成都七中嘉祥初一下数学期末测试题
(完整版)成都嘉祥初一下学期期末数学试题题卷
A 卷(共 100 分)
第Ⅰ卷(选择题,共 30 分)
注意事项:
1. 第Ⅰ卷共 2 页。答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和
答题卡上。考试结束,监考人员将试卷和答题卡一并收回。
2. 第Ⅰ卷全是选择题。各题均有四个选项,只有一项符合题目要求。
部分图象如图所示.
( 1)当 0 ≤ x≤ 6 时,分别求 y甲 、 y乙 与 x 之间的关系式.
y乙 30
O
3
68
x(时 )
( 2)如果甲、乙两班均保持前 6 个小时的工作效率,通过计算说明,当 总量之和能否超过 260 棵.
x 8 时,甲、乙两班植树的
( 3)如果 6 个小时后,甲班保持前 6 个小时的工作效率,乙班通过增加人数,提高了工作效率,这
.
24、如图 , 共有 12 个大小相同的小正方形 , 其中阴影部分的 5 个小正方形是
一个正方体的表面展开图的一部分 , 现从其余的小正方形中任取一个涂
上阴影 , 能构成这个正方体的表面展开图的概率是
。
25、如图,将 △ ABC 沿 DE 折叠,使点 A 与 BC 边的中点 F 重合,下列结论中:
( 1)判断 BDF 的形状,并证明。
(2) 若将 DEF 沿 EF 翻折,猜测点 D 是否落在 AC 上,请说明理由。
( 3)若 S AOF 2 2 2,S DEC 12 - 8 2,求 ABC 的面积。
4
七年级(下)期末数学试题
..
… …
数学答题卷
…
… …
A 卷(共 100 分)
… …
一、选择题:
-9
3
( 2)先化简,再求值:
【3套打包】成都七中嘉祥外国语学校七年级下册数学期末考试试题(含答案)
新七年级(下)数学期末考试一试题(含答案)一、填空题 ( 本大题共 6 个小题,每题 3 分 , 满分 18 分 )1. 9 的平方根是.2.假如水位高升 2 m时水位变化记作2m ,那么水位降落 3 m时的水位变化记作m .3.点P在第四象限内,点P 到 x 轴的距离是1,到y轴的距离是2,那么点P 的坐标为.4. 若x 1 是对于x的方程 2 x a 2的解,则a的值为5. 如图,AB∥CD,AD⊥BD,∠A =56°,D则∠ BDC 的度数为__________.A6.某次知识比赛共有道 25 题,每一道题答对得 5 分,答错或不答扣.CB3分,在此次比赛中小明的得分超出了100 分,他起码答对题.二、选择题 ( 本大题共 8 个小题,每题 4 分 , 满分 32 分 )7.以下各点中,在第二象限的点是().A.( -4, 2)B.( -2, 0)C.( 3, 5)D.( 2, -3)8.据统计,今年全国共有10310000 名考生参加高考,10310000 用科学记数法可表示为() .. 1031104. 10.31 106.1.031107A B CD. 1.0311089.如图,已知直线a // b ,∠1=100°,则∠2等于().A.60°B. 70°C. 80°D. 100°10.以下检查中,适合采纳全面检查方式的是() .A.认识我县中学生每周使用手机所用的时间B.认识一批手机电池的使用寿命C.检查端午节时期市场上粽子质量状况D.检查某校七年级(三)班45 名学生视力状况11.以下不等式中必定建立的是().A.5a>4a B.a>2a C.2<3D.a 2<a 3a a12.不等式x 5 ≤0的解集在数轴上表示正确的选项是() .0 5-5005-5 0A B CD13.已知 ,如图,直线AB , CD订交于点O, OE⊥AB于点O,∠ BOD =35°.则∠ COE 的度数为().A.35°B. 55°C. 65°D. 70°14.如图,已知点A,B的坐标分别为(3, 0),( 0,4),将线段AB平移到CD,若点A 的对应点 C 的坐标为(4,2),则B的对应D点 D 的坐标为().yBA.(1, 6)B.( 2, 5)C.( 6, 1)D.( 4, 6)C三、解答题 ( 本大题共 9 个小题,满分 70分 )O Ax 15. (本小题 6分)计算: (2)2 381632232x y5 16. (本小题10 分)( 1)解方程组3x 4 y2①②4x+6> x,①(2)不等式组x23≥ x,并写出它的全部整数解.②17.(本小题 6 分)某班去看演出,甲种票每张25 元,乙种票每张20 元 .假如40 名学生购票恰巧用去880 元,甲乙两种票各买了多少张?18.(本小题 7 分)如图,已知,OA ⊥ OB ,点 C 在射线 OB 上,经过 C 点的直线DF ∥OE,∠BCF=60°.求∠AOE的度数.EA ODCFB19.(本小题 7 分)达成以下推理结论及推理说明:如图,已知∠ B +∠BCD=180°,∠ B =∠ D .求证:∠ E =∠ DFE .证明:∵∠ B +∠BCD=180°(已知)∴ AB∥CD()A FD∴∠ B=()又∵∠ B =∠ D (已知)B EC=(等量代换)∴AD∥BE()∴∠ E=∠ DFE ()20.(本小题8分)以下图,△ABC 在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个极点的坐标分别是A(﹣2,0), B(﹣5,﹣2),C(-3,﹣4),先将△ ABC 向右平移4个单位长度,再向上平移 3 个单位长度,获得△A1B1C1.(1)在图中画出△A1B1C1;y54(2)写出△A1B1C1的三个极点32的坐标;1Ax-6-5 -4-3-2-10123 4 5 6-1B-2-3C-4-5(3)求△A1B1C1的面积.21. (本小题 7分 ) 如图,已知:DE ∥BC,∠ DEB =∠GFC,试说明 BE ∥FG最新人教版数学七年级下册期末考试一试题( 答案)A一、选择题(本大题共 6 个小题;每题 3 分,共 18 分.)D E1.( 3 分)在3, 0,﹣ 2,﹣四个数中,最小的数是()GBF CA .3B .0C.﹣ 2D.﹣2.( 3 分)为认识一批电视机的使用寿命,从中抽取100 台电视机进行试验,这个问题的样本容量是()A .抽取的 100 台电视机B.100C.抽取的 100 台电视机的使用寿命D .这批电视机的使用寿命3.( 3 分)如图,一把矩形直尺沿直线断开并错位,点E、 D、B、F 在同一条直线上,若∠ADE =125°,则∠ DBC 的度数为()A .55°B .65°C. 75°D. 125°4.( 3 分)实数a,b 在数轴上的地点以下图,则以下结论正确的选项是()A .a+b> 0B .a﹣ b> 0C. a?b>0D.>05.( 3 分)小强到体育用品商铺购置羽毛球球拍和乒乓球球拍,已知购置 1 副羽毛球球拍和1 副乒乓球球拍共需50 元,小强一共用320 元购置了 6 副相同的羽毛球拍和10 副相同的乒乓球拍.若设每副羽毛球拍为x 元,每副乒乓球拍为y 元,依据题意,下边所列方程组正确的选项是()A.B.C.D.6.(3 分)在同一平面内有 100 条直 , 若 a 1⊥ a 2,a 2⊥ a 3,a 3⊥ a 4,a 4⊥ a 5,⋯,a 99⊥ a 100, 以下 正确的选项是( )A .a 1∥ a 100B .a 2⊥ a 98C . a 1∥ a 99D . a 49∥ a 50二、填空 (本大 共6 个小 ,每小3 分,共 18 分.)7.( 3 分)平面直角坐 系中的点 P ( 4, 6)在第 象限.8.( 3 分)已知 x 2a +y b ﹣ 1= 5 是对于 x , y 的二元一次方程,ab =.9.( 3 分)若对于 x 的不等式 x > a+2 的解集是 x <3, a =.10.( 3 分)如 直a ∥b ,直c 分 交直 a , b 于点 A 、B 两点, CB ⊥ b 于 B ,若∠ 1= 40°, ∠ 2=.11.( 3 分)某次数学 中有16 道 , 分 法: 答 一道得 6 分,答 一道扣 2 分,不答得 0 分.某学生有一道 未答,那么 个同学起码要答 道 ,成 才能在60 分以上. 12.( 3 分)已知 OA ⊥ OC 于 O ,∠ AOB :∠ AOC =3: 2, ∠ BOC 的度数度.三、解答 (本大 共5 个小 ,每小6 分,共 30 分)13.( 6 分) 算:( 1)+2();( 2) |1|+( 3) 2.14.( 6 分)解不等式 4x+3 ≤ 3(2x 1),并把解集表示在数 上.15.( 6 分)解方程 :16.( 6 分)如 ,直 AB ∥ CD ,直 EF 分 交直 AB 、CD 于点 E 、F ,FH 均分∠ EFD ,若∠ FEH = 110°,求∠ EHF 的度数.17.( 6 分)已知点 A( 0, a)(此中 a< 0)和 B( 5,0)两点,且直线AB 与坐标轴围成的三角形面积等于15,求 A 点坐标.四、解答题(本大题共 3 个小题,每题8 分,共 24 分)18.( 8 分)(1)在平面直角坐标系中,作出以下各点,A(﹣ 3,4),B(﹣ 3,﹣ 2),O( 0,0),并把各点连起来.( 2)画出△ ABO 先向下平移 2 个单位,再向右平移 4 个单位获得的图形△A1B1O1.( 3)求△ ABO 的面积.19.( 8 分)为了认识某校九年级男生的体能状况,体育老师随即抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图 1 和图 2 尚不完好的统计图.( 1)本次抽测的男生有多少人?请你将条形统计图增补完好;( 2)本次抽测成绩的众数是;( 3)若规定引体向上 5 次以上(含 5 次)为体能达标,则该校 350 名九年级男生中,估计有多少人体能达标?20.( 8 分)已知对于 x, y 二元一次方程组.( 1)假如该方程组的解互为相反数,求n 的值及方程组的解;( 2)若方程组解的解为正数,求n 的取值范围.五、解答题(本大题共 2 个小题,每题9 分,共18 分)21.( 9 分)某企业为奖赏在兴趣运动会上获得好成绩的职工,计划购置甲、乙两种奖品共20 件.此中甲种奖品每件40 元,乙种奖品每件30 元( 1)假如购置甲、乙两种奖品共花销了650 元,求甲、乙两种奖品各购置了多少件?( 2)假如购置乙种奖品的件数不超出甲种奖品件数的 2 倍,总花销不超出680 元,求该企业有哪几种不一样的购置方案?22.( 9 分)( 1)如图 1 已知:∠ B= 25°,∠ BED = 80°,∠ D= 55°.研究AB 与 CD 有如何的地点关系.(2)如图 2 已知 AB∥ EF ,试猜想∠ B,∠ F ,∠ BCF 之间的关系,写出这类关系,并加以证明.(3)如图 3 已知 AB∥ CD ,试猜想∠ 1,∠ 2,∠ 3,∠ 4,∠ 5 之间的关系,请直接写出这类关系,不用证明.六、解答题(本大题共12 分)23.(12 分)如图,在平面直角坐标系中,点a、b 知足 a=+﹣1,现同时将点A,B 的坐标分别为A,B 分别向上平移A( a, 0),B( b,0),且2 个单位,再向右平移1个单位,分别获得点A, B 的对应点C, D,连结AC,BD , CD.(1)求点 C,D 的坐标及四边形 ABDC 的面积 S 四边形ABDC.(2)在 y 轴上能否存在一点 P,连结 PA,PB,使 S△PAB= S 四边形ABDC?若存在这样一点,求出点 P 的坐标;若不存在,试说明原因.( 3)点P 是线段BD上的一个动点,连结PC, PO,当点P 在BD上挪动时(不与B,D 重合)的值能否发生变化,并说明原因.2018-2019 学年江西省赣州市全南县七年级(下)期末数学试卷参照答案与试题分析一、选择题(本大题共 6 个小题;每题 3 分,共 18 分.)1.【解答】解:∵﹣ 2<﹣<0<3,∴四个数中,最小的数是﹣2,应选: C.2.【解答】解:为认识一批电视机的使用寿命,从中抽取100 台电视机进行试验,这个问题的样本容量是100,应选: B.3.【解答】解:∵∠ ADE = 125°,∴∠ ADB= 180°﹣∠ ADE =55°,∵AD∥ BC,∴∠ DBC=∠ ADB= 55°.应选: A.4.【解答】解:依题意得:﹣1< a< 0, b> 1∴a、b 异号,且 |a|< |b|.∴a+b>0;a﹣ b=﹣ |a+b|< 0;a?b< 0;< 0.应选: A.5.【解答】解:设每副羽毛球拍为x 元,每副乒乓球拍为y 元,由题意得.应选: B.6.【解答】解:如图,A、 a1⊥ a100,故 A 错误;B、 a2∥ a98,故 B 错误;C、正确;D 、a49⊥ a50,故 D 错误;应选: C.二、填空题(本大题共 6 个小题,每题 3 分,共 18 分.)7.【解答】解:平面直角坐标系中的点P(﹣ 4,6)在第二象限;故答案为:二2a b﹣18.【解答】解:∵ x+y= 5 是对于 x, y 的二元一次方程,∴ 2a=1, b﹣ 1= 1,解得 a=,b=2,ab=× 2=1,故答案为: 1.9.【解答】解:∵对于x 的不等式﹣ x> a+2 的解集是x< 3,∴﹣ a﹣ 2= 3,解得 a=﹣ 5.故答案为: a=﹣ 5.10.【解答】解:如图,∵∠1= 40°,∴∠ 3=∠ 1= 40°,∵a∥ b,∴∠ 4=∠ 3= 40°,∵CB⊥ b 于 B,∴∠ 2= 90°﹣∠ 4= 90°﹣ 40°= 50°.11.【解答】解:设答对x 道.故 6x﹣2( 15﹣ x)> 60解得: x>所以起码要答对12 道题,成绩才能在60 分以上.12.【解答】解:如图:∵ OA⊥ OC,∴∠ AOC= 90°,∵∠ AOB:∠ AOC= 3: 2,∴∠ AOB= 135°.由于∠ AOB 的地点有两种:一种是∠BOC 是锐角,一种是∠BOC 是钝角.①当∠ BOC 是锐角时,∠ BOC= 135°﹣ 90°= 45°;②当∠ BOC 是钝角时,∠ BOC= 360°﹣ 90°﹣ 135°= 135°.故答案为: 45 度或 135.三、解答题(本大题共 5 个小题,每题 6 分,共 30 分)13.【解答】解:( 1)原式=+2﹣+= 3;( 2)原式=﹣1+9=+8.14.【解答】解: 4x+3≤3( 2x﹣1),4x+3≤ 6x﹣ 3,4x﹣ 6x≤﹣ 3﹣ 3,﹣2x≤﹣ 6,x≥ 3;.,15.【解答】解:原方程组可化为:由①得: y= 4x﹣ 5③,把③代入②得: x= 2,把 x= 2 代入①得:y=3,则原方程组的解为.16.【解答】解:∵ AB∥ CD,∴∠ EHF =∠ HFD ,∵FH 均分∠ EFD ,∴∠ EFH =∠ HFD ,∴∠ EHF =∠ EFH ,∵∠ FEH = 110°,∴∠ EHF = 35°.17.【解答】解:∵点 A(0, a)且 a< 0,∴OA=﹣ a,∵ B( 5, 0),∴OB= 5,∵S=× OA?OB= 15,∴ ×(﹣ a)× 5= 15,∴ a=﹣ 6A( 0,﹣ 6)所以点 A 的坐标为:( 0,﹣ 6)四、解答题(本大题共 3 个小题,每题8 分,共 24 分)18.【解答】解:( 1)以下图;( 2)△ A1B1O1以下图;( 3)△ ABO 的面积=×( 4+2)× 3= 9.19.【解答】解:( 1)本次抽测的男生有6÷ 12%= 50(人),引体向上测试成绩为 5 次的是: 50﹣4﹣ 10﹣ 14﹣ 6= 16 人.条形图增补如图:( 2)抽测的成绩中, 5 出现了16 次,次数最多,所以众数是5.故答案为5;( 3) 350×=252人.答:该校350 名九年级男生中,有252 人体能达标.20.【解答】解:( 1)依题意得x+y= 0,所以 n= 0,,解得:,由,解得:;( 2)由题意得:,解得: n> 1.五、解答题(本大题共 2 个小题,每题9 分,共 18 分)21.【解答】解:( 1)设甲种奖品购置了x 件,乙种奖品购置了(20﹣ x)件,依据题意得40x+30( 20﹣x)= 650,解得 x=5,则 20﹣x= 15,答:甲种奖品购置了 5 件,乙种奖品购置了15 件;( 2)设甲种奖品购置了x 件,乙种奖品购置了(20﹣x)件,依据题意得,解得≤ x≤ 8,∵ x 为整数,∴ x= 7 或 x= 8,当 x= 7 时, 20﹣x= 13;当 x= 8 时, 20﹣ x= 12;答:该企业有2种不一样的购置方案:甲种奖品购置了:7 件,乙种奖品购置了13 件或甲种奖品购置了8件,乙种奖品购置了 12 件.22.【解答】解:(1)过点 E 作 EF ∥ AB∵∠ B= 25°∴∠ BEF=∠ B=25°∵∠ BED= 80°∴∠ DEF =∠ BED﹣∠ BEF = 55°∵∠ D= 55°∴∠ D=∠ DEF∴EF∥ CD∴AB∥ CD(2)过点 C 作 CD∥ AB∴∠ B=∠ BCD∵AB∥ EF∴CD∥EF∴∠ F=∠ DCF∵∠ BCF=∠ BCD+∠ DCF∴∠ BCF=∠ B+∠ F(3)∠ 1+∠ 3+∠ 5=∠ 2+∠ 4.由( 1)( 2)可得:∠ 1+∠3+∠ 5=∠ 2+ ∠ 4六、解答题(本大题共12 分)23.【解答】解:( 1)由题意得,3﹣ b≥ 0 且 b﹣3≥ 0,解得 b≤ 3 且 b≥3,∴b= 3,a=﹣ 1,∴ A(﹣ 1, 0), B( 3, 0),∵点 A, B 分别向上平移 2 个单位,再向右平移 1 个单位,∴点 C( 0, 2), D( 4, 2);∵AB= 3﹣(﹣ 1)= 3+1= 4,∴ S 四边形ABDC= 4× 2=8;(2)∵ S△PAB=S 四边形ABDC,∴×4?OP= 8,解得 OP=4,∴点 P 的坐标为( 0, 4)或( 0,﹣ 4);( 3)=1,比值不变.原因以下:由平移的性质可得AB∥ CD,如图,过点P 作 PE∥ AB,则 PE∥ CD ,∴∠ DCP=∠ CPE,∠ BOP=∠ OPE,∴∠ CPO=∠ CPE+∠ OPE=∠ DCP +∠BOP,∴=1,比值不变.最新人教版数学七年级下册期末考试一试题( 答案)一、选择题(本大题共 6 个小题;每题 3 分,共18 分.)1.( 3 分)在3, 0,﹣ 2,﹣四个数中,最小的数是()A .3B .0C.﹣ 2D.﹣2.( 3 分)为认识一批电视机的使用寿命,从中抽取本容量是()A .抽取的100 台电视机B.100C.抽取的 100 台电视机的使用寿命D .这批电视机的使用寿命3.( 3 分)如图,一把矩形直尺沿直线断开并错位,点ADE =125°,则∠ DBC 的度数为()100 台电视机进行试验,这个问题的样E、 D、B、F 在同一条直线上,若∠A .55°B .65°C. 75°D. 125°4.( 3 分)实数a,b 在数轴上的地点以下图,则以下结论正确的选项是()A .a+b> 0B .a b> 0C. a?b>0D.>05.( 3 分)小到体育用品商铺羽毛球球拍和球球拍,已知 1 副羽毛球球拍和1 副球球拍共需 50 元,小一共用 320 元了 6 副同的羽毛球拍和 10 副同的球拍.若每副羽毛球拍 x 元,每副球拍 y 元,依据意,下边所列方程正确的选项是()A .B.C.D.6.(3 分)在同一平面内有100 条直,若a1⊥ a2,a2⊥ a3,a3⊥ a4,a4⊥ a5,⋯,a99⊥ a100,以下正确的选项是()A .a1∥ a100B .a2⊥ a98C. a1∥ a99D. a49∥ a50二、填空(本大共 6 个小,每小 3 分,共18 分.)7.( 3 分)平面直角坐系中的点P( 4, 6)在第象限.8.( 3 分)已知x 2a+y b﹣ 1=5是对于x, y 的二元一次方程,ab=.9.( 3 分)若对于x 的不等式 x> a+2 的解集是10.( 3 分)如直a∥ b,直 c 分交直= 40°,∠ 2=.x<3,a,b 于点a=A、B.两点, CB⊥ b 于B,若∠ 111.( 3 分)某次数学中有16 道,分法:答一道得 6 分,答一道扣 2 分,不答得 0 分.某学生有一道未答,那么个同学起码要答道,成才能在60 分以上.12.( 3 分)已知OA⊥ OC 于 O,∠ AOB:∠ AOC=3: 2,∠ BOC 的度数度.三、解答(本大共 5 个小,每小 6 分,共30 分)13.( 6 分)计算:(1)+2﹣(﹣);(2) |1﹣|+(﹣ 3)2.14.( 6 分)解不等式4x+3 ≤ 3(2x﹣ 1),并把解集表示在数轴上.15.( 6 分)解方程组:16.( 6 分)如图,直线 AB∥ CD ,直线 EF 分别交直线AB、CD 于点 E、F ,FH 均分∠ EFD ,若∠ FEH = 110°,求∠ EHF 的度数.17.( 6 分)已知点 A( 0, a)(此中 a< 0)和 B( 5,0)两点,且直线AB 与坐标轴围成的三角形面积等于15,求 A 点坐标.四、解答题(本大题共 3 个小题,每题8 分,共 24 分)18.( 8 分)(1)在平面直角坐标系中,作出以下各点,A(﹣ 3,4),B(﹣ 3,﹣ 2),O( 0,0),并把各点连起来.( 2)画出△ ABO 先向下平移 2 个单位,再向右平移 4 个单位获得的图形△A1B1O1.( 3)求△ ABO的面积.19.( 8 分)为了认识某校九年级男生的体能状况,体育老师随即抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图 1 和图 2 尚不完好的统计图.( 1)本次抽测的男生有多少人?请你将条形统计图增补完好;( 2)本次抽测成绩的众数是;( 3)若规定引体向上 5 次以上(含 5 次)为体能达标,则该校350 名九年级男生中,估计有多少人体能达标?20.( 8 分)已知对于 x, y 二元一次方程组.( 1)假如该方程组的解互为相反数,求n 的值及方程组的解;( 2)若方程组解的解为正数,求n 的取值范围.五、解答题(本大题共 2 个小题,每题9 分,共 18 分)21.( 9 分)某企业为奖赏在兴趣运动会上获得好成绩的职工,计划购置甲、乙两种奖品共20 件.此中甲种奖品每件40 元,乙种奖品每件30 元( 1)假如购置甲、乙两种奖品共花销了650 元,求甲、乙两种奖品各购置了多少件?( 2)假如购置乙种奖品的件数不超出甲种奖品件数的 2 倍,总花销不超出680 元,求该企业有哪几种不一样的购置方案?22.( 9 分)( 1)如图 1 已知:∠ B= 25°,∠ BED = 80°,∠ D= 55°.研究AB 与 CD 有如何的地点关系.(2)如图 2 已知 AB∥ EF ,试猜想∠ B,∠ F ,∠ BCF 之间的关系,写出这类关系,并加以证明.(3)如图 3 已知 AB∥ CD ,试猜想∠ 1,∠ 2,∠ 3,∠ 4,∠ 5 之间的关系,请直接写出这类关系,不用证明.六、解答题(本大题共12 分)23.(12 分)如图,在平面直角坐标系中,点a、b 知足 a=+﹣1,现同时将点A,B 的坐标分别为A,B 分别向上平移A( a, 0),B( b,0),且2 个单位,再向右平移1个单位,分别获得点A, B 的对应点C, D,连结AC,BD , CD.(1)求点 C,D 的坐标及四边形 ABDC 的面积 S 四边形ABDC.(2)在 y 轴上能否存在一点 P,连结 PA,PB,使 S△PAB= S 四边形ABDC?若存在这样一点,求出点 P 的坐标;若不存在,试说明原因.( 3)点P 是线段BD上的一个动点,连结PC, PO,当点P 在BD上挪动时(不与B,D 重合)的值能否发生变化,并说明原因.2018-2019 学年江西省赣州市全南县七年级(下)期末数学试卷参照答案与试题分析一、选择题(本大题共 6 个小题;每题 3 分,共 18 分.)1.【解答】解:∵﹣ 2<﹣<0<3,∴四个数中,最小的数是﹣2,应选: C.2.【解答】解:为认识一批电视机的使用寿命,从中抽取100 台电视机进行试验,这个问题的样本容量是100,应选: B.3.【解答】解:∵∠ ADE = 125°,∴∠ ADB= 180°﹣∠ ADE =55°,∵AD∥ BC,∴∠ DBC=∠ ADB= 55°.应选: A.4.