin ,sin n nx x x x x → 时所以 000, sin lim lim 1, (sin ), nnm mx x n mx x n m x x n m →→>⎧⎪===⎨⎪∞<⎩.(6)因为当0,arcsin 22,sin x x x x x → 时所以 00arcsin 22limlim 2sin x x x xx x →→==. (7)因为当230,,x x x x →时都是比更高的无穷小所以 233002352lim lim 12tan 2tan x x x x x x x x x →→+-==+.(8)因为当n →∞limlim0.n n ==所以6. 设x —>0 时, 函数122(1)1cos 1kx x +--与为等价无穷小量,求常数k 的值.解 因为 12220021(1)12lim lim 11cos 12x x kxkx k x x →→+-==-=--所以 k = -1.*7. 求下列函数的极限:)tan 1ln(cos sin 1lim )1(20x xx x x +-+→ 11(2)lim ()x x x x a b →+∞-)]11ln(sin )31ln([sin lim )3(x x x x +-+∞→解0x →(1)0 x →=因为222210,1cos ,ln(1tan )tan 2x x x x x x →-+当时所以201sin cos lim 2x x x x x x →→+-=2001cos sin 113limlim 24242x x x x x x →→-=+=+=.(2)111111(1)(1)lim ()limlim11x x x xx xx x x a b a b x a b x x →+∞→+∞→+∞-----==11(1)(1)limlim11xxx x a bx x →+∞→+∞--=-因为当1,0x x →+∞→时,11111ln ,1ln xxa ab bx x --11lim()ln ln lnxxx ax a b a b b →+∞-=-=所以31(3)lim [sin ln(1)sin ln(1)]x x x x →∞+-+31sin ln(1)sin ln(1)limlim 11x x x x x x →∞→∞++=-因为当x →∞时,333sinln(1)ln(1)x x x ++111sin ln(1)ln(1)x x x ++31lim [sin ln(1)sin ln(1)]31lim lim 31 2.11x x x x x xx x x x →∞→∞→∞+-+=-=-=所以习题 2-61.求函数 x y +=1 在x = 3, ⊿x = -0.2时的增量⊿y . 解因为()()y f x x f x ∆=+∆-=3,0.2,2x x y =∆=-∆-= 由所以2.利用连读函数的定义,证明下列函数在 x = 0 点的连续性.21(1)()1()21arctan , 10, 0(3)() (4) () 1, 01 0, 0x f x f x x x xx x f x f x xx x x x +=+=-⎧⎧-<<≠⎪⎪==⎨⎨⎪⎪-≤<=⎩⎩解 (1)因为(0)(0)1y f x f ∆=+∆-=lim lim 1)0()10.x x y f x x ∆→∆→∆===+=且所以 在处连续(2)因为21(0)(0)121x y f x f x ∆+∆=+∆-=+∆-2020001lim lim (1)110211()0.210, (0)0,lim ()lim (1)1,lim ()lim 11lim ()()0x x x x x x x x y x x f x x x x f f x f x f x f x x --++∆→∆→→→→→→∆+∆=+=-+=∆-+==-===-=-===且所以在处连续 (3)因为在 时且所以 不存在,故在不连续.0000,(0)1,arctan lim ()lim arctan lim 1tan x x t x f x tf x t x x t ---→→→===== (4)因为在时且00lim ()lim (1)1lim ()1(0)arctan , 10() 0.1, 01x x x f x x f x f xx f x x x x x ++→→→=-===⎧-<<⎪==⎨⎪-≤<⎩所以 在处连续3. 求下列函数的间断点, 并指出间断点的类型. 