2021年中考数学一轮备考:探索题专题-教师版
中考数学一轮复习 第40课 探索型问题
(2)这n个方程都有一个根是 =1. 这 个方程都有一个根是 个方程都有一个根是x=
题型二
存在探索型问题
是边长为3 的等边三角形, 【例 2】 已知:如图,△ABC是边长为 cm的等边三角形,动点 、 】 已知:如图, 是边长为 的等边三角形 动点P、 Q同时从 、B两点出发,分别沿 、BC方向匀速移动,它们的 同时从A、 两点出发 分别沿AB、 方向匀速移动 两点出发, 方向匀速移动, 同时从 速度都是1 到达点B时 两点停止运动. 速度都是 cm/s,当点 到达点 时,P、Q两点停止运动.设点 ,当点P到达点 、 两点停止运动 P的运动时间为 ,解答下列问题: 的运动时间为t(s),解答下列问题: 的运动时间为 (1)当t为何值时,△PBQ是直角三角形? 当 为何值时, 是直角三角形? 为何值时 是直角三角形 (2)设四边形 设四边形APQC的面积为 的面积为y(cm2),求y 设四边形 的面积为 , 的关系式; 与t的关系式;是否存在某一时刻 ,使 的关系式 是否存在某一时刻t, 四边形APQC的面积是△ABC面积的 3? 的面积是△ 四边形 的面积是 面积的 如果存在,求出相应的 值 若不存在, 如果存在,求出相应的t值;若不存在, 说明理由. 说明理由.
探究提高 本题属于规律探索型问题, 本题属于规律探索型问题,数学对象所具备的状态或关系 不明确时,需对其本质属性进行探索,从而寻求、 不明确时,需对其本质属性进行探索,从而寻求、发现其所 服从的某一特定规律或具有的不变性. 服从的某一特定规律或具有的不变性.解题方法一般是利用 特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归 特殊值 特殊点、特殊数量、特殊线段、特殊位置等 进行归 特殊点 纳、概括,从特殊到一般,从而得出规律. 概括,从特殊到一般,从而得出规律.
2021年中考数学一轮复习规律探索题--数字问题常见类型及解题技巧
【例1】一组数据1,6,11,16,21,…第n个数是( )【例2】一组数6、8、10、12、14…第n个数是( )【例3】观察以下等式:第1个等式:++=1,第2个等式:++=1,第3个等式:++=1,第4个等式:++=1,第5个等式:++=1,按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.举一反三1、找规律,填空(1)3、5、7、9…第n个数是()(2)6、8、10、12…第n个数是()(3)10、14、18、22…第n个数是()(4)1、6、11、16、21…第n个数是()2.观察下列等式的规律.第一个等式:;第二个等式:;第三个等式:.(1)请用上述规律写出第四个等式_______________________;(2)猜想第n个等式(用含n的代数式表示),并证明你猜想的等式是正确的.3. 阅读下列内容:,,,…根据观察到的规律解决以下问题:(1)第5个等式是________;(2)若n是正整数,则第n个等式是________;(3)计算:.4. 【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n-1行的第一个圆圈中的数分别为n-1,2,n),发现每个位置上三个圆圈中数的和均为 ______ ,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)= ______ ,因此,12+22+32+…+n2= ______ .【解决问题】根据以上发现,计算:的结果为 ______ .题型二后一项与前一项的比值固定,即商固定【例1】有一列数,按一定的规律排成1、-2、4、-8、16、-32…(1)设这列数中的一个数为a,则它后面的第1个数是______,第2个数是______.(2)你能从中抽出相邻的三张卡片,且这些卡片上的数字之和为93吗?若能,写出这三个数,若不能,说明理由.举一反三1. 有一列数,按下表中的规律排列.序号 1 2 3 4 5 6 …n …对应数-1 3 -9 27 -81 243 …?…(1)用含有n的式子表示第n个对应数;(2)若相邻三个数的和等于1701,这三个数各是多少?2. 阅读材料:求1+2+22+23+24+…+22017的值.解:设S=1+2+22+23+24+ (22017)将等式两边同时乘以2得,2S=2+22+23+24+25+…+22017+22018,将下式减去上式得:2S-S=22018-1,即S=22018-1,所以1+2+22+23+24+…+2201722018-1,请你依照此法计算:(1)1+2+22+23+24+ (29)(2)1+5+52+53+54+…+5n(其中n为正整数).题型三含有平方规律【例1】观察下列等式:第1个等式:;第2个等式:;第3个等式:;第4个等式:;……根据你观察到的规律,解决下列问题:(1)写出第5个等式;(2)写出第n个等式,并证明;(3)计算:.举一反三1. 观察,猜想,证明.观察下列的等式;;发现上述3个等式的规律,猜想第5个等式并进行验证;写出含字母为任意自然数,且表示的等式,并写出证明过程.。
中考数学专题复习探索性问题复习教案新人教版(2021年整理)
中考数学专题复习 探索性问题复习教案 (新版)新人教版1 /111中考数学专题复习 探索性问题复习教案 (新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(中考数学专题复习 探索性问题复习教案 (新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为中考数学专题复习 探索性问题复习教案 (新版)新人教版的全部内容。
探索性问题一、【教材分析】二、【教学流程】2 / 1123 / 113综合运用例2(1)探究新知:如图①,已知△ABC与△ABD的面积相等,试探究AB与CD的位置关系,并说明理由.(2)结论应用:①如图②,点M,N在反比例函数xky (k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.试探究MN与EF的位置关系.②若①中的其他条件不变,只改变点M,N的位置如图③所示,试探究MN与EF的位置关系.只有认真观察图象上所给的各个数据及位置特征,灵活运用函数性质,才能找出所有的关系与结论,数形结合是解答此类问题的重要数学思想方法。
学生通过探究新知→应用新知,培养学生的探究应用能力.yNMEA BDC图①G H5 / 115击中考第二步:再把B点叠在折痕线MN上,折痕为AE,点B在MN上的对应点B′,得 Rt△AB′E,如图2-6-19(2)所示;第三步:沿EB′线折叠得折痕EF,如图2-6-19⑶所示;利用展开图 2-6-19(4)所示探究:(l)△AEF是什么三角形?证明你的结论.(2)对于任一矩形,按照上述方法是否都能折出这种三角形?请说明理由.2. 如图2-6-20所示,在Rt△ABC中,6 / 116∠ACB=90°,BC的垂直平分线DE,交BC于 D,交AB于E,F在DE上,并且A F=CE.⑴求证:四边形ACEF是平行四边形;⑵当∠B的大小满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论;⑶四边形ACEF有可能是正方形吗?为什么?完善整合1.1.知识结构图探索性问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的题型.探索性问题一般有三种类型:(1)条件探索型问题;(2)结论探索型问题;(3)探索存在型问题.条件探索型问题是指所给问题中结论明确,需要完对内容的升华理解认识7 / 1178 / 1182.本这节课你收获了什么?作业一、必做题:1、(2010.荆门中考)如图,坐标平面内一点A(2,-1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A 。
题型(一) 规律探索题-2021年中考数学一轮复习知识考点课件(28张)
(4)当数字是分数或分数和整数结合时,先把这组数字中的所有整数写成分数,
再分别推断出分子与分母的数字变化规律.
上一页 下一页
对点训练
1.如图是按一定规律排成的三角形数阵,按此数阵的排列规律,第9行从左
至右第5个数是( B )
A.2 10
B. 41
C.5 2
D. 51
上一页 下一页
2.如图是一个运算程序的示意图,若第一次输入k的值为125,则第2 021次输 出的结果是_____1_______.
A. 1
100
B. 1
20
C. 1
101
D. 2
101
上一页
下一页
9.(2020·黔西南)下列图形都是由同样大小的菱形按照一定规律所组成的,其 中第1个图形中一共有3个菱形,第2个图形中一共有7个菱形,第3个图形 中一共有13个菱形,……按此规律排列下去,第7个图形中菱形的个数为 ___5_7______.
上一页 下一页
类型3 坐标的变化规律 题型精讲 3.如图,边长为4的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴,将
正六边形ABCDEF绕原点O顺时针旋转n次,每次旋转60°.当n=2 021时,顶 点A的坐标为__(-_4_,__0_)_.
上一页 下一页
【思路分析】连接OA,OF.因为六边形ABCDEF是正六边形,所以∠AOF= 60°.因为正六边形每次旋转60°,所以每旋转6次正六边形回到初始位置,即 旋转一周.2 021÷6=336……5,所以当n=2 021时,正六边形旋转了336周零 5次,此时点A到达点B的位置.由AB=4,点O为正六边形ABCDEF的中心, 易得△AOB是等边三角形,所以OB=AB=4,进而可得点A的坐标.