【解答】解:依题意得:﹣1< a< 0, b> 1∴a、b 异号,且 |a|< |b|.∴a+b>0;a﹣ b=﹣ |a+b|< 0;a?b< 0;< 0.应选: A.5.【解答】解:设每副羽毛球拍为x 元,每副乒乓球拍为y 元,由题意得.应选: B.6.【解答】解:如图,A、 a1⊥ a100,故 A 错误;B、 a2∥ a98,故 B 错误;C、正确;D 、a49⊥ a50,故 D 错误;应选: C.二、填空题(本大题共 6 个小题,每题 3 分,共 18 分.)7.【解答】解:平面直角坐标系中的点P(﹣ 4,6)在第二象限;故答案为:二2a b﹣18.【解答】解:∵ x+y= 5 是对于 x, y 的二元一次方程,∴ 2a=1, b﹣ 1= 1,解得 a=,b=2,ab=× 2=1,故答案为: 1.9.【解答】解:∵对于x 的不等式﹣ x> a+2 的解集是x< 3,∴﹣ a﹣ 2= 3,解得 a=﹣ 5.故答案为: a=﹣ 5.10.【解答】解:如图,∵∠1= 40°,∴∠ 3=∠ 1= 40°,∵a∥ b,∴∠ 4=∠ 3= 40°,∵CB⊥ b 于 B,∴∠ 2= 90°﹣∠ 4= 90°﹣ 40°= 50°.11.【解答】解:设答对x 道.故 6x﹣2( 15﹣ x)> 60解得: x>所以起码要答对12 道题,成绩才能在60 分以上.12.【解答】解:如图:∵ OA⊥ OC,∴∠ AOC= 90°,∵∠ AOB:∠ AOC= 3: 2,∴∠ AOB= 135°.由于∠ AOB 的地点有两种:一种是∠BOC 是锐角,一种是∠BOC 是钝角.①当∠ BOC 是锐角时,∠ BOC= 135°﹣ 90°= 45°;②当∠ BOC 是钝角时,∠ BOC= 360°﹣ 90°﹣ 135°= 135°.故答案为: 45 度或 135.三、解答题(本大题共 5 个小题,每题 6 分,共 30 分)13.【解答】解:( 1)原式=+2﹣+= 3;( 2)原式=﹣1+9=+8.14.【解答】解: 4x+3≤3( 2x﹣1),4x+3≤ 6x﹣ 3,4x﹣ 6x≤﹣ 3﹣ 3,﹣2x≤﹣ 6,x≥ 3;.,15.【解答】解:原方程组可化为:由①得: y= 4x﹣ 5③,把③代入②得: x= 2,把 x= 2 代入①得:y=3,则原方程组的解为.16.【解答】解:∵ AB∥ CD,∴∠ EHF =∠ HFD ,∵FH 均分∠ EFD ,∴∠ EFH =∠ HFD ,∴∠ EHF =∠ EFH ,∵∠ FEH = 110°,∴∠ EHF = 35°.17.【解答】解:∵点 A(0, a)且 a< 0,∴OA=﹣ a,∵ B( 5, 0),∴OB= 5,∵S=× OA?OB= 15,∴ ×(﹣ a)× 5= 15,∴ a=﹣ 6A( 0,﹣ 6)所以点 A 的坐标为:( 0,﹣ 6)四、解答题(本大题共 3 个小题,每题8 分,共 24 分)18.【解答】解:( 1)以下图;( 2)△ A1B1O1以下图;( 3)△ ABO 的面积=×( 4+2)× 3= 9.19.【解答】解:( 1)本次抽测的男生有6÷ 12%= 50(人),引体向上测试成绩为 5 次的是: 50﹣4﹣ 10﹣ 14﹣ 6= 16 人.条形图增补如图:( 2)抽测的成绩中, 5 出现了16 次,次数最多,所以众数是5.故答案为5;( 3) 350×=252人.答:该校350 名九年级男生中,有252 人体能达标.20.【解答】解:( 1)依题意得x+y= 0,所以 n= 0,,解得:,由,解得:;( 2)由题意得:,解得: n> 1.五、解答题(本大题共 2 个小题,每题9 分,共 18 分)21.【解答】解:( 1)设甲种奖品购置了x 件,乙种奖品购置了(20﹣ x)件,依据题意得40x+30( 20﹣x)= 650,解得 x=5,则 20﹣x= 15,答:甲种奖品购置了 5 件,乙种奖品购置了15 件;( 2)设甲种奖品购置了x 件,乙种奖品购置了(20﹣x)件,依据题意得,解得≤ x≤ 8,∵ x 为整数,∴ x= 7 或 x= 8,当 x= 7 时, 20﹣x= 13;当 x= 8 时, 20﹣ x= 12;答:该企业有2种不一样的购置方案:甲种奖品购置了:7 件,乙种奖品购置了13 件或甲种奖品购置了8件,乙种奖品购置了 12 件.22.【解答】解:(1)过点 E 作 EF ∥ AB∵∠ B= 25°∴∠ BEF=∠ B=25°∵∠ BED= 80°∴∠ DEF =∠ BED﹣∠ BEF = 55°∵∠ D= 55°∴∠ D=∠ DEF∴EF∥ CD∴AB∥ CD(2)过点 C 作 CD∥ AB∴∠ B=∠ BCD∵AB∥ EF∴CD∥EF∴∠ F=∠ DCF∵∠ BCF=∠ BCD+∠ DCF∴∠ BCF=∠ B+∠ F(3)∠ 1+∠ 3+∠ 5=∠ 2+∠ 4.由( 1)( 2)可得:∠ 1+∠3+∠ 5=∠ 2+ ∠ 4六、解答题(本大题共12 分)23.【解答】解:( 1)由题意得,3﹣ b≥ 0 且 b﹣3≥ 0,解得 b≤ 3 且 b≥3,∴b= 3,a=﹣ 1,∴ A(﹣ 1, 0), B( 3, 0),∵点 A, B 分别向上平移 2 个单位,再向右平移 1 个单位,∴点 C( 0, 2), D( 4, 2);∵AB= 3﹣(﹣ 1)= 3+1= 4,∴ S 四边形ABDC= 4× 2=8;(2)∵ S△PAB=S 四边形ABDC,∴×4?OP= 8,解得 OP=4,∴点 P 的坐标为( 0, 4)或( 0,﹣ 4);( 3)=1,比值不变.原因以下:由平移的性质可得AB∥ CD,如图,过点P 作 PE∥ AB,则 PE∥ CD ,∴∠ DCP=∠ CPE,∠ BOP=∠ OPE,∴∠ CPO=∠ CPE+∠ OPE=∠ DCP +∠BOP,∴=1,比值不变.。
2021-2022学年四川省成都七中嘉祥外国语学校七年级(下)期末数学试卷
2021-2022学年四川省成都七中嘉祥外国语学校七年级(下)期末数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.(4分)在﹣2,,,2中,是无理数的是()A.﹣2B.C.D.22.(4分)剪纸与扎染、龚扇被称为自贡小三绝,以下学生剪纸作品中,轴对称图形是()A.B.C.D.3.(4分)下列事件为必然事件的是()A.任意买一张电影票,座位号是奇数B.两边及其夹角对应相等的两个三角形全等C.打开电视机,正在播放纪录片D.三根长度为4cm,4cm,8cm的木棒能摆成三角形4.(4分)2021年12月9日“天宫课堂”开讲,神舟十三号飞行乘组航天员翟志刚、王亚平、叶光富演示了微重力环境下细胞学实验、人体运动、液体表面张力等神奇现象.细胞的大小依据细胞种类不同有很大的差异,目前已知最小的细胞是支原体,直径只有0.1﹣0.3μm,已知1μm=0.000001m,则0.3μm用科学记数法可以表示为()A.3×10﹣6m B.0.3×10﹣6m C.3×10﹣3m D.3×10﹣7m5.(4分)苹果熟了,从树上落下来.下面可以大致刻画出苹果下落过程中(即落地前)的速度变化情况的图象是()A.B.C.D.6.(4分)如图,已知AB∥CD,点E在线段AD上(不与点A,点D重合),连接CE.若∠C=20°,∠AEC=50°,则∠A=()A.10°B.20°C.30°D.40°7.(4分)如图,小明站在堤岸的A点处,正对他的S点停有一艘游艇.他想知道这艘游艇距离他有多远,于是他沿堤岸走到电线杆B旁,接着再往前走相同的距离,到达C点.然后他向左直行,当看到电线杆与游艇在一条直线上时停下来,此时他位于D点.那么C,D两点间的距离就是在A点处小明与游艇的距离.在这个问题中,可作为证明△SAB≌△DCB的依据的是()A.SAS或SSS B.AAS或SSS C.ASA或AAS D.ASA或SAS8.(4分)把七巧板按如图所示,进行①~⑦编号,①~⑦号分别对应着七巧板的七块,如果编号③对应的面积等于1,则由这七块拼成的正方形的面积等于()A.12B.16C.18D.20二、填空题(本大题共5个小题,每小题4分,共20分)9.(4分)的平方根是,﹣8的立方根是.10.(4分)已知x+y=1.2,x+3y=1.8,则代数式x2+4xy+4y2的值为.11.(4分)如图,在△ABC中,AB=AC,以点B为圆心,BC的长为半径画弧交AC于点C、E,再分别以点C与点E为圆心,大于CE长的一半为半径画弧,两弧交于点F,连接BF交AC于点D,若∠A=50°,则∠CBD的大小是.12.(4分)如图,△ABC为等边三角形,BD=CE,则∠AFE=.13.(4分)一副直角三角板如图放置(∠F=∠ACB=90°,∠E=45°,∠A=60°),如果点C在FD的延长线上,点B在DE上,且AB∥CF,则∠DBC的度数为.三、解答题(本小题共5个大题,共48分)14.(12分)(1)计算:32﹣|﹣8|+(π﹣2016)0﹣(﹣)﹣1;(2)(a2b)•(﹣2ab2)2÷(﹣0.5a4b5);(3)先化简,再求值:[(m+n)(2m﹣n)﹣2m(m﹣n)]÷(n),其中m是的倒数,n是9的算术平方根.15.(8分)我国农历年的岁首称为春节,是中华民族最隆重的传统节日,据记载,中华民族过春节已有4000多年的历史.每年的除夕夜,对所有中国人而言,能和家人一起看年味浓浓的春晚是一件幸福的事情.某社区就你对春晚的喜爱程度,进行了随机调查,对收集的信息进行统计,绘制了下面两幅尚不完整的统计图(图①,图②).请根据图中信息,解答下列问题:(1)本次调查的总人数为人,扇形统计图中B所对应的扇形圆心角的度数为;(2)补全条形统计图;(3)若该社区共有2000人,估计该社区中很喜欢春晚的有多少人;(4)在抽取的很喜欢春晚的5人中,刚好有3名男生,2名女生,从中随机抽取1人与大家分享“我与春晚的故事”,那么恰好抽到男生的概率是多少.16.(8分)图1、图2、图3均是5×5的正方形网格,每个小正方形边长为1,点A、B均在格点上.只用直尺,分别按照下列要求画图.(1)在图1中,画一个△ABC,使它的面积为6,且点C在格点上;(2)在图2中,画∠ADB,使得∠ADB=45°,且点D在格点上,并证明∠ADB=45°;(3)在图3中,画一个锐角△ABE,使它是轴对称图形,且点E在格点上,并画出它的对称轴(画一条即可).17.(10分)已知:△ABC中,D是BC的中点,过点B作AC的平行线交AD的延长线于点F.(1)若AD=2,求DF的值;(2)若∠CAB=60°,延长AB到点E,使BE=AC,连接EF.连结CE;求证:△BEF是等边三角形.18.(10分)如图1,已知△ABC中,AB=AC,AD=AG,∠BAC=∠DAG=120°.【新知学习】在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;【迁移应用】(1)证明BG=CD;(2)若∠AEC=75°,∠EAD=60°,探究CD与BE满足的关系,并说明理由;【拓展延伸】(3)在(2)的情况下,如图2,以E为圆心,以BE长为半径作弧;以D为圆心,以CD长为半径作弧,两弧交于点F,试探索△EDF的形状?请说明理由.一、填空题(本大题共5个小题,每小题4分,共20分)19.(4分)已知2a÷4b=16,则代数式2b﹣a+7的值是.20.(4分)一个盒中装着大小、外形一模一样的x颗白色弹珠和10颗黑色弹珠,已知从盒中随机取出一颗弹珠,取得白色弹珠的概率是,现保持盒中原来的白色和黑色弹珠数量不变,再往盒中放进10颗同样的白色弹珠,接下来从盒中随机取出一颗弹珠,则取得白色弹珠的概率是.21.(4分)探索规律:1×2×3×4+1=52,2×3×4×5+1=112,3×4×5×6+1=192….请运用你发现的规律解决问题:若5×6×7×8+1=a2,则a2=.22.(4分)已知△ABC为等边三角形,AB=10,M在AB边所在直线上,点N在AC边所在直线上,且MN=MC,若AM=16,则CN的长为.23.(4分)如图,△ABC是等边三角形,M是AC边上的中点,Q是BC边中点,N是线段CQ任意一点,P是AB边上任意一点,P关于AC对称的点为P′,已知AB=,则NP′﹣MP的最大值为.二、解答题(本大题共3个小题,共30分)24.(8分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA表示货车离甲地的距离y(千米)与时间x(小时)之间的函数关系;折线BCD 表示轿车离甲地的距离y(千米)与时间x(小时)之间的函数关系,请根据图象解答下列问题:(1)轿车到达乙地时,求货车与甲地的距离;(2)轿车出发多长时间追上货车;(3)在轿车行进过程,轿车行驶多少时间,两车相距15千米.25.(10分)图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于?(2)请用两种不同的方法求图2中阴影部分的面积.①;②.(3)观察图2你能写出下列三个代数式之间的等量关系吗?(m+n)2,(m﹣n)2,mn.(4)运用你所得到的公式,计算若mn=﹣2,m﹣n=4,求(m+n)2的值.(5)用完全平方公式和非负数的性质求代数式x2+2x+y2﹣4y+7的最小值.26.(12分)如图1,在等腰Rt△ABC中,∠ACB=90°,点F是AC的中点,过点A作AD⊥BD于点D,连接CD,过点C作CE⊥CD交BD于点E,连接AE.(1)求证:∠CBE=∠CAD;(2)猜想的值,并证明;(3)如图2,将△BCF沿BF翻折得到△BC′F,点C对应点为C′,请猜想并证明线段AC′与AD的关系.。
成都七中嘉祥外国语学校七年级下册数学期末试卷(培优篇)(Word版 含解析)
成都七中嘉祥外国语学校七年级下册数学期末试卷(培优篇)(Word 版 含解析)一、解答题1.已知,AB ∥DE ,点C 在AB 上方,连接BC 、CD . (1)如图1,求证:∠BCD +∠CDE =∠ABC ;(2)如图2,过点C 作CF ⊥BC 交ED 的延长线于点F ,探究∠ABC 和∠F 之间的数量关系;(3)如图3,在(2)的条件下,∠CFD 的平分线交CD 于点G ,连接GB 并延长至点H ,若BH 平分∠ABC ,求∠BGD ﹣∠CGF 的值.2.如图,直线//PQ MN ,一副直角三角板,ABC DEF ∆∆中,90,45,30,60ACB EDF ABC BAC DFE DEF ︒︒︒︒∠=∠=∠=∠=∠=∠=.(1)若DEF ∆如图1摆放,当ED 平分PEF ∠时,证明:FD 平分EFM ∠.(2)若,ABC DEF ∆∆如图2摆放时,则PDE ∠=(3)若图2中ABC ∆固定,将DEF ∆沿着AC 方向平移,边DF 与直线PQ 相交于点G ,作FGQ ∠和GFA ∠的角平分线GH FH 、相交于点H (如图3),求GHF ∠的度数.(4)若图2中DEF ∆的周长35,5cm AF cm =,现将ABC ∆固定,将DEF ∆沿着CA 方向平移至点F 与A 重合,平移后的得到''D E A ∆,点D E 、的对应点分别是''D E 、,请直接写出四边形'DEAD 的周长.(5)若图2中DEF ∆固定,(如图4)将ABC ∆绕点A 顺时针旋转,1分钟转半圈,旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF ∆的一条边平行时,请直接写出旋转的时间.3.已知//AB CD ,点E 在AB 与CD 之间. (1)图1中,试说明:BED ABE CDE ∠=∠+∠;(2)图2中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请利用(1)的结论说明:2BED BFD ∠=∠.(3)图3中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请直接写出BED ∠与BFD ∠之间的数量关系.4.如图,已知//AB CD ,CN 是BCE ∠的平分线. (1)若CM 平分BCD ∠,求MCN ∠的度数;(2)若CM 在BCD ∠的内部,且CM CN ⊥于C ,求证:CM 平分BCD ∠;(3)在(2)的条件下,过点B 作BP BQ ⊥,分别交CM 、CN 于点P 、Q ,PBQ ∠绕着B 点旋转,但与CM 、CN 始终有交点,问:BPC BQC ∠+∠的值是否发生变化?若不变,求其值;若变化,求其变化范围.5.如图,已知直线//AB 射线CD ,100CEB ∠=︒.P 是射线EB 上一动点,过点P 作PQ //EC 交射线CD 于点Q ,连接CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.(1)若点P ,F ,G 都在点E 的右侧,求PCG ∠的度数;(2)若点P ,F ,G 都在点E 的右侧,30EGC ECG ∠-∠=︒,求CPQ ∠的度数; (3)在点P 的运动过程中,是否存在这样的情形,使:4:3EGC EFC ∠∠=?若存在,求出CPQ ∠的度数;若不存在,请说明理由.二、解答题6.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,点B 在两条平行线外,则A ∠与C ∠之间的数量关系为______; (2)点B 在两条平行线之间,过点B 作BD AM ⊥于点D . ①如图2,说明ABD C ∠=∠成立的理由;②如图3,BF 平分DBC ∠交DM 于点,F BE 平分ABD ∠交DM 于点E .若180,3FCB NCF BFC DBE ∠∠∠∠+=︒=,求EBC ∠的度数.7.为更好地理清平行线相关角的关系,小明爸爸为他准备了四根细直木条AB 、BC 、CD 、DE ,做成折线ABCDE ,如图1,且在折点B 、C 、D 处均可自由转出.(1)如图2,小明将折线调节成50B ∠=︒,85C ∠=︒,35D ∠=︒,判断AB 是否平行于ED ,并说明理由;(2)如图3,若35C D ∠=∠=︒,调整线段AB 、BC 使得//AB CD 求出此时B 的度数,要求画出图形,并写出计算过程.(3)若85C ∠=︒,35D ∠=︒,//AB DE ,请直接写出此时B 的度数. 8.问题情境(1)如图1,已知//, 125155AB CD PBA PCD ︒︒∠=∠=,,求BPC ∠的度数.佩佩同学的思路:过点P 作//PN AB ,进而//PN CD ,由平行线的性质来求BPC ∠,求得BPC ∠︒;问题迁移(2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合90,//,ACB DF CG AB ︒∠=与FD 相交于点E ,有一动点P 在边BC 上运动,连接, PE PA ,记,PED PAC αβ∠=∠∠=∠.①如图2,当点P 在,C D 两点之间运动时,请直接写出APE ∠与,αβ∠∠之间的数量关系;②如图3,当点P 在,B D 两点之间运动时,APE ∠与,αβ∠∠之间有何数量关系?请判断并说明理由.9.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况,如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视,若灯A 转动的速度是a °/秒,灯B 转动的速度是b °/秒,且a 、b 满足()2450a b a b -++-=.假定这一带长江两岸河堤是平行的,即//PQ MN ,且60BAN ∠=︒(1)求a 、b 的值;(2)若灯B 射线先转动45秒,灯A 射线才开始转动,当灯B 射线第一次到达BQ 时运动停止,问A 灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作CD AC ⊥交PQ 于点D ,则在转动过程中,BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.10.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E 、F 点,90ACB ∠=.(1)将直角ABC 如图1位置摆放,如果46AOG ∠=,则CEF ∠=______; (2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ︒∠+∠=,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由.(3)将直角ABC 如图3位置摆放,若140GOC ∠=,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究POQ ∠,OPQ ∠与PQF ∠的数量关系,请直接写出结论.三、解答题11.如图所示,已知射线//,//,100CB OA AB OC C OAB ︒∠=∠=.点E 、F 在射线CB 上,且满足FOB AOB ∠=∠,OE 平分COF ∠ (1)求EOB ∠的度数;(2)若平行移动AB ,那么:OBC OFC ∠∠的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值;(3)在平行移动AB 的过程中,是否存在某种情况,使OEC OBA ∠=∠?若存在,求出其度数.若不存在,请说明理由.12.如图,直线m 与直线n 互相垂直,垂足为O 、A 、B 两点同时从点O 出发,点A 沿直线m 向左运动,点B 沿直线n 向上运动.(1)若∠BAO 和∠ABO 的平分线相交于点Q ,在点A ,B 的运动过程中,∠AQB 的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由.(2)若AP 是∠BAO 的邻补角的平分线,BP 是∠ABO 的邻补角的平分线,AP 、BP 相交于点P ,AQ 的延长线交PB 的延长线于点C ,在点A ,B 的运动过程中,∠P 和∠C 的大小是否会发生变化?若不发生变化,请求出∠P 和∠C 的度数;若发生变化,请说明理由.13.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为∠1,反射光线 OB 与水平镜面夹角为∠2,则∠1=∠2 .(现象解释)如图 2,有两块平面镜OM,ON,且OM⊥ON,入射光线AB 经过两次反射,得到反射光线CD.求证AB∥CD.(尝试探究)如图 3,有两块平面镜OM,ON,且∠MON =55︒,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 相交于点E,求∠BEC 的大小.(深入思考)如图 4,有两块平面镜OM,ON,且∠MON =α ,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 所在的直线相交于点E,∠BED=β , α 与β 之间满足的等量关系是 .(直接写出结果)14.模型与应用.(模型)(1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°.(应用)(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为.如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为.(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1 O与∠CM n M n-1的角平分线M n O交于点O,若∠M1OM n=m°.在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示)15.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.【参考答案】一、解答题1.(1)证明见解析;(2);(3). 【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质解析:(1)证明见解析;(2)90ABC F ∠-∠=︒;(3)45︒. 