16-17版 第1部分 专题1 突破点3 平面向量
专题2.3 平面向量中范围、最值等综合问题 高考数学选填题压轴题突破讲义(解析版)
一.方法综述平面向量中的最值与范围问题是一种典型的能力考查题,能有效地考查学生的思维品质和学习潜能,能综合考察学生分析问题和解决问题的能力,体现了高考在知识点交汇处命题的思想,是高考的热点,也是难点,其基本题型是根据已知条件求某个变量的范围、最值,比如向量的模、数量积、向量夹角、系数的范围的等,解决思路是建立目标函数的函数解析式,转化为求函数(二次函数、三角函数)的最值或应用基本不等式,同时向量兼顾“数”与“形”的双重身份,所以解决平面向量的范围、最值问题的另外一种思路是数形结合,应用图形的几何性质.二.解题策略类型一与向量的模有关的最值问题【例1】【安徽省黄山市2019届高三一模】如图,在中,,,为上一点,且满足,若的面积为,则的最小值为()A.B.C.D.【答案】B【解析】设,,则三角形的面积为,解得,由,且C,P,D三点共线,可知,即,故.以所在直线为轴,以点为坐标原点,过点作的垂线为轴,建立如图所示的坐标系,则,,,,则,,,则(当且仅当即时取“=”).故的最小值为.【指点迷津】三点共线的一个向量性质:已知O、A、B、C是平面内的四点,则A、B、C三点共线的充要条件是存在一对实数、,使,且.【举一反三】1、【宁夏六盘山高级中学2019届高三下学期二模】如图,矩形中边的长为,边的长为,矩形位于第一象限,且顶点分别位于轴、轴的正半轴上(含原点)滑动,则的最大值为()A.B.C.D.【答案】B【解析】如图,设,则因为所以则所以的最大值为所以选B2、【浙江省湖州三校2019年高考模拟】已知向量,的夹角为,且,则的最小值为()A.B.C.5 D.【答案】B【解析】由题意可设,,因此表示直线上一动点到定点距离的和,因为关于直线的对称点为,所以选B.3、【四川省成都外国语学校2019届高三3月月考】在平面直角坐标系中,,若,则的最小值是()A.B.C.D.【答案】C【解析】由于,即,即,所以在以原点为圆心,半径为的圆上.得到三点共线.画出图像如下图所示,由图可知,的最小值等于圆心到直线的距离减去半径,直线的方程为,圆心到直线的距离为,故的最小值是,故选C.类型二与向量夹角有关的范围问题【例2】【四川省成都市实验外国语学校2019届高三10月月考】已知向量与的夹角为,,,,,在时取得最小值若,则夹角的取值范围是______.【答案】【解析】,,,在时取得最小值解可得:则夹角的取值范围本题正确结果:【指点迷津】求变量的取值范围、最值,往往要将目标函数用某个变量表示,转化为求函数的最值问题,期间要注意变量之间的关系,进而得解. 【举一反三】1、非零向量b a ,满足b a2=22b a,2|||| b a,则b a 与的夹角的最小值是 .【答案】3【解析】由题意得2212a b a b r r r r ,24a b r r ,整理得22422a b a b a b r r r r r r ,即1a b r11cos ,22a b a b a b a b r rr r r r r r ,,3a b r r ,夹角的最小值为3 .2、【上海市2019年1月春季高考】在椭圆上任意一点,与关于轴对称,若有,则与的夹角范围为____________【答案】【解析】 由题意:,设,,因为,则与结合,又与结合,消去,可得:所以本题正确结果:类型三 与向量投影有关的最值问题【例3】【辽宁省沈阳市郊联体2019届高三一模】若平面向量,满足||=|3|=2,则在方向上的投影的最大值为( ) A .B .C .D .【答案】A 【解析】 因为,所以,在方向上的投影为,其中为,的夹角.又,故.设,则有非负解,故, 故,故,故选A .【指点迷津】向量的数量积有两个应用:(1)计算长度或模长,通过用;(2)计算角,.特别地,两个非零向量垂直的充要条件是.另外,的几何意义就是向量在向量的投影与模的乘积,向量在向量的投影为.【举一反三】1、已知ABC 的外接圆的圆心为O ,半径为2,且0OA AB AC u u u v u u u v u u u v v ,则向量CA u u u v 在向量CB u u u v方向上的投影为( ) A. 3 B. 3 C. -3 D. 3 【答案】B本题选择B 选项.2、设1,2OA OB u uu v u u u v , 0OA OB u u u v u u u v , OP OA OB u u u v u u u v u u u v ,且1 ,则OA u u u v 在OP uuu v 上的投影的取值范围( ) A. 25-,15B.25,15C. 5,15D. 5-,15【答案】D当λ0 时, 0,x当222215λ8λ4482λ0521x λλλλ,故当λ1 时,1x 取得最小值为1,即1101x x, 当λ0 时, 222215844825215x,即15x 505x综上所述 5( ,1x故答案选D 类型四 与平面向量数量积有关的最值问题 【例4】【辽宁省鞍山市第一中学2019届高三一模】中,,,,且,则的最小值等于 A .B .C .D .【答案】C 【解析】 由题意知,向量,且,可得点D 在边BC 上,,所以,则,即,所以时以C 为直角的直角三角形.如图建立平面直角坐标系,设,则, 则,,当时,则最小,最小值为.故选:C .【指点迷津】平面向量数量积的求法有:①定义法;②坐标法;③转化法;其中坐标法是同学们最容易忽视的解题方法,要倍加注视,若有垂直或者容易出现垂直的背景可建立平面直角坐标系,利用坐标法求解.【举一反三】1、已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE DC u u u r u u u r的最大值为( )A. 1B. 12C. 3D. 2【答案】A2、【辽宁省鞍山市第一中学2019届高三一模】中,,,,且,则的最小值等于 A .B .C .D .【答案】C 【解析】 由题意知,向量,且,可得点D 在边BC 上,,所以,则,即,所以时以C 为直角的直角三角形.如图建立平面直角坐标系,设,则, 则,,当时,则最小,最小值为.故选:C .3、已知圆的半径为2,是圆上任意两点,且,是圆的一条直径,若点满足(),则的最小值为( )A. -1B. -2C. -3D. -4 【答案】C类型五 平面向量系数的取值范围问题【例5】在矩形ABCD 中, 12AB AD ,,动点P 在以点C 为圆心且与BD 相切的圆上,若AP AB AD u u u v u u u v u u u v,则 的最大值为( )A. 3B. 22C. 5D. 2【答案】A∴圆的方程为(x ﹣1)2+(y ﹣2)2=45, 设点P 25cosθ+1, 25), ∵AP AB AD u u u v u u u v u u u v,25, 25sinθ+2)=λ(1,0)+μ(0,2)=(λ,2μ), ∴55cosθ+1=λ, 55sinθ+2=2μ, ∴255(θ+φ)+2,其中tanφ=2, ∵﹣1≤sin (θ+φ)≤1, ∴1≤λ+μ≤3,故λ+μ的最大值为3, 故选:A【指点迷津】(1)向量的运算将向量与代数有机结合起来,这就为向量和函数的结合提供了前提,运用向量的有关知识可以解决某些函数问题;(2)以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题; (3)向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题. 【举一反三】1、【云南省昆明市云南师范大学附属中学2019届高三上学期第四次月考】已知正方形ABCD 的边长为1,动点P 满足,若,则的最大值为A .B .C .D .【答案】C 【解析】解:以A 为原点建立如图所示的直角坐标系:则,,,,设, ,则由得,化简得:,又,,,,表示圆上的点到原点的距离得平方,其最大值等于圆心到原点的距离加半径的平方,即,故选:C .2.已知1,3,0OA OB OA OB u u u v u u u v u u u v u u u v ,点C 在AOB 内,且OC u u u v 与OA u u u v 的夹角为030,设,OC mOA nOB m n R u u u v u u u v u u u v ,则mn的值为( )A. 2B. 52C. 3D. 4【答案】C 【解析】如图所示,建立直角坐标系.由已知1,3,OA OB u u u v u u u v,,则10033OA OB OC mOA nOB m n u u u r u u u r u u u r u u u r u u u r(,),(,),(,), 33303n tan m, 3mn. 故选B3.【上海市金山区2019届高三二模】正方形ABCD 的边长为2,对角线AC 、BD 相交于点O ,动点P 满足,若,其中m 、n R ,则的最大值是________【答案】 【解析】建立如图所示的直角坐标系,则A (﹣1,﹣1),B (1,﹣1),D (﹣1,1),P (,),所以(1,sinθ+1),(2,0),(0,2),又,所以,则,其几何意义为过点E (﹣3,﹣2)与点P (sinθ,cosθ)的直线的斜率,设直线方程为y +2k (x +3),点P 的轨迹方程为x 2+y 2=1,由直线与圆的位置关系有:,解得:,即的最大值是1,故答案为:1类型六 平面向量与三角形四心的结合【例6】已知ABC 的三边垂直平分线交于点O , ,,a b c 分别为内角,,A B C 的对边,且 222c b b ,则AO BC u u u v u u u v的取值范围是__________.【答案】2,23【指点迷津】平面向量中有关范围最值问题的求解通常有两种思路:①“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;②“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.【举一反三】1、如图,为的外心,为钝角,是边的中点,则的值为()A. 4B.C.D.【答案】B2.已知点O 是锐角三角形ABC 的外心,若OC mOA nOB u u u v u u u v u u u v(m , n R ),则( )A. 2m nB. 21m nC. 1m nD. 10m n 【答案】C【解析】∵O 是锐角△ABC 的外心,∴O 在三角形内部,不妨设锐角△ABC 的外接圆的半径为1,又OC mOA nOB u u u v u u u v u u u v ,∴|OC u u u v |=| mOA nOB u u u v u u u v |,可得2OC u u u v =22m OA u u u v +22n OB u u u v +2mn OA u u u v ⋅OB uuu v ,而OA u u u v ⋅OB uuu v =|OA u u u v|⋅|OB uuu v |cos ∠A 0B <|OA u u u v |⋅|OB uuu v|=1.∴1=2m +2n +2mn OA u u u v ⋅OB uuu v<22m n +2mn ,∴m n <−1或m n >1,如果m n >1则O 在三角形外部,三角形不是锐角三角形, ∴m n <−1, 故选:C.3、在ABC 中, 3AB , 5AC ,若O 为ABC 外接圆的圆心(即满足OA OB OC ),则·AO BC u u u v u u u v的值为__________. 【答案】8【解析】设BC 的中点为D ,连结OD ,AD ,则OD BC u u u v u u u v,则:222212121538.2AO BC AD DO BC AD BCAB AC AC AB AC ABu u u v u u u v u u u v u u u v u u u v u u u v u u u v u u uv u u u v u u u v u u u v u u uv u u u v三.强化训练1.【宁夏平罗中学2019届高三上期中】已知数列是正项等差数列,在中,,若,则的最大值为()A.1 B.C. D.【答案】C【解析】解:∵,故三点共线,又∵,∴,数列是正项等差数列,故∴,解得:,故选:C.2.【山东省聊城市第一中学2019届高三上期中】已知M是△ABC内的一点,且,,若△MBC,△MCA和△MAB的面积分别为1,,,则的最小值是()A.2 B.8 C.6 D.3【答案】D【解析】∵,,∴,化为.∴.∴.则,而=5+4=9,当且仅当,即时取等号,故的最小值是9,故选:D.3.【贵州省凯里市第一中学2019届高三下学期模拟《黄金卷三》】已知是边长为的正三角形,且,,设函数,当函数的最大值为-2时,()A.B.C.D.【答案】D【解析】,因为是边长为的正三角形,且,所以又因,代入得所以当时,取得最大,最大值为所以,解得,舍去负根.故选D项.4.【辽宁省鞍山市第一中学2019届高三一模】已知平面向量,,满足,若,则的最小值为A.B.C.D.0【答案】B【解析】因为平面向量,,满足,,,,设,,,,所以的最小值为.故选:B.5.已知直线分别于半径为1的圆O相切于点若点在圆O的内部(不包括边界),则实数的取值范围是( )A. B. C. D.【答案】B6.【河南省南阳市第一中学2019届高三第十四次考试】已知是平面内两个互相垂直的单位向量,若向量满足,则的最大值是()A.1 B.2 C.D.【答案】C【解析】解:以所在直线建立平面直角坐标系,设,,,因为所以,即,故,令(为参数),所以,因为,所以,,故选C.7.【四川省成都市外国语学校2019届高三一诊】如图所示,在中,,点在线段上,设,,,则的最小值为()A.B.C.D.【答案】D【解析】解:.∵,,三点共线,∴.即.由图可知.∴.令,得,令得或(舍).当时,,当时,.∴当时, 取得最小值故选:D.8.【安徽省宣城市 2019 届高三第二次调研】在直角三角形中,边 的中线 上,则的最大值为( ).,,A.B.C.D.【答案】B 【解析】 解:以 A 为坐标原点,以 AB,AC 方向分别为 x 轴,y 轴正方向建立平面直角坐标系, 则 B(2,0),C(0,4),中点 D(1,2)设,所以,,在 斜时,最大值为 .故选:B. 二、填空题 9.在△ABC 中,角 A,B,C 所对的边分别为 a,b,c.若对任意 λ∈R,不等式则 的最大值为_____. 【答案】2【解析】由,两边平方得,,则则,又,则,即,由 ,从而,即,从而问题可得解.恒成立, ,,2110.【2019 年 3 月 2019 届高三第一次全国大联考】已知 的内角 所对的边分别为 ,向量,,且,若 ,则 面积的最大值为________.【答案】 【解析】由 ,得,整理得.由余弦定理得,因为,所以.又所以,,当且仅当 时等号成立,所以,即.故答案为: . 11.【四川省广元市 2019 届高三第二次高考适应】在等腰梯形 ABCD 中,已知,,,,动点 E 和 F 分别在线段 BC 和 DC 上,且,【答案】【解析】解:等腰梯形 ABCD 中,已知,,,,,,,,,则的最小值为______.,22, ,则当且仅当即 时有最小值故答案为:12.【上海市七宝中学 2019 届高三下学期开学】若边长为 6 的等边三角形 ABC,M 是其外接圆上任一点,则的最大值为______.【答案】【解析】解:是等边三角形, 三角形的外接圆半径为 ,以外接圆圆心 为原点建立平面直角坐标系,设,.设,则,..23的最大值是.故答案为.13.【天津市第一中学 2019 届高三下学期第四次月考】在线段 以点 为中点,则的最大值为________【答案】0 【解析】中,已知 为直角,,若长为 的即 14.【安徽省黄山市 2019 届高三第二次检测】已知 是锐角,则 的取值范围为________.【答案】 【解析】 设 是 中点,根据垂径定理可知,依题意的最大值为 0. 的外接圆圆心, 是最大角,若,即,利用正弦定理化简得.由于,所以,即.由于 是锐角三角形的最大角,故,故.15.【北京市大兴区 2019 届高三 4 月一模】已知点,,点 在双曲线的取值范围是_________.的右支上,则24【答案】【解析】设点 P(x,y),(x>1),所以,因为,当 y>0 时,y=,所以,由于函数在[1,+∞)上都是增函数,所以函数在[1,+∞)上是增函数,所以当 y>0 时函数 f(x)的最小值=f(1)=1.即 f(x)≥1.当 y≤0 时,y=,所以,由于函数 所以函数在[1,+∞)上都是增函数, 在[1,+∞)上是减函数,所以当 y≤0 时函数 k(x)>0.综上所述,的取值范围是.16.【上海市青浦区 2019 届高三二模】已知 为的外心,,大值为________【答案】【解析】设的外接圆半径为 1,以外接圆圆心为原点建立坐标系,因为,所以,不妨设,,,则,,,因为,所以,,则 的最25解得,因为 在圆上,所以 即, ,所以,所以,解得或,因为 只能在优弧 上,所以,故26。
【恒心】高考数学(理科)一轮复习突破课件004003-平面向量的数量积
2.平面向量数量积的性质及其坐标表示
设向量 a=(x1,y1),b=(x2,y2),θ 为向量 a,b 的夹角. (1)数量积:a· b=|a||b|cos θ=x1x2+y1y2. 2 (2)模:|a|= a· a= x2 + y 1 1. x1x2+y1y2 a· b (3)夹角:cos θ= = 2 2 2 2. |a||b| x1+y1· x2+y2 (4)两非零向量 a⊥b 的充要条件:a· b=0⇔x1x2+y1y2=0. (5)|a· b|≤|a||b|(当且仅当 a∥b 时等号成立) 2 2 2 2 ⇔|x1x2+y1y2|≤ x1 +y1 · x2 +y2 .