决胜2021年中考数学压轴题全揭秘精品 专题01 数与式问题(教师版含解析)
决胜2021中考数学压轴题全揭秘精品专题01数与式问题【考点1】实数与数轴问题【例1】(2020·贵州铜仁·中考真题)实数a ,b 在数轴上对应的点的位置如图所示,下列结论正确的是()A .a >bB .﹣a <bC .a >﹣bD .﹣a >b【答案】D【解析】【分析】根据数轴即可判断a 和b 的符号以及绝对值的大小,根据有理数的大小比较方法进行比较即可求解.【详解】 根据数轴可得:0a <,0b >,且a b >,则a b <,选项A 错误;a b >﹣,选项B 错误;a b <﹣,选项C 错误;a b >﹣,选项D 正确;故选:D .【点睛】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.【变式1-1】(2020·福建中考真题)如图,数轴上两点,M N 所对应的实数分别为,m n ,则m n -的结果可能是( )A .1-B .1C .2D .3【答案】C【解析】【分析】根据数轴确定m 和n 的范围,再根据有理数的加减法即可做出选择.【详解】解:根据数轴可得0<m <1,2-<n <1-,则1<m n -<3故选:C【点睛】本题考查的知识点为数轴,解决本题的关键是要根据数轴明确m 和n 的范围,然后再确定m n -的范围即可. 【变式1-2】(2019年枣庄)点O ,A ,B ,C 在数轴上的位置如图所示,O 为原点,AC =1,OA =OB .若点C 所表示的数为a ,则点B 所表示的数为( )A .﹣(a +1)B .﹣(a ﹣1)C .a +1D .a ﹣1【分析】根据题意和数轴可以用含a 的式子表示出点B 表示的数,本题得以解决.【解析】∵O 为原点,AC =1,OA =OB ,点C 所表示的数为a ,∴点A 表示的数为a ﹣1,∴点B 表示的数为:﹣(a ﹣1),故选:B .【点拨】本题考查数轴,解答本题的关键是明确题意,利用数形结合的思想解答.【变式1-3】(2020·贵州铜仁·中考真题)实数a ,b 在数轴上对应的点的位置如图所示,下列结论正确的是( )A .a >bB .﹣a <bC .a >﹣bD .﹣a >b【答案】D【解析】【分析】根据数轴即可判断a 和b 的符号以及绝对值的大小,根据有理数的大小比较方法进行比较即可求解.【详解】根据数轴可得:0a <,0b >,且a b >,则a b <,选项A 错误; a b >﹣,选项B 错误;a b <﹣,选项C 错误;a b >﹣,选项D 正确;故选:D .【点睛】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.【考点2】整式的求值问题【例2】(2020·湖南岳阳·中考真题)已知221x x +=-,则代数式5(2)x x ++的值为___________.【答案】4【解析】【分析】先根据整式的乘法去括号化简代数式,再将已知式子的值代入求值即可.【详解】25(2)52x x x x ++=++将221x x +=-代入得:原式5(1)4=+-=故答案为:4.【点睛】本题考查了代数式的化简求值,利用整式的乘法对代数式进行化简是解题关键.【变式2-1】(2020·四川甘孜·中考真题)若221m m -=,则代数式2243m m -+的值为________.【答案】5【解析】【分析】把2243m m -+化为22(2)3m m -+的形式,再整体代入求值即可.【详解】解:∵221m m -=,∴222432(2)32135m m m m -+=-+=⨯+=.故答案为:5.【点睛】本题考查了求代数式的值,运用整体的数学思想是解决问题的关键.【变式2-2】(2020·江苏连云港·中考真题)按照如图所示的计算程序,若2x =,则输出的结果是________.【答案】-26【解析】【分析】首先把x=2代入210x -计算出结果,判断是否小于0,若小于0,直到输出的结果是多少,否则将计算结果再次代入计算,直到小于0为止.【详解】解:当x=2时,2210=10260x --=>,故执行“否”,返回重新计算,当x=6时,2210=106260x --=-<,执行“是”,输出结果:-26.故答案为:-26.【点睛】此题主要考查了代数式求值,以及有理数的混合运算,要熟练掌握.解题关键是理解计算流程.【考点3】分式的求值问题【例3】(2020·四川南充·中考真题)若231x x +=-,则11xx __________. 【答案】2- 【解析】【分析】 11x x 中两项通分并利用同分母分式的减法法则计算,再根据231x x +=-,代入化简即可得到结果. 【详解】 解:2211321222(1)211111x x x x x x x x x x x x x故答案为:-2【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.【变式3-1】(2019·四川内江·中考真题)若112m n+=,则分式552m n mn m n +---的值为_____. 【答案】﹣4. 【解析】【分析】 将已知等式左边通分并利用同分母分式的加法法则计算,得到m+n=2mn ,代入所求式子中计算,即可求出值.【详解】112m n+=,可得2m n mn +=,()()5255210mn 2n 2n m n mn m n mn m m n m n m +-+--==---+- =﹣4;故答案为﹣4.【点睛】此题考查分式的化简求值,掌握运算法则是解题关键【变式3-2】(2020·内蒙古赤峰·中考真题)先化简,再求值:221121m m m m m m---÷++,其中m 满足:210m m --=.【答案】2m m+1,1. 【解析】【分析】将分式运用完全平方公式及平方差公式进行化简,并根据m 所满足的条件得出2m =m+1,将其代入化简后的公式,即可求得答案.【详解】 解:原式为22m -1m-1m-m +2m+1m÷ =2(m+1)(m-1)m m-(m+1)m-1⨯ =m m-m+1 =2m m m -m+1m+1+ =2m m+1, 又∵m 满足2m -m-1=0,即2m =m+1,将2m 代入上式化简的结果,∴原式=2m m+1==1m+1m+1. 【点睛】本题主要考察了分式的化简求值、分式的混合运算、完全平方公式及平方差公式的应用,该题属于基础题,计算上的错误应避免.【考点4】二次根式的性质与化简【例4】(2020·四川攀枝花·中考真题)实数a 、b 在数轴上的位置如图所示,化简222(1)(1)()a b a b ++---的结果是( ).A .2-B .0C .2a -D .2b【答案】A【解析】【分析】根据实数a 和b 在数轴上的位置得出其取值范围,再利用二次根式的性质和绝对值的性质即可求出答案.【详解】解:由数轴可知-2<a <-1,1<b <2,∴a+1<0,b-1>0,a-b <0, 222(1)(1)()a b a b +---=11a b a b ++---=()()()11a b a b -++-+-=-2故选A.【点睛】此题主要考查了实数与数轴之间的对应关系,以及二次根式的性质,要求学生正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断. 【变式4-1】(2020·内蒙古赤峰·中考真题)估计(123323 ( ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间【答案】A【解析】【分析】根据二次根式的混合运算法则进行计算,再估算无理数的大小.【详解】()1 23323+⨯=11 233233⨯+⨯=2+6,∵4<6<6.25,∵2<6<2.5,∴4<2+6<5,故选:A.【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的运算法则、会进行无理数的大小估算是解题的关键.【变式4-2】(2019年内江)若|1001﹣a|a,则a﹣10012=1002.【分析】由二次根式有意义的条件得到a≥1002,据此去绝对值并求得a的值,代入求值即可.【解析】∵a﹣1002≥0,∴a≥1002.由|1001﹣a|a,得﹣1001+a a,∴1001,∴a﹣1002=10012.∴a﹣10012=1002.故答案是:1002.【变式4-3】(2020·甘肃金昌·中考真题)已知2(4)5y x x=-+,当分别取1,2,3,……,2020时,所对应y值的总和是__________.【答案】2032【解析】【分析】先化简二次根式求出y的表达式,再将x的取值依次代入,然后求和即可得.【详解】545y x x x =+=--+当4x <时,4592y x x x =--+=-当4x ≥时,451y x x =--+=则所求的总和为(921)(922)(923)111-⨯+-⨯+-⨯++++75312017=+++⨯2032=故答案为:2032.【点睛】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键.【考点5】数字的变化规律【例5】(2020·四川中考真题)将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =_____.【答案】65【解析】【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m 、n 的值,然后即可得到m +n 的值.【详解】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…, ∴第m 组有m 个连续的偶数,∵2020=2×1010, ∴2020是第1010个偶数,∵1+2+3+…+44=44(441)2⨯+=990,1+2+3+…+45=45(451)2⨯+=1035, ∴2020是第45组第1010-990=20个数,∴m =45,n =20,∴m +n =65.故答案为:65.【点睛】本题考查探索规律,认真观察所给数据总结出规律是解题的关键【变式5-1】(2020·广西中考真题)如图,某校礼堂的座位分为四个区域,前区共有8排, 其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是_____.【答案】556个【解析】【分析】先计算前区共有多少个座位和前区最后一排有多少个座位,再计算后区一共有多少个座位即可得解.【详解】∵前区共有8排, 其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,∴前区共有座位数为:20+(20+1×2)+(20+2×2)+(20+3×2)+⋯⋯+(20+7×2) =8×20+(1+2+3+4+5+6+7) ×2=216(个);∵前区最后一排的座位数为:20+7×2=34, ∴后区的座位数为:34×10=340(个) 因此,该礼堂的座位总数是216+340=556(个)故答案为:556个.【点睛】此题考查了找规律,根据题干得出每一排座位的个数排列规律是解决本题的关键.【变式5-2】(2020·青海中考真题)观察下列各式的规律:①2132341⨯-=-=-;②2243891⨯-=-=-;③235415161⨯-=-=-.请按以上规律写出第4个算式________.用含有字母的式子表示第n 个算式为________.【答案】246524251⨯-=-=-()()2211n n n ⨯+-+=- 【解析】【分析】(1)按照前三个算式的规律书写即可; (2)观察发现,算式序号与比序号大2的数的积减去比序号大1的数的平方,等于-1,根据此规律写出即可;【详解】(1)2132341⨯-=-=-,②2243891⨯-=-=-,③235415161⨯-=-=-,④246524251⨯-=-=-;故答案为246524251⨯-=-=-.