【分析】(1)过点C 作CF AB ∥,先根据平行线的性质可得180ABC BCF ∠+∠=︒,再根据平行公理推论可得CF DE ,然后根据平行线的性质可得180CDE BCF BCD ∠+∠+∠=︒,由此即可得证;(2)过点C 作CG AB ∥,同(1)的方法,先根据平行线的性质得出180ABC BCG ∠+∠=︒,180F BCG BCF ∠+∠+∠=︒,从而可得ABC F BCF ∠-∠=∠,再根据垂直的定义可得90BCF ∠=︒,由此即可得出结论;(3)过点G 作GM AB ,延长FG 至点N ,先根据平行线的性质可得ABH MGH ∠=∠,MGN DFG ∠=∠,从而可得MGH MGN ABH DFG ∠-∠=∠-∠,再根据角平分线的定义、结合(2)的结论可得45MGH MGN ∠=-∠︒,然后根据角的和差、对顶角相等可得BGD CG MGH MGN F ∠-∠=∠-∠,由此即可得出答案.【详解】证明:(1)如图,过点C 作CF AB ∥,180ABC BCF ∴∠+∠=︒,AB DE , CFDE ∴,180CDE DCF ∴∠+∠=︒,即180CDE BCF BCD ∠+∠+∠=︒,CDE BCF BCD ABC BCF ∴∠+∠+∠=∠+∠, BCD CDE ABC ∴∠+∠=∠;(2)如图,过点C 作CG AB ∥,180ABC BCG ∴∠+∠=︒,AB DE , CG DE ∴,180F FCG ∴∠+∠=︒,即180F BCG BCF ∠+∠+∠=︒, F BCG BCF ABC BCG ∴∠+∠+∠=∠+∠, ABC F BCF ∴∠-∠=∠, CF BC ⊥,90BCF ∴∠=︒,90ABC F ∴∠-∠=︒;(3)如图,过点G 作GM AB ,延长FG 至点N ,ABH MGH ∴∠=∠,AB DE , GM DE ∴,MGN DFG ∴∠=∠,BH 平分ABC ∠,FN 平分CFD ∠, 11,22ABH AB D C CF DFG ∴∠=∠∠∠=,由(2)可知,90ABC CFD ∠-∠=︒,411225MGH MGN ABH DFG CF B D A C ∠-∠=∠-∠∠∠-==∴︒,又BGD MGH MGDCGF DGN MGN MGD ∠=∠+∠⎧⎨∠=∠=∠+∠⎩,45MGH BGD GF MGN C ∠-∠∴-==∠∠︒.【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.2.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.【详解】(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°−∠PEF=180°−120°=60°,∴∠MFD=∠MFE−∠DFE=60°−30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如图2,过点E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF−∠KEA,又∵∠DEF=60°.∴∠PDE=60°−45°=15°,故答案为:15°;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,∴∠QGH=12∠FGQ,∠HFA=12∠GFA,∵∠DFE=30°,∴∠GFA=180°−∠DFE=150°,∴∠HFA=12∠GFA=75°,∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,∴∠GFL=∠GFA−∠LFA=150°−45°=105°,∴∠RHG=∠QGH=12∠FGQ=12(180°−105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四边形DEAD′的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:BC∥DE时,如图5,此时AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF时,如图6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°−∠ACB=90°,∴∠CAK=90°−∠BKA=15°,∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,∴3t=120,解得:t=40,综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行.【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.3.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE;(2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD;(3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系.【详解】解:(1)如图1中,过点E作EG∥AB,则∠BEG=∠ABE,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)图2中,因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.图3中,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED =360°-2∠BFD .【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.4.(1)90°;(2)见解析;(3)不变,180°【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3),过,分别作,,根据解析:(1)90°;(2)见解析;(3)不变,180°【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3)180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,根据平行线的性质及平角的定义即可得解.【详解】解(1)CN ,CM 分别平分BCE ∠和BCD ∠, 12BCN BCE ∴=∠,12BCM BCD ∠=∠, 180BCE BCD ∠+∠=︒,111()90222MCN BCN BCM BCE BCD BCE BCD ∴∠=∠+∠=∠+∠=∠+∠=︒; (2)CM CN ⊥,90MCN ∴∠=︒,即90BCN BCM ∠+∠=︒,22180BCN BCM ∴∠+∠=︒,CN 是BCE ∠的平分线,2BCE BCN ∴∠=∠,2180BCE BCM ∴∠+∠=︒,又180BCE BCD ∠+∠=︒,2BCD BCM ∴∠=∠,又CM 在BCD ∠的内部,CM ∴平分BCD ∠;(3)如图,不发生变化,180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,则有//////QG AB PH CD ,BQG ABQ ∴∠=∠,CQG ECQ ∠=∠,BPH FBP ∠=∠,CPH DCP ∠=∠, ⊥BP BQ ,CP CQ ⊥,90PBQ PCQ ∴∠=∠=︒,180ABQ PBQ FBP ∠+∠+=︒,180ECQ PCQ DCP ∠+∠+∠=︒,180ABQ FBP ECQ DCP ∴∠+∠+∠+∠=︒,BPC BQC BPH CPH BQG CQG ∴∠+∠=∠+∠+∠+∠180ABQ FBP ECQ DCP =∠+∠+∠+∠=︒,180BPC BQC ∴∠+∠=︒不变.【点睛】此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键. 5.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG 的度数; (2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠G解析:(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG 的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG =∠GCF =25°,再根据PQ ∥CE ,即可得出∠CPQ =∠ECP =65°;(3)设∠EGC =4x ,∠EFC =3x ,则∠GCF =4x -3x =x ,分两种情况讨论:①当点G 、F 在点E 的右侧时,②当点G 、F 在点E 的左侧时,依据等量关系列方程求解即可.【详解】解:(1)∵∠CEB =100°,AB ∥CD ,∴∠ECQ =80°,∵∠PCF =∠PCQ ,CG 平分∠ECF ,∴∠PCG =∠PCF +∠FCG =12∠QCF +12∠FCE =12∠ECQ =40°;(2)∵AB ∥CD∴∠QCG =∠EGC ,∠QCG +∠ECG =∠ECQ =80°,∴∠EGC +∠ECG =80°,又∵∠EGC -∠ECG =30°,∴∠EGC =55°,∠ECG =25°,∴∠ECG =∠GCF =25°,∠PCF =∠PCQ =12(80°-50°)=15°,∵PQ ∥CE ,∴∠CPQ =∠ECP =65°;(3)设∠EGC =4x ,∠EFC =3x ,则∠GCF=∠FCD =4x -3x =x ,①当点G 、F 在点E 的右侧时,则∠ECG=x,∠PCF=∠PCD=32 x,∵∠ECD=80°,∴x+x+32x+32x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+32x=56°;②当点G、F在点E的左侧时,则∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=12∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.二、解答题6.(1)∠A+∠C=90°;(2)①见解析;②105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥解析:(1)∠A+∠C=90°;(2)①见解析;②105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得2α+β+3α+3α+β=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°;(2)①如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥DM,//,BG CN∴∠C=∠CBG,∠ABD=∠C;②如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.7.(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120°【分析】(1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得C解析:(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120°【分析】(1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得CF∥ED,进而可以判断AB平行于ED;(2)根据题意作AB∥CD,即可∠B=∠C=35°;(3)分别画图,根据平行线的性质计算出∠B的度数.【详解】解:(1)AB平行于ED,理由如下:如图2,过点C作CF∥AB,∴∠BCF=∠B=50°,∵∠BCD=85°,∴∠FCD=85°-50°=35°,∵∠D=35°,∴∠FCD=∠D,∴CF∥ED,∵CF∥AB,∴AB∥ED;(2)如图,即为所求作的图形.∵AB∥CD,∴∠ABC=∠C=35°,∴∠B的度数为:35°;∵A′B∥CD,∴∠ABC+∠C=180°,∴∠B的度数为:145°;∴∠B的度数为:35°或145°;(3)如图2,过点C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠FCD=∠D=35°,∵∠BCD=85°,∴∠BCF=85°-35°=50°,∴∠B=∠BCF=50°.答:∠B的度数为50°.如图5,过C作CF∥AB,则AB∥CF∥CD,∴∠FCD=∠D=35°,∵∠BCD=85°,∴∠BCF=85°-35°=50°,∵AB∥CF,∴∠B+∠BCF=180°,∴∠B=130°;如图6,∵∠C=85°,∠D=35°,∴∠CFD=180°-85°-35°=60°,∵AB∥DE,∴∠B=∠CFD=60°,如图7,同理得:∠B=35°+85°=120°,综上所述,∠B 的度数为50°或130°或60°或120°.【点睛】本题考查了平行线的判定与性质,解决本题的关键是区分平行线的判定与性质,并熟练运用.8.(1)80;(2)①;②【分析】(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠BPC 的度数; (2)①过点P 作FD 的平行线,依据平行线的性质可得∠APE 与∠α,∠β之间的数量关系;解析:(1)80;(2)①APE αβ∠=∠+∠;②APE βα∠=∠-∠【分析】(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠BPC 的度数;(2)①过点P 作FD 的平行线,依据平行线的性质可得∠APE 与∠α,∠β之间的数量关系;②过P 作PQ ∥DF ,依据平行线的性质可得∠β=∠QPA ,∠α=∠QPE ,即可得到∠APE =∠APQ -∠EPQ =∠β-∠α.【详解】解:(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠B +∠BPG =180°,∠C +∠CPG =180°,又∵∠PBA =125°,∠PCD =155°,∴∠BPC =360°-125°-155°=80°,故答案为:80;(2)①如图2,过点P 作FD 的平行线PQ ,则DF ∥PQ ∥AC ,∴∠α=∠EPQ ,∠β=∠APQ ,∴∠APE =∠EPQ +∠APQ =∠α+∠β,∠APE 与∠α,∠β之间的数量关系为∠APE =∠α+∠β;②如图3,∠APE 与∠α,∠β之间的数量关系为∠APE =∠β-∠α;理由:过P 作PQ ∥DF ,∵DF ∥CG ,∴PQ ∥CG ,∴∠β=∠QPA ,∠α=∠QPE ,∴∠APE =∠APQ -∠EPQ =∠β-∠α.【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.9.(1),;(2)15秒或63秒;(3)不发生变化,【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数表示,即可判断.【详解】解析:(1)4a =,1b =;(2)15秒或63秒;(3)不发生变化,34BAC BCD ∠=∠【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数t 表示BAC ∠,BCD ∠即可判断.【详解】解:(1)∵()2450a b a b -++-=, ∴4050a b a b -=⎧⎨+-=⎩, 4a ∴=,1b =;(2)设A 灯转动t 秒,两灯的光束互相平行,①当045t <<时,4(45)1t t =+⨯,解得15t =;②当4590t <<时,()418018045t t -=-+,解得63t =;③当90135t <<时,436045t t -=+,解得135t =,(不合题意)综上所述,当t =15秒或63秒时,两灯的光束互相平行;(3)设A 灯转动时间为t 秒,1804CAN t ∠=︒-,60(1804)4120BAC t t ∴∠=︒-︒-=-︒,又//PQ MN ,18041803BCA CBD CAN t t t ∴∠=∠+∠=+︒-=︒-,而90ACD ∠=︒,9090(1803)390BCD BCA t t ∴∠=︒-∠=︒-︒-=-︒,:4:3BAC BCD ∴∠∠=,即34BAC BCD ∠=∠.【点睛】本题考查平行线的性质和判定,非负数的性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.10.(1)136°;(2)∠AOG+∠NEF =90°,理由见解析;(3)当点P 在GF 上时,∠OPQ =140°﹣∠POQ+∠PQF ;当点P 在线段GF 的延长线上时,140°﹣∠POQ =∠OPQ+∠PQF .解析:(1)136°;(2)∠AOG +∠NEF =90°,理由见解析;(3)当点P 在GF 上时,∠OPQ =140°﹣∠POQ +∠PQF ;当点P 在线段GF 的延长线上时,140°﹣∠POQ =∠OPQ +∠PQF .【分析】(1)如图1,作CP ∥a ,则CP ∥a ∥b ,根据平行线的性质可得∠AOG =∠ACP ,∠BCP +∠CEF =180°,然后利用∠ACP +∠BCP =90°即可求得答案;(2)如图2,作CP ∥a ,则CP ∥a ∥b ,根据平行线的性质可得∠AOG =∠ACP ,∠BCP +∠CEF =180°,然后结合已知条件可得∠BCP =∠NEF ,然后利用∠ACP +∠BCP =90°即可得到结论;(3)分两种情况,如图3,当点P在GF上时,过点P作PN∥OG,则NP∥OG∥EF,根据平行线的性质可推出∠OPQ=∠GOP+∠PQF,进一步可得结论;如图4,当点P在线段GF 的延长线上时,同上面方法利用平行线的性质解答即可.【详解】解:(1)如图1,作CP∥a,a b,∵//∴CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∴∠BCP=180°﹣∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°﹣∠CEF=90°,∵∠AOG=46°,∴∠CEF=136°,故答案为136°;(2)∠AOG+∠NEF=90°.理由如下:如图2,作CP∥a,则CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,而∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°;(3)如图3,当点P在GF上时,过点P作PN∥OG,∴NP∥OG∥EF,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠GOP+∠PQF,∴∠OPQ=140°﹣∠POQ+∠PQF;如图4,当点P在线段GF的延长线上时,过点P作PN∥OG,∴NP∥OG∥EF,∴∠GOP=∠OPN,∠PQF=∠NPQ,∵∠OPN=∠OPQ+∠QPN,∴∠GOP=∠OPQ+∠PQF,∴140°﹣∠POQ=∠OPQ+∠PQF.【点睛】本题考查了平行线的性质以及平行公理的推论等知识,属于常考题型,正确添加辅助线、灵活应用平行线的判定和性质是解题的关键.三、解答题11.(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°.【分析】(1)根据OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,从而得出答案;(2解析:(1)40°;(2):OBC OFC ∠∠的值不变,比值为12;(3)∠OEC=∠OBA=60°.【分析】(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=12∠COA ,从而得出答案;(2)根据平行线的性质,即可得出∠OBC=∠BOA ,∠OFC=∠FOA ,再根据∠FOA=∠FOB+∠AOB=2∠AOB ,即可得出∠OBC :∠OFC 的值为1:2.(3)设∠AOB=x ,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x ,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC ,然后利用三角形的内角和等于180°列式表示出∠OBA ,然后列出方程求解即可.【详解】(1)∵CB ∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB ,OE 平分∠COF∴∠FOB+∠EOF=12(∠AOF+∠COF )=12∠COA=40°;∴∠EOB=40°;(2)∠OBC :∠OFC 的值不发生变化∵CB ∥OA∴∠OBC=∠BOA ,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC :∠OFC=1:2(3)当平行移动AB 至∠OBA=60°时,∠OEC=∠OBA .设∠AOB=x ,∵CB ∥AO ,∴∠CBO=∠AOB=x ,∵CB ∥OA ,AB ∥OC ,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x ,∴x+40°=80°-x ,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【点睛】本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.12.(1)∠AQB的大小不发生变化,∠AQB=135°;(2)∠P和∠C的大小不变,∠P=45°,∠C=45°.【分析】第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BA 解析:(1)∠AQB的大小不发生变化,∠AQB=135°;(2)∠P和∠C的大小不变,∠P=45°,∠C=45°.【分析】第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BAQ与∠ABQ 的和,最后在△ABQ中,根据三角形的内角各定理可求∠AQB的大小.第(2)题求∠P的大小,用邻补角、角平分线、平角、直角和三角形内角和定理等知识求解.【详解】解:(1)∠AQB的大小不发生变化,如图1所示,其原因如下:∵m⊥n,∴∠AOB=90°,∵在△ABO中,∠AOB+∠ABO+∠BAO=180°,∴∠ABO+∠BAO=90°,又∵AQ、BQ分别是∠BAO和∠ABO的角平分线,∴∠BAQ=12∠BAC,∠ABQ=12∠ABO,∴∠BAQ+∠ABQ=12 (∠ABO+∠BAO)=190452⨯=又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°,∴∠AQB=180°﹣45°=135°.(2)如图2所示:①∠P的大小不发生变化,其原因如下:∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180°∠BAQ+∠ABQ=90°,∴∠ABF+∠EAB=360°﹣90°=270°,又∵AP、BP分别是∠BAE和∠ABP的角平分线,∴∠PAB=12∠EAB,∠PBA=12∠ABF,∴∠PAB+∠PBA=12 (∠EAB+∠ABF)=12×270°=135°,又∵在△PAB中,∠P+∠PAB+∠PBA=180°,∴∠P=180°﹣135°=45°.