高三数学知识点:集合与映射专题复习指导-最新教学文档

合集下载

高考数学知识点总结(全而精-一轮复习必备)

高考数学知识点总结(全而精-一轮复习必备)

高中数学第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;如果,同时,那么A = B.如果.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=,则C s A= {0})A A ⊆A ⊆φB A ⊆A B ⊆C A C B B A ⊆⊆⊆,那么,+N③空集的补集是全集.④若集合A=集合B,则C B A=,C A B =C S(C A B)=D(注:C A B =).3. ①{(x,y)|xy =0,x∈R,y∈R}坐标轴上的点集.②{(x,y)|xy<0,x∈R,y∈R二、四象限的点集.③{(x,y)|xy>0,x∈R,y∈R} 一、三象限的点集.[注]:①对方程组解的集合应是点集.例:解的集合{(2,1)}.②点集与数集的交集是. (例:A ={(x,y)| y =x+1} B={y|y =x2+1} 则A∩B =)4. ①n个元素的子集有2n个. ②n个元素的真子集有2n-1个. ③n个元素的非空真子集有2n-2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题逆命题.②一个命题为真,则它的逆否命题一定为真. 原命题逆否命题.例:①若应是真命题.,则a+b = 5,成立,所以此命题为真.②.1或y = 2.,故是的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围.3.例:若.4.集合运算:交、并、补.5.主要性质和运算律(1)包含关系:(2)等价关系:(3)集合的运算律:交换律:结合律:分配律:.∅∅∅}⎩⎨⎧=-=+1323yxyxφ∅⇔⇔325≠≠≠+baba或,则且1≠x3≠y1≠∴yx且3≠+yx21≠≠yx且255xxx或,⇒{|,}{|}{,}A B x x A x BA B x x A x BA x U x A⇔∈∈⇔∈∈⇔∈∉U交:且并:或补:且C,,,,,;,;,.UA A A A U A UA B B C A C A B A A B B A B A A B B⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇CUA B A B A A B B A B U⊆⇔=⇔=⇔=C.;ABBAABBA==)()();()(CBACBACBACBA==)()()();()()(CABACBACABACBA==0-1律:等幂律:求补律:A∩C U A=φA∪C U A=U C U U=φ C Uφ=U反演律:C U(A∩B)= (C U A)∪(C U B) C U(A∪B)= (C U A)∩(C U B)6.有限集的元素个数定义:有限集A的元素的个数叫做集合A的基数,记为card( A)规定 card(φ) =0.基本公式:(3) card( U A)= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸1.整式不等式的解法根轴法(零点分段法)①将不等式化为a0(x-x1)(x-x2)…(x-x m)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.(自右向左正负相间)则不等式的解可以根据各区间的符号确定.特例①一元一次不等式ax>b解的讨论;②一元二次不等式ax2+box>0(a>0)解的讨论.>∆0=∆0<∆二次函数cbxaxy++=2(0>a)的图象,,,A A A U A A U A UΦ=ΦΦ===.,AAAAAA==(1)()()()()(2)()()()()()()()()card A B card A card B card A Bcard A B C card A card B card Ccard A B card B C card C Acard A B C=+-=++---+x)0)((002211><>++++--aaxaxaxa nnnn原命题若p 则q否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互一元二次方程()的根002>=++a c bx ax 有两相异实根)(,2121x x x x <有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax {}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax {}21x x x x << ∅∅2.分式不等式的解法(1)标准化:移项通分化为>0(或<0); ≥0(或≤0)的形式,(2)转化为整式不等式(组)3.含绝对值不等式的解法(1)公式法:,与型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.(三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

高三数学 集合、映射与函数、函数的解析式与定义域、函数的值域 知识精讲

高三数学 集合、映射与函数、函数的解析式与定义域、函数的值域  知识精讲

高三数学集合、映射与函数、函数的解析式与定义域、函数的值域知识精讲(一)集合1. 集合的概念及集合中元素的三个特征:一组对象的全体形成一个集合,集合里的各个对象叫做集合的元素,集合的元素具有三个特征:(1)确定性:对于一个给定的集合,任何一个对象或者是这个集合中的元素,或者不是它的元素,这是集合的最基本特征。

(2)互异性:集合中的任何两个元素都是能区分的(即互不相同的)相同的对象归入任何一个集合时,只能算作这个集合中的一个元素。

(3)无序性:在一个集合中通常不考虑它的元素之间的顺序,也就是说,由a 、b 两个元素组成的集合与由{}b a ,两个元素组成的集合是相同的。

元素与集合,集合与集合的关系:元素与集合的关系是从属关系,用符号“∈”与“∉”表示,集合与集合的关系是包含关系,用符号“⊆”、“⊂”或“/⊆”、“⊄”表示。

2. 集合的运算:(1)并集:{}A B x x A x B =∈∈|或性质:A A A A B B A A A A A B B A B ==∅=⊆⊆,,,,(2)交集:{}A B x x A x B =∈∈|,且性质:A B B A A A A A A B A A B B ==∅=∅⊆⊆,,,,(3)全集与补集:全集用字母I 表示,补集:{}A x x I x A =∈∉|且 性质:A I I I =∅==∅,,3. 几个重要结论:(1)A B A B A B A B ==,(2)A B A B A A B B ⊆⇔=⇔=A B A B A B ⊆⊆()或(3)由n 个元素组成的集合,其子集个数为2n ,即是C C C C n n n n n n 0122++++=…。

(4)空集∅是一个特殊的集合,是任何集合的子集,在解题中要注意对空集的讨论。

(5)进行集合运算时,要注意发挥数轴、韦恩图的作用,通过数形结合直观地解决问题。

(二)映射与函数1. 映射:一般地,设A 、B 是两个集合,如果按照某种对应法则f 对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,这样的对应叫做从集合A 到集合B 的映射,记作f A B :→。

数学集 合与映射知识点

数学集 合与映射知识点

数学集合与映射知识点《数学集合与映射知识点》一提到数学中的集合与映射,可能很多人的第一反应是:“哎呀,这也太复杂太难懂啦!”但其实,当你真正深入去了解,会发现它们就像我们生活中的小秘密,藏在各种角落里,等待着我们去揭开。