(2)第n 个式子为:()()2211n n n ⨯+-+=-. 故答案为()()2211n n n ⨯+-+=-.【点睛】本题主要考查了规律性数字变化类知识点,准确分析是做题的关键. 【变式5-3】(2020·湖北咸宁·中考真题)按一定规律排列的一列数:3,23,13-,33,43-,73,113-,183,…,若a ,b ,c 表示这列数中的连续三个数,猜想a ,b ,c 满足的关系式是__________.【答案】bc=a【解析】【分析】根据题目中的数字,可以发现相邻的数字之间的关系,从而可以得到a ,b ,c 之间满足的关系式.【详解】解:∵一列数:3,23,13-,33,43-,73,113-,183-,…,可发现:第n 个数等于前面两个数的商,∵a ,b ,c 表示这列数中的连续三个数,∴bc=a ,故答案为:bc=a.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律,求出a,b,c之间的关系式.【考点6】图形的变化规律【例6】(2020·山东日照·中考真题)用大小相同的圆点摆成如图所示的图案,按照这样的规律摆放,则第10个图案中共有圆点的个数是( )A.59 B.65 C.70 D.71【答案】C【解析】【分析】由题意观察图形可知,第1个图形共有圆点5+2个;第2个图形共有圆点5+2+3个;第3个图形共有圆点5+2+3+4个;第4个图形共有圆点5+2+3+4+5个;…;则第n个图形共有圆点5+2+3+4+…+n+(n+1)个;由此代入n=10求得答案即可.【详解】解:根据图中圆点排列,当n=1时,圆点个数5+2;当n=2时,圆点个数5+2+3;当n=3时,圆点个数5+2+3+4;当n=4时,圆点个数5+2+3+4+5,…∴当n=10时,圆点个数5+2+3+4+5+6+7+8+9+10+11=4+(1+2+3+4+5+6+7+8+9+10+11)=1411(111) 2+⨯⨯+ 70=.故选:C.【点睛】本题考查图形的变化规律,注意找出数量上的变化规律,从而推出一般性的结论,利用规律解决问题.【变式6-1】(2020·山东济宁·中考真题)小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第(1)个图案中有1个正方体,第(2)个图案中有3个正方体,第(3)个图案中有6个正方体,……按照此规律,从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是( )A.1100B.120C.1101D.2101【答案】D 【解析】【分析】根据图形规律可得第n个图形共有1+2+3+4+...+n=()12n n+个正方体,最下面有n个带“心”字正方体,从而得出第100个图形的情况,再利用概率公式计算即可.【详解】解:由图可知:第1个图形共有1个正方体,最下面有1个带“心”字正方体;第2个图形共有1+2=3个正方体,最下面有2个带“心”字正方体;第3个图形共有1+2+3=6个正方体,最下面有3个带“心”字正方体;第4个图形共有1+2+3+4=10个正方体,最下面有4个带“心”字正方体;...第n个图形共有1+2+3+4+...+n=()12n n+个正方体,最下面有n个带“心”字正方体;则:第100个图形共有1+2+3+4+...+100=()11001002+=5050个正方体,最下面有100个带“心”字正方体; ∴从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是10025050101=, 故选:D .【点睛】本题考查了图形变化规律,概率的求法,解题的关键是总结规律,得到第100个图形中总正方体的个数以及带“心”字正方体个数.【变式6-2】(2020·内蒙古赤峰·中考真题)一个电子跳蚤在数轴上做跳跃运动.第一次从原点O 起跳,落点为A 1,点A 1表示的数为1;第二次从点A 1起跳,落点为OA 1的中点A 2;第三次从A 2点起跳,落点为0A 2的中点A 3;如此跳跃下去……最后落点为OA 2019的中点A 2020.则点A 2020表示的数为__________.【答案】201912【解析】【分析】 先根据数轴的定义、线段中点的定义分别求出点1234,,,A A A A 表示的数,再归纳类推出一般规律,由此即可得.【详解】由题意得:点1A 表示的数为0112=点2A 表示的数为11111222OA == 点3A 表示的数为22111242OA == 点4A 表示的数为33111282OA == 归纳类推得:点n A 表示的数为112n -(n 为正整数) 则点2020A 表示的数为2020120191122-= 故答案为:201912.【点睛】本题考查了数轴的定义、线段中点的定义,根据点1234,,,A A A A 表示的数,正确归纳类推出一般规律是解题关键.【变式6-3】(2020·山东烟台·中考真题)如图,12OA A △为等腰直角三角形,OA 1=1,以斜边OA 2为直角边作等腰直角三角形OA 2A 3,再以OA 3为直角边作等腰直角三角形OA 3A 4,…,按此规律作下去,则OA n 的长度为( )A .(2nB .2n ﹣1C .(22)nD .(22)n ﹣1 【答案】B【解析】【分析】 利用等腰直角三角形的性质以及勾股定理分别求出各边长,依据规律即可得出答案.【详解】解:∵△OA 1A 2为等腰直角三角形,OA 1=1,∴OA 22∵△OA 2A 3为等腰直角三角形,∴OA 3=2=2(2);∵△OA 3A 4为等腰直角三角形,∴OA 4=23(2).∵△OA 4A 5为等腰直角三角形,∴OA 5=4=4(2),……∴OA n的长度为(2)n﹣1,故选:B.【点睛】此题主要考查了等腰直角三角形的性质以及勾股定理,熟练应用勾股定理得出是解题关键.1.(2020·山东临沂·中考真题)如图,数轴上点A对应的数是32,将点A沿数轴向左移动2个单位至点B,则点B对应的数是( )A.12-B.2-C.72D.12【答案】A【解析】【分析】数轴上向左平移2个单位,相当于原数减2,据此解答. 【详解】解:∵将点A沿数轴向左移动2个单位至点B,则点B对应的数为:32-2=12-,故选A.【点睛】本题考查了数轴,利用了数轴上的点右移加,左移减,在学习中要注意培养数形结合的数学思想.2.(2020·广西玉林·中考真题)观察下列按一定规律排列的n个数:2,4,6,8,10,12,…;若最后三个数之和是3000,则n等于()A.499 B.500 C.501 D.1002【答案】C【解析】【分析】根据题意列出方程求出最后一个数,除去一半即为n 的值.【详解】设最后三位数为x -4,x -2,x .由题意得: x -4+x -2+x =3000,解得x =1002.n =1002÷2=501.故选C .【点睛】本题考查找规律的题型,关键在于列出方程简化步骤.3.(2020·内蒙古呼伦贝尔·中考真题)已知实数a 在数轴上的对应点位置如图所示,则化简2|1|(2)a a ---的结果是( )A .32a -B .1-C .1D .23a - 【答案】D【解析】【分析】根据数轴上a 点的位置,判断出(a−1)和(a−2)的符号,再根据非负数的性质进行化简.【详解】解:由图知:1<a <2,∴a−1>0,a−2<0,原式=a−1-2a=a−1+(a−2)=2a−3.故选D .【点睛】此题主要考查了二次根式的性质与化简,正确得出a−1>0,a−2<0是解题关键.4.(2020·北京中考真题)实数a 在数轴上的对应点的位置如图所示.若实数b 满足a b a -<<,则b 的值可以是( )A .2B .-1C .-2D .-3【答案】B【解析】【分析】 先根据数轴的定义得出a 的取值范围,从而可得出b 的取值范围,由此即可得.【详解】由数轴的定义得:12a <<21a ∴-<-<-2a ∴<又a b a -<<b ∴到原点的距离一定小于2观察四个选项,只有选项B 符合故选:B .【点睛】本题考查了数轴的定义,熟记并灵活运用数轴的定义是解题关键.5.(2020·湖南娄底·中考真题)下列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为( )A .135B .153C .170D .189【答案】C【解析】【分析】 由观察发现每个正方形内有:224,236,248,⨯=⨯=⨯=可求解b ,从而得到a ,再利用,,a b x 之间的关系求解x 即可.【详解】解:由观察分析:每个正方形内有:224,236,248,⨯=⨯=⨯=218,b ∴=9,b ∴=由观察发现:8,a =又每个正方形内有:2419,36220,48335,⨯+=⨯+=⨯+=18,b a x ∴+=1898170.x ∴=⨯+=故选C .【点睛】本题考查的是数字类的规律题,掌握由观察,发现,总结,再利用规律是解题的关键.6.(2020·云南中考真题)按一定规律排列的单项式:a ,2a -,4a ,8a -,16a ,32a -,…,第n 个单项式是( )A .()12n a --B .()2n a -C .12n a -D .2n a【答案】A【解析】【分析】先分析前面所给出的单项式,从三方面(符号、系数的绝对值、指数)总结规律,发现规律进行概括即可得到答案.【详解】 解: a ,2a -,4a ,8a -,16a ,32a -,…,可记为:()()()()()()0123452,2,2,2,2,2,,a a a a a a ------•••∴ 第n 项为:()12.n a --故选A .【点睛】 本题考查了单项式的知识,分别找出单项式的系数和次数的规律是解决此类问题的关键.7.(2020·内蒙古呼和浩特·中考真题)下列运算正确的是( )A12==± B .()325ab ab =C .22422()xy xy y x y x y x y x y y x ⎛⎫⎛⎫--+++=+ ⎪ ⎪--⎝⎭⎝⎭ D .223152845c a c c ab ab a-÷=- 【答案】C【解析】【分析】分别根据二次根式的乘法,幂的乘方和积的乘方,分式的混合运算,分式的除法法则判断即可.【详解】解:A12===,故选项错误; B 、()3236ab a b =,故选项错误;C 、2422xy xy y x y x y x y y x ⎛⎫⎛⎫--+++ ⎪ ⎪--⎝⎭⎝⎭=()()()22422x y x y y x xy xy y x y x y y x y x ⎛⎫-+-⎛⎫-++ ⎪ ⎪ ⎪----⎝⎭⎝⎭ =()()22x y x y x y y x+-⋅--- =()2x y +,故选项正确;D 、22222315348481510c a c c ab c ab ab ab a c a-÷=⨯=--,故选项错误; 故选C.【点睛】本题考查了二次根式的乘法,幂的乘方和积的乘方,分式的混合运算,分式的除法法则,解题的关键是学会计算,掌握运算法则.8.(2020·湖北黄冈·中考真题)计算:221yx x y x y ⎛⎫÷- ⎪-+⎝⎭的结果是____________. 【答案】1x y- 【解析】 【分析】先计算括号内分式的减法、将被除式分母因式分解,再将除法转化为乘法,最后约分即可得. 【详解】 解:221y x x y x y ⎛⎫÷- ⎪-+⎝⎭()()yx y x x y x y x y x y ⎛⎫+=÷- ⎪+-++⎝⎭()()yyx y x y x y=÷+-+ ()()yx yx y x y y+=⋅+- 1x y=-, 故答案为:1x y-. 