若是可去间断点,则补充定义,使其在该点连续.221(1)() (2) ()ln(21)(1)x x f x f x x x x -==--1, 11arctan , 0(3)()2, 10 (4) () 0, 01 sin , 02x x x f x x x f x xx x x x -⎧≤-⎪⎧⎪≠⎪=+-<≤=⎨⎨⎪⎪=⎩⎪<≤⎩ 解(1)0,1,1() ,x x x f x ==-=因为在处没有定义 () 0,1,1. f x x x x ==-=所以在处间断而0000(1)lim ()lim 1(1)(1)(1)lim ()lim 1(1)(1)x x x x x x f x x x x x x f x x x x --++→→→→-==---+-==-+ 故 0lim ()x f x →不存在,x = 0是()f x 的跳跃间断点.又因为 11(1)1lim ()lim (1)(1)2x x x x f x x x x →→-==-+所以 x = 1是()f x 的可去间断点,补充定义1(1)2f =. 又因为111(1)lim ()limlim (1)(1)(1)x x x x x x f x x x x x x →-→-→--===∞-++所以x = -1是()f x 的无穷间断点.(2) 因为1x =在处()f x 没有定义, 且111lim ()limln(21)x x f x x →→==∞-所以x = 1是()f x 的无穷间断点.(3)因为(1)1,f -=且11111 lim ()lim 1,lim ()lim (2)1x x x x f x xf x x --++→-→-→-→--===+=则1lim ()(1) 1.x f x f →-=-=所以x = 1是()f x 的连续点.(0)2, lim ()lim (2)21 lim ()lim sin0x x x x f f x x f x x x --++→→→→==+===又因为且所以 0lim ()x f x →不存在,x = 0是()f x 的跳跃间断点.0000(4)(0)0,1lim ()lim arctan21lim ()lim arctan 2x x x x f f x x f x x ππ--++→→→→===-==因为且 所以0lim ()x f x →不存在,x = 0是()f x 的跳跃间断点.4.讨论下列函数的连续性,并作出函数图形.2211(1)()lim(0) (2) () lim11nnnn n x f x x f x xx x →∞→∞-=≥=++解 (1) 因为1, 011()lim0, 11n n x f x x x →∞≤≤⎧==⎨>+⎩ (函数图形见图2-1)且11(1)1,lim ()1,lim ()0x x f f x f x -+→→===所以x = 1是()f x 的间断点.图2-122 , 11 (2)()lim0 , 11 , 1nnn x x xf x x x x x x →∞⎧<⎪-=⋅==⎨+⎪->⎩因为(函数图形见图2-2) 1111(1)0lim ()lim ()1 lim ()lim 1x x x x f f x x f x x --++→-→-→-→-±==-===-且1111lim ()lim 1 lim ()lim ()1x x x x f x x f x x --++→→→→===-=- 图2-211lim (),lim ()x x f x f x →-→所以都不存在.因此x = 1,x = -1是()f x 的跳跃间断点.5.已知2, 01() 2, 1ln(1), 13ax b x f x x bx x ⎧+<<⎪==⎨⎪+<≤⎩,问当 a , b 为何值时,()f x 在 x =1 处连续.解 因为(1)2,f =且21111lim ()lim () lim ()lim ln(1)ln(1)x x x x f x ax b a b f x bx b --++→→→→=+=+=+=+若函数()f x 在x = 1处连续,则必须 1lim ()2x f x →=.即 2ln(1)2a b b +=⎧⎨+=⎩解之,得223,1a e b e =-=-. 6.求函数32233()6x x x f x x x +--=+-的连续区间,并求 )(lim ),(lim ),(lim 32x f x f x f x x x -→→→.解 因为323223333()(3)(2)6x x x x x x f x x x x x +--+--==+-+-所以()(,3)(3,2)(2,),f x -∞-⋃-⋃+∞的连续区间是且3200331lim ()lim (3)(2)2x x x x x f x x x →→+--==+-322223233333lim ()lim (3)(2)(3)(1)338lim ()lim lim (3)(2)(3)(2)5x x x x x x x x f x x x x x x x x f x x x x x →→→-→-→-+--==∞+-+-+--===-+-+-7.