②∠C的大小不变,其原因如下:∵∠AQB=135°,∠AQB+∠BQC=180°,∴∠BQC=180°﹣135°,又∵∠FBO=∠OBQ+∠QBA+∠ABP+∠PBF=180°∠ABQ=∠QBO=12∠ABO,∠PBA=∠PBF=∠ABF,∴∠PBQ=∠ABQ+∠PBA=90°,又∵∠PBC=∠PBQ+∠CBQ=180°,∴∠QBC=180°﹣90°=90°.又∵∠QBC+∠C+∠BQC=180°,∴∠C=180°﹣90°﹣45°=45°【点睛】本题考查三角形内角和定理,垂直,角平分线,平角,直角和角的和差等知识点,同时,也是一个以静求动的一个点型题目,有益于培养学生的思维几何综合题.13.【现象解释】见解析;【尝试探究】BEC 70;【深入思考】2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【现象解释】见解析;【尝试探究】∠BEC = 70︒;【深入思考】β= 2α.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD;[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.【详解】[现象解释]如图2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【尝试探究】如图3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如图4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.14.(1)证明见解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【详解】【模型】(1)证明:过点E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF解析:(1)证明见解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【详解】【模型】(1)证明:过点E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【应用】(2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°, 180°(n-1);(3)过点O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠C M n O=∠M n OR∴∠A M1O+∠CM n O=∠M1OR+∠M n OR,∴∠A M1O+∠CM n O=∠M1OM n=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠A M1O,同理∠CM n M n-1=2∠CM n O,∴∠AM1M2+∠CM n M n-1=2∠AM1O+2∠CM n O=2∠M1OM n=2m°,又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CM n M n-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要.15.(1),理由见解析;(2)当点P在B、O两点之间时,;当点P在射线AM上时,.【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C∠=∠+∠,理由见解析;解析:(1)CPDαβ∠=∠-∠;(2)当点P在B、O两点之间时,CPDαβ∠=∠-∠.当点P在射线AM上时,CPDβα【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.【详解】解:(1)∠CPD=∠α+∠β,理由如下:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β.(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;当点P在B、O两点之间时,∠CPD=∠α-∠β.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.。
成都七中初中学校七年级下册数学期末试题及答案解答
成都七中初中学校七年级下册数学期末试题及答案解答一、选择题1.12-等于()A.2-B.12C.1 D.12-2.现有两根木棒,它们长分别是40cm和50cm,若要钉成一个三角形木架,则下列四根木棒应选取()A.10cm的木棒B.40cm的木棒C.90cm的木棒D.100cm的木棒3.下列图形可由平移得到的是()A.B.C.D.4.下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.5.下列图形中,能将其中一个三角形平移得到另一个三角形的是()A.B.C.D.6.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l的有( )A.5个B.4个C.3个D.2个7.下列各式从左到右的变形,是因式分解的是()A.a2-5=(a+2)(a-2)-1 B.(x+2)(x-2)=x2-4C.x2+8x+16=(x+4)2D.a2+4=(a+2)2-48.如图,在△ABC 中,CE⊥AB 于 E,DF⊥AB 于 F,AC∥ED,CE 是∠ACB 的平分线,则图中与∠FDB 相等的角(不包含∠FDB)的个数为()A .3B .4C .5D .69.将一副三角板如图放置,作CF //AB ,则∠EFC 的度数是( )A .90°B .100°C .105°D .110° 10.若关于x 的二次三项式x 2-ax +36是一个完全平方式,那么a 的值是( ) A .12 B .12±C .6D .6± 二、填空题 11.已知:12345633,39,327,381,3243,3729,======……,设A=2(3+1)(32+1)(34+1)(316+1)(332+1)+1,则A 的个位数字是__________.12.三角形的周长为10cm ,其中有两边的长相等且长为整数,则第三边长为______cm .13.如果()()2x 1x 4ax a +-+的乘积中不含2x 项,则a 为______ . 14.计算:312-⎛⎫ ⎪⎝⎭= . 15.如图,若AB ∥CD ,∠C=60°,则∠A+∠E=_____度.16.若满足方程组33221x y m x y m +=+⎧⎨-=-⎩的x 与y 互为相反数,则m 的值为_____. 17.三角形两边长分别是3、5,第三边长为偶数,则第三边长为_______18.如图,两块三角板形状、大小完全相同,边//AB CD 的依据是_______________.19.如图,将长方形纸片ABCD 沿着EF ,折叠后,点D ,C 分别落在点D ,C '的位置,ED '的延长线交BC 于点G .若∠1=64°,则∠2等于_____度.20.若长方形的长为a +3b ,宽为a +b ,则这个长方形的面积为_____.三、解答题21.如图,边长为1的正方形ABCD 被两条与边平行的线段EF ,GH 分割成四个小长方形,EF 与GH 交于点P ,设BF 长为a ,BG 长为b ,△GBF 的周长为m ,(1)①用含a ,b ,m 的式子表示GF 的长为 ;②用含a ,b 的式子表示长方形EPHD 的面积为 ;(2)已知直角三角形两直角边的平方和等于斜边的平方,例如在图1,△ABC 中,∠ABC=900,则222AB BC AC +=,请用上述知识解决下列问题:①写出a ,b ,m 满足的等式 ;②若m=1,求长方形EPHD 的面积;③当m 满足什么条件时,长方形EPHD 的面积是一个常数?22.如图,网格中每个小正方形边长为1,△ABC 的顶点都在格点上.将△ABC 向左平移2格,再向上平移3格,得到△A ′B ′C ′.(1)请在图中画出平移后的△A ′B ′C ′;(2)画出平移后的△A ′B ′C ′的中线B ′D ′(3)若连接BB ′,CC ′,则这两条线段的关系是________(4)△ABC 在整个平移过程中线段AB 扫过的面积为________(5)若△ABC 与△ABE 面积相等,则图中满足条件且异于点C 的格点E 共有______个 (注:格点指网格线的交点)23.四边形ABCD 中,∠A=140°,∠D=80°.(1)如图①,若∠B=∠C ,试求出∠C 的度数;(2)如图②,若∠ABC 的角平分线交DC 于点E ,且BE ∥AD ,试求出∠C 的度数;(3)如图③,若∠ABC 和∠BCD 的角平分线交于点E ,试求出∠BEC 的度数.24.计算:(1)()()122012514--⎛⎫+-⨯-- ⎪⎝⎭; (2)52342322)(a a a a a +÷-. 25.已知a 6=2b =84,且a <0,求|a ﹣b|的值.26.如图,AB ∥CD ,点E 、F 在直线AB 上,G 在直线CD 上,且∠EGF =90°,∠BFG =140°,求∠CGE 的度数.27.计算:(1)022019()32020-- (2)4655x x x x ⋅+⋅28.已知关于x 的方程3m x +=的解满足325x y a x y a-=-⎧⎨+=⎩,若15y -<<,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由题意直接根据负指数幂的运算法则进行分析计算即可.【详解】解: 12-=12. 故选:B.【点睛】本题考查负指数幂的运算,熟练掌握负指数幂的运算法则是解题的关键.2.B解析:B【解析】试题解析:已知三角形的两边是40cm 和50cm ,则10<第三边<90.故选40cm 的木棒.故选B.点睛:三角形的三边关系:三角形任意两边之和大于第三边.3.A解析:A【详解】解:观察可知A 选项中的图形可以通过平移得到,B 、C 选项中的图形需要通过旋转得到,D 选项中的图形可以通过翻折得到,故选:A4.D解析:D【详解】解:A 、能通过其中一个四边形平移得到,不符合题意;B 、能通过其中一个四边形平移得到,不符合题意;C、能通过其中一个四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选D.5.A解析:A【解析】【分析】利用平移的性质,结合轴对称、旋转变换和位似图形的定义判断得出即可.【详解】A、可以通过平移得到,故此选项正确;B、可以通过旋转得到,故此选项错误;C、是位似图形,故此选项错误;D、可以通过轴对称得到,故此选项错误;故选A.【点睛】本题考查了平移的性质以及轴对称、旋转变换和位似图形,正确把握定义是解题的关键.6.B解析:B【分析】根据平行线的判定定理对各小题进行逐一判断即可.【详解】解:①∵∠1=∠3,∴l1∥l2,故本小题正确;②∵∠2+∠4=180°,∴l1∥l2,故本小题正确;③∵∠4=∠5,∴l1∥l2,故本小题正确;④∠2=∠3不能判定l1∥l2,故本小题错误;⑤∵∠6=∠2+∠3,∴l1∥l2,故本小题正确.故选B.【点睛】本题考查的是平行线的判定,熟记平行线的判定定理是解答此题的关键.7.C解析:C【分析】根据因式分解的定义逐个判断即可.【详解】A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、是因式分解,故本选项符合题意;D、不是因式分解,故本选项不符合题意;故选:C.本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.8.B解析:B【解析】分析:推出DF∥CE,推出∠FDB=∠ECB,∠EDF=∠CED,根据DE∥AC推出∠ACE=∠DEC,根据角平分线得出∠ACE=∠ECB,即可推出答案.详解:∵CE⊥AB,DF⊥AB,∴DF∥CE,∴∠ECB=∠FDB,∵CE是∠ACB的平分线,∴∠ACE=∠ECB,∴∠ACE=∠FDB,∵AC∥DE,∴∠ACE=∠DEC=∠FDB,∵DF∥CE,∴∠DEC=∠EDF=∠FDB,即与∠FDB相等的角有∠ECB、∠ACE、∠CED、∠EDF,共4个,故选B.点睛:本题考查了平行线的性质:两直线平行,内错角相等、同位角相等,同旁内角互补;解决此类题型关键在于正确找出内错角、同位角、同旁内角.9.C解析:C【分析】根据等腰直角三角形求出∠BAC,根据平行线求出∠ACF,根据三角形内角和定理求出即可.【详解】解:∵△ACB是等腰直角三角形,∴∠BAC=45°,∵CF//AB,∴∠ACF=∠BAC=45°,∵∠E=30°,∴∠EFC=180°﹣∠E﹣∠ACF=105°,故选:C.【点睛】本题考查了三角形的内角和定理和平行线的性质,能求出各个角的度数是解此题的关键.10.B解析:B【分析】利用完全平方公式的结构特征判断即可确定出a的值.【详解】解:∵x2-ax+36是一个完全平方式,∴a=±12,故选:B.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.二、填空题11.1【分析】把2写成3-1后,利用平方差公式化简,归纳总结得到一般性规律,即可确定出A的个位数字.【详解】解:A=(3-1)(3+1)(32+1)(34+1)(316+1)(332+1)+1解析:1【分析】把2写成3-1后,利用平方差公式化简,归纳总结得到一般性规律,即可确定出A的个位数字.【详解】解:A=(3-1)(3+1)(32+1)(34+1)(316+1)(332+1)+1=(32-1)(32+1)(34+1)(316+1)(332+1)+1=(34-1)(34+1)(316+1)(332+1)+1=(316-1)(316+1)(332+1)+1=(332-1)(332+1)+1=364-1+1=364,观察已知等式,个位数字以3,9,7,1循环,64÷4=16,则A的个位数字是1,故答案为:1.【点睛】本题考查平方差公式,熟练掌握平方差公式是解本题的关键.12.或 2【分析】可分相等的两边的长为1cm,2cm,3cm,4cm,依此讨论,根据三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边)即可求解.解:相等的两边的长为1cm ,则解析:或 2【分析】可分相等的两边的长为1cm ,2cm ,3cm ,4cm ,依此讨论,根据三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边)即可求解.【详解】解:相等的两边的长为1cm ,则第三边为:10-1×2=8(cm ),1+1<8,不符合题意; 相等的两边的长为2cm ,则第三边为:10-2×2=6(cm ),2+2<6,不符合题意; 相等的两边的长为3cm ,则第三边为:10-3×2=4(cm ),3+3>4,符合题意; 相等的两边的长为4cm ,则第三边为:10-4×2=2(cm ),2+4>4,符合题意. 故第三边长为4或2cm .故答案为:4或2.【点睛】此题考查了三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边),等腰三角形的性质和周长计算,分类思想的运用是解题的关键.13.【分析】先根据多项式乘以多项式法则展开,合并同类项,根据已知得出,求出即可;【详解】解:,的乘积中不含项,,解得:.故答案为:.【点睛】本题考查了多项式乘以多项式法则和解一元 解析:14【分析】先根据多项式乘以多项式法则展开,合并同类项,根据已知得出4a 10-+=,求出即可;【详解】解:()()2x 1x 4ax a +-+ 322x 4ax ax x 4ax a =-++-+()32x 4a 1x 3ax a =+-+-+,()()2x 1x 4ax a +-+的乘积中不含2x 项,4a 10∴-+=, 解得:1a 4=. 故答案为:14. 【点睛】本题考查了多项式乘以多项式法则和解一元一次方程,掌握多项式乘以多项式法则是解此题的关键.14.8【解析】分析:根据幂的负整数指数运算法则进行计算即可.解:原式==8.故答案为8.点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.解析:8【解析】分析:根据幂的负整数指数运算法则进行计算即可.解:原式=3112⎛⎫ ⎪⎝⎭=8. 故答案为8.点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.15.60【解析】【分析】先由AB ∥CD ,求得∠C 的度数,再根据三角形的外角等于与它不相邻的两内角之和可求∠A+∠E 的度数.【详解】∵AB ∥CD ,∴∠C 与它的同位角相等,根据三角形的外角等于解析:60【解析】【分析】先由AB∥CD,求得∠C的度数,再根据三角形的外角等于与它不相邻的两内角之和可求∠A+∠E的度数.【详解】∵AB∥CD,∴∠C与它的同位角相等,根据三角形的外角等于与它不相邻的两内角之和,所以∠A+∠E=∠C=60度.故答案为60.【点睛】本题考查了平行线的性质,三角形的外角等于和它不相邻的两个内角的和. ①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角. 16.【分析】把m看做已知数表示出x与y,代入x+y=0计算即可求出m的值.【详解】解:,①+②得:5x=3m+2,解得:x=,把x=代入①得:y=,由x与y互为相反数,得到=0,去分母解析:【分析】把m看做已知数表示出x与y,代入x+y=0计算即可求出m的值.【详解】解:33221x y mx y m+=+⎧⎨-=-⎩①②,①+②得:5x=3m+2,解得:x=325m+,把x=325m+代入①得:y=945m-,由x与y互为相反数,得到3294+55m m+-=0,去分母得:3m+2+9﹣4m=0,解得:m=11,故答案为:11【点睛】此题考查了二元一次方程组的解,以及解二元一次方程组,熟练掌握方程组的解法及相反数的性质是解本题的关键.17.4或6【解析】【分析】根据三角形三边关系,可令第三边为x,则5-3<x<5+3,即2<x<8,又因为第三边长为偶数,即可求得答案.【详解】由题意,令第三边为x,则5-3<x<5+3,即2<解析:4或6【解析】【分析】根据三角形三边关系,可令第三边为x,则5-3<x<5+3,即2<x<8,又因为第三边长为偶数,即可求得答案.【详解】由题意,令第三边为x,则5-3<x<5+3,即2<x<8,∵第三边长为偶数,∴第三边长是4或6,故答案为:4或6.【点睛】本题考查了三角形三边关系,熟练掌握三角形的三边关系是解决此类问题的关键.18.内错角相等,两直线平行【分析】利用平行线的判定方法即可解决问题.【详解】解:由题意:,(内错角相等,两直线平行)故答案为:内错角相等,两直线平行.【点睛】本题考查平行线的判定,解题的解析:内错角相等,两直线平行【分析】利用平行线的判定方法即可解决问题.【详解】∠=∠,解:由题意:ABD CDB∴(内错角相等,两直线平行)AB CD//故答案为:内错角相等,两直线平行.【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.19.128【分析】由ADBC,∠1=64°,根据两直线平行,内错角相等,可求得∠DEF的度数,然后由折叠的性质,可得∠FEG的度数,进而再利用两直线平行内错角相等得到∠2的度数.【详解】解:∵A解析:128【分析】由AD//BC,∠1=64°,根据两直线平行,内错角相等,可求得∠DEF的度数,然后由折叠的性质,可得∠FEG的度数,进而再利用两直线平行内错角相等得到∠2的度数.【详解】解:∵AD//BC,∠1=64°,∴∠DEF=∠1=64°,由折叠的性质可得∠FEG=∠DEF=64°,∴∠2=∠1+∠EFG=64°+64°=128°.故答案为:128.【点睛】本题主要考察两直线平行的性质、折叠的性质以及矩形的性质,重点在于利用已知条件找到角度之间的关系.20.a2+4ab+3b2【分析】根据长方形面积公式可得长方形的面积为(a+3b)(a+b),计算即可.【详解】解:由题意得,长方形的面积:(a+3b)(a+b)=a2+4ab+3b2.故答案为解析:a2+4ab+3b2【分析】根据长方形面积公式可得长方形的面积为(a+3b)(a+b),计算即可.【详解】解:由题意得,长方形的面积:(a+3b)(a+b)=a2+4ab+3b2.故答案为:a2+4ab+3b2.【点睛】本题考查长方形的面积公式和多项式乘法,熟练掌握多项式乘法计算法则是解题的关键.三、解答题21.(1)①m a b --;②1a b ab --+;(2)①22220m ma mb ab --+=;②12;③m=1 【分析】(1)①直接根据三角形的周长公式即可;②根据BF 长为a ,BG 长为b ,表示出EP ,PH 的长,根据求长方形EPHD 的面积;(2)①直接根据直角三角形两直角边的平方和等于斜边的平方,表示出a ,b ,m 之间的关系式;②根据线段之间的关系利用勾股定理求出长方形EPHD 的面积的值;③结合①的结论和②的作法即可求解.【详解】(1)①∵BF 长为a ,BG 长为b ,△GBF 的周长为m ,∴GF m a b =--,故答案为:m a b --;②∵正方形ABCD 的边长为1 ,∴AB=BC=1,∵BF 长为a ,BG 长为b ,∴AG=1-b ,FC=1-a ,∴EP=AG=1-b ,PH=FC=1-a ,∴长方形EPHD 的面积为:(1)(1)1a b a b ab --=--+,故答案为:1a b ab --+;(2)①△ABC 中,∠ABC=90°,则222AB BC AC +=,∴在△GBF 中, GF m a b =--,∴()222m a b a b --=+, 化简得,22220m ma mb ab --+=故答案为:22220m ma mb ab --+=;②∵BF=a ,GB=b ,∴FC=1-a ,AG=1-b ,在Rt △GBF 中,22222GF BF BG a b ==+=+,∵Rt △GBF 的周长为1, ∴1BF BG GF a b ++=+=即1a b =--,即222212(()b a b a b a +=-+++),整理得12220a b ab --+= ∴12a b ab +-=,∴矩形EPHD 的面积••S PH EP FC AG ==()()11a b =--1a b ab =--+11122=-=. ③由①得: 22220m ma mb ab --+=, ∴212ab ma mb m =+-. ∴矩形EPHD 的面积••S PH EP FC AG ==()()11a b =--1a b ab =--+2112ma mb a m b +-=--+ ()()211121m a m m b =--+-+, ∴要使长方形EPHD 的面积是一个常数,只有m=1.【点睛】本题考查了正方形的特殊性质和勾股定理,根据正方形的特殊性质和勾股定理推出22220m ma mb ab --+=是解题的关键.22.(1)画图见解析;(2)画图见解析;(3)平行且相等;(4)12;(5)9【分析】(1)利用网格特点和平移的性质分别画出点A 、B 、C 的对应点A′、B′、C′即可得到△A′B′C′;(2)找出线段A′C′的中点E′,连接B′E′;(3)根据平移的性质求解;(4)由于线段AB 扫过的部分为平行四边形,则根据平行四边形的面积公式可求解. (5)根据同底等高面积相等可知共有9个点.【详解】(1)△A ′B ′C ′如图所示;(2)B ′D ′如图所示;(3)BB′∥CC′,BB′=CC′;(4)线段AB扫过的面积=4×3=12;(5)有9个点.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.(1)70°;(2)60°;(3)110°【分析】(1)根据四边形的内角和是360°,结合已知条件就可求解;(2)根据平行线的性质得到∠ABE的度数,再根据角平分线的定义得到∠ABC的度数,进一步根据四边形的内角和定理进行求解;(3)根据四边形的内角和定理以及角平分线的概念求得∠EBC+∠ECB的度数,再进一步求得∠BEC的度数.