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 9.(2020·四川成都·中考真题)已知73a b =-,则代数式2269a ab b ++的值为_________. 【答案】49 【解析】 【分析】先将条件的式子转换成a +3b =7,再平方即可求出代数式的值. 【详解】解:∵73a b =-, ∴37a b +=,∴()2222693749a ab b a b ++=+==,故答案为:49. 【点睛】本题考查完全平方公式的简单应用,关键在于通过已知条件进行转换. 10.(2020·山东临沂·中考真题)若1a b +=,则2222a b b -+-=________. 【答案】-1 【解析】 【分析】将原式变形为()()22a b a b b +-+-,再将1a b +=代入求值即可. 【详解】解:2222a b b -+- =()()22a b a b b +-+- 将1a b +=代入, 原式=22a b b -+- =2a b +- =1-2 =-1故答案为:-1. 【点睛】本题考查了代数式求值,其中解题的关键是利用平方差公式将原式变形为()()22a b a b b +-+-. 11.(2020·山东烟台·中考真题)按如图所示的程序计算函数y 的值,若输入的x 值为﹣3,则输出y 的结果为_____.【答案】18 【解析】 【分析】根据﹣3<﹣1确定出应代入y =2x 2中计算出y 的值. 【详解】解:∵﹣3<﹣1,∴x =﹣3代入y =2x 2,得y =2×9=18, 故答案为:18. 【点评】本题主要考查函数值的计算,理解题意是前提条件,熟练掌握函数值的定义是解题的关键.12.(2020·山西中考真题)如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形按此规律摆下去,第n 个图案有_______个三角形(用含n 的代数式表示).【答案】()31n + 【解析】 【分析】由图形可知第1个图案有3+1=4个三角形,第2个图案有3×2+ 1=7个三角形,第3个图案有3×3+ 1=10个三角形...依此类推即可解答.【详解】解:由图形可知:第1个图案有3+1=4个三角形, 第2个图案有3×2+ 1=7个三角形, 第3个图案有3×3+ 1=10个三角形, ...第n 个图案有3×n+ 1=(3n+1)个三角形. 故答案为(3n+1). 【点睛】本题考查图形的变化规律,根据图形的排列、归纳图形的变化规律是解答本题的关键.13.(2020·海南中考真题)海南黎锦有着悠久的历史,已被列入世界非物质文化遗产名录.图是黎锦上的图案,每个图案都是由相同菱形构成的,若按照第1个图至第4个图中的规律编织图案,则第5个图中有_____________个菱形, 第n 个图中有____________个菱形(用含n 的代数式表示).【答案】41 2221n n -+ 【解析】 【分析】根据第1个图形有1个菱形,第2个图形有2×2×1+1=5个菱形,第3个图形有2×3×2+1=13个菱形,第4个图形有2×4×3+1=25个菱形,据此规律求解即可. 【详解】解:∵第1个图形有1个菱形, 第2个图形有2×2×1+1=5个菱形, 第3个图形有2×3×2+1=13个菱形, 第4个图形有2×4×3+1=25个菱形, ∴第5个图形有2×5×4+1=41个菱形, 第n 个图形有2×n ×(n-1)+1=2221n n -+个菱形.故答案为:41,2221n n -+. 【点睛】本题考查了规律型—图形类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.14.(2020·黑龙江绥化·中考真题)在函数15y x =+-中,自变量x 的取值范围是_________. 【答案】3x ≥且5x ≠ 【解析】 【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围. 【详解】根据题意得:301050x x x -≥⎧⎪+>⎨⎪-≠⎩,解得:3x ≥且5x ≠. 故答案为:3x ≥且5x ≠. 【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.15.(2020·山东安丘·初三三模)观察下列各式:11111122⎛⎫=+=+- ⎪⨯⎝⎭,111112323⎛⎫=+=+- ⎪⨯⎝⎭,111113434⎛⎫=+=+- ⎪⨯⎝⎭,请利用你发现的规律,计算:2222222211111111111112233420182019+++++++++⋯+++,其结果为____. 【答案】201820182019. 【解析】 【分析】根据题意找出规律,根据二次根式的性质计算即可. 【详解】2222222211111111111112233420182019++++++++++++ 11111111122320182019⎛⎫⎛⎫⎛⎫=+-++-+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111111201812233420182019=+-+-+-++- 201820182019=,故答案为:201820182019.【点睛】本题考查的是二次根式的化简、数字的变化规律,掌握二次根式的性质是解题 的关键.16.(2020·黑龙江大庆·中考真题)如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第20个图需要黑色棋子的个数为_________.【答案】440 【解析】 【分析】先观察图形得出前四个图中黑色棋子的个数,再归纳类推出一般规律,由此即可得. 【详解】观察图形可知,黑色棋子的个数变化有以下两条规律:(1)正多边形的各顶点均需要1个黑色棋子(2)从第1个图开始,每个图的边上黑色棋子的个数变化依次是0,1,2,3,即第1个图需要黑色棋子的个数为330+⨯ 第2个图需要黑色棋子的个数为441+⨯第3个图需要黑色棋子的个数为552+⨯ 第4个图需要黑色棋子的个数为663+⨯归纳类推得:第n 个图需要黑色棋子的个数为(2)(2)(1)(2)n n n n n +++-=+,其中n 为正整数 则第20个图需要黑色棋子的个数为20(202)440⨯+= 故答案为:440. 【点睛】本题考查了整式的图形规律探索题,依据图形,正确归纳类推出一般规律是解题关键.17.(2020·辽宁鞍山·中考真题)先化简,再求值:2344111x x x x x ++⎛⎫--÷⎪++⎝⎭,其中2x =.【答案】22x x -+,1-【解析】 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x 的值代入计算即可求出值. 【详解】解:原式=()()()21131112x x x x x x +-⎡⎤+-⨯⎢⎥+++⎣⎦=()()()211222x x x x x ++⨯+-+=22x x -+当2x =时,原式1-【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 18.(2020·山东菏泽·中考真题)先化简,再求值:21242244a a a a a a -⎛⎫-÷ ⎪+++⎝⎭,其中a 满足2230a a +-=. 【答案】2a 2+4a,6 【解析】 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,再代值计算即可求出值. 【详解】解:原式=2224124()+22(2)a a a a a a a +--÷++ =22284+2(2)a a a a a --÷+ =22(4)(+2)+24a a a a a -⨯- =2a(a+2) =2a 2+4a.∵2230a a +-=, ∴a 2+2a=3.∴原式=2(a 2+2a )=6. 【点睛】此题主要考查了分式的化简求值,正确化简分式是解题关键.19.(2020·贵州黔南·中考真题)在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全同学共通过多少次电话呢?我们可以用下面的方式来解决问题.用点12348A A A A ⋯、、分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x 与通电话次数y 之间的关系用如图模型表示:(1)填写上图中第四个图中y 的值为_______,第五个图中y 的值为_______.(2)通过探索发现,通电话次数y 与该班级人数x 之间的关系式为________,当48x =时,对应的y =________.(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生? 【答案】(1)10,15;(2)(1)2x x y -=,1128;(3)20 【解析】 【分析】(1)观察图形,可以找出第四和第五个图中的y 值; (2)根据y 值随x 值的变化,可找出(1)2x x y -=,再代入48x =可求出当48x =时对应的y 值; (3)根据(2)的结论结合九年级1班全体女生相互之间共通话190次,即可得出关于x 的一元二次方程,解之取其正值即可得出结论. 【详解】解:(1)观察图形,可知:第四个图中y 的值为10,第五个图中y 的值为15. 故答案为:10;15.(2)∵21324354651,3,6,10,1522222⨯⨯⨯⨯⨯=====, ∴(1)2x x y -=,当48x =时,48(481)11282y ⨯-==. 故答案为:(1)2x x y -=;1128.(3)依题意,得:(1)1902x x -=, 化简,得:23800x x --=,解得:1220,19x x ==-(不合题意,舍去).答:该班共有20名女生. 【点睛】本题考查了一元二次方程的应用以及图形的变化规律,观察图形找出变化规律是解题的关键. 20.(2019·江苏徐州·中考真题)(阅读理解)用1020cm cm 的矩形瓷砖,可拼得一些长度不同但宽度均为20cm 的图案.已知长度为10cm 、20cm 、30cm 的所有图案如下:(尝试操作)(1)如图,将小方格的边长看作10cm ,请在方格纸中画出长度为40cm 的所有图案.(归纳发现)(2)观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整. 图案的长度10cm 20cm 30cm 40cm50cm60cm所有不同图案的个数123【答案】(1)见解析;(2)5,8,13. 【解析】 【分析】(1)根据已知条件作图可知40cm 时,所有图案个数5个;(2)推出长度为50cm 时的所有图案,继而根据已知猜想60cm 时所有图案的个数即可. 【详解】 (1)如图:根据作图可知40cm 时,所有图案个数5个;(2)50cm时,如图所示,所有图案个数8个;同理,60cm时,所有图案个数13个,故答案为5,8,13.【点睛】本题考查应用与设计作图,规律探究;能够根据条件作图图形,探索规律是解题的关键.。
2021年人教版数学中考第一轮专题练习 线段中点的模型应用