设函数()f x 在[a , b ]上连续,且(),()f a a f b b <>,证明在(a , b )内至少存在一点ξ,使得f (ξ) = ξ.证 [][] ()(),(),,(),F x f x x f x a b F x a b =-设由已知在上连续则在上 (),(),()()0,()()0f a a f b b F a f a a F b f b b <>=-<=->连续.又因为所以故由零值定理知,在(,)a b 内至少存在一点ξ,使得F (ξ)= 0, 即 ()f ξξ=.8.设函数()f x 在[a , b ]上连续,12n a x x x b <+++< , 求证在(a , b )内至少有点ξ,使n x f x f x f f n )()()()(21+++=ξ证 因为()f x 在[a , b ]上连续,则1()[,]n f x x x 在上也连续.由最大最小值定理知,1()[,]n f x x x 在上存在最小值m ,最大值M ,取12()()()((),1,2,,),n i f x f x f x C m f x M i n nm C M +++=≤≤=≤≤ 则由介值定理知, 在(a , b )内至少有点ξ,使12()()()()n f x f x f x f C n ξ+++==.9. 证明方程331x x -=至少有一个根介于1和2之间.证 设3()31F x x x =--,由于F (x )在[1,2]内连续,且(1)30,(2)10F F =-<=>由零值定理知,在(1,2)内至少存在一点ξ,使得F (ξ)= 0.即 331ξξ-=.故方程331x x -=在[1,2]内至少有一个根.综合习题二1.选择填空:(1) 数列{y n }有界是数列收敛的 ( ) .① 必要条件 ② 充分条件 ③ 充要条件 ④ 无关条件(2) 当x —>0 时,( )是与sin x 等价的无穷小量. ① tan2 x②x③ 1ln(12)2x + ④ x (x +2)(3) 设0, 0(), lim (), 0x x e x f x f x ax b x →⎧≤=⎨+>⎩若存在, 则必有( ) .① a = 0 , b = 0 ② a = 2 , b = -1③ a = -1 , b = 2 ④ a 为任意常数, b = 1(4)若3116x →=-,则 f (x ) = ( ) . ① x +1 ② x +5③(5) 方程 x 4 –x – 1 = 0至少有一个实根的区间是( ) .① (0,1/2) ② (1/2, 1) ③ (2, 3) ④ (1, 2)(6)函数10()ln x f x x -的连续区间是( ) .① (0, 5) ② (0, 1) ③ (1, 5) ④ (0, 1) ∪(1,5)解 (1)①; (2)③; (3)④; (4)③; (5)②; (6)④. 2.计算题:03sin()3(1) lim (2)lim12cos sin (3) (4) lim 0)x x x x n x ax e e x x a αβππ+→→→∞→---->2300cot 2022tan sin (5)lim (6)sin 11(7)lim(cos ) (8) lim (1)4(9)lim 1x x x nx n xx x x xx n nx x →→→→∞→∞-++⎛⎫- ⎪ ⎪-⎝⎭ (10)lim [ln ln(2)]n n n n →∞-+解 333sin()sin()sin()333(1) lim= lim lim 112cos 2(cos )2(cos cos )23x x x x x x x x x πππππππ→→→---=---33001112sin ()cos ()cos ()1232323 lim lim 11124sin ()sin ()sin ()232323(1)(1)(2) lim limsin sin 0,1,1,sin x x x x x x x x x x x x x x x x e e e e x xx e x e x x x ππαβαβαβππππππαβ→→→→-⋅--===+⋅-+----=→-- 因为当时所00 lim lim .sin x x x x e e x xx xαβαβαβ→→--==-以(3)1lim2limnn nn→∞→∞====3200(4) lim