山东省临沂市沂水二中北校区2015届高三上学期10月月考数学试卷(理科)

合集下载

山东省临沂市第一中学2015届高三10月月考 数学理答案

山东省临沂市第一中学2015届高三10月月考   数学理答案

高三上学期阶段性教学诊断测试数学(理科)参考答案一、选择题(本大题共10小题,每小题5分,共50分) 1. D 2. C 3. D 4. B 5. C 6. B 7. B 8.A 9. D 10. D二、填空题(本大题共5小题,每小题5分,共25分) 11.23π12 .](0,e 或写为 ()0,e 13. 2. 14.-2 15. (1)(4)三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.) 16.解:由2x 2+ax -a 2=0,得(2x -a)(x +a)=0,∴x=a 2或x =-a ,∴当命题p 为真命题时,⎪⎪⎪⎪⎪⎪a 2≤1或|-a|≤1,∴|a|≤2. 又“只有一个实数x 0满足不等式x 20+2ax 0+2a≤0”, 即抛物线y =x 2+2ax +2a 与x 轴只有一个交点, ∴Δ=4a 2-8a =0,∴a=0或a =2. ∴当命题q 为真命题时,a =0或a =2. ∴命题“p∨q”为真命题时,|a|≤2. ∵命题“p∨q”为假命题,∴a>2或a<-2. 即a 的取值范围为{a|a>2,或a<-2}.17.解:(1)由题意,,解得1≤x≤2,∴M=(1,2];(2)令t=2x (t ∈(2,4]),f (x )=g (t )=-4at+3t 2=3(t+)2-1°-6<a <-3,即2<-<4时,g (t )min =g (-)=-;2°a≤-6,即-≥4时,g (t )min =g (4)=48+16a∴f (x )min =.18.解:(1)改进工艺后,每件产品的销售价为20(1+x)元,月平均销售量为a(1-x 2)件, 则月平均利润为y =a(1-x 2)·[20(1+x)-15]元,所以y 与x 的函数关系式为y =5a(1+4x -x 2-4x 3)(0<x<1). (2)由y′=5a(4-2x -12x 2)=0,得x 1=12,x 2=-23(舍去),所以当0<x<12时,y′>0;当12<x<1时,y′<0.所以函数y =5a(1+4x -x 2-4x 3)(0<x<1)在x =12处取得最大值.故改进工艺后,纪念品的销售价为20×⎝ ⎛⎭⎪⎫1+12=30元时,该公司销售该纪念品的月平均利润最大.19.20.解:(1)由f(x)=a +b ln xx +1⇒f′(x)=b x +-+b ln+2而点(1,f(1))在直线x +y =2上⇒f(1)=1,又直线x +y =2的斜率为-1⇒f′(1)=-1故有⎩⎪⎨⎪⎧a 2=12b -a4=-1⇒⎩⎪⎨⎪⎧a =2b =-1(2)由(1)得f(x)=2-ln xx +1(x>0)由xf(x)<m ⇒2x -x ln xx +1<m令g(x)=2x -x ln xx +1⇒g′(x)=-ln+--x ln+2=1-x -ln x+2 令h(x)=1-x -ln x ⇒h′(x)=-1-1x <0(x>0),故h(x)在区间(0,+∞)上是减函数,故当0<x<1时,h(x)>h(1)=0,当x>1时,h(x)<h(1)=0 从而当0<x<1时,g′(x)>0,当x>1时,g′(x)<0⇒g(x)在(0,1)是增函数,在(1,+∞)是减函数,故g(x)max =g(1)=1 要使2x -x ln x x +1<m 成立,只需m>1故m 的取值范围是(1,+∞). 21.。

山东省临沂市第一中学2015届高三上学期十月月考数学(理)试题含答案

山东省临沂市第一中学2015届高三上学期十月月考数学(理)试题含答案

临沂一中2012级高三上学期第二次阶段性检测题理科数学第Ⅰ卷(共50分)一、选择题(本大题共10个小题,每小题5分,共50分)1、设全集为R ,函数()f x =的定义域为M ,则R C M =( )A .[]1,1-B .()1,1-C .(][),11,-∞-+∞D .()(),11,-∞-+∞2、下列说法错误的是( )A .命题“若2430x x -+=,则3x =”的逆否命题是“若3x ≠,则2430x x -+≠” B .“1x >”是“0x >”的充分不必要条件 C .若p q ∧为假命题,则,p q 均为假命题D .命题:p x R ∃∈,使得210x x ++<,则:p x R ⌝∀∈,使得210x x ++≥3、若函数()22(1)3f x ax a x a =+--为偶函数,其定义域242,1a a ⎡⎤++⎣⎦,则()f x 的最小是为( )A .3B .0C .2D .1- 4、设1111232,,a x dx b x dx c x dx ===⎰⎰⎰,则,,a b c 的大小关系是( )A .c a b >>B .a b c >>C .a b c =>D .a c b >>5、已知函数()f x 对定义域R 内的任意x 都有()(4)f x f x =-,且当2x ≠是其导数()f x '满足()()2xf x f x ''>,若24a <<,则( )A .()()223(log )f a f f a <<B .()()23(log )2f f a f a <<C .()()2(log )32f a f f a <<D .()()2(log )23f a f a f << 6、把函数sin()(0,)y wx w ϕϕπ=+><的图象向右平移6π个单位,再将图象上所有的点的横坐标伸长到原来的2倍(纵坐标不变),所得的图象解析式为sin y x =,则( ) A .2,6w πϕ==B .2,3w πϕ==C .1,26w πϕ== D .1,212w πϕ== 7、下图,有一个是函数()3221(1)1(,0)3f x x ax a x a R a =++-+∈≠的导函数()f x '的图象,则()1f -等于( )A .13 B .13- C .73 D .13-或538、若sin ,cos θθ是方程2420x mx m ++=的两根,则m 的值为( )A .1.1 C .1.1-9、已知集合(){(,)|}M x y y f x ==,若对于任意11(,)x y M ∈,存在11(,)x y M ∈, 使得12120x x y y +=成立,则称集合M 是“垂直对点集”,给出下列四个结合: ①1{(,)|}M x y y x== ②{(,)|sin 1}M x y y x ==+ ③2{(,)|log }M x y y x == ④{(,)|2}xM x y y e ==- A .①② B .②③ C .①④ D .②④10、已知偶数()f x 以4为周期,且当[]2,0x ∈-时,()1()12xf x =-,若在区间[]6,6-内关于x的方程()2log (2)0(1)f x x a ⋅+=>恰有4个不同的实数根,则a 的取值范围是( )A .()1,2B .()2,+∞C .(D .)2二、(本大题共5小题,每小题5分,共25分)11、若两个非零向量,a b 满足2a b a b a +=-=,则向量a b +与a b -的夹角是 12、函数()ln xf x x=的单调递增区间是 13、()sin()cos()4(,,,f x a x a b x a b ππβαβ=++++均为非零实数),若()20146f =, 则()2015f =14、设区间1()n y x n N +*=∈,在点()1,1处的切线与x 轴的交点的横坐标为n x ,令lg n n a x =,则 则1299a a a +++的值为15、给出下列四个命题:①命题“x R ∀∈,都有2314x x -+≥”的否定是“x R ∃∈,都有2314x x -+<” ②一个扇形的弧长与面积的数值都是5,则这个扇形中心角的弧度数是5;③将函数cos 2y x =图象向右平移4π个单位,得到cos(2)4y x π=-的图象;④命题“设向量(4sin ,3),(2,3cos )a b αα==,若//a b ,则4πα=”的逆命题、否命题、逆否命题中真命题的个数为2.其中正确命题的序号为三、解答题(本大题共6小题,共75分,解答应写出文字说、证明过程或演算步骤)16、已知命题:p 方程2220x ax a +-=在[]1,1-上有解;命题:q 只有一个实数0x 满足不等式20220x ax a ++≤,若命题“p q ∨”是假命题,求a 的取值范围。

山东省青岛二中2015届高三上学期10月段考数学试卷(理科)(Word版含解析)

山东省青岛二中2015届高三上学期10月段考数学试卷(理科)(Word版含解析)

山东省青岛二中2015届高三上学期10月段考数学试卷(理科)一、选择题:本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知m、n∈R,则>成立的一个充要条件是()A.m>0>n B.n>m>0 C.m n(m﹣n)<0 D.m<n<02.(5分)已知集合M={a,b,c,d},N={﹣2,0,1},若f是从M到N的映射,且f(a)=0,f(b)=﹣2,则这样的映射f共有()A.4个B.6个C.9个D.以上都不对3.(5分)设f(x)=,则f(f())=()A.e B.1C.2D.以上都不对4.(5分)若log m n=﹣1,则3n+m的最小值是()A.2B.2C.2D.5.(5分)函数f(x)=sinx在区间上是增函数,且f(a)=﹣1,f(b)=1,则=()A.0B.C.﹣1 D.16.(5分)设函数f(x)=log a x(a>0且a≠1),若f(x1•x2•x3…x2015)=50,则f(x12)+f (x22)+f(x32)+…+f(x20152)的值等于()A.10 B.100 C.1000 D.20157.(5分)设函数f(x)=,集合M={x|f(x)<0},P={x|f′(x)≥0},M是P的真子集,则实数a的取值范围是()A.(﹣∞,1)B.(0,1)C.(1,+∞)D.时,f(x)=x2﹣2x,则当x∈时,f(x)的最小值是()A.﹣1 B.C.D.9.(5分)函数y=a|x|与y=sinax(a>0且a≠1)在同一直角坐标系下的图象可能是()A.B.C.D.10.(5分)对实数a与b,定义新运算“⊗”:.设函数f(x)=(x2﹣2)⊗(x﹣x2),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.B.C.D.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)已知cos(x+)=,则sin2x的值为.12.(5分)曲线y=x与y=x2﹣2x围成区域的面积为.13.(5分)已知a,b都是正实数,函数y=2ae x+b的图象过(0,2)点,则+的最小值为.14.(5分)已知偶函数y=f(x)(x∈R)满足f(x)=f(2﹣x),且当x∈时,f(x)=x2,则函数y=f(x)与y=log7x的图象的交点个数为.15.(5分)设函数f(x)=,对任意x1、x2∈(0,+∞),不等式恒成立,则正数k的取值范围是.三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤16.已知集合A={y|y=()x﹣3()x+1+1,x∈(﹣1,2)},B={x|x﹣m2|≥},命题p:x∈A,命题q:x∈B,并且命题p是命题q的充分条件,求实数m的取值范围.17.若函数f(x)=lnx,若对所有的x∈上的取值范围.19.已知函数f(x)=,其中a∈R.(Ⅰ)当a=1时,求曲线y=f(x)在原点处的切线方程;(Ⅱ)求f(x)的单调增区间;(Ⅲ)若f(x)在(0,1)内有最大值,求a的取值范围.20.已知定义域为R的函数f(x)=是奇函数.(1)求a,b的值;(2)判断函数的单调性并证明;(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.21.已知函数f(x)=lnx+,其中a为大于零的常数.(Ⅰ)若函数f(x)在区间上的最小值;(Ⅲ)求证:对于任意的n≥2,n∈N*,都有lnn>++…+成立.山东省青岛二中2015届高三上学期10月段考数学试卷(理科)参考答案与试题解析一、选择题:本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知m、n∈R,则>成立的一个充要条件是()A.m>0>n B.n>m>0 C.m n(m﹣n)<0 D.m<n<0考点:不等关系与不等式;必要条件、充分条件与充要条件的判断.分析:由题意m、n∈R,则>,可将其移项、通分进行等价化简,从而求解.解答:解:∵>∴﹣>0∴>0∴m•n(n﹣m)>0∴m•n(m﹣n)<0.故选C.点评:此题主要考查不等关系与不等式之间的关系及必要条件、充分条件和充要条件的定义,是一道基础题.2.(5分)已知集合M={a,b,c,d},N={﹣2,0,1},若f是从M到N的映射,且f(a)=0,f(b)=﹣2,则这样的映射f共有()A.4个B.6个C.9个D.以上都不对考点:映射.专题:函数的性质及应用.分析:根据映射的定义,结合已知可得当f(a)=0,f(b)=﹣2时,集合M中元素c在集合N中的象有三种情况;集合M中元素d在集合N中的象也有三种情况;进而可得答案.解答:解:若f是从M到N的映射,且f(a)=0,f(b)=﹣2,则集合M中元素c在集合N中的象有三种情况;集合M中元素d在集合N中的象也有三种情况;故这样的映射f共有3×3=9种情况,故选:C点评:本题考查的知识点是映射的概念,正确理解映射的概念特别是A中任意元素在B 中都有唯一元素与之对应是解答的关键.3.(5分)设f(x)=,则f(f())=()A.e B.1C.2D.以上都不对考点:分段函数的应用;函数的值.专题:函数的性质及应用.分析:直接利用分段函数以及所求表达式由里及外逐步求解即可.解答:解:f(x)=,则f()=log3()=log39=2,f(f())=f(2)=e2﹣1=e.故选:A.点评:本题考查分段函数的应用,函数值的求法,考查指数与对数的运算,基本知识的考查.4.(5分)若log m n=﹣1,则3n+m的最小值是()A.2B.2C.2D.考点:基本不等式在最值问题中的应用.专题:计算题.分析:利用题设等式求得nm的值,进而利用基本不等式求得3n+m的最小值.解答:解:∵log m n=﹣1,∴m>0,m≠1,n>0,mn=1.∴3n+m≥2=2即3n+m的最小值为2.故选B.点评:本题主要考查了基本不等式在最值问题中的应用.解题的过程中一定要把握住“一正,二定,三相等”的原则.5.(5分)函数f(x)=sinx在区间上是增函数,且f(a)=﹣1,f(b)=1,则=()A.0B.C.﹣1 D.1考点:正弦函数的单调性.专题:计算题.分析:根据正弦函数的单调性,且f(a)=﹣1,f(b)=1,可采用特殊值法令a=﹣,b=,代入即可求得答案.解答:解:∵函数f(x)=sinx在区间上单调增,且f(a)=﹣1,f(b)=1∴令a=﹣,b=则=1故选D点评:本题主要考查了正弦函数的单调性.作为选择和填空的题型可采用特殊值法,有时能较快的解决问题.6.(5分)设函数f(x)=log a x(a>0且a≠1),若f(x1•x2•x3…x2015)=50,则f(x12)+f (x22)+f(x32)+…+f(x20152)的值等于()A.10 B.100 C.1000 D.2015考点:对数的运算性质.专题:函数的性质及应用.分析:利用对数的运算法则即可得出.解答:解:∵f(x1•x2•x3…x2015)=50,∴log a(x1x2…x n)=50∵f(x12)+f(x22)+f(x32)+…+f(x20152)==2log a(x1x2…x n)=100.故选:B.点评:本题考查了对数的运算法则,属于基础题.7.(5分)设函数f(x)=,集合M={x|f(x)<0},P={x|f′(x)≥0},M是P的真子集,则实数a的取值范围是()A.(﹣∞,1)B.(0,1)C.(1,+∞)D.时,f(x)=x2﹣2x,则当x∈时,f(x)的最小值是()A.﹣1 B.C.D.考点:函数的最值及其几何意义;函数的周期性.专题:计算题;压轴题;转化思想;配方法.分析:定义在R上的函数f(x)满足f(x+2)=3f(x),可得出f(x﹣2)=f(x),由此关系求出求出x∈上的解析式,再配方求其最值解答:解:由题意定义在R上的函数f(x)满足f(x+2)=3f(x),任取x∈,则f(x)=f(x+2)=f(x+4)由于x+4∈,当x∈时,f(x)=x2﹣2x,故f(x)=f(x+2)=f(x+4)===,x∈当x=﹣3时,f(x)的最小值是故选D点评:本题考查函数的最值及其几何意义,解题的关键是正确正解定义在R上的函数f (x)满足f(x+2)=3f(x),且由此关系求出x∈上的解析式,做题时要善于利用恒等式9.(5分)函数y=a|x|与y=sinax(a>0且a≠1)在同一直角坐标系下的图象可能是()A.B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:结合函数图象的对折变换法则和正弦型函数的伸缩变换,分当a>1时和当0<a<1时两种情况,分析两个函数的图象,比照后,可得答案.解答:解:当a>1时,函数y=a|x|与y=sinax(a>0且a≠1)在同一直角坐标系下的图象为:当0<a<1时,函数y=a|x|与y=sinax(a>0且a≠1)在同一直角坐标系下的图象为:比照后,发现D满足第一种情况,故选D点评:本题考查的知识点是函数的图象,其中熟练掌握函数图象的对折变换及伸缩变换是解答的关键.10.(5分)对实数a与b,定义新运算“⊗”:.设函数f(x)=(x2﹣2)⊗(x﹣x2),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.B.C.D.考点:函数与方程的综合运用.专题:函数的性质及应用.分析:根据定义的运算法则化简函数f(x)=(x2﹣2)⊗(x﹣x2)的解析式,并求出f (x)的取值范围,函数y=f(x)﹣c的图象与x轴恰有两个公共点转化为y=f(x),y=c图象的交点问题,结合图象求得实数c的取值范围.解答:解:∵,∴函数f(x)=(x2﹣2)⊗(x﹣x2)=,由图可知,当c∈函数f(x)与y=c的图象有两个公共点,∴c的取值范围是,故选B.点评:本题考查二次函数的图象特征、函数与方程的综合运用,及数形结合的思想.属于基础题.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)已知cos(x+)=,则sin2x的值为.考点:两角和与差的余弦函数;二倍角的正弦.专题:三角函数的求值.分析:利用诱导公式与二倍角的余弦即可求得sin2x的值.解答:解:∵cos(x+)=,∴﹣sin2x=cos2(x+)=2cos2(x+)﹣1=2×()2﹣1=﹣,∴sin2x=.故答案为:.点评:本题考查诱导公式与二倍角的余弦,考查转化思想.12.(5分)曲线y=x与y=x2﹣2x围成区域的面积为.考点:定积分.专题:导数的综合应用.分析:联立方程组求出积分的上限和下限,结合积分的几何意义即可得到结论.解答:解:由曲线y=x与y=x2﹣2x,得x2﹣3x=0,解得x=0或x=3,则根据积分的几何意义可知所求的几何面积S===()|=;故答案为:.点评:本题主要考查积分的应用,作出对应的图象,求出积分上限和下限,是解决本题的关键.13.(5分)已知a,b都是正实数,函数y=2ae x+b的图象过(0,2)点,则+的最小值为.考点:基本不等式.专题:不等式的解法及应用.分析:函数y=2ae x+b的图象过(0,2)点,可得2=2a+b.再利用“乘1法”和基本不等式的性质即可得出.解答:解:∵函数y=2ae x+b的图象过(0,2)点,∴2=2a+b.∵a,b都是正实数,∴+===,当且仅当b=a时取等号.∴+的最小值为.故答案为:.点评:本题考查了指数函数的性质、“乘1法”和基本不等式的性质,属于基础题.14.(5分)已知偶函数y=f(x)(x∈R)满足f(x)=f(2﹣x),且当x∈时,f(x)=x2,则函数y=f(x)与y=log7x的图象的交点个数为6.考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:根据题意可得函数y=f(x)(x∈R)是以2为周期的周期函数,然后在同一坐标系中画出函数y=f(x)与y=log7x的图象,利用图象法得到答案.解答:解:∵偶函数y=f(x)(x∈R)满足f(x)=f(2﹣x),∴f(x)=f(2﹣x)=f(x﹣2),∴函数y=f(x)(x∈R)是以2为周期的周期函数,又∵当x∈时,f(x)=x2,故可以在同一坐标系中画出函数y=f(x)与函数y=log7x的图象,如下图所示:结合图象可得函数y=f(x)与y=log7x的图象的交点个数为6故答案为:6点评:本题考查函数的零点,数形结合是解决问题的关键,属中档题.15.(5分)设函数f(x)=,对任意x1、x2∈(0,+∞),不等式恒成立,则正数k的取值范围是k≥1.考点:函数恒成立问题.专题:计算题.分析:当x>0时,=,利用基本不等式可求f(x)的最小值,对函数g(x)求导,利用导数研究函数的单调性,进而可求g(x)的最大值,由恒成立且k>0,则,可求解答:解:∵当x>0时,==2e∴x1∈(0,+∞)时,函数f(x1)有最小值2e∵∴=当x<1时,g′(x)>0,则函数g(x)在(0,1)上单调递增当x>1时,g′(x)<0,则函数在(1,+∞)上单调递减∴x=1时,函数g(x)有最大值g(1)=e则有x1、x2∈(0,+∞),f(x1)min=2e>g(x2)max=e∵恒成立且k>0,∴∴k≥1故答案为k≥1点评:本题主要考查了利用基本不等式求解函数的最值,导数在函数的单调性,最值求解中的应用是解答本题的另一重要方法,函数的恒成立问题的转化,本题具有一定的难度三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤16.已知集合A={y|y=()x﹣3()x+1+1,x∈(﹣1,2)},B={x|x﹣m2|≥},命题p:x∈A,命题q:x∈B,并且命题p是命题q的充分条件,求实数m的取值范围.考点:必要条件、充分条件与充要条件的判断;复合命题的真假.专题:简易逻辑.分析:求出集合A,B,根据充分条件和必要条件的定义和关系即可得到结论.解答:解:y=()x﹣3()x+1+1=y=2+()x+1=2+,∵x∈(﹣1,2)},∴<()x<2,∴<y<8,即A=(,8),由B={x|x﹣m2|≥},得B={x|x≥m2+或x≤m2﹣},若命题p是命题q的充分条件,∴A⊊B,即m2+,即m2≤,即≤m≤,或者m2﹣≤8,m2,即,综上≤m≤.点评:本题主要考查充分条件和必要条件的应用,根据不等式的性质求出对应的集合是解决本题的关键.17.若函数f(x)=lnx,若对所有的x∈分析:方法一、由题意得转化为:x∈∴x﹣lnx﹣1≥e﹣lne﹣1=e﹣2>0,即h′(x)>0,则h(x)在上的取值范围.考点:函数y=Asin(ωx+φ)的图象变换;三角函数中的恒等变换应用.专题:计算题.分析:(Ⅰ)先根据倍角公式和两角和公式,对函数进行化简,再利用T=,进而求得ω(Ⅱ)由(Ⅰ)可得函数f(x)的解析式,再根据正弦函数的单调性进而求得函数f(x)的范围.解答:解:(Ⅰ)==.∵函数f(x)的最小正周期为π,且ω>0,∴,解得ω=1.(Ⅱ)由(Ⅰ)得.∵,∴,∴.∴,即f(x)的取值范围为.点评:本题主要考查函数y=Asin(ωx+φ)的图象,三角函数式恒等变形,三角函数的值域.公式的记忆,范围的确定,符号的确定是容易出错的地方.19.已知函数f(x)=,其中a∈R.(Ⅰ)当a=1时,求曲线y=f(x)在原点处的切线方程;(Ⅱ)求f(x)的单调增区间;(Ⅲ)若f(x)在(0,1)内有最大值,求a的取值范围.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.专题:导数的概念及应用;导数的综合应用.分析:(Ⅰ)首先求出函数在原点处的切线的斜率,进一步求出切线方程.(Ⅱ)利用分类讨论思想进行具体的操作,分别令①a=0②a≠0,进行讨论,求的单调增区间.(Ⅲ)利用(Ⅱ)的结论直接求出函数在(0,1)内有最大值只需满足:即可解得结果.解答:解:(Ⅰ)函数f(x)=,当a=1时,f(x)=则:则:f′(0)=2曲线y=f(x)在原点处的切线方程为:y=2x(Ⅱ)函数f(x)=则:=﹣(1)当a=0时,,解得:x>0(2)当a≠0时令f′(x)=0,解得:①当a<0时,函数的增区间为:(﹣∞,)和(﹣a,+∞)②当a>0时,函数的增区间为:(﹣a,)(Ⅲ)根据(2)的结论函数在(0,1)内有最大值只需满足:即可解得:a>1故a的范围是:a>1点评:本题考查的知识要点:利用导数求函数的切线方程,及函数的单调区间,对参数进行讨论是本题的重点.属于中等题型.20.已知定义域为R的函数f(x)=是奇函数.(1)求a,b的值;(2)判断函数的单调性并证明;(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.考点:函数单调性的性质;函数单调性的判断与证明.专题:综合题;函数的性质及应用.分析:(1)由f(x)为R上的奇函数得f(0)=0,f(﹣1)=﹣f(1),解出方程可得a,b值;(2)由(1)知f(x)==﹣,利用单调性定义可作出判断;(3)由f(x)的奇偶性可得,f(t2﹣2t)+f(2t2﹣k)<0等价于f(t2﹣2t)<﹣f(2t2﹣k)=f(k﹣2t2),根据单调性可去掉符号“f”,转化为函数最值解决即可;解答:解:(1)因为f(x)为R上的奇函数,所以f(0)=0,即=0,解得b=1,由f(﹣1)=﹣f(1),得,解得a=2,所以a=2,b=1;(2)f(x)为R上的减函数,证明如下:由(1)知f(x)==﹣,设x1<x2,则f(x1)﹣f(x2)=(﹣)﹣(﹣)=,因为x1<x2,所以>0,,+1>0,所以f(x1)﹣f(x2)>0,即f(x1)>f(x2),所以f(x)为减函数;(3)因为f(x)为奇函数,所以f(t2﹣2t)+f(2t2﹣k)<0可化为f(t2﹣2t)<﹣f(2t2﹣k)=f(k﹣2t2),又由(2)知f(x)为减函数,所以t2﹣2t>k﹣2t2,即3t2﹣2t>k恒成立,而3t2﹣2t=3﹣,所以k<.点评:本题考查函数单调性的判断及其应用,考查函数恒成立问题,考查学生解决问题的能力.21.已知函数f(x)=lnx+,其中a为大于零的常数.(Ⅰ)若函数f(x)在区间上的最小值;(Ⅲ)求证:对于任意的n≥2,n∈N*,都有lnn>++…+成立.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.专题:计算题;证明题;导数的综合应用;不等式.分析:(Ⅰ)求导,将函数f(x)在区间上的单调性,从而确定函数f(x)在区间上的最小值;(Ⅲ)注意到当a=1时,f(x)=lnx+﹣1在区间++…+(ln3﹣ln2)+(ln2﹣ln1)>++…+,利用放缩法证明对于任意的n≥2,n∈N*,都有lnn>++…+成立.解答:解:(Ⅰ)由题意,f′(x)=﹣=,∵a为大于零的常数,若使函数f(x)在区间上单调递增,则f min(x)=f(1)=0;②当0时,f′(x)在区间恒不大于0,f(x)在区间上单调递减,则f min(x)=f(2)=ln2﹣;③当<a<1时,令f′(x)=0可解得,x=∈(1,2);易知f(x)在区间单调递减,在上单调递增,则f min(x)=f()=ln+1﹣;综上所述,①当a≥1时,f min(x)=0;②当<a<1时,f min(x)=ln+1﹣;③当0时,f min(x)=ln2﹣;(Ⅲ)证明:易知当a=1时,f(x)=lnx+﹣1在区间++…+(ln3﹣ln2)+(ln2﹣ln1)>++…+>++…+.∴对于任意的n≥2,n∈N*,都有lnn>++…+成立.点评:本题考查了函数的导数的综合应用,同时考查了不等式的证明,利用到了放缩法,同时考查了分类讨论的数学思想,属于难题.。