3.平面向量数量积的运算律
(1)a· b=b· a(交换律). (2)λa· b=λ(a· b)=a· (λb)(结合律). (3)(a+b)· c=a· c+b· c(分配律).
1.对平面向量的数量积的认识
(1)两个向量的数量积是一个向量,向量加、减、数乘运算的 结果是向量.( ) (2)(2013· 湖北卷改编)已知点 A(-1,1),B(1,2),C(-2,-1), 3 2 D(3,4),则向量 A→ B 在 C→ D 方向上的投影为- .( ) 2 (3)若 a· b>0,则 a 和 b 的夹角为锐角;若 a· b<0,则 a 和 b 的夹角为钝角.( )
平面向量数量积的运算
考 点
【例 1】 (1)(2014· 威海期末考试)已知 a=(1,2),2a-b=(3,1),则 a· b=( D ).A.2 B.3 C.4 D.5 π (2)(2013· 江西卷)设 e1,e2 为单位向量,且 e1,e2 的夹角为 , 3 5 若 a=e1+3e2,b=2e1,则向量 a 在 b 方向上的射影为________ . 2
高考数学复习专题一三角函数与平面向量第3讲平面向量市赛课公开课一等奖省名师优质课获奖课件
), x-∈[30, π].
∴2 3sinx+π6=0,即 sinx+π6=0, ∵0≤x≤π,∴π6≤x+π6≤76π, ∴x+π6=π,∴x=56π.
123456
解答 50/52
(2)记f(x)=a·b, 求f(x)最大值和最小值以及对应x值.
123456
解答 51/52
17/52
跟踪演练 2 (1)如图,在梯形 ABCD 中,AB∥CD,AB=4,AD=3,CD =2,A→M=2M→D.若A→C·B→M=-3,则A→B·A→D=__32___.
解析 答案 18/52
(2)如图,已知在△ABC 中,AB=AC=4,∠BAC=90°,D 是 BC 的中点, 若向量A→M=14A→B+mA→C,且A→M的终点 M 在△ACD 的内部(不含边界),则 A→M·B→M的取值范围是__(_-__2_,6_)_.
解析 答案 26/52
思维升华 向量和三角函数、解析几何、不等式等知识交汇是高考热点, 处理这 类问题关键是从知识背景出发, 脱去向量外衣, 回归到所要考查知识方 法.
30/52
跟踪演练3 (1)若向量a=(cos α, sin α), b=(cos β, sin β), 且|a+b|≤2a·b,
板块三 专题突破 关键考点
专题一 三角函数与平面向量
第3讲 平面向量
1/52
[考情考向分析]
1.江苏高考对平面向量侧重基本概念与基本计算考查.重点是向 量数量积运算. 2.向量作为工具, 常与三角函数、数列、解析几何等结合, 考查 向量综合利用.解题时要注意解析法和转化思想渗透.
2/52
内容索引
解析 答案 15/52
思维升华 (1)数量积计算通常有三种方法: 数量积定义、坐标运算、数量积几何意 义,尤其要注意向量坐标法利用. (2)求解几何图形中数量积问题,把向量分解转化成已知向量数量积计 算是基本方法,不过假如建立合理平面直角坐标系,把数量积计算转 化成坐标运算,也是一个较为简捷方法.
非常考案通用版2017版高考数学一轮复习第四章平面向量第2节平面向量基本定理及坐标表示课件
3 3 时|b|=2 2;当 m= 时,a=(4,3),b=2, ,a 与 b 同向,不合题意.故选 D. 2 2
【答案】 D
π 2.(2014· 陕西高考)设 0<θ<2,向量 a=(sin 2θ,cos θ),b=(cos θ,1),若 a ∥b,则 tan θ= .
(2)已知梯形 ABCD,其中 AB∥CD,且 DC=2AB,三个顶点 A(1,2),B(2,1), C(4,2),则点 D 的坐标为 .
【解析】 (1)∵a=(1,2),b=(1,0), ∴a+λb=(1,2)+λ(1,0)=(1+λ,2), 由于(a+λb)∥c,且 c=(3,4), 1 ∴4(1+λ)-6=0,解得 λ= . 2
图 421
1 → 1 → 1 → 1 → → 【解析】 由题意可得 B E =2B A +2B O =2B A +4B D , 1 1 3 所以 λ=2,μ=4,所以 λ+μ=4.
3 【答案】 4
研考点| 梯度提升 考向 1 平面向量基本定理 题型:选择、填空题 基础考点 难度:低 命题指数:★★☆
[变式训练] 1.(2015· 安阳模拟)已知平面向量 a=(2m+1,3),b=(2,m),且 a 与 b 反向, 则|b|等于( )
10 2 5 5 A. B. 或 2 2 C. D.2 2 7 2 2 【解析】 因为 a 与 b 反向,所以 a 与 b 共线,所以 m(2m+1)-2×3=0,
1 1 【答案】 (1)D (2)2 -6
[规律总结] 1.应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形 法则进行向量的加、减或数乘运算. 2.用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底 将条件和结论表示成向量的形式,再通过向量的运算来解决.
微专题01 平面向量(原卷版)
微专题01 平面向量秒杀总结结论1 极化恒等式.1.平行四边形平行四边形对角线的平方和等于四边的平方和:2222||||2(||||)a b a b a b ++-=+,,AB a AD b ==证明:不妨设 C A a b DB a b =+=-则,,()22222C 2AC A a b a a b b ==+=+⋅+ (1) ()222222DB DB a ba ab b ==-=-⋅+ (2)(1)(2)两式相加得:()()22222222AC DB a bABAD+=+=+2.极化恒等式:上面两式相减,得:()()2214a b a b ⎡⎤+--⎢⎥⎣⎦————极化恒等式(1)平行四边形模式:2214a b AC DB ⎡⎤⋅=-⎣⎦几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的41。
(2)三角形模式:2214a b AMDB ⋅=-(M 为BD 的中点)结论2 矩形大法:矩形所在平面内任一点到其对角线端点距离的平方和相等。
已知点O 是矩形ABCD 与所在平面内任一点,证明:2222OA OC OB OD +=+。
【证明】(坐标法)设,AB a AD b ==,以AB 所在直线为轴建立平面直角坐标系xoy , 则(,0),(0,),(,)B a D b C a b ,设(,)O x y ,则AB CM222222()[()()]OA OC x y x a y b +=++-+- 222222[()][()]OB OD x a y x y b +=-+++-2222OA OC OB OD ∴+=+结论3 三点共线的充要条件设OA 、OB 、OP 是三个不共线向量,则A 、B 、P 共线⇔存在R λ∈使(1)OP OA OB λλ=-+. 特别地,当P 为线段AB 的中点时,1122OP OA OB =+。
结论4 等和线【基本定理】(一) 平面向量共线定理已知OA OB OC λμ=+,若1λμ+=,则,,A B C 三点共线;反之亦然。
《平面向量》优秀说课稿(通用3篇)
《平面向量》优秀说课稿(通用3篇)作为一位不辞辛劳的人民教师,就不得不需要编写说课稿,通过说课稿可以很好地改正讲课缺点。
那么什么样的说课稿才是好的呢?下面是小编为大家整理的《平面向量》优秀说课稿(通用3篇),希望对大家有所帮助。
《平面向量》说课稿1一、说教材平面向量的数量积是两向量之间的乘法,而平面向量的坐标表示把向量之间的运算转化为数之间的运算。
本节内容是在平面向量的坐标表示以及平面向量的数量积及其运算律的基础上,介绍了平面向量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。
为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。
本节内容也是全章重要内容之一。
二、说学习目标和要求通过本节的学习,要让学生掌握(1):平面向量数量积的坐标表示。
(2):平面两点间的距离公式。
(3):向量垂直的坐标表示的充要条件。
以及它们的一些简单应用,以上三点也是本节课的重点,本节课的难点是向量垂直的坐标表示的充要条件以及它的灵活应用。
三、说教法在教学过程中,我主要采用了以下几种教学方法:(1)启发式教学法因为本节课重点的坐标表示公式的推导相对比较容易,所以这节课我准备让学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论:如模的计算公式,平面两点间的距离公式,向量垂直的坐标表示的充要条件。
(2)讲解式教学法主要是讲清概念,解除学生在概念理解上的疑惑感;例题讲解时,演示解题过程!主要辅助教学的手段(powerpoint)(3)讨论式教学法主要是通过学生之间的相互交流来加深对较难问题的理解,提高学生的自学能力和发现、分析、解决问题以及创新能力。
四、说学法学生是课堂的主体,一切教学活动都要围绕学生展开,借以诱发学生的学习兴趣,增强课堂上和学生的交流,从而达到及时发现问题,解决问题的目的。
通过精讲多练,充分调动学生自主学习的积极性。
如让学生自己动手推导两个向量数量积的坐标公式,引导学生推导4个重要的结论!并在具体的问题中,让学生建立方程的思想,更好的解决问题!五、说教学过程这节课我准备这样进行:首先提出问题:要算出两个非零向量的数量积,我们需要知道哪些量?继续提出问题:假如知道两个非零向量的坐标,是不是可以用这两个向量的坐标来表示这两个向量的数量积呢?引导学生自己推导平面向量数量积的坐标表示公式,在此公式基础上还可以引导学生得到以下几个重要结论:(1)模的计算公式(2)平面两点间的距离公式。
6.1 平面向量的题型特点与命题规律-2017年高考数学(文)热点+题型全突破含解析
平面向量既有数的特征又有形的背景,是体现数形结合的良好素材,高考在这部分命题通常难度不大,属于比较基础的内容,但是这部分内容也容易与其他部分的内容结合起来考查,会大大增加解决问题的难度,所以在备考路上,对这部分的内容亦不可掉以轻心。
【热门考点展示】1.平面向量的线性运算和几何意义2.平面向量的基本定理和坐标运算3.平面向量的数量积4.平面向量的模与夹角5.平面向量的平行与垂直6.平面向量的综合应用五年高考考情分布2012-2016年全国高考平面向量试题分布表(文数)年代考点选择填空20 16课标卷Ⅰ向量的数量积及坐标运算课标卷Ⅱ平面向量的坐标运算,平行向量课标卷平面向量的模与夹角【题型归纳与分析】纵观全国卷五年高考试题,平面向量部分每年必有一道题(选择或填空),重点考查了平面向量的运算及其几何意义,平面向量的模与夹角、平面向量的数量积等,根据五年高考试题命题特点及高考命题趋势,把五年高考试题按照命题特点分三方面进行阐述(练习包括部分地方题):一、重视向量的基本运算以及平行垂直 【例题1】【2014年全国一卷文数(6)】设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+FC EB ( )A 。
ADB 。
AD 21C 。
BC 21D 。
BC【答案】A考点:向量的运算【例题2】【2016年全国一卷文数(13)】设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x = . 【答案】23-【解析】试题分析:由题意,20,2(1)0,.3x x x ⋅=++=∴=-a b【考点】向量的数量积及坐标运算【名师点睛】全国卷中向量大多以客观题的形式出现,属于基础题。
解决此类问题既要准确记忆公式,又要注意运算的准确性.本题所用到的主要公式是:若()()1122,,,x y x y ==a b ,则1122x y x y ⋅=+a b .【练习1】【2016年全国二卷文数(13)】已知向量a=(m,4),b=(3,−2),且a∥b,则m=___________。
平面向量的基本定理及坐标表示重难点解析版
突破6.3 平面向量的基本定理及坐标表示一、学情分析二、学法指导与考点梳理知识点一 平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 知识点二 平面向量的坐标运算运算 坐标表示和(差) 已知a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2) 数乘 已知a =(x 1,y 1),则λa =(λx 1,λy 1),其中λ是实数 任一向量的坐标已知A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1)设a =(x 1,y 1),b =(x 2,y 2),其中b≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.,(1)基底e 1,e 2必须是同一平面内的两个不共线向量,零向量不能作为基底; (2)基底给定,同一向量的分解形式唯一;(3)如果对于一组基底e 1,e 2,有a =λ1e 1+λ2e 2=μ1e 1+μ2e 2,则可以得到⎩⎪⎨⎪⎧λ1=μ1,λ2=μ2.三、重难点题型突破重难点题型突破1 平面向量的实际背景与概念(一) 平面向量的基本定理与坐标表示 知识点1 平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底.例1.(1).(2019·江西高一期末)设12,e e 是平面内的一组基底,则下面四组向量中,能作为基底的是( ) A .21e e -与12e e - B .1223e e +与1246e e -- C .12e e +与12e e - D .121128e e -+与1214e e - 【答案】C 【解析】由12,e e 是平面内的一组基底,所以1e 和2e 不共线,对应选项A :21e e -()12e e =--,所以这2个向量共线,不能作为基底; 对应选项B :1223e e +()121462e e =---,所以这2个向量共线,不能作为基底; 对应选项D :121128e e -+121124e e ⎛⎫=-- ⎪⎝⎭,所以这2个向量共线,不能作为基底;对应选项C :12e e +与12e e -不共线,能作为基底. 故选:C .(2).(2022·内蒙古·阿拉善盟第一中学高一期末)如图,等腰梯形ABCD 中,3AB BC CD AD ===,点E 为线段CD 上靠近D 的三等分点,点F 为线段BC 的中点,则FE =( )A .21318BA BC -+B .21318BA BC +C .41318BA BC +D .21318BA BC -【答案】B 【解析】 【分析】利用平面向量的加法和减法以及平面向量的基本定理求解. 【详解】由题可得:FE FC CE =+ 1232BC CD =+ ()1223BC CB BA AD =+++ 121233BC BC BA BC ⎛⎫=+-++ ⎪⎝⎭21318BA BC =+. 故选:B .【变式训练1-1】、(2021·全国·高一课时练习)若{}12e e ,是平面内的一个基底,则下列四组向量能作为平面向量的基底的是( ) A .12e e -,21e e - B .12e e -,12e e + C .212e e -,212e e -+ D .122e e +,124e 2e +【答案】B 【解析】 【分析】不共线的向量能作为基底,逐一判断选项即可. 【详解】不共线的向量能作为基底,因为()1221e e e e -=--,所以向量12e e -,21e e -共线,故排除A ;假设1212(e e e e λ-=+),解得=1=1λλ⎧⎨-⎩,无解,所以向量12e e -,12e e +不共线,故B 正确;因为()212122e e e e =-+--,所以212e e -,212e e +-共线,故排除C ; 因为()121212422e e e e =++,所以122e e +,1224e e +共线,故排除D , 故选:B【变式训练1-2】、(2022·江西上饶·一模(理))如图,在ABM 中,3BM CM =,27AN AM =,若AN AB AC λμ=+,则λμ+=( )A .17-B .17C .27-D .27【答案】D 【解析】 【分析】由向量的线性运算把AN 用,AB AC 表示出来后可得结论. 