线段中点的模型应用类型1 倍长中线或类中线(与中点有关的线段)构造全等三角形) 如图,已知在△ABC中,AD是BC边上的中线,F是AD上的一点,延长BF 交AC于点E,且AE=EF,求证:BF=AC.类型2 已知等腰三角形底边的中点,可以考虑与顶点连接用“三线合一”) 如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,求MN的长.类型3 已知三角形一边的中点,可以考虑中位线定理)如图,在四边形ABCD中,AC与BD相交于点O,AC=BD,E,F分别是AB,CD的中点,连接EF,分别交AC,BD于点N,M,试判断△OMN的形状.类型4 已知直角三角形斜边的中点,可以考虑构造斜边的中线) 已知:如图,在△ABC中,∠B=2∠C,AD⊥BC于点D,M为BC的中点,求证:AB=2DM.1.如图所示,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,求BC的长.2.(1)阅读理解:如图①,在△ABC中,若AB=8,AC=5,求BC边上的中线AD的取值范围.可以用如下方法:将△ACD绕着点D逆时针旋转180°得到△EBD,在△ABE中,利用三角形三边的关系即可求出中线AD的取值范围是________________________________________________________________________;图①图②图③(2)问题解决:如图②,在△ABC中,D是BC边的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=100°,以C 为顶点作一个50°的角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并说明理由.3.如图,在△ABC中,AB=AC,D为BC的中点,点E是BA延长线上的一点,点F是AC上的一点,连接EF并延长交BC于点G,且AE=AF.(1)若∠ABC=50°,求∠AEF的度数;(2)求证:AD∥EG.4.如图,在四边形ABCD 中,AB =CD ,E ,F 分别是BC ,AD 的中点,连接EF 并延长分别与BA ,CD 的延长线交于点M ,N ,求证:∠BME=∠CNE.5.【感知】如图①,BD ,CE 分别是△ABC 的外角平分线,过点A 分别作AM⊥BD 于点M ,AN⊥CE 于点N ,连接MN ,易证:MN =12(AB +BC +AC)(不需要证明);【探究】如图②,若BD ,CE 分别是△ABC 的两个内角的平分线,且AM⊥BD 于点M ,AN⊥CE 于点N ,连接MN.试猜想MN 与边AB ,AC 和BC 之间的数量关系,并证明你的结论;【应用】如图③,在四边形ABCD中,∠ABC=∠ADC=90°,射线BE平分∠ABC,AM⊥BE于点M,连接MD,延长BC至点F,若∠DCF=∠ACD=75°,AB=2,直接写出MD的长度.图①图②图③6.如图,在△ABC中,AD是BC边上的高线,CE是AB边上的中线,DG⊥CE于点G,CD=AE.(1)求证:CG=EG;(2)已知BC=13,CD=5,连接ED,求△EDC的面积.7.如图①,已知在锐角△ABC中,CD,BE分别是AB,AC边上的高,M,N分别是线段BC,DE的中点.(1)求证:MN⊥DE;(2)连接DM,ME,猜想∠A与∠DME之间的数量关系,并证明你的猜想;(3)当∠A变为钝角时,如图②,上述(1)(2)中的结论是否都成立?若结论成立,直接回答,不需证明;若结论不成立,请说明理由.图①图②参考答案【例1】证明:如图,延长FD到点G,使DG=DF,连接CG,∵AD是BC边上的中线,∴BD=CD.在△BDF 和△CDG 中, ∵⎩⎪⎨⎪⎧BD =CD ,∠BDF=∠CDG DF =DG ,, ∴△BDF≌△CDG(SAS), ∴BF=CG ,∠BFD=∠G.∵AE=EF ,∴∠EAF=∠EFA=∠BFD, ∴∠G=∠CAG, ∴AC=CG ,∴BF=AC. 【例2】解:如图,连接AM.∵AB=AC ,点M 为BC 的中点, ∴AM⊥BC,BM =CM =3,∴根据勾股定理,得AM =AB 2-BM 2=52-32=4. ∵S △AMC =12MN·AC=12AM·MC,∴MN=AM·CM AC =4×35=125.【例3】解:△OMN 是等腰三角形,理由如下: 如图,取BC 的中点H ,连接EH ,FH ,∵E 是AB 的中点,H 是BC 的中点,∴EH 平行且等于12AC.同理可证FH 平行且等于12BD.∵AC=BD ,∴HE=HF ,∴∠HEF=∠HFE.又∵EH∥AC,FH∥BD,∴∠HEF=∠ONM,∠OMN=∠HFE, ∴∠OMN=∠ONM,∴OM=ON ,∴△OMN 是等腰三角形.【例4】证明:如图,取AC 的中点N ,连接MN ,DN ,∵M,N 分别为BC ,AC 的中点, ∴MN 为△ABC 的中位线, ∴MN=12AB ,MN∥AB,∴∠B=∠NMC. ∵∠B=2∠C, ∴∠NMC=2∠C.又∵∠NMC 为△DMN 的外角, ∴∠NMC=∠MDN+∠MND=2∠C. ∵DN 为Rt△ADC 斜边上的中线, ∴DN=NC =AN =12AC ,∴∠MDN=∠C,∴∠MND=∠C=∠MDN, ∴DM=MN =12AB ,∴AB=2DM. 1.解:如图,延长AD 到点E ,使AD =DE ,连接CE , 在△ABD 和△ECD 中, ∵⎩⎪⎨⎪⎧AD =DE ,∠ADB=∠EDC BD =CD ,, ∴△ABD≌△ECD(SAS),∴AB=CE =5,AD =DE =6,∴AE=12. 在△AEC 中,∵AC=13,AE =12,CE =5, ∴AC 2=AE 2+CE 2, ∴∠E=90°,∴由勾股定理,得CD =DE 2+CE 2=62+52=61, ∴BC=2CD =261, ∴BC 的长是261.2.(1)解:将△ACD 绕着点D 逆时针旋转180°得到△EBD,则△ACD≌△EBD,∴AD=DE ,BE =AC =5.∵在△ABE 中,AB -BE<AE<AB +BE ,即3<AE<13, ∴3<2AD <13,∴1.5<AD<6.5.(2)证明:如图①,延长FD 至点N ,使DN =DF ,连接BN ,EN ,在△CDF 和△BDN 中, ∵⎩⎪⎨⎪⎧FD =ND ,∠CDF=∠BDN CD =BD ,, ∴△CDF≌△BDN(SAS),∴BN=FC. ∵DF=DN ,DE⊥DF,∴EF=EN.在△EBN 中,∵BE+BN>EN ,∴BE+CF>EF.(3)BE +DF =EF ,理由如下:如图②,延长AB 至点H ,使BH =DF ,连接CH.∵∠ABC+∠D=180°,∠HBC+∠ABC=180°, ∴∠HBC=∠D. 在△CBH 和△CDF 中, ∵⎩⎪⎨⎪⎧DF =BH ,∠D=∠CBH CD =CB ,, ∴△CBH≌△CDF(SAS),∴CH=CF ,∠HCB=∠FCD.又∵∠BCD=100°,∠ECF=50°,∴∠BCE+∠FCD=50°, ∴∠ECH=∠BCE+∠HCB=50°=∠ECF. 在△HCE 和△FCE 中,∵⎩⎪⎨⎪⎧CF =CH ,∠ECF=∠ECH CE =CE ,,∴△HCE≌△FCE(SAS),∴EH=EF ,即BE +BH =EF ,∴BE+DF =EF.3.(1)解:∵AB=AC ,∴∠ABC=∠C=50°,∴∠BAC=180°-50°-50°=80°.又∵点D 为BC 的中点,∴AD⊥BC,AD 平分∠BAC,∴∠BAD=∠CAD=12∠BAC=12×80°=40°. ∵AE=AF ,∴∠E=∠AFE.又∵∠BAC=∠E+∠AFE,∴∠AEF=∠BAD=40°.(2)证明:∵AD 平分∠BAC,∴∠BAD=∠CAD=12∠BAC. ∵AE=AF ,∴∠E=∠AFE.∵∠BAC=∠BAD+∠CAD=∠E+∠AFE,∴∠AEF=∠BAD,∴AD∥EG.4.证明:如图,连接BD ,取BD 的中点H ,连接HE ,HF ,∵E,F ,H 分别是BC ,AD ,BD 的中点,∴FH∥AB 且FH =12AB ,EH∥CD 且EH =12CD , ∴∠BME=∠HFE,∠CNE=∠HEF.又∵AB=CD ,∴FH=EH ,∴∠HFE=∠HEF,∴∠BME=∠CNE.5.解:【感知】如图①中,设AM 的延长线交CB 的延长线于点J ,AN 的延长线交BC 的延长线于点K.∵AM⊥BD,∴∠AMB=∠BMJ=90°.又∵∠ABM=∠JBM,∴∠BAM=∠J,∴BA=BJ.同理可证CA =CK ,又∵BD⊥AJ,CE⊥AK,∴AM=MJ ,AN =NK ,∴MN=12JK =12(JB +BC +CK)=12(AB +BC +AC). 【探究】结论:MN =12(AB +AC -BC).证明如下:如图②中,延长AM 交BC 于点F ,延长AN 交BC 于点G. ∵AM⊥BD,∴∠AMB=∠BMF=90°.又∵∠ABM=∠FBM,∴∠BAM=∠BFM,∴BA=BF.同理可证CA =CG ,又∵AM⊥BD,AN⊥CE,∴AM=MF ,AN =NG ,∴MN=12FG =12(BF +CG -BC)=12(AB +AC -BC). 【应用】DM 的长度为1+ 3.提示:如图③中,延长AM 交BC 于点J ,延长AD 交BC 的延长线于点K ,由题意得∠ACB=180°-∠ACD-∠DCF=30°.又∵∠ABC=90°,AB =2,∴AC=2AB =4,BC =3AB =2 3.∵AM⊥BE,∴∠AMB=∠JMB=90°.又∵BE 平分∠ABJ,∴∠ABM=∠JBM,∴∠BAM=∠BJM,∴AB=BJ.同理可证AC =KC ,又AM⊥BE,CD⊥AK,∴AM=JM ,AD =KD ,∴DM=12JK =12(CK +BC -BJ)=12(AC +BC -AB)=12×(4+23-2)=1+ 3. 6.(1)证明:如图,连接DE.∵AD 是△ABC 的边BC 上的高,∴AD⊥BC.在Rt△ADB 中,∵点E 是AB 的中点,∴DE=12AB =AE.∵CD=AE ,∴DE=DC.又∵DG⊥CE,∴CG=EG.(2)解:如图,过点E 作EF⊥BC 于点F.∵BC=13,CD =5,∴BD=BC -CD =13-5=8.∵DE=BE ,EF⊥BC,∴DF=BF =4, ∴EF=DE 2-DF 2=52-42=3,∴S △EDC =12CD·EF=12×5×3=7.5. 7.(1)证明:如图①,连接DM ,ME.∵在△ABC 中,CD ,BE 分别是AB ,AC 边上的高,∴CD⊥AB,BE⊥AC.图①又∵M 是BC 的中点,∴DM=12BC ,ME =12BC , ∴DM=ME.又∵N 为DE 的中点,∴MN⊥DE.(2)解:在△ABC中,∠ABC+∠ACB=180°-∠A.∵DM=ME=BM=MC,∴∠ABC=∠BDM,∠ACB=∠CEM,∴∠BMD+∠CME=(180°-∠ABC-∠BDM)+(180°-∠ACB-∠CEM)=(180°-2∠ABC)+(180°-2∠ACB)=360°-2(∠ABC+∠ACB)=360°-2(180°-∠A)=2∠A,∴∠DME=180°-2∠A.(3)解:结论(1)成立,结论(2)不成立,理由如下:如图②,结论(1)的证法同(1),结论(2)不成立.理由如下:图②在△ABC中,∠ABC+∠ACB=180°-∠BAC.∵DM=ME=BM=MC,∴∠ABC=∠BDM,∠ACB=∠CEM,∴∠CMD=∠ABC+∠BDM=2∠ABC,∠BME=∠ACB+∠CEM=2∠ACB,∴∠BME+∠CMD=2∠ACB+2∠ABC=2(180°-∠BAC)=360°-2∠BAC,∴∠DME=180°-(360°-2∠BAC)=2∠BAC-180°.。
2021年高考数学一轮复习 技巧探究练2 北师大版