先来说说集合吧。

集合就像是一个装东西的大口袋,把一些具有相同特征或者满足特定条件的东西统统装进去。

比如说,咱们班所有同学就可以组成一个集合,叫“XX 班同学集合”;咱们学校里所有的老师也能组成一个集合,叫“XX 学校老师集合”。

我记得有一次,我们数学老师在课堂上讲集合的概念,他为了让我们更清楚地理解,举了个特别有趣的例子。

老师说:“同学们,假设咱们要举办一个水果派对,现在我们来确定参加派对的水果。

苹果可以来,香蕉可以来,橙子可以来,但是西瓜太大了,不好搬过来,所以西瓜不来。

那么能来参加派对的水果就组成了一个集合。

”当时大家都被逗笑了,不过也一下子就明白了集合是怎么回事。

集合里的元素呢,就像是口袋里的一个个宝贝。

每个元素都有自己的特点,而且不会重复。

比如说,在“奇数集合”里,1 是奇数,3 是奇数,5 也是奇数,但不会有两个 1 或者两个 3 。

这就好比我们每个人在班级里都是独一无二的存在,谁也不能替代谁。

再讲讲映射。

映射啊,就像是一个神奇的魔法桥梁,把两个集合连接起来。

比如说,我们有一个集合是“学生的学号”,另一个集合是“学生的名字”。

通过一个特定的规则,比如按照学号的顺序对应学生的名字,这就是一个映射。

我自己在学习映射的时候,也有过一次很有趣的经历。

有一天,我在家里整理书架,突然发现书架上的书可以和它们所在的层数形成一个映射关系。

第一层放的是小说,第二层放的是传记,第三层放的是科普读物。

每一本书都有它固定的位置,就像每个元素在集合里都有它对应的“伙伴”一样。

而且啊,集合和映射在生活中的应用可多了去了。

比如说,我们去超市买东西,不同种类的商品就可以看作是不同的集合,而商品的价格标签就是一种映射,把商品和它的价格对应起来。

高中三年数学如何解决集合与映射的问题

高中三年数学如何解决集合与映射的问题

高中三年数学如何解决集合与映射的问题在高中数学学习过程中,集合与映射是一个重要的概念和内容。

学生们常常会面临各种与集合与映射相关的问题,如何解决这些问题是我们需要探讨和研究的。

本文将重点介绍高中三年数学中,解决集合与映射问题的方法和步骤。

一、理解集合与映射的概念在解决集合与映射的问题之前,我们首先需要对集合与映射有一个清晰的理解。

集合是由一定规则或特点联系在一起的元素组成的整体,而映射是一种元素与元素之间的对应关系。

当我们对集合与映射有了充分的了解后,才能更好地解决问题。

二、集合与映射的相关性分析在实际问题中,集合与映射往往会相互关联,我们需要通过分析问题来找出它们之间的相关性。

一些典型的问题类型包括:1. 集合的运算问题:如交集、并集、差集等。

2. 映射的性质问题:如一一映射、满射、单射等。

3. 集合与映射的综合问题:如给定映射,求定义域、值域、像等。

三、确定解题思路和方法根据问题的具体要求,我们需要确定解题思路和方法。

在解决集合与映射问题时,常用的方法包括:1. 特例法:通过取特定的元素或集合来探索问题的规律和性质。

2. 推理法:通过逻辑推理和运算法则来推导得出问题的答案。

3. 统计法:通过统计元素个数或集合属性的方法来解决问题。

4. 图像法:通过绘制集合图或映射图来帮助理解和解决问题。

四、具体问题的解决步骤在解决具体问题时,我们可以按照以下步骤进行:1. 理清问题:仔细阅读问题,弄清题意,明确要解决的具体问题。

2. 确定已知条件和求解目标:分析问题,找出已知条件和需要求解的目标。

3. 运用符号和定义:根据已知条件和问题要求,引入适当的符号和定义。

4. 分析问题:运用数学方法和思维工具,对问题进行分析和推导。

5. 求解问题:根据分析的结果,进行具体计算和推导,得出问题的解答。

6. 验证结果:将得出的解答代入原问题进行验证,确保结果的正确性。

五、练习与实践集合与映射的问题需要大量的练习与实践,通过反复练习,我们可以更好地掌握解题方法和技巧。

高考数学复习:集合与映射专题复习指导

高考数学复习:集合与映射专题复习指导

高考数学复习:集合与映射专题复习指导
7.命题〝对恣意的x∈R,x3-x2+10〞的否认是
(A)不存在x∈R,x3-x2+10
(B)存在x∈R,x3-x2+10
(C)存在x∈R,x3-x2+1&gt;0
(D)对恣意的x∈R,x3-x2+1&gt;0
解:对原命题的否命题的表述是,存在x0∈R,
x03-x02+1&gt;0成立,应选C。

8. 关于向量,-、-、-和实数,以下命题中真命题是
A 假定-·■,那么-=0或-=0
B 假定-=-,那么λ=0或-=0
C 假定-2=-2,那么-=-或-=--
D 假定-·■=-·■,那么-=-
解:这个题的考察点是向量数量积的定义与运算律,其基本点是-·■=|-|·|-|cos而非-·■=|-|·|-|,向量数量积运算不同于数与式的运算。

选B。

9.假定数列{an}满足-=p(p为正常数,n∈N*),那么称{an}为〝等方比数列〞。

甲:数列{an}是等方比数列;
乙:数列{an}是等比数列,那么( )
A.甲是乙的充沛条件但不是必要条件
B.甲是乙的必要条件但不是充沛条件
C.甲是乙的充要条件
D.甲既不是乙的充沛条件也不是乙的必要条件剖析用反例,a1=-1,an=1,(n≥2)。

高三数学高考基础知识复习:集合

高三数学高考基础知识复习:集合

高考数学基础知识复习:集合一、知识清单:1.元素与集合的关系:用∈或∉表示;2.集合中元素具有确定性、无序性、互异性.3.集合的分类:①按元素个数分:有限集,无限集;②按元素特征分;数集,点集。

如数集{y |y =x 2},表示非负实数集,点集{(x ,y )|y =x 2}表示开口向上,以y 轴为对称轴的抛物线; 4.集合的表示法:①列举法:用来表示有限集或具有显著规律的无限集,如N +={0,1,2,3,…}; ②描述法③字母表示法:常用数集的符号:自然数集N ;正整数集*N N +或;整数集Z ;有理数集Q 、实数集R;5.集合与集合的关系:用⊆,≠⊂,=表示;A 是B 的子集记为A ⊆B ;A 是B 的真子集记为A ≠⊂B 。

①任何一个集合是它本身的子集,记为A A ⊆;②空集是任何集合的子集,记为A ⊆φ;空集是任何非空集合的真子集;③如果B A ⊆,同时A B ⊆,那么A = B ;如果A B ⊆,B C ⊆,A C ⊆那么.④n 个元素的子集有2n 个;n 个元素的真子集有2n -1个;n 个元素的非空真子集有2n -2个.6.交集A∩B={x |x ∈A 且x ∈B};并集A ∪B={x |x ∈A ,或x ∈B};补集C U A={x |x ∈U ,且x ∉A },集合U 表示全集. 7.集合运算中常用结论: ①;A B AB A ⊆⇔=A B A B B ⊆⇔=②()()();U U U A B A B =()()()UU U A B A B =③()()card A B card A =+()()card B card A B - 二、课前预习1.下列关系式中正确的是( )(A){}Φ⊆Φ (B){}0∈Φ (C)0{}Φ= (D)0{}⊆Φ 2. 3231x y x y +=⎧⎨-=⎩解集为______.3.设{}{}24,21,,9,5,1A a a B a a =--=--,已知{}9AB =,求实数a 的值.4.设{}220,M x x x x R =++=∈,a =lg(lg10),则{a }与M 的关系是( ) (A){a }=M (B)M{a } (C){a }M (D)M ⊇{a }5.集合A={x |x =3k -2,k ∈Z},B={y |y=3n +1,n ∈Z},S={y |y =6m +1,m ∈Z}之间的关系是( ) (A)SBA (B)S=BA (C)SB=A (D)SB=A6.用适当的符号()∈∉、、=、、填空: ①π___Q ; ②{3.14}____Q ;③-R ∪R +_____R; ④{x |x =2k +1, k ∈Z}___{x |x =2k -1, k ∈Z}。