山东省临沂市沂水县第二中学2015届高三10月月考英语(文)试题

山东省临沂市沂水县第二中学2015届高三10月月考英语(文)试题

高三上学期第一次月考文科英语2014.10本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

满分为150分。

考试用时120分钟。

第I卷(共105分)第一部分英语知识运用(共两节, 满分55分)第一节语法和词汇知识(共10小题;每小题1. 5分, 满分15分)1. When ______ comes to research into heart disease and its effects on the body, we do not have adequate substitutes for the use of animals.A.it B. this C. that D. which2. —What has happened to you. Jim? —. I cut myself shaving this morning.A. It's nothingB. No ideaC. No problemD. Forget it3. V olunteering, as a way of building character, is popular among young people in western countries.A. seeingB. to seeC. seenD. being seen4. The development of China‟s economy ______ since the 80s of last century.A. had acceleratedB. has been acceleratingC. is acceleratingD. accelerated5. The written record of our conversation doesn‟t ______ what was actually said. There are a lot of mistakes.A. correspond withB. relate toC. look intoD. compare with6. I don‟t think she is a nice woman; I am _____ her empty talk.A. grateful forB. tired ofC. crazy aboutD. concerned about7. The Prime Minister criticized some celebrities for their ______ attitude towards drugs andaccused the m of thinking they were “above the law”.A. informalB. casualC. positiveD. immoral8. Environmental experts point out that ______ some serious problems such as global warming, but it also could threaten human life.A. not only does increasing pollution causeB. not only causes increasing pollutionC. not only increasing pollution causesD. not only increasing pollution does cause9. Without facts, a person can not form a correct opinion, for he needs to have actual knowledge ______his thinking .A. on which to be basedB. on which to baseC. which to be basedD.which to base10. I think it‟s better to give it a second thought so many of us consider it a risk.A. asB. beforeC. althoughD. once第二节完形填空(共30个小题;满分40分)第一篇(共l0小题;每小题l分, 满分l0分)My daughter and I went out for some shopping. While I was waiting to 11 , my daughter asked if she could wait for me at the door.Minutes later she returned to ask if she could give the l2 she had just bought to a man in the street, so there she went and l3 her sweets away. Another 2 minutes later, she l4 again to ask me for something else she could give to the man. I told her that I only had some biscuits for dessert, so she took them to the man and came back with a huge 15 on her face.When we got out of the shop I l6 that the “man” was an old man in his 80's. It looked like he was going to 17 the night there. We made eye contact(接触)and he thanked us a lot.On the way to the parking lot my daughter wanted to buy a drink for the old man, but I had no 18 . So I went to the cash machine, took some cash and my daughter gave it to the old man, so he could buy a drink. My daughter was over 19 when she came back from the old man.It was probably my daughter's first random act of 20 , and that was amazing.11. A. order B. pay C. leave D. rest12. A. sweets B. toys C. clothes D. drinks13. A. kept B. put C. threw D. gave14. A. cried B. waved C. returned D. went15. A. smile B. kiss C. gift D. feeling16. A. decided B. realized C. believed D. imagined17. A. enjoy B. make C. prepare D. spend18. A. choice B. idea C. change D. plan19. A. excited B. crazy C. angry D. smart20. A. politeness B. service C. honesty D. kindness 第二篇(共20小题:每小题1. 5分, 满分30分)I was out late watching a movie with a friend in Georgetown. By the time the 21 ended. It was 2 a. m. We walked to my car which was 22 across the street. When we arrived, I noticed something strange--the doors were 23 . I took a quick 24 of the car and was relieved to find everything undamaged, 25 one thing-my briefcase was gone. After a further search with my friend, I 26 the fact that it was gone, I considered myself incredibly 27 that nothing valuable was taken and nothing else in the car was 28 .The next day I 29 a surprising voice mail from a man. He said he had walked his dog in the morning and 30 a pile of papers and bills with my name all over them. I 31 him back immediately. He promised to 32 the materials back or I could pick them up. At first I asked him to send them, but then I 33 . We were in the same city and plus I didn‟t want to inconvenience him. Normally, it probably wouldn‟t be 34 to go to a stranger's house to 35 something up, but he gave me an 36 so I figured I was relativelysafe.I met the man and thanked him very much. He said he would 37 me if he found anything else. Words could not express my 38 of this stranger‟s kindness. I thought to myself-there‟s so much goodness in the world and there are so many people who 39 that inner goodness through acts kindness. Though it feels good to give kindness, it feels nice to 40 others want to give too.21. A. party B. movie C. meeting D. night22. A. driven B. stopped C. bought D. parked23. A. unlocked B. broken C. scratched D. changed24. A. charge B. attempt C. survey D. repair25. A. rather than B. along with C. as for D. except for26. A. declared B. accepted C. doubted D. predicted27. A. anxious B. confident C. fortunate D. satisfactory28. A. damaged B. attacked C. guarded D. emptied29. A. took B. got C. made D. met30. A. made out B. went through C. passed down D. came across31. A. turned B. fought C. called D. wrote32. A. bring B. find C. hold D. mail33. A. reconsidered B. discussed C. criticized D. remembered34. A. honest B. proud C. smart D. true35. A. took B. pick C. send D. put36. A. example B. excuse C. order D. address37. A. meet B. charge C. inform D. greet38. A. appreciation B. approval C. sympathy D. satisfaction39. A. search B. express C. drive D. remove40. A. force B. challenge C. help D. realize第二部分阅读理解(共25小题;每小题2分, 满分50分)ASan Francisco, unofficially regarded as one of the homeless capitals of the US, counts nearly 6,500 homeless people, with 4,300 living on the street.Among the many problems that the homeless face is little or no access to showers. San Francisco only has about 16 to 20 shower stations to accommodate them. But Doniece Sandoval has made it her task to change that.“Homelessness is something you can‟t really mi ss, ” the 51-year-old woman said. She started Lava Mae, a sort of showers on wheels, a new project that aims to turn old city buses into shower stations for the homeless.“One day I passed a woman in the street and she w as very dirty and basically crying, and I heard her say that she would never be clean. But I was wondering what her opportunities were to actually get clean,” Sandoval said.Sandoval was inspired to start Lava Mae. The project has already been welcomed with open arms in the city. The Transportation Agency has donated one bus for the cause and is willing to donate three more if the project succeeds. Sandoval hopes the first bus will be able to hit the road in May this year. The Public Commission has also agreed to let the buses plug into fire hydrants(消防龙头)around the city if Lava Mae pays for the water.One of Lava Mae‟s biggest supporters is Bevan Dufty, the director of Housing Opportunity, Partnerships & Engagement under the mayor of San Francisco. “For people who are unhoused, access to showers is very difficult. Shower buses are something that could potentially be deployed (部署)in response to an emergency, so it is relevant to all San Franciscans," Dufty said. “Doniece has done an incredible job as a citizen who cares about helping the poor. We are very excited to see Lava Mae become real soon. ”Each bus will have two shower stations and Sandoval expects that by 2015, they‟ll be able to provide 2000 showers a week.41. What problem does San Francisco face according to the text?A. The city has the most homeless people in the USA.B. There are no shower stations for the homeless in the city.C. It‟s hard for homeless people in the city to take showers.D. Few citizens in the city care about the homeless.42. What does the underlined word ''them” in Paragraph 2 refer to?A. City problems.B. Shower stations.C. Old buses.D. The homeless.43. Which of the following best describes Doniece Sandoval?A. Brave and independent.B. Caring and responsible.C. Honest and determined.D. Friendly and humorous.44. What can we learn from Dufty‟s words?A. All San Franciscans are excited to use Lava Mae.B. Emergencies in San Francisco will be prevented by Lava Mae.C. Dufty thinks highly of Doniece's way of helping the poor.D. The mayor of San Francisco will support Doniece financially.45. What can be a suitable title for the text?A. A newly invented way of showerB. Showers on Wheels for the HomelessC. The health problem of the homelessD. Lave Mae-a new name for old city busesBA new report from the United States surgeon general finds that smoking tobacco is even deadlier than had been known. The report says smoking causes birth diseases—a leading cause of death among babies. It also links smoking to cancer of the liver and colon, diabetes and other illnesses.The first U.S. surgeon general‟s report on tobacco and health was released in 1 964. It was the first scientific report to link smoking with lung cancer and heart disease. Now, 50 years later, Acting Surgeon General Boris Lushniak has released a new report. His report provides more evidence about smoking tobacco and how it can harm health.…‟If we‟re going to work together to achieve a society free of tobacco-related disease, this must be understood.‟‟ said Lushniak.The new report urges increased use of tobacco—control measures. The suggested controls include raising prices of cigarettes,and expanding bans on smoking in enclosed spaces.Doctor Lushniak also said smoking holds back the body‟s natural defenses for fighting disease. He said this increases a smoker‟s likelihood of getting an infectious disease.……One of the most disturbing findings is that the disease risks from smoking by women have risen sharply over the last fifty years. Women are now as likely to die from smoking as men,women smokers‟ risk of lung cancer is now the same as men, and more women die from chronic lung disease than men.‟‟ said Lushniak.The new report finds that those who do not smoke are at a higher risk for stroke if left unprotected from tobacco smoke. The latest research also shows damage to unborn children. Babies are more likely to be born with cleft palate(先天性腭裂)if the mother smokes. The chemicals in tobacco smoke can have lasting effects on brain development in a fetus(胎儿).The surgeon general would like to see more action to keep young people from developing a smoking habit. He supports higher prices on cigarettes,more anti-smoking media campaigns and more help for people who want to quit smoking.56. The new findings shows that smoking tobacco_________________.A. can cause lung cancer and heart diseaseB. has little to do with diabetes and other diseasesC. is the biggest health killer in the worldD. does greater harm than what had been widely known57. From the new report,we learn that_______________.A. mental disease is a number one cause of deaths among babiesB. smoking weakens the body‟s natural defensesC. women smokers have a higher risk of lung cancer than menD. tobacco smoke has no bad effect on unborn children58. The underlined word“this‟‟in Paragraph 3 refers to_____________.A. the evidence about smoking and how it harms healthB. a society free of tobacco-related diseasesC. increased use of tobacco—control measuresD. the first U. S. surgeon general’s report59. Which of the following will receive Lushniak‟s approval?A. Decreasing prices of cigarettes.B. Allowing smoking in enclosed spaces.C. More anti-smoking media campaigns.D. More help for people who smoke.60. What is the best title for the passage?A. Anti-smoking Media CampaignsB. The First U. S. Surgeon General‟s ReportC. Tobacco-control Measures Benefit WomenD. Smoking Causes More Health ProblemsCThe 16 operations W. Mitchell received after the motorcycle accident burned more than 65%of his body at age 46 left him unable to pick up a fork, dial a telephone or go to the bathroom without help. But Mitchell never believed he was defeated. “I am in charge of my own spacesh ip,”he said. “It‟s my up, my down. I could choose to see this situation as a setback or as starting poin t. ”Mitchell bought himself a home in Colorado, a plane and a bar. Later he teamed up with two friends and co-founded a wood burning stove company that grew to be the second largest privateemployer in his state. Six months later he was piloting the plane. Then four years after the motorcycle accident, the plane Mitchell was piloting crashed back onto the runway during takeoff, permanently paralyzing(使…瘫痪)him from the waist down.Still determined, Mitchell worked day and night to regain as much independence as possible. He was elected Mayor of Crested Butte, Colorado, to save the town from mineral mining that would ruin its beauty and environment.Despite his shocking looks and physical challenges, Mitchell began white water rafting(漂流), fell in love and married, earned a master‟s degree in public administration and con tinued flying, environmental activism and public speaking.Mitchell‟s unshakable positive mental attitude has earned him appearances on the “Today Show‟‟ and “Good Morn ing America” as well as feature articles in Parade, Time, The New York Times and other publications.Mitchell has done all these things and more after two horrible accidents left his face beyond recognition, his hands finger less and his legs thin:and motionless(不动)in a wheelchair. Then what can't we healthy guys achieve?51. What can we learn from the first paragraph?A. Mitchell couldn‟t face the fact that he was defeated.B. The operations Mitchell received made him hopeless.C. Mitchell was optimistic about what happened to him.D. Mitchell was in his spaceship when the accident occurred.52. What did Mirehell do after his first accident?A. He learned to pilot a plane.B. He was employed by a company.C. He began to drive a spaceship.D. He made another two new friends.53. What was the resul t of Mitchell‟s plane crash accident?A. His body under the waist co uldn‟t mo ve.B. He was elected mayor of Crested Butte.C. He became the hero of many publications.D. More than half of his body was burned.54. After the two horrible accidents, Mitchell .A. stopped flying, environmental protection and public speaking.B. co-founded a wood burning stove company with his friends.C. stopped to open mineral mining in Crested Butte.D. earned a master‟s degree in public administration.55. What has earned Mitchell appearances in many famous publications?A. His shocking looks.B. His strong determination.C. His physical challenges.D. His outstanding speaking talent.DGoing to college and living away from home for the first time can be terrible. Students tend to have higher academic achievements in college when they enjoy living in the dormitory. Most colleges and universities have many programs that help first-year students adjust to studying and living in a new community. Take advantage of these programs and make new friends as you adjust to your college life.. Greet and meet everyone in the dorm. Find out their class schedules and hobbies. You may be able to find study partners this way. Most students are just like you beingaway from their home the first time. Don't be afraid to knock on your neighbors' doors and introduce yourself. The residence(居住区)staff will also help you in adjusting to college life. Get to know them as soon as possible.Get along with your roommate. Your roommates can be either your lifelong friends or enemies. Try to be friends to them. Respect each other, including their space. Do not use your roommates‟ belongings without permission. Communicate among each other regarding your daily schedule, study or sleep habits and off campus guest visits. Always say hello.Get involved. To adjust to college life away from home, you need to got involved in college activities. Join clubs. Attend events that are hosted by your residence life and academic departments. Attend those events with your new friends. Most colleges have many events throughout the semester. Student union is a great place to meet new friends and learn about the upcoming events.Call home when you need to. College life can be very exciting in the beginning. Most students get lonely and homesick during the middle of the semester or during festivals, It is normal to feel sad. Call home or even visit home when you need to. Talk to your friends back home. Understand that many people love and support you and they are very proud of you.56. What does the text mainly tell us?A. Advice on how to adjust to college life.B. Things that can be done in a dormitory.C. Places to live in when going to a college.D. Ways of making friends with roommates.57. What can be proper to fill in the blank in Paragraph 2?A. Greet people everywhere.B. Meet new friends.C. Share your hobbies.D. Adjust to college life.58. Which of the following is not proper in getting along with your roommates?A. Say hello to them frequently.B. Respect them and their space.C. Use their belongings secretly.D. Know about their living habits.59. According to the text, when you feel homesick at college, you can .A. find study partnersB. join clubsC. call your parentsD. talk to new friends60. In which part of a website might the text appear?A. Style and fashion.B. Science and technology.C. Sports and health.D. Culture and education.EMicrosoft has a problem: It desperately wants the remaining Windows XP users to upgrade to a newer version of the operating system but a good many of them still h aven‟t started. The latest numbers from Net Market show that Windows XP still accounts for around 29. 5%of all desktops in use even though Microsoft is due to end support for the l3-Year-old platform on April 8th. ZDNet reports that Microsoft plans to force remaining XP users to start next week by sending them notices reminding them again that it will end XP support within a month.However, as Computerworld reports, Microsoft may have a tough time convincing some Windows XP users to upgrade because it's trying to sell them on Windows 8, the newest operating system that has angered many longtime PC users by removing the traditional Start menu and by adding the interface(界面)a special feature. Computerworld writes that many Windows users expressed anger last month when Microsoft asked them to help switch as many people asthey could from Windows XP to Windows 8 partly because Microsoft hasn‟t offered an y sort of discount for Windows XP users making the switch.This is particularly tiresome, these users said, because switching from XP to Windows 8 won‟t just require a software upgrade but will instead likely force them to buy new machines capable(能够)of running Microsoft‟s new operating system. Some users were also annoyed that Microsoft only mentioned Windows 8 and not Windows 7 as upgrade possibilities.In the end, it looks like when Microsoft ends support for Windows XP next month there will still be a large part of the desktop PC world using the platform. Hackers who have been saving up all their best new malware(恶意软件)for the day when Windows XP support ends are about to have a field day.61. What problem does Microsoft have now?A. Windows XP is out of date and needs improvement.B. Windows 8 runs worse than Windows XP.C. No people like to upgrade their operating system.D. Lots of users refuse to switch from XP to Windows62. How will Microsoft remind users of the stop of XP support?A. By sending them notices.B. By sending them daily emails.C. By adding the interface a special feature.D. By removing the traditional Start menu.63. Which is probably one of the reasons why users dislike Window 8?A. Microsoft hasn‟t off ered any discount for it.B. They like Window 7 more than Window 8.C. Microsoft refuses to offer them a new machine.D. It‟s impossible for them to use the new operating system.64. What does the underlined phrase “have a field day” probably mean in the last paragraph?A. Show up without warning.B. Make rapid progress.C. Make full use of the opportunity.D. Come to an end completely.65. What can be inferred from the text?A. Windows XP will completely be out of use in a month.B. Windows XP will still be in use for a period of time.C. Windows 8 will have a longer history than Windows XP.D. Windows 7 will easily be attacked by Hackers.第Ⅱ卷(共45分_)第三部分书面表达(共两节, 满分45分)第一节阅读表达(共5小题;第68题4分, 第70题2分, 其余每小题3分, 满分15分) 阅读下面短文并回答问题, 然后将答案写到答题卡相应的位置上, (请注意问题后面的词数要求)。