【详解】(1)在四边形ABCD中,∵∠A+∠B+∠C+∠D=360°, 又∠A=140°,∠D=80°,∠B=∠C,∴140°+∠C+∠C+80°=360°,即∠C=70°.(2)∵BE∥AD,∠A=140°,∠D=80°,∴∠BEC=∠D,∠A+∠ABE=180°.∴∠BEC=80°,∠ABE=40°.∵BE是∠ABC的平分线,∴∠EBC=∠ABE=40°.∴∠C=180°-∠EBC-∠BEC=180°-40°-80°=60°.(3)在四边形ABCD中, 有∠A+∠ABC+∠BCD+∠D=360°, ∠A=140°,∠D=80°,所以∠ABC+∠BCD=140°,从而有12∠ABC+12∠BCD=70°.因为∠ABC和∠BCD的角平分线交于点E,所以有∠EBC=12∠ABC,∠ECB=12∠BCD.故∠C=180°-(∠EBC +∠ECB)=180°-(12∠ABC+12∠BCD)=180°-70°=110°.24.(1)7;(2)55a .【分析】(1)直接利用负整数指数幂的性质、零指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则、整式的除法运算法则计算得出答案.【详解】解:(1)(14)﹣1+(﹣2)2×50﹣(﹣1)﹣2; =4+4×1﹣1=4+4﹣1 =7;(2)2a 5﹣a 2•a 3+(2a 4)2÷a 3=2a 5﹣a 5+4a 8÷a 3=2a 5﹣a 5+4a 5=5a 5.【点睛】此题主要考查了整式乘除和乘法运算,以及有理数乘方的运算,熟练掌握运算法则是解本题的关键.25.16【分析】根据幂的乘方运算法则确定a 、b 的值,再根据绝对值的定义计算即可.【详解】解:∵(±4)6=2b =84=212,a <0,∴a =﹣4,b =12,∴|a ﹣b|=|﹣4﹣12|=16.【点睛】本题考查幂的乘方,难度不大,也是中考的常考知识点,熟练掌握幂的乘方运算法则是解题的关键.26.50︒.【分析】先根据平行线的性质得出BFG FGC ∠=∠,再根据CGE FGC EGF ∠=∠-∠结合已知角度即可求解.【详解】证明://AB CD ,∠BFG =140°,BFG FGC ∴∠=∠=140°,又∵CGE FGC EGF ∠=∠-∠,∠EGF =90°,1409050CGE ∴∠=︒-︒=︒. 【点睛】本题考查的是平行线的性质,熟知平行线及角平分线的性质是解答此题的关键.解题时注意:两直线平行,内错角相等.27.(1)89;(2)102x ; 【分析】 (1)根据零指数幂和负整数指数幂的运算法则即可计算;(2)根据同底数幂的乘法法则和合并同类项即可计算.【详解】(1)原式=1-19=89; (2)原式=x 10+x 10=2x 10.【点睛】本题考查整式的混合运算,负整数指数幂,零指数幂,解答本题的关键是明确各法则的计算方法.28.21m -<<【分析】先解方程组325x y a x y a -=-⎧⎨+=⎩,消去a 用含x 的式子表示y,再将x=3-m 代入y 中,从而得到用含m 的式子表示y,在根据15y -<<,解关于m 的不等式组,求出m 的取值范围.【详解】解:325x y a x y a -=-⎧⎨+=⎩①②,①5⨯+②得6315x y -=即25y x =-③ 由3m x +=得3x m =-,代入③得,12y m =-又因为15y -<<,则1125m -<-<,解得21m -<<【点睛】本题主要考查了分式方程的解以及二元一次方程组的解,解题时需要掌握解二元一次方程和一元一次不等式的方法.。
成都七中七年级下册数学期末试卷(带答案)-百度文库
成都七中七年级下册数学期末试卷(带答案)-百度文库1.如图所示,直线a,b被直线c所截,则∠1与∠2是()A。
同位角 B。
内错角 C。
同旁内角 D。
对顶角2.如图,从边长为(a/4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A。
(2a^2+5a)cm^2 B。
(3a+15)cm^2 C。
(6a+9)cm^2 D。
(6a+15)cm^23.已知x-2(m-3)x+16是一个完全平方式,则m的值可能是()A。
-7 B。
1 C。
12 D。
184.若(x^2-x+m)(x-8)中不含x的一次项,则m的值为()5.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()6.将图甲中阴影部分的小长方形变换到图乙位置,能根据图形的面积关系得到的关系式是A。
(a+b)(a-b)=a^2-b^2B。
(a-b)^2=a^2-b^2C。
b(a-b)=ab-b^2D。
ab-b^2=b(a-b)7.已知,(x+1)(x-2)=x+mx+n,则m+n的值为()A。
-3 B。
-1 C。
1 D。
38.下列各式从左到右的变形,是因式分解的是()A。
a^2-5=(a+2)(a-2)-1B。
(x+2)(x-2)=x^2-4C。
x^2+8x+16=(x+4)^2D。
a^2+4=(a+2)^2-49.若一个三角形的两边长分别为3和6,则第三边长可能是()A。
6 B。
3 C。
2 D。
910.若关于x的一元一次不等式组{x-2m2}无解,则m的取值范围是()A。
m≤2/3 B。
m2/3填空题:11.若am=5,an=3,则am+n=8.12.已知am=5,an=3,则a^2m-n的值是16.13.如图,将边长为6cm的正方形ABCD先向下平移2cm,再向左平移1cm,得到正方形A'B'C'D',则这两个正方形重叠部分的面积为8cm^2.14.如果9-mx+x^2是一个完全平方式,则m的值为4.15.若二次三项式 $x^2+kx+81$ 是一个完全平方式,则$k$ 的值是多少?16.如图所示,根据长方形中给出的数据,计算阴影部分的面积。
嘉祥县期末试卷七年级数学
一、选择题(每题4分,共40分)1. 下列数中,属于有理数的是()A. √9B. √16C. √25D. √362. 下列各数中,绝对值最小的是()A. -2B. 2C. -1/2D. 1/23. 下列方程中,解为整数的是()A. 3x + 2 = 11B. 2x - 5 = 9C. 4x + 3 = 12D. 5x - 7 = 84. 下列图形中,是平行四边形的是()A. 矩形B. 菱形C. 正方形D. 以上都是5. 在直角三角形ABC中,∠C=90°,AB=5cm,BC=3cm,则AC的长度为()A. 2cmB. 4cmC. 6cmD. 8cm6. 下列函数中,自变量x的取值范围是全体实数的是()A. y = x + 2B. y = 2x - 3C. y = √xD. y = 1/x7. 下列各数中,属于无理数的是()A. √9B. √16C. √25D. √-18. 下列各数中,负整数指数幂最大的是()A. -2^3B. -2^2C. -2^1D. -2^09. 下列图形中,对称轴最多的是()A. 矩形B. 菱形C. 正方形D. 以上都是10. 下列方程中,解为x=3的是()A. 2x - 5 = 7B. 3x + 4 = 11C. 4x - 3 = 9D. 5x + 2 = 13二、填空题(每题4分,共40分)11. 计算:(-3) × (-2) + 4 × 2 = _______12. 若a=2,b=-3,则a-b= _______13. 在直角三角形ABC中,∠C=90°,AB=5cm,BC=3cm,则AC的长度为 _______ cm。
14. 若函数y=2x-3,则当x=2时,y= _______15. 若a=√2,b=√3,则a^2+b^2= _______16. 下列各数中,负整数指数幂最大的是 _______17. 若a=√5,b=√10,则a-b= _______18. 下列各数中,属于无理数的是 _______19. 在直角坐标系中,点P(2,3)关于y轴的对称点为 _______20. 若函数y=3x+2,则当x=0时,y= _______三、解答题(每题10分,共40分)21. 解方程:2x-5=922. 已知等腰三角形ABC中,AB=AC,BC=8cm,求AB和AC的长度。
2020-2021学年四川省成都七中嘉祥外国语学校七年级(下)期末数学模拟试卷含答案
2020-2021学年四川省成都七中嘉祥外国语学校七年级(下)期末数学模拟试卷A卷(100分)一、选择题(本大题共10小题,共30分)1.(3分)计算a3•(a3)2的结果是()A.a8B.a9C.a11D.a182.(3分)如图,∠ACD=90°,CE⊥AB,垂足为E,则下面的结论中,不正确的是()A.点C到AB的垂线段是线段CDB.CD与AC互相垂直C.AB与CE互相垂直D.线段CD的长度是点D到AC的距离3.(3分)过点C向AB边作垂线段,下列画法中正确的是()A.B.C.D.4.(3分)甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离s (km)和骑行时间t(h)之间的函数关系如图所示,根据图象信息,以下说法正确的是()A.甲和乙两人同时到达目的地B.甲在途中停留了0.5hC.相遇后,甲的速度小于乙的速度D.他们都骑了20km5.(3分)如图,AE⊥AB,BD⊥AB,C为线段AB上一点,满足CE⊥CD,CE=CD=5,若AE=4,BD =3,则AB的长为()A.7B.8C.9D.126.(3分)在直角△ABC中,∠ACB=90°,CD是AB边上的高线,且AB=5,AC=4,BC=3,则CD的长为()A.B.C.D.7.(3分)如图,已知△ABC三条边、三个角,则甲、乙两个三角形中,与△ABC全等的图形是()A.甲B.乙C.甲和乙D.都不是8.(3分)如图,△ABC与△DEF关于直线MN轴对称,则以下结论中错误的是()A.AB∥DFB.∠B=∠EC.AB=DED.AD所连的线段被MN垂直平分9.(3分)转动下列名转盘,指针指向红色区域的概率最大的是()A.B.C.D.10.(3分)若代数式4x﹣5与的值相等,则x的值是()A.1B.C.D.2二.填空题。
(每题4分,共16分)11.(4分)已知2x m﹣1+4=0是一元一次方程,则m=.12.(4分)妈妈煮一道菜时,为了了解菜的咸淡是否适合,于是妈妈取了一点品尝,这应该属于.(填普查或抽样调查)13.(4分)已知关系式5x﹣y=2,请用含x的代数式表示y:;当x由1变化到3时,y由变化到.14.(4分)有长度分别为2cm,3cm,4cm,7cm的四条线段,任取其中三条能组成三角形的概率是.三、解答题(54分)15.(12分)(1)计算:(2x+3)2﹣(2x+3)(2x﹣3).(2)解方程:2x+3(x+1)=17﹣2x.16.(6分)计算:[(2a+b)2﹣b(b+4a)﹣6a]÷2a.并计算当a=3,b=2的时候的结果.17.(8分)如图,直线AB,CD相交于点O,OE⊥CD,OF平分∠BOD,若∠AOE=40°,求∠BOF的度数.18.(8分)国家规定,中小学生每天在校体育活动时间不低于1h,为了解这项政策的落实情况,有关部门就“你某天在校体育活动时间是多少”的问题,在某校随机抽查了部分学生,再根据活动时间t(h)进行分组(A组:t<0.5,B组:0.5≤t<1,C组:1≤t<1.5,D组:t≥1.5),绘制成如图所示的两幅不完整统计图,请根据图中信息回答问题:(1)此次抽查的学生为人;(2)补全条形统计图;(3)从抽查的学生中随机询问一名学生,该生当天在校体育活动时间低于1小时的概率是多少.(4)若当天在校学生为1200人,请估计在当天达到国家规定体育活动时间的学生有多少人.19.(10分)如图1,长方形的两边长分别为m+3,m+13;如图2的长方形的两边长分别为m+5,m+7.(其中m为正整数)(1)用m的代数式分别表示图1的面积S1、图2的面积S2,并比较S1,S2的大小;(2)现有一个正方形的周长与图1中的长方形的周长相等,试探究该正方形的面积与图1中的长方形的面积的差是否是一个常数,如果是,求出这个常数;如果不是,说明理由.20.(10分)在△ABC和△DCE中,CA=CB,CD=CE,∠CAB=∠CED=α.(1)如图1,将AD、EB延长,延长线相交于点O:①求证:BE=AD;②用含α的式子表示∠AOB的度数(直接写出结果);(2)如图2,当α=45°时,连接BD、AE,作CM⊥AE于M点,延长MC与BD交于点N,求证:N 是BD的中点.B卷(50分)一、填空题。
成都七中嘉祥外国语学校人教版七年级下册数学期末考试试卷及答案
成都七中嘉祥外国语学校人教版七年级下册数学期末考试试卷及答案一、选择题1.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y )2.计算:202020192(2)--的结果是( ) A .40392 B .201932⨯ C .20192- D .23.冠状病毒是引起病毒性肺炎的病原体的一种,可以在人群中扩散传播,某冠状病毒的直径大约是0.000000081米,用科学计数法可表示为( )A .-98.110⨯B .-88.110⨯C .-98110⨯D .-78.110⨯ 4.如果多项式x 2+mx +16是一个二项式的完全平方式,那么m 的值为( )A .4B .8C .-8D .±8 5.小明带了10元钱到文具店购买签字笔和练习本两种文具,已知签字笔2元支,练习本3元/本,如果10元恰好用完,那么小明共有( )种购买方案.A .0B .1C .2D .3 6.下列式子是完全平方式的是( ) A .a 2+2ab ﹣b 2B .a 2+2a +1C .a 2+ab +b 2D .a 2+2a ﹣1 7.已知4m =a ,8n =b ,其中m ,n 为正整数,则22m +6n =( ) A .ab 2 B .a +b 2C .a 2b 3D .a 2+b 3 8.已知关于x ,y 的方程x 2m﹣n ﹣2+4y m +n +1=6是二元一次方程,则m ,n 的值为( ) A .m =1,n =-1 B .m =-1,n =1 C .14m ,n 33==- D .14,33m n =-= 9.若关于x 的不等式组2034x x a x-<⎧⎨+>-⎩恰好只有2个整数解,且关于x 的方程21236x a a x +++=+的解为非负整数解,则所有满足条件的整数a 的值之和是( ) A .1 B .3 C .4 D .610.若多项式224a kab b ++是完全平方式,则k 的值为( )A .4B .2±C .4±D .8±二、填空题11.如图,将一张长方形纸片沿EF 折叠后,点D 、C 分别落在点D '、C '的位置,ED '的延长线与BC 相交于点G ,若∠EFG =50°,则∠1=_______.12.不等式1x2x123>+-的非负整数解是______.13.如图,将边长为6cm的正方形ABCD先向下平移2cm,再向左平移1cm,得到正方形A'B'C'D',则这两个正方形重叠部分的面积为______cm2.14.如果9-mx+x2是一个完全平方式,则m的值为__________.15.若二次三项式x2+kx+81是一个完全平方式,则k的值是 ________.16.如图,∠1、∠2是△ABC的外角,已知∠1+∠2=260°,求∠A的度数是______.17.若满足方程组33221x y mx y m+=+⎧⎨-=-⎩的x与y互为相反数,则m的值为_____.18.已知21xy=⎧⎨=⎩是方程2x﹣y+k=0的解,则k的值是_____.19.已知代数式2x-3y的值为5,则-4x+6y=______.20.比较大小:π0_____2﹣1.(填“>”“<”或“=”)三、解答题21.已知a+b=2,ab=-1,求下面代数式的值:(1)a2+b2;(2)(a-b)2.22.观察下列式子:2×4+1=9;4×6+1=25;6×8+1=49;…(1)请你根据上面式子的规律直接写出第4个式子:;(2)探索以上式子的规律,试写出第n个等式,并说明等式成立的理由.23.若关于x,y的二元一次方程组38x ymx ny+=⎧⎨+=⎩与方程组14x ymx ny-=⎧⎨-=⎩有相同的解.(1)求这个相同的解;(2)求m n-的值. 24.计算(1)(π-3.14)0-|-3|+(12)1--(-1)2012(2)(-2a2)3+(a2)3-4a.a5(3)x(x+7)-(x-3)(x+2)(4)(a-2b-c)(a+2b-c)25.解下列方程组或不等式组(1)24231x yx y+=⎧⎨-=⎩(2)()211113x xxx⎧--≤⎪⎨+>-⎪⎩26.定义:对于任何数a,符号[]a表示不大于a的最大整数.(1)103⎡⎤-=⎢⎥⎣⎦(2)如果2333x-⎡⎤=-⎢⎥⎣⎦,求满足条件的所有整数x。
成都七中嘉祥外国语学校人教版七年级数学下册期末试卷及答案
成都七中嘉祥外国语学校人教版七年级数学下册期末试卷及答案一、选择题1.下列计算中正确的是( )A .2352a a a +=B .235a a a +=C .235a a a =D .236a a a = 2.已知一粒米的质量是0.00021kg ,这个数用科学记数法表示为 ( ) A .4 2.110-⨯kgB .52.110-⨯kgC .42110-⨯kgD .62.110-⨯kg 3.在ABC ∆中,::1:2:3A B C ∠∠∠=,则ABC ∆一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形或直角三角形 4.如图,在五边形ABCDE 中,A B E α∠+∠+∠=,DP 、CP 分别平分EDC ∠、BCD ∠,则P ∠的度教是( )A .1902α-B .1902α︒+ C .12α D .15402α︒- 5.若8x a =,4y a =,则2x y a +的值为( )A .12B .20C .32D .256 6.在ABC 中,1135A B C ∠=∠=∠,则ABC 是( ) A .钝角三角形B .直角三角形C .锐角三角形D .无法确定 7.下列方程中,是二元一次方程的是( )A .x 2+x =1B .2x ﹣3y =5C .xy =3D .3x ﹣y =2z 8.如图,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A .B .C .D .9.下列给出的线段长度不能与4cm ,3cm 能构成三角形的是( )A .4cmB .3cmC .2cmD .1cm 10.比较255、344、433的大小( )A .255<344<433B .433<344<255C .255<433<344D .344<433<255 二、填空题11.已知关于x 的不等式3x - m+1>0的最小整数解为2,则实数m 的取值范围是___________.12.已知5x m =,4y m =,则2x y m +=______________.13.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB =____.14.等式01a =成立的条件是________.15.计算:2202120192020⨯-=__________16.已知()4432234464a b a a b a b ab b +=++++,则()4a b -=__________. 17.若二次三项式x 2+kx+81是一个完全平方式,则k 的值是 ________.18.计算:23()a =____________.19.已知21x y =⎧⎨=⎩是方程2x ﹣y +k =0的解,则k 的值是_____. 20.如果a 2﹣b 2=﹣1,a+b=12,则a ﹣b=_______. 三、解答题21.(1)如图,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x 、y 的等式表示) ;(2)若2(32)5x y -=,2(32)9x y +=,求xy 的值;(3)若25,2x y xy +==,求2x y -的值.22.计算:(1)(y 3)3÷y 6;(2)2021()(3)2π--+-.23.如图,CD ⊥AB ,EF ⊥AB ,垂足分别为D 、F ,∠1=∠2,若∠A =65°,∠B =45°,求∠AGD 的度数.24.如图,已知AB∥CD,∠1=∠2,求证:AE∥DF.25.在如图所示的正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)画出△ABC先向右平移5个单位长度,再向上平移2个单位长度所得的△A1B1C1;(2)画出△ABC的中线AD;(3)画出△ABC的高CE所在直线,标出垂足E:(4)在(1)的条件下,线段AA1和CC1的关系是26.如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若FG⊥BC于点H,BC平分∠ABD,∠D=112°,求∠1的度数.27.已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.(1)如图1,连接CE,①若CE∥AB,求∠BEC的度数;②若CE平分∠ACD,求∠BEC的度数.(2)若直线CE 垂直于△ABC 的一边,请直接写出∠BEC 的度数.28.因式分解:(1)3a x y y x ;(2)()222416x x +-.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据同底数幂的加法和乘法法则进行计算判断即可.【详解】解:A 、23a a +无法合并,故A 选项错误;B 、23a a +无法合并,故B 选项错误;C 、235a a a =,故C 选项正确;D 、235a a a =,故D 选项错误.故选:C【点睛】此题考查同底数幂的运算法则,同底数幂的加减必须是同类项才可以进行加减,同底数幂的乘除底数不变,指数相加减.2.A解析:A【分析】科学记数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以 2.1,a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数。
嘉祥初一期末数学试卷答案
1. 下列各数中,不是有理数的是()A. 2.5B. -3C. $\sqrt{2}$D. $\frac{1}{2}$答案:C解析:有理数是可以表示为两个整数之比的数,$\sqrt{2}$是无理数,不能表示为两个整数之比。
2. 若 $a+b=3$,$ab=-1$,则 $a^2+b^2$ 的值为()A. 6B. 5C. 4D. 2答案:B解析:由 $a+b=3$,$ab=-1$,得 $(a+b)^2=a^2+2ab+b^2=9$,则 $a^2+b^2=9-2ab=9-2\times(-1)=11$。
3. 在直角坐标系中,点 $(2,3)$ 关于 $x$ 轴的对称点坐标为()A. $(2,-3)$B. $(-2,3)$C. $(-2,-3)$D. $(2,6)$答案:A解析:点 $(2,3)$ 关于 $x$ 轴的对称点坐标为 $(2,-3)$。
4. 若 $a>0$,$b<0$,则下列不等式中正确的是()A. $a-b>0$B. $a+b>0$C. $ab>0$D. $a^2>b^2$答案:D解析:$a>0$,$b<0$,则 $a-b>0$,$a+b>0$,$ab<0$,$a^2>b^2$。
5. 已知 $x^2+4x+4=0$,则 $x$ 的值为()A. $-2$B. $2$C. $-4$D. $4$答案:A解析:$x^2+4x+4=(x+2)^2=0$,则 $x=-2$。
6. 在 $\triangle ABC$ 中,$a=3$,$b=4$,$c=5$,则 $\angle A$ 的度数为()A. $30^\circ$B. $45^\circ$C. $60^\circ$D. $90^\circ$答案:D解析:由勾股定理知,$\triangle ABC$ 是直角三角形,$\angle A=90^\circ$。