数学学科集合与映射

数学学科集合与映射

数学学科集合与映射教案主题:数学学科集合与映射引言:在数学学科中,集合与映射是基本概念,也是数学思维的基石。

它们在各个数学分支中都有广泛应用,是我们学习数学的重要知识点。

本教案将带领学生了解集合与映射的概念、特性以及常见应用,通过一系列的讲解、问题解析和实践活动,培养学生的集合思维和映射解决问题的能力。

一、集合的概念与运算(800字)1. 引入集合概念- 用生活中的例子引导学生了解集合的概念,如:鸟类、班级同学等。

- 引导学生归纳并给出集合的定义。

2. 集合的表示方法- 展示不同集合的表示方法,如:列举法、描述法和集合图示法,并分别说明其特点以及适用场景。

3. 集合的关系与运算- 介绍集合的子集关系、相等关系和空集的概念,并通过示例进行解释。

- 引导学生了解并掌握集合的交、并、差和补运算,通过生活实例深化理解。

4. 集合运算的性质- 解析并讨论集合运算的交换律、结合律和分配律,帮助学生理解这些性质的重要性和应用。

二、映射的概念与性质(800字)1. 引入映射概念- 通过实际生活中的例子引导学生理解映射是一种关系。

- 解释映射的定义,注重强调映射的一对一与多对一关系。

2. 映射的表示与分类- 介绍映射的表示方法,如箭头图、集合对和映射表等,并比较它们的异同。

- 解释满射、单射和双射的概念,指导学生根据映射的特性进行分类。

3. 映射的性质- 讲解映射的反函数、复合函数和恒等映射的性质,并通过实例演示。

- 引导学生探索映射的性质对解决实际问题的重要性。

4. 映射的应用- 通过数学问题实例,引导学生理解映射在实际问题中的应用,如函数关系、图的路径等。

总结:通过本次教学,学生已经初步了解了集合与映射的基本概念与性质,掌握了集合的运算和映射的表示与分类。

在接下来的学习中,学生将能够进一步探索集合与映射的应用,培养数学思维和解决问题的能力。

高中数学集合复习教案

高中数学集合复习教案

高中数学集合复习教案一、教学目标1. 理解集合的概念,掌握集合的表示方法(列举法、描述法、图示法)。

2. 掌握集合之间的关系(包含、相等、子集、真子集、补集)。

3. 理解集合的基本运算(并集、交集、差集、对称差集)。

4. 能够运用集合的知识解决实际问题,提高逻辑思维能力。

二、教学内容1. 集合的概念与表示方法:列举法、描述法、图示法。

2. 集合之间的关系:包含、相等、子集、真子集、补集。

3. 集合的基本运算:并集、交集、差集、对称差集。

4. 集合在实际问题中的应用。

三、教学重点与难点1. 教学重点:集合的概念、表示方法、关系、基本运算。

2. 教学难点:集合的表示方法、集合关系的理解、集合运算的运用。

四、教学方法与手段1. 采用问题驱动法,引导学生主动探究集合的知识。

2. 利用多媒体课件,生动展示集合的图示法,帮助学生形象理解集合之间的关系和基本运算。

3. 开展小组合作活动,让学生在讨论中加深对集合知识的理解。

五、教学过程1. 导入:通过生活中的实例,引入集合的概念,激发学生的兴趣。

2. 讲解:讲解集合的表示方法、关系和基本运算,结合示例进行演示。

3. 练习:布置练习题,让学生巩固所学知识,并及时给予解答和反馈。

4. 应用:结合实际问题,让学生运用集合的知识解决问题,提高学生的应用能力。

5. 总结:对本节课的内容进行总结,强调重点和难点,为学生课后复习提供指导。

教案仅供参考,具体实施时可根据学生的实际情况进行调整。

六、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习兴趣和积极性。

2. 练习作业:评估学生在练习作业中的表现,检查学生对集合知识的掌握程度。

3. 课后反馈:收集学生的课后反馈,了解学生在学习过程中的困惑和问题,为后续教学提供改进方向。

七、教学拓展1. 探讨集合的其他表示方法,如区间表示法、维恩图等。

2. 介绍集合论的基本原理和概念,如势、无限集合等。

3. 结合数学史,讲述集合论的起源和发展,提高学生对数学学科的认识。

高考数学集合复习知识点

高考数学集合复习知识点

《高考数学集合复习知识点全攻略》引言:高考,是千军万马过独木桥的征程,而数学作为其中的重要科目,往往起着关键作用。

在高考数学中,集合是一个基础且重要的知识点,它贯穿于整个高中数学的学习。

掌握好集合的相关知识,不仅有助于我们在高考中取得优异成绩,更能为后续的数学学习奠定坚实的基础。

那么,让我们一同深入探索高考数学集合复习的知识点吧。

一、集合的概念1. 集合的定义集合是由一些确定的、不同的对象所组成的整体。

这些对象称为集合的元素。

例如,“所有小于 10 的正整数”就可以组成一个集合。

2. 集合的表示方法(1)列举法:将集合中的元素一一列举出来,用花括号括起来。

例如,{1,2,3,4,5}。

(2)描述法:用集合中元素的共同特征来表示集合。

例如,{x|x 是小于 10 的正整数}。

二、集合的关系1. 子集如果集合 A 中的所有元素都属于集合 B,那么称集合 A 是集合 B 的子集,记作 A⊆B。

特别地,任何集合都是它自身的子集。

2. 真子集如果集合 A 是集合 B 的子集,且存在元素属于集合 B 但不属于集合 A,那么称集合 A 是集合 B 的真子集,记作 A⊂B。

3. 相等如果集合 A 和集合 B 的元素完全相同,那么称集合 A 与集合B 相等,记作 A=B。

三、集合的运算1. 交集由既属于集合 A 又属于集合 B 的所有元素组成的集合,称为集合 A 与集合 B 的交集,记作A∩B。

例如,设 A={1,2,3,4},B={3,4,5,6},则A∩B={3,4}。

2. 并集由属于集合 A 或属于集合 B 的所有元素组成的集合,称为集合 A 与集合 B 的并集,记作A∪B。

例如,对于上述集合 A 和 B,A∪B={1,2,3,4,5,6}。

3. 补集设全集为 U,集合 A 是 U 的子集,由 U 中所有不属于集合 A 的元素组成的集合,称为集合 A 在全集 U 中的补集,记作∁UA。

四、集合中元素的性质1. 确定性对于一个给定的集合,它的元素是确定的。

高三数学集合复习必修五知识点整理2024

高三数学集合复习必修五知识点整理2024

高三数学集合复习必修五知识点整理2024
1. 集合的概念和表示:
- 集合是由一些确定的、互不相同的元素组成的整体。

- 用集合的元素把它分开的符号是∈,不属于的符号是∉。

2. 集合的分类:
- 空集:不包含任何元素的集合,用符号∅表示。

- 单元素集:只包含一个元素的集合。

- 有限集:元素个数有限的集合。

- 无限集:元素个数无限的集合。

- 集合的相等:两个集合的元素完全相同,则称它们相等。

3. 集合的运算:
- 并集:属于任意一个集合的元素构成的集合,用符号∪表示。

- 交集:属于所有集合的元素构成的集合,用符号∩表示。

- 差集:属于一个集合而不属于另一个集合的元素构成的集合,用符号-表示。

4. 集合的基本关系:
- 包含关系:一个集合的所有元素都是另一个集合的元素,则前者包含于后者,用符号⊆表示。

- 相等关系:两个集合既互相包含,又互不包含,则称它们相等。

- 真子集:一个集合包含于另一个集合,但两者不相等,则前者是后者的真子集。

5. 集合的表示方法:
- 列举法:直接写出集合的元素。

- 描述法:用条件语句描述集合的元素的特征。

6. 集合的应用:
- 表示和解决实际问题时,能够使用集合概念进行分析和描述。

以上是高三数学集合复习必修五的知识点整理,希望对您有帮助!。

高三集合知识点

高三集合知识点

高三集合知识点在高三的数学学习中,集合是一个重要的基础概念,它贯穿于整个数学体系之中。