沂水二中高三阶段检测理科数学 Word版含答案

沂水二中高三阶段检测理科数学 Word版含答案

沂水二中高三阶段检测理科数学 命题:常发友 2013.12一、选择题:本共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的. 1. 已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m =( )A .0或 3B .0或3C .1或 3D .1或3 2..已知各项均为正数的等比数列{n a }中,1237895,10,a a a a a a ==则456a a a =( )A. B.7 C.6 3. 已知直线l ⊥平面α,直线m ∥平面β,则“//αβ”是“l m ⊥”的 (A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既非充分也非必要条件4. 已知a>0且a≠1,若函数f(x)=log a (x +x 2+k)在(-∞,+∞)上既是奇函数,又是增函数,则函数g(x)=log a |x -k|的图象是( )5.已知n m ,是两条不同的直线,βα,是两个不同的平面,则下列命题中的真命题是( ) A .若n m n m //,//,//,//则βαβα B .若则,,//,//βαβα⊥n m n m ⊥C .若n m n m //,,,则βαβα⊥⊥⊥D .若,//,//,βαβαn m ⊥则n m ⊥6.一直线EF 与平行四边形ABCD 的两边AB ,AD 分别交于E 、F 两点,且交其对角线于K ,其中AE →=13AB →,AF→=12AD →,AK →=λAC →,则λ的值为( )A.15B.14C.13D.127.某几何体的三视图如右图所示,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,该几何体的体积为A .63π B .33π C .23π D .π3 8.在平面直角坐标系xoy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =+上至少存在一点,使得以该点为圆心,半径为1的圆与圆C 有公共点,则k 的最小值是 A.43-B.54-C.35-D.53-9. 已知f (x )是定义在R 上的偶函数,且以2为周期,则“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的( )A .既不充分也不必要的条件B .充分而不必要的条件C .必要而不充分的条件D .充要条件10.设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈⎣⎢⎡⎦⎥⎤0,5π12,则导数f ′(1)的取值范围是 ( )A .[-2,2]B .[2,3]C .[3,2]D .[2,2]11.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( )A .2214536x y += B .2213627x y += C .2212718x y += D .221189x y +=12.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞 向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 变点第二次变轨进入仍以月球球心F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:①1122a c a c +=+;②1122a c a c -=-;③1212c a a c >;④11c a <22c a ,其中正确的序号是( ) A 、①③ B 、②③ C 、①④D 、②④第Ⅱ卷 非选择题(共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中相应题的横线上. 13.在ABC ∆中,sin ,sin ,sin A B C 依次成等比数列,则角B 的取值范围是14.已知ABC ∆中4,2AC AB ==错误!未找到引用源。

山东省临沂市沂水二中北校区2015届高三上学期10月月考数学试卷(理科)(Word版含解析)

山东省临沂市沂水二中北校区2015届高三上学期10月月考数学试卷(理科)(Word版含解析)

山东省临沂市沂水二中北校区2015届高三上学期10月月考数学试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(5分)已知集合A={x|1<x<3},B={x|1<log2x<2},则A∩B等于()A.{x|0<x<3} B.{x|2<x<3} C.{x|1<x<3} D.{x|1<x<4} 2.(5分)设x∈R,向量=(x,1),=(1,﹣2),且⊥,则|+|=()A.B.C.2D.103.(5分)在△ABC中,设命题p:==,命题q:△ABC是等边三角形,那么命题p是命题q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)设,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.b>a>c D.b>c>a5.(5分)已知函数f(x)=ax﹣x3在区间[1,+∞)上单调递减,则a的最大值是()A.0B.1C.2D.36.(5分)已知f(x)是定义在R上的奇函数,且x≥0时f(x)的图象如图所示,则f(﹣2)=()A.﹣3 B.﹣2 C.﹣1 D.27.(5分)函数y=sin(x﹣)的一条对称轴可以是直线()A.x=B.x=πC.x=﹣πD.x=8.(5分)在△ABC中,角A、B、C所对应的边分别为a、b、c,已知bcosC+ccosB=2b,则=()A.2B.C.D.19.(5分)函数y=2x﹣x2的图象大致是()A.B.C.D.10.(5分)若函数y=f(x)(x∈R)满足f(x﹣2)=f(x),且x∈[﹣1,1]时,f(x)=1﹣x2,函数g(x)=,则函数h(x)=f(x)﹣g(x)在区间[﹣5,6]内的零点的个数为()A.13 B.8C.9D.10二、填空题(本大题共5小题,每小题5分,共25分).11.(5分)在数列{a n}中,a1=15,3a n+1=3a n﹣2(n∈N+),则该数列中相邻两项的乘积是负数的为.12.(5分)向量=(1,sinθ),=(1,cosθ),若•=,则sin2θ=.13.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是.14.(5分)设f1(x)=cosx,定义f n+1(x)为f n(x)的导数,即f n+1(x)=f′n(x)n∈N*,若△ABC的内角A满足f1(A)+f2(A)+…+f2013(A)=,则sin2A的值是.15.(5分)给出下列命题:①函数y=cos(2x﹣)图象的一条对称轴是x=②在同一坐标系中,函数y=sinx与y=lgx的交点个数为3个;③将函数y=sin(2x+)的图象向右平移个单位长度可得到函数y=sin2x的图象;④存在实数x,使得等式sinx+cosx=成立;其中正确的命题为(写出所有正确命题的序号).三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤). 16.(12分)已知集合A={x|2x<8},B={x|x2﹣2x﹣8<0},C={x|a<x<a+1}.(Ⅰ)求集合A∩B;(Ⅱ)若C⊆B,求实数a的取值范围.17.(12分)设命题p:函数y=kx+1在R上是增函数,命题q:曲线y=x2+(2k﹣3)x+1与x轴交于不同的两点,如果p∧q是假命题,p∨q是真命题,求k的取值范围.18.(12分)在平面直角坐标系中,角α,β的始边为x轴的非负半轴,点P(1,2cos2θ)在角α的终边上,点Q(sin2θ,﹣1)在角β的终边上,且.(1)求cos2θ;(2)求P,Q的坐标并求sin(α+β)的值.19.(12分)在△ABC中,a,b,c分别是角A,B,C的对边,已知3(b2+c2)=3a2+2bc.(Ⅰ)若,求tanC的大小;(Ⅱ)若a=2,△ABC的面积,且b>c,求b,c.20.(13分)定义在实数集上的函数f(x)=x2+x,g(x)=x3﹣2x+m.(1)求函数f(x)的图象在x=1处的切线方程;(2)若f(x)≥g(x)对任意的x∈[﹣4,4]恒成立,求实数m的取值范围.21.(14分)已知点A(x1,f(x1)),B(x2,f(x2))是函数f(x)=2sin(ωx+φ)图象上的任意两点,且角φ的终边经过点,若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为.(1)求函数f(x)的解析式;(2)求函数f(x)的单调递增区间;(3)当时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.山东省临沂市沂水二中北校区2015届高三上学期10月月考数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(5分)已知集合A={x|1<x<3},B={x|1<log2x<2},则A∩B等于()A.{x|0<x<3} B.{x|2<x<3} C.{x|1<x<3} D.{x|1<x<4}考点:交集及其运算.专题:计算题.分析:直接求出集合B,然后求出A∩B即可.解答:解:因为集合A={x|1<x<3},B={x|1<log2x<2}={x|2<x<4},所以A∩B={x|2<x<3}.故选B.点评:本题考查对数函数的基本性质,集合的基本运算,考查计算能力.2.(5分)设x∈R,向量=(x,1),=(1,﹣2),且⊥,则|+|=()A.B.C.2D.10考点:平面向量数量积的坐标表示、模、夹角.专题:计算题.分析:通过向量的垂直,求出向量,推出,然后求出模.解答:解:因为x∈R,向量=(x,1),=(1,﹣2),且⊥,所以x﹣2=0,所以=(2,1),所以=(3,﹣1),所以|+|=,故选B.点评:本题考查向量的基本运算,模的求法,考查计算能力.3.(5分)在△ABC中,设命题p:==,命题q:△ABC是等边三角形,那么命题p是命题q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据正弦定理,利用充分条件和必要条件的定义进行判断即可得到结论.解答:解:由正弦定理可知,若===t,则,即a=tc,b=ta,c=bt,即abc=t3abc,即t=1,则a=b=c,即△ABC是等边三角形,若△ABC是等边三角形,则A=B=C=,则===1成立,即命题p是命题q的充要条件,故选:C点评:本题主要考查充分条件和必要条件的判断,利用正弦定理是解决本题的关键.4.(5分)设,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.b>a>c D.b>c>a考点:对数值大小的比较;不等式比较大小.分析:根据指数函数和对数函数的单调性判断出abc的范围即可得到答案.解答:解:∵a=20.1>20=10=ln1<b=ln<lne=1c=<log31=0∴a>b>c故选A.点评:本题主要考查指数函数和对数函数的单调性,即当底数大于1时单调递增,当底数大于0小于1时单调递减.5.(5分)已知函数f(x)=ax﹣x3在区间[1,+∞)上单调递减,则a的最大值是()A.0B.1C.2D.3考点:利用导数研究函数的单调性.专题:计算题.分析:根据f(x)在区间[1,+∞)上单调递减,可得f'(x)≥0在区间[1,+∞)上恒成立,建立等量关系,求出参数a最大值即可.解答:解:∵f(x)=ax﹣x3∴f′(x)=a﹣3x2∵函数f(x)=ax﹣x3在区间[1,+∞)上单调递减,∴f′(x)=a﹣3x2≤0在区间[1,+∞)上恒成立,∴a≤3x2在区间[1,+∞)上恒成立,∴a≤3.故选D.点评:本小题主要考查运用导数研究函数的单调性及恒成立等基础知识,考查综合分析和解决问题的能力.6.(5分)已知f(x)是定义在R上的奇函数,且x≥0时f(x)的图象如图所示,则f(﹣2)=()A.﹣3 B.﹣2 C.﹣1 D.2考点:函数奇偶性的性质.专题:函数的性质及应用.分析:根据函数奇偶性的性质结合函数图象即可得到结论.解答:解:∵函数f(x)是定义在R上的奇函数,∴f(﹣2)=﹣f(2)=﹣2,故选:B点评:本题主要考查函数值的计算,根据函数的奇偶性以及函数图象进行转化时解决本题的关键.7.(5分)函数y=sin(x﹣)的一条对称轴可以是直线()A.x=B.x=πC.x=﹣πD.x=考点:正弦函数的对称性.专题:三角函数的图像与性质.分析:利用正弦函数的对称性可求得其对称轴方程为:x=kπ+(k∈Z),从而可得答案.解答:解:由x﹣=kπ+(k∈Z)得:x=kπ+(k∈Z),∴函数y=sin(x﹣)的对称轴方程为:x=kπ+(k∈Z),当k=1时,x=π,∴方程为x=π的直线是函数y=sin(x﹣)的一条对称轴,故选:B.点评:本题考查正弦函数的对称性,求得其对称轴方程为:x=kπ+(k∈Z)是关键,属于中档题.8.(5分)在△ABC中,角A、B、C所对应的边分别为a、b、c,已知bcosC+ccosB=2b,则=()A.2B.C.D.1考点:正弦定理.专题:解三角形.分析:利用正弦定理把已知等式中的边转化成角的正弦,进而利用两角和公式对等号左边进行化简求得sinA和sinB的关系,进而利用正弦定理求得a和b的关系.解答:解:∵bcosC+ccosB=2b,∴sinBcosC+cosBsinC=sin(B+C)=sinA=2sinB,∴=2,由正弦定理知=,∴==2,故选:A.点评:本题主要考查了正弦定理的应用,三角函数恒等变换的应用.考查了学生分析和运算能力.9.(5分)函数y=2x﹣x2的图象大致是()A.B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:分别画出y=2x,y=x2的图象,由图象可以函数与x轴有三个交点,且当x<﹣1时,y<0,故排除BCD,问题得以解决.解答:解:y=2x﹣x2,令y=0,则2x﹣x2=0,分别画出y=2x,y=x2的图象,如图所示,由图象可知,有3个交点,∴函数y=2x﹣x2的图象与x轴有3个交点,故排除BC,当x<﹣1时,y<0,故排除D故选:A.点评:本题主要考查了图象的识别和画法,关键是掌握指数函数和幂函数的图象,属于基础题.10.(5分)若函数y=f(x)(x∈R)满足f(x﹣2)=f(x),且x∈[﹣1,1]时,f(x)=1﹣x2,函数g(x)=,则函数h(x)=f(x)﹣g(x)在区间[﹣5,6]内的零点的个数为()A.13 B.8C.9D.10考点:函数的零点;函数的周期性.专题:函数的性质及应用.分析:由f(x+2)=f(x),知函数y=f(x)(x∈R)是周期为2的函数,进而根据f(x)=1﹣x2与函数g(x)=的图象得到交点为9个.解答:解:因为f(x﹣2)=f(x),所以函数y=f(x)(x∈R)是周期为2函数.因为x∈[﹣1,1]时,f(x)=1﹣x2,所以作出它的图象,利用函数y=f(x)(x∈R)是周期为2函数,可作出y=f(x)在区间[﹣5,6]上的图象,如图所示:故函数h(x)=f(x)﹣g(x)在区间[﹣5,6]内的零点的个数为9,故选C.点评:本题的考点是函数零点与方程根的关系,主要考查函数零点的定义,关键是正确作出函数图象,注意掌握周期函数的一些常见结论:若f(x+a)=f(x),则周期为a;若f(x+a)=﹣f(x),则周期为2a;若f(x+a)=,则周期为2a,属于基础题.二、填空题(本大题共5小题,每小题5分,共25分).11.(5分)在数列{a n}中,a1=15,3a n+1=3a n﹣2(n∈N+),则该数列中相邻两项的乘积是负数的为a23•a24.考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:把等式3a n+1=3a n﹣2变形后得到a n+1﹣a n等于常数,即此数列为首项为15,公差为﹣的等差数列,写出等差数列的通项公式,令通项公式小于0列出关于n的不等式,求出不等式的解集中的最小正整数解,即可得到从这项开始,数列的各项为负,这些之前各项为正,得到该数列中相邻的两项乘积是负数的项.解答:解:由3a n+1=3a n﹣2,得到公差d=a n+1﹣a n=﹣,又a1=15,则数列{a n}是以15为首项,﹣为公差的等差数列,所以a n=15﹣(n﹣1)=﹣n+,令a n=﹣n+<0,解得n>,即数列{a n}从24项开始变为负数,所以该数列中相邻的两项乘积是负数的项是a23a24.故答案为:a23•a24点评:此题考查学生灵活运用等差数列的通项公式化简求值,掌握确定一个数列为等差数列的方法,是一道综合题.12.(5分)向量=(1,sinθ),=(1,cosθ),若•=,则sin2θ=.考点:平面向量的综合题.专题:计算题.分析:由==可求解答:解:∵==∴sin2θ=故答案为:点评:本题主要考查了向量的数量积的坐标表示,三角函数的二倍角公式的应用,属于基础试题13.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0).考点:二次函数的性质.专题:函数的性质及应用.分析:由条件利用二次函数的性质可得,由此求得m的范围.解答:解:∵二次函数f(x)=x2+mx﹣1的图象开口向上,对于任意x∈[m,m+1],都有f(x)<0成立,∴,即,解得﹣<m<0,故答案为:(﹣,0).点评:本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题.14.(5分)设f1(x)=cosx,定义f n+1(x)为f n(x)的导数,即f n+1(x)=f′n(x)n∈N*,若△ABC的内角A满足f1(A)+f2(A)+…+f2013(A)=,则sin2A的值是.考点:导数的运算.专题:导数的综合应用.分析:由已知分别求出f2(x),f3(x),f4(x),f5(x),可得从第五项开始,f n(x)的解析式重复出现,每4次一循环,结合f1(A)+f2(A)+…+f2013(A)=求出cosA,进一步得到sinA,则答案可求.解答:解:∵f1(x)=cosx,∴f2(x)=f1′(x)=﹣sinx,f3(x)=f2′(x)=﹣cosx,f4(x)=f3′(x)=sinx,f5(x)=f4′(x)=cosx,…从第五项开始,f n(x)的解析式重复出现,每4次一循环.∴f1(x)+f2(x)+f3(x)+f4(x)=0.∴f2013(x)=f4×503+1(x)=f1(x)=cosx.∵f1(A)+f2(A)+…+f2013(A)=.∴cosA=.∵A为三角形的内角,∴sinA=.∴sin2A=2sinAcosA=.故答案为:.点评:本题考查了导数及其运算,关键是找到函数解析式规律性,是中档题.15.(5分)给出下列命题:①函数y=cos(2x﹣)图象的一条对称轴是x=②在同一坐标系中,函数y=sinx与y=lgx的交点个数为3个;③将函数y=sin(2x+)的图象向右平移个单位长度可得到函数y=sin2x的图象;④存在实数x,使得等式sinx+cosx=成立;其中正确的命题为①②(写出所有正确命题的序号).考点:命题的真假判断与应用.专题:计算题;简易逻辑.分析:①由x=时,y=﹣1,可得结论;②利用函数图象,求解;③根据图象的平移规律可得结论;④根据sinx+cosx=sin(x+)≤<,可以判断.解答:解:①函数y=cos(2x﹣),x=时,y=﹣1,所以函数y=cos(2x﹣)图象的一条对称轴是x=,正确;②在同一坐标系中,画出函数y=sinx和y=lgx的图象,所以结合图象易知这两个函数的图象有3交点,正确;③将函数y=sin(2x+)的图象向右平移个单位长度可得到函数y=sin[2(x﹣)+],即y=sin(2x﹣)的图象,故不正确;④sinx+cosx=sin(x+)≤<,故不存在实数x,使得等式sinx+cosx=成立;故答案为:①②.点评:本题利用三角函数图象与性质,考查命题的真假判断与应用,考查学生分析解决问题的能力,属于中档题.三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤). 16.(12分)已知集合A={x|2x<8},B={x|x2﹣2x﹣8<0},C={x|a<x<a+1}.(Ⅰ)求集合A∩B;(Ⅱ)若C⊆B,求实数a的取值范围.考点:集合的包含关系判断及应用.专题:集合.分析:(I)解指数不等式求出A,解二次不等式求出B,进而可得集合A∩B;(Ⅱ)若C⊆B,则,解不等式组可得实数a的取值范围.解答:解:(Ⅰ)由2x<8,得2x<23,x<3.(3分)解不等式x2﹣2x﹣8<0,得(x﹣4)(x+2)<0,所以﹣2<x<4.(6分)所以A={x|x<3},B={x|﹣2<x<4},所以A∩B={x|﹣2<x<3}.(9分)(Ⅱ)因为C⊆B,所以(11分)解得﹣2≤a≤3.所以,实数a的取值范围是[﹣2,3].(13分)点评:本题考查的知识点是集合的包含关系判断及应用,集合的交集运算,解不等式,难度不大,属于基础题.17.(12分)设命题p:函数y=kx+1在R上是增函数,命题q:曲线y=x2+(2k﹣3)x+1与x轴交于不同的两点,如果p∧q是假命题,p∨q是真命题,求k的取值范围.考点:复合命题的真假.专题:简易逻辑.分析:易得p:k>0,q:或,由p∧q是假命题,p∨q是真命题,可得p,q一真一假,分别可得k的不等式组,解之可得.解答:解:∵函数y=kx+1在R上是增函数,∴k>0,又∵曲线y=x2+(2k﹣3)x+1与x轴交于不同的两点,∴△=(2k﹣3)2﹣4>0,解得或,∵p∧q是假命题,p∨q是真命题,∴命题p,q一真一假,①若p真q假,则,∴;②若p假q真,则,解得k≤0,综上可得k的取值范围为:(﹣∞,0]∪[,]点评:本题考查复合命题的真假,涉及不等式组的解法和分类讨论的思想,属基础题.18.(12分)在平面直角坐标系中,角α,β的始边为x轴的非负半轴,点P(1,2cos2θ)在角α的终边上,点Q(sin2θ,﹣1)在角β的终边上,且.(1)求cos2θ;(2)求P,Q的坐标并求sin(α+β)的值.考点:两角和与差的正弦函数;平面向量数量积的运算;同角三角函数间的基本关系;二倍角的余弦.专题:计算题.分析:(1)利用向量数量积运算得出sin2θ﹣2cos2θ=﹣1,再利用二倍角余弦公式求出cos2θ.(2)由(1)可以求出P,Q的坐标,再利用任意角三角函数的定义求出α,β的正、余弦值.代入两角和的正弦公式计算.解答:解(1)=(1,2cos2θ),=(sin2θ,﹣1),∵,∴sin2θ﹣2cos2θ=﹣1,∴,∴.(2)由(1)得:,∴,∴∴,,由任意角三角函数的定义,,同样地求出,,∴点评:本题考查向量的数量积运算、任意角三角函数的定义、利用三角函数公式进行恒等变形以及求解运算能力.19.(12分)在△ABC中,a,b,c分别是角A,B,C的对边,已知3(b2+c2)=3a2+2bc.(Ⅰ)若,求tanC的大小;(Ⅱ)若a=2,△ABC的面积,且b>c,求b,c.考点:余弦定理的应用.专题:综合题;解三角形.分析:(Ⅰ)由3(b2+c2)=3a2+2bc,利用余弦定理,可得cosA,根据,即可求tanC的大小;(Ⅱ)利用面积及余弦定理,可得b、c的两个方程,即可求得结论.解答:解:(Ⅰ)∵3(b2+c2)=3a2+2bc,∴=∴cosA=,∴sinA=∵,∴∴∴∴tanC=;(Ⅱ)∵ABC的面积,∴,∴bc=①∵a=2,∴由余弦定理可得4=b2+c2﹣2bc×∴b2+c2=5②∵b>c,∴联立①②可得b=,c=.点评:本题考查余弦定理,考查三角形面积的计算,考查学生的计算能力,属于中档题.20.(13分)定义在实数集上的函数f(x)=x2+x,g(x)=x3﹣2x+m.(1)求函数f(x)的图象在x=1处的切线方程;(2)若f(x)≥g(x)对任意的x∈[﹣4,4]恒成立,求实数m的取值范围.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(1)求切线方程,就是求k=f′(1),f(1),然后利用点斜式求直线方程,问题得以解决;(2)令h(x)=g(x)﹣f(x),要使f(x)≥g(x)恒成立,即h(x)max≤0,转化为求最值问题.解答:解:(1)∵f(x)=x2+x∴f′(x)=2x+1,f(1)=2,∴f′(1)=3,∴所求切线方程为y﹣2=3(x﹣1),即3x﹣y﹣1=0;(2)令h(x)=g(x)﹣f(x)=x3﹣2x+m﹣x2﹣x=x3﹣3x+m﹣x2∴h′(x)=x2﹣2x﹣3,当﹣4<x<﹣1时,h′(x)>0,当﹣1<x<3时,h′(x)<0,当3<x<4时,h′(x)>0,要使f(x)≥g(x)恒成立,即h(x)max≤0,由上知h(x)的最大值在x=﹣1或x=4取得,而h(﹣1)=,h(4)=m﹣,∵m+,∴,即m.点评:导数再函数应用中,求切线方程就是求某点处的导数,再求参数的取值范围中,转化为求函数的最大值或最小值问题.21.(14分)已知点A(x1,f(x1)),B(x2,f(x2))是函数f(x)=2sin(ωx+φ)图象上的任意两点,且角φ的终边经过点,若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为.(1)求函数f(x)的解析式;(2)求函数f(x)的单调递增区间;(3)当时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.考点:三角函数的最值.专题:三角函数的图像与性质.分析:(1)利用三角函数的定义求出φ的值,由|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为,可得函数的周期,从而可求ω,进而可求函数f(x)的解析式;(2)利用正弦函数的单调增区间,可求函数f(x)的单调递增区间;(3)当时,不等式mf(x)+2m≥f(x)恒成立,等价于,由此可求实数m的取值范围.解答:解:(1)角φ的终边经过点,∴,…(2分)∵,∴.…(3分)由|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为,得,即,∴ω=3…..(5分)∴…(6分)(2)由,可得,…(8分)∴函数f(x)的单调递增区间为k∈z…(9分)(3 )当时,,…(11分)于是,2+f(x)>0,∴mf(x)+2m≥f(x)等价于…(12分)由,得的最大值为…(13分)∴实数m的取值范围是.…(14分)点评:本题考查函数解析式的确定,考查三角函数的性质,考查分离参数法的运用,考查学生分析解决问题的能力,属于中档题.。