7. 若 $a+b=3$,$ab=2$,则 $a^2+b^2$ 的值为()A. 5B. 7D. 11答案:A解析:由 $a+b=3$,$ab=2$,得 $(a+b)^2=a^2+2ab+b^2=9$,则 $a^2+b^2=9-2ab=9-2\times2=5$。
成都七中嘉祥外国语学校人教版七年级下册数学期末压轴难题考试试卷及答案
成都七中嘉祥外国语学校人教版七年级下册数学期末压轴难题考试试卷及答案 一、选择题1.下列四幅图中,1∠和2∠是同位角的是( )A .①②B .③④C .①②④D .②③④2.下列图案是一些汽车的车标,可以看作由“基本图案”平移得到的是() A .B .C .D .3.如果(),P a b 在第三象限,那么点(),Q a b ab +在( ) A .第一象限B .第二象限C .第三象限D .第四象限4.下列命题是假命题的是( )A .两个角的和等于平角时,这两个角互为补角B .内错角相等C .两条平行线被第三条直线所截,内错角相等D .对顶角相等5.直线//AB CD ,直线EF 与AB ,CD 分别交于点E ,F ,EG EF ⊥.若155∠=︒,则2∠的度数为( )A .25︒B .35︒C .45︒D .55︒6.下列说法错误的是( )A .9的平方根是3±B .16的值是8C .127的立方根是13D .38-的值是2-7.两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,DE 与AC 交于点M ,若//BC EF ,则DMC ∠的大小为( )A .95°B .105°C .115°D .125°8.如图,过点()02,0A 作直线l :3y =的垂线,垂足为点1A ,过点1A 作12A A x ⊥轴,垂足为点2A ,过点2A 作23A A l ⊥,垂足为点3A ,…,这样依次作下去,得到一组线段:01A A ,12A A ,23A A ,…,则线段20202021A A 的长为( )A .201932⎛⎫ ⎪ ⎪⎝⎭B .202032⎛⎫⎪ ⎪⎝⎭C .202132⎛⎫⎪⎝⎭D .202232⎛⎫⎪⎝⎭二、填空题9.若()2320a b -++=,则a b +=______.10.在平面直角坐标系中,点A (2,1)关于x 轴对称的点的坐标是_____.11.如图,已知OB 、OC 为△ABC 的角平分线,DE ∥BC 交AB 、AC 于D 、E ,△ADE 的周长为12,BC 长为5,则△ABC 的周长__.12.如图,AD//BC ,24,:1:2C ADB BDC ∠=∠∠=,则DBC ∠=____度.13.将一张长方形纸条折成如图的形状,已知1110∠=︒,则2∠=___________°.14.请阅读下列材料,现在规定一种新的运算:a b ad bc c d=-,例如:()2324311114-=⨯--⨯=.按照这种计算的规定,当23682x x =-,x 的值为___.15.已知点A (0,0),|AB|=5,点B 和点A 在同一坐标轴上,那么点B 的坐标是________.16.如图,一只跳蚤在第一象限及x 轴、y 轴上跳动,第一秒它从原点跳动到点(0,1),第二秒它从点(0,1)跳到点(1,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],每秒跳动一个单位长度,那么43秒后跳蚤所在位置的坐标是________.三、解答题17.(1)计算:3317362271?48-++-- (2)比较325- 与-3的大小 18.求下列各式中的x : (1)x 2﹣12149=0. (2)(x ﹣1)3=64.19.如图,已知∠AED =∠C ,∠DEF =∠B ,试说明∠EFG +∠BDG =180∘,请完成下列填空:∵∠AED =∠C (_________) ∴ED ∥BC (_________) ∴∠DEF =∠EHC (___________) ∵∠DEF =∠B (已知) ∴_______(等量代换)∴BD ∥EH (同位角相等,两直线平行) ∴∠BDG =∠DFE (两直线平行,内错角相等) ∵_________________(邻补角的意义) ∴∠EFG +∠BDG =180∘(___________)20.在如图的方格中,每个小方格都是边长为1个单位长度的正方形,三角形ABC 的三个顶点都在格点(小方格的顶点)上,(1)请建立适当的平面直角坐标系,使点A ,C 的坐标分别为(﹣2,﹣1),(1,﹣1),并写出点B 的坐标;(2)在(1)的条件下,将三角形ABC 先向右平移4个单位长度,再向上平移2个单位长度后可得到三角形A 'B 'C ',请在图中画出平移后的三角形A 'B 'C ',并分别写出点A ',B ',C '的坐标.21.已知某正数的两个平方根分别是12a -和4,421a a b ++-的立方根是3,c 是13的整数部分.(1)求, , a b c 的值;(2)求2a b c ++的算术平方根.二十二、解答题22.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米,求正方形纸板的边长.二十三、解答题23.如图,//MN PQ ,直线AD 与MN 、PQ 分别交于点A 、D ,点B 在直线PQ 上,过点B 作BG AD ⊥,垂足为点G .(1)如图1,求证:90MAG PBG ∠+∠=︒;(2)若点C 在线段AD 上(不与A 、D 、G 重合),连接BC ,MAG ∠和PBC ∠的平分线交于点H 请在图2中补全图形,猜想并证明CBG ∠与AHB ∠的数量关系;24.已知:ABC 和同一平面内的点D .(1)如图1,点D 在BC 边上,过D 作//DE BA 交AC 于E ,//DF CA 交AB 于F .根据题意,在图1中补全图形,请写出EDF ∠与BAC ∠的数量关系,并说明理由;(2)如图2,点D 在BC 的延长线上,//DF CA ,EDF BAC ∠=∠.请判断DE 与BA 的位置关系,并说明理由.(3)如图3,点D 是ABC 外部的一个动点.过D 作//DE BA 交直线AC 于E ,//DF CA 交直线AB 于F ,直接写出EDF ∠与BAC ∠的数量关系,并在图3中补全图形.25.在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交BC 于点F .(1)如图①,当AE ⊥BC 时,写出图中所有与∠B 相等的角: ;所有与∠C 相等的角: .(2)若∠C -∠B =50°,∠BAD =x °(0<x ≤45) . ① 求∠B 的度数;②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,并求x 的值;若不存在,请说明理由.26.直线MN 与直线PQ 垂直相交于O ,点A 在射线OP 上运动,点B 在射线OM 上运动,A 、B 不与点O 重合,如图1,已知AC 、BC 分别是∠BAP 和∠ABM 角的平分线, (1)点A 、B 在运动的过程中,∠ACB 的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB 的大小.(2)如图2,将△ABC 沿直线AB 折叠,若点C 落在直线PQ 上,则∠ABO =________, 如图3,将△ABC 沿直线AB 折叠,若点C 落在直线MN 上,则∠ABO =________ (3)如图4,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ 的角平分线及其反向延长线交于E 、F ,则∠EAF = ;在△AEF 中,如果有一个角是另一个角的32倍,求∠ABO的度数.【参考答案】一、选择题1.C解析:C【分析】根据两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样的一对角叫做同位角进行分析即可.【详解】解:根据同位角的定义可知:图①②④中,∠1和∠2是同位角;图③中,∠1和∠2不是同位角;故选C.【点睛】本题主要考查同位角的定义,熟记同位角的定义是解决此题的关键.2.D【分析】根据平移变换、轴对称变换、旋转变换的特征进行判断,便可找到答案.【详解】解:A、是由基本图形旋转得到的,故不选.B、是轴对称图形,故不选.C、是由基本图形旋转得到的,故不选.解析:D【分析】根据平移变换、轴对称变换、旋转变换的特征进行判断,便可找到答案.【详解】解:A、是由基本图形旋转得到的,故不选.B、是轴对称图形,故不选.C、是由基本图形旋转得到的,故不选.D、是由基本图形平移得到的,故选此选项.综上,本题选择D.【点睛】本题考查的旋转、对称、平移的基本知识,解题关键是观察图形特征进行判断.3.B【分析】根据第三象限内点的横坐标是负数,纵坐标是负数确定出a、b的正负情况,再求出a+b,ab的正负情况,然后确定出点Q所在的象限,即可得解.【详解】解:∵点P(a,b)在第三象限,∴a<0,b<0,∴a+b<0,ab>0,∴点Q(a+b,ab)在第二象限.故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据内错角、对顶角、补角的定义一一判断即可.【详解】解:A、两个角的和等于平角时,这两个角互为补角,为真命题;B、两直线平行,内错角相等,故错误,为假命题;C、两条平行线被第三条直线所截,内错角相等,为真命题;D、对顶角相等,为真命题;故选:B.【点睛】本题考查命题与定理、内错角、对顶角、补角的定义等知识,解题的关键是熟练掌握基本概念,属于基础题.5.B【分析】由对顶角相等得∠DFE=55°,然后利用平行线的性质,得到∠BEF=125°,即可求出2∠的度数.【详解】解:由题意,根据对顶角相等,则155∠=∠=︒,DFEAB CD,∵//∴180DFE BEF ∠+∠=︒, ∴18055125BEF ∠=︒-︒=︒, ∵EG EF ⊥, ∴90FEG ∠=︒, ∴21259035∠=︒-︒=︒; 故选:B . 【点睛】本题考查了平行线的性质,对顶角相等,解题的关键是掌握平行线的性质,正确的求出125BEF ∠=︒.6.B 【分析】根据算术平方根与平方根、立方根的性质逐项判断即可得. 【详解】A 、9的平方根是3±,此项说法正确;B 、16的值是4,此项说法错误;C 、127的立方根是13,此项说法正确;D 、38-的值是2-,此项说法正确; 故选:B . 【点睛】本题考查了算术平方根与平方根、立方根的性质,熟练掌握算术平方根与平方根、立方根的性质是解题关键. 7.B 【分析】根据BC ∥EF ,∠E =45°可以得到∠EDC =∠E =45°,然后根据C =30°,∠C +∠MDC +∠DMC =180°,即可求解. 【详解】解:∵BC ∥EF ,∠E =45° ∴∠EDC =∠E =45°,∵∠C =30°,∠C +∠MDC +∠DMC =180°, ∴∠DMC =180°-∠C -∠MDC =105°, 故选B.【点睛】本题主要考查了三角形的内角和定理,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.8.B 【分析】由,可得,然后根据形的性质結合图形即可得到规律,然后按规律解答即可. 【详解】 解:由,可得∵点A0坐标为(2,0) ∴OA0=2, ∴ ∴ ∴∴A2020A2021= 故答案为:解析:B 【分析】由y x =,可得130AOA ︒∠=,然后根据形的性质結合图形即可得到规律12nnn n OA OA -==⎝⎭⎝⎭,然后按规律解答即可.【详解】解:由y =,可得130AOA ︒∠= ∵点A 0坐标为(2,0) ∴OA 0=2,∴1021324339,,28OA OA OA OA ========⋯∴12nnn n OA OA -==⎝⎭⎝⎭∴202020202OA =⨯⎝⎭∴A 2020A 2021=20202020122⨯⨯=⎝⎭⎝⎭故答案为:B 【点睛】本题考查了规律型中点的坐标以及含30°角的直角三角形,利用“在直角三角形中,30°角所对的直角边等于斜边的一半”,结合图形找出变化规律是解题的关键.二、填空题9.1【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,a-3=0,b+2=0,解得a=3,b= -2,所以3+(-2)=1.故答案为1.解析:1【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,a-3=0,b+2=0,解得a=3,b= -2,+=3+(-2)=1.所以a b故答案为1.【点睛】本题考查平方数非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.10.(2,﹣1)【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x轴的对称点,横坐标不变,纵坐标解析:(2,﹣1)【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x轴的对称点,横坐标不变,纵坐标变成相反数.【详解】解:点(2,1)关于x轴对称的点的坐标是(2,﹣1),故答案为(2,﹣1).【点睛】熟练掌握关于坐标轴对称的点的坐标特点是本题的解题关键. 关于x轴的对称点,横坐标不变,纵坐标变成相反数.关于y轴的对称点,纵坐标不变,横坐标变成相反数.11.17【详解】∵0B 、OC 为△ABC 的角平分线,∴∠ABO=∠OBC ,∠ACO=∠BCO ,∵DE ∥BC ,∴∠DOB=∠OBC ,∠EOC=∠OCB ,∴∠ABO=∠DOB ,∠ACO=∠EOC ,解析:17【详解】∵0B 、OC 为△ABC 的角平分线,∴∠ABO=∠OBC ,∠ACO=∠BCO ,∵DE ∥BC ,∴∠DOB=∠OBC ,∠EOC=∠OCB ,∴∠ABO=∠DOB ,∠ACO=∠EOC ,∴BD=OD ,EC=OE ,∴DE=OD+OE=BD+EC ;∵△ADE 的周长为12,∴AD+DE+AE=AD+OD+OE+AE=AD+BD+CE+AE=AB+AC=12,∵BC=7,∴△ABC 的周长为:AB+AC+BC=12+5=17.故答案为17.12.52【分析】根据AD//BC ,可知,根据三角形内角和定理以及求得,结合题意,即可求得.【详解】,,,,,.故答案为:52.【点睛】本题考查了平行线的性质,三角形内角和定理,解析:52【分析】根据AD//BC ,可知ADB DBC ∠=∠,根据三角形内角和定理以及24,C ∠=求得CBD BDC ∠+∠,结合题意:1:2ADB BDC ∠∠=,即可求得DBC ∠.【详解】//AD BC ,∴ADB DBC ∠=∠,:1:2ADB BDC ∠∠=,:1:2DBC BDC ∴∠∠=,24,C ∠=180********CBD BDC C ∴∠+∠=︒-∠=︒-︒=︒, 1()523DBC CBD BDC ∴∠=∠+∠=︒. 故答案为:52.【点睛】本题考查了平行线的性质,三角形内角和定理,角度的计算,掌握以上知识是解题的关键.13.55【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵ABCD ,∴∠1=∠BAD =110°,由折叠可得,∠2=∠BAD =×110°=55°,故答案为:解析:55【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵AB //CD ,∴∠1=∠BAD =110°,由折叠可得,∠2=12∠BAD =12×110°=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.14.【分析】根据题中的新定义化简所求式子,计算即可求出的值.【详解】解:根据题中的新定义得:,移项合并得:,解得:,故答案是:.【点睛】此题考查了解一元一次方程,解题的关键是掌握其步骤解析:2-【分析】根据题中的新定义化简所求式子,计算即可求出x的值.【详解】解:根据题中的新定义得:21636--=,x x移项合并得:1836-=,xx=-,解得:2故答案是:2-.【点睛】此题考查了解一元一次方程,解题的关键是掌握其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.15.(5,0)或(﹣5,0)或(0,5)或(0,﹣5)【分析】根据点A(0,0)及点B和点A在同一坐标轴上可知点B在x轴上或在y轴上,再根据坐标轴上到一点距离相等的点有两个,可得答案.【详解】解解析:(5,0)或(﹣5,0)或(0,5)或(0,﹣5)【分析】根据点A(0,0)及点B和点A在同一坐标轴上可知点B在x轴上或在y轴上,再根据坐标轴上到一点距离相等的点有两个,可得答案.【详解】解:∵点A(0,0),点B和点A在同一坐标轴上,∴点B在x轴上或在y轴上,∵|AB|=5,∴当点B在x轴上时,点B的坐标为(5,0)或(﹣5,0),当点B在y轴上时,点B的坐标为(0,5)或(0,﹣5);故答案为:(5,0)或(﹣5,0)或(0,5)或(0,﹣5).【点睛】本题考查了点的坐标,解决本题的关键是要注意坐标轴上到一点距离相等的点有两个,以防遗漏.16.(5,6)【分析】根据题意判断出跳蚤跳到(n,n)位置用时n(n+1)秒,然后根据43秒时n 是偶数,即可判断出所在位置的坐标.【详解】解:跳蚤跳到(1,1)位置用时1×2=2秒,下一步向下跳解析:(5,6)【分析】根据题意判断出跳蚤跳到(n,n)位置用时n(n+1)秒,然后根据43秒时n是偶数,即可判断出所在位置的坐标.【详解】解:跳蚤跳到(1,1)位置用时1×2=2秒,下一步向下跳动;跳到(2,2)位置用时2×3=6秒,下一步向左跳动;跳到(3,3)位置用时3×4=12秒,下一步向下跳动;跳到(4,4)位置用时4×5=20秒,下一步向左跳动;…由以上规律可知,跳蚤跳到(n,n)位置用时n(n+1)秒,当n为奇数时,下一步向下跳动;当n为偶数时,下一步向左跳动;∴第6×7=42秒时跳蚤位于(6,6)位置,下一步向左跳动,则第43秒时,跳蚤需从(6,6)向左跳动1个单位到(5,6),故答案为:(5,6).【点睛】此题考查了点的坐标问题,解题的关键是读懂题意,能够正确确定点运动的规律,从而可以得到到达每个点所用的时间.三、解答题17.(1)-1;(2)【分析】(1)根据算数平方根,立方根化简,然后根据实数的运算法则计算即可;(2)求出-3= ,即可得出结果.【详解】解:(1)原式===-1;(2)∵∴即解析:(1)-1;(23-【分析】(1)根据算数平方根,立方根化简,然后根据实数的运算法则计算即可;(2)求出,即可得出结果.【详解】解:(1)原式==31 63()22 -++--=-1;(2)∵3(3)27-=-2527->-∴3-.故答案为(1)-1;(23>-.【点睛】本题考查实数的运算及实数的大小比较,熟练掌握平方根和立方根的性质是解题的关键.18.(1);(2)【分析】(1)用求平方根的方法解方程即可得到答案;(2)用求立方根的方法解方程即可得到答案.【详解】解:(1)∵,∴,∴;(2)∵,∴,∴.【点睛】本题主要考查解析:(1)117x=±;(2)5x=【分析】(1)用求平方根的方法解方程即可得到答案;(2)用求立方根的方法解方程即可得到答案.【详解】解:(1)∵21210 49x-=,∴212149x=,∴117x=±;(2)∵()3164x-=,∴14x-=,∴5x=.【点睛】本题主要考查了平方根和立方根,解题的关键在于能够熟练掌握平方根和立方根的求解方法.19.已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC=∠B;∠DFE+∠EFG =180∘;等量代换【分析】根据同位角相等,两直线平行推出ED∥BC,通过两直线平行,内错角相等推出∠解析:已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC =∠B;∠DFE+∠EFG =180∘;等量代换【分析】根据同位角相等,两直线平行推出ED∥BC,通过两直线平行,内错角相等推出∠DEF=∠EHC,再运用等量代换得到∠EHC =∠B,最后推出BD∥EH,∠BDG=∠DFE,再利用邻补角的意义推出结论,据此回答问题.【详解】解:∵∠AED=∠C (已知)∴ED∥BC(同位角相等,两直线平行)∴∠DEF=∠EHC (两直线平行,内错角相等)∵∠DEF=∠B(已知)∴∠EHC =∠B (等量代换)∴BD∥EH(同位角相等,两直线平行)∴∠BDG=∠DFE(两直线平行,内错角相等)∵∠DFE+∠EFG =180∘(邻补角的意义)∴∠EFG+∠BDG=180∘(等量代换).【点睛】本题主要考查平行线的判定和性质,属于综合题,难度一般,熟练掌握平行线的判定和性质是解题关键.20.(1)坐标系见解析,B (0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1)【分析】(1)根据A ,C 两点的坐标确定平面直角坐标系即可,根据点B 的位置写出点B 的坐标即可.(解析:(1)坐标系见解析,B (0,1);(2)画图见解析,A ′(2,1),B ′(4,3),C ′(5,1)【分析】(1)根据A ,C 两点的坐标确定平面直角坐标系即可,根据点B 的位置写出点B 的坐标即可.(2)分别作出A ′,B ′,C ′即可解决问题.【详解】解:(1)平面直角坐标系如图所示:B (0,1).(2)△A ′B ′C ′如图所示.A ′(2,1),B ′(4,3),C ′(5,1).【点睛】本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(1),,c=4;(2)4【分析】(1)由题意可得出,得出a 的值,代入中得出b 的值,再根据即可得出c 的值;(2)代入a 、b 、c 的值求出代数式的值,再求算术平方根即可.【详解】解:(1)∵某解析:(1)5a =,4b =,c=4;(2)4【分析】(1)由题意可得出(12)(4)0a a -++=,得出a 的值,代入3421327a b +-==中得出b 的值,再根据34<即可得出c 的值;(2)代入a 、b 、c 的值求出代数式的值,再求算术平方根即可.【详解】解:(1)∵某正数的两个平方根分别是12a -和4a∴(12)(4)0a a -++=∴5a =又∵421a b +-的立方根是3∴3421327a b +-==∴4b =又∵34<,c∴3c =(2)2524316a b c ++=+⨯+=故2a b c ++的算术平方根是4.【点睛】本题考查的知识点是平方根、算术平方根、立方根、估算无理数的大小,属于基础题目,解此题的难点在于c 值的确定,学会用“逼近法”求无理数的整数部分是解此题的关键. 二十二、解答题22.正方形纸板的边长是18厘米【分析】根据正方形的面积公式进行解答.【详解】解:设小长方形的宽为x 厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得:,∴,取正值,可得,解析:正方形纸板的边长是18厘米【分析】根据正方形的面积公式进行解答.【详解】解:设小长方形的宽为x 厘米,则小长方形的长为2x 厘米,即得正方形纸板的边长是2x 厘米,根据题意得:2162x x ⋅=,∴281x =,取正值9x =,可得218x =,∴答:正方形纸板的边长是18厘米.【点评】本题考查了算术平方根的实际应用,解题的关键是熟悉正方形的面积公式.二十三、解答题23.(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,.【分析】(1)过点作,根据平行线的性质即可求解;(2)分两种情况:当点在上,当点在上,再过点作即可求解.【详解】(1)证明:解析:(1)证明见解析;(2)补图见解析;当点C 在AG 上时,290AHB CBG ∠-∠=︒;当点C 在DG 上时,290AHB CBG ∠+∠=︒.