2021年高考数学一轮复习 技巧探究练2 北师大版1.复数1i -2+11-2i 的虚部为( ).A.15 B.15i C .-15D .-15i解析 依题意得1i -2+11-2i=-2-i-2+i -2-i+1+2i1-2i 1+2i =-1+i 5,因此该数的虚部是15,故选A. 答案 A2.若集合A ={1,m 2},集合B ={2,4},则“m =2”是“A ∩B ={2}”的( ).A .充分必要条件B .既不充分也不必要条件C .充分不必要条件D .必要不充分条件解析 由m =2,得A ∩B ={2};反过来,由A ∩B ={2}不能得知m =2,此时m 可能取- 2.因此,“m =2”是“A ∩B ={2}”的充分不必要条件,故选C. 答案 C3.执行如图所示的算法框图,若输入的x 值为2,则输出的x 值为( ).A .3B .126C .127D .128解析 依次可得x =3;x =7;x =127>126,由判断框可知输出x =127,故选C. 答案 C4.已知函数f (x )=2x+x ln x ,则曲线y =f (x )在x =1处的切线方程为( ). A .x -y -3=0B .x -y +3=0C .x +y -3=0D .x +y +3=0解析 依题意得f (1)=2,f ′(x )=-2x2+ln x +1,f ′(1)=-1,所求的切线方程是y-2=-(x -1),即x +y -3=0,故选C. 答案 C5.直线x +3y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于( ).A .2 5B .2 3 C. 3D .1解析 由题意作出图像如图,由图可知圆心O 到直线AB 的距离d =|-2|1+3=1,故|AB |=2|BC |=222-12=2 3.答案 B6.已知两条不同的直线m ,n ,两个不同的平面α,β,则下列命题中的真命题是( ).A .若m ⊥α,n ⊥β,α⊥β,则m ⊥nB .若m ⊥α,n ∥β,α⊥β,则m ⊥nC .若m ∥α,n ∥β,α∥β,则m ∥nD .若m ∥α,n ⊥β,α⊥β,则m ∥n解析 A 中,若m ⊥α,n ⊥β,α⊥β,则m ∥β或在β上,n ∥α或在α上,则m ⊥n ,正确;B ,C ,D 均可举出反例否定. 答案 A7.设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q =( ).A .3B .4C .5D .6解析 据题意将已知两式相减可得3(S 3-S 2)=a 4-a 3⇒3a 3=a 4-a 3,即4a 3=a 4,从而q =a 4a 3=4. 答案 B8.某所学校计划招聘男教师x 名,女教师y 名,x 和y 须满足约束条件⎩⎪⎨⎪⎧2x -y ≥5,x -y ≤2,x <6.则该校招聘的教师人数最多是( ).A .6B .8C .10D .12解析 由题意,可设目标函数为z =x +y ,根据约束条件,作出可行域,由于x ≠6,结合可行域,可知当目标函数z =x +y 过点(5,5)时,z max =5+5=10,所以该校招聘的教师最多为10名,故选C. 答案 C9.若函数y =A sin(ωx +φ)⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2在一个周期内的图像如图所示,M ,N 分别是这段图像的最高点和最低点,且OM →·ON →=0(O 为坐标原点),则A =( ).A.π6B.712π C.76π D.73π 解析 由图知OM →=⎝ ⎛⎭⎪⎫π12,A ,ON →=⎝ ⎛⎭⎪⎫7π12,-A ,∵OM →·ON →=7π2144-A 2=0,∴A =712π. 答案 B10.下列说法错误的是( ).A .为了解高三学生身体状况,某学校将高三每个班学号的个位数为1的学生选作代表进行体检,这种抽样方法是系统抽样B .线性回归方程对应的直线y =bx +a 至少经过其样本数据点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点C .若x ,y ∈[-1,1],则点(x ,y )在区域x 2+y 2<14内的概率是π16D .一组数据的平均数,中位数,众数有可能相等解析A选项由系统抽样的特点知命题正确;B错,回归直线方程必经的点为(x,y ),不一定必经过样本数据中的其中一点;C正确,由几何概型知所求事件的概率等于半径为12的圆与边长为2的正方形面积之比,即P=π×⎝⎛⎭⎪⎫1222×2=π16;D正确,由平均数,中位数,众数的定义可知三者可以相等,例如当样本数据中各数值相等时即可.因此选B.答案 B11.直线l过抛物线y2=2px(p>0)的焦点,且与抛物线交于A,B两点,若线段AB的长是8,AB的中点到y轴的距离是2,则此抛物线方程是 ( ).A.y2=12x B.y2=8xC.y2=6x D.y2=4x解析由弦长结合抛物线定义可得|AB|=x1+x2+p=8,又由AB的中点到y轴的距离可得x1+x22=2,代入上式可得p=4,故抛物线方程为y2=8x,故选B.答案 B12.符号[x]表示不超过x的最大整数,如[π]=3,[-1.08]=-2,定义函数f(x)=x-[x].给出下列四个命题:①函数f(x)的定义域是R,值域为[0,1];②方程f(x)=12有无数个解;③函数f(x)是周期函数;④函数f(x)是增函数.其中正确命题的序号有( ).A.②③B.①④C.③④ D .②④解析据已知函数的定义可得f(x)=x-[x]=⎩⎪⎨⎪⎧⋮x0≤x<1,x-11≤x<2,x-22≤x<3,⋮如图为其部分图像,观察图像可得函数的定义域为R ,值域应为[0,1),故①错;又图像与直线y =12有无穷多个交点,因此方程f (x )=12有无穷多个解,故②正确;③由图像知函数周期为1;④由于函数是以1为周期的函数,故函数在整个定义域上不单调.综上可知命题②③是正确的. 答案 A13.已知向量a =(3,1),b =(1,3),c =(k,2),若(a -c )⊥b ,则k =________.解析 因为a -c =(3-k ,-1),所以k =0. 答案 014.已知正三棱柱ABC -A 1B 1C 1的所有棱长都等于6,且各顶点都在同一球面上,则此球的表面积等于________.解析 如图,三棱柱的外接球球心为O ,其中D 为上底面三角形外接圆的圆心,其中AD =33×6=23,又OD =3,故在Rt △OAD 中可得R =|OA |=232+32=21,故球的表面积为4π(21)2=84π.答案 84π15.在一次读书活动中,1名学生可以从4本不同的科技书和2本不同的文艺书中任选3本,则所选的书中既有科技书又有文艺书的概率为________.解析 因为文艺书只有2本,所以选取的3本书中必有科技书,这样问题就等价于求选取的3本书中有文艺书的概率.设4本不同的科技书为a ,b ,c ,d,2本不同的文艺书为e ,f ,则从这6本书中任选3本的可能情况有:(a ,b ,c ),(a ,b ,d ),(a ,b ,e ),(a ,b ,f ),(a ,c ,d ),(a ,c ,e ),(a ,c ,f ),(a ,d ,e ),(a ,d ,f ),(a ,e ,f ),(b ,c ,d ),(b ,c ,e ),(b ,c ,f ),(b ,d ,e ),(b ,d ,f ),(b ,e ,f ),(c ,d ,e ),(c ,d ,f ),(c ,e ,f ),(d ,e ,f ),共20种,记“选取的3本书中有文艺书”为事件A ,则事件A 包含的可能情况有:(a ,b ,c ),(a ,b ,d ),(a ,c ,d ),(b ,c ,d ),共4种,故P (A )=1-P (A )=1-420=45.答案 4516.已知任意x ∈(0,+∞),都有ax 2+2ax ≥x -4a ,则实数a 的取值范围是________.解析 分离参数:a ≥x x 2+2x +4=1x +4x+2,∵x >0,∴x +4x +2≥6,则a ≥16.答案 ⎣⎢⎡⎭⎪⎫16,+∞33452 82AC 芬R$^N33536 8300 茀24160 5E60 幠q37555 92B3 銳xd521481 53E9 叩V(。
2021年九年级数学总复习开放探索性专题[下学期]北师大版
九年级数学总复习开放探索性专题单元测试题(一)(满分:100分;考试时间:100分钟)命题人:范柱宝题号一二三总分16 17 18 19 20 21 22得分一、填空题(每小题3分;共24分)1. 在四边形ABCD中;已知AB//CD;请补充条件(写一个即可);使得四边形ABCD为平行四边形;若ABCD是平行四边形;请补充条件(写一个即可);使四边形ABCD为菱形。
2. 如图;某校为扩大高中招生;正在施工增盖教学楼;一推土机沿北偏东54°方向的OP工地线来回推土;它的噪声对位于O点正东方向200米处的一教室A已造成影响;当推土机的距O点米处时;推土机的噪声对教室A影响最大。
3. 在△ABC和△ADC中;下列三个论断:①AB=AD;②∠BAC=∠DAC;③BC=DC将其中的两个论断作为条件;另一个论断作为结论写出一个真命题是。
4. 如图;已知∠1=∠2;若再增加一个条件就能使结论“A B·DE=AD·BC”成立;则这个条件可以是。
5. 如图;这是一个滚珠轴承的平面示意图;若该滚珠轴承的内、外圆周的半径分别为2和6;则在该轴承内最多能放颗半径均为2的滚珠。
6. 观察下列算式并填空:32-12=8×1;52-32=8×2。
①72-52=8×;②92- 2=8×4③ 2-92=8×5;④132- 2=8×6;……通过观察归纳;写出反映这种规律的一般结论:(用文字语言表述)。
7. 用计算器探索:按一定规律排列的一组数:1;2;-3;2;5;-6;7……;如果从1开始依次连续选取若干个数;使它们的和大于5;那么至少要选个数。
8. 根据指令[S;A](S≥0;0°<A<180°);机器人在平面上能完成下列动作:先原地逆时针旋转角度A;再朝其面对的方向沿直线行走距离S;现机器人在直角坐标系的坐标原点;且面对y轴正方向。
中考数学一轮复习课件:专题二 开放探索题
开放探索型试题在中考中越来越受到重视,由于条件或结 论的不确定性,使得解题的方法与答案呈多样性.学生犹如八仙 过海,各显神通.
探索性问题的特点:问题一般没有明确的条件或结论,没 有固定的形式和方法,需要自己通过观察、分析、比较、概括、 推理、判断等探索活动来确定所需的条件、方法或结论.这类题 主要考查学生分析问题、解决问题的能力和创新意识.
(1)解:△ADE≌△BDE,△ABC∽△BCD. (2)证明:∵AB=AC,∠A=36°, ∴∠ABC=∠C=72°. ∵BD为∠ABC的角平分线, ∴∠ABD=12∠ABC=36°=∠A.
在△ADE 和△BDE 中,
∠A=∠DBA, ∠AED=∠BED, ED=ED, ∴△ADE≌△BDE(AAS). ∵AB=AC,∠A=36°,∴∠ABC=∠C=72°. ∵BD 为∠ABC 的角平分线, ∴∠DBC=12∠ABC=36°=∠A. 又∵∠C=∠C,∴△ABC∽△BCD.
[解题技巧]寻找全等三角形时,注意形状和大小必须相同; 寻找相似三角形时,注意形状相同.此类题目可能结论唯一,也 可能结论有多种可能.
条件开放与探索 例2:(2015年山东东营)如图Z2-2,在△ABC中,AB>AC, 点D,E分别是边AB,AC的中点,点F在BC边上,连接DE, DF,EF,则添加下列哪一个条件后,仍无法判断△FCE与 △EDF全等( )
解:由题意,考虑圆心在顶点、直角边和斜边上,设计出 符合题意的方案示意图如图 Z2-3 所示四种方案:
图 Z2-3 半径分别为 r1=2 2,r2= 24+1,r3=2,r4=4. [思想方法]策略开放题要结合分类讨论思想来解题,先选 择一个分类的标准,再进行讨论解题,做到不重不漏.
开放探索题常见的类型有:(1)条件开放型,即问题的条件 不完备或满足结论的条件不唯一;(2)结论开放型,即在给定的 条件下,结论不唯一;(3)综合性开放型,一般没有明确的条件 和结论,需要运用信息发现规律并解答;(4)策略开放型,即思 维策略与解题方法不唯一.