山东省临沂市某县区2014-2015学年高二上学期期中考试理科数学word版含答案

山东省临沂市某县区2014-2015学年高二上学期期中考试理科数学word版含答案

高二学分认定考试数学(理)试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分,考试用时120分钟,考试结束后,将本试卷和答题卡一并交回第Ⅰ卷(选择题 共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知1x +是5和7的等差中项,则x 的值为( )A .5B .6C .8D .92、函数2lg(34)y x x =--+的定义域是( )A .()4,1--B .()4,1-C .()1,4-D .[]4,1-3、对于任意实数,,,a b c d ,命题①,0a b c >≠,则ac bc >;②若a b >,则22ac bc >;③若22ac bc >,则a b >;④若a b >,则11a b<;⑤若0,a b c d >>>,则ac bd >, 其中真命题的个数是( ) A .1 B .2 C .3 D .44、在ABC ∆中,若()()()a c a c b b c +-=-,则A ∠=( )A .90B .60C .120D .1505、设{}n a 是等差数列,13569,9a a a a ++==,则这个数列的前6项和等于( )A .12B .24C .36D .486、在ABC ∆中,内角,,A B C 所对应的边分别为,,a b c ,若22()6,3c a b C π=-+=,则ABC ∆的面积( )A .3BCD .7、若等比数列{}n a 的各项均为正数,且538562a a a a e +=,则1210ln ln ln a a a ++=( )A .20B .25C .30D .508、已知0,0a b >>,若34a b ab +=,则a b +的最小值是( )A.6+ B.7+ C.6+.7+9、已知ABC ∆的内角,,A B C 所对应的边分别为,,a b c ,若cos b C a>,则ABC ∆的形状是( ) A .锐角三角形 B .直角三角形 C .等腰三角形 D .钝角三角形10、已知数列{}{},n n a b 都是公差为1的等差数列,其首项分别为11,a b ,且115a b +=,11,a b N *∈,设()n n b c a n N *=∈,则数列{}n c 的前10项和等于( )A .55B .70C .85D .100第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上。

山东省临沂市沂水县第二中学2015届高三10月月考英语(理)试题

山东省临沂市沂水县第二中学2015届高三10月月考英语(理)试题

高三上学期10月月考试题理科英语2014.10本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

满分为150分。

考试用时120分钟。

第I卷(共105分)第一部分英语知识运用(共两节, 满分55分)第一节语法和词汇知识(共10小题;每小题1. 5分, 满分15分)1. 一Would it bother you if I turned up the radio? 一___________. Lisa is sleeping.A. That‟s all rightB. I‟m afraid soC. I suppose notD. It doesn‟t matter2. The shy girl felt ______ when she made some mistakes in her performance.A. amazedB. awkwardC. curiousD. amused3. Experts at the conference agreed that such a product with environmentally friendly technology is ______.A. worth being promotedB. worthy promotingC. worthy of promotingD. worthy of being promoted4. Never has he _____ such pains since his childhood.A. gone throughB. gone againstC. gone intoD. gone after5. The Prime Minister criticized some celebrities for their ______ attitude towards drugs and accused them of thinking they were “above the law”.A. informalB. casualC. positiveD. immoral6. Many cities in the world have been polluted heavily, _______Beijing is an example.A. for whichB. in whichC. from whichD. of which7. I don‟t think she is a nice woman; I am _____ her empty talk.A. grateful forB. tired ofC. crazy aboutD. concerned about8. Many manufacturers were accused of concentrating too heavily on cost reduction, often at the ______ of the quality of their products.A. expenseB. exposureC. expansionD. expectation9. I‟m afr aid he is more of a talker than a doer, which is _______ he never finishes anything.A. whyB. whenC. thatD. where10. Children will act positively when they are praised, _____it is just a nod with smile.A. as thoughB. even ifC. in caseD. so that第二节完形填空(共30小题,1 l-20每小题1分, 21-40每小题1.5分, 满分40分)(I)I behave in the power of forgiveness. It gives a chance, for some, to 11 for their previous mistakes. I have come to learn the true 12 of forgiveness over the years through a personal13 of mine.I was riding with my friend‟s family in their car when we were hit by a driver, Eddy Jo who was so drunk. 14 , everyone survived, although I came away from the 15 badly injured. Nearly a decade later I am still in pain every day. In count, the judge 16 Eddy to twenty—five years in prison. I didn‟t 17 the full extent of this when I was thirteen. I was 18 about how the ignorance of him had changed my life forever.As time went by, I began to think of Eddy in jail, away from his family, and how he must feel.I received letters from him, stating his 19 for his actions, and yet I couldn‟t bring myself to answer. I was so overwhelmed with so many different emotions that I didn‟t know what to say. I have now 20 Eddy in my heart and have the courage to write to him.11. A. thank B. regret C. wish D. search12. A. impression B. character C. attitude D. nature13. A. experience B. matter C. problem D. trouble14. A. Eventually B. Hopefully C. Thankfully D. Desperately15. A. car B. hospital C. court D. accident16. A. expected B. gave C. sentenced D. ordered17. A. understand B. want C. remind D. doubt18. A. concerned B. upset C. glad D. confused19. A. anger B. excuse C. kindness D. guilt20. A. ignored B. forgotten C. forgiven D. respected(II)One lunchtime when I was in the third grade will stay with me always. I had been 21 to be the princess in the school play, and for weeks my mother had painstakingly 22 my lines with me. But no matter how easily I 23 them at home, as soon as I stepped onstage, every word 24 from my head.Finally my teacher took me aside. She explained that she had written a narrator‟s part to the play, and asked me to switch 25 . Her words, 26 delivered, still stung(刺耳), especially when I saw my 27 go to another girl.I didn‟t tell my mother what had happened when I went home for lunch that day. But she28 my unease, and instead of suggesting we practice my 29 , she asked if I wanted to walk in the yard.It was a lovely spring day and the rose vine(枝条)was turning 30 . We could see yellow dandelions(蒲公英)popping through the grass in bunches.I watched my mother 31 bend down by one of the clumps(丛), “I think I’m going to32 all these weeds.‟‟ she said. “From now on, we‟ll have only roses in this garden. ”“But I like dandelions.‟‟ I 33. “All flowers are beautiful—even dandelions. ”My mother looked at me seriously. ……Yes, every flower gives 34 in its own way, doesn‟t it?”She asked thoughtfully. “And that is 35 of people too, ”she added. “Not everyone can be a 36 , but there is no shame in that. ”Relieved that she had guessed my 37 , I started to cry as I told her what had happened.“But you will be a 38 narrator, ”she said, reminding me of how much I loved to read stories aloud to her, “The narrator‟s part is as 39 as the part of the princess.‟‟Over the next few weeks, with her constant 40 , I learned to take pride in the role. Lunchtimes were spent reading over my lines and talking about what I would wear.21. A. trained B. picked C. tested D. expected22. A. rewritten B. changed C. questioned D. practiced23. A. replaced B. selected C. delivered D. designed24. A. disappeared B. came C. failed D. shone25. A. seats B. roles C. tasks D. ideas26. A. secretly B. exactly C. fully D. kindly27. A. goal B. duty C. part D. work28. A. sensed B. ignored C. admitted D. controlled29. A. speeds B. skills C. 1ines D. questions30. A. empty B. green C. dry D. soft31. A. casually B. angrily C. joyfully D. proudly32. A. dig up B. give out C. turn over D. set down33. A. nodded B. cried C. added D. sighed34. A. fortune B. heat C. favor D. pleasure35. A. true B. wise C. possible D. equal36. A. director B. host C. princess D. king37. A. trick B. pain C. joy D. anger38. A. beautiful B. thankful C. cheerful D. merciful39. A. strange B. useful C. exciting D. important40. A. challenge B. competition C. encouragement D. agreement第二部分阅读理解(共25小题;每小题2分, 满分50分)ANelson Mandela was a figure of international fame, and many details of his life and career were public knowledge. But here are some things you may not have known about him.In his youth, Mandela enjoyed boxing. Even during the 27 years he spent in prison, he would exercise every morning. “I did not enjoy the violence of boxing so much as the science of it. Boxing is equal. I never did any real fighting after I entered politics. My main interest was in training, ”he wrote in his autobiography Long Walk to Freedom.Among the memorabilia in the Mandela Family Museum in Soweto, visitors call find the world championship belt given to Mandela by American boxer Sugar Ray Leonard.Rolihlahla Mandela was nine years old when a teacher at the primary Methodist school where he was studying, gave him an English name—Nelson—in accordance with the custom to give all school children Christian names.Rolihlahla is not a common name in South Africa. It means“troublemaker”. His circumcision name was Dalibunga, meaning“founder of the Bunga”.However, in South Africa, Mr Mandela was often called by his clan(宗族)name—Madiba—which South Africans used out of respect.After going underground because of his ANC activities, Mr Mandela‟s ability to evade(躲避)the securities services earned him the nickname“the black Pimpernel”, after the novel The Scarlet Pimpernel, about a hero with a secret identity.A fake(伪造的)passport in the name of David Motsamayi was used by Mr Mandela.He had disguised himself as a driver, a gardener and a chef in order to travel around the country unnoticedby the authorities.Mr Mandela studied law on and off for 50 years from 1939, failing about half the course she took. In August 1952, he and Oliver Tambo established South Africa‟s first black law firm, Mandela and Tambo, in Johannesburg. He persevered to finally secure a law degree while in prison in 1989.41. Why did Nelson Mandela become a boxing fan?A. He enjoyed the violence of boxing.B. He wanted to take the championship.C. He desired to enjoy the training.D. He hoped to find a better job.42. Which of the following is true of Mandela‟s name?A. His original name was not Nelson.B. His parents gave him the name—Nelson.C. Rolihlahla is a popular name in South Africa.D. Madiba was his Christian name.43. What made people call Mr Mandela“the black Pimpernel”?A. His ability to escape from being caught.B. His underground activities in ANC.C. His pressure given by the authorities.D. The novel‟s hero with a secret identity.44. Mr Mandela made a fake passport to_____.A. travel around the countryB. escape from the authoritiesC. disguise himself as an actorD. go abroad easily45. What can we learn from the last paragraph?A. It took Mr Mandela over fifty years to get a law degree.B. Mr Mandela set up South Africa‟s first law firm.C. Mr Mandela got his law degree after being released from prison.D. Mr Mandela was a determined person.BTraffic problems are an everyday concern in many cities, including Washington, DC. A growing number of Washingtonians are turning to bicycles to get to and from work. In fact, the number of commuters who use bicycles has doubled in the city since 2007.Ralph Buehler teaches urban planning at the Virginia Polytechnic Institute and State University, popularly known as Virginia Tech. He has written a book about urban biking, called “City Cycling.‟‟ He says there is a reason why urban bike tiding is now becoming more popular.“Over the last 60 to 70 years. cities in the U. S. have been adapted to the automobile. ”“Most cities took advantage of the money coming for the interstate highway system, from the federal government, starting in 1956. There was a 90 percent federal match(补贴)so the cities only had to put up 10%. It was very tempting. ”In the years after World War Two, many Americans moved to suburban communities, just outside major cities, They decided to travel great distances to and from work in exchange for a home in the suburbs. Their cars became a symbol of freedom.But today, many people believe they can save money by living in the city.Greg Billing is with the Washington Area Bicyclist Association. “When a person makes a change from 04 using a car to using a bike, they are saving anywhere between 8 or$9, 000 a year. ”Ralph Buehler says governments save money when people use bicycles. “Buildingbicycling facilities is much cheaper than building and maintaining road facilities or public transport. ”Washington, DC has also taken steps to protect bike riders. It approved a safe passing law and created areas on the road between cars and bikes.The United States Census Bureau says 4%of the city‟s workers ride to work by bike. The only city on the East Coast with more bike commuters is New York. S81046. What‟s the best title of the text?A. Traffic problems are an everyday concern in many citiesB. Bicycling to work in Washington, DC grows in popularityC. Bikes result in new problems in Washington, DCD. Washington, DC has taken steps to protect bike riders47. What can we know from Ralph Buehler‟s statement?A. The federal government supported building public transport.B. Government invested a lot to build bicycling facilities.C. Cities didn‟t use the money from the government wisely.D. Urban biking has been popular in the last 60 to 70 years.48. In the years after World War Two, many Americans prefer to_____.A. 1ive in the cityB. 1ive in the suburbsC. travel great distancesD. rent houses49. What do Ralph Buehler and Greg Billing agree with?A. Money can be saved when people use bicycles.B. Living in the city is much cheaper than in the country.C. Government should build more bicycling facilities.D. Road facilities and public transport develop rapidly now.50. What can we infer from the text?A. Traffic problems are the most severe in Washington, DC.B. 4%of Washingtonians ride to work by bike in Washington, DC.C. Washington, DC concerns about the safety of bike riders.D. More cities on the East Coast have bike commuters.CImagine a school where there are no academic requirements, no curriculum, and no tests. Children have total contro1 of their education and are free to do what they want all day, every day. Sudbury Valley School in Framingham, Massachusetts has been operating this way since 1968. More than 30 schools worldwide have imitated the Sudbury model, and over 200 schools identify similarly as“democratic schools. ”These schools are designed based on the belief that children have an innate curiosity to learn and do best when they direct their own learning.Sudbury Vallev School admits anyone who wants to enroll(注册)between the ages of 4 and 18. Many parents send their kids from a young age because they believe that kids do best when they learn what they want to learn. Other students come to Sudbury because they had various issues in traditional school systems including rebellion, learning difficulties, and emotional problems.Sudbury is administered through a democratic process where every student and staff member has an equal vote. In fact, students outnumber staff 20 to 1. There‟s no age segregation(差别);four-year-olds can hang out with teenagers. Many staff members are part time and have rich careers as historians, businessmen, psychologists, artists, among others.Learning is self-directed and occurs informally through having conversations, starting projects. reading for enjoyment, and playing games. If students are interested in a particular topic, they work with staff and other students to organize courses and find resources. The requirement for getting a high school diploma is to write an essay about how they are prepared t0 be an adult. 95%of students graduate. 90%of graduates end up going to college, better than the national average of 66%.Most graduates say that they benefited from a self-directed education because they were more motivated than their peers, lacked fear of authority figures, and got a head start in their field of interest. They work hard at doing the things they love to do.51. From Paragraph 1, we can know that_____.A. there are curriculums and tests in the schoolB. children can control their education freely in the schoolC. the school has been a“democratic school”for 50 yearsD. the school thinks their children lack curiosity52. Paragraph 2 mainly talks about_____.A. How parents send their children thereB. When parents send their children thereC. What children do in Sudbury Valley SchoolD. Why parents send their children there53. Which of the following shows the school is democratically managed?A. Students have the same right as staff in voting.B. There are as many students as staff members.C. The students are of the same age.D. All staff members work part-time.54. How can the students in Sudbury get their diploma?A. By having conversations.B. By reading for enjoyment.C. By playing games.D. By submitting a qualified paper.55. Most graduates‟ attitude towards Sudbury Valley School‟s education might be ____.A. unclearB. negativeC. positiveD. doubtfulDHow many hours do you spend sitting in a chair every day? Eight hours in the office plus three hours in front of the TV after work is the norm for many people.You probably don‟t need an expert to tell you that sitting too much is not good for your health —from an increased risk of heart disease and obesity in the long term, to reduced cholesterol(胆固醇)maintenance in the short term, not to mention the strain on your neck and spine.To make matters worse, many researches show a good diet and regular exercise can‟t reduce the negative effects of sitting too much.A 2010 study of nearly 9,000 Australians found that for each additional hour of television a person watched per day, the risk of dying rose by 11 percent. Another study tracked the health of 123, 000 Americans between 1992 and 2006. The death rate for men who spent six hours or more per day sitting was about 20 percent higher than for men who sat for three hours or less.So what can we do about it? Health experts suggest we break up those many hours spent sitting with more hours spent standing.The BBC conducted a simple experiment with a group of 10 volunteers who usually spent most of the day sitting. They were asked to stand for at least three hours a day. The researchers took measurements Oil days when the volunteers stood, and when they sat around. When they looked at the data there were some striking differences, the BBC reported.Blood sugar leveled off much quicker on the days when the study subjects stood compared with the days they spent in a chair. Standing also burned more calories——about 50 calories an hour. A member said although doing exercise offers many proven benefits, our bodies also need the increase in muscle activity that standing provides.The researchers believe that even small adjustments, like standing while talking on the phone, will help.56. The underlined word“norm”in Paragraph 1 most probably means____.A. standard answerB. causeC. excuseD. reasonable explanation57. What bad effect does sitting too much have?A. A low risk of heart disease.B. Becoming too fat.C. Balanced cholesterol maintenance.D. Benefiting your neck and spine.58. What‟s the main idea of Paragraph 4?A. Sitting is killing us.B. We should have a good diet.C. Watching TV does us no good.D. Women have higher death rate than men.59. What is the purpose of the experiment in the text?A. To help the 10 volunteers to lose weight.B. To find the difference between standing and sitting.C. To prove the benefit of standing.D. To teach us how to control blood sugar.60. What would be the best title for the text?A. Having regular exerciseB. Standing up for healthC. Watching less TVD. Increasing muscle activityEGimmicky—and expensive—new gloves allow chatterboxes to take the term …handsfree‟ to a new level—by talking into them as they make a call.The gloves are known as‘Talk to the Hand’and cost£1. 000 a pair.They come with a speaker unit embedded(嵌入)into the thumb and a microphone built into the little finger that can be connected to any mobile handset using Bluetooth. Artist Sean Miles designed the gloves that double as a phone in part of his project that shows the possibilities of gadget(小机件)recycling. He combines gloves with parts from mobile handsets recycled through O2, which commissioned the project.Mobile phone users will be able to keep their hands warm while they chat without taking their phone out of their pocket or handbag.Mr Miles designed two pairs of the new gloves—one in pink and the other in brown and yellow. They will appear in an exhibition this July and visitors will be able to win the gloves. If demand is high, they will then be produced on a larger scale.O2 Recycle, which backs the project, estimates that there are already 70 million unused mobile handsets in the UK. The service pays those who recycle gadgets including phones, MP3 players and digital cameras.Designer Scan Miles, hopes his work will get people thinking about recycling. The 41-year-old said:“I hope that my Talk to the Hand project will get people to think again about the waste created by not recycling gadgets. If a few more people recycle their gadgets rather than send them to landfill(垃圾场), I think this project will have fulfilled its aim. ”The Talk to the Hand mobile phone gloves are the second product in a series that O2 Recycle and Miles have created. Miles is now working on combining phones with handbags—so people don‟t spend time rummaging(翻查)around in their bags to find a phone when it rings.61. For what purpose is the text written?A. To show the harmfulness of old handsets.B. To introduce Sean Miles‟ new designs.C. To warn people not to throw electronic waste.D. To ask more people to join O2 Recycle.62. What‟s the main idea of Paragraph 3?A. How the new gloves are designed.B. What the gloves are made of.C. Who designed the gloves.D. How O2 Recycle is managed.63. What can we learn about Talk to the Hand?A. It has been widely used at present.B. It has a pair of gloves that can function as a phone.C. It can be connected directly to any mobile handset.D. It is expensive but environment—friendly.64. Which of the following is true of O2 Recycle?A. It encourages people to recycle gadgets.B. It has recycled 70 million mobile handsets.C. It promotes the technology of IT.D. It is now recycling gadgets around the world.65. What is the passage mainly about?A. New mobiles that are fashionable.B. Sean Miles who set up a phone company.C. Outdated gadgets that can be used for recycling.D. New gloves that can be used for making phone calls.第II卷(共45分)第三部分书面表达(共两节, 满分45分)第一节阅读表达(共5小题;每小题3分, 满分15分)Are you a bookworm? Is your head permanently stuck in a book? If so, that‟s a good thing. There are many benefits to reading. Getting into a good novel improves our literacy (读写能力). But who or what encourages us to pick up a book and start reading?Of course, when we are young, our parents and teachers inspire us by introducing us to characters that we love—or love to hate. And there are the authors—the people who invent and write about these characters. Good writing can really capture our imagination.The Trust also honoured schoolchildren, a librarian and teachers for their effort in trying to get people to read. The actor, Henry Winkler, who has dyslexia, was also named for the books he has written about a boy with learning difficulties.Reading books is more than an enjoyable pastime;it can also help people in difficultcircumstances. The author Pat Winslow worked as a writer in prisons and found reading and discussing stories helped prisoners reflect on their patterns of behaviour. She says “Very often we would have discussions about the moral compass of a character, what was the motivation of somebody, why did they behave that way?”But the main benefit of reading is the improvement it brings to our literacy. ________, the better we get and who knows —one day you may become the next Tolstoy, Jackie Collins or even William Shakespeare.英语二卷答题纸66. What does the author think of good writing?(no more than 10 words) ____________________________________________________________________________. 67. Why was the author J. K. Rowling called a ‘literacy hero ’?(no more than 10 words) ____________________________________________________________________________. 68. Complete the following statement with words from Paragraph4. (no more than 3 words) Henry Winkler was well —known as a …literacy hero‟ for the book about a boy who suffered from_____________. _____________________________________________________________________________. 69. What ‟s the main idea of Paragraph 5?(no more than 10 words) _____________________________________________________________________________. 70. Fill in the blank in the last paragraph with proper words. (no more than 6 words)姓名______________________ 班级_______________________ 考号______________________------------------------------------装-------------------------------------------------订-----------------------------------------线-------------------------------___________________________________________________________________ __________.第二节写作(30分)假如你是高三学生李华, 今后高考英语学科阅读量加大, 而你的阅读能力较差, 因此学习压力越来越大。

山东省临沂沂水二中北校区高三10月月考化学试题 Word版含答案

山东省临沂沂水二中北校区高三10月月考化学试题 Word版含答案

山东省临沂市沂水二中北校区2015届高三上学期十月月考化学试题2014.10注意事项:1.本试卷分第I 卷(1-4页)和第II 卷(5-8页)全卷满分100分,考试时间为100分钟。