【分析】(1)过点G 作//GE MN ,根据平行线的性质即可求解;(2)分两种情况:当点C 在AG 上,当点C 在DG 上,再过点H 作//HF MN 即可求解.【详解】(1)证明:如图,过点G 作//GE MN ,∴MAG AGE ∠=∠,∵//MN PQ ,∴//GE PQ .∴PBG BGE ∠=∠.∵BG AD ⊥,∴90AGB ∠=︒,∴90MAG PBG AGE BGE AGB ∠+∠=∠+∠=∠=︒.(2)补全图形如图2、图3,猜想:290AHB CBG ∠-∠=︒或290AHB CBG ∠+∠=︒.证明:过点H 作//HF MN .∴1AHF ∠=∠.∵//MN PQ ,∴//HF PQ∴2BHF ∠=∠,∴12AHB AHF BHF ∠=∠+∠=∠+∠.∵AH 平分MAG ∠,∴21MAG ∠=∠.如图3,当点C 在AG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠+∠=∠,∵//MN PQ ,∴MAG GDB ∠=∠,2212290AHB MAG PBG CBGGDB PBG CBG CBG∴∠=∠+∠=∠+∠+∠=∠+∠+∠=︒+∠即290AHB CBG ∠-∠=︒.如图2,当点C 在DG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠-∠=∠.∴2212290AHB MAG PBG CBG CBG ∠=∠+∠=∠+∠-∠=︒-∠.即290AHB CBG ∠+∠=︒.【点睛】本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系.24.(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或.【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得;(2)如图(见解析),先根据平行线的性质可解析:(1)图见解析,EDF BAC ∠=∠,理由见解析;(2)//DE BA ,理由见解析;(3)图见解析,EDF BAC ∠=∠或180EDF BAC ∠+∠=︒.【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,EDF BFD B B D AC F ∠=∠∠∠=,由此即可得;(2)如图(见解析),先根据平行线的性质可得BAC BOD ∠=∠,再根据等量代换可得EDF BOD ∠=∠,然后根据平行线的判定即可得;(3)先根据点D 的位置画出如图(见解析)的两种情况,再分别利用平行线的性质、对顶角相等即可得.【详解】(1)由题意,补全图形如下:EDF BAC∠=∠,理由如下:DE BA,//∴∠=∠,EDF BFDDF CA,//∴∠=∠,BABFD C∴∠=∠;EDF BACDE BA,理由如下:(2)//如图,延长BA交DF于点O,DF CA,//∴∠=∠,BAC BOD∠=∠,EDF BAC∴∠=∠,EDF BOD//∴;DE BA(3)由题意,有以下两种情况:∠=∠,理由如下:①如图3-1,EDF BAC//DE BA,E EAF∴∠+∠=︒,180DF CA,//E EDF∴∠+∠=︒,180∴∠=∠,EAF EDF由对顶角相等得:BAC EAF∠=∠,∴∠=∠;EDF BAC②如图3-2,180EDF BAC ∠+∠=︒,理由如下://DE BA ,180EDF F ∴∠+∠=︒,//DF CA ,BAC F ∴∠=∠,180EDF BAC ∴∠+∠=︒.【点睛】本题考查了平行线的判定与性质等知识点,较难的是题(3),正确分两种情况讨论是解题关键.25.(1)∠E 、∠CAF ;∠CDE 、∠BAF ; (2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B 相等的角;由等角代换即可得与∠C 相等的角;(2)①由三角形内角和定理可得,解析:(1)∠E 、∠CAF ;∠CDE 、∠BAF ; (2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B 相等的角;由等角代换即可得与∠C 相等的角;(2)①由三角形内角和定理可得90B C ∠+∠=︒,再由50C B ∠∠︒-=根据角的和差计算即可得∠C 的度数,进而得∠B 的度数.②根据翻折的性质和三角形外角及三角形内角和定理,用含x 的代数式表示出∠FDE 、∠DFE 的度数,分三种情况讨论求出符合题意的x 值即可.【详解】(1)由翻折的性质可得:∠E =∠B ,∵∠BAC =90°,AE ⊥BC ,∴∠DFE =90°,∴180°-∠BAC =180°-∠DFE =90°,即:∠B +∠C =∠E +∠FDE =90°,∴∠C =∠FDE ,∴AC ∥DE ,∴∠CAF =∠E ,∴∠CAF =∠E =∠B故与∠B 相等的角有∠CAF 和∠E ;∵∠BAC =90°,AE ⊥BC ,∴∠BAF +∠CAF =90°, ∠CFA =180°-(∠CAF +∠C )=90°∴∠BAF +∠CAF =∠CAF +∠C =90°∴∠BAF =∠C又AC ∥DE ,∴∠C =∠CDE ,∴故与∠C 相等的角有∠CDE 、∠BAF ;(2)①∵90BAC ∠=︒∴90B C ∠+∠=︒又∵50C B ∠∠︒-=,∴∠C =70°,∠B =20°;②∵∠BAD =x °, ∠B =20°则160ADB x ∠︒︒=-,20ADF x ∠︒︒=+,由翻折可知:∵160ADE ADB x ∠∠︒︒==-, 20E B ∠∠︒==,∴1402FDE x ∠︒︒=-, 202DFE x ∠︒︒=+,当∠FDE =∠DFE 时,1402202x x ︒︒︒︒-=+, 解得:30x ︒︒=;当∠FDE =∠E 时,140220x ︒︒︒-=,解得:60x ︒︒=(因为0<x ≤45,故舍去);当∠DFE =∠E 时,20220x ︒︒︒+=,解得:0x ︒=(因为0<x ≤45,故舍去);综上所述,存在这样的x 的值,使得△DEF 中有两个角相等.且30x =.【点睛】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.26.(1)∠AEB 的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN 与直线PQ 垂直相交于O ,得到∠AOB =90°,根据三角形的外角的性质得到∠解析:(1)∠AEB 的大小不会发生变化,∠ACB =45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN 与直线PQ 垂直相交于O ,得到∠AOB =90°,根据三角形的外角的性质得到∠PAB +∠ABM =270°,根据角平分线的定义得到∠BAC =12∠PAB ,∠ABC =12∠ABM ,于是得到结论;(2)由于将△ABC沿直线AB折叠,若点C落在直线PQ上,得到∠CAB=∠BAQ,由角平分线的定义得到∠PAC=∠CAB,即可得到结论;根据将△ABC沿直线AB折叠,若点C落在直线MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到结论;(3)由∠BAO与∠BOQ的角平分线相交于E可得出∠E与∠ABO的关系,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的32倍分情况进行分类讨论即可.【详解】解:(1)∠ACB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠ABM=270°,∵AC、BC分别是∠BAP和∠ABM角的平分线,∴∠BAC=12∠PAB,∠ABC=12∠ABM,∴∠BAC+∠ABC=12(∠PAB+∠ABM)=135°,∴∠ACB=45°;(2)∵将△ABC沿直线AB折叠,若点C落在直线PQ上,∴∠CAB=∠BAQ,∵AC平分∠PAB,∴∠PAC=∠CAB,∴∠PAC=∠CAB=∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∵将△ABC沿直线AB折叠,若点C落在直线MN上,∴∠ABC=∠ABN,∵BC平分∠ABM,∴∠ABC=∠MBC,∴∠MBC=∠ABC=∠ABN,∴∠ABO=60°,故答案为:30°,60°;(3)∵AE、AF分别是∠BAO与∠GAO的平分线,∴∠EAO=12∠BAO,∠FAO=12∠GAO,∴∠E=∠EOQ﹣∠EAO=12(∠BOQ﹣∠BAO)=12∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=∠EAO+∠FAO=12(∠BAO+∠GAO)=90°.在△AEF中,∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO= 12∠BAO,∠EOQ=12∠BOQ,∴∠E=∠EOQ-∠EAO=12(∠BOQ-∠BAO)=12∠ABO,∵有一个角是另一个角的32倍,故有:①∠EAF=32∠F,∠E=30°,∠ABO=60°;②∠F=32∠E,∠E=36°,∠ABO=72°;③∠EAF=32∠E,∠E=60°,∠ABO=120°(舍去);④∠E=32∠F,∠E=54°,∠ABO=108°(舍去);∴∠ABO为60°或72°.【点睛】本题主要考查的是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.另外需要分类讨论的时候一定要注意分类讨论的思想.。
成都七中嘉祥外国语学校人教版七年级数学下册期末压轴难题试卷及答案
成都七中嘉祥外国语学校人教版七年级数学下册期末压轴难题试卷及答案 一、选择题1.如图所示,下列说法正确的是( )A .1∠和2∠是内错角B .1∠和2∠是同旁内角C .1∠和5∠是同位角D .1∠和4∠是内错角 2.下列现象中是平移的是( ) A .翻开书中的每一页纸张 B .飞碟的快速转动 C .将一张纸沿它的中线折叠 D .电梯的上下移动 3.已知点P 的坐标为P (3,﹣5),则点P 在第( )象限. A .一B .二C .三D .四4.下列命题中假命题有( )①两条直线被第三条直线所截,同位角相等②如果两条直线都与第三条直线平行,那么这两条直线也互相平行 ③点到直线的垂线段叫做点到直线的距离 ④过一点有且只有一条直线与已知直线平行⑤若两条直线都与第三条直线垂直,则这两条直线互相平行. A .5个B .4个C .3个D .2个5.如图,直线12//l l ,23216∠+∠=°,则1∠的度数为( )A .216︒B .36︒C .44︒D .18︒6.下列说法正确的是( )A .a 2的正平方根是aB .819=±C .﹣1的n 次方根是1D .321a --一定是负数7.如图,将直尺与含45°角的三角尺叠放在一起,其两边与直尺相交,若∠1=25°,则∠2的度数为( )A .120°B .135°C .150°D .160°8.如图,()11,0A ,()21,1A ,()31,1A -,()41,1A --,()52,1A -…按此规律,点2022A 的坐标为( )A .()505,505B .()506,505-C .()506,506D .()506,506-二、填空题9.若23(2)m n =0,则n m =________ .10.在平面直角坐标系中,点A (2,1)关于x 轴对称的点的坐标是_____.11.如图,在△ABC 中,∠ABC ,∠ACB 的角平分线相交于O 点. 如果∠A=α,那么∠BOC 的度数为____________.12.如图,将三角板与两边平行的直尺(//EF HG )贴在一起,使三角板的直角顶点C (90ACB ∠︒=)在直尺的一边上,若255∠︒=,则1∠的度数等于________.13.如图,将长方形ABCD 沿DE 折叠,使点C 落在边AB 上的点F 处,若44EFB ∠=︒,则EDC ∠=___º.14.大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分,于是可以用21-表示2的小数部分.若25x y +=+,其中x 是整数,且01y <<,写出x ﹣y 的相反数_____.15.点P (2a ,2﹣3a )是第二象限内的一个点,且点P 到两坐标轴的距离之和为12,则点P 的坐标是__.16.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断移动,每移动一个单位,得到点1(0,1)A ,()21,1A ,()31,0A ,()42,0A ,…,那么点2021A 的坐标为__________.三、解答题17.计算: (1) 22331(84)6(3)27---÷+- (2)253(52)5---+ 18.求下列各式中的x 值:(1)16(x +1)2=25; (2)8(1﹣x )3=12519.如图,已知EF ∥AD ,1 2.∠=∠试说明180.DGA BAC ∠+∠=︒请将下面的说明过程填写完整.解:EF ∥AD ,(已知)2∴∠=______.(______). 又12∠=∠,(已知)13∴∠=∠,(______).AB ∴∥______,(______) 180.(DGA BAC ∴∠+∠=︒______)20.如图,()3,2A -,()1,2B --,()1,1C -.将 ABC 向右平移 3 个单位长度,然后再向上平移 1 个单位长度,可以得到 111A B C .(1)画出平移后的 111A B C ,111A B C 的顶点 1A 的坐标为 ;顶点 1C 的坐标为 . (2)求 111A B C 的面积.(3)已知点 P 在 x 轴上,以 1A ,1C ,P 为顶点的三角形面积为 32,则 P 点的坐标为 .21.数学活动课上,张老师说:22”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用)21表示它的小数部分”张老师说:“晶晶同学的说法21,将这个数减去其整数部分,差就是小数部分,”请你解答:已知83x y +=+,其中x 是一个整数,且01y <<,请你求出20193(3)x y +的值.二十二、解答题22.张华想用一块面积为400cm 2的正方形纸片,沿着边的方向剪出一块面积为300cm 2的长方形纸片,使它的长宽之比为3:2.他不知能否裁得出来,正在发愁.李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗?二十三、解答题23.已知:如图(1)直线AB 、CD 被直线MN 所截,∠1=∠2.(1)求证:AB //CD ;(2)如图(2),点E 在AB ,CD 之间的直线MN 上,P 、Q 分别在直线AB 、CD 上,连接PE 、EQ ,PF 平分∠BPE ,QF 平分∠EQD ,则∠PEQ 和∠PFQ 之间有什么数量关系,请直接写出你的结论;(3)如图(3),在(2)的条件下,过P 点作PH //EQ 交CD 于点H ,连接PQ ,若PQ 平分∠EPH ,∠QPF :∠EQF =1:5,求∠PHQ 的度数. 24.问题情境(1)如图1,已知//AB CD ,125PBA ︒∠=,155PCD ︒∠=,求BPC ∠的度数.佩佩同学的思路:过点P 作PG//AB ,进而//PG CD ,由平行线的性质来求BPC ∠,求得BPC ∠=________. 问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,90ACB ︒∠=,//DF CG ,AB 与FD 相交于点E ,有一动点P 在边BC 上运动,连接PE ,PA ,记PED α∠=∠,PAC β∠=∠.①如图2,当点P 在C ,D 两点之间运动时,请直接写出AOE ∠与α∠,β∠之间的数量关系;②如图3,当点P 在B ,D 两点之间运动时,APE ∠与α∠,β∠之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P 在C ,D 两点之间运动时,若PED ∠,PAC ∠的角平分线EN ,AN 相交于点N ,请直接写出ANE ∠与α∠,β∠之间的数量关系.25.如图①,AD 平分BAC ∠,AE ⊥BC ,∠B=450,∠C=730. (1) 求DAE ∠的度数;(2) 如图②,若把“AE ⊥BC ”变成“点F 在DA 的延长线上,FE BC ⊥”,其它条件不变,求DFE ∠ 的度数;(3) 如图③,若把“AE ⊥BC ”变成“AE 平分BEC ∠”,其它条件不变,DAE ∠的大小是否变化,并请说明理由.26.已知,//AB CD ,点E 为射线FG 上一点.(1)如图1,写出EAF ∠、AED ∠、EDG ∠之间的数量关系并证明; (2)如图2,当点E 在FG 延长线上时,求证:EAF AED EDG ∠=∠+∠;(3)如图3,AI 平分BAE ∠,DI 交AI 于点I ,交AE 于点K ,且EDI ∠:2:1CDI ∠=,20AED ∠=︒,30I ∠=︒,求EKD ∠的度数.【参考答案】一、选择题 1.B 解析:B 【分析】利用“三线八角”的定义分别判断后即可确定正确的选项. 【详解】解:A 、∠1和∠2是同旁内角,故错误; B 、∠1和∠2是同旁内角,正确; C 、∠1和∠5不是同位角,故错误; D 、∠1和∠4不是同旁内角,故错误, 故选:B . 【点睛】本题考查了同位角、内错角及同旁内角的定义,解题的关键是了解三类角的定义,难度不大.2.D 【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A:翻开书中的每一页纸张,这是翻折现象;B:飞碟的快速转动,这是旋转现解析:D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A:翻开书中的每一页纸张,这是翻折现象;B:飞碟的快速转动,这是旋转现象;C:将一张纸沿它的中线折叠,这是轴对称现象;D:电梯的上下移动这是平移现象.故选:D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.3.D【分析】直接利用第四象限内的点横坐标大于0,纵坐标小于0解答即可.【详解】解:∵点P的坐标为P(3,﹣5),∴点P在第四象限.故选D.【点睛】本题主要考查了点的坐标,各象限坐标特点如下:第一象限(+,+),第二象限(-,+)第三象限(-,-)第一象限(+,-).4.B【分析】根据平行线的性质和判定,点到直线距离定义一一判断即可.【详解】解:①两条直线被第三条直线所截,同位角相等,错误,缺少平行的条件;②如果两条直线都与第三条直线平行,那么这两条直线也互相平行,正确;③点到直线的垂线段叫做点到直线的距离,错误,应该是垂线段的长度;④过一点有且只有一条直线与已知直线平行,错误,应该是过直线外一点;⑤若两条直线都与第三条直线垂直,则这两条直线互相平行,错误,条件是同一平面内.故选B.【点睛】本题主要考查命题与定理,解决本题的关键是要熟练掌握平行线的性质和判定,点到直线距离定义.5.B 【分析】记∠1顶点为A ,∠2顶点为B ,∠3顶点为C ,过点B 作BD ∥l 1,由平行线的性质可得∠3+∠DBC =180°,∠ABD +(180°-∠1)=180°,由此得到∠3+∠2+(180°-∠1)=360°,再结合已知条件即可求出结果. 【详解】如图,过点B 作BD ∥l 1,∵12//l l , ∴BD ∥l 1∥l 2,∴∠3+∠DBC =180°,∠ABD +(180°-∠1)=180°,∴∠3+∠DBC +∠ABD +(180°-∠1)=360°,即∠3+∠2+(180°-∠1)=360°, 又∵∠2+∠3=216°, ∴216°+(180°-∠1)=360°, ∴∠1=36°. 故选:B . 【点睛】本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线性质是解题的关键. 6.D 【分析】根据平方根、算术平方根、立方根的定义判断A 、B 、D ,根据乘方运算法则判断C 即可. 【详解】A :a 2的平方根是a ±,当0a ≥时,a 2的正平方根是a ,错误;B 819,错误;C :当n 是偶数时,()1=1n- ;当n 时奇数时,()1=-1n-,错误; D :∵210a --< ,∴321a --【点睛】本题考查平方根、算术平方根、立方根的定义以及乘方运算,掌握相关的定义与运算法则是解题关键. 7.D 【分析】如图,利用三角形的外角的性质求出∠3,再利用平行线的性质可得结论. 【详解】 解:如图,∵∠4=45°,∠1=25°,∠4=∠1+∠3, ∴∠3=45°-25°=20°, ∵a ∥b , ∴∠2+∠3=180°, ∴∠2=180°-20°=160°, 故选:D . 【点睛】本题考查三角形外角的性质,平行线的性质等知识,解题的关键是学会添加常用辅助线,利用平行线的性质解决问题.8.C 【分析】经观察分析所有点,除A1外,其它所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点A2022在第一象限;第一象解析:C 【分析】经观察分析所有点,除A 1外,其它所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点A 2022在第一象限;第一象限的点A 2(1,1),A 6(2,2),A 10(3,3)…观察易得到点的坐标=24n +. 【详解】 解:由题可知第一象限的点:A 2,A 6,A 10…角标除以4余数为2; 第二象限的点:A 3,A 7,A 11…角标除以4余数为3; 第三象限的点:A 4,A 8,A 12…角标除以4余数为0; 第四象限的点:A 5,A 9,A 13…角标除以4余数为1; 由上规律可知:2022÷4=505…2 ∴点A 2022在第一象限.观察图形,可知:点A 2的坐标为(1,1),点A 6的坐标为(2,2),点A 10的坐标为(3,3),…,∴第一象限点的横纵坐标数字隐含规律:点的坐标=24n +(n 为角标) ∴点A 4n-2的坐标为(24n +,24n +)(n 为正整数), ∴点A 2022的坐标为(506,506).故选C . 【点睛】本题考查了点的坐标正方形为单位格点变化规律,反应出点的坐标变化从特殊到一般再到特殊规律计算方法,同时也体现出第一象限点的横纵坐标数字隐含规律:点的坐标=24n +(n 为角标)求解.二、填空题 9.9 【解析】试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n -2=0,解得:m=-3,n=2,则==9. 考点:非负数的性质.解析:9 【解析】试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n -2=0,解得:m=-3,n=2,则n m =2(3)-=9. 考点:非负数的性质.10.(2,﹣1) 【分析】平面直角坐标系中任意一点P (x ,y ),关于x 轴的对称点的坐标是(x ,﹣y ),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x 轴的对称点,横坐标不变,纵坐标解析:(2,﹣1) 【分析】平面直角坐标系中任意一点P (x ,y ),关于x 轴的对称点的坐标是(x ,﹣y ),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x 轴的对称点,横坐标不变,纵坐标变成相反数. 【详解】解:点(2,1)关于x 轴对称的点的坐标是(2,﹣1), 故答案为(2,﹣1). 【点睛】熟练掌握关于坐标轴对称的点的坐标特点是本题的解题关键. 关于x 轴的对称点,横坐标不变,纵坐标变成相反数.