【详解】 ()22227777AN AM AB BM AB BM ==+=+ 2232313()7727777AB BC AB BA AC AB AC =+⨯=++=-+, 所以13,77λμ=-=,132777λμ+=-+=,故选:D(二) 平面向量的坐标运算知识点2 平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a±b =(x 1±x 2,y 1±y 2). (2)若A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1). (3)若a =(x ,y ),λ∈R ,则λa =(λx ,λy ). (4)a ·b =x 1x 2+y 1y 2.(5)|a |=x 21+y 21.若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 1-x 2)2+(y 1-y 2)2.例2.(1).(2021·安徽·泾县中学高三阶段练习(文))已知平面向量()()2,3,24,5a a b =--=,则a b =___________.【答案】3 【解析】 【分析】设(),=b x y ,利用()24,5-=a b ,求得b ,再利用数量积公式可得多大啊. 【详解】设(),=b x y ,由已知得224325x y --=⎧⎨-=⎩,解得31x y =-⎧⎨=-⎩,即()3,1b =--,所以()()2,33,1633⋅=-⋅--=-=a b . 故答案为:3.(2).(2022·全国·高一专题练习)已知A (1,2),B (3,-1),C (3,4),则AB AC ⋅等于( ) A .11 B .5 C .-1 D .-2【答案】D 【解析】 【分析】直接利用向量数量积的坐标运算即可解决 【详解】∵()2,3AB =-,()2,2AC = ∴()22322AC AB ⋅=⨯+-⨯=- 故选: D .(3).(2022·山东济南·二模)若平面向量a 与b 同向,(2,1)a =,||25b =,则b =( ) A .(4,2)B .(2,4)C .(6,3)D .(4,2)或(2,4)【答案】A 【解析】 【分析】根据题意,设()0b a λλ→→=>,进而根据||25b →=b →. 【详解】因为,a b →→同向,所以设()0b a λλ→→=>,则22||215252b λλλ→=+==,于是,()4,2b →=. 故选:A.【变式训练2-1】、(2022·全国·高三专题练习)已知向量()()2,6,1,a b λ==-,若//a b ,则a b λ+=______. 【答案】(5,15) 【解析】 【分析】由向量平行得3λ=-,再进行向量的坐标运算即可得答案. 【详解】解:因为()()2,6,1,a b λ==-,//a b , 所以62λ-=,解得3λ=-, 所以()()()2,631,35,15a b λ+=---=. 故答案为:()5,15【变式训练2-2】、(2022·青海西宁·高一期末)设()3,1OM =,()5,1ON =--,则MN =( ). A .()8,2-- B .()8,2C .()8,2-D .()2,2-【答案】A 【解析】 【分析】由向量坐标的减法运算可得答案. 【详解】因为()3,1OM =,()5,1ON =--,所以()()()5,13,18,2=-=---=--MN ON OM . 故选:A.(三) 平面向量的数量积 知识点3.平面向量数量积1.平面向量数量积的有关概念(1)向量的夹角:已知两个非零向量a 和b ,记OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫作向量a 与b 的夹角.(2)数量积的定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫作a 与b 的数量积,记作a ·b ,即a ·b =|a ||b |cos θ.规定:0·a =0.(3)数量积的几何意义:数量积a ·b 等于a 的模|a |与b 在a 的方向上的投影|b |cos θ的乘积. 2.平面向量数量积的性质设a ,b 都是非零向量,e 是与b 方向相同的单位向量,θ是a 与e 的夹角,则 (1)e·a =a·e =|a|cos θ.(2)当a 与b 同向时,a·b =|a||b|;当a 与b 反向时,a·b =-|a||b|. 特别地,a·a =|a|2或|a|=a ·a . (3)cos θ=a·b |a||b|. (4)|a·b|≤|a||b|.3.平面向量数量积的坐标表示设a =(x 1,y 1),b =(x 2,y 2),a ,b 的夹角为θ,则 (1)a ·b =x 1x 2+y 1y 2.(2)|a |=x 21+y 21.若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 1-x 2)2+(y 1-y 2)2. (3)cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. (4)a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.例3.(1).(2022·陕西·高三期末(文))已知向量(1,7a =-,3b =,36a b ⋅=,则a 与b 的夹角为( ) A .6πB .4π C .3π D .23π 【答案】A 【解析】 【分析】先计算向量a 的模,再根据向量数量积的定义,将36a b ⋅=展开,即可求得答案.因为(1,7a =-,所以22||1(7)22a =+-= 又因为36a b ⋅=,设a 与b 的夹角为θ ,[0,]θπ∈ , 所以||||cos 36a b θ=,即23cos 36θ⨯=, 解得3cos θ=,故6πθ= ,故选:A.(2).(2021·重庆一中高三阶段练习)(多选题)已知平面向量()1,2a =,()2,1b =--,则下列命题中正确的有( ) A .a b > B .2a b +=C .a b ⊥D .4cos ,5a b =-【答案】BD 【解析】 【分析】由向量的定义判断A ,由模的坐标表示求出模判断B ,根据垂直的坐标表示判断C ,由数量积求得向量的夹角余弦判断D . 【详解】对于A ,由于向量不能比较大小,故A 错误; 对于B ,∵()1,1a b =-+,∴()22112a b +=-+=B 正确;对于C ,∵()()122140a b ⋅=⨯-+⨯-=-≠,∴a b ⊥不成立,故C 错误; 对于D ,∵(12214cos ,555a b a b a b⨯-+⨯-⋅===-⨯,故D 正确.故选:BD .【变式训练3-1】.(2021·河北·武安市第一中学高一阶段练习)(多选题)向量(cos ,sin )a θθ=,(3,1)b =,则2a b -的值可以是( ) A .2 B .22C .4D .2【答案】ABC 【解析】 【分析】利用公式表达出2a b -,利用三角函数恒等变换,求出2a b -的范围,进而求出结果.())()22cos ,2sin 3,12cos 3,2sin 1a b θθθθ-=-=-,所以()()22π22cos 32sin 1843cos 4sin 88sin 3a b θθθθθ⎛⎫-=-+----+ ⎪⎝⎭因为[]πsin 1,13θ⎛⎫+∈- ⎪⎝⎭,所以[]π88sin 0,163θ⎛⎫-+∈ ⎪⎝⎭,[]20,4a b -∈,显然ABC 均满足题意.故选:ABC【变式训练3-2】.(2022·山东济南·高三期末)(多选题)已知平面向量()1,0a =,()1,23b =,则下列说法正确的是( ) A .16a b +=B .()2a b a +⋅=C .向量a b +与a 的夹角为30°D .向量a b +在a 上的投影向量为2a【答案】BD 【解析】 【分析】根据向量坐标得线性运算和模的坐标表示即可判断A ; 根据向量数量积的坐标表示即可判断B ; 根据()cos ,a b a a b aa b a+⋅+=+即可判断C ; 根据投影向量的定义即可判断D. 【详解】解:(2,23a b +=,则4124a b +=+,故A 错误;()2a b a +⋅=,故B 正确;()1cos ,2a b a a b aa b a+⋅+==+,又0,180a b a ︒≤+≤︒,所以向量a b +与a 的夹角为60°,故C 错误;向量a b +在a 上的投影向量为()2a b a a a a+⋅=,故D 正确. 故选:BD.(四) 平面向量的应用(平行与垂直)知识点1 平面向量的平行与垂直若a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a±b =(x 1±x 2,y 1±y 2).(1)如果a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件为x 1y 2-x 2y 1=0.a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0.判断三点是否共线,先求每两点对应的向量,然后再按两向量共线进行判定.(2)如果a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.x 1y 2-x 2y 1=0与x 1x 2+y 1y 2=0不同,前者是两向量a =(x 1,y 1),b =(x 2,y 2)共线的充要条件,后者是它们垂直的充要条件.例4.(1)、(2021·安徽·六安一中高三阶段练习(文))已知()1,2a m =+-,()2,3b m =+,若a b ⊥,则m =______. 【答案】1或4- 【解析】 【分析】根据向量垂直得到等量关系,求出结果. 【详解】由题意得:()()1260m m ++-=,解得:1m =或4-,经检验,均符合要求. 故答案为:1或4-(2)、(2022·陕西宝鸡·一模(理))已知平面向量()1,a m =-,()2,3b m =-,若a b ∥,则m =___________. 【答案】3- 【解析】 【分析】由a b ∥,列方程求解即可 【详解】因为平面向量()1,a m =-,()2,3b m =-,且a b ∥, 所以23m m =-,得3m =-, 故答案为:3-(3)、(2022·辽宁·高一期末)已知向量()1,a m =-,()2,4b =,若a 与b 共线,则m =( ) A .1-B .1C .2-D .2【答案】C 【解析】 【分析】根据平面向量共线坐标表示可得答案. 【详解】由题意得24m =-,即2m =-. 故选:C【变式训练4-1】、(2022·广东湛江·高二期末)已知向量()2,3a =-,()1,2b =-,且()a kb a +⊥,则k =___________.【答案】138【解析】 【分析】求出向量a kb +的坐标,利用平面向量垂直的坐标表示可得出关于实数k 的等式,即可解得k 的值. 【详解】由题意可得()2,32a kb k k +=--+,因为()a kb a +⊥,所以()()()223320a kb a k k +=---+=⋅,即1380k -=,解得138k =. 故答案为:138. 【变式训练4-2】.(2022·全国·高三专题练习)已知向量()12a =,,()22b =-,,()1c λ=,.若()//2c a b +,则λ=________. 【答案】12 【解析】 【分析】由两向量共线的坐标关系计算即可. 【详解】由题可得()24,2a b +=, ()//2c a b +,又()1,c λ=, 4λ20∴-=,1λ2∴=.故答案为:12.【变式训练4-3】.(2022·辽宁葫芦岛·高一期末)已知向量()1,1a =,()2,1b =-,若()a b λ+∥()2a b -,则实数λ=( ) A .12B .12-C .2D .-2【答案】B 【解析】 【分析】由平面向量线性运算的坐标表示出a b λ+,2a b -,再由平面向量共线的坐标表示即可得解. 【详解】由已知得()2,1a b =++-λλλ,()23,3a b -=-, 又因为()a b λ+∥()2a b -,所以有()()3231+=--λλ,解得12λ=-.故选:B例5.(2022·重庆八中高一期末)已知3a =,4b =. (1)若a 与b 的夹角为60︒,求()2a b a +⋅;(2)若a 与b 不共线,当k 为何值时,向量a kb +与a kb -互相垂直? 【答案】(1)21 (2)34k =±【解析】 【分析】(1)结合向量数量积运算与运算律计算求解即可; (2)根据()()0a kb a kb +-=解方程即可得答案. (1)解: ()21229234212a b a a b a +⋅=+⋅=+⨯⨯⨯= (2)解:∵向量a kb +与a kb -互相垂直,∴()()0a kb a kb +-=,整理得2220a k b -=,又3a =,4b =,∴29160k -=,解得34k =±.∴当34k =±时,向量a kb +与a kb -互相垂直.【变式训练5-1】.(2022·全国·高三专题练习)已知向量(cos ,sin ),(3,3),[0,π].a x x b x ==-∈ (1)若a b ⊥,求x 的值;(2)记()f x a b =⋅,解不等式()3f x ≥【答案】(1)3π(2)[0,]6π 【解析】 【分析】(1)根据向量垂直的坐标运算,数量积为零得到关于x 的方程,即可得答案. (2)先根据数量积的坐标运算得到()f x a b =⋅的表达式,确定π31cos()62x -+,再解不等式,结合6x π+的范围,求得结果. (1)因为(cos ,sin )a x x =,(3,3b =-,a b ⊥, 所以3cos 30x x =, 所以tan 3x =因为[0,]x π∈,所以3x π=.(2)()(π()cos ,sin 3,33cos 323)6f x a b x x x x x =⋅=⋅-==+.因为[]0,πx ∈,所以ππ7π[,]666x +∈,从而π31cos()62x -+. 由()3f x ≥1cos()62x π+≥,所以1π3cos()262x +,所以663x πππ≤+≤,即06x π≤≤,故不等式()3f x ≥[0,]6π.四、课堂定时训练(45分钟)1.(2021·全国·高一课时练习)设12e e ,是不共线的两个向量,则下列四组向量不能构成基底的是( ) A .1e 与12e e + B .12e 2e -与21e 2e - C .12e 2e -与214e 2e - D .12e e +与12e e -【答案】C 【解析】 【分析】在同一平面内,只要两个向量不共线,就可以作为这个平面的一组基底,逐项判断即可. 【详解】对于A 选项:设121e e e =λ+,12e e ,是不共线的两个向量,1=1=0λ⎧∴⎨⎩,无解,1e ∴与12e e +不共线,1e ∴与12e e +可以构成一组基底;对于B 选项:设()1221=e 2e 2e e λ--,12e e ,是不共线的两个向量,1=22=λλ-⎧∴⎨-⎩,无解,12e 2e ∴-与21e 2e -不共线,12e 2e ∴-与21e 2e -可以构成一组基底;对于C 选项:设()1221=e 24e 2e e λ--,12e e ,是不共线的两个向量,1=21=2=42λλλ-⎧∴∴-⎨-⎩,,()21212e 2e 1=4e 2e ∴---,12e 2e ∴-与214e 2e -共线,12e 2e ∴-与214e 2e -不能构成一组基底; 对于D 选项:设()1212=e e e e λ-+,12e e ,是不共线的两个向量,1=1=λλ⎧∴⎨-⎩,无解, 12e e +∴与12e e -不共线,12e e +∴与12e e -可以构成一组基底; 故选:C2.(2022·全国·高一专题练习)已知向量(1,)a m =,(,2)b m =,若//a b ,则实数m 等于( ) A 2B 2C 22D .0【答案】C 【解析】 【分析】应用向量平行的坐标表示列方程求参数值即可. 【详解】由//a b 知:1×2-m 2=0,即2m 2-故选:C.3.(2022·江西·高三期末(文))已知平面向量()1,3a =,()2,1b =-,若()a ab λ⊥+,则实数λ的值为( ) A .10 B .8C .5D .3【答案】A 【解析】 【分析】由()a ab λ⊥+,得()0a a b λ⋅+=,将坐标代入化简计算可得答案 【详解】因为()1,3a =,()2,1b =-, 所以()12,3a b λλλ+=+-. 因为()a ab λ⊥+,所以()12330λλ++-=,解得10λ=. 故选:A.4.