2.答卷前请将答题卡及答题纸密封线内有关项目填、涂清楚,将座号填在答题纸右下角的方框内。

3.请将第I 卷题目的答案用2B 铅笔涂在答题卡上,第II 卷题目的答案用黑色签字笔、黑色钢笔或黑色圆珠笔写在答卷纸上,写在试卷上的答案无效。

4.可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 Mg 24 A1 27 Fe 56 Cu 64第I 卷(选择题 共48分)选择题(本题包括16小题,每题只有一个选项符合题意,每题3分,共48分) 1.化学与资源、环境、生活关系密切,下列说法错误的是 A.维生素C 具有还原性,在人体内起抗氧化作用B.新型氢动力计程车可以降低PM2.5的排放,减少大气污染C.碘是人体必需微量元素,所以要多吃富含高碘酸的食物D.高纯度的二氧化硅广泛用于制作光导纤维,光导纤维遇强碱溶液会“断路” 2.下列说法正确的是A.水玻璃、漂白粉、胆矾均为混合物B.生成盐和水的反应一定是中和反应C.NaOH 、MgC12、NaC1O 、NH 4C1均为含共价键的离子化合物D.煤经过气化或液化两类化学变化,可变为清洁能源 3.下列有关结构和性质的说法正确的是 A.元素铯的两种核素137133Cs Cs 比多4个质子B.P 、S 、C1得电子能力和最高价氧化物对应水化物的酸性均依次增强C.元素原子的最外层电子数越多,越容量得电子D.从上到下,第VIIA 族元素氢化物的热稳定性和还原性均依次减弱 4.下列叙述正确的是A.液溴易挥发,在存放液溴的试剂瓶中应加水封B.不慎将硫酸沾在皮肤上,立刻用干布擦净,然后用氢氧化钠溶液冲洗C.实验室配制一定物质的量浓度的溶液,定容时仰视刻度线,所配制溶液浓度偏大D.某溶液中加入BaC12溶液,产生了不溶于稀硝酸的白色沉淀,该溶液中一定含有Ag + 5汽车剧烈碰撞时,安全气囊中发生反应:33222102516NaN KNO K O Na O N +=++↑。

山东省临沂市数学高三上学期理数10月月考试卷

山东省临沂市数学高三上学期理数10月月考试卷

山东省临沂市数学高三上学期理数10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2016高二上·济南期中) 已知不等式ax2+bx+2>0的解集为{x|﹣1<x<2},则不等式2x2+bx+a <0的解集为()A .B .C . {x|﹣2<x<1}D . {x|x<﹣2,或x>1}2. (2分)若tanα=﹣,tan(α﹣β)=﹣,则tanβ的值为()A .B . ﹣C . ﹣D .3. (2分)已知满足,则g(x)=2cos (ωx+φ)在区间上的最大值为()A . 4B .C . 1D . -24. (2分)已知函数是定义在R上的奇函数,若对于任意给定的不等实数、,不等式恒成立,则不等式的解集为()A .B .C .D .5. (2分)在中,已知则A .B .C .D .6. (2分)若向量且的夹角为,则等于()A . 1B .C . -或D . -1或17. (2分) (2016高二上·岳阳期中) 已知命题R,p:∃x∈R使,命题q:∀x∈R都有x2+x+1>0,给出下列结论:①命题“p∧q”是真命题②命题“命题“p∨¬q”是假命题③命题“¬p∨q”是真命题④命题“¬p∨¬q”是假命题其中正确的是()A . ②④B . ②③C . ③④D . ①②③8. (2分)已知四边形ABCD为正方形, =3 ,AP与CD交于点E,若 =m +n ,则m﹣n=()A . ﹣B .C . ﹣D .9. (2分) (2015高三上·石家庄期中) 已知点P(,﹣)在角θ的终边上,且θ∈[0,2π),则θ的值为()A .B .C .D .10. (2分) (2016高一下·吉安期末) 已知f(x)是偶函数,且f(x+ )=f(﹣x),当﹣≤x≤0时,f(x)=()x﹣1,记an=f(),n∈N+ ,则a2046的值为()A . 1﹣B . 1﹣C . ﹣1D . ﹣111. (2分)已知函数在时取得最大值,在时取得最小值,则实数的取值范围是()A .B .C .D .12. (2分)(2017·武汉模拟) 若函数f(x)= 在区间(0,)上单调递增,则实数a的取值范围是()A . a≤﹣1B . a≤2C . a≥﹣1D . a≤1二、填空题 (共4题;共4分)13. (1分) (2017高三上·涞水开学考) 若函数f(x)=(x﹣a)(x+3)为偶函数,则f(2)=________.14. (1分) (2017高一下·苏州期末) 已知cosθ=﹣,θ∈(,π),则cos(﹣θ)=________.15. (1分) (2019高一上·南海月考) 如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin ( x+Φ)+k,据此函数可知,这段时间水深(单位:m)的最大值为________.16. (1分)(2016·北京文) 在△ABC中,∠A= ,a= c,则 =________.三、解答题 (共6题;共60分)17. (10分) (2017高二上·嘉兴月考) 在中,.(1)求的大小;(2)求的最大值.18. (10分) (2016高三上·黑龙江期中) 在△ABC中,角A,B,C所对的边分别为a,b,c且满足csinA=acosC,(1)求角C的大小;(2)求 sinA﹣cos(B+ )的最大值,并求取得最大值时角A,B的大小.19. (10分)(2017·揭阳模拟) 已知a<0,曲线f(x)=2ax2+bx+c与曲线g(x)=x2+alnx在公共点(1,f(1))处的切线相同.(Ⅰ)试求c﹣a的值;(Ⅱ)若f(x)≤g(x)+a+1恒成立,求实数a的取值范围.20. (10分) (2016高一下·老河口期中) 已知函数f(x)=﹣cos2x﹣sinx+1.(1)求函数f(x)的最小值;(2)若,求cos2α的值.21. (10分)已知tan()= ,(1)求tanα的值;(2)求的值.22. (10分)(2017·绵阳模拟) 已知函数f(x)=ex(其中e为自然对数的底数),g(x)= x+m(m,n∈R).(1)若T(x)=f(x)g(x),m=1﹣,求T(x)在[0,1]上的最大值;(2)若m=﹣,n∈N*,求使f(x)的图象恒在g(x)图象上方的最大正整数n.[注意:7<e2< ].参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共60分) 17-1、17-2、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、。

山东省临沂市沂水二中北校区2015届高三上学期十月月考语文试题(理科)

山东省临沂市沂水二中北校区2015届高三上学期十月月考语文试题(理科)

山东省临沂市沂水二中北校区2015届高三上学期十月月考语文试题(理科)本试卷分第I卷和第II卷两部分,满分为150分,考试用时150分钟。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、考试科目填写在规定的位置上。

2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案不能答在试题卷上。

3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案,不得使用涂改液,胶带纸、修正带和其他笔。

不按以上要求作答的答案无效。

第I卷(共36分)一、(15分,每小题3分)1.下列词语中加点的字,每对读音都不相同的一项是A.旖.旎/绮.丽市侩./污秽.强.迫/倔强.复辟./辟.邪B.媲.美/包庇.殉.情/徇.私处.所/惩处.储.存/贮.藏C.驻扎./包扎.盘桓./城垣.模.样/模.仿悲恸./恫.吓D.舟楫./编辑.噱.头/戏谑.开拓./拓.本档.案/当.铺2.下列词语中没有错别字的一组是A.伺候切蹉天然气突如其来B.安详振幅大拇指关怀倍至C.辩难剽悍养植业得鱼忘筌D.联袂遐思爆发力掉以轻心3.依次填入下列横线处的词语,最恰当的一项是①为确保行车环境安全舒适,消除行车安全隐患,环湾高速公路管理局将对原路面存在的裂缝、坑槽等问题进行彻底。

②新世纪以来,指导“三农”工作的第11份中央一号文件已由新华社发布,文件全文约10000字,共分8个部分33条。

③院内有雕龙画风,也有小桥流水、亭台楼阁、花园天井,曲径回廊各处,处处表现着中国古代建筑的传统风格。

A.处治授权贯穿B.处置受权贯穿C.处置授权贯串D.处治受权贯串4.下列各句中,加点成语的使用不恰当的一项是A.哥本哈根联合国气候变化大会8日进入第二天。

中方首席气候谈判代表苏伟表示,发达国家目前承诺提供给发展中国家的应对气候变化援助资金,实在是杯水车薪....。

山东省临沂市重点中学高三上学期十月月考——数学(理)数学(理)

山东省临沂市重点中学高三上学期十月月考——数学(理)数学(理)

山东省临沂市某重点中学 2015届高三上学期十月月考数学(理)试题注意事项:1. 本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分,考试时间120分钟.2.请用0.5mm 黑色签字笔将答案直接写在答题纸上.第Ⅰ卷(选择题 共50分)一、 选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.已知集合A={x|1<x <3},B={x|1<log 2x <2},则A∩B 等于( )2.设,向量且,则( ) (A ) (B ) (C ) (D ) 3.在中,设命题:sin sin sin a b cp B C A==,命题是等边三角形,那么命题是命题的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.设,则a ,b ,c 的大小关系是( )5.已知函数f (x )=ax ﹣x 3在区间[1,+∞)上单调递减,则a 的最大值是( )6.已知f (x )是定义在R 上的奇函数,且x≥0时f (x )的图象如图所示,则f (﹣2)=( )7.函数y=sin (x ﹣)的一条对称轴可以是直线( ) . . C . D .8.在△ABC 中,角A 、B 、C 所对应的边分别为a 、b 、c ,已知bcosC+ccosB=2b ,则=( )9.函数y=2x ﹣x 2的图象大致是( )B C D10.若函数y=f(x)(x∈R)满足f(x﹣2)=f(x),且x∈[﹣1,1]时,f(x)=1﹣x2,函数g(x)=,则函数h(x)=f(x)﹣g(x)在区间[﹣5,6]内的零点的个数为()第Ⅱ卷(非选择题共100分)二、填空题(本大题共5小题,每小题5分,共25分).11.在数列{a n}中,a1=15,3a n+1=3a n-2(n∈N+),则该数列中相邻两项的乘积是负数的为.12.设向量,,若,则______.13.已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是_________.14.设f1(x)=cosx,定义f n+1(x)为f n(x)的导数,即f n+1(x)=f′n(x)n∈N*,若△ABC的内角A满足f1(A)+f2(A)+…+f2013(A)=,则sin2A的值是_________.15.给出下列命题:①函数y=cos(2x﹣)图象的一条对称轴是x=②在同一坐标系中,函数y=sinx与y=lgx的交点个数为3个;③将函数y=sin(2x+)的图象向右平移个单位长度可得到函数y=sin2x的图象;④存在实数x,使得等式sinx+cosx=成立;其中正确的命题为_________(写出所有正确命题的序号).三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤).16.(本小题满分12分)已知集合A={x|2x<8},B={x|x2﹣2x﹣8<0},C={x|a<x<a+1}.(Ⅰ)求集合A∩B;(Ⅱ)若C⊆B,求实数a的取值范围.17.(本小题满分12分)设命题p:函数y=kx+1在R上是增函数,命题q:曲线y=x2+(2k﹣3)x+1与x轴交于不同的两点,如果p∧q是假命题,p∨q是真命题,求k的取值范围.18.(本小题满分12分)在平面直角坐标系中,角α,β的始边为x 轴的非负半轴,点在角α的终边上,点在角β的终边上,且(1)求(2)求P ,Q 的坐标并求的值19.(本小题满分12分)在中,分别是角的对边,已知bc a c b 23)(3222+=+. (Ⅰ)若,求的大小; (Ⅱ)若,的面积,且,求.20.(本小题满分13分)定义在实数集上的函数f (x )=x 2+x ,g (x )=x 3﹣2x+m .(1)求函数f (x )的图象在x=1处的切线方程;(2)若f (x )≥g (x )对任意的x ∈[﹣4,4]恒成立,求实数m 的取值范围.21.(本小题满分14分)已知点A (x 1,f (x 1)),B (x 2,f (x 2))是函数f (x )=2sin (ωx+φ)图象上的任意两点,且角φ的终边经过点,若|f (x 1)﹣f (x 2)|=4时,|x 1﹣x 2|的最小值为. (1)求函数f (x )的解析式; (2)求函数f (x )的单调递增区间;(3)当时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.参考答案一、选择题1-5:BBCAD 6-10:BBAAC二、填空题11. a23·a24 12. 13. (﹣,0)14. 15.①②三、解答题假,则真,则,解得即3122222⨯-+=bc c b 化简得:……② …………………………………………………10分 又因为并联立①②解得:, …………………………………………………12分)由)等价于。