lim limlimlimtan sin tan1cos(5) lim limsinx a x a x ax ax ax xx x x xxx x+++++→→→→→→→-=-=-=--=⋅22001lim.22(6) limlimtan sin1tan1cos1lim lim.2(1cos)21cos2xxxx xx xx xx x x xx x x x→→→→→=⋅==--==⋅⋅=--221cot(cos1)cot cos100(7)lim(cos) =lim(1cos1)x xx xx xx x⋅⋅--→→+-因为222001cos112lim lim2tanx xxxx x→→--==-21cot2lim(cos).xxx e-→=所以22111()11221111(8) lim(1)lim(1)nn nn n nn nn nn n⋅⋅++→∞→∞++=++因为211lim()1nnn n→∞⋅+=211lim(1).nnen n→∞++=所以2222414(9)lim=lim111xxx xx xxx→∞→∞⎛⎫-⎪⎛⎫-⎪⎪⎪- ⎪⎝⎭-⎪⎝⎭2212222(1)(1)lim (1)lim (1) =lim =1111(1)(1)lim (1)lim (1) 1.(10)lim [ln ln(2)]lim ln()21 lim ln 2(1)x x x xx x x x x x xx x n n n n nx x x x x x x xe e e en n n n n n →∞→∞→∞→∞→∞--→∞→∞→∞-+-+-+-+⋅==⋅-+=+==+22lim ln(1)ln 2.n n e n →∞-+=-=-2. 1. 设 10sin , 02() , , lim ()(1), 0x x x x x f x a f x ax x →⎧<⎪⎪=⎨⎪+>⎪⎩试求使得存在.解00sin 1lim ()lim 22x x x f x x --→→==因为 10000 lim ()lim (1) lim ()lim ()1,ln 2.2a x x x x x a f x ax e f x f x e a +-+-→→→→=+====-则所以 即 3. 2. 作出函数()lim 1txtx t x e f x e →+∞+=+的图形,并指出间断点.解 由已知可得1, 0()lim , 01tx tx t x x e f x x x e →∞≥⎧+==⎨<+⎩ 则函数图形见图2-3.00 lim ()0lim ()1x x f x f x -+→→=≠=因为 0().x f x =所以是的跳跃间断点5. 求函数tan 32(3)x y x x =-的可去间断点. 图2-3 解 因为tan 32(3)x y x x =-在x = 0,x = 3处无意义,所以x = 0,x = 3都是函数f (x )的间断点.但 00tan 331lim lim 2(3)2(3)2x x x x x x x x →→==--- 故 x = 0是f (x )的可去间断点.而 3t a n 3l i m 2(3)x x x x →=∞- 故 x = 3是f (x )的无穷间断点.6.设f (x )在点 x = x 0 处连续且 f (x 0)> 0, 试证在x 0 的某个邻域内有f (x )> 0.证 由已知f (x )在点 x = x 0 处连续,则00lim ()()x x f x f x →=.取00()0,0,02f x x x εδδ=>∃><-<使得时,恒有00()(),()()f x f x f x f x εεε-<→-<-<故 0000()()()()()022f x f x f x f x f x ε>-=-=>. 7. 设本金为p 元,年利率为r, 若一年分为n 期, 存期为t 年, 则本金与利息之和是多少 ? 现某人将本金p = 1000元存入果银行, 规定年利率为 r = 0.06, t = 2, 请按季度、月、日以及连续复利计算本利和,并作出你的评价.