(2021·辽宁·沈阳二中高三阶段练习)(多选题)已知平面向量()1,2a =,()2,1b =-,()2,c t =,下列说法正确的是( ) A .若()a b +//c ,则6t = B .若()a b +⊥c ,则23t =C .若1t =,则4cos ,5a c <>=D .若向量a 与向量c 夹角为锐角,则1t >- 【答案】BC 【解析】 【分析】若()()1122,,,a x y b x y ==,根据a ∥b 时1221x y x y =判断A 选项是否正确;根据a b ⊥时12120x x y y +=判断B 选项是否正确;根据121222221122cos ,x a b a b a bx y x y <>==++判断C 选项是否正确;根据向量a 与向量c 夹角为锐角时0a c >,且向量a 与向量c 不平行,判断C 选项是否正确. 【详解】()1,2a =,()2,1b =-,()=1,3a b ∴+-,()2,c t ==22a c t ∴+若()a b +//c ,()2,c t =123t ∴-⨯=⨯6t ∴=-,故A 不正确;若()a b +⊥c ,()2,c t =123=0t ∴-⨯+⨯23t ∴=,故B 正确; 若1t =,则()2,1c =,=22=4a c t +,=5a ,5c =44cos ,555a c a c a c∴<>==⨯,故C 正确; 若向量a 与向量c 夹角为锐角, 则0a c >()1,2a =(),2,c t ==1220a c t ∴⨯+⨯>1t∴>-若向量a 与向量c 平行,则1=22t ⨯⨯,=4t ,故向量a 与向量c 夹角为锐角时1t >-且4t ≠.故D 不正确; 故选:BC5.(2021·广东·仲元中学高一期末)(多选题)已知向量()2,1a =,()3,1b =-,则( ) A .a 与a b -25B .()//a b a +C .向量a 在向量b 10D .若525,5c ⎛= ⎝⎭,则a c ⊥【答案】ACD 【解析】 【分析】对于A :由已知得()50a b -=,,根据向量夹角的计算公式计算可判断; 对于B :由已知得()+a b a ⊥,由此可判断;对于C :由已知得向量a 在向量b 上的投影,从而可判断; 对于D :由5252+105a c ⎛⋅=⨯⨯= ⎝⎭,可判断. 【详解】解:对于A :因为向量()2,1a =,()3,1b =-,所以()50a b -=,,所以a 与a b -的夹角余弦值为2225215+⨯,故A 正确; 对于B :因为()+12a b =-,,所以()+12+120a b a ⋅=-⨯⨯=,所以()+a b a ⊥,故B 不正确; 对于C :向量a 在向量b 上的投影为(()2223+11101031a b b⨯-⨯===-+⋅,所以向量a 在向量b 上的投影向量10C 正确;对于D :因为525,55c ⎛⎫=- ⎪ ⎪⎝⎭,所以5252+1055a c ⎛⎫⋅=⨯⨯-= ⎪ ⎪⎝⎭,所以a c ⊥,故D 正确, 故选:ACD.6.(2022·安徽亳州·高三期末(理))如图,在平面四边形ACDE 中,点B 在边AC 上,ABE △是等腰直角三角形,四边形BCDE 是边长为1的正方形,则AD CE ⋅=___________.【答案】-1 【解析】 【分析】以B 为原点,BC BE 、分别为x 、y 轴正方向建立直角坐标系,用坐标法求解. 【详解】如图示,以B 为原点,BC BE 、分别为x 、y 轴正方向建立直角坐标系.则()1,0A -、()1,0C 、()1,1D 、()0,1E ,所以()21AD =,,()11CE =-,, 所以211AD CE ⋅=-+=-. 故答案为:-17.(2021·江西·赣州市赣县第三中学高三期中(文))已知向量()2,1a =-,10a b ⋅=,52a b +=,则b =___________.【答案】5 【解析】 【分析】由已知,利用向量数量积的运算律有22250a b a b ++⋅=,结合向量模的坐标计算求||a ,进而求b . 【详解】∵52a b +=,则250a b +=,即22250a b a b ++⋅=, ∴252050b ++=,可得5b =. 故答案为:58.(2022·全国·高三专题练习)已知平面向量(),0,0αβαβ≠≠,β与αβ-的夹角为23π,且()0t t t αββ-=>,则t 的最小值是____________.【答案】233- 【解析】 【分析】作半径为2的圆O ,圆O 上取三点,,A B C ,(3,1)C --,(3,1)B -,A 在,B C 两点的优弧上,3BAC π∠=,这样CB α=,CA β=,满足β与αβ-的夹角为23π,然后把模式平方求得t ,可得最小值. 【详解】如图,设圆O 半径为2,,,A B C 在圆O ,设(3,1)C --,(3,1)B -,3BAC π∠=,CB α=,CA β=,设(2cos ,2sin )A θθ,7(,)66ππθ∈-,(23,0)α=,(2cos 3,2sin 1)βθθ=++,由t t αββ-=得222()t t αββ-=,因为0t >,所以21233233243(2cos 3)2cos 323t ααβθθ===≥=-⋅+++,cos 1θ=时等号成立.故答案为:233-.【点睛】本题考查由模求平面向量的数量积,解题关键是用图形表示出向量α,β,确定点,,A B C 的关系,引入坐标后用坐标表示向量的数量积,从而得出最值.。
福建省2017届高三数学理一轮复习专题突破训练:平面向量 含答案
福建省2017届高三数学理一轮复习专题突破训练平面向量一、选择题1、(2016年全国II 卷)已知向量(1,)(3,2)a m b =-,=,且()a b b +⊥,则m = (A )8- (B )6- (C)6 (D )82、(2016年全国III 卷)已知向量13(,)22BA = ,31(,),22BC = 则∠ABC=(A )300 (B) 450 (C) 600 (D)12003、(2015年全国I 卷)设D 为ABC 所在平面内一点3BC CD =,则( ) (A )1433AD AB AC =-+ (B)1433AD AB AC =-(C )4133AD AB AC =+ (D )4133AD AB AC =-4、(福建省2016届高三4月质检)在ABC ∆中,3A π=,2AB =,3AC =,2CM MB =,则AM BC ⋅=(A )113- (B)43- (C)43 (D )1135、(福州市2016届高三5月综合质量检测)在ABC ∆中,5AB AC ⋅=,4BA BC ⋅=,则AB = (A )9 (B )3 (C )2 (D )16、(龙岩市2016届高三3月质量检查)若,,A B C 为圆:O 221x y +=上的三点,且1AB =,C 2B =,则BO AC = A . 0B .12C .3D .327、(莆田市2016高中毕业班3月质量检测)在ABC中,1267,cos ,sin 57BC AC .若动点P 满足(1)()2AP AB AC R λλλ+-∈=,则点P 的轨迹与直线,AB AC 所围成的封闭区域的面积为A .B .C .D .8、(泉州市2016届高三第二次(5月)质量检查)已知AB 是圆221xy +=的一条直径, 点P 在圆()()22431x y -+-=上,则PA PB 的最小值为( )A .15B .17C .24D .359、(泉州五校2016届高三12月联考)若点M 是ABC ∆所在平面内一点,且满足AM =34AB +14AC ,则ABM ∆与ABC ∆的面积之比等于( )A .34B .12C .13D .1410、(厦门市2016届高三第二次(5月)质量检查)在ABC ∆中,11,33AP AB BQ BC ==,记,,AB a AC b PQ ===则A .b a 3131+ B 。
2017年高考数学(理科)-平面向量-专题练习-答案
山东省2017年高考数学(理科)专题练习平面向量 答 案【真题回访】回访一 平面向量的线性运算 1.A 2.12回访二 平面向量的数量积 3.D 4.16热点题型1 平面向量的运算 【例1】 (1)B (2)B【变式训练一】 (1)32(2)-2热点题型2 三角与向量的综合问题 【例2】 (1)85(2)122⎤-⎢⎥⎣⎦【变式训练二】 (1)6π(2)6x π=,()g x 的最大值为32. 专题限时集训(三) 平面向量 【A 组 高考达标】一、选择题 1.B 2.A 3.D 4.C 5.C 二、填空题 6.65 7.712 8.16三、解答题9.(1)∵23m n ==,()1,2AB =u u u r ,()2,1AC =u u u r ,∴()()()221,22,12,233OP =+=u u u r ,∴OP ==u u u r(2)∵()()()1,22,12,2OP m n m n m n =+=++u u u r,∴2,2,x m n y m n =+⎧⎨=+⎩两式相减,得m n y x -=-.令y x t -=,由图知,当直线y x t =+ 过点()2,3B 时,t 取得最大值1,故m n -的最大值为1.10.(1)由2BA BC =u u u r u u u rg 得cacosB 2=. 因为1cosB 3=,所以6ac =. 余弦定理,得2222accosB a c b +=+. 又3b =,所以2292213a c +⨯=+=. 解226,13,ac a c =⎧⎨+=⎩得2a =,=3c 或3a =,2c =.因为ac >,所以3a =,2c =.(2)在ABC △中,sinB 3===,由正弦定理,得2sin C sin B 339c b ==⨯=. 因为a b c =>,所以C为锐角,因此7cos C 9===.于是1723cos cosBcosC sinBs ()inC 393927B C -+=⨯+⨯==. 【B 组 名校冲刺】 一、选择题 1.B 2.A 3.B 4.A 二、填空题 5.2 6.-3 三、解答题7.(1)因为向量22sin ,03a x πω⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭,()()2cos ,30b x ωω=>,所以函数())2214sin cos 4sin cos cos cos 3222sin cos 1cos 2sin 2x 2cos 26a b x x x x x x x x x x f x πωωωωωωπωωωωω⎛⎛⎫⎛⎫==+=-+=- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎛⎫=+-=+ ⎪⎝⎭g g g 由题意可知f (x )的最小正周期为πT =, 所以2π=π2ω,即1ω=. (2)已知()2co =s 26f x x π⎛⎫+ ⎪⎝⎭[]0,2x π∈时,2,4666x ππππ⎡⎤+∈+⎢⎥⎣⎦, 故[π2π6],2πx +∈或[π23π],4π6x +∈时,函数()f x 单调递增, 所以函数f (x )的单调递增区间为5π11π,1212⎡⎤⎢⎥⎣⎦和17π23π,1212⎡⎤⎢⎥⎣⎦.8.设BC u u u r ,CA u u u r ,AB u u u r依次为a ,b ,c ,则6a b c ++=,2b ac =.在ABC △中,22222212cosB 222a c b a c ac ac a ac ac c ac +-+-==-≥=,故有03B π≤<,又622a c bb +-≤==,从而02b <≤.(1)22111πsin sin 2sin 2223S ac B b B ==≤=g g 当且仅当a c =,且π3B =,即ABC△为等边三角形时面积最大,即max S .(2)()()()22222222263cos 327.222a c acb b b ac b BA BC ac B b +----+-=====-++u u u r u u u r g ∵02b <≤,∴821BA <≤u u u rg , 即BA BC u u u r u u u rg 的取值范围是[)2,18.山东省2017年高考数学(理科)专题练习平面向量 解 析【真题回访】回访一 平面向量的线性运算1.A [∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →), 即4AC →-AB →=3 AD →,∴AD →=-13AB →+43AC →.]2.12[∵λa +b 与a +2b 平行,∴λa +b =t (a +2b ), 即λa +b =ta +2tb ,∴⎩⎪⎨⎪⎧λ=t ,1=2t ,解得⎩⎨⎧λ=12,t =12.]回访二 平面向量的数量积3.D[由已知条件得BD →·CD →=BD →·BA →=3a ·a cos 30°=32a 2,故选D.]4.16[已知A =π6,由题意得|AB →||AC →|cos π6=tan π6,|AB →||AC →|=23,所以△ABC 的面积S =12|AB →||AC →|sin π6=12×23×12=16.] 热点题型1 平面向量的运算 【例1】(1)B [(1)法一:建立平面直角坐标系如图所示,设正方形的边长为2,则A (0,0),B (2,0),C (2,2),M (2,1),D (0,2),所以AC →=(2,2),AM →=(2,1),BD →=(-2,2).由AC →=λAM →+μBD →,得(2,2)=λ(2,1)+μ(-2,2),即(2,2)=(2λ-2μ,λ+2μ),所以⎩⎪⎨⎪⎧2λ-2μ=2,λ+2μ=2,解得⎩⎨⎧λ=43,μ=13,所以λ+μ=53,故选B.法二:因为AC →=λAM →+μBD →=λ(AB →+BM → )+μ(BA →+AD → )=λ⎝⎛⎭⎪⎫AB →+12AD →+μ(-AB →+AD → )=(λ-μ)AB →+⎝⎛⎭⎫12λ+μAD →,所以⎩⎪⎨⎪⎧λ-μ=1,12λ+μ=1,得⎩⎨⎧λ=43,μ=13,所以λ+μ=53,故选B. ](2)B [如图所示,AF →=AD →+DF →.又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以AD →=12AB →,DF →=12AC →+14AC →=34AC →,所以AF →=12AB →+34AC →.又BC →=AC →-AB →,则AF →·BC →=⎝ ⎛⎭⎪⎫12AB →+34AC →·(AC →-AB →)=12AB →·AC →-12AB →2+34AC →2-34AC →·AB →=34AC →2-12AB →2-14AC →·AB →. 又|AB →|=|AC →|=1,∠BAC =60°, 故AF →·BC →=34-12-14×1×1×12=18.故选B.]【变式训练一】(1)32 [如图所示,可知OA ⊥AP ,OB ⊥BP ,OP =1+3=2,又OA =OB =1,可以求得AP =BP = 3.∠APB =60°,故P A →·PB →=3×3×cos 60°=32.](2)-2 [∵a ∥b ,∴a =λb ,即me 1+2e 2=λ(ne 1-e 2),则⎩⎪⎨⎪⎧λn =m ,-λ=2,解得mn =-2.]热点题型2 三角与向量的综合问题 【例2】[解] (1)∵a ∥b ,∴34cos x +sin x =0,∴tan x =-34,4分∴cos 2x -sin 2x =cos 2x -2sin x cos x sin 2x +cos 2x =1-2tan x 1+tan 2x =85.(2)f (x )=2(a +b )·b =2sin ⎝⎛⎭⎫2x +π4+32, 由正弦定理得a sin A =bsin B ,可得sin A =22.9分 ∵b >a , ∴A =π4,10分y =f (x )+4cos ⎝⎛⎭⎫2A +π6=2sin ⎝⎛⎭⎫2x +π4-12.11分 ∵x ∈⎣⎡⎦⎤0,π3, ∴2x +π4∈⎣⎡⎦⎤π4,11π12, ∴32-1≤y ≤2-12, 即y 的取值范围是⎣⎡⎦⎤32-1,2-12.12分【变式训练一】[解] (1)|a |2=(sin x )2+(3sin x )2=4sin 2x ,|b |2=(sin x )2+(cos x )2=1. 