理解和掌握集合的相关知识,对于后续的数学学习有着至关重要的作用。

集合,简单来说,就是把一些确定的、不同的对象放在一起组成的一个整体。

这些对象被称为集合的元素。

集合通常用大写字母来表示,比如 A、B、C 等,而元素则用小写字母表示,比如 a、b、c 等。

如果一个元素 a 属于集合 A,我们记作a∈A;如果元素 b 不属于集合 A,就记作 b∉A。

集合有多种表示方法。

列举法就是将集合中的元素一一列举出来,用花括号括起来。

比如,由数字 1、2、3 组成的集合,可以表示为{1, 2, 3}。

描述法呢,则是通过描述元素所具有的共同特征来表示集合。

例如,所有大于 0 小于 5 的整数组成的集合,可以表示为{x | 0 < x< 5, x∈Z},其中 Z 表示整数集。

集合之间有着不同的关系。

如果集合 A 中的所有元素都属于集合 B,那么集合 A 就是集合 B 的子集,记作 A⊆B。

如果集合 A 是集合 B 的子集,并且集合 B 中存在元素不属于集合 A,那么集合 A 就是集合 B的真子集,记作 A⊂B。

当两个集合 A 和 B 的元素完全相同,我们就说集合 A 和集合 B 相等,记作 A = B。

集合的运算也是集合知识中的重要部分。

交集就是两个集合共有的元素组成的集合。

如果集合 A 和集合 B 的交集记作A∩B,那么A∩B ={x | x∈A 且 x∈B}。

并集则是把两个集合的所有元素放在一起组成的新集合,如果集合 A 和集合 B 的并集记作 A∪B,那么 A∪B ={x | x∈A 或 x∈B}。

补集是在一个给定的全集 U 中,集合 A 的补集就是由全集中不属于集合 A 的元素组成的集合,记作∁UA ={x |x∈U 且 x∉A}。

在解决集合相关的问题时,一定要注意集合中元素的性质。

首先,集合中的元素具有确定性,也就是说,对于一个给定的集合,某个元素是否属于这个集合是明确的,不能模棱两可。

高三数学集合知识点归纳总结

高三数学集合知识点归纳总结

高三数学集合知识点归纳总结数学是一门总结归纳的学科,集合论就是数学中重要的一个分支。

在高三数学学习中,集合知识点是必不可少的一部分。

为了帮助同学们更好地掌握集合知识,下面对高三数学集合知识点进行归纳总结。

一、集合的概念与表示方法集合是由确定的、具有某种特定性质的对象组成的整体。

表示方法主要有朴素方法、列举法和描述法。

在表示集合时,需要注意元素的顺序不重要、元素的个数可以是有限个或无限个、元素不重复等特点。

二、集合间的关系与运算1. 集合间的关系包含关系、相等关系、互斥关系等是集合之间的基本关系。

例如,若集合A包含于集合B,则称A为B的子集,记作A⊆B。

2. 集合的运算交集、并集、差集和补集是集合运算的基本操作。

交集表示同时属于两个集合的元素组成的集合,记作$A \cap B$;并集表示两个集合的所有元素组成的集合,记作$A \cup B$;差集表示属于一个集合而不属于另一个集合的元素组成的集合,记作$A - B$;补集表示在全集中不属于某个集合的元素组成的集合,记作$\bar{A}$。

三、集合的性质1. 互补律对于任何集合A,有$A \cup \bar{A} = U$,$A \cap \bar{A} =\emptyset$。

2. 幂集与子集关系集合A的幂集是指A的所有子集组成的集合。

对于元素个数为n的集合A,A的幂集共有$2^n$个元素。

3. 数集与集合数集是由数组成的集合,包括自然数集、整数集、有理数集和实数集等。

数集是集合的一个特殊实例。

四、集合的应用1. Venn图Venn图是以圆或矩形等几何图形来表示集合之间的关系,方便同学们直观地理解和比较集合的运算和关系。

2. 集合的应用问题集合论在实际问题中有着广泛的应用,例如在调查统计中进行数据分析、在概率论中确定事件的集合等等。

五、题目解析与示例1. 题目解析通过解析一些典型题目,帮助同学们更好地理解和掌握集合知识点。

2. 示例(1)已知集合A = {1, 2, 3},集合B = {2, 3, 4},求$A \cup B$和$A \cap B$。

高三数学集合复习必修五知识点总结(2篇)

高三数学集合复习必修五知识点总结(2篇)

高三数学集合复习必修五知识点总结第一部分集合(1)含n个元素的集合的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2;(2)注意:讨论的时候不要遗忘了的情况。

(3)第二部分函数与导数1.映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。

⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、等);⑨导数法3.复合函数的有关问题(1)复合函数定义域求法:①若f(____)的定义域为〔a,b〕,则复合函数f[g(____)]的定义域由不等式a≤g(____)≤b解出②若f[g(____)]的定义域为[a,b],求f(____)的定义域,相当于____∈[a,b]时,求g(____)的值域。

(2)复合函数单调性的判定:①首先将原函数分解为基本函数:内函数与外函数;②分别研究内、外函数在各自定义域内的单调性;③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

注意:外函数的定义域是内函数的值域。

____分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

5.函数的奇偶性⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;⑵是奇函数;⑶是偶函数;⑷奇函数在原点有定义,则;⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;高三数学集合复习必修五知识点总结(二)一、集合的概念和表示方法:1. 集合的概念:集合是由一些确定的、不重复的对象组成的整体。

2. 集合的表示方法:列举法和描述法。

3. 集合间的关系:包含关系、相等关系、交集、并集、全集、补集等。

二、集合的运算:1. 交集:A ∩ B表示既属于集合A又属于集合B的元素组成的集合。

2. 并集:A ∪ B表示属于集合A或属于集合B的元素组成的集合。

3. 差集:A - B表示属于集合A不属于集合B的元素组成的集合。

最新高三教案-集合与映射 精品

最新高三教案-集合与映射 精品

集合与映射一、知识梳理:1、 集合的概念与运算;映射与一一映射。

2、 重要结论:⑴A ∩B=A ⇔A ⊆B; A ∪B=B ⇔A ⊆B⑵摩根律:())()(B c A c B A c u u u ⋃=⋂ ())()(B c A c B A c u u u ⋂=⋃ ⑶设有限集合A 、B 、C ,则Card(A ∪B)=card(A)+ card(B)- card(A ∩B)Card(A ∪B ∪C)=card(A)+card(B)+card(C)-card(A ∩B) -card(A ∩B)-card(A ∩B)+card(A ∩B ∩C) ⑷设有限集合A, card(A)=n,则(ⅰ)A 的子集个数为n 2; (ⅱ)A 的真子集个数为12-n;(ⅲ)A 的非空子集个数为12-n ;(ⅳ)A 的子集个数为22-n。

⑸设有限集合A 、B 、C , card(A)=n ,card(B)=m,m<n,则(ⅰ) 若A C B ⊆⊆,则C 的个数为mn -2;(ⅱ) 若A C B ⊂⊆,则C 的个数为12--m n ; (ⅲ) 若A C B ⊆⊂,则C 的个数为12--m n ;(ⅳ) 若A C B ⊂⊂,则C 的个数为22--m n 。