山东省临沂市沂水二中北校区高三数学上学期10月月考试

山东省临沂市沂水二中北校区高三数学上学期10月月考试

山东省临沂市沂水二中北校区20 15届高三上学期10月月考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设x∈Z,集合A为偶数集,若命题p:∀x∈Z,2x∈A,则¬p()A.∀x∈Z,2x∉A B.∀x∉Z,2x∈A C.∃x∈Z,2x∈A D.∃x∈Z,2x∉A2.(5分)设集合A={1,2,3},B={4,5},C={x|x=b﹣a,a∈A,b∈B},则C中元素的个数是()A.3 B.4 C.5 D.63.(5分)已知幂函数y=f(x)的图象过点,则log2f(2)的值为()A.B.﹣C.2 D.﹣24.(5分)在△ABC中,内角A、B的对边分别是a、b,若,则△ABC为()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形5.(5分)若当x∈R时,函数f(x)=a|x|(a>0且a≠1)满足f(x)≤1,则函数y=log a (x+1)的图象大致为()A.B.C.D.6.(5分)已知,给出下列四个结论:①a<b②a+b<ab③|a|>|b|④ab<b2其中正确结论的序号是()A.①②B.②④C.②③D.③④7.(5分)等差数列{a n}的前20项和为300,则a4+a6+a8+a13+a15+a17等于()A.60 B.80 C.90 D.1208.(5分)已知函数(a∈R),若函数f(x)在R上有两个零点,则a的取值范围是()A.(﹣∞,﹣1)B.(﹣∞,1] C.[﹣1,0)D.(0,1]9.(5分)已知函数(ω>0)的最小正周期为π,将函数y=f(x)的图象向右平移m(m>0)个单位长度后,所得到的图象关于原点对称,则m的最小值为()A.B.C.D.10.(5分)已知定义在R上的函数f(x)满足:对任意x∈R,都有f(x)=f(2﹣x)成立,且当x∈(﹣∞,1)时,(x﹣1)f′(x)<0(其中f′(x)为f(x)的导数).设,则a、b、c三者的大小关系是()A.a<b<c B.c<a<b C.c<b<a D.b<c<a二、填空题:本大题共5小题.每小题5分,共25分.11.(5分)已知向量的模为2,向量为单位向量,,则向量与的夹角大小为.12.(5分)计算÷=.13.(5分)若,则=.14.(5分)已知一元二次不等式f(x)<0的解集为{,则f(2x)>0的解集为.15.(5分)给出下列命题:①若y=f(x)是奇函数,则y=|f(x)|的图象关于y轴对称;②若函数f(x)对任意x∈R满足f(x)•f(x+4)=1,则8是函数f(x)的一个周期;③若log m3<log n3<0,则0<m<n<1;④若f(x)=e|x﹣a|在[1,+∞)上是增函数,则a≤1.其中正确命题的序号是.三、解答题:本大题共6小题,共74分.解答应写出文字说明;证明过程或演算步骤.16.(12分)已知全集U=R,集合A={},B={x|}.(Ⅰ)求(∁U A)∪B;(Ⅱ)若集合C={x|x+m2≥},命题p:x∈A,命题q:x∈C,且p命题是命题q的充分条件,求实数m的取值范围.17.(12分)已知函数(Ⅰ)求函数f(x)的最大值和单调区间;(Ⅱ)△ABC的内角A、B、C的对边分别为a、b、c,已知,c=2且sinB=3sinA,求△ABC的面积.18.(12分)如图,某广场要划定一矩形区域ABCD,并在该区域内开辟出三块形状大小相同的矩形绿化区,这三块绿化区四周和绿化区之间设有1米宽的走道.已知三块绿化区的总面积为800平方米,求该矩形区域ABCD占地面积的最小值.19.(12分)已知向量=(,1),向量是与向量夹角为的单位向量.(1)求向量;(2)若向量与向量=(﹣,1)共线,且与=(x,)的夹角为钝角,求实数x的取值范围.20.(13分)已知公比为q的等比数列{a n}是递减数列,且满足(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{(2n﹣1)•a n}的前n项和T n.21.(14分)已知f(x)=aln(x﹣1),g(x)=x2+bx,F(x)=f(x+1)﹣g(x),其中a,b∈R.(I)若y=f(x)与y=g(x)的图象在交点(2,k)处的切线互相垂直,求a,b的值;(Ⅱ)当b=2﹣a,a>0时,求F(x)的最大值;(Ⅲ)若x=2是函数F(x)的一个极值点,x0和1是F(x)的两个零点,且x0∈(n,n+1),n∈N,求n.山东省临沂市沂水二中北校区2015届高三上学期10月月考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设x∈Z,集合A为偶数集,若命题p:∀x∈Z,2x∈A,则¬p()A.∀x∈Z,2x∉A B.∀x∉Z,2x∈A C.∃x∈Z,2x∈A D.∃x∈Z,2x∉A考点:全称命题;命题的否定.专题:规律型.分析:根据全称命题的否定是特称命题进行判断.解答:解:全称命题的否定是特称命题,∴¬p:∃x∈Z,2x∉A.故选:D.点评:本题主要考查含有量词的命题的否定,比较基础.2.(5分)设集合A={1,2,3},B={4,5},C={x|x=b﹣a,a∈A,b∈B},则C中元素的个数是()A.3 B.4 C.5 D.6考点:集合中元素个数的最值.专题:规律型.分析:根据集合C的元素关系确定集合C即可.解答:解:A={1,2,3},B={4,5},∵a∈A,b∈B,∴a=1,或a=2或a=3,b=4或b=5,则x=b﹣a=3,2,1,4,即B={3,2,1,4}.故选:B.点评:本题主要考查集合元素个数的确定,利用条件确定集合的元素即可,比较基础.3.(5分)已知幂函数y=f(x)的图象过点,则log2f(2)的值为()A.B.﹣C.2 D.﹣2考点:对数的运算性质;幂函数的性质.专题:计算题;转化思想.分析:先设log2f(2)=n,求出函数f(x)的解析式,然后将点代入解析式,即可求出结果.解答:解:设log2f(2)=n,则f(2)=2n∴f(x)=x n又∵由幂函数y=f(x)的图象过点∴,故选A.点评:本题主要考查了对数函数和幂函数的关系,关键是将所求转化成幂函数,此题比较容易是基础题.4.(5分)在△ABC中,内角A、B的对边分别是a、b,若,则△ABC为()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形考点:三角形的形状判断.专题:解三角形.分析:利用正弦定理将条件转化为,三角变形后判断角A、B之间的关系,可得答案.解答:解:由正弦定理得:,∴⇒sinAcosA=sinBcosB⇒sin2A=sin2B,∵A、B为三角形的内角,∴2A=2B或2A+2B=π,即A=B或A+B=,故选C.点评:本题考查三角形的形状判断,考查正弦定理、倍角公式,利用正弦定理将条件转化为关于角的三角函数关系,来判断角之间的关系是解答本题的关键.5.(5分)若当x∈R时,函数f(x)=a|x|(a>0且a≠1)满足f(x)≤1,则函数y=log a (x+1)的图象大致为()A.B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:由条件可得 0<a<1,可得函数y=log a(x+1)在(﹣1,+∞)上是减函数,且函数图象经过点(0,0),结合所给的选项,得出结论.解答:解:∵函数f(x)=a|x|(a>0且a≠1)满足f(x)≤1,∴由|x|≥0,可得a|x|≤a0=1,∴0<a<1.故函数y=log a(x+1)在定义域(﹣1,+∞)上是减函数,且函数图象经过点(0,0),结合所给的选项,只有C满足条件,故选:C.点评:本题主要考查指数函数、对数函数的单调性,求得 0<a<1,是解题的关键,属于基础题.6.(5分)已知,给出下列四个结论:①a<b②a+b<ab③|a|>|b|④ab<b2其中正确结论的序号是()A.①②B.②④C.②③D.③④考点:命题的真假判断与应用.专题:不等式的解法及应用.分析:由条件可b<a<0,然后根据不等式的性质分别进行判断即可.解答:解:∵,∴b<a<0.①a<b,错误.②∵b<a<0,∴a+b<0,ab>0,∴a+b<ab,正确.③∵b<a<0,∴|a|>|b|不成立.④ab﹣b2=b(a﹣b),∵b<a<0,∴a﹣b>0,即ab﹣b2=b(a﹣b)<0,∴ab<b2成立.∴正确的是②④.故选:B.点评:本题主要考查不等式的性质,利用条件先判断b<a<0是解决本题的关键,要求熟练掌握不等式的性质及应用.7.(5分)等差数列{a n}的前20项和为300,则a4+a6+a8+a13+a15+a17等于()A.60 B.80 C.90 D.120考点:等差数列的前n项和.专题:等差数列与等比数列.分析:等差数列{a n}中,设首项a1,公差d,由前20项和s20=300,可得a1+a20的值;又a4+a17=a6+a15=a8+a13=a1+a20,可得a4+a6+a8+a13+a15+a17的值.解答:解:在等差数列{a n}中,设首项是a1,公差是d,则它的前20项和为:s20==10(a1+a20)=300,∴a1+a20=30;∴a4+a17=a6+a15=a8+a13=a1+a20=30,∴a4+a6+a8+a13+a15+a17=(a4+a17)+(a6+a15)+(a8+a13)=3(a1+a20)=3×30=90;故选:C.点评:本题考查了等差数列的通项公式与前n项和公式的灵活应用问题,是基础题.8.(5分)已知函数(a∈R),若函数f(x)在R上有两个零点,则a的取值范围是()A.(﹣∞,﹣1)B.(﹣∞,1] C.[﹣1,0)D.(0,1]考点:函数的零点.专题:函数的性质及应用.分析:由题意可得方程2x﹣a=0在(﹣∞,0]上有解,再根据当x∈(﹣∞,0]时,0<2x≤20=0,可得a的取值范围.解答:解:由于函数(a∈R)在R上有两个零点,显然x=是函数f(x)的一个零点,故方程2x﹣a=0在(﹣∞,0]上有解.再根据当x∈(﹣∞,0]时,0<2x≤20=0,可得1≥a>0,故选D.点评:本题主要考查函数的零点的定义和求法,指数函数的定义域和值域,属于基础题.9.(5分)已知函数(ω>0)的最小正周期为π,将函数y=f(x)的图象向右平移m(m>0)个单位长度后,所得到的图象关于原点对称,则m的最小值为()A.B.C.D.考点:函数y=Asin(ωx+φ)的图象变换.专题:规律型;三角函数的图像与性质.分析:由函数周期可求得ω值,由题意知,该函数平移后为奇函数,根据奇函数性质得图象过原点,由此即可求得m值.解答:解:由已知,周期为π,∵ω=,∴ω=2,将该函数的图象向右平移m(m>0)个单位后,得y=sin[2(x﹣m)+]=sin(2x﹣2m+),因为其图象关于原点对称,所以该函数为奇函数,有﹣2m=kπ,k∈Z,则m=,k∈Z,则正数m的最小值为.故选A.点评:本题考查函数y=Asin(ωx+φ)的图象变换,考查奇偶函数的性质,要熟练掌握图象变换的方法.10.(5分)已知定义在R上的函数f(x)满足:对任意x∈R,都有f(x)=f(2﹣x)成立,且当x∈(﹣∞,1)时,(x﹣1)f′(x)<0(其中f′(x)为f(x)的导数).设,则a、b、c三者的大小关系是()A.a<b<c B.c<a<b C.c<b<a D.b<c<a考点:函数单调性的性质;奇偶函数图象的对称性.专题:计算题.分析:由题意得对任意x∈R,都有f(x)=f(2﹣x)成立,得到函数的对称轴为x=1,所以f(3)=f(﹣1).由当x∈(﹣∞,1)时,(x﹣1)f′(x)<0,得f′(x)>0,所以函数f(x)在(﹣∞,1)上单调递增.比较自变量的大小即可得到函数值的大小.解答:解:由题意得:对任意x∈R,都有f(x)=f(2﹣x)成立,所以函数的对称轴为x=1,所以f(3)=f(﹣1).因为当x∈(﹣∞,1)时,(x﹣1)f′(x)<0,所以f′(x)>0,所以函数f(x)在(﹣∞,1)上单调递增.因为﹣1<0<,所以f(﹣1)<f(0)<f(),即f(3)<f(0)<f(),所以c<a<b.故选B.点评:解决此类问题的关键是熟练掌握函数的性质如奇偶性、单调性、周期性、对称性等,函数的性质一直是各种考试考查的重点内容.二、填空题:本大题共5小题.每小题5分,共25分.11.(5分)已知向量的模为2,向量为单位向量,,则向量与的夹角大小为.考点:平面向量数量积的坐标表示、模、夹角.专题:计算题;平面向量及应用.分析:设向量与的夹角为θ,可得•=2cosθ,再根据,得•﹣2=2cosθ﹣1=0,最后结合θ∈[0,π],可得向量与的夹角θ的大小.解答:解:设向量与的夹角为θ,∴•=•cosθ=1×2×cosθ=2cosθ∵,∴=•﹣2=0,得2cosθ﹣1=0,所以cosθ=,∵θ∈[0,π],∴θ=故答案为:点评:本题给出单位向量与向量的差向量垂直于单位向量,求与的夹角大小,着重考查了平面向量的数量积运算和向量的夹角等知识,属于基础题.12.(5分)计算÷=﹣20.考点:有理数指数幂的化简求值;根式与分数指数幂的互化及其化简运算.专题:计算题.分析:利用对数的商的运算法则及幂的运算法则求出值.解答:解:=lg=﹣20故答案为:﹣20点评:本题考查对数的四则运算法则、考查分数指数幂的运算法则.13.(5分)若,则=7.考点:同角三角函数间的基本关系.专题:三角函数的求值.分析:已知等式左边利用两角和与差的正切函数公式及特殊角的三角函数值化简求出tanθ的值,原式分子分母除以cosθ,利用同角三角函数间的基本关系弦化切后,将tanθ的值代入计算即可求出值.解答:解:∵tan(﹣θ)==,∴2﹣2tanθ=1+tanθ,即tanθ=,则原式===7.故答案为:7点评:此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.14.(5分)已知一元二次不等式f(x)<0的解集为{,则f(2x)>0的解集为{x|x<﹣1或x>1}.考点:指、对数不等式的解法;一元二次不等式的解法.专题:不等式的解法及应用.分析:根据一元二次不等式解集得到f(x)>0的解集,然后解指数不等式即可.解答:解:∵一元二次不等式f(x)<0的解集为{,∴一元二次不等式f(x)>0的解集为{x|x},由f(2x)>0,得2x>2或2x,解得x>1或x<﹣1,即f(2x)>0的解集为{x|x<﹣1或x>1}.故答案为:{x|x<﹣1或x>1}.点评:本题主要考查一元二次不等式的解法和性质,以及指数不等式的解法,考查学生运算能力.15.(5分)给出下列命题:①若y=f(x)是奇函数,则y=|f(x)|的图象关于y轴对称;②若函数f(x)对任意x∈R满足f(x)•f(x+4)=1,则8是函数f(x)的一个周期;③若log m3<log n3<0,则0<m<n<1;④若f(x)=e|x﹣a|在[1,+∞)上是增函数,则a≤1.其中正确命题的序号是①②④.考点:命题的真假判断与应用.专题:函数的性质及应用.分析:①根据函数奇偶性的性质进行判断.②根据函数周期性的定义进行推导.③根据对数的运算法则进行计算.④根据复合函数的单调性进行判断.解答:解:①若y=f(x)是奇函数,则f(﹣x)=﹣f(x),∴|f(﹣x)|=|﹣f(x)|=|f (x)|,即|f(x)|为偶函数,∴图象关于y轴对称;正确.②若函数f(x)对任意x∈R满足f(x)•f(x+4)=1,则f(x)≠0,∴f(x)•f(x+4)=f(x+4)•f(x+8)=1,即f(x+8)=f(x),则8是函数f(x)的一个周期;正确.③若log m3<log n3<0,则,即log3n<log3m<0,即0<n<m<1,∴③错误.④设t=|x﹣a|,则函数y=e t单调递增,t=|x﹣a|在[a,+∞)上也单调递增,∴若f(x)=e|x﹣a|在[1,+∞)上是增函数,则a≤1.正确.∴正确的是①②④.故答案为:①②④.点评:本题主要考查函数奇偶性,周期性和单调性的判断和应用,利用相应的定义和性质是解决本题的关键,要求熟练掌握函数的性质的综合应用.三、解答题:本大题共6小题,共74分.解答应写出文字说明;证明过程或演算步骤.16.(12分)已知全集U=R,集合A={},B={x|}.(Ⅰ)求(∁U A)∪B;(Ⅱ)若集合C={x|x+m2≥},命题p:x∈A,命题q:x∈C,且p命题是命题q的充分条件,求实数m的取值范围.考点:必要条件、充分条件与充要条件的判断;交、并、补集的混合运算.专题:规律型.分析:(Ⅰ)先求出集合A,B,然后利用集合的基本运算求(∁U A)∪B;(Ⅱ)根据条件p命题是命题q的充分条件,确定实数m的取值范围.解答:解(Ⅰ):A={}={}={y|≤y≤2},B={x|}={x|1﹣|x|≥0}={x|﹣1≤x≤1},∴∁U A={y|y>2或y<},(∁U A)∪B={x|x≤1或x>2}.(Ⅱ)∵命题p是命题q的充分条件,∴A⊆C,∵C={x|x≥﹣m2},∴﹣m2≤,∴m2≥,∴m≥或m≤﹣∴实数m的取值范围是(﹣∞,﹣]∪[,+∞).点评:本题主要考查集合的基本运算,以及集合的应用,比较基础.17.(12分)已知函数(Ⅰ)求函数f(x)的最大值和单调区间;(Ⅱ)△ABC的内角A、B、C的对边分别为a、b、c,已知,c=2且sinB=3sinA,求△ABC的面积.考点:正弦定理;两角和与差的正弦函数;正弦函数的单调性.专题:计算题;三角函数的图像与性质;解三角形.分析:利用倍角公式与两角差的正弦公式化成一个角的三角函数形式.(I)根据正弦函数的单调区间,通过解不等式求得f(x)的增区间和减区间;(II)利用f()=2求得C=,由sinB=3sinA得b=3a,利用余弦定理求得a,代入三角形的面积公式计算.解答:解:=2sinxcosx+sin2x ﹣cos2x==.(I)∵2sin(2x﹣)≤2,∴函数f(x)的最大值为2.由﹣+2kπ≤≤+2kπ⇒﹣+kπ≤x≤+kπ,k∈z.∴函数f(x)的单调递增区间为[﹣+kπ,+kπ],(k∈Z)由2kπ+≤2x﹣≤2kπ+⇒kπ+≤x≤kπ+,k∈z,∴函数f(x)的单调递减区间为[kπ+,kπ+],k∈z.(II)∵,∴,又﹣<<,∴=,,∵sinB=3sinA,∴b=3a,∵c=2,4=a2+9a2﹣2×a×3a,∴a2=,∴S△ABC=absinC=×3a2sinC=×3××=.点评:本题考查了倍角的三角函数,两角和与差的三角函数,考查了三角函数的单调性及单调区间的求法,考查了正弦定理、余弦定理在解三角形中的应用,考查学生的运算能力.运用正、余弦定理解三角形关键是判断角的大小和边之间的关系.18.(12分)如图,某广场要划定一矩形区域ABCD,并在该区域内开辟出三块形状大小相同的矩形绿化区,这三块绿化区四周和绿化区之间设有1米宽的走道.已知三块绿化区的总面积为800平方米,求该矩形区域ABCD占地面积的最小值.考点:基本不等式在最值问题中的应用.专题:计算题;应用题.分析:设绿化区域小矩形的一边长为x,另一边长为y,推出3xy=800,从而得到试验田ABCD的面积S=(3x+4)(y+2),然后利用基本不等式,由此能够求出结果.解答:解:设绿化区域小矩形的一边长为x,另一边长为y,则3xy=800,∴y=.即矩形区域ABCD的面积S=(3x+4)(y+2)=(3x+4)(+2)=800+6x++8≥808+2=968.当且仅当6x=,即x=时取“=”,∴矩形区域ABCD的面积的最小值为968平方米.点评:本题考查函数问题在生产生活中的实际应用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化.19.(12分)已知向量=(,1),向量是与向量夹角为的单位向量.(1)求向量;(2)若向量与向量=(﹣,1)共线,且与=(x,)的夹角为钝角,求实数x的取值范围.考点:平面向量数量积的运算.专题:平面向量及应用.分析:(1)设,由题意可得,解得即可.(2)由(1)和向量与向量=(﹣,1)共线,可知=.由于与=(x,)的夹角为钝角,可得<0且与不能反向共线,解得即可.解答:解:(1)设,由题意可得,解得或,∴=(0,1)或=.(2)∵向量与向量=(﹣,1)共线,∴=.∵与=(x,)的夹角为钝角,∴=且≠0,解得或0<x<1,且x≠﹣1.∴实数x的取值范围是或0<x<1,且x≠﹣1..点评:本题考查了向量的夹角公式、数量积运算、单位向量、向量共线定理,考查了推理能力和计算能力,属于中档题.20.(13分)已知公比为q的等比数列{a n}是递减数列,且满足(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{(2n﹣1)•a n}的前n项和T n.考点:数列的求和.专题:综合题;等差数列与等比数列.分析:(Ⅰ)由a1a2a3=及等比数列性质得=,可求得a2=,根据等比数列的通项公式求出数列的首项和公比,然后求数列{a n}的通项公式;(Ⅱ)利用错位相减法可求数列{(2n﹣1)•a n}的前n项和为T n;解答:解:由a1a2a3=,及等比数列性质得=,解得a2=,由a1+a2+a3=得a1+a3=由以上得,∴=,即3q2﹣10q+3=0,解得q=3,或q=.∵{a n}是递减数列,故q=3舍去,∴q=,由a2=,得a1=1.故数列{a n}的通项公式为a n=(n∈N*).(II)由(I)知(2n﹣1)•a n=,∴T n=1+++…+①,T n=+++…++②.①﹣②得:T n=1++++…+﹣=1+2(+++…+)﹣=1+2•﹣=2﹣﹣,∴T n=3﹣.点评:本题主要考查等比数列的通项公式以及利用错位相减法求数列的和,考查学生的运算求解能力,属中档题.21.(14分)已知f(x)=aln(x﹣1),g(x)=x2+bx,F(x)=f(x+1)﹣g(x),其中a,b∈R.(I)若y=f(x)与y=g(x)的图象在交点(2,k)处的切线互相垂直,求a,b的值;(Ⅱ)当b=2﹣a,a>0时,求F(x)的最大值;(Ⅲ)若x=2是函数F(x)的一个极值点,x0和1是F(x)的两个零点,且x0∈(n,n+1),n∈N,求n.考点:导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(Ⅰ)根据导数的几何意义建立切线斜率之间的关系建立方程,求a,b的值;(Ⅱ)利用导数判断函数的单调性求出最大值;(Ⅲ)根据导数和函数极值之间的关系建立方程,即可求n;解答:解:(I)f′(x)=,g'(x)=2x+b…(1分)由题知,即…(2分)解得a=﹣,b=﹣2.(Ⅱ)当b=2﹣a时,F(x)=alnx﹣[x2+(2﹣a)x],∴F′(x)=﹣2x﹣(2﹣a)==,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)∵a>0,∴>0,又x>0,x+1>0,则由F′(x)=0,解得x=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)F(x)与F′(x)的变化情况如下表:x (0,)(,+∞)F′(x)+ 0 ﹣F(x)↗极大值↘∴F(x)max=F()=aln﹣[]=aln+﹣a.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)(Ⅲ)F(x)=f(x+1)﹣g(x)=alnx﹣(x2+bx),F′(x)=﹣2x﹣b由题知,即,即解得a=6,b=﹣1…(11分)∴F(x)=6lnx﹣(x2﹣x),F′(x)=﹣2x+1=,∵x>0,由F'(x)>0,解得0<x<2;由F'(x)<0,解得x>2∴F(x)在(0,2)上单调递增,在(2,+∞)单调递减,故F(x)至多有两个零点,其中x1∈(0,2),x2∈(2,+∞)…(12分)又F(2)>F(1)=0,F(3)=6(ln3﹣1)>0,F(4)=6(ln4﹣2)<0∴x0∈(3,4),故n=3 …(14分)点评:本题主要考查导数的应用,要求熟练掌握函数的性质和导数之间的关系,考查学生的运算能力.。

沂水县第二中学2018-2019学年上学期高三数学10月月考试题

沂水县第二中学2018-2019学年上学期高三数学10月月考试题

沂水县第二中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 若变量x y ,满足约束条件22024010x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则目标函数32z x y =-的最小值为( )A .-5B .-4 C.-2 D .3 2. 设函数()log |1|a f x x =-在(,1)-∞上单调递增,则(2)f a +与(3)f 的大小关系是( ) A .(2)(3)f a f +> B .(2)(3)f a f +< C. (2)(3)f a f += D .不能确定 3. 设函数y=x 3与y=()x 的图象的交点为(x 0,y 0),则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4) 4. 已知命题1:0,2p x x x∀>+≥,则p ⌝为( ) A .10,2x x x ∀>+< B .10,2x x x ∀≤+< C .10,2x x x ∃≤+< D .10,2x x x∃>+<5. 若集合A={x|﹣2<x <1},B={x|0<x <2},则集合A ∩B=( ) A .{x|﹣1<x <1} B .{x|﹣2<x <1} C .{x|﹣2<x <2} D .{x|0<x <1} 6. 已知三次函数f (x )=ax 3+bx 2+cx+d的图象如图所示,则=( )A .﹣1B .2C .﹣5D .﹣37. 已知数列{}n a 的各项均为正数,12a =,114n n n na a a a ++-=+,若数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和为5,则n =( )A .35B . 36C .120D .1218. 已知全集为R ,集合{}|23A x x x =<->或,{}2,0,2,4B =-,则()R A B = ð( )A .{}2,0,2-B .{}2,2,4-C .{}2,0,3-D .{}0,2,4 9. 已知,,a b c 为ABC ∆的三个角,,A B C 所对的边,若3cos (13cos )b C c B =-,则sin :sinC A =( )A .2︰3B .4︰3C .3︰1D .3︰2 【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力.10.椭圆22:143x y C +=的左右顶点分别为12,A A ,点P 是C 上异于12,A A 的任意一点,且直线1PA 斜率的取值范围是[]1,2,那么直线2PA 斜率的取值范围是( )A .31,42⎡⎤--⎢⎥⎣⎦ B .33,48⎡⎤--⎢⎥⎣⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤⎢⎥⎣⎦【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力.11.执行如图所示的程序框图,若输入的分别为0,1,则输出的( )A .4B .16C .27D .36 12.已知函数,,若,则( )A1 B2 C3 D-1 二、填空题13.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是 .14.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=lnx -mx(m ∈R )在区间[1,e]上取得最小值4,则m =________.15.设全集______.16.已知实数x ,y满足约束条,则z=的最小值为 .17.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{52128lnx x xf x m x mx x +>=-++≤,,,,若()()g x f x m =-有三个零点,则实数m 的取值范围是________. 三、解答题18.(本小题满分12分)已知点()()(),0,0,4,4A a B b a b >>,直线AB 与圆22:4430M x y x y +--+=相交于,C D 两点, 且2CD =,求.(1)()()44a b -- 的值; (2)线段AB 中点P 的轨迹方程; (3)ADP ∆的面积的最小值.19.已知斜率为1的直线l 经过抛物线y 2=2px (p >0)的焦点F ,且与抛物线相交于A ,B 两点,|AB|=4.(I )求p 的值;(II )若经过点D (﹣2,﹣1),斜率为k 的直线m 与抛物线有两个不同的公共点,求k 的取值范围.20.A={x|x 2﹣3x+2=0},B={x|ax ﹣2=0},若B ⊆A ,求a .21.(本小题满分12分)已知函数21()(3)ln 2f x x a x x =+-+. (1)若函数()f x 在定义域上是单调增函数,求的最小值;(2)若方程21()()(4)02f x a x a x -+--=在区间1[,]e e上有两个不同的实根,求的取值范围.22.已知双曲线过点P (﹣3,4),它的渐近线方程为y=±x .(1)求双曲线的标准方程;(2)设F 1和F 2为该双曲线的左、右焦点,点P 在此双曲线上,且|PF 1||PF 2|=41,求∠F 1PF 2的余弦值.23.求下列曲线的标准方程:(1)与椭圆+=1有相同的焦点,直线y=x 为一条渐近线.求双曲线C 的方程.(2)焦点在直线3x ﹣4y ﹣12=0 的抛物线的标准方程.沂水县第二中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】B 【解析】试题分析:根据不等式组作出可行域如图所示阴影部分,目标函数可转化直线系31y 22x z =+,直线系在可行域内的两个临界点分别为)2,0(A 和)0,1(C ,当直线过A 点时,32224z x y =-=-⨯=-,当直线过C 点时,32313z x y =-=⨯=,即的取值范围为]3,4[-,所以Z 的最小值为4-.故本题正确答案为B.考点:线性规划约束条件中关于最值的计算. 2. 【答案】A【解析】试题分析:由()()()()()log 1,,1log 1,1,a a x x f x x x -∈-∞⎧⎪=⎨-∈+∞⎪⎩且()f x 在(),1-∞上单调递增,易得01,112a a <<∴<+<.()f x ∴在()1,+∞上单调递减,()()23f a f ∴+>,故选A.考点:1、分段函数的解析式;2、对数函数的单调性. 3. 【答案】A【解析】解:令f (x )=x 3﹣,∵f ′(x )=3x 2﹣ln =3x 2+ln2>0,∴f (x )=x 3﹣在R 上单调递增;又f(1)=1﹣=>0,f(0)=0﹣1=﹣1<0,∴f(x)=x3﹣的零点在(0,1),∵函数y=x3与y=()x的图象的交点为(x0,y0),∴x0所在的区间是(0,1).故答案为:A.4.【答案】D【解析】考点:全称命题的否定.5.【答案】D【解析】解:A∩B={x|﹣2<x<1}∩{x|0<x<2}={x|0<x<1}.故选D.6.【答案】C【解析】解:由三次函数的图象可知,x=2函数的极大值,x=﹣1是极小值,即2,﹣1是f′(x)=0的两个根,∵f(x)=ax3+bx2+cx+d,∴f′(x)=3ax2+2bx+c,由f′(x)=3ax2+2bx+c=0,得2+(﹣1)==1,﹣1×2==﹣2,即c=﹣6a,2b=﹣3a,即f′(x)=3ax2+2bx+c=3ax2﹣3ax﹣6a=3a(x﹣2)(x+1),则===﹣5,故选:C【点评】本题主要考查函数的极值和导数之间的关系,以及根与系数之间的关系的应用,考查学生的计算能力.7. 【答案】C【解析】解析:本题考查等差数列的定义通项公式与“裂项法”求数列的前n 项和.由114n n n na a a a ++-=+得2214n n a a +-=,∴{}2n a 是等差数列,公差为4,首项为4,∴244(1)4n a n n =+-=,由0n a >得n a =1112n n a a +==+,∴数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n项和为11111)1)52222+++== ,∴120n =,选C . 8. 【答案】A【解析】考点:1、集合的表示方法;2、集合的补集及交集. 9. 【答案】C【解析】由已知等式,得3cos 3cos c b C c B =+,由正弦定理,得sin 3(sin cos sin cos )C B C C B =+,则sin 3sin()3sin C B C A =+=,所以sin :sin 3:1C A =,故选C .10.【答案】B11.【答案】D【解析】【知识点】算法和程序框图【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是, 则输出的36。