由|a |=|b |,得4sin 2x =1,2分 又x ∈⎣⎡⎦⎤0,π2,从而sin x =12,3分 所以x =π6,.4分(2)f (x )=a·b =sin 2x +3sin x ·cos x 5分 =32sin2x +12-12cos 2x 7分 =sin ⎝⎛⎭⎫2x -π6+12.8分 将f (x )图象向左平移π6个单位得到函数g (x )=sin ⎝⎛⎭⎫2x +π6+12.10分 因为x ∈⎣⎡⎦⎤0,π2,所以2x +π6∈⎣⎡⎦⎤π6,7π6, 从而当2x +π6=π2即x =π6时,sin ⎝⎛⎭⎫2x +π6取最大值1,11分 所以x =π6时,g (x )的最大值为32.12分专题限时集训(三) 平面向量 【A 组 高考达标】 一、选择题1.B [因为AB →=-2CD →,所以AB →=2DC →.又M 是BC 的中点,所以AM →=12(AB →+AC →)=12(AB →+AD →+DC →)=12(AB →+AD →+12AB →)=34AB →+12AD →,故选B.]2.A [由题意可得OB →的横坐标x =2cos(60°+45°)=2⎝⎛⎭⎫24-64=1-32,纵坐标y =2sin(60°+45°)=2⎝⎛⎭⎫64+24=1+32,则OB →=⎝ ⎛⎭⎪⎫1-32,1+32,故选A.] 3.D [∵向量a =(3,1),b =(x ,-3),且a ⊥b ,∴3x -3=0,∴x =3, ∴b =(3,-3),a -b =(0,4),设向量b 与a -b 的夹角为θ, 则cos θ=b ·(a -b )|b |·|(a -b )|=-1223×4=-32,∴θ=150°.]4.C [∵M 是BC 边的中点, ∴AM →=12(AB →+AC →).∵O 是△ABC 的外接圆的圆心,∴AO →·AB →=|AB →||AO →|cos ∠BAO =12|AB →|2=12×(23)2=6.同理可得AO →·AC →=12|AC →|2=12×(22)2=4,∴AM →·AO →=12(AB →+AC →)·AO →=12AB →·AO →+12AC →·AO →=12×(6+4)=5.] 5.C [由AO →=12(AB →+AC →)可知O 是BC 的中点,即BC 为外接圆的直径,所以|OA →|=|OB →|=|OC →|.又因为|AO →|=|AC →|=1,故△OAC 为等边三角形,即∠AOC =60°,由圆周角定理可知∠ABC =30°,且|AB →|=3,所以BA →在BC →方向上的投影为|BA →|·cos ∠ABC =3×cos 30°=32,故选C.] 二、填空题6.65 [设e 1,e 2为水平方向(向右)与竖直方向(向上)的单位向量,则向量c =e 1-2e 2,a =2e 1+e 2,b =-2e 1-2e 2,由c 与xa +yb 共线,得c =λ(x a +y b ),∴e 1-2e 2=2λ(x -y )e 1+λ(x -2y )e 2,∴⎩⎪⎨⎪⎧λ(2x -2y )=1,λ(x -2y )=-2,∴⎩⎨⎧x =3λ,y =52λ,则x y 的值为65.] 7.712 [∵AP →⊥BC →,∴AP →·BC →=0, ∴(λAB →+AC →)·BC →=0,即(λAB →+AC →)·(AC →-AB →)=λAB →·AC →-λAB →2+AC →2-AC →·AB →=0. ∵向量AB →与AC →的夹角为120°,|AB →|=3,|AC →|=2, ∴(λ-1)×3×2×cos 120°-9λ+4=0,解得λ=712.]8.-16 [∵△ABC 是正三角形,O 是其中心,其边长AB =BC =AC =1,∴AO 是∠BAC 的平分线,且AO =33,∴OB → ·OC →=(AB →-AO → )·(AC →-AO → )=AB → ·AC →-AO → ·AC →-AO → ·AB →+AO →2=1×1×cos 60°-33×1×cos 30°-33×1×cos 30°+⎝⎛⎭⎫332=-16.] 三、解答题9.[解] (1)∵m =n =23,AB →=(1,2),AC →=(2,1),∴OP →=23(1,2)+23(2,1)=(2,2),∴|OP →|=22+22=2 2.4分(2)∵OP →=m (1,2)+n (2,1)=(m +2n,2m +n ),∴⎩⎪⎨⎪⎧x =m +2n ,y =2m +n ,两式相减,得m -n =y -x . 令y -x =t ,由图知,当直线y =x +t 过点B (2,3)时,t 取得最大值1,故m -n 的最大值为1.10.[解] (1)由BA →·BC →=2得ca cos B =2.1分 因为cos B =13,所以ac =6.2分由余弦定理,得a 2+c 2=b 2+2ac cos B . 又b =3,所以a 2+c 2=9+2×2=13.解⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得a =2,c =3或a =3,c =2.4分 因为a >c ,所以a =3,c =2.6分 (2)在△ABC 中,sin B =1-cos 2 B =1-⎝⎛⎭⎫132=223,7分由正弦定理,得sin C =c b sin B =23×223=429.8分因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2 C =1-⎝⎛⎭⎫4292=79.10分 于是cos(B -C )=cos B cos C +sin B sin C =13×79+223×429=2327.12分【B 组 名校冲刺】 一、选择题1.B [由题意可得OD →=k OC →=kλOA →+kμOB →(0<k <1),又A ,D ,B 三点共线可得kλ+kμ=1,则λ+μ=1k >1,即λ+μ的取值范围是(1,+∞),故选B.]2.A [因为(a +b )⊥⎝⎛⎭⎫a -52b ,所以a 2-52b 2-32a·b =0. 又因为|a |=2,|b |=1,所以a 2=4,b 2=1,所以4-52-32a ·b =0,所以a·b =1.所以a·b =|a |·|b |cos〈a ,b 〉=1,所以cos 〈a ,b 〉=12.又a 与b 的夹角范围为[0,π],所以a 与b 的夹角为π3.]3. B [∵BF →=2FO →,圆O 的半径为1,∴|FO →|=13, ∴FD →·FE →=(FO →+OD →)·(FO →+OE →)=FO →2+FO →·(OE →+OD →)+OD →·OE →=⎝⎛⎭⎫132+0-1=-89.] 4.A [因为点P 在y =cos x 的图象上运动,所以设点P 的坐标为(x 0,cos x 0),设Q 点的坐标为(x ,y ),则OQ →=m ⊗OP →+n ⇒(x ,y )=⎝⎛⎭⎫12,4⊗(x 0,cos x 0)+⎝⎛⎭⎫π6,0⇒(x ,y )=⎝⎛⎭⎫12x 0+π6,4cos x 0⇒⎩⎪⎨⎪⎧ x =12x 0+π6,y =4cos x 0,即⎩⎪⎨⎪⎧x 0=2⎝⎛⎭⎫x -π6,y =4cos x 0⇒y =4cos ⎝⎛⎭⎫2x -π3, 即f (x )=4cos ⎝⎛⎭⎫2x -π3, 当x ∈⎣⎡⎦⎤π6,π3时,由π6≤x ≤π3⇒π3≤2x ≤2π3⇒0≤2x -π3≤π3, 所以12≤cos ⎝⎛⎭⎫2x -π3≤1⇒2≤4cos ⎝⎛⎭⎫2x -π3≤4, 所以函数y =f (x )在区间⎣⎡⎦⎤π6,π3上的最大值是4,故选A.]二、填空题5.2 [由题意得|a |=12+(3)2=2,则|a -2b |2=|a |2-4|a||b|cos 〈a ,b 〉+4|b |2=22-4×2cos π3|b |+4|b |2=12,解得|b |=2(负舍).]6.-3 [由⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0得BC →与∠A 的角平分线所在的向量垂直,所以AB =AC ,BC →⊥AD →.又|AB →-AC →|=23,所以|CB →|=23,所以|BD →|=3,AB →·BD →=-BA →·BD →=-|BD →|2=-3.]三、解答题 7.[解] (1)因为向量a =⎝⎛⎭⎫2sin ⎝⎛⎭⎫ωx +2π3,0,b =(2cos ωx,3)(ω>0),所以函数f (x )=a·b =4sin ⎝⎛⎭⎫ωx +2π3cos ωx =4⎝⎛⎭⎫sin ωx ·⎝⎛⎭⎫-12+cos ωx ·32cos ωx =23·cos 2ωx -2sin ωx cos ωx =3(1+cos 2ωx )-sin 2ωx =2cos ⎝⎛⎭⎫2ωx +π6+3, 由题意可知f (x )的最小正周期为T =π,所以2π2ω=π,即ω=1. (2)已知f (x )=2cos ⎝⎛⎭⎫2x +π6+3,当x ∈[0,2π]时,2x +π6∈⎣⎡⎦⎤π6,4π+π6,故2x +π6∈[π,2π]或2x +π6∈[3π,4π]时,函数f (x )单调递增, 所以函数f (x )的单调递增区间为⎣⎡⎦⎤5π12,11π12和⎣⎡⎦⎤17π12,23π12.8.[解] 设|BC →|,|CA →|,|AB →|依次为a ,b ,c ,则a +b +c =6,b 2=ac .在△ABC 中,cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,故有0<B ≤π3, 又b =ac ≤a +c 2=6-b 2,从而0<b ≤2. (1)S =12ac sin B =12b 2sin B ≤12·22·sin π3=3,当且仅当a =c ,且B =π3,即△ABC 为等边三角形时面积最大,即S max = 3.(2)BA →·BC →=ac cos B =a 2+c 2-b 22=(a +c )2-2ac -b 22=(6-b )2-3b 22=-(b +3)2+27. ∵0<b ≤2,∴2≤BA →·BC →<18,即BA →·BC →的取值范围是[2,18).。
平面向量的概念及线性运算(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(学生版)
考向17 平面向量的概念及线性运算1.(2022新高考1卷第3题)在ABC △中,点D 在边AB 上,2BD DA =.记CA m =,CD n =,则CB =A .32m n -B .23m n -+C .32m n +D .23m n + 【答案】B【解析】因为3CB CA AB CA AD =+=+,又因为AD CD CA =-,所以23CB CA CD =-+,即23CB m n =-+.故选B .2.(2018•新课标Ⅰ,理6文第7题)在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则(EB = )A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 【答案】A【解析】在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,∴12EB AB AE AB AD =-=-11()22AB AB AC =-⨯+3144AB AC =-,故选A .3.(2020江苏第13题)在ABC ∆中,4AB =,3AC =,90BAC ∠=︒,D 在边BC 上,延长AD 到P ,使得9AP =,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是 .【答案】185【解析】由向量系数33()22m m +-=为常数,结合等和线性质可知321PAPD =,故263PD PA ==,3AD PA PD AC =-==,故C CDA ∠=∠,故2CAD C π∠=-. 在ABC ∆中,3cos 5AC C BC ==;在ADC ∆中,由正弦定理得sin sin CD ADCAD C=∠,即sin(2)sin 23182cos 23sin sin 55C C CD AD AD C AD C C π-=⋅=⋅=⋅=⨯⨯=.1.平面向量有关概念的四个关注点(1)相等向量具有传递性,非零向量的平行也具有传递性. (2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量,解题时,不要把它与函数图象的移动混淆. (4)非零向量a 与a |a |的关系:a|a |是与a 同方向的单位向量.2.向量线性运算的解题策略(1)向量的加减常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连的向量的和用三角形法则.(2)找出图形中的相等向量、共线向量,将所求向量与已知向量转化到同一个平行四边形或三角形中求解.3.共线向量定理的应用(1)证明向量共线∶对于向量a ,b ,若存在实数λ,使a =λb (b ≠0),则a 与b 共线 (2)证明三点共线若存在实数λ,使AB AC λ=,则A ,B ,C 三点共线(3)求参数的值∶利用共线向量定理及向量相等的条件列方程(组)求参数的值1.三点共线的等价转化:A ,P ,B 三点共线⇔AP →=λAB →(λ≠0)⇔OP →=(1-t )·OA →+tOB →(O 为平面内异于A ,P ,B 的任一点,t ∈R )⇔OP →=xOA →+yOB →.(O 为平面内异于A ,P ,B 的任一点,x ∈R ,y ∈R ,x +y =1)2.向量的中线公式:若P 为线段AB 的中点,O 为平面内一点,则OP →=12(OA →+OB →).1.若两个向量起点相同,终点相同,则这两个向量相等;但两个相等向量不一定有相同的起点和终点.2.零向量和单位向量是两个特殊的向量.它们的模确定,但方向不确定. 3.注意区分向量共线与向量所在的直线平行之间的关系.1.如图,平行四边形ABCD 的对角线交于M ,若AB →=a ,AD →=b ,用a ,b 表示MD →为( )A.12a +12b B .12a -12b C .-12a -12b D .-12a +12b2.设a ,b 都是非零向量,下列四个条件中,使a |a |=b|b |成立的充分条件是( )A .a =-bB .a ∥bC .a =2bD .a ∥b 且|a |=|b |3.如图,AB 是圆O 的一条直径,C ,D 是半圆弧的两个三等分点,则AB →=( )A.AC →-AD → B .2AC →-2AD → C.AD →-AC → D .2AD →-2AC →4.如图,在正方形ABCD 中,E 是DC 的中点,点F 满足CF →=2FB →,那么EF →=( )A.12AB →-13AD → B .13AB →+12AD → C.12AB →-23AD → D .14AB →+12AD →5.在△ABC 中,延长BC 至点M 使得BC =2CM ,连接AM ,点N 为AM 上一点且AN →=13AM →,若AN →=λAB →+μAC →,则λ+μ=( )A.13 B .12 C .-12 D .-136.已知P 是△ABC 所在平面内的一点,若CB →=λP A →+PB →,其中λ∈R ,则点P 一定在( )A .△ABC 的内部B .AC 边所在直线上C .AB 边所在直线上D .BC 边所在直线上7.(多选)如图,设P ,Q 两点把线段AB 三等分,则下列向量表达式正确的是( )A.AP →=13AB → B .AQ →=23AB → C .BP =-23AB → D .AQ →=BP →8.(多选)已知向量a ,b 是两个非零向量,在下列四个条件中,一定能使a ,b 共线的是( )A .2a -3b =4e 且a +2b =-2eB .存在相异实数λ,μ,使λa -μb =0C .x a +y b =0(其中实数x ,y 满足x +y =0)D .已知梯形ABCD ,其中AB →=a ,CD →=b9.已知e 1,e 2为平面内两个不共线的向量,MN →=2e 1-3e 2,NP →=λe 1+6e 2,若M ,N ,P 三点共线,则λ=________.10.已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________.(用a ,b 表示)一、单选题1.(2022·安徽·合肥市第八中学模拟预测(文))在平行四边形ABCD 中,2233AE AB CF CD ==,,G 为EF 的中点,则DG =( )A .1122AD AB -B .1122AB AD -C .3142AD AB -D .3142AB AD -2.(2022·内蒙古·包钢一中一模(文))已知向量1e ,2e 是两个不共线的向量,122a e e =-与12b e e λ=+共线,则λ=( ) A .2 B .2-C .12-D .123.(2022·山东泰安·模拟预测)已知向量m ,n 不共线,向量53OA m n =-,OB xm n =+,若O ,A ,B三点共线,则x =( ) A .53-B .53C .35 D .354.