解 依题意,第一期到期后的利息为本金×利率=r p n ⨯ 第一期到期的本利和是本金+利息=(1)r r p p p n n +⨯=+若按总利计算,第二期到期的本利和为 2(1)(1)(1)r r r r p p p n n n n+++⨯=+第n 期到期后的本利和为 (1)n r p n +存期若为t 年(事实上有t n 期),到期后的本利和为 (1)tnr p n + (*)由题设p = 1000 ,r = 0.06, t = 2,(1) (1) 一年分为四季,取n = 4带入得(*)式,得2480.061000(1)1000 1.0151126.494⨯⨯+=⨯≈(2) (2) 一年分为12个月,取n =12带入得(*)式,得 212240.061000(1)1000 1.0051127.1612⨯⨯+=⨯≈(3) (3) 一年分为365天,取n = 365带入得(*)式,得 23657300.061000(1)1000 1.0001643841127.49365⨯⨯+=⨯≈(4) 连续取息就是在(*)式中令n →+∞,得 20.120.060.120.060.06lim 1000(1)1000lim [(1)] 10001127.50n n n n n ne ⨯→+∞→+∞⨯+=⨯+=⨯≈ 结论是:用复利计算时,按季、月、日以及连续复利计算所得结果相差不大.8.证明方程sin x a x b =+(其中0,0a b >>)至少有一个正根,并且它不超过a b +. 证 设()sin F x x a x b =--,显然F (x )在[0,a b +]上连续,(0)0(0)()sin()[1sin()]0F b b F a b a b a a b b a a b =-<>+=+-+-=-+≥又则若()F a b +=0,则a b +为方程F (x )= 0的正根;若()F a b +>0,则由零值定理,至少有一点(0,)a b ξ∈+使得F (x )= 0,即sin a b ξξ=+.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的连续性
分段函数的极限和连续性
例 设⎪⎪⎩⎪⎪⎨⎧<<=<<=)
21( 1)1( 21
)10( )(x x x x x f
(1)求)x f (在点1=x 处的左、右极限,函数)x f (在点1=x 处是否有极限? (2)函数)x f (在点1=x 处是否连续? (3)确定函数)x f (的连续区间.
分析:对于函数)x f (在给定点0x 处的连续性,关键是判断函数当0x x →时的极限是否等于)(0x f ;函数在某一区间上任一点处都连续,则在该区间上连续.
解:(1)1lim )(lim 1
1
==-
-
→→x x f x x
11lim )(lim 1
1
==++→→x x x f
∴1)(lim 1
=→x f x
函数)x f (在点1=x 处有极限. (2))(lim 2
1)1(1
x f f x →≠=
函数)x f (在点1=x 处不连续.
(3)函数)x f (的连续区间是(0,1),(1,2).
说明:不能错误地认为)1(f 存在,则)x f (在1=x 处就连续.求分段函数在分界点0x 的左右极限,一定要注意在分界点左、右的解析式的不同.只有)(lim ),(lim )(lim 0
x f x f x f x x x x x x →→→+
-
=才存在.
函数的图象及连续性
例 已知函数2
4)(2
+-=
x x x f ,
(1)求)x f (的定义域,并作出函数的图象;
(2)求)x f (的不连续点0x ;
(3)对)x f (补充定义,使其是R 上的连续函数.
分析:函数)x f (是一个分式函数,它的定义域是使分母不为零的自变量x 的取值范围,给函数)x f (补充定义,使其在R 上是连续函数,一般是先求)(lim 0
x f x x →,再让)(lim )(0
0x f x f x x →=即可.
解:(1)当02≠+x 时,有2-≠x . 因此,函数的定义域是()()+∞--∞-,22,
当2≠x 时,.22
4)(2
-=+-=x x x x f
其图象如下图.
(2)由定义域知,函数)x f (的不连续点是20-=x . (3)因为当2≠x 时,2)(-=x x f 所以4)2(lim )(lim 2
2
-=-=-→-→x x f x x
因此,将)x f (的表达式改写为
⎪⎩

⎨⎧-=--≠+-=)2(4)2(2
4
)(2x x x x x f 则函数)x f (在R 上是连续函数.
说明:要作分式函数的图象,首先应对函数式进行化简,再作函数的图象,特别要注意化简后的函数与原来的函数定义域是否一致.
利用函数图象判定方程是否存在实数根
例 利用连续函数的图象特征,判定方程01523
=+-x x 是否存在实数根.
分析:要判定方程0)(=x f 是否有实根,即判定对应的连续函数)(x f y =的图象是否与x 轴有交点,因此只要找到图象上的两点,满足一点在x 轴上方,另一点在x 轴下方即可. 解:设152)(3+-=x x x f ,则)x f (是R 上的连续函数.