(6)若card(A)=n ,card(B)=m ,则从A 到B 可建立的映射个数为nm 。

二、训练反馈 1、(04年全国Ⅰ理6)设A 、B 、I 均为非空集合,且满足I B A ⊆⊆,则下列各式中错误的是 ( ) (A )I B A C I =⋃)( (B) I B C A C I I =⋃)()( (C) Φ=⋂)(B C A I (D) B C B C A C I I I =⋂)()(2、(04年朝阳区)设f(x)=2x 集合A={x ︱f(x)=x,x ∈R ︴,B={x ︱f[f(x)]=x,x ∈R},则A 与 B 的关系是 ( ) (A)A ∩B=A(B) A ∩B= (C) A ∪B=R (D) A ∪B={-1,0,1}3、设集合A 和B 都是坐标平面上点集{(x,y )︳x ∈R,y ∈R},映射f: A →B 把集合A 中的元素(x,y)映射成集合B 中的元素(x+y,x-y),则在映射f 下,象(2,1)的原象是 ( ) (A)(3,1) (B) (21,23) (C)(21,23-) (D)(1,3) f(P)={y ︱y=f(x),x ∈P}4、(04年北京理8)函数⎩⎨⎧∈-∈=Mx x P x xx f )(,其中P 、M 为实数集R 的两个非空子集,又规定f(P)={y ︱y=f(x),x ∈P}, f(M)={y ︱y=f(x),x ∈M}.给出下列四个判断,其中正确判断有 ( ) ①若P ∩M=Φ则f(P)∩f(M)=Φ②若P ∩M ≠Φ则f(P)∩f(M)≠Φ ③若P ∪M=R 则f(P)∪f(M)=R ④若P ∪M ≠R 则f(P)∪f(M)≠R(A) 1个 (B) 2个 (C) 3个 (D) 4个 5、设全集(){}R y x y x I ∈=,,,()⎭⎬⎫⎩⎨⎧=--=123,x y y x M , (){}1,+≠=x y y x N ,那么集合()()N C M C u u ⋂等于 。

高三数学映射复习

高三数学映射复习

第二章 函数第一教时教材:映射目的:要求学生了解映射和一一映射的概念,为今后在此基础上对函数概念的理解打下基础。

过程:一、复习:以前遇到过的有关“对应”的例子1︒ 看电影时,电影票与座位之间存在者一一对应的关系。

2︒ 对任意实数a ,数轴上都有唯一的一点A 与此相对应。

3︒ 坐标平面内任意一点A 都有唯一的有序数对(x, y )和它对应。

4︒ 任意一个三角形,都有唯一的确定的面积与此相对应。

二、提出课题:一种特殊的对应:映射(1) (2) (3) (4) 引导观察,分析以上三个实例。

注意讲清以下几点:1.先讲清对应法则:然后,根据法则,对于集合A 中的每一个元素,在集合B 中都有一个(或几个)元素与此相对应。

2.对应的形式:一对多(如①)、多对一(如③)、一对一(如②、④) 3.映射的概念(定义):强调:两个“一”即“任一”、“唯一”。

4.注意映射是有方向性的。

5.符号:f : A B 集合A 到集合B 的映射。

6.讲解:象与原象定义。

再举例:1︒A ={1,2,3,4} B ={3,4,5,6,7,8,9} 法则:乘2加1 是映射-242︒A =N + B ={0,1} 法则:B 中的元素x 除以2得的余数 是映射 3︒A =Z B =N * 法则:求绝对值 不是映射(A 中没有象)4︒A ={0,1,2,4} B ={0,1,4,9,64} 法则:f :a b =(a -1)2 是映射三、一一映射观察上面的例图(2) 得出两个特点:1︒对于集合A 中的不同元素,在集合B 中有不同的象 (单射) 2︒集合B 中的每一个元素都是集合A 中的每一个元素的象 (满射)即集合B 中的每一个元素都有原象。

结论:(见P 48) 从而得出一一映射的定义。

例一:A ={a ,b ,c ,d } B ={m ,n ,p ,q } 它是一一映射 例二:P 48例三:看上面的图例(2)、(3)、(4)及例1︒、2︒、4︒ 辨析为什么不是一一映射。