(2022·全国·模拟预测(理))在ABC 中,点F 为线段BC 上任一点(不含端点),若()20,0AF xAB yAC x y =+>>,则12x y+的最小值为( )A .9B .8C .4D .25.(2022·黑龙江·哈九中模拟预测(理))设1e ,2e 是平面内两个不共线的向量,()121AB a e e =-+,()1220,0AC be e a b =->>,若A ,B ,C 三点共线,则21a b+的最小值是( )A .8B .6C .4D .26.(2022·宁夏·石嘴山市第三中学模拟预测(理))在等边ABC 中,O 为重心,D 是OB 的中点,则AD =( ) A .AB AC + B .2132AB AC +C .1124AB AC +D .2136AB AC +7.(2022·河南·平顶山市第一高级中学模拟预测(文))如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且2EO AE =,则EB ( )A .1566AB AD -B .1566AB AD +C .5166AB AD -D .5166AB AD +8.(2016·西藏日喀则·二模(文))在ABC 中,P 、Q 分别是边AB 、AC 上的点,且13AP AB =,13BQ BC =,若AB a =,AC b =,则PQ =( ) A .1133a b +B .1133a b -+C .1133a b -D .1133a b --9.(2022·山东烟台·三模)如图,边长为2的等边三角形的外接圆为圆O ,P 为圆O 上任一点,若AP xAB y AC =+,则22x y +的最大值为( )A .83B .2C .43D .110.(2022·河南安阳·模拟预测(理))已知圆柱12O O 的轴截面是边长为2的正方形,AB 为圆1O 的直径,P 为圆2O 上的点,则()21PA PB O O +⋅=( ) A .4 B .42C .8D .8211.(2021·全国·模拟预测)2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割.所谓黄金分割,指的是把长为L 的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比,黄金分割比为510.6182-≈.其实有关“黄金分割”,我国也有记载,虽然没有古希腊的早,但它是我国古代数学家独立创造的.如图,在矩形ABCD 中,AC ,BD 相交于点O ,BF ⊥AC ,DH ⊥AC ,AE ⊥BD ,CG ⊥BD ,512BE BO -=,则BF =( )A 355510BG -++ B 355510BG --+ C 515510BG --+ D 3555BG -+12.(2022·湖南师大附中三模)艺术家们常用正多边形来设计漂亮的图案,我国国旗上五颗耀眼的正五角星就是源于正五边形,正五角星是将正五边形的任意两个不相邻的顶点用线段连接,并去掉正五边形的边后得到的图形,它的中心就是这个正五边形的中心.如图,设O 是正五边形ABCDE 的中心,则下列关系错误的是( )A .AD DB OB OA +=- B .0AO BE ⋅=C .3AC AD AO +=D .AO AD BO BD ⋅=⋅二、多选题13.(2022·山东济南·模拟预测)如图所示,在正六边形ABCDEF 中,下列说法正确的是( )A .AC AE BF -=B .32AC AE AD +=C .2||AD AB AB ⋅= D .AD 在AB 上的投影向量为AB14.(2022·海南华侨中学模拟预测)下列四个结论正确的是( ) A .若平面上四个点P ,A ,B ,C ,1344PA PB PC =+,则A .B ,C 三点共线 B .已知向量(1,1),(3,)a b x ==-,若3x <,则,a b 为钝角.C .若G 为△ABC 的重心,则0GA GB GC ++=D .若sin2sin2A B =,△ABC 一定为等腰三角形三、填空题15.(2022·江苏徐州·模拟预测)如图是古希腊数学家特埃特图斯用来构造无理数2,3,5,的图形,设四边形ABCD 的对角线交于点O ,若CO OA λ=,则λ=___________________.16.(2022·辽宁·鞍山一中模拟预测)点P 在椭圆2214x y +=上,P 不在坐标轴上,()2,0A ,()2,1C ,()10,1B ,()20,1B -,直线1B P 与2x =交于点T ,直线2B P 与x 轴交于点S ,设OS OA λ→→=,AT AC μ→→=,则λμ+的值为______.1.(2015)设D 为ABC 所在平面内一点3BC CD =,则( )A.1433AD AB AC =-+ B.1433AD AB AC =-C.4133AD AB AC =+ D. 4133AD AB AC =-2.(20181)在ΔABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( )A .34AB → - 14AC → B . 14AB → - 34AC → C .34AB → + 14AC →D . 14AB → + 34AC → 3.ABC 中,点D 在AB 上,CD 平分ACB ∠.若CB a =,CA b =,1a =,2b =,则CD =( )A.1233a b +B.2133a b +C.3455a b +D.4355a b+4.(2014新课标1)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+FC EB ( )A .ADB . AD 21C . BC 21D . BC5.(20132)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅= .6.(20173)在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λAB +μAD ,则λ+μ的最大值为( )A .3B .22C .5D .27.在ABC ∆所在平面内有一点O ,满足02=++AC AB OA ,1===AB OB OA ,则CB CA ⋅等于_______.8.(2017江苏)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为,且,与的夹角为.若=+(,),则= .9.(2015北京)在中,点,满足,,若,则;.1.【答案】D【解析】MD →=12BD →=12(AD →-AB →)=12(b -a)=-12a +12b. 【解析】因为向量a |a|的方向与向量a 相同,向量b |b|的方向与向量b 相同,且a |a|=b|b|,所以向量a 与向量b方向相同,故可排除选项A ,B ,D.当a =2b 时,a |a|=2b |2b|=b |b|,故a =2b 是a |a|=b|b|成立的充分条件. 3.【答案】D【解析】连接CD ,因为C ,D 是半圆弧的两个三等分点,所以CD ∥AB ,且AB =2CD.所以AB →=2CD →=2(AD →-AC →)=2AD →-2AC →,故选D. 4.【答案】C【解析】因为E 为DC 的中点,所以EC →=12DC →.因为CF →=2FB →,所以CF →=23CB →.所以EF →=EC →+CF →=12DC →+23CB →=12AB →+23DA →=12AB →-23AD →,故选C. 5.【答案】A【解析】由题意,知AN →=13AM →=13(AB →+BM →)=13AB →+13×32BC →=13AB →+12(AC →-AB →)=-16AB →+12AC →,所以λ=-16,μ=12,则λ+μ=13,故选A. 6.【答案】B【解析】由CB →=λPA →+PB →得CB →-PB →=λPA →,CP →=λPA →.则CP →,PA →为共线向量,又CP →,PA →有一个公共点P ,所以C ,P ,A 三点共线,即点P 在直线AC 上. 7.【答案】ABC【解析】由数乘向量的定义可以得到A ,B ,C 都是正确的,只有D 错误. 8.【答案】AB【解析】对于A ,因为向量a ,b 是两个非零向量,2a -3b =4e 且a +2b =-2e ,所以a =27e ,b =-87e ,此时能使a ,b 共线,故A 正确;对于B ,由共线定理知,存在相异实数λ,μ,使λa -μb =0,则非零向量a ,b 是共线向量, 故B 正确;对于C ,xa +yb =0(其中实数x ,y 满足x +y =0),如果x =y =0,则不能保证a ,b 共线,故C 不正确;对于D ,已知梯形ABCD 中,AB =a ,CD =b ,AB ,CD 不一定是梯形的上、下底,故D 错误.故选AB. 9【答案】-4【解析】因为M ,N ,P 三点共线,所以存在实数k 使得MN →=kNP →,所以2e1-3e2=k(λe1+6e2),又e1,e2为平面内两个不共线的向量,可得⎩⎪⎨⎪⎧2=kλ,-3=6k ,解得λ=-4. 10.【答案】b -a -a -b【解析】如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b .1.【答案】B 【解析】()1111112111·2222323622DG DE DF DA AE DC AD AB AB AB AD ⎛⎫=+=++=-++=- ⎪⎝⎭. 故选:B. 【解析】因为122a e e =-与12b e e λ=+共线,所以ka b =,0k ≠, 所以12121212()22=k k e e e e e e e e k λλ-+⇒-=+,因为向量1e ,2e 是两个不共线的向量,所以21k k λ=⎧⎨-=⎩,解得12λ=-,故选:C . 【解析】因为O ,A ,B 三点共线,则OA OB ∥ 所以R λ∃∈,OB OA λ=,即()53xm n m n λ+=- 整理得:()()531x m n λλ-=+又∵向量m ,n 不共线,则5310x λλ-=+=,则53x =-故选:A . 【解析】因为点F 为线段BC 上任一点(不含端点), 所以21x y +=,故()12122222214529y x y xx y x y x y x y x y ⎛⎫+=++=+++≥+⋅= ⎪⎝⎭, 当且仅当22y x x y =,即13x y ==时等号成立, 故选:A 【解析】1e ,2e 是平面内两个不共线的向量,()121AB a e e =-+,()1220,0AC be e a b =->>,由A ,B ,C 三点共线,则AB AC ∥,则()1212(21)a e e e b e λ-+=-则有121a b λλ-=⎧⎨=-⎩,则有21a b +=()0,0a b >>则212144(2)4428a b a b a b a b a b b a b a ⎛⎫⎛⎫+=++=++≥+⋅= ⎪ ⎪⎝⎭⎝⎭(当且仅当11,24a b ==时等号成立)故选:A 6.【答案】D【解析】O 为ABC 的重心,延长AO 交BC 于E ,如图,E 为BC 中点,则有2211()()3323AO AE AB AC AB AC ==⋅+=+,而D 是OB 的中点, 所以111121()222636AD AB AO AB AB AC AB AC =+=++=+. 故选:D 7.【答案】C【解析】因为2EO AE =,所以()111366AE AO AC AB AD ===+, 所以()151666EB AB AE AB AB AD AB AD =-=-+=-. 故选:C. 8.【答案】A 【解析】如图所示:1233PQ BQ BP BC BA =-=-()1233AC AB AB =-+1133AB AC =+1133a b =+.故选:A.【解析】作BC 的平行线与圆相交于点P ,与直线AB 相交于点E ,与直线AC 相交于点F , 设AP AE AF λμ=+,则1λμ+=, ∵BC//EF ,∴设AE AF k AB AC ==,则4[0,]3k ∈ ∴,AE k AB AF k AC ==,AP AE AF k AB k AC λμλμ=+=+ ∴,x k y k λμ==∴22x y=+8223k k λμ+=≤()故选:A. 10.【答案】C【解析】设圆柱的高为h ,底面半径为r 若圆柱12O O 的轴截面是边长为2的正方形, 则:22h r ==,因为AB 为圆1O 的直径,P 为圆2O 上的点,所以在PAB △中,1O 为AB 中点 ()2112112112122cos ,PA PB O O PO O O PO O O PO O O ∴+⋅=⋅=⋅⋅<>又在12PO O 中,1222,1O O h PO r ====,且122O O PO ⊥,则15PO = 如图:为圆柱的一个轴截面所以12121121225cos ,cos 55O O PO O O PO O PO <>=∠=== ()21121121252cos ,25285PA PB O O PO O O PO O O ∴+⋅=⋅⋅<>=⨯⨯⨯=故选:C. 11.【答案】D【解析】在矩形ABCD 中,由已知条件得O 是线段EG 中点,||||,||||AO BO AF BE ==, 因512BE BO -=,由黄金分割比可得2515135()222EO BE BO BO ---===, 于是得552BG BO OG BO EO BO -=+=+=,即有5510BO BG +=, 同理有512AF AO -=,而AO BO BA =-,即5155210()AF BG BA -+=-55512BG BA =--, 从而有5135255255BA BA BF BA AF BA BG BG +---=+==+, 所以35525BF BA BG -=+. 故选:D 12.【答案】C【解析】对于A ,,AD DB AB OB OA AB +=-=,故A 正确, 对于B :因为AB AE =,OB OE =,所以AO BE ⊥,故B 正确, 对于C :由题意O 是ACD △的外心,不是ACD △的重心设CD 中点为M ,则2||=||||||||cos36||2cos 18AM AO OM AO AO AO +=+︒=⋅︒,24cos 18AC AD AO +=︒,故C 错误,对于D :2211||||22AO AD AD BD BO BD ⋅===⋅,故D 正确. 故选:C13.【答案】BCD【解析】因为ABCDEF 为正六边形,即每个内角都为120︒ 对于A ,AC AE EC FB BF -==≠,故A 错误.对于B ,连接,AE AC ,CE ,AD 则ACE 为等边三角形,设六边形边长为a ,CE 中点为M ,连接AM ,则3CE a =,2AD a =,32AM a =,所以322AM AD =即322AC AE AM AD +==,故B 正确. 对于C ,由B 选项可知,21cos6022AD AB AD AB a a a ⋅=︒=⋅⨯= 且22AB a =,故C 正确.对于D ,因为2AD AB =,所以AD 在AB 上的投影向量为cos60AB AD AB AB⋅︒⋅=故D ,正确. 故选:BCD. 14.【答案】AC 【解析】对于A ,由1344PA PB PC =+,所以1344PA PC PB PC PC -=+-,即14CA CB =,所以,CA CB 共线,因为,CA CB 有公共端点,所以A .B ,C 三点共线,所以A 正确,对于B ,当3x =-时,(3,3)b =--,此时3b a =-,则,b a 的夹角为180︒,不是钝角,所以B 错误, 对于C ,延长AG ,交BC 于D ,因为G 为△ABC 的重心,所以D 为BC 的中点,2AG GD =, 所以2GB GC GD +=,所以AG GB GC =+,所以0GA GB GC ++=,所以C 正确,对于D ,因为sin2sin2A B =,(),0,A B π∈,所以22A B =或22180A B +=︒,所以A B =或90A B +=︒,所以△ABC 为等腰三角形或直角三角形,所以D 错误, 故选:AC15.【答案】21-【解析】,ABC ACD 都为直角三角形,45ACB ∠=,∴135BCD ∠=,22.5α∠==CDB ,22tan tan 211tan ααα==-,解得tan 21α=-,∴21OC =-,2(21)1OA =--= ∴21OCOAλ==-.故答案为:21-. 16.