高三数学上学期月考试卷 理(含解析)-人教版高三全册数学试题

高三数学上学期月考试卷 理(含解析)-人教版高三全册数学试题

某某巴音郭楞州库尔勒市兵团农二师华山中学2015届高三上学期月考数学试卷(理科)一.选择题.(每小题5分,共60分)1.(5分)i是虚数单位,若集合S={﹣1,0,1},则()A.i∈S B.i2∈S C.i3∈S D.2.(5分)已知a=21.2,b=()﹣0.8,c=2log52,则a,b,c的大小关系为()A.c<b<a B.c<a<b C.b<a<c D.b<c<a3.(5分)(e x+2x)dx等于()A.1 B.e﹣1 C.e D.e2+14.(5分)设p:﹣1<x<3,q:x>5,则¬p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)已知角α的终边经过点P(﹣4a,3a),(a≠0)则2sinα+cosα=()A.﹣0.4 B.0.4 C.0 D.±0.46.(5分)log23×log34×log48=()A.3 B.2 C.D.7.(5分)函数y=的单调递减区间是()A.(﹣∞,﹣3] B.(﹣1,+∞)C.(﹣∞,﹣1] D.[﹣1,+∞)8.(5分)已知偶函数f(x)在[0,+∞)上为单调递减,则满足不等式f(2x﹣1)>f(3)的x的取值X围是()A.[﹣1,2] B.[﹣1,+∞)C.(1,2)D.(﹣1,2)9.(5分)若f(x)=x2﹣2x﹣4lnx,则f′(x)>0的解集为()A.(0,+∞)B.(﹣1,0)∪(2,+∞)C.(2,+∞)D.(﹣1,0)10.(5分)若函数f(x)满足f(x)f(x+2)=2且f(2)=2,则f=()A.﹣2 B.﹣1 C.2 D.201411.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.12.(5分)若曲线y=x2+ax+b在点p(0,b)处的切线方程为x﹣y+1=0,则a,b的值分别为()A.1,1 B.﹣1,1 C.1,﹣1 D.﹣1,﹣1二.填空题:(每小题5分,共20分)13.(5分)已知函数f(x)=ln(﹣3x)+2,则f(ln3)+f(ln)=.14.(5分)当x∈(1,3)时,不等式x2+(m﹣2)x+4<0恒成立,则m的取值X围是.15.(5分)若f(x)为R上是增函数,则满足f(2﹣m)<f(m2)的实数m的取值X围是.16.(5分)若f(x)是定义在R上的奇函数,且满足f(x﹣2)=﹣f(x),给出下列4个结论:①f(2)=0;②f(x)是以4为周期的函数;③f(x+2)=f(﹣x);④f(x)的图象关于直线x=0对称;其中所有正确结论的序号是.三.解答题.(每题要写出必要的步骤,或演算过程,共70分)17.(10分)在极坐标系中,圆C的极坐标方程为ρ=6cosθ+8sinθ.现以极点O为原点,极轴为x轴的非负半轴建立平面直角坐标系.(Ⅰ)求圆C的直角坐标方程;(Ⅱ)若圆C上的动点P的直角坐标为(x,y),求x+y的最大值,并写出x+y取得最大值时点P的直角坐标.18.(12分)设不等式x2≤5x﹣4的解集为A.(Ⅰ)求集合A;(Ⅱ)设关于x的不等式x2﹣(a+2)x+2a≤0的解集为M,若M⊆A,某某数a的取值X围.19.(12分)已知a>0,a≠1,设p:函数y=log a(x+1)在(0,+∞)上单调递减;q:曲线y=x2+(2a﹣3)x+1与x轴交于不同的两点.如果p且q为假命题,p或q为真命题,求a的取值X围.20.(12分)已知函数f(x)的定义域为(﹣2,2),函数g(x)=f(x﹣1)+f(3﹣2x).(1)求函数g(x)的定义域;(2)若f(x)是奇函数且在定义域内单调递减,求不等式g(x)≤0的解集.21.(12分)已知f(x)=x2+2x+1,若∀x∈[1,m],∃t∈R使f(x+t)≤x成立.求m的取值X围.22.(12分)已知函数f(x)=x2﹣alnx﹣(a∈R,a≠0).(1)当a=2时,求曲线y=f(x)在点(1,f(x))处的切线方程;(2)求函数f(x)的单调区间;(3)若对任意的x∈[1,+∞)都有f(x)≥0恒成立,某某数a的取值X围.某某巴音郭楞州库尔勒市兵团农二师华山中学2015届高三上学期月考数学试卷(理科)参考答案与试题解析一.选择题.(每小题5分,共60分)1.(5分)i是虚数单位,若集合S={﹣1,0,1},则()A.i∈S B.i2∈S C.i3∈S D.考点:虚数单位i及其性质.专题:计算题.分析:根据虚数单位i及其性质,我们分别计算出i2,i3,,再根据集合元素与集合的关系,逐一判断它们与集合S的关系,即可得到答案.解答:解:∵S={﹣},∴i∉S,故A错误;i2=﹣1∈S,故B正确;i3=﹣i∉S,故C错误;∉S,故D错误;故选B点评:本题考查的知识点是虚数单位i及其性质,元素与集合的关系,其中利用虚数单位i 及其性质,计算出i2,i3,,是解答本题的关键.2.(5分)已知a=21.2,b=()﹣0.8,c=2log52,则a,b,c的大小关系为()A.c<b<a B.c<a<b C.b<a<c D.b<c<a考点:不等式比较大小.专题:不等式的解法及应用.分析:由函数y=2x在R上是增函数可得a>b>20=1,再由c=2log52=log54<log55=1,从而得到a,b,c的大小关系解答:解:由于函数y=2x在R上是增函数,a=21.2,b=()﹣0.8 =20.8,1.2>0.8>0,∴a>b>20=1.再由c=2log52=log54<log55=1,可得 a>b>c,故选A.点评:本题主要考查指数函数、对数函数的单调性和特殊点,属于基础题.3.(5分)(e x+2x)dx等于()A.1 B.e﹣1 C.e D.e2+1考点:定积分.专题:计算题.分析:求出被积函数的原函数,将积分的上限代入减去将下限代入求出差.解答:解:(e x+2x)dx=(e x+x2)|01=e+1﹣1=e故选C.点评:本题考查利用微积分基本定理求定积分值.4.(5分)设p:﹣1<x<3,q:x>5,则¬p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:计算题.分析:由已知中命题p:﹣1<x<3,我们易求出命题¬p,进而判断出命题¬p⇒q与命题q⇒¬p 的真假,进而根据充要条件的定义,即可得到答案.解答:解:∵命题p:﹣1<x<3,∴命题¬p:x≤﹣1,或x≥3又∵命题q:x>5∴命题¬p⇒q为假命题,q⇒¬p为真命题故¬p是q的必要不充分条件故选B点评:本题考查的知识点是必要条件、充分条件与充要条件的判断,其中判断命题¬p⇒q与命题q⇒¬p的真假,是解答本题的关键.5.(5分)已知角α的终边经过点P(﹣4a,3a),(a≠0)则2sinα+cosα=()A.﹣0.4 B.0.4 C.0 D.±0.4考点:任意角的三角函数的定义.专题:三角函数的求值.分析:对a大于0与a小于0讨论,利用三角函数的定义,求出2sinα+cosα,即可得到结论.解答:解:当a>0时,x=﹣4a,y=3a,r==5a∴sinα=,cosα=,2sinα+cosα==0.4当a<0时,x=3a,y=4a,r==﹣5a∴sinα=﹣,cosα=.2si nα+cosα==﹣0.4.故选:D.点评:本题考查三角函数的定义,考查学生的计算能力,注意分类讨论思想方法的应用,是基础题.6.(5分)log23×log34×log48=()A.3 B.2 C.D.考点:对数的运算性质.专题:函数的性质及应用.分析:利用对数的换底公式求解.解答:解:log23×log34×log48==.故选:A.点评:本题考查对数式求值,是基础题,解题时要认真审题,注意对数运算性质的合理运用.7.(5分)函数y=的单调递减区间是()A.(﹣∞,﹣3] B.(﹣1,+∞)C.(﹣∞,﹣1] D.[﹣1,+∞)考点:函数的单调性及单调区间.专题:计算题.分析:根据题意,令t=x2+2x﹣3,先求函数y=的定义域,又由二次函数的性质,可得当x≤﹣3时,t=x2+2x﹣3为减函数,当x≥1时,t=x2+2x﹣3为增函数,进而可得函数y=的单调递减区间为(﹣∞,﹣3],分析选项可得答案.解答:解:令t=x2+2x﹣3,对于函数y=,有x2+2x﹣3≥0,解可得x≤﹣3或x≥1,即其定义域为{x|x≤﹣3或x≥1}又由二次函数的性质,可得当x≤﹣3时,t=x2+2x﹣3为减函数,当x≥1时,t=x2+2x﹣3为增函数,即当x≤﹣3时,函数y=的单调递减,即函数y=的单调递减区间为(﹣∞,﹣3],分析选项,可得A在(﹣∞,﹣3]中,故选A.点评:本题考查函数的单调性的判断,应当明确单调区间在函数的定义域中,故解题时首先要求出函数的定义域.8.(5分)已知偶函数f(x)在[0,+∞)上为单调递减,则满足不等式f(2x﹣1)>f(3)的x的取值X围是()A.[﹣1,2] B.[﹣1,+∞)C.(1,2)D.(﹣1,2)考点:函数奇偶性的性质;奇偶性与单调性的综合.专题:函数的性质及应用.分析:根据偶函数的性质,可知f(x)=f(|x|),将不等式f(2x﹣1)>f(3)转化为:f(|2x﹣1|)>f(3),再运用f(x)在区间[0,+∞)上单调递减,去掉“f”,列出关于x 的不等式,求解即可得到x的取值X围.解答:解:∵f(x)为偶函数,∴f(x)=f(|x|),∴f(2x﹣1)=f(|2x﹣1|),则不等式f(2x﹣1)>f(3)转化为:f(|2x﹣1|)>f(3),∵偶函数f(x)在[0,+∞)上为单调递减,∴|2x﹣1|<3,解得﹣1<x<2,则不等式的解集是:(﹣1,2),故选:D.点评:本题考查利用函数的奇偶性和单调性解不等式,解题的关键是将不等式进行合理的转化,然后利用单调性去掉“f”.属于中档题.9.(5分)若f(x)=x2﹣2x﹣4lnx,则f′(x)>0的解集为()A.(0,+∞)B.(﹣1,0)∪(2,+∞)C.(2,+∞)D.(﹣1,0)考点:导数的加法与减法法则;一元二次不等式的解法.专题:计算题.分析:由题意,可先求出函数的定义域及函数的导数,再解出不等式f′(x)>0的解集与函数的定义域取交集,即可选出正确选项.解答:解:由题,f(x)的定义域为(0,+∞),f′(x)=2x﹣2﹣,令2x﹣2﹣>0,整理得x2﹣x﹣2>0,解得x>2或x<﹣1,结合函数的定义域知,f′(x)>0的解集为(2,+∞).故选:C.点评:本题考查导数的加法与减法法则,一元二次不等式的解法,计算题,基本题型,属于基础题.10.(5分)若函数f(x)满足f(x)f(x+2)=2且f(2)=2,则f=()A.﹣2 B.﹣1 C.2 D.2014考点:抽象函数及其应用;函数的周期性.专题:计算题;函数的性质及应用.分析:由于函数f(x)满足f(x)f(x+2)=2,将x换成x+2,得到f(x+4)=f(x),则f(x)是4为最小正周期的函数,运用周期即可得到f的值.解答:解:由于函数f(x)满足f(x)f(x+2)=2,则f(x+2)f(x+4)=2,即有f(x+4)=f(x),则f(x)是4为最小正周期的函数,故f=f(4×503+2)=f(2)=2,故选C.点评:本题考查抽象函数及应用,考查函数的周期性及运用,属于基础题.11.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.考点:函数y=Asin(ωx+φ)的图象变换;余弦函数的对称性.专题:计算题.分析:先根据函数y=3cos(2x+φ)的图象关于点中心对称,令x=代入函数使其等于0,求出φ的值,进而可得|φ|的最小值.解答:解:∵函数y=3cos(2x+φ)的图象关于点中心对称.∴∴由此易得.故选A点评:本题主要考查余弦函数的对称性.属基础题.12.(5分)若曲线y=x2+ax+b在点p(0,b)处的切线方程为x﹣y+1=0,则a,b的值分别为()A.1,1 B.﹣1,1 C.1,﹣1 D.﹣1,﹣1考点:利用导数研究曲线上某点切线方程.专题:计算题;导数的概念及应用.分析:根据导数的几何意义求出函数y在x=0处的导数,从而求出切线的斜率,建立等量关系求出a,再根据点(0,b)在切线x﹣y+1=0上求出b即可.解答:解:∵y'=2x+a|x=0=a,∵曲线y=x2+ax+b在点(0,b)处的切线方程x﹣y+1=0的斜率为1,∴a=1,又切点在切线x﹣y+1=0,∴0﹣b+1=0∴b=1.故选:A.点评:本题考查利用导数求曲线上某点切线方程的应用,考查学生的计算能力,属于基础题.二.填空题:(每小题5分,共20分)13.(5分)已知函数f(x)=ln(﹣3x)+2,则f(ln3)+f(ln)=4.考点:对数的运算性质.专题:函数的性质及应用.分析:由f(﹣x)﹣2=ln(+3x)==﹣ln(﹣3x),可得f(﹣x)﹣2+f(x)﹣2=0.即可得出.解答:解:∵f(﹣x)﹣2=ln(+3x)==﹣ln(﹣3x),∴f(﹣x)﹣2+f(x)﹣2=0.即f(﹣x)+f(x)=4.∴f(ln3)+f(ln)=f(ln3)+f(﹣ln3)=4.故答案为:4.点评:本题考查了函数的奇偶性、对数的运算法则,考查了计算能力,属于中档题.14.(5分)当x∈(1,3)时,不等式x2+(m﹣2)x+4<0恒成立,则m的取值X围是m≤﹣3.考点:函数恒成立问题.专题:计算题;函数的性质及应用.分析:不等式x2+(m﹣2)x+4<0可化为m<2﹣(x+),令g(x)=x+,求其在[1,3]上的最大值,可求出m的值.解答:解:∵x∈(1,3),则不等式x2+(m﹣2)x+4<0可化为m<2﹣(x+),∵g(x)=x+在(1,2)单调递减,在(2,3)单调递增;又∵g(1)=5,g(3)=,则g(x)在[1,3]上的最大值为5.则若使m<2﹣(x+),在(1,3)上恒成立.则m≤2﹣5=﹣3.故答案为﹣3.点评:本题考查了恒成立问题,采用了独立参数的方法,属于基础题.15.(5分)若f(x)为R上是增函数,则满足f(2﹣m)<f(m2)的实数m的取值X围是(﹣∞,﹣2)∪(1,+∞).考点:函数单调性的性质.专题:函数的性质及应用.分析:根据函数f(x)的单调性可把f(2﹣m)<f(m2)化为2﹣m<m2,解不等式即可.解答:解:因为f(x)为R上的增函数,且满足f(2﹣m)<f(m2),所以2﹣m<m2,即m2+m﹣2>0,解得m<﹣2或m>1,所以实数m的取值X围是(﹣∞,﹣2)∪(1,+∞).故答案为:(﹣∞,﹣2)∪(1,+∞).点评:本题考查函数单调性的性质,抽象不等式的求解,解决本题的关键是利用函数单调性化抽象不等式为具体不等式.16.(5分)若f(x)是定义在R上的奇函数,且满足f(x﹣2)=﹣f(x),给出下列4个结论:①f(2)=0;②f(x)是以4为周期的函数;③f(x+2)=f(﹣x);④f(x)的图象关于直线x=0对称;其中所有正确结论的序号是①②③.考点:函数奇偶性的性质.专题:函数的性质及应用.分析:根据函数奇偶性和周期性的性质分别进行判断即可得到结论.解答:解:①令x=2,则f(0)=﹣f(2),则f(2)=﹣f(0),∵定义在R上的奇函数f(x),∴f(0)=0,则f(2)=﹣f(0)=0,故①正确.②∵定义在R上的奇函数f(x)满足:f(x﹣2)=﹣f(x),即f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),则函数的周期的定义可以得到:函数f(x)的周期T=4,故②正确;③②∵定义在R上的奇函数f(x)满足:f(x﹣2)=﹣f(x),则f(x)=﹣f(x+2),即f(x+2)=﹣f(x),故③正确.④∵f(x﹣2)=﹣f(x)=f(﹣x),∴函数关于x=﹣1对称,故④错误.综上正确的命题时①②③,故答案为:①②③.点评:此题考查了函数的周期定义及利用定义求函数的周期,还考查了函数的对称及与图象的平移变换,综合考查了函数的性质.三.解答题.(每题要写出必要的步骤,或演算过程,共70分)17.(10分)在极坐标系中,圆C的极坐标方程为ρ=6cosθ+8sinθ.现以极点O为原点,极轴为x轴的非负半轴建立平面直角坐标系.(Ⅰ)求圆C的直角坐标方程;(Ⅱ)若圆C上的动点P的直角坐标为(x,y),求x+y的最大值,并写出x+y取得最大值时点P的直角坐标.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(Ⅰ)由ρ=6cosθ+8sinθ利用x=ρcosθ、y=ρsinθ把极坐标方程化为直角坐标方程,并化简.(Ⅱ)由圆C的参数方程(θ为参数),可得x+y=7+5sin(θ+),由此求得x+y的最大值,以及x+y取得最大值时点P的直角坐标.解答:解:(Ⅰ)由ρ=6cosθ+8sinθ,得ρ2=6ρcosθ+8ρsinθ,所以圆C的直角坐标方程为 x2+y2﹣6x﹣8y=0,即(x﹣3)2+(y﹣4)2=25.(Ⅱ)由(Ⅰ)得圆C的参数方程为(θ为参数).所以 x+y=7+5sin(θ+),因此当θ=2kπ+,k∈z时,x+y取得最大值为7+5,且当x+y取得最大值时点P的直角坐标为(3+ 4+).点评:本小题主要考查参数方程、极坐标方程等基础知识,考查运算求解能力,属于基础题.18.(12分)设不等式x2≤5x﹣4的解集为A.(Ⅰ)求集合A;(Ⅱ)设关于x的不等式x2﹣(a+2)x+2a≤0的解集为M,若M⊆A,某某数a的取值X围.考点:一元二次不等式的解法;集合的包含关系判断及应用.专题:计算题.分析:(I)求出不等式x2≤5x﹣4的解集确定出集合A,(II)若B⊆A,某某数m的取值X围进要注意B是空集的情况,故此题分为两类求,是空集时,不是空集时,比较两个集合的端点即可.解答:解:(Ⅰ)原不等式即为x2﹣5x+4=(x﹣1)(x﹣4)≤0,所以1≤x≤4(4分)所以不等式的解集A={x|1≤x≤4}(6分)(Ⅱ)不等式等价于(x﹣a)(x﹣2)≤0(7分)若a<2,则M=[a,2],要M⊆A,只需1≤a<2(9分)若a>2,则M=[2,a],要M⊆A,只需2<a≤4(11分)若a=2,则M=2,符合M⊆A(13分)综上所述,a的取值X围为[1,4].(14分)点评:本题考查一元二次不等式的解法、集合中的参数取值问题,属于集合包含关系的运用,求解本题关键是理解包含关系的意义,本题中有一易错点,在第二小问中空集容易因为忘记讨论B是空集导到失分,这是一个很容易失分的失分点,切记.19.(12分)已知a>0,a≠1,设p:函数y=log a(x+1)在(0,+∞)上单调递减;q:曲线y=x2+(2a﹣3)x+1与x轴交于不同的两点.如果p且q为假命题,p或q为真命题,求a的取值X围.考点:复合命题的真假;二次函数的性质;对数函数的单调性与特殊点.专题:分类讨论.分析:根据对数函数的单调性我们易判断出命题p为真命题时参数a的取值X围,及命题p 为假命题时参数a的取值X围;根据二次函数零点个数的确定方法,我们易判断出命题q为真命题时参数a的取值X围,及命题q为假命题时参数a的取值X围;由p且q为假命题,p或q为真命题,我们易得到p与q一真一假,分类讨论,分别构造关于x的不等式组,解不等式组即可得到答案.解答:解:若p为真,则0<a<1.若q为真,则△>0即(2a﹣3)2﹣4>0解得a<或a>.∵p且q为假,p或q为真,∴p与q中有且只有一个为真命题.(a>0且a≠1)若p真q假,则∴≤a<1若p假q真,则∴a综上所述,a的取值X围为:[,1)∪(,+∞).点评:本题考查的知识点是复合命题的真假,二次函数的性质,对数函数的性质,其中根据二次函数及对数函数的性质判断两个命题为真或为假时参数a的取值X围,是解答本题的关键.20.(12分)已知函数f(x)的定义域为(﹣2,2),函数g(x)=f(x﹣1)+f(3﹣2x).(1)求函数g(x)的定义域;(2)若f(x)是奇函数且在定义域内单调递减,求不等式g(x)≤0的解集.考点:函数的定义域及其求法;函数单调性的性质;函数奇偶性的性质.专题:函数的性质及应用.分析:(1)由题意知,,解此不等式组得出函数g(x)的定义域.(2)等式g(x)≤0,即 f(x﹣1)≤﹣f(3﹣2x)=f(2x﹣3),有,解此不等式组,可得结果.解答:解:(1)∵数f(x)的定义域为(﹣2,2),函数g(x)=f(x﹣1)+f(3﹣2x).∴,∴<x<,函数g(x)的定义域(,).(2)∵f(x)是奇函数且在定义域内单调递减,不等式g(x)≤0,∴f(x﹣1)≤﹣f(3﹣2x)=f(2x﹣3),∴,∴<x≤2,故不等式g(x)≤0的解集是(,2].点评:本题考查函数的定义域的求法,利用函数的单调性和奇偶性解不等式,属于基础题.21.(12分)已知f(x)=x2+2x+1,若∀x∈[1,m],∃t∈R使f(x+t)≤x成立.求m的取值X围.考点:函数恒成立问题.专题:函数的性质及应用.分析:设g(x)=f(x+t)﹣x=x2+(2t+1)x+(1+t)2,由已知可得∀x∈[1,m],g(x)≤0恒成立,即g(1)≤0且g(m)≤0,先求出t的X围,进而可得m的取值X围.解答:解:设g(x)=f(x+t)﹣x=x2+(2t+1)x+(1+t)2,由题值∀x∈[1,m],f(x+t)≤x恒成立,即∀x∈[1,m],g(x)≤0恒成立,即g(1)≤0且g(m)≤0,即t2+4t+3≤0,m2+(2t+1)m+(t+1)2≤0,则t∈[﹣3,﹣1],当t=﹣1时,得到m2﹣m≤0,解得0≤m≤1;当t=﹣3时,得到m2﹣5m+4≤0,解得1≤m≤4综上得到:m∈[1,4],点评:本题考查的知识点是函数恒成立问题,熟练掌握函数的图象和性质,会进行函数恒成立与不等式之间的转化是解答的关键.22.(12分)已知函数f(x)=x2﹣alnx﹣(a∈R,a≠0).(1)当a=2时,求曲线y=f(x)在点(1,f(x))处的切线方程;(2)求函数f(x)的单调区间;(3)若对任意的x∈[1,+∞)都有f(x)≥0恒成立,某某数a的取值X围.考点:利用导数研究曲线上某点切线方程;函数恒成立问题;利用导数研究函数的单调性.专题:导数的综合应用.分析:(1)当a=2时,求出函数的导数,利用导数的几何意义即可求曲线y=f(x)在点(1,f(x))处的切线方程;(2)求函数的导数,利用函数单调性和导数之间的关系即可求函数f(x)的单调区间;(3)根据函数的单调性求出函数的最小值即可实数a的取值X围.解答:解:(1)当a=2时,f(x)=x2﹣2lnx﹣,f(1)=0,即切点(1,0),函数的导数为f′(x)=x﹣,则f′(1)=1﹣2=﹣1,∴曲线y=f(x)在点(1,0)处的切线方程为y=﹣(x﹣1),即x+y﹣1=0;(2)函数f(x)的定义域为(0,+∞),则函数的导数为f′(x)=x﹣=,若a<0,则f′(x)>0,此时函数单调递增,递增区间为(0,+∞),若a>0,由f′(x)>0得x>,此时函数单调递增,递增区间为(,+∞)由f′(x)<0,解得0<x<,此时函数单调递减,递减区间为(0,).(3)若对任意的都有f(x)≥0恒成立,由(2)知,若a<0,函数f(x)在[1,+∞)单调递增,f(x)≥f(1)=0,满足条件.