集合与映射教案

集合与映射教案

集合与映射教案一、引入在数学中,集合与映射是基础而重要的概念。

通过理解和掌握集合与映射的含义、性质以及它们之间的关系,可以帮助学生打下数学学科的坚实基础。

本节课将介绍并讲解集合与映射的相关内容,帮助学生全面理解并掌握这一概念。

二、集合的介绍与性质1. 集合的定义集合是指由确定的对象组成的整体。

这些对象可以是任意类型的,如数字、字母、图形等。

集合中的对象称为元素,简称为属于该集合。

用花括号{}表示集合,例如集合A={1,2,3,4}。

2. 集合的表示方法a) 列举法:直接列举集合中的元素。

例如,集合C={红,黄,绿},表示集合C包含红、黄、绿三个元素。

b) 描述法:通过描述元素的特性来表示集合。

例如,集合B={x|x是自然数,且x<5},表示集合B包含小于5的自然数。

3. 集合的性质a) 互异性:集合中的元素是各不相同的。

例如,集合D={1,2,3,3},应改写为集合D={1,2,3},剔除了重复的元素。

b) 无序性:集合中的元素没有顺序之分,表示对象的存在与否即可。

例如,集合E={红,黄,绿}与集合F={红,绿,黄}是等价的。

三、映射的介绍与性质1. 映射的定义映射是指从一个集合中的每个元素到另一个集合中的唯一元素的对应关系。

集合中的元素称为定义域,另一个集合中的元素称为值域。

2. 映射的表示方法a) 图表法:用表格的形式表示映射关系。

例如,对于集合A={1,2,3}和集合B={a,b,c},可以表示映射关系为{(1,a),(2,b),(3,c)}。

b) 函数法:用函数的形式表示映射关系。

例如,可以表示映射关系为f(x)=y,其中x∈A,y∈B。

3. 映射的性质a) 单射:如果映射中定义域的不同元素对应到值域中的不同元素,则称为单射。

例如,映射关系{(1,a),(2,b),(3,c)}是单射。

b) 满射:如果映射中所有值域的元素都能找到对应的定义域元素,则称为满射。

例如,映射关系{(1,a),(2,b),(3,c)}是满射。

最新版高中-数学奥赛辅导 第六讲 集合与映射

最新版高中-数学奥赛辅导 第六讲 集合与映射

数学奥赛辅导 第六讲 集合与映射知识、方法、技能这一讲主要介绍有限集的阶,有限集上的映射及其性质,这些在与计数有关的数学竞赛问题中应用极广,是参赛者必不可少的知识Ⅰ.有限集元素的数目 1.有限集的阶有限集A 的元素数目叫做这个集合的阶,记作|A|[或n(A)]. 2.集族的阶若M 为由一些给定的集合构成的集合,则称集合M 为集族.设A 为有限集,由A 的若干个子集构成的集合称为集合A 的一个子集族,求满足一定条件的集族的阶是一类常见的问题.显然,若|A|=n ,则由A 的所有子集构成的子集族的阶为2n . Ⅱ.映射,映射法定义1 设X 和Y 是两个集合(二者可以相同).如果对于每个X x ∈,都有惟一确定的Y y ∈与之对应,则称这个对应关系为X 到Y 的映射.记为.Y y X x Y X ∈→∈→或这时,Y x f y ∈=)(称为X x ∈的象,而x 称为y 的原象,特别当X 和Y 都是数集时,映射f 称为函数.定义2 设f 为从X 到Y 的一个映射.(1)如果对于任何x 1、.),()(,,21212为单射则称都有f x f x f x x X x ≠≠∈ (2)如果对于任何Y y ∈,都有X x ∈,使得f (x )=y ,则称f 为满射; (3)如果映射f 既为单射又为满射,则称f 为双射;(4)如果f 为满射且对任何Y y ∈,恰有X 中的m 个元素x 1、x 2、…x m ,使得.)(,,,2,1,)(倍数映射的倍数为为则称m f m i y x f i Λ==定理1 设X 和Y 都是有限集,f 为从X 到Y 的一个映射, (1)如果f 为单射,则|X|≤|Y| (2)如果f 为满射,则|X|≥|Y| (3)如果f 为双射,则|X|=|Y|(4)如果f 为倍数为m 的倍数映射,则|X|=m|Y|. 这个定理的结果是显然的.定理2 设有限集f a a a A n },,,,{21Λ=是A 到A 上的映射,),()(1x f x f =),,)](([)(1*+∈∈=N r A x x f f x f r r 则f 是一一映射(即双射)的充要条件是:对任意).11,()(,)(1,,-≤≤∈≠=≤≤∈∈**i i i s i i m i i i m s N s a a f a a f n m N m A a i 而使得存在证明:必要性.若f 是双射,则i i a a f ==)(1(此时m i =1),或者.)(11i i i a a a f ≠=在后一种情形下,不可能有.)()(1112i i i a a f a f ==否则,a i 1在A 中有两个原象a i 和a i 1,与f 是双射不合,而只可能有2222)(,,)(),2()(12i i i i i i i i i a a f a a a a f m a a f =≠===如果或者此时,则依同样的道理,不可能有或者此时而只可能有),3()(,,)()(33212====i i i i i i i m a a f a a a f a f213,,)(3i i i i i a a a a a f ≠=.如此等等.因为A 是有限集,所以经过有限次(设经过m 次)后,有i s i i m a ai f a a f i ≠=)(,)(而).11,(-≤≤∈*i m s N s这表明当f 是双射时,对任一A a i ∈都存在着映射圈:i im i i i a a a a a i →→→→-121Λ在这个映射圈中,诸元素互异,且),1(1i i i a m n m 只有一个元素=≤≤充分性.如果对任意i i s i i mi i i i a a f a a f n m N m A a ≠=≤≤∈∈*)(,)(,1,,而使存在)1,(1-*≤≤∈i m s N s ,这说明从A 中任一元素a i 出发,都可以得到一个包含m i 个互异元素的映射圈,显然f 是双射.定理3 在命题1的条件下,若对i i mi i i a a f N m A a =∈∈*)(,,使存在,则对任意.)(,i i tm a a f N t i =∈*有这是明显的事实,证明从略.赛题精讲例1:设集合,30001|{},,14,20001|{≤≤=∈+=≤≤=y y B Z k k x x x A 集合||},,13B A Z k k y ⋂∈-=求.【解】形如4k +1的数的数可分三类:)(912,512,112Z l l l l ∈+++,其中只有形如12l +5的数是形如3k -1的数..167||},1997,,17,5{,1660),(20005121=⋂=⋂≤≤∈≤+≤B A B A l Z l l 所以所以得令Λ例2:有1987个集合,每个集合有45个元素,任意两个集合的并集有89个元素,问此1987个集合的并集有多少个元素.【解】显然,可以由题设找到这样的1987个集合,它们都含有一个公共元素a ,而且每两个集合不含a 以外的公共元素.但是,是否仅这一种可能性呢?由任意两个集合的并集有89个元素可知,1987个集合中的任意两个集合有且仅有一个公共元素,则容易证明这1987个集合中必有一个集合中的元素a 出现在A 以外的45个集合中,设为A 1,A 2,…,A 45,其余的设为A 46,A 47,…,A 1996.设B 为A 46,…,A 1996中的任一个集合,且B a ∉,由题设B 和A ,A 1,A 2,…,A 45都有一个公共元素,且此46个元素各不相同,故B 中有46个元素,与题设矛盾,所以这1987个集合中均含有a .故所求结果为1987×44+1=87429.即这1987个集合的并集有87429个元素. 例3:集合n B B B A ,,,},9,2,1,0{21ΛΛ=为A 的非空子集族,并且当,2||≤⋂≠j i B B j i 时 求n 的最大值.【解】首先考虑至多含三个元素的A 的非空子集族,它们共有175310210110=++C C C 个,这说明.175max ≥n下证,.175max ≤n 事实上,设D 为满足题设的子集族,若,,4||,B b B D B ∈≥∈设且 则B 与B-{b}不能同时含于D ,以B-{b}代B ,则D 中元素数目不变.仿此对D 中所有元素数目多于4的集合B 作相应替代后,集族D 中的每个集合都是元素数目不多于3的非空集合,故.175max ≤n .所以,.175max =n在许多问题中,计数对象的特征不明显或混乱复杂难以直接计数,这时可以通过适当的映射将问题划归为容易计数的对象,然后再解决,从而取得化难为易的效果.例4:设},,,2,1{n S Λ=A 为至少含有两项的公差为正的等差数列,其项都在S 中且当将S 的其他元素置于A 中之后,均不能构成与A 有相同公差的等差数列.求这种A 的个数(只有两项的数列也视为等差数列) 【解】当k n 2=为偶数时,满足题中要求的每个数列A 中必有连续两项,使其前一项在集{1,2,…,k}和{k +1,k +2,…,2k }中各任取一数,并以二数之差作为公差可以作出一个满足要求的数列A.容易看出,这个对应是双射.故知A 的个数为.422n k = 当n =2k +1为奇数时,情况完全类似.惟一的不同在于这时第二个集合},2,1{n k k Λ++ 有k +1个元素.故A 的个数为.4/)1()1(2-=+n k k例5:设a n 为下述自然数N 的个数:N 的各位数字之和为n 且每位数字都只能取1、3或4.求证对每个自然数n ,a 2n 都是完全平方数.【证明】记各位数字之和为n 且每位数字都是1或2的所有自然数的集合为S n ,并记,3,2,1,||2121--+=≥===n n n n n f f f n f f f S 时有且当则这意味着{f n }恰为菲波那契数列.作对应'1M M S n →∍如下:先将M 的数字中自左至右的第一个2与它后邻的数字相加,其和作为一位数字;然后再把余下数字中第一个2与它后邻的数字相加,所得的和作为下一位数字;依此类推,直到无数再相加为止.所得的新自然数M′除最后一位数可能为2之外,其余各位数字均为1、3或4.若记所有M ′的集合为T n ,则容易看出,上述对应是由S n 到T n 的双射,从而有n n n f S T ==||||,且显然有Λ,4,3,2=+=-n a a f n n n ①对于任一数字和为2n ,各位数字均为1或2的自然数M ,必存在正整数k ,使得下列两条之一成立:(1)M 的前k 位数字之和为n ;(2)M 的前k 位数字之和为n -1,第k +1位数字为2.