【答案】1【解析】:设直线1B P 的直线方程为1y kx =+,联立椭圆方程化简得22(14)80k x kx ++=, 所以0x =或2814k x k -=+,当2814k x k -=+时,221414k y k -=+,所以222814(,)1414k k P k k--++.当2x =时,21y k =+,所以(2,21)T k +, 所以22221411148414B Pk k k k k k -++==--+,所以直线2B P 的方程为11,4y x k =-- 当0y =时,所以4x k =-. 所以(4,0)S k -, 因为OS OA λ→→=,AT AC μ→→=, 所以=λ4021=2,2121k k k u k ----=-=+, 所以1λμ+=. 故答案为:11.【答案】A【解析】由题意得111333=+=+=+-AD AC CD AC BC AC AC AB 1433=-+AB AC .故选A2.【答案】B 【解析】11312444EB EA ABAD AB AB AC ABAB AC 故选A3.【答案】B【解析】()222,133b AD CD CA AD CA AB CA CB CA DB a 由题意:===+=+=+-21213333CB CA a b =+=+,故选B4.【答案】A【解析】111()()()222EB FC BA BC CA CB AB AC AD +=-+-+=+=,故选A5.【答案】2【解析】在正方形中,12AE AD DC =+,BD BA AD AD DC =+=-, 所以2222111()()222222AE BD AD DC AD DC AD DC ⋅=+⋅-=-=-⨯=6.【答案】3【解析】如图建立直角坐标系,则(0,1)A ,(0,0)B , (2,1)D ,(,)P x y ,由等面积法可得圆的半径为25, 所以圆的方程为224(2)5x y -+=, 所以(,1)AP x y =-,(0,1)AB =-,(2,0)AD =,由AP AB AD λμ=+,得21x y μλ=⎧⎨-=-⎩,所以λμ+=12xy -+,设12x z y =-+,即102xy z -+-=,点(,)P x y 在圆上,所以圆心到直线102xy z -+-=的距离小于半径,所以|2|21514z -+≤,解得13z ≤≤,所以z 的最大值为3, 7.【答案】3【解析】,0,02=+++=++AC OA AB OA AC AB OA ,,,OB OC O B C 三点共线又1==OB OA ,1,OA OB OC ABAC6,3,2,1π=∠==∴==ACB AC BC AB OA 故 cos36CA CB CA CB ,故答案为38.【答案】3 【解析】由可得,,由=+得,即,两式相加得,y PABCD,所以,所以.9.【答案】【解析】由=.所以,.。
2023届高三数学一轮复习专题 平面向量的表示、三点共线研究 讲义 (解析版)
高三第一轮复习专题 平面向量表示、三点共线研究 一、平面向量基本定理:设12,e e 是同一平面内两个不共线向量,a 是这一平面内的任一向量。
在平面内任取一点O ,作12,,OA e OB e OC a ===,过C 作OB 的平行线,交直线OA 于M ;过C 作OA 的平行线,交直线OB 于N 。
因OM 与OA 共线,则存在实数1λ,使得:11OM e λ=;因ON 与OB 共线,则存在实数2λ,使得:22ON e λ=; OC OM ON =+1122a e e λλ∴=+也即,任一向量a 都可表示成1122e e λλ+的形式。
平面向量基本定理:若12,e e 是同一平面内的两个不共线向量,则对于这个平面内的任意向量a ,有且只有一对实数12,λλ,使得:1122a e e λλ∴=+。
(也可称为a 用12,e e 表示出来)不共线向量12,e e 称为表示这一平面内所有向量的一组基底,12,e e 称为基向量。
例1。
ABCD 两条对角线交于O ,AB a =,AD b =,用a 、b 表示OA 、OB 、OC 、OD 。
2e2ea解:AC AB AD a b =+=+,DB AB AD a b =-=-O ABCD 为两条对角线的交点()1122OA AC a b ∴=-=-+,()1122OC AC a b ==+()1122OB DB a b ==-, ()1122OD DB a b =-=--。
故在一个图形中,任意两个不共线向量都可以作为一组基底,其余向量都可用这一组基向量表示出来。
在具体问题中,基向量的选择十分重要,它决定了是否容易表示。
二、向量的表示:★★★★★在研究向量间关系时,常先取两个基向量作为一组基底,其余向量用这两个基向量表示出来,这样能够更清晰地找出所研究向量间的关系。
1.,其余向量用这两个基向量表示出来。
例。
在ABC 中,2BD DC =,设,AB a AC b ==,用,a b 表示AD 。
高一数学平面向量17
第十七教时教材:正弦定理目的:要求学生掌握正弦定理,并能应用解斜三角形,解决实际问题。
过程:一、引言:在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角。
那么斜三角形怎么办?——提出课题:正弦定理、余弦定理二、1.特殊情况:直角三角形中的正弦定理:sinA=c a sinB=cbsinC=1 即:c=A a sin c=B b sin c=C c sin ∴A a sin =B b sin =Cc sin 2.能否推广到斜三角形?证明一(传统证法)在任意斜△ABC 当中: S △ABC =A bc B ac C ab sin 21sin 21sin 21==两边同除以abc 21即得:A a sin =B b sin =Ccsin 3.用向量证明:证二:过A 作单位向量垂直于+= 两边同乘以单位向量 •(+)=•则:j •AC +j •CB =j •∴||•||cos90︒+||•||cos(90︒-C)=||•||cos(90︒-A) ∴A c C a sin sin = ∴A a sin =Ccsin 同理:若过C 作垂直于得:C c sin =B b sin ∴A a sin =B b sin =Ccsin 当△ABC 为钝角三角形时,设 ∠A>90︒ 过A 作单位向量j 垂直于向量A BjACBjC B a4.突出几点:1︒正弦定理的叙述:在一个三角形中。
各边和它所对角的正弦比相等,即:A a sin =B b sin =Ccsin 它适合于任何三角形。
2︒可以证明A a sin =B b sin =Ccsin =2R (R 为△ABC 外接圆半径) 3︒ 每个等式可视为一个方程:知三求一 三、正弦定理的应用从理论上正弦定理可解决两类问题: 1.两角和任意一边,求其它两边和一角;2.两边和其中一边对角,求另一边的对角,进而可求其它的边和角。
高中数学 专题突破练16 平面向量的应用 新人教A版必修3(2021年整理)
2017年高中数学专题突破练16 平面向量的应用新人教A版必修3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年高中数学专题突破练16 平面向量的应用新人教A版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年高中数学专题突破练16 平面向量的应用新人教A版必修3的全部内容。
专题16 平面向量的应用1.向量的线性运算.2.向量的坐标运算.3.向量的数量积运算.例1 证明:平行四边形的对角线互相平分.变式训练1 如图,▱ABCD中,点E、F分别是AD、DC边的中点,BE与AC交于R,AF与BE交于T,证明:BT=4TE.例2 证明:如果平行四边形的对角线相等,那么该平行四边形是矩形.变式训练2 如图,在△ABC中,AB,BC,CA的长分别为c,a,b。
求证:b2=c2+a2-2ac cos B.例3 一条渔船距对岸为4 km,现正以2 km/h的速度向垂直于对岸的方向划去,到达对岸时,船的实际航程为8 km,求河水的流速.变式训练3 作用于同一点的两个力F1和F2,|F1|=5,|F2|=3,夹角为60°,求F1+F2的大小.A级1.一物体受到相互垂直的两个力F1、F2的作用,两力大小都为53,则两个力的合力的大小为()A.10错误! N B.0 NC.5错误! N D。
错误! N2.在△ABC中,已知A(4,1)、B(7,5)、C(-4,7),则BC边的中线AD的长是() A.2错误! B.错误!错误!C.3错误! D。
错误!错误!3.已知一物体在共点力F1=(lg 2,lg 2),F2=(lg 5,lg 2)的作用下产生位移s=(2lg 5,1),则共点力对物体做的功W为()A.lg 2 B.lg 5C.1 D.24.已知△ABC的三个顶点的坐标分别为A(3,4),B(5,2),C(-1,-4),则这个三角形是( )A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰直角三角形5.作用于原点的两个力F1(1,1),F2(2,3),为使它们平衡,需要加力F3=________.6.已知在△ABC中,错误!=a,错误!=b,a·b<0,S△ABC=错误!,|a|=3,|b|=5,则∠BAC =________.7.过点(1,2)且与直线3x-y+1=0垂直的直线的方程是____________.B级8.向量a=(-1,1),且a与a+2b方向相同,则a·b的范围是()A.(1,+∞) B.(-1,1)C.(-1,+∞) D.(-∞,1)9.在△ABC所在平面上有一点P,满足错误!+错误!+错误!=错误!,则△PAB与△ABC的面积的比值是()A。
浙江省诸暨市牌头中学2017届高三数学专题突破训练:平面向量含答案
专题突破训练——平面向量高考真题:1、(2016浙江高考)已知向量a 、b , |a | =1,|b | =2,若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是 .2、(2015浙江高考)已知12,e e 是空间单位向量,1212e e⋅=,若向量b 满足1252,2b eb e ⋅=⋅=,且对于任意,x y R ∈,12010200()()1(,)b xe ye b x e y e x y R -+≥-+=∈,则0x = ,0y = ,b = .3、(2015·四川卷) 设四边形ABCD 为平行四边形,|AB ,→|=6,|错误!|=4。
若点M ,N 满足错误!=3错误!,错误!=2错误!,则错误!·错误!=( ) A .20 B .15 C .9 D .64、(2015·湖南卷) 已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC 。
若点P 的坐标为(2,0),则|错误!+错误!+错误!|的最大值为( ) A .6 B .7 C .8 D .95、2015·安徽卷] △ABC 是边长为2的等边三角形,已知向量a ,b 满足 错误!=2a ,错误!=2a +b ,则下列结论正确的是( )A .|b |=1B .a ⊥bC .a ·b =1D .(4a +b )⊥错误!6、(2015·天津卷)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.动点E 和F 分别在线段BC 和DC 上,且错误!=λ错误!,错误!=错误!错误!,则错误!·错误!的最小值为________.巩固练习题组:1、如图,设正BCD ∆的外接圆O 的半径为13()23R R <<, 点A 在BD 下方的圆弧上,则()AB AD AO AC ABAD--•的最小值为________。
专题1.3平面向量、解三角形-2017届高三数学三轮考点总动员(江苏版)Word版含解析
【方法引领】【举例说法】一、平面向量与三角函数综合例 1已知向量m=(cos α sin α) n=(3 , -1) α (0 π).,,, ∈ ,(1)若 m ⊥ n ,求角 α的大小; (2)求 | m+n| 的最小值 .(2)由于 m+n=(cos α+3 , sin α-1),因此 | m+n|=(cos3) 2 (sin -1)2=5 2 3cos-2sin=54cos π .6π π 7π,由于 α∈ (0, π),因此 α+6,66π 5 π时, | m+n| 获得最小值 1 .故当 α+ =π,即 α=66ABABCA B C【练习】在△ a b c 2sin 2+cos 2C=1 .中,角, , 所对的边分别为,,,且2(1)求角 C 的大小;,b,且 m ⊥ n , (m+n) ·(m-n)=16,求 a , b ,c 的值 .(2)若向量 m=(3a , b),n= a -3因此 cos C=1或 cos C=-1.2π 由于 C ∈(0, π),因此 C= .32 (2)由于 m ⊥n ,因此 3a 2-b=0,即 b 2=9a 2. ①3(m+n) ·(m-n)=168a2+ 8b2 =169a2+ b2 =2.9a2=1 b2=9a=1 b=3.c2=a2+b2-2abcos C=7c=7a=1 b=3 c= 7 .#2 2017ABC D BC AD 6 BD3 DC 21AD BC BACπ2ABC4ADC2BADαπABD ABC AD 6 BD 34AD BD sinα 28sin ABC sin4AD BDα cosα 1 sin2α 14104πππsin ADC sin(α ) sinαcos cosαsin444= 1 712 分413(17).14分△ ADC 的面积 S=2× AD× DC sin∠ ADC=2·【练习】在△ABC中,内角 A, B, C所对的边分别为a, b, c,已知 (a+b-c)(a+b+c)=ab.(1)求角 C的大小;(2)若 c=2acos B, b=2,求△ ABC的面积 .【解答】 (1)在△ ABC中,由 (a+b-c)(a+b+c)=ab,得a2b2-c2=-1,即 cos C=-1.2ab22由于0<C<πC=2 π,因此3(2)方法一:由于 c=2acos B,由正弦定理,得sin C=2sin Acos B.由于 A+B+C=π,因此 sin C=sin(A+B),因此 sin(A+B)=2sin Acos B,即 sin Acos B-cos Asin B=0,因此 sin(A-B)=0.又 - π<A-B<π,因此 A-B=0,即 A=B,因此 a=b=2.33因此△ ABC的面积为 S△ABC=1absin C=1×2×2×sin 2 π= 3 .223a2c2-b2方法二:由 c=2acos B及余弦定理,得 c=2a×,化简得 a=b,因此△ ABC的面积为2ac11 2 πS△ABC= 2absin C=2×2×2×sin3= 3 .三、平面向量与解三角形综合例 3在△ ABC中,内角 A, B, C所对的边分别为 a,b, c,已知向量 a=(sin B-sin C, sin C-sin A),b=(sin B+sin C, sin A),且 a⊥ b.(1)求角 B的大小;(2)若 b=c·cos A,△ ABC的外接圆的半径为1,求△ ABC的面积 .22 21因此 cos B= ac -b= .2ac2π由于 B ∈ (0,π),因此 B=3 .b 222(2)由于 c ·cos A=b ,因此bc -a,即 b 2=c 2-a 2,=c2bc又 ac=a 2+c 2-b 2, b=2Rsin B= 3,解得 a=1, c=2.因此 S △ABC =1acsin B=3 . 22【练习】在△ ABC 中,内角 A ,B ,C 的对边分别是 a ,b ,c ,已知向量 m=(cos B ,cos C),n=(4a-b ,c),且 m ∥ n.(1)求 cos C 的值;(2)若 c=3 ,△ ABC 的面积 S=15,求 a , b 的值 .4【解答】 (1)由于 m ∥n ,因此 ccos B=(4a-b)cos C ,由正弦定理,得 sin Ccos B=(4sin A-sin B)cos C ,化简得 sin(B+C)=4sin Acos C.由于 A+B+C=π,因此 sin(B+C)=sin A.又由于 A ∈1 (0,π),因此 sin A ≠0,因此 cos C= .4(2)由于 C ∈ (0,π), cos C= 1 ,4因此 sin C=1-cos 2C = 1-1 =15.16 41 absin C= 15,因此 ab=2.① 由于 S=24由于 c=3,由余弦定理得 3=a 2+b 2- 1 ab ,2因此 a 2+b 2=4, ②由①②,得 a 4-4a 2+4=0,进而 a 2=2, a= 2 (a=-2 舍去 ),因此 a=b= 2 .