2021届中考第一轮复习数学专题验收试题及答案华师大版(Word可编辑版)
2021届中考第一轮复习数学专题验收试题及答案华师大版(最新版)-Word文档,下载后可任意编辑和处理-2021届中考第一轮复习数学专题验收题日期2月1日2月2日2月3日2月4日2月5日2月6日2月7日电表显示度数(度)102106109112116119123请估计小明家2月份总用电量是________ 度6、若两圆有三条公切线,且两圆半径分别为 2 —、2+ ,则圆心距为________7、在函数y = kx +b中,k >0 ,b 2 (D)a≥2三、(共12分,每小题6分)1、计算:—62、如图,在△ABC中,AD是BC边上的高,BM为AC边上的中线,∠CBM=30°,MN⊥BC于N,求证:AD = BM3、(1)已知反比例函数y = 经过点(4,—),求这个函数的解析式(2)若一次函数y= mx + 1的图象与(1)中的反比例函数的图象有交点,求m 的取值范围四、(共14分,每小题7分)1、某校从初三·一班抽测了6名男生的身高,将测得的每一个数据 (单位:厘米)都减去 165.0厘米,其结果如下:—1.2 ,0.1 ,—8.3,1.2,10.8 , —7.0 .求:(1) 这6名男生中最高身高与最低身高相差多少?(2) 这6名男生的平均身高是多少?( 精确到0.1)2、如图是一块直角三角形ABC菜地,∠C=90°,现要把该菜地承包给甲、乙、丙三家村民,三家的人口分别为3人、4人、5人,菜地分配按人口比例,并要求每家菜地均靠水渠BA边,C是三家菜地的交界处. 已知BC=96米,cosB= .(1)计算每家菜地的面积;(2)用尺规作图的方法,作出各家菜地的分界线五、(共14分,每小题7分)1、某地居民用水基本价格为每吨0.9元,为节约用水,供水公司规定每户每月用水量若超过A吨,超出部分按基本水价的140%收费 . (1)小明家1月份用水12吨,共交水费11.52元,求规定用水量A . (2)小明家2月份水费平均每吨为1.02元,求小月家2月份用水多少吨?共交水费多少元?2、如图,正方形ABCD中,P是BD上任一点,PE⊥BC ,PF⊥CD ,求证:PA = EF六、(共14分,每小题7分)1、观察下列等式: a 1=1 + (1 —1) ×4 =1 ; a 2 = 1 + (2—1 )×4 = 5 ;a 3=1 + (3 —1)×4 = 9 ; a 4 =1 + (4 —1)×4 =13 ; a 5 =1 + (5 —1)×4 =17 ;……由a1、a 2 、a 3 、a 4 、a5 …就组成一行有规律的数1 、5 、9 、13 、17 … ,我们用an 来表示这行数的第n 个数 .(1)请写出用n 来表示 an 的公式;(2)当n = 51 时,求a n 的值;(3)请问数505 是否在该行数中?若在,求它是该行数的第几个数?2、如图,AF是⊙O的直径,以OA为直径的⊙C与⊙O的弦AB相交于点D,DE⊥OB,E为垂足,求证:(1)BE·BF = AB·ED ;(2)DE是⊙C的切线七、(共24分,每小题8分)1、某公司试销一种成本单价为500元/ 件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/ 件 . 经市场调查,发现销售量y(件)与销售单价 x(元/ 件)可近似看作一次函数y= kx + b 的关系(如下图).(1)根据图象,写出y = kx + b的关系式;(2)设公司获得的毛利润(毛利润= 销售总价—成本总价)为S元,1)试用销售单价x表示毛利润S;2)销售单价定为多少时,该公司的可获得最大毛利润?最大毛利润是多少?此时的销售量是多少?2、如图,⊙O1 与⊙O2交于A、B,点O1 在⊙O2 上,C为⊙O1中优弧AB上任意一点,直线CB交⊙O2 于D,连结O1D. (1)证明:DO1⊥AC ;(2)若AC 在劣弧AB上,结论是否成立?请画出图形并证明你的结论 .3、某服装经销商甲,库存有进价每套400元的A品牌服装1200套,正常销售时每套600元,每月可卖出100套,正好一年内卖完。
中考复习数学专题一开放探索问题检测(附答案)
中考复习数学专题一开放探索问题检测(附答案)〔30分钟 50分〕一、选择题(每题5分,共15分)1.(2021·莆田中考)等腰三角形的两条边长区分为3,6,那么它的周长为( )(A)15 (B)12(C)12或15 (D)不能确定2.如图,直线y=x+2与双曲线m 3y x -=在第二象限有两个交点,那么m 的取值范围在数轴上表示为( )3.(2021·宁波中考)如图,用邻边长区分为a ,b(a ﹤b)的矩形硬纸板裁出以a 为直径的两个半圆,再裁出与矩形的较长边、两个半圆均相切的两个小圆.把半圆作为圆锥形圣诞帽的正面,小圆恰恰能作为底面,从而做成两个圣诞帽(拼接处资料疏忽不计),那么a 与b 满足的关系式是( )(A)b 3a = (B)51b a 2+=(C)5b a 2=(D)b 2a =二、填空题(每题5分,共10分)4.x 2+x-1=0,那么代数式2x 3+4x 2+3的值为________________________.5.(2021·潜江中考)ABCD 的周长为28,自顶点A 作AE ⊥CD 于点E ,AF ⊥CB 于点F.假定AE=3,AF=4,那么CE-CF=_______________.三、解答题(共25分)6.(12分)(2021·黄冈中考)新星小学门口有不时线马路,为方便先生过马路,交警在门口设有一定宽度的斑马线,斑马线的宽度为 4 米,为平安起见,规则车头距斑马线后端的水平距离不得低于2 米,现有一旅游车在路口遇红灯刹车停下,汽车里司机与斑马线前后两端的视角区分为∠FAE =15° 和∠FAD=30° .司机距车头的水平距离为0.8 米,试问该旅游车停车能否契合上述平安规范(E,D,C,B 四点在平行于斑马线的同不时线上)?【探求创新】7.(13分)(2021·河北中考)如图1和图2,在△ABC 中,AB=13,BC=14,cos ∠ABC=513. 探求如图1,AH ⊥BC 于点H,那么AH=________,AC=________,△ABC 的面积S △ABC =__________.拓展 如图2,点D 在AC 上(可与点A,C 重合),区分过点A,C 作直线BD 的垂线,垂足为E,F,设BD=x,AE=m,CF=n.(当点D 与点A 重合时,我们以为S △ABD =0)(1)用含x,m 或n 的代数式表示S △ABD 及S △CBD ;(2)求(m+n)与x 的函数关系式,并求(m+n)的最大值和最小值;(3)对给定的一个x 值,有时只能确定独一的点D,指出这样的x 的取值范围.发现请你确定一条直线,使得A,B,C三点到这条直线的距离之和最小(不用写出进程),并写出这个最小值.答案解析1.【解析】选A.由题意可知:当6是腰时,三角形的周长是15;当3是腰时,3+3=6,不能组成三角形.2.【解析】选B.由题意可得m-3<0,故m<3;由直线y=x+2与双曲线m3yx-=在第二象限有两个交点,可得m3x2x-+=,即x2+2x-(m-3)=0,即Δ=4+4(m-3)>0,所以m>2.综上,可得2<m<3,应选B.3.【解析】选D.如图,设小圆半径为r,由题意得112r2(a)22π=⋅π,解得1 r a.4 =在Rt△O1O2H中,O1O2=13r a a24+=,O1H=12b,211O H a r a.24=-=又O1O22=O1H2+O2H2,所以222311(a)(b)(a)424=+,解得b2a.=应选D.4.【解析】把x2+x看成一个全体,得x2+x=1,所以2x3+4x2+3=2x3+2x2+2x2+3= 2x(x2+x)+2x2+3=2x+2x2+3=2(x2+x)+3=2+3=5.答案:55.【解析】(1)当E,F区分在线段CD和CB上时,如下图:设BC=x,DC=y,那么依据题意可得:x y14 4x3y+=⎧⎨=⎩,,解得x6y8=⎧⎨=⎩,,即BC=6,DC=8,依据勾股定理可知2222DE6333BF8443 =-==-=,,所以CE-CF= ()() 8336432 3. ---=+(2)当E,F区分在CD,CB的延伸线上时,如下图:同理可得CE-CF=2-3.答案:2323 +-或6.【解析】由题意得:∠FAE=15°,∠FAD=30°, ∴∠EAD=15°.∵FA∥BE, ∴∠AED=15°,即AD=DE=4米.在Rt△ADB中,∠ADB=∠FAD=30°,∴BD=AD·cos30°42=⨯=3.464米,DC=BD-BC=3.464-0.8=2.664米>2米, ∴该车停车契合上述平安规范.7.【解析】探求12 15 84拓展(1)由三角形面积公式,得ABD CBD11S mx,S nx.22==(2)由(1)得CBDABD2S2Sm,n,x x==∴m+n=CBDABD2S2S168.x x x+=由于AC边上的高为ABC2S28456, 15155⨯==∴x的取值范围是565≤x≤14.∵(m+n)随x的增大而减小,∴当x=565时,(m+n)的最大值为15;当x=14时,(m+n)的最小值为12.(3)x的取值范围是x=565或13<x≤14.发现AC所在的直线,最小值为56 5.【高手支招】解压轴题时遇到困难的缘由及应对战略缘由:在解压轴题时遇到的困难能够来自多方面,如基础知识和基本技艺完善、解题阅历缺失或训练水平不够、自决计缺乏等,详细表现能够是〝不知从何处下手,不知向何方行进〞. 应对战略:在求解中考数学压轴题时,要注重一些数学思想方法的灵敏运用.数学思想方法是解好压轴题的重要工具,也是保证压轴题能求解的〝对而全、全而美〞的重要前提.针对近年全国各地中考数学压轴题的特点,在学习中要狠抓基础知识的落实,由于基础知识是〝不变量〞,而所谓的考试〝热点〞只是与标题的方式有关.有效地解答中考压轴题的关键是要以不变应万变.加大综合题的训练力度,增强解题方法的训练,增强数学思想方法的浸透,注重〝基本形式〞的积聚与变化。
中考数学专题复习 专题一 规律探索型问题备考演练(2021学年)
江西省中考数学专题复习专题一规律探索型问题备考演练编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江西省中考数学专题复习专题一规律探索型问题备考演练)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江西省中考数学专题复习专题一规律探索型问题备考演练的全部内容。
专题一规律探索型问题一、选择题1.(2015·邵阳)如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置……依次类推,这样连续旋转2 015次后,顶点A在整个旋转过程中所经过的路程之和是( D)A. 2 015πB.3 019。
5π C. 3018π D. 3 024π2.(2015·鄂州)在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3,…,按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3、…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2 015B2015C2015D2 015的边长是( D)A.错误!错误!B。
错误!错误!C.错误!错误!D.错误!错误![解析]∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin 30°=错误!,则B2C2=错误!=错误!=错误!错误!,同理可得B3C3=错误!=错误!错误!,故正方形A n BnCnDn的边长是错误!错误!.则正方形A2 015B2 015C2 015D2 015的边长是错误!错误!.二、填空题3.(2016枣庄)一列数a1,a2,a3,…满足条件:a1=错误!,an=错误!(n≥2,且n为整数),则a2 016=__-1__.4.(2016·威海)如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6……按此规律进行下去,则点A2 016的纵坐标为__-(错误!)2_015__.5.(2015·梅州)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去.若点A错误!,B(0,2),则点B2 016的坐标为__(6_048,2)__.6.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是__(63,32)__.[解析] ∵直线的解析式是y=x+1,当x=0时,y=1,∴A1B1=OA1=1,∴A1的纵坐标是1=20,A1的横坐标是0=20-1,当x=1时,y=2,A2C1=2。