则立即可得Λ,3,2,2122=+=-n f f f n n n ② 由①和②得到,2122222--+==+n n n n n f f f a a),(122222----=-n n nn fa fa ③因为.0,2,4,2,12242432=-====f a f a a a 所以于是由③递推即得,,3,2,1,22Λ==n f a n n即n a 2为完全平方数.应用映射还可以证明某些与计数相关的不等式和等式.这时可以通过分别计数来证明等或不等,也可以不计数而直接通过适当的映射来解决问题.例6:将正整数n 写成若干个1和若干个2之和,和项顺序不同认为是不同的写法,所有写法种数记为a (n ).将n 写成若干个大于1的正整数之和,和项顺序不同认为是不同的写法,所有写法的种数记为)(n β.求证对每个n ,都有).2()(+=n n βα【证法1】将每项都是1或2,各项之和为n 的所有数列的集合记为A n ,每项都是大于1的正整数,各项之和为n 的所有数列的集合记为B n ,则问题就是证明|,|||2+=n n B A 显然,只需在两集之间建立一个双射就行了.i k ik i i n m a m i i i a a a A a a a a 其余的其中设,1,2,),,,(212121≤<<≤≤====∈=ΛΛΛ均为1且令.21n a a a m =+++Λ1211i a a a b +++=Λ,,22112122121121+++++++++++=+++=+++=--m i i k ik i i k i i i a a a b a a a b a a a b k k k k ΛΛMΛ),,,,,(121+=k k b b b b b Λ①则定义.2+∈n B b2+∈→∍n n B b a A②则f 为双射.事实上,若a a A a a n '≠∈'且,,,则或者数列a 和a ′中的2的个数不同,或者2的个数相同但位置不全相同.无论哪种情形,由①和②知f a f b a f b 即不同与,)()('='=为单射,另一方面,对任何2+∈n B b 利用①式又可确定,n A a ∈使得,,)(为满射即f b a f =从而f 为由A n 到B n +2的双射.【证法2】使用证一中的记号.n n B A 和对于任意的令,),,,,(2121+-∈=n m m A a a a a a Λ,,2;,1,).,,,(11121A a a A a a a a a a m n m m ∈'=∈'=='+-时当时当显然Λ容易看出,映射 n n n A A a af A ⋃∈'→∍++12是双射,故有).()1()2(n n n ααα++=+注意到2)2(,1)1(==αα,便知,)(n f n =α这里|f n |为菲波那契数列.对于任意的令2121),,,,(+-∈=n k k B b b b b b Λ⎩⎨⎧>-=='--2)1,,,,(2),,,(121121k k k k k b b b b b b b b b b 当当ΛΛ则当,,,2;,2,21容易验证时当时时+∈'>∈'='=n k n k B b b B b b b 映射n n n B B b b B ⋃∈'→∍++12为双射,故有),()1()2(n n n βββ++=+==+n f n )2(β所以a (n )【证法3】显然有),4(2)2(),3(1)1(βαβα===即命题于n =1,2时成立.设命题于,.2,)1(1k n k n k k n =+=≥+≤既然命题于时命题成立须证当时成立令与之间的双射与与故存在时都成立.,,11312+++++f k k k k n f f B A B A k⎩⎨⎧>∈=+2),()()(1k k k k b a f A a a f a f 当当则f 为由.321的双射到+++⋃⋃n n k k B B A A对于任意的令和任意,),,,(),,,,(32212121+++-⋃∈'=∈=k k l k m m B B b b b b A a a a a a ΛΛ⎩⎨⎧==∈='+-,1,,2,),,,(1121m k m k m a A a A a a a a 当当Λ ⎩⎨⎧∈'∈+∈'∈=++++.,)1,,,)2,,,(34212421k k l k k l B b B b b b B b B b b b b 当当ΛΛ 43212:.:+++++∈→'∍⋃⋃∈'→∍k k k k k k B b b B B h A A a a A g 则映射都是双射,从而复合映射42:++∈→∍k k B b a A g f h οο为双射,故有)4()2(+=+k k βα,于是由数学归纳法知命题对所有自然数n 都成立.映射法还可以与其他方法结合起来使用,而且大多数竞赛题是这种类型.例如映射法可与抽屉原理、构造法、反证法等各种方法结合起来.例7:设oxyz 是空间直角坐标系,S 是空间中的一个有限点集,S x ,S y ,S z 分别是S 中所有点的坐标平面oyz ,ozx ,oxy 上的正投影所成的集合.求证.||||||||2z y x S S S S ⋅⋅≤(1992年IMO 试题5)【证明】对每点令,),(x S j i ∈∑∈=∈=ixS j i ijij TS S j i x j i x T ),(}},,(|),,{(显然有由柯西不等式有2),(2),(),(2||||||1||ij S j i x ijS j i S j i T S TS xxx∑∑∑∈∈∈⋅=⋅⋅≤①考虑集合},,|),{(),(2121),(ij ij ij ij ij S j i T t t t t T T T T V x∈=⨯⨯=∑∈其中显然,|V|=2),(||ij S j i T x∑∈定义映射f 如下z y S S i x j x j i x j i x V ⨯∈'→'∍)),(),,((),,(),,,(,不难看出f 为单射,因此有||||||z y S S V ⋅≤由①、②即得||||||||2z y x S S S S ⋅⋅≤.例8:设集合},10,,2,1{Λ=A A 到A 的映射f 满足下列两个条件: ①对任意;)(,30x x f A x =∈②对每个.)(,,291,a a f A a k Z k k ≠∈≤≤∈+使得至少存在一个求这样的映射的总数. (1992年日本奥林匹克预选赛题) 【解】注意到10=5+3+2,30=5×3×2.这提示我们将A 划分成三个不相交的子集},{},,{},,,,{2132154321c c b b b a a a a a A ⋃⋃=.因为f 满足条件①和②,所以f 是A 到A 上的双射,并且由定理2的证明过程得知A 中存在映射圈,因此,定义映射,)(,)(;)(,)(,)(,)(,)(:32211554433221b b f b b f a a f a a f a a f a a f a a f f ======= .)(,)(;)(122113c c f c c f b b f ===因为30是5、3、2的最小公倍数,故由定理2和定理3知f 是满足题目条件①和②惟一的一类映射.因此,f 的总数目相当于从10个元素中选取5个,再从剩下的5个中选取3个,最后剩下的两个也选上,它们分别作圆排列的数目,它等于.120960)!1)(!2)(!4(2235510=⋅⋅⋅C C C例9:设集合A={1,2,3,4,5,6},映射A A f →:,其三次复合映射f ·f ·f 是恒等映射,这样的f 有多少个? (1996年日本数学奥林匹克预选赛题)【解】因为集合A 上的三次复合映射是恒等映射,所以定理2和定理3推知符合条件的映射f 有三类:(1)f 是恒等映射;(2)A 中存在一个三元映射圈),,(互异c b a a c b a →→→,而其他三个元素是不动点; (3)A 中存在两个三元映射圈).,,,,,(互异和c b a c b a a c b a a c b a ''''→'→'→'→→→类型(1)的f 只有1个.对于类型(2),先从6个元素中选出3个元素20,,36=C c b a 的方法有种,又a 、b 、c 作圆排列有(3—1)!=2种,故这样的f 有20×2=40个.对于类型(3),首先6个元素平分成两组有10236=÷C 种分法,每组分别作圆排列又有(3—1)!(3—1)!=4种方式,所以这样的f 有10×4=40个. 综上所述,所求的f 有 1+40+40=81个.例10:把正三角形ABC 的各边n 等分,过各分点在△ABC 内作各边的平行线,得到的图形叫做正三角形ABC 的n 格点阵. (1)求其中所有边长为||1BC n的菱形个数; (2)求其中所有平行四边形的个数. (1988年国家集训队选拔考试题) 【解】延长AB 至.||1||||,,BC nC C B B C AC B ='='''使得至作出正三角形C B A ''的n+1格点阵(图I —3—1—1).边2+''n C B 上有个点,依次编码为0,1,2,…,n+1. 在△ABC 中边长为n1|BC|的菱形可以按边不平 行于BC 、AC 与AB 分为三类.容易看出,这三类 中菱形个数相同.边不平行BC 且边长为n1|BC|的 所有菱形集合记作S.由正整数1,2,…,n 组成 的所有有序的数对(i ,j ),i <j 所构成的集合记作T.很明显,,||2n C T =设菱形EFGH ∈S ,延长它的两条邻边HG 与GF ,分别交.),(,1,T j i n j i j i C B ∈≤<≤''则与于点令(i ,j )是菱形EFGH 在S 到T 的映射ϕ下的像,这样便建立了S 到T 的映射ϕ.容易验证,映射ϕ是双射.因此,,||||2n C T S ==所以所求的边长为n1|BC|的菱长个数为32n C . 其次,将平行四边形按边不平行于BC 、AC 与AB 分为三类,这三类的平行四边形个数应相同,边不平行BC 的所有平行四边形集合记作V.非负整数0,1,2,…,n+1构成的所有有序四元数组(i ,j ,k ,l ),10+≤<<<≤n l k j i 构成的集合记作W.很明显,42||+=n C W .设α是V 中平行的四边形,延长它的四条边分别交l k j i C B ,,,于点'',其中10+≤<<<≤n l k j i ,则ϕαββ的映射到在是令W V W l k j i .),,,(∈=下的像.这样便定义了V 到W 的一个映射ϕ.容易验证,ϕ是双射.因此,.||||42+==n C W V 从而所求平行四边形的个数为423+n C .。