【实战操练】1. 在斜三角形 ABC 中, tan A+tan B+tan Atan B=1.(1)求角 C 的大小;(2)若 A=15°, AB=2 ,求△ ABC 的周长 .即 tan(180 °-C)=1, tan C=-1.由于 0°<C<180°,因此 C=135°.(2)在△ ABC 中, A=15°,C=135 °,则 B=180 °-A-C=30°. 由正弦定理BCCAAB ,得sin A = sin B =sin CBCo=CA °=2 sin15 sin30=2,sin135°故 BC=2sin 15 =2sin(45° -°30°)=2(sin 45 cos ° 30 °-cos 45 °sin 30 )=°6-2 ,2CA=2sin 30 =1°.因此△ ABC 的周长为 AB+BC+CA= 2 +1+6- 2=2 6 2.222. 已知在锐角三角形ABC 中,角 A , B , C 的对边分别为 a , b , c , sin A=3, tan( A-B)=-1.5 2(1)求 tan B 的值; (2)若 b=5,求 c 的值 .1又由于 tan( A-B)=-,tanA-tan(A-B)3 - -142因此 tan B=tanA-(A-B)]===2.1 tanAtan(A-B)3 11-42(2)由 (1) 知 tan B=2,得 sin B= 25, cos B= 5 ,55因此 sin C=sin(A+B)=sin Acos B+cos Asin B= 115 ,25b=c bsin C11由正弦定理,得 c=sin B = .sin B sin C2π3.如图,在梯形 ABCD 中,已知 AD∥ BC, AD=1, BD=210,∠ CAD= 4, tan∠ADC=-2.(1)求 CD的长;(2)求△ BCD的面积 .=sin∠ ADC+π4ππ=sin∠ ADC·cos+cos∠ ADC·sin44=10 ,10在△ ADC中,由正弦定理得 CD= AD·sinDAC= 5 .sin ACD(2) 由于 AD∥BC,因此 cos∠ BCD=-cos∠ADC=5, sin∠BCD=sin∠ ADC=2 5. 55在△ BDC中,由余弦定理得BD2=BC2+CD2-2BC·CD·cos∠ BCD,即 BC2-2BC-35=0,解得 BC=7,11×7×5×2 5=7.因此 S△BCD=BC·CD·sin∠ BCD=2254.在△ ABC中,已知 a, b, c分别为角 A, B, C的对边 .若向量 m=(a,cos A),向量 n=(cos C,c),且 m·n=3bcos B.(1)求 cos B的值;1+1(2)若 a, b, c成等比数列,求的值 .tanA tanC【分析】 (1) 由于 m·n=3bcos B,因此 acos C+ccos A=3bcos B.由正弦定理得sin Acos C+sin Ccos A=3sin Bcos B,因此 sin(A+C)=3sin Bcos B,又11=cosA cosC tan A++sinCtanC sin AcosA?sinC sinA?cosC =sinA sin Csin( A C )=sin A sin C=sinBsin A sinCsinB132 ===4.sin2 B sin B5.在△ABC A B C a b c,且bcos C+ccos B=2acos A.中,角,,的对边分别为,,(1)求角 A的大小;(2)uuur uuur=3,求△ ABC的面积 .若AB·AC【分析】 (1) 方法一:在△ ABC中,由正弦定理及bcos C+ccos B=2acos A,得 sin Bcos C+sin Ccos B=2sin Acos A,即 sin A=2sin Acos A.由于 A∈ (0,π),因此 sin A≠0,因此 cos A= 1,2π因此A=.3方 法 二 : 在 △ ABC 中 , 由 余 弦 定 理 及bcos C+ccos B=2acos A , 得a 2b 2 -c 2a 2c 2 -b 2b 2c 2 -a 2,b ·+c ·=2a ·2ab2ac2bc因此 a 2=b 2+c 2-bc ,因此 cos A=b 2c 2 -a 2 = 1 .2bc 2由于 A ∈ (0, π),因此 A=π3 .uuur uuur(2) 由=cbcos A=3,得 bc=2 3,AB ·AC因此△ ABC 的面积为 S=1bcsin A= 1×23×3= 3 .#网22226. 已知△ ABC 的面积为 S ,且uuuruuur = 2 S.·AB AC(1)求 sin A ;uuuruuur uuur3 ,求 sin B.(2)若 |AB |=3,| AB - AC |=2因此 A 为锐角,且 sin 2 A+cos 2A=sin 2A+1sin 2A= 322sin 2A=1,因此 sin A=6 .3uuuruuur uuur uuur(2) 由于 | AB |=c= 3, | AB - AC |=|CB |=a= 2 3 ,ca3 2 3由正弦定理得= ,即 = 6,sinC sinA sinC3因此 sin C=2 . 2又由于 c<a ,因此 C 为锐角,因此 C=π,4因此 π π π 6 × 2 + 3× 2=2 3 6 . sin B=sin A=sin Acos+cos Asin =4 4 4 3 2 3 2 67. 在△ ABC 中,角 A ,B , C 所对的边分别是 a , b , c ,且 b 2+c 2=a 2-bc.(1)求角 A 的大小;uuur uuur (2)若AC ·=-8,求△ ABC 的面积 .AB因此 S △ ABC = 1 bcsin A= 1 ×16× 3=4 3. 22 28. 在△ ABC 中, a ,b ,c 分别为角 A , B , C 的对边,△ ABC 的面积 S 知足 S= 3 bccos A.2(1)求角 A 的大小;(2)若 a= 3 ,求 c 的取值范围 .【分析】 (1) 在△ ABC 中,由 S=1 bcsin A ,得 tan A= 3 . 3 bccos A= 22 由于 0<A<π A= π ,因此3 , A= π及正弦定理得 a c 3 (2) 由 a=3 = = 3=2,3 sinA sinC 2因此 c=2sin C=2sin( π-A-B)=2sin2π-B . 3由于 A= π,因此 0<B< 2π,3 3因此 2π 2π0<-B< , 3 3因此 0<sin 2π-B 3 ≤1, 0<2sin 2π-B ≤2, 3即 c的取值范围为(0, 2].9. 已知函数 f(x)= 1 3 sin xcos x- cos 2x(x ∈R). 2(1) 求函数 f(x)的最小值和最小正周期;(2) ABC A B C a b c B=πf(C)=1ABC设△ ,且 , c=3 , ,试判断△ 的内角 , , 的对边分别为 , , 6 的形状,并求△ ABC 的面积 .(2) 由于 f(C)=1,因此 sin 2C- π =1.6由于 0<2C<2π,π π 11π因此 - <2C- < ,6 6 6因此 2C- π ππ= ,因此 C= .6 2 3由于 B= π,因此 A= π,6 2因此△ ABC 是直角三角形 .b c 3由正弦定理,得= = 3 =2,因此 b=1.sinB sinC2设△ ABC 的面积为 S ,则 S=1 bc= 3 .2 2。
平面向量的坐标运算-2017年高考数学(文)母题题源系列(新课标1专版)含解析
专题六 平面向量的坐标运算【母题来源一】【2017全国卷1文数13】【母题原题】已知向量a =(–1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________.【答案】7【考点】平面向量的坐标运算,垂直向量【名师点睛】如果a = (x 1,y 1),b =(x 2,y 2)(b ≠0),则a ⊥b 的充要条件是x 1x 2+y 1y 2=0.【母题来源二】【2016全国卷1文数13】【母题原题】设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x = 。
【答案】23- 【解析】试题分析:由题意, 20,2(1)0,.3x x x ⋅=++=∴=-a b 【考点】向量的数量积及坐标运算【名师点睛】全国卷中向量大多以客观题的形式出现,属于基础题.解决此类问题既要准确记忆公式,又要注意运算的准确性.本题所用到的主要公式是:若()()1122,,,x y x y ==a b ,则1122x y x y ⋅=+a b .【母题来源三】【2015全国卷1文数2】【母题原题】已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =( )(A )(7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4) 【答案】A【解析】∵AB OB OA =-=(3,1),∴BC =AC AB -=(—7,—4),故选A.【考点】向量运算【名师点睛】对向量的坐标运算问题,先将未知向量用已知向量表示出来,再代入已知向量的坐标,即可求出未知向量的坐标,是基础题。
【命题意图】考查平面向量的概念、平面向量的表示及平面向量的数量积等,考查运算求解能力,考查数形结合思想、等价转换思想在解题中的应用。
【命题规律】平面向量既有“数”的特征又有“形”的特征,是“数”与“形”的完美结合。
高考中对向量知识的考查主要是以两种形式出现:一是考查坐标表示及其运算;二是工具平面向量的共线或垂直,确定参数的值;三是以向量为载体,作为工具与三角函数、三角形、数列、解析几何、不等式等结合,解题时直接运用向量有关知识列出表达式,再依据相关知识及运用相关方法加以解决.从近几年命题来看,多以选择题、填空题的形式,考查平面向量的坐标表示、向量的垂直等概念,考查加法、减法、数乘和数量积等基本运算,难度较小,2016年、2017年固定在13题的位置,且题目极其相似.【答题模板】向量的坐标表示下,确定参数值:第一步:利用向量垂直或平行的条件构造方程;第二步:解方程求得参数值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 A.3 15 C. 8
5 B.3 D.2
图 31
2017版高三二轮复习与策略
(2)(2016· 天津高考)已知△ABC 是边长为 1 的等边三角形,点 D,E 分别是边 → → AB,BC 的中点,连接 DE 并延长到点 F,使得 DE=2EF,则AF· BC的值为( 5 A.-8 1 C.4 1 B.8 11 D. 8 )
2017版高三二轮复习与策略
热点题型 1 平面向量的运算 题型分析:该热点是高考的必考点之一,考查方式主要体现在以下两个方面: 一是以平面图形为载体考查向量的线性运算;二是以向量的共线与垂直为切入点, 考查向量的夹角、模等.
2017版高三二轮复习与策略
→ (1)(2016· 深圳二模)如图 31, 正方形 ABCD 中, M 是 BC 的中点, 若AC → → =λAM+μBD,则 λ+μ=( )
x=-4, 所以 y=-2,
2017版高三二轮复习与策略
2.(2014· 全国卷Ⅰ)设 D,E,F 分别为△ABC 的三边 BC,CA,AB 的中点, → +FC → =( 则EB → A.BC → C.AD ) 1→ B.2AD 1→ D.2BC
2017版高三二轮复习与策略
C
→ → → → → → [如图,EB+FC=EC+CB+FB+BC
2
∴|b|=3 2.]
2017版高三二轮复习与策略
回访 3 数量积的综合应用 6.(2013· 全国卷Ⅰ)已知两个单位向量 a,b 的夹角为 60° ,c=ta+(1-t)b,若 b· c=0,则 t=________.
2 [|a|=|b|=1, 〈a,b〉=60° .
2
1 t ∵c=ta+(1-t)b, ∴b· c=ta· b+(1-t)b =t×1×1×2+(1-t)×1=2+1-t=1 t -2. t ∵b· c=0,∴1- =0,∴t=2.] 2
2 2 - [∵a⊥b,∴a· b=0,即 x+2(x+1)=0,∴x=-3.] 3 5.(2012· 全国卷)已知向量 a,b 夹角为 45° ,且|a|=1,|2a-b|= 10,则|b|=
________.
3 2 [∵a,b 的夹角为 45° ,|a|=1, 2 ∴a· b=|a|· |b|cos 45° = 2 |b|, 2 |2a-b| =4-4× 2 |b|+|b|2=10,
2017版高三二轮复习与策略
提炼 3 平面向量解题中应熟知的常用结论 → =λOB → +μOC → ,且 λ (1)A,B,C 三点共线的充要条件是存在实数 λ,μ,有OA +μ=1. 1 → → → (2)C 是线段 AB 中点的充要条件是OC=2(OA+OB). → → → (3)G 是△ABC 的重心的充要条件为GA+GB+GC=0, 若△ABC 的三个顶点坐 标 分 别 为 A(x1 , y1) , B(x2 , y2) , C(x3 , y3) , 则 △ ABC 的 重 心 坐 标 为
2017版高三二轮复习与策略
(1)B
(2)B
[(1)法一:建立平面直角坐标系如图所示,设正方形的边长为 2,则
→ =(2,2), → =(2,1), → =(-2,2). A(0,0), B(2,0), C(2,2), M(2,1), D(0,2), 所以AC AM BD 由 → =λAM → +μBD → ,得(2,2)=λ(2,1)+μ(-2,2),即(2,2)=(2λ- AC 4 λ=3, 2λ-2μ=2, 2μ, λ+2μ), 所以 解得 λ+2μ=2, μ=1, 3 故选 B. 5 所以 λ+μ=3,
2017版高三二轮复习与策略
提炼 2 数量积常见的三种应用 已知两个非零向量 a=(x1,y1),b=(x2,y2),则 (1)证明向量垂直:a⊥b⇔a· b=0⇔x1x2+y1y2=0.
2 (2)求向量的度:|a|= a· a= x1 +y2 1.
x1x2+y1y2 a· b (3)求向量的夹角:cos〈a,b〉=|a||b|= 2 2 2 2. x1+y1· x2+y2
x1+x2+x3 y1+y2+y3 , . 3 3
→· → =PB →· → =PA →· → ⇔P 为△ABC 的垂心. (4)PA PB PC PC
2017版高三二轮复习与策略
(5)非零向量 a,b 垂直的充要条件:a⊥b⇔a· b=0⇔|a+b|=|a-b|⇔x1x2+y1y2 =0. a· b (6)向量 b 在 a 的方向上的投影为|b|cos θ= |a| , a· b 向量 a 在 b 的方向上的投影为|a|cos θ= |b| .
2017版高三二轮复习与策略
核 心 知 识 · 聚 焦
突破点 3
热 点 题 型 · 探 究
平面向量
专 题 限 时 集 训
2017版高三二轮复习与策略
提炼 1 平面向量共线、垂直的两个充要条件 若 a=(x1,y1),b=(x2,y2),则: (1)a∥b⇔a=λb(b≠0)⇔x1y2-x2y1=0. (2)a⊥b⇔a· b=0⇔x1x2+y1y2=0.
从而(2a+b)· a=2a2+a· b=4-3=1. 法二:∵a=(1,-1),b=(-1,2), ∴2a+b=(2,-2)+(-1,2)=(1,0), 从而(2a+b)· a=(1,0)· (1,-1)=1,故选 C.]
2017版高三二轮复习与策略
4. (2016· 全国乙卷)设向量 a=(x, x+1), b=(1,2), 且 a⊥b, 则 x=__________.
2017版高三二轮复习与策略
回访 1 平面向量的线性运算 → =(-4,-3),则向量BC →= 1.(2015· 全国卷Ⅰ)已知点 A(0,1),B(3,2),向量AC ( ) A.(-7,-4) C.(-1,4)
A
B.(7,4) D.(1,4)
→ =(x,y-1)=(-4,-3), [设 C(x,y),则AC → =(-4,-2)-(3,2)=(-7,-4).故选 A.] 从而BC
1 → → → → =EC+FB=2(AC+AB) 1 → → =2· 2AD=AD.]
2017版高三二轮复习与策略
回访 2 平面向量的数量积 3.(2015· 全国卷Ⅱ)向量 a=(1,-1),b=(-1,2),则(2a+b)· a=( A.-1 C.1 B.0 D.2 )
C
[法一:∵a=(1,-1),b=(-1,2),∴a2=2,a· b=-3,