关于y 轴的对称点,纵坐标不变,横坐标变成相反数.11.90°+ 【解析】∵∠ABC 、∠ACB 的角平分线相交于点O , ∴∠OBC=∠ABC ,∠OCB=∠ACB ,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°-∠A)=90°-∠A ,解析:90°+12α【解析】∵∠ABC 、∠ACB 的角平分线相交于点O , ∴∠OBC=12∠ABC ,∠OCB=12∠ACB ,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°-∠A)=90°-12∠A ,∵在△OBC 中,∠BOC=180°-∠OBC-∠OCB , ∴∠BOC=180°-(90°-12∠A )=90°+12∠A=90°+12α.12.35 【分析】根据平行线的性质和直角三角形两锐角互余即可求得 【详解】故答案为:35°. 【点睛】本题考查了平行线的性质和直角三角形两锐角互余,熟练以上知识是解题的关键.解析:35 【分析】根据平行线的性质和直角三角形两锐角互余即可求得 【详解】//EF HG ,255∠︒=255FCD ∴∠=∠=︒ 190FCD ACB ∠+∠=∠=︒ 1905535∴∠=︒-︒=︒故答案为:35°. 【点睛】本题考查了平行线的性质和直角三角形两锐角互余,熟练以上知识是解题的关键.13.23 【分析】根据∠EFB 求出∠BEF ,根据翻折的性质,可得到∠DEC=∠DEF ,从而求出∠DEC 的度数,即可得到∠EDC . 【详解】解:∵△DFE 是由△DCE 折叠得到的,∴∠DEC=∠FED解析:23【分析】根据∠EFB求出∠BEF,根据翻折的性质,可得到∠DEC=∠DEF,从而求出∠DEC的度数,即可得到∠ED C.【详解】解:∵△DFE是由△DCE折叠得到的,∴∠DEC=∠FED,又∵∠EFB=44°,∠B=90°,∴∠BEF=46°,∴∠DEC=1(180°-46°)=67°,2∴∠EDC=90°-∠DEC=23°,故答案为:23.【点睛】本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键.14.【分析】根据题意得方法,估算的大小,求出的值,进而求出x﹣y的值,再通过相反数的定义,即可得到答案.【详解】解:∵∴的整数部分是2由题意可得的整数部分即,则小数部分则∴x﹣y的相反6【分析】2的值,进而求出x﹣y的值,再通过相反数的定义,即可得到答案.【详解】解:∵∴2x=,由题意可得2的整数部分即4则小数部分2y=则42)6-=-=x y∴x﹣y66. 【点睛】本题主要考查二次根式的估算,解题的关键是估算无理数的小数部分和整数部分.15.(-4,8) 【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a ,即可得解. 【详解】解:∵点P (2a ,2-3a )是第二象限内的一个点,且P 到两坐标轴的距离之和为12, ∴-2a解析:(-4,8) 【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a ,即可得解. 【详解】解:∵点P (2a ,2-3a )是第二象限内的一个点,且P 到两坐标轴的距离之和为12, ∴-2a+2-3a=12, 解得a=-2, ∴2a=-4,2-3a=8, ∴点P 的坐标为(-4,8). 故答案为:(-4,8). 【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16.【分析】由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An 的一般规律,从而可求得结果. 【详解】 ∵,,,∴根据点的平移规律,可分别得:,,,,,,,,…,,, 解析:()1010,1【分析】由题意可知,每隔四次移动重复一次,继续得出A 5,A 6,A 7,A 8,…,归纳出点A n 的一般规律,从而可求得结果. 【详解】∵1(0,1)A ,()21,1A ,()31,0A ,()42,0A∴根据点的平移规律,可分别得:()52,1A ,()63,1A ,()73,0A ,()84,0A ,()94,1A ,()105,1A ,()115,0A ,()126,0A ,…,()4322,1n A n --,()4221,1n A n --,()4121,0n A n --,()42,0n A n∵2021=505×4+1∴2021A 的横坐标为2×505=1010,纵坐标为1 即2021(1010,1)A 故答案为:()1010,1 【点睛】本题考查了平面直角坐标系中点的坐标的规律问题,点平移的坐标特征,体现了由特殊到一般的数学思想,关键是由前面若干点的的坐标寻找出规律.三、解答题 17.(1) 3;(2) 2 【解析】 【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果. 【详解】 解:(1解析:【解析】 【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果. 【详解】解:(1)原式=13--(2-4)÷6+3=13-+13 +3 =3;(2)原式= .故答案为:(1)3;(2). 【点睛】本题考查实数的运算,熟练掌握运算法则是解题的关键.18.(1)或;(2)【分析】(1)根据平方根,即可解答; (2)根据立方根,即可解答. 【详解】解:(1)等式两边都除以16,得. 等式两边开平方,得. 所以,得. 所以,解析:(1)14x =或94x =-;(2)3.2x =-【分析】(1)根据平方根,即可解答; (2)根据立方根,即可解答. 【详解】解:(1)等式两边都除以16,得()225116x +=. 等式两边开平方,得514x +=±.所以,得5511-44x x +=+=或.所以,19-44x =或(2)等式两边都除以8,得()31251-8x =. 等式两边开立方,得51-2x =. 所以,3.2x =-【点睛】本题考查平方根、立方根,解题关键是熟记平方根、立方根. .19.;两直线平行,同位角相等 ;等量代换;;内错角相等,两直线平行;两直线平行,同旁内角互补 【分析】根据平行线的判定和性质解答即可. 【详解】解:EF ∥AD ,(已知) (两直线平行,同位角相等)解析:3∠ ;两直线平行,同位角相等 ;等量代换;DG ;内错角相等,两直线平行;两直线平行,同旁内角互补 【分析】根据平行线的判定和性质解答即可. 【详解】解:EF ∥AD ,(已知)23∴∠=∠(两直线平行,同位角相等)又12∠=∠,(已知)13∠∠∴=,(等量代换)AB DG ∴∥,(内错角相等,两直线平行)180DGA BAC ∴∠+∠=︒(两直线平行,同旁内角互补)故答案为:3∠ ;两直线平行,同位角相等 ;等量代换;DG ;内错角相等,两直线平行;两直线平行,同旁内角互补 【点睛】本题考查平行线的判定与性质,熟记判定定理和性质定理是解题的关键.20.(1)见解析,,;(2)5;(3) 或 【分析】(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可; (2)根据的面积等于其所在的矩形减去周围几个三角形的面积求解即可; (3)设P 点解析:(1)见解析,()0,3,()4,0;(2)5;(3) ()3,0 或 ()5,0 【分析】(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可;(2)根据111A B C △的面积等于其所在的矩形减去周围几个三角形的面积求解即可;(3)设P 点得坐标为 (),0t ,因为以 1A ,1C ,P 为顶点得三角形得面积为 32,所以 133422t ⨯⨯-=∣∣,求解即可. 【详解】解:(1) 如图,111A B C △ 为所作.1A (0,3),1C (4,0);(2)计算111A B C△的面积111 442421435222=⨯-⨯⨯-⨯⨯-⨯⨯=.(3)设P点得坐标为(t,0),因为以1A,1C,P为顶点得三角形得面积为32,所以133422t⨯⨯-=∣∣,解得3t=或5t=,即P点坐标为(3,0)或(5,0).【点睛】本题主要考查了坐标与图形,平移作图,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.21.26【分析】先估算出的范围,再求出x,y的值,即可解答.【详解】解:∵,∴的整数部分是1,小数部分是∴的整数部分是9,小数部分是,∴x=9,y=,∴=3×9+(-)2019=27+(解析:26【分析】3x,y的值,即可解答.【详解】解:∵3<2,∴313-1∴8393-1,∴x=9,,∴2019+=3×9+2019=27+(-1)2019=27-1=26.x y3(【点睛】二十二、解答题22.不同意,理由见解析.【详解】试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于解析:不同意,理由见解析.【详解】试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=400平方厘米的正方形的边长为20厘米,由于20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2.试题解析:解:不同意李明的说法.设长方形纸片的长为3x(x>0)cm,则宽为2x cm,依题意得:3x•2x=300,6x2=300,x2=50,∵x>0,∴x∴长方形纸片的长为cm,∵50>49,∴7,∴21,即长方形纸片的长大于20cm,由正方形纸片的面积为400 cm2,可知其边长为20cm,∴长方形纸片的长大于正方形纸片的边长.答:李明不能用这块纸片裁出符合要求的长方形纸片.点睛:本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.也考查了估算无理数的大小.二十三、解答题23.(1)见解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先证明∠1=∠3,易证得AB//CD;(2)如图2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行线解析:(1)见解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先证明∠1=∠3,易证得AB//CD;(2)如图2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行线的性质即可证明;(3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y,想办法构建方程即可解决问题;【详解】(1)如图1中,∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴AB//CD.(2)结论:如图2中,∠PEQ+2∠PFQ=360°.理由:作EH//AB.∵AB//CD,EH//AB,∴EH//CD,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠1+∠4,∴∠PEQ=∠1+∠4,同法可证:∠PFQ=∠BPF+∠FQD,∵∠BPE=2∠BPF,∠EQD=2∠FQD,∠1+∠BPE=180°,∠4+∠EQD=180°,∴∠1+∠4+∠EQD+∠BPE=2×180°,即∠PEQ+2(∠FQD+∠BPF)=360°,∴∠PEQ+2∠PFQ=360°.(3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y,∵EQ//PH,∴∠EQC=∠PHQ=x,∴x+10y=180°,∵AB//CD,∴∠BPH=∠PHQ=x,∵PF 平分∠BPE ,∴∠EPQ +∠FPQ =∠FPH +∠BPH , ∴∠FPH =y +z ﹣x , ∵PQ 平分∠EPH , ∴Z =y +y +z ﹣x , ∴x =2y , ∴12y =180°, ∴y =15°, ∴x =30°, ∴∠PHQ =30°. 【点睛】本题考查了平行线的判定与性质,角平分线的定义等知识.(2)中能正确作出辅助线是解题的关键;(3)中能熟练掌握相关性质,找到角度之间的关系是解题的关键.24.(1);(2)①,②,理由见解析;(3) 【分析】(1)过点作,则,由平行线的性质可得的度数;(2)①过点作的平行线,依据平行线的性质可得与,之间的数量关系; ②过作,依据平行线的性质可得,,即解析:(1)80︒;(2)①APE αβ∠=∠+∠,②APE βα∠=∠-∠,理由见解析;(3)1()2ANE αβ∠=∠+∠【分析】(1)过点P 作//PG AB ,则//PG CD ,由平行线的性质可得BPC ∠的度数;(2)①过点P 作FD 的平行线,依据平行线的性质可得APE ∠与α∠,β∠之间的数量关系;②过P 作//PQ DF ,依据平行线的性质可得QPA β∠=∠,QPE α∠=∠,即可得到APE APQ EPQ βα∠=∠-∠=∠-∠;(3)过P 和N 分别作FD 的平行线,依据平行线的性质以及角平分线的定义,即可得到ANE ∠与α∠,β∠之间的数量关系为1()2ANE αβ∠=∠+∠.【详解】解:(1)如图1,过点P 作//PG AB ,则//PG CD , 由平行线的性质可得180B BPG ︒∠+∠=,180C CPG ︒∠+∠=, 又∵125PBA ︒∠=,155PCD ︒∠=, ∴36012515580BPC ︒︒︒︒∠=--=, 故答案为:80︒;(2)①如图2,APE ∠与α∠,β∠之间的数量关系为APE αβ∠=∠+∠; 过点P 作PM ∥FD ,则PM ∥FD ∥CG ,∵PM ∥FD ,∴∠1=∠α,∵PM ∥CG ,∴∠2=∠β,∴∠1+∠2=∠α+∠β,即:APE αβ∠=∠+∠,②如图,APE ∠与α∠,β∠之间的数量关系为APE βα∠=∠-∠;理由:过P 作//PQ DF ,∵//DF CG ,∴//PQ CG ,∴QPA β∠=∠,QPE α∠=∠,∴APE APQ EPQ βα∠=∠-∠=∠-∠;(3)如图,由①可知,∠N=∠3+∠4,∵EN 平分∠DEP ,AN 平分∠PAC ,∴∠3=12∠α,∠4=12∠β, ∴1()2ANE αβ∠=∠+∠,∴ANE ∠与α∠,β∠之间的数量关系为1()2ANE αβ∠=∠+∠. 【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.25.(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析.【分析】(1)求出∠ADE 的度数,利用∠DAE=90°-∠ADE 即可求出∠DAE解析:(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析.【分析】(1)求出∠ADE 的度数,利用∠DAE=90°-∠ADE 即可求出∠DAE 的度数.(2)求出∠ADE 的度数,利用∠DFE=90°-∠ADE 即可求出∠DAE 的度数.(3)利用AE 平分∠BEC ,AD 平分∠BAC ,求出∠DFE=15°即是最好的证明.【详解】(1)∵∠B=45°,∠C=73°,∴∠BAC=62°,∵AD 平分∠BAC ,∴∠BAD=∠CAD=31°,∴∠ADE=∠B+∠BAD=45°+31°=76°,∵AE ⊥BC ,∴∠AEB=90°,∴∠DAE=90°-∠ADE=14°.(2)同(1),可得,∠ADE=76°,∵FE ⊥BC ,∴∠FEB=90°,∴∠DFE=90°-∠ADE=14°.(3)DAE ∠的大小不变.DAE ∠=14°理由:∵ AD 平分∠ BAC ,AE 平分∠BEC∴∠BAC=2∠BAD ,∠BEC=2∠AEB∵ ∠BAC+∠B+∠BEC+∠C =360°∴2∠BAD+2∠AEB=360°-∠B-∠C=242°∴∠BAD+∠AEB=121°∵∠ADE=∠B+∠BAD∴∠ADE=45°+∠BAD∴∠DAE=180°-∠AEB-∠ADE=180°-∠AEB-45°-∠BAD=135°-(∠AEB+∠BAD)=135°-121°=14°【点睛】本题考查了三角形内角和定理和三角形外角的性质,熟练掌握性质是解题的关键. 26.(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H∠+∠=∠,证明见解析;(2)证明见解析;(3)解析:(1)EAF EDG AED∠=︒.EKD80【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;α+5°,再根(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=12α+5°+α+10°+20°,求得据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=12α=70°,即可根据三角形内角和定理,得到∠EKD的度数.【详解】解:(1)∠AED=∠EAF+∠EDG.理由:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明:如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,如图3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=12∠EDK=12α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=12α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【点睛】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都七中嘉祥外国语学校
A 卷(共100分)
一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项
是符合题目要求的.)
1、计算32
6(3)
m m
÷-的结果是()
A.-3m
B. -2m
C.2m
D.3m
2、实数-9,0,π
-,3.1415926,
7
3
,3,33
-,-
∙
∙
6
9.4,
3
2
中无理数有m个,则=
m()
A 1
B 2
C 3
D 4
3、在成都市晨晖路在某段时间内的车流量为30.6万辆,用科学记数法表示为()
A.4
30.610
⨯辆B.3
3.0610
⨯辆
C.4
3.0610
⨯辆D.5
3.0610
⨯辆
4、下列图案中是轴对称图形的个数是()
(A)1个(B)2个(C)3个(D)4个
5、给出下列命题:①三条线段组成的图形叫三角形②三角形相邻两边组成的角叫三角形的内角
③三角形的角平分线是射线④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外⑤任何一个三角形都有三条高、三条中线、三条角平分线⑥三角形的三条角平分线交于一点,且这点在三角形内.正确的命题有( )
A.1个
B.2个
C.3个
D.4个
6、
x必须满足的条件是()
A.x≥1 B.x>-1 C.x≥-1 D.x>1
7、如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数
为()
A. 80°
B.75°
C. 65°
D. 45°
8、下面说法正确的是( )
A. 两个无理数的和还是无理数
B. 有限小数和无限小数统称为实数
C. 两个无理数的积还是无理数
D. 数轴上的点表示实数
9、如图,△ABC的三边AB、BC、CA长分别是15、20、30,其三条
中线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于()
A.1︰1︰1 B.1︰2︰3 C.2︰3︰4 D.3︰4︰6
7题图
E
D
C
B
A
10、如图是某蓄水池的横断面示意图,分深水区和浅水区,如果这个蓄水池以固定的流量注水,下面哪个图象能大致表示水的最大深度h和时间t之间的关系?
A B C D
二、填空题. (本大题共4小题,每小题4分,共16分)
11
、______
,的立方根为;
12、若,
2
1
,8=
=n
m a
a则=
-n
m
a3
2。
13、一辆汽车的牌照在车下方水坑中的像是
则这辆汽车的牌照号码应为.
14、若1<x<4,则化简()()2
21
4-
-
-x
x=
三.解答题. (第15题每小题6分,第16题6分,共18分)
15. (1) 计算
(2)()()32
2
2
22
3
4
3
ab
b
a
c
b
a-
∙⎥
⎦
⎤
⎢
⎣
⎡
-
÷
⎪
⎭
⎫
⎝
⎛
-
16、[]x
y
y
x
y
x
y
x2
5
)
3
)(
(
)
2
(2
2÷
-
-
+
-
+,其中
2
1
,2=
-
=y
x
·
四、解答题(每小题8分,共16分)
17、(作图题)如图,EFGH 为矩形台球桌面,现有一白球A 和一彩球B .应怎样击打白球A ,才能使白球A 碰撞台边EF ,反弹后能击中彩球B?
18、一个正数x 的平方根是3111a a ++与,求这个数x 的立方根。
五、解答题(每小题10分,共20分)
19、某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2
小时血液中含药量最高,达每毫升6微克(1微克=10-
3毫克),接着逐步衰弱,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y (微克)随时间x (小时)的变化如图所示.
当成人按规定剂量服药后,从图象可知
(1)如果每毫升血液中含药量为3微克或3微克以上时在治疗疾病时是有效的,那么这个有效时间是多长?
(2)问经过多少小时后血液中该药物的含量为0. (3)写出x ≤2时,y 与x 的关系式
.
F
20、如图,已知,ADE ABC ∆∆和均为等边三角形,BD 、CE 交于点F 。
(1)求证:BD=CE
(2)求锐角BFC ∠的度数。
(6分)
B 卷 (共50分)
一、填空题:(每小题4分,共20分) 21、已知
113x y -=,则代数式21422x xy y
x xy y
----的值为 22、若实数a
= . 23.已知等腰三角形的两边为a,b, 满足a 2
+b 2
-2a-6b+10=0,则等腰三角
形的周长为________.
24、如图把一张长方形纸片ABCD 沿EF 折叠后,ED 交BC
于点G ,点D 、C 分别落在D ′、C ′位置上.若∠EFG =50°, 那么∠EGB = ° 25、若等腰三角形一腰上的高与另一腰的夹角为30°,那么它的顶角为__ _度。
二、解答题(共8分)
26. 已知a b 、
0b -=.解关于x 的方程:2
(2)a x b ++1a =-. A
B
C D
E
F
G
D C ′
′
三、解答题(10分)
27
1
1
2
-
⎛⎫
⎪
⎝⎭
,3
-,把它们背面朝上洗匀后,小军从
中抽取一张,记下这个数后放回洗匀,小明又从中抽出一张.
(1)两人抽取的卡片上都是3
-的概率是.
(2)李刚为他们俩设计了一个游戏规则:若两人抽取的卡片上两数之积是有理数,则小军获胜,否则小明获胜.你认为这个游戏规则对谁有利?请用列表法或树状图进行分析说明.
四、压轴题(12分)
28、在△ABC中,∠ACB= 900,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E。
(1)当直线MN绕点C旋转到图1的位置时,△ADC≌△CEB,且DE=AD+BE,请证明。
(2)当直线MN绕点C旋转到图2的位置时,DE =AD-BE。
说说你的理由。
(3)当直线MN绕点C旋转到图3的位置时,试问DE,AD,BE 具有怎样的等量关系?请写出
这个等量关系。
B
A
A
图1。