若a>0,若a≤1,此时函数f(x)在[1,+∞)单调递增,f(x)≥f(1)=0,满足条件,若a>1,f(x)在[1,]上单调递减,此时f(x)≤f(1)=0,与f(x)≥0恒成立,满足,综上a≤1.点评:本题主要考查函数切线的求解,以及函数单调性和函数最值的求解,综合考查函数的导数的应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省临沂市沂水二中北校区2015届高三上学期10月月考数学试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(5分)已知集合A={x|1<x<3},B={x|1<log2x<2},则A∩B等于()A.{x|0<x<3} B.{x|2<x<3} C.{x|1<x<3} D.{x|1<x<4} 2.(5分)设x∈R,向量=(x,1),=(1,﹣2),且⊥,则|+|=()A.B.C.2D.103.(5分)在△ABC中,设命题p:==,命题q:△ABC是等边三角形,那么命题p是命题q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)设,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.b>a>c D.b>c>a5.(5分)已知函数f(x)=ax﹣x3在区间[1,+∞)上单调递减,则a的最大值是()A.0B.1C.2D.36.(5分)已知f(x)是定义在R上的奇函数,且x≥0时f(x)的图象如图所示,则f(﹣2)=()A.﹣3 B.﹣2 C.﹣1 D.27.(5分)函数y=sin(x﹣)的一条对称轴可以是直线()A.x=B.x=πC.x=﹣πD.x=8.(5分)在△ABC中,角A、B、C所对应的边分别为a、b、c,已知bcosC+ccosB=2b,则=()A.2B.C.D.19.(5分)函数y=2x﹣x2的图象大致是()A.B.C.D.10.(5分)若函数y=f(x)(x∈R)满足f(x﹣2)=f(x),且x∈[﹣1,1]时,f(x)=1﹣x2,函数g(x)=,则函数h(x)=f(x)﹣g(x)在区间[﹣5,6]内的零点的个数为()A.13 B.8C.9D.10二、填空题(本大题共5小题,每小题5分,共25分).11.(5分)在数列{a n}中,a1=15,3a n+1=3a n﹣2(n∈N+),则该数列中相邻两项的乘积是负数的为.12.(5分)向量=(1,sinθ),=(1,cosθ),若•=,则sin2θ=.13.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是.14.(5分)设f1(x)=cosx,定义f n+1(x)为f n(x)的导数,即f n+1(x)=f′n(x)n∈N*,若△ABC的内角A满足f1(A)+f2(A)+…+f2013(A)=,则sin2A的值是.15.(5分)给出下列命题:①函数y=cos(2x﹣)图象的一条对称轴是x=②在同一坐标系中,函数y=sinx与y=lgx的交点个数为3个;③将函数y=sin(2x+)的图象向右平移个单位长度可得到函数y=sin2x的图象;④存在实数x,使得等式sinx+cosx=成立;其中正确的命题为(写出所有正确命题的序号).三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤). 16.(12分)已知集合A={x|2x<8},B={x|x2﹣2x﹣8<0},C={x|a<x<a+1}.(Ⅰ)求集合A∩B;(Ⅱ)若C⊆B,求实数a的取值范围.17.(12分)设命题p:函数y=kx+1在R上是增函数,命题q:曲线y=x2+(2k﹣3)x+1与x轴交于不同的两点,如果p∧q是假命题,p∨q是真命题,求k的取值范围.18.(12分)在平面直角坐标系中,角α,β的始边为x轴的非负半轴,点P(1,2cos2θ)在角α的终边上,点Q(sin2θ,﹣1)在角β的终边上,且.(1)求cos2θ;(2)求P,Q的坐标并求sin(α+β)的值.19.(12分)在△ABC中,a,b,c分别是角A,B,C的对边,已知3(b2+c2)=3a2+2bc.(Ⅰ)若,求tanC的大小;(Ⅱ)若a=2,△ABC的面积,且b>c,求b,c.20.(13分)定义在实数集上的函数f(x)=x2+x,g(x)=x3﹣2x+m.(1)求函数f(x)的图象在x=1处的切线方程;(2)若f(x)≥g(x)对任意的x∈[﹣4,4]恒成立,求实数m的取值范围.21.(14分)已知点A(x1,f(x1)),B(x2,f(x2))是函数f(x)=2sin(ωx+φ)图象上的任意两点,且角φ的终边经过点,若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为.(1)求函数f(x)的解析式;(2)求函数f(x)的单调递增区间;(3)当时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.山东省临沂市沂水二中北校区2015届高三上学期10月月考数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(5分)已知集合A={x|1<x<3},B={x|1<log2x<2},则A∩B等于()A.{x|0<x<3} B.{x|2<x<3} C.{x|1<x<3} D.{x|1<x<4}考点:交集及其运算.专题:计算题.分析:直接求出集合B,然后求出A∩B即可.解答:解:因为集合A={x|1<x<3},B={x|1<log2x<2}={x|2<x<4},所以A∩B={x|2<x<3}.故选B.点评:本题考查对数函数的基本性质,集合的基本运算,考查计算能力.2.(5分)设x∈R,向量=(x,1),=(1,﹣2),且⊥,则|+|=()A.B.C.2D.10考点:平面向量数量积的坐标表示、模、夹角.专题:计算题.分析:通过向量的垂直,求出向量,推出,然后求出模.解答:解:因为x∈R,向量=(x,1),=(1,﹣2),且⊥,所以x﹣2=0,所以=(2,1),所以=(3,﹣1),所以|+|=,故选B.点评:本题考查向量的基本运算,模的求法,考查计算能力.3.(5分)在△ABC中,设命题p:==,命题q:△ABC是等边三角形,那么命题p是命题q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据正弦定理,利用充分条件和必要条件的定义进行判断即可得到结论.解答:解:由正弦定理可知,若===t,则,即a=tc,b=ta,c=bt,即abc=t3abc,即t=1,则a=b=c,即△ABC是等边三角形,若△ABC是等边三角形,则A=B=C=,则===1成立,即命题p是命题q的充要条件,故选:C点评:本题主要考查充分条件和必要条件的判断,利用正弦定理是解决本题的关键.4.(5分)设,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.b>a>c D.b>c>a考点:对数值大小的比较;不等式比较大小.分析:根据指数函数和对数函数的单调性判断出abc的范围即可得到答案.解答:解:∵a=20.1>20=10=ln1<b=ln<lne=1c=<log31=0∴a>b>c故选A.点评:本题主要考查指数函数和对数函数的单调性,即当底数大于1时单调递增,当底数大于0小于1时单调递减.5.(5分)已知函数f(x)=ax﹣x3在区间[1,+∞)上单调递减,则a的最大值是()A.0B.1C.2D.3考点:利用导数研究函数的单调性.专题:计算题.分析:根据f(x)在区间[1,+∞)上单调递减,可得f'(x)≥0在区间[1,+∞)上恒成立,建立等量关系,求出参数a最大值即可.解答:解:∵f(x)=ax﹣x3∴f′(x)=a﹣3x2∵函数f(x)=ax﹣x3在区间[1,+∞)上单调递减,∴f′(x)=a﹣3x2≤0在区间[1,+∞)上恒成立,∴a≤3x2在区间[1,+∞)上恒成立,∴a≤3.故选D.点评:本小题主要考查运用导数研究函数的单调性及恒成立等基础知识,考查综合分析和解决问题的能力.6.(5分)已知f(x)是定义在R上的奇函数,且x≥0时f(x)的图象如图所示,则f(﹣2)=()A.﹣3 B.﹣2 C.﹣1 D.2考点:函数奇偶性的性质.专题:函数的性质及应用.分析:根据函数奇偶性的性质结合函数图象即可得到结论.解答:解:∵函数f(x)是定义在R上的奇函数,∴f(﹣2)=﹣f(2)=﹣2,故选:B点评:本题主要考查函数值的计算,根据函数的奇偶性以及函数图象进行转化时解决本题的关键.7.(5分)函数y=sin(x﹣)的一条对称轴可以是直线()A.x=B.x=πC.x=﹣πD.x=考点:正弦函数的对称性.专题:三角函数的图像与性质.分析:利用正弦函数的对称性可求得其对称轴方程为:x=kπ+(k∈Z),从而可得答案.解答:解:由x﹣=kπ+(k∈Z)得:x=kπ+(k∈Z),∴函数y=sin(x﹣)的对称轴方程为:x=kπ+(k∈Z),当k=1时,x=π,∴方程为x=π的直线是函数y=sin(x﹣)的一条对称轴,故选:B.点评:本题考查正弦函数的对称性,求得其对称轴方程为:x=kπ+(k∈Z)是关键,属于中档题.8.(5分)在△ABC中,角A、B、C所对应的边分别为a、b、c,已知bcosC+ccosB=2b,则=()A.2B.C.D.1考点:正弦定理.专题:解三角形.分析:利用正弦定理把已知等式中的边转化成角的正弦,进而利用两角和公式对等号左边进行化简求得sinA和sinB的关系,进而利用正弦定理求得a和b的关系.解答:解:∵bcosC+ccosB=2b,∴sinBcosC+cosBsinC=sin(B+C)=sinA=2sinB,∴=2,由正弦定理知=,∴==2,故选:A.点评:本题主要考查了正弦定理的应用,三角函数恒等变换的应用.考查了学生分析和运算能力.9.(5分)函数y=2x﹣x2的图象大致是()A.B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:分别画出y=2x,y=x2的图象,由图象可以函数与x轴有三个交点,且当x<﹣1时,y<0,故排除BCD,问题得以解决.解答:解:y=2x﹣x2,令y=0,则2x﹣x2=0,分别画出y=2x,y=x2的图象,如图所示,由图象可知,有3个交点,∴函数y=2x﹣x2的图象与x轴有3个交点,故排除BC,当x<﹣1时,y<0,故排除D故选:A.点评:本题主要考查了图象的识别和画法,关键是掌握指数函数和幂函数的图象,属于基础题.10.(5分)若函数y=f(x)(x∈R)满足f(x﹣2)=f(x),且x∈[﹣1,1]时,f(x)=1﹣x2,函数g(x)=,则函数h(x)=f(x)﹣g(x)在区间[﹣5,6]内的零点的个数为()A.13 B.8C.9D.10考点:函数的零点;函数的周期性.专题:函数的性质及应用.分析:由f(x+2)=f(x),知函数y=f(x)(x∈R)是周期为2的函数,进而根据f(x)=1﹣x2与函数g(x)=的图象得到交点为9个.解答:解:因为f(x﹣2)=f(x),所以函数y=f(x)(x∈R)是周期为2函数.因为x∈[﹣1,1]时,f(x)=1﹣x2,所以作出它的图象,利用函数y=f(x)(x∈R)是周期为2函数,可作出y=f(x)在区间[﹣5,6]上的图象,如图所示:故函数h(x)=f(x)﹣g(x)在区间[﹣5,6]内的零点的个数为9,故选C.点评:本题的考点是函数零点与方程根的关系,主要考查函数零点的定义,关键是正确作出函数图象,注意掌握周期函数的一些常见结论:若f(x+a)=f(x),则周期为a;若f(x+a)=﹣f(x),则周期为2a;若f(x+a)=,则周期为2a,属于基础题.二、填空题(本大题共5小题,每小题5分,共25分).11.(5分)在数列{a n}中,a1=15,3a n+1=3a n﹣2(n∈N+),则该数列中相邻两项的乘积是负数的为a23•a24.考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:把等式3a n+1=3a n﹣2变形后得到a n+1﹣a n等于常数,即此数列为首项为15,公差为﹣的等差数列,写出等差数列的通项公式,令通项公式小于0列出关于n的不等式,求出不等式的解集中的最小正整数解,即可得到从这项开始,数列的各项为负,这些之前各项为正,得到该数列中相邻的两项乘积是负数的项.解答:解:由3a n+1=3a n﹣2,得到公差d=a n+1﹣a n=﹣,又a1=15,则数列{a n}是以15为首项,﹣为公差的等差数列,所以a n=15﹣(n﹣1)=﹣n+,令a n=﹣n+<0,解得n>,即数列{a n}从24项开始变为负数,所以该数列中相邻的两项乘积是负数的项是a23a24.故答案为:a23•a24点评:此题考查学生灵活运用等差数列的通项公式化简求值,掌握确定一个数列为等差数列的方法,是一道综合题.12.(5分)向量=(1,sinθ),=(1,cosθ),若•=,则sin2θ=.考点:平面向量的综合题.专题:计算题.分析:由==可求解答:解:∵==∴sin2θ=故答案为:点评:本题主要考查了向量的数量积的坐标表示,三角函数的二倍角公式的应用,属于基础试题13.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0).考点:二次函数的性质.专题:函数的性质及应用.分析:由条件利用二次函数的性质可得,由此求得m的范围.解答:解:∵二次函数f(x)=x2+mx﹣1的图象开口向上,对于任意x∈[m,m+1],都有f(x)<0成立,∴,即,解得﹣<m<0,故答案为:(﹣,0).点评:本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题.14.(5分)设f1(x)=cosx,定义f n+1(x)为f n(x)的导数,即f n+1(x)=f′n(x)n∈N*,若△ABC的内角A满足f1(A)+f2(A)+…+f2013(A)=,则sin2A的值是.考点:导数的运算.专题:导数的综合应用.分析:由已知分别求出f2(x),f3(x),f4(x),f5(x),可得从第五项开始,f n(x)的解析式重复出现,每4次一循环,结合f1(A)+f2(A)+…+f2013(A)=求出cosA,进一步得到sinA,则答案可求.解答:解:∵f1(x)=cosx,∴f2(x)=f1′(x)=﹣sinx,f3(x)=f2′(x)=﹣cosx,f4(x)=f3′(x)=sinx,f5(x)=f4′(x)=cosx,…从第五项开始,f n(x)的解析式重复出现,每4次一循环.∴f1(x)+f2(x)+f3(x)+f4(x)=0.∴f2013(x)=f4×503+1(x)=f1(x)=cosx.∵f1(A)+f2(A)+…+f2013(A)=.∴cosA=.∵A为三角形的内角,∴sinA=.∴sin2A=2sinAcosA=.故答案为:.点评:本题考查了导数及其运算,关键是找到函数解析式规律性,是中档题.15.(5分)给出下列命题:①函数y=cos(2x﹣)图象的一条对称轴是x=②在同一坐标系中,函数y=sinx与y=lgx的交点个数为3个;③将函数y=sin(2x+)的图象向右平移个单位长度可得到函数y=sin2x的图象;④存在实数x,使得等式sinx+cosx=成立;其中正确的命题为①②(写出所有正确命题的序号).考点:命题的真假判断与应用.专题:计算题;简易逻辑.分析:①由x=时,y=﹣1,可得结论;②利用函数图象,求解;③根据图象的平移规律可得结论;④根据sinx+cosx=sin(x+)≤<,可以判断.解答:解:①函数y=cos(2x﹣),x=时,y=﹣1,所以函数y=cos(2x﹣)图象的一条对称轴是x=,正确;②在同一坐标系中,画出函数y=sinx和y=lgx的图象,所以结合图象易知这两个函数的图象有3交点,正确;③将函数y=sin(2x+)的图象向右平移个单位长度可得到函数y=sin[2(x﹣)+],即y=sin(2x﹣)的图象,故不正确;④sinx+cosx=sin(x+)≤<,故不存在实数x,使得等式sinx+cosx=成立;故答案为:①②.点评:本题利用三角函数图象与性质,考查命题的真假判断与应用,考查学生分析解决问题的能力,属于中档题.三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤). 16.(12分)已知集合A={x|2x<8},B={x|x2﹣2x﹣8<0},C={x|a<x<a+1}.(Ⅰ)求集合A∩B;(Ⅱ)若C⊆B,求实数a的取值范围.考点:集合的包含关系判断及应用.专题:集合.分析:(I)解指数不等式求出A,解二次不等式求出B,进而可得集合A∩B;(Ⅱ)若C⊆B,则,解不等式组可得实数a的取值范围.解答:解:(Ⅰ)由2x<8,得2x<23,x<3.(3分)解不等式x2﹣2x﹣8<0,得(x﹣4)(x+2)<0,所以﹣2<x<4.(6分)所以A={x|x<3},B={x|﹣2<x<4},所以A∩B={x|﹣2<x<3}.(9分)(Ⅱ)因为C⊆B,所以(11分)解得﹣2≤a≤3.所以,实数a的取值范围是[﹣2,3].(13分)点评:本题考查的知识点是集合的包含关系判断及应用,集合的交集运算,解不等式,难度不大,属于基础题.17.(12分)设命题p:函数y=kx+1在R上是增函数,命题q:曲线y=x2+(2k﹣3)x+1与x轴交于不同的两点,如果p∧q是假命题,p∨q是真命题,求k的取值范围.考点:复合命题的真假.专题:简易逻辑.分析:易得p:k>0,q:或,由p∧q是假命题,p∨q是真命题,可得p,q一真一假,分别可得k的不等式组,解之可得.解答:解:∵函数y=kx+1在R上是增函数,∴k>0,又∵曲线y=x2+(2k﹣3)x+1与x轴交于不同的两点,∴△=(2k﹣3)2﹣4>0,解得或,∵p∧q是假命题,p∨q是真命题,∴命题p,q一真一假,①若p真q假,则,∴;②若p假q真,则,解得k≤0,综上可得k的取值范围为:(﹣∞,0]∪[,]点评:本题考查复合命题的真假,涉及不等式组的解法和分类讨论的思想,属基础题.18.(12分)在平面直角坐标系中,角α,β的始边为x轴的非负半轴,点P(1,2cos2θ)在角α的终边上,点Q(sin2θ,﹣1)在角β的终边上,且.(1)求cos2θ;(2)求P,Q的坐标并求sin(α+β)的值.考点:两角和与差的正弦函数;平面向量数量积的运算;同角三角函数间的基本关系;二倍角的余弦.专题:计算题.分析:(1)利用向量数量积运算得出sin2θ﹣2cos2θ=﹣1,再利用二倍角余弦公式求出cos2θ.(2)由(1)可以求出P,Q的坐标,再利用任意角三角函数的定义求出α,β的正、余弦值.代入两角和的正弦公式计算.解答:解(1)=(1,2cos2θ),=(sin2θ,﹣1),∵,∴sin2θ﹣2cos2θ=﹣1,∴,∴.(2)由(1)得:,∴,∴∴,,由任意角三角函数的定义,,同样地求出,,∴点评:本题考查向量的数量积运算、任意角三角函数的定义、利用三角函数公式进行恒等变形以及求解运算能力.19.(12分)在△ABC中,a,b,c分别是角A,B,C的对边,已知3(b2+c2)=3a2+2bc.(Ⅰ)若,求tanC的大小;(Ⅱ)若a=2,△ABC的面积,且b>c,求b,c.考点:余弦定理的应用.专题:综合题;解三角形.分析:(Ⅰ)由3(b2+c2)=3a2+2bc,利用余弦定理,可得cosA,根据,即可求tanC的大小;(Ⅱ)利用面积及余弦定理,可得b、c的两个方程,即可求得结论.解答:解:(Ⅰ)∵3(b2+c2)=3a2+2bc,∴=∴cosA=,∴sinA=∵,∴∴∴∴tanC=;(Ⅱ)∵ABC的面积,∴,∴bc=①∵a=2,∴由余弦定理可得4=b2+c2﹣2bc×∴b2+c2=5②∵b>c,∴联立①②可得b=,c=.点评:本题考查余弦定理,考查三角形面积的计算,考查学生的计算能力,属于中档题.20.(13分)定义在实数集上的函数f(x)=x2+x,g(x)=x3﹣2x+m.(1)求函数f(x)的图象在x=1处的切线方程;(2)若f(x)≥g(x)对任意的x∈[﹣4,4]恒成立,求实数m的取值范围.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(1)求切线方程,就是求k=f′(1),f(1),然后利用点斜式求直线方程,问题得以解决;(2)令h(x)=g(x)﹣f(x),要使f(x)≥g(x)恒成立,即h(x)max≤0,转化为求最值问题.解答:解:(1)∵f(x)=x2+x∴f′(x)=2x+1,f(1)=2,∴f′(1)=3,∴所求切线方程为y﹣2=3(x﹣1),即3x﹣y﹣1=0;(2)令h(x)=g(x)﹣f(x)=x3﹣2x+m﹣x2﹣x=x3﹣3x+m﹣x2∴h′(x)=x2﹣2x﹣3,当﹣4<x<﹣1时,h′(x)>0,当﹣1<x<3时,h′(x)<0,当3<x<4时,h′(x)>0,要使f(x)≥g(x)恒成立,即h(x)max≤0,由上知h(x)的最大值在x=﹣1或x=4取得,而h(﹣1)=,h(4)=m﹣,∵m+,∴,即m.点评:导数再函数应用中,求切线方程就是求某点处的导数,再求参数的取值范围中,转化为求函数的最大值或最小值问题.21.(14分)已知点A(x1,f(x1)),B(x2,f(x2))是函数f(x)=2sin(ωx+φ)图象上的任意两点,且角φ的终边经过点,若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为.(1)求函数f(x)的解析式;(2)求函数f(x)的单调递增区间;(3)当时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.考点:三角函数的最值.专题:三角函数的图像与性质.分析:(1)利用三角函数的定义求出φ的值,由|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为,可得函数的周期,从而可求ω,进而可求函数f(x)的解析式;(2)利用正弦函数的单调增区间,可求函数f(x)的单调递增区间;(3)当时,不等式mf(x)+2m≥f(x)恒成立,等价于,由此可求实数m的取值范围.解答:解:(1)角φ的终边经过点,∴,…(2分)∵,∴.…(3分)由|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为,得,即,∴ω=3…..(5分)∴…(6分)(2)由,可得,…(8分)∴函数f(x)的单调递增区间为k∈z…(9分)(3 )当时,,…(11分)于是,2+f(x)>0,∴mf(x)+2m≥f(x)等价于…(12分)由,得的最大值为…(13分)∴实数m的取值范围是.…(14分)点评:本题考查函数解析式的确定,考查三角函数的性质,考查分离参数法的运用,考查学生分析解决问题的能力,属于中档题.。

相关文档
最新文档