又038)3(,1)0(<-=-=f f ,因此在[]0,3-内必存在一点0x ,使0)(0=x f ,所以0x 是方程
01523
=+-x x 的一个实根.
所以方程01523=+-x x 有实数根.
说明:作出函数)(x f y =的图象,看图象是否与x 轴有交点是判别方程0)(=x f 是否有实数根的常用方法,由于函数152)(3+-=x x x f 是三次函数,图象较难作出,因此这种方法对本题不太适用.
函数在区间上的连续性
例 函数2
4)(2
--=
x x x f 在区间(0,2)内是否连续,在区间[]2,0上呢?
分析:开区间内连续是指内部每一点处均连续,闭区间上连续指的是内部点连续,左点处右连续,右端点处左连续.
解:22
4)(2
+=--=
x x x x f (R ∈x 且2≠x )
任取200<<x ,则)(2)2(lim )(lim 000
0x f x x x f x x x x =+=+=→→
∴ )(x f 在(0,2)内连续.
但)(x f 在2=x 处无定义,∴ )(x f 在2=x 处不连续. 从而)(x f 在[]2,0上不连线
说明:区间上的连续函数其图象是连续而不出现间断曲线.
函数在某一点处的连续性
例 讨论函数)0()11lim
()(+∞<≤⋅+-=∞
→x x x
x x f n
n
n 在1=x 与2
1=x 点处的连续性
分析:分类讨论不仅是解决问题的一种逻辑方法,也是一种重要的数学思想.
明确讨论对象,确立分类标准,正确进行分类,以获得阶段性的结论,最后归纳综合得出结果,是分类讨论的实施方法.本题极限式中,若不能对x 以1为标准,分三种情况分别讨论,则无法获得)(x f 的表达式,使解
答搁浅.
讨论)(x f 在1=x 与2
1=x 点处的连续性,若作出)(x f 的图像,则可由图像的直观信息中得出结论,再据
定义进行解析论证.
由于)(x f 的表达式并非显式,所以须先求出)(x f 的解析式,再讨论其连续性,其中极限式中含n x ,故须分类讨论.
解:(1)求)(x f 的表达式:
①当1<x 时,x x x x
x
x f n
n n
n =⋅+-=
⋅+-=

→∞
→0
101lim 1lim 1)(
②当1>x 时,x x x x
x x f n n
x -=⋅+-=⋅+-=∞→1
01
01)1(1
)1(lim )(
③当1=x 时,01
111lim
)(=⋅+-=∞
→x x f n
n x
∴⎪⎩

⎨⎧+∞<<-=<≤=x x x x x f 1,1,010,0)(
(2)讨论)(x f 在1=x 点处的连续性:
1)(lim )(lim ,1lim )(lim 1
1
1
1
-=-===++→→-→-→x x f x x f x x x x
∴)(lim 1
x f x +
→不存在,)(x f 在1=x 点处不连续
(3)讨论)(x f 在2
1=x 点处的连续性:
2
1lim )(lim ,2
1lim )(lim 2
12
12
12
1=
==
=-+--→



x x f x x f x x x x
2
1lim )(lim ,2
1lim )(lim 2
12
12
12
1=
==
=-+--→



x x f x x f x x x x
∴)2
1
(21
)(lim 2
1f x f x ==

,)(x f 在21=x 点处连续.
根据函数的连续性确定参数的值
例 若函数⎪⎩⎪
⎨⎧
=≠+0
,0,)1()(3
x a x x x f x 在0=x 处连续,试确定a 的值
解:x x x x x f 3
)1(lim )(lim +=→→
,
)0(,)1(lim 3
3
1
0a f e x x x ==⎥

⎤⎢⎣⎡+=→ 欲)(x f 在0=x 处连续,
必须使)0()(lim 0
f x f x =→,故3e a =
说明:利用连续函数的定义,可把极限转化为函数值求解.。

相关文档
最新文档