01-第1讲集合与映射-精选文档30页

01-第1讲集合与映射-精选文档30页

[
O
a
[a, +)
x(+)
(5) 区间长度 有限区间的长度 = 右端点值-左端点值 不论是闭区间、开区间、半开闭区间, 其长度计算均按此式进行。
所有无穷区间的长度 = +∞
4. 邻 域
点 x 0的 邻U (x 域 0 ,):
U( x0 , ) = { x | | x x0 | < , x R ,课程
高 等 数 学 A(1)
—— 一元微积分学
第一讲 集合与映射
授课教师:彭亚新
第一章 集合与函数
本章学习要求: 正确理解函数概念,能熟练求出函数的定义域。 掌握函数的单调性、有界性、奇偶性、周期性的
分析表示和图形特征。 正确理解初等函数、复合函数概念,能正确将复
x0xx0
(
)
o
x0
x0
x0+
x
x U( x0 , ) | x x0 | <

点 x 0 的去 邻 U ˆ(x 0 心 域 ,)(或U ( 记 x 0 ,)): 为
Û( x0 , ) = { x | 0 < | x x0 | < , x R , > 0 }
x 0 x x 0 且 x x 0
(
)
o
x0
x0
x0 +
x
x Û ( x0 , ) 0 < | x x0 | <
点 x 0 的某邻域,
记为 U(x0) .
点 x 0 的某去心邻域,
记为 Û (x0) .
例1
点 x0 = 3 的 = 0.1 邻域为 U ( 3, 0.1 ) = ( 3 0.1, 3 + 0.1 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学知识点:集合与映射专题复习指导
天津市第四十二中学张鼎言
一、集合与简易逻辑
复习导引:这部分高考(Q吧)题一般以选择题与填空题出现。

多数题并不是以集合内容为载体,只是用了集合的表示方法和简单的交、并、补运算。

这部分题其内容的载体涉及到函数、三角函数、不等式、排列组合等知识。

复习这一部分特别请读者注意第1题,阐述了如何审题,第3、5题的思考方法。

简易逻辑部分应把目光集中到“充要条件”上。

1.设集合M={1,2,3,4,5,6},S1、S2、…Sk都是M的含两个元素的子集,且满足:对任意的
Si={ai,bi},Sj={aj,bj},(i≠j,i、j∈{1,2,3,…k})都有min{-,-}≠min{-,-}(min{x,y}表示两个数x、y中的较小者)。

则k的最大值是( )
A.10
B. 11
C. 12
D. 13
分析:审题是解题的源头,数学审题训练是对数学语言不断加深理解的过程。

以本题为例min{-,-}≠{-,-}如何解决?
我们不妨把抽象问题具体化!
如Si={1,2},Sj={2,3}那么min{-,2}为-,min{-,-}为-,Si 是Sj符合题目要求的两个集合。

若Sj={2,4}则与Si={2,4}按题目要求应是同一个集合。

题意弄清楚了,便有{1,2},{2,4},{1,3},{2,6},{1,2},{3,6},{2,3},{4,6}按题目要求是4个集合。

M是6个元素构成的集合,含有2个元素组成的集合是C62=15个,去掉4个,满足条件的集合有11个,故选B。

注:把抽象问题具体化是理解数学语言,准确抓住题意的捷径。

2.设I为全集,S1、S2、S3是I的三个非空子集,且
S1∪S2∪S3=I,则下面论断正确的是( )
(A)CIS1∩(S2∪S3)=
(B)S1(CIS2∩CIS3)
(C)CIS1∩CIS2∩CIS3=
(D)S1(C IS2∪CIS3)
分析:这个问题涉及到集合的“交”、“并”、“补”运算。

我们在复习集合部分时,应让同学掌握如下的定律:
摩根公式
CIA∩CIB=CI(A∪B)
CIA∪CIB=CI(A∩B)
这样,选项C中:
CIS1∩CIS2∩CIS3
=CI(S1∪S2∪S3)
由已知
S1∪S2∪S3=I
即CI(S1∪S2∪S3)=CI=
而上面的定律并不是复习中硬加上的,这个定律是教材练习一道习题的引申。

所以,高考复习源于教材,高于教材。

这道题的解决,也可用特殊值法,如可设S1={1,2},S2={1,3},S3={1,4}问题也不难解决。

3.是正实数,设S={|f(x)=cos[(x+])是奇函数},若对每个实数a,S∩(a,a+1)的元素不超过2个,且有a使S∩(a,a+1)含2个元素,则的取值范围是。

解:由f(x)=cos[(x+)]是奇函数,可得cosx·cos=0,cosx不恒为0,
∴cos=0,=k+-,k∈Z
又0,∴=-(k+-)
(a,a+1)的区间长度为1,在此区间内有且仅有两个角, 两个角之差为:-(k1+k2)
不妨设k≥0,k∈Z:
两个相邻角之差为-。

若在区间(a,a+1)内仅有二角,那么-≥1,≤2,∴≤2。

注:这是集合与三角函数综合题。

4.设集合A={(x,y)|y≥-|x-2|},B={(x,y)|y≤-|x|+b},A∩B≠,
(1)b的取值范围是 ;
(2)若(x,y)∈A∩B且x+2y的最大值为9,则b的值是。

解:用图形分别表示集合A、B。

B:y≤-|x|+b
从观察图形,易知
b≥1,A∩B≠;
(2)直线l方程为x+2y-2=0
直线x+2y=9平行于l,
其截距为-
∴b=-
5.集合A={x|-0},B={x ||x -b| A.-2≤b0 B.0
C.-3
分析A={x|-1
A、B区间长度均为2。

我们从反面考虑,若A∩B≠
此时,b+1≤-1或b-1≥1
即b≤-2或b≥2。

b≤-2或b≥2为b不能取值的范围,所以应排除A、B、C,选D。

注:本题是以集合为基础的充要条件,其难点并不是充要条件,而是对参数b的处理。

本题的解法意在从A∩B≠出发,类似于不等量关系,考虑等量关系使问题简化,再用排除法。

6.函数f:{1,2,3}→{1,2,3}满足f(f(x))=f(x),则这样的函数个数共有
(A)1个 (B)4个
(C)8个 (D)10个
解:根据对应关系定义,从象的个数出发去思考。

(1)函数集合有一个象,如象为1,
这时f(x)=1,x=1,2,3
f[f(x)]=f(1)=1=f(x)
写成对应形式{1,2,3}f {1}
若f(x)=2,x=1,2,3有{1,2,3}f {2}
同理{1,2,3}f {3}
以上共有3个函数。

(2)函数集合有2个元素
如函数集合为{1,2}
有{1,3}f {1},{2}f {2}
这时f(1)=1,f[f(1)]=f(1)
f(3)=1,f[f(3)]=f(1)=f(3)
f(2)=1,f[f(2)]=f(2)
有两个函数。

同理函数集合为{1,3},{2,3}各有2个函数
综上有6个函数
(3)函数集合有三个元素{1,2,3}
只有f(1)=1,f(2)=2,f(3)=3
∴有一个函数,f(x)=x
∴综上(1)、(2)、(3)共有10个函数,故选D。

[责任编辑:moninfu]。

相关文档
最新文档