中考数学试题汇编及解析探索型问题课标试题
2021年中考数学试题汇编及解析探究型问题本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。
探究型问题这类问题往往涉及面很广,主要是探究题设结论是否存在,或者是否成立,或者是让学生自己先猜测结论,再进展研究从而得出正确的结论等等,这些题通常有一定的难度,几乎在全国各地的中考数学试卷中都能见到。
1、〔2021〕如图1,在直角坐标系中,点A的坐标为〔1,0〕,•以OA•为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点〔OC>1〕,连结BC,•以BC•为边在第四象限内作等边△CBD,直线DA交y轴于点E.〔1〕试问△OBC与△ABD全等吗?并证明你的结论.〔2〕随着点C位置的变化,点E的位置是否会发生变化,假设没有变化,求出点E•的坐标;假设有变化,请说明理由.〔3〕如图2,以OC为直径作圆,与直线DE分别交于点F、G,设AC=m,AF=n,用含n的代数式表示m.[解析]〔1〕两个三角形全等∵△AOB、△CBD都是等边三角形∴OBA=∠CBD=60°∴∠OBA+∠ABC=∠CBD+∠ABC即∠OBC=∠ABD∵OB=AB,BC=BD△OBC≌△ABD〔2〕点E位置不变∵△OBC≌△ABD∴∠BAD=∠BOC=60°∠OAE=180°-60°-60°=60°在Rt△EOA中,EO=OA·tan60°=3或者∠AEO=30°,得AE=2,∴OE=3∴点E的坐标为〔0,3〕〔3〕∵AC=m,AF=n,由相交弦定理知1·m=n·AG,即AG=m n又∵OC是直径,∴OE是圆的切线,OE2=EG·EF 在Rt△EOA中,3132=〔2-mn〕〔2+n〕即2n 2+n-2m-mn=0解得m=222n nn ++.2、〔2021〕如图,平面直角坐标系中,直线AB 与x 轴,y 轴分别交于A (3,0),B (0,3)两点, ,点C 为线段AB 上的一动点,过点C 作CD ⊥x 轴于点D .(1)求直线AB 的解析式;(2)假设S 梯形OBCD =433,求点C 的坐标; (3)在第一象限内是否存在点P ,使得以P,O,B 为顶点的 三角形与△OBA 相似.假设存在,恳求出所有符合条件 的点P 的坐标;假设不存在,请说明理由.[解析] 〔1〕直线AB 解析式为:y=33-x+3. 〔2〕方法一:设点C坐标为〔x ,33-x+3〕,那么OD =x ,CD =33-x+3. ∴OBCD S 梯形=()2CD CD OB ⨯+=3632+-x . 由题意:3632+-x =334,解得4,221==x x 〔舍去〕 ∴ C〔2,33〕 方法二:∵ 23321=⨯=∆OB OA S AOB ,OBCD S 梯形=334,∴63=∆ACD S . 由OA=3OB ,得∠BAO =30°,AD=3CD .∴ ACD S ∆=21CD ×AD =223CD =63.可得CD =33.∴ AD=1,OD =2.∴C 〔2,33〕.〔3〕当∠OBP =Rt ∠时,如图①假设△BOP ∽△OBA ,那么∠BOP =∠BAO=30°,BP=3OB=3,∴1P 〔3,33〕. ②假设△BPO ∽△OBA ,那么∠BPO =∠BAO=30°,OP=33OB=1. ∴2P 〔1,3〕. 当∠OPB =Rt ∠时③ 过点P 作OP ⊥BC 于点P(如图),此时△PBO ∽△OBA ,∠BOP =∠BAO =30° 过点P 作PM ⊥OA 于点M .方法一: 在Rt △PBO 中,BP =21OB =23,OP =3BP =23.∵ 在Rt △P MO 中,∠OPM =30°,∴ OM =21OP =43;PM =3OM =433.∴3P 〔43,433〕.方法二:设P〔x ,33-x+3〕,得OM =x ,PM =33-x+3 由∠BOP =∠BAO,得∠POM =∠ABO .∵tan ∠POM==OMPM =x x 333+-,tan ∠ABOC=OBOA =3.∴33-x+3=3x ,解得x =43.此时,3P 〔43,433〕. ④假设△POB ∽△OBA(如图),那么∠OBP=∠BAO =30°,∠POM =30°.∴ PM =33OM =43. ∴ 4P 〔43,43〕〔由对称性也可得到点4P 的坐标〕.当∠OPB =Rt ∠时,点P 在x轴上,不符合要求. 综合得,符合条件的点有四个,分别是:1P 〔3,33〕,2P 〔1,3〕,3P 〔43,433〕,4P 〔43,43〕. 3、〔2021〕如图,在直角坐标系中,以点A 为圆心,以x 轴相交于点B C ,,与y 轴相交于点D E ,.〔1〕假设抛物线213y x bx c =++经过C D ,两点,求抛物线的解析式,并判断点B 是否在该抛物线上.〔2〕在〔1〕中的抛物线的对称轴上求一点P ,使得PBD △的周长最小.〔3〕设Q 为〔1〕中的抛物线的对称轴上的一点,在抛物线上是否存在这样的点M ,使得四边形BCQM 是平行四边形.假设存在,求出点M 的坐标;假设不存在,说明理由.[解析] 〔1〕OA =∵AB AC ==(B ∴,C 又在Rt AOD △中,AD =OA =3OD ==∴D ∴的坐标为(03)-,又DC ,两点在抛物线上,231(33)03c c =-⎧⎪⎨++=⎪⎩∴解得3b c ⎧=⎪⎨⎪=-⎩ ∴抛物线的解析式为:2133y x x =--当x =0y =∴点(B 在抛物线上〔2〕2133y x x =--∵21(43x =- ∴抛物线2133y x x =--的对称轴方程为x = 在抛物线的对称轴上存在点P ,使PBD △的周长最小.BD ∵的长为定值 ∴要使PBD △周长最小只需PB PD +最小. 连结DC ,那么DC 与对称轴的交点即为使PBD △周长最小的点. 设直线DC 的解析式为y mx n =+.由30n n =-⎧⎪⎨+=⎪⎩得3m n ⎧=⎪⎨⎪=-⎩∴直线DC的解析式为3y x =-由33y x x ⎧=-⎪⎨⎪=⎩得2x y ⎧=⎪⎨=-⎪⎩ 故点P的坐标为2)-〔3〕存在,设)Q t为抛物线对称轴x =M 在抛物线上要使四边形BCQM 为平行四边形,那么BC QM ∥且BC QM =,点M 在对称轴的左侧.于是,过点Q 作直线L BC ∥与抛物线交于点()m M x t , 由BC QM =得QM =从而m x =-12t =故在抛物线上存在点(M ,使得四边形BCQM 为平行四边形. 4、〔2021〕把两块全等的直角三角形ABC 和DEF 叠放在一起,使三角板DEF 的锐角顶点D 与三角板ABC 的斜边中点O 重合,其中90ABC DEF ∠=∠=,45C F ∠=∠=,4AB DE ==,把三角板ABC 固定不动,让三角板DEF 绕点O 旋转,设射线DE 与射线AB 相交于点P ,射线DF 与线段BC 相交于点Q .〔1〕如图9,当射线DF 经过点B ,即点Q 与点B 重合时,易证APD CDQ △∽△.此 时,AP CQ =· .〔2〕将三角板DEF 由图1所示的位置绕点O 沿逆时针方向旋转,设旋转角为α.其中090α<<,问AP CQ ·的值是否改变?说明你的理由.〔3〕在〔2〕的条件下,设CQ x =,两块三角板重叠面积为y ,求y 与x 的函数关系式.[解析] 〔1〕8〔2〕AP CQ ·的值不会改变.理由如下:在APD △与CDQ △中,45A C ∠=∠= 18045(45)90APD a a ∠=--+=-90CDQ a ∠=- 即APD CDQ ∠=∠APD CDQ ∴△∽△ AP CDAD CQ=∴22182AP CQ AD CD AD AC ⎛⎫==== ⎪⎝⎭∴BPEFF E 图1 图3图3EF〔3〕情形1:当045a <<时,24CQ <<,即24x <<,此时两三角板重叠局部为四边形DPBQ ,过D 作DG AP ⊥于G ,DN BC ⊥于N ,2DG DN ==∴由〔2〕知:8AP CQ =得8AP x=于是111222y AB AC CQ DN AP DG =--88(24)x x x=--<<情形2:当4590a <≤时,02CQ <≤时,即02x <≤,此时两三角板重叠局部为DMQ △, 由于8AP x =,84PB x=-,易证:PBM DNM △∽△, BM PB MN DN =∴即22BM PB BM =-解得28424PB xBM PB x-==+- 84444xMQ BM CQ x x-=--=---∴ 于是1844(02)24xy MQ DN x x x-==--<-≤综上所述,当24x <<时,88y x x=--当02x <≤时,8444xy x x-=---2484y x x x =⎛⎫-+ ⎪-⎝⎭或法二:连结BD ,并过D 作DN BC ⊥于点N ,在DBQ △与MCD △中,45DBQ MCD ∠=∠=45DQB QCB QDC QDC MDQ QDC MDC ∠=∠+∠=+∠=∠+∠=∠DBQ MCD ∴△∽△MC DBCD BQ=∴4x =- 84MC x=-∴ 284844x x MQ MC CD x x x -+=-=-=--∴ BPG2148(02)24x x y DN MQ x x-+==<-∴≤法三:过D 作DN BC ⊥于点N ,在Rt DNQ △中, 222DQ DN NQ =+ 24(2)x =+- 248x x =-+于是在BDQ △与DMQ △中45DBQ MDQ ∠=∠= DMQ DBM BDM ∠=∠+∠ 45BDM =+∠ BDQ =∠BDQ DMQ ∴△∽△ BQ DQ DQ MQ =∴即4x DQDQ MQ-= 224844DQ x x MQ x x-+==--∴2148(02)24x x y DN MQ x x-+==<-∴≤5、〔2021〕如图,点O 是坐标原点,点A 〔n ,0〕是x 轴上一动点(n <0〕以AO 为一边作矩形AOBC ,点C 在第二象限,且OB =2OA .矩形AOBC 绕点A 逆时针旋转90o得矩形AGDE .过点A 的直线y =kx +m 交y 轴于点F ,FB =FA .抛物线y=ax 2+bx+c 过点E 、F 、G 且和直线AF 交于点H ,过点H 作HM ⊥x 轴,垂足为点M .(1)求k 的值;(2)点A 位置改变时,△AMH 的面积和矩形AOBC 的面积的比值是否改变?说明你的理由.[解析] 〔1〕根据题意得到:E 〔3n ,0〕, G 〔n ,-n 〕当x =0时,y =kx +m =m ,∴点F 坐标为〔0,m 〕 ∵Rt △AOF 中,AF 2=m 2+n 2,∵FB =AF ,∴m 2+n 2=(-2n -m)2, 化简得:m =-0.75n ,对于y =kx +m ,当x =n 时,y =0, ∴0=kn -0.75n , ∴k =0.75〔2〕∵抛物线y=ax 2+bx+c 过点E 、F 、G ,∴ ⎪⎩⎪⎨⎧=-++=-++=c c nb a n n c nb a n 75.039022解得:a =n 41,b =-21,c =-0.75n∴抛物线为y=n 41x 2-21x -0.75n解方程组:⎪⎩⎪⎨⎧-=--=nx y n x x n y 75.075.075.021412 得:x 1=5n ,y 1=3n ;x 2=0,y 2=-0.75n∴H 坐标是:〔5n ,3n 〕,HM =-3n ,AM =n -5n =-4n , ∴△×HM ×AM =6n 2;而矩形AOBC 的面积=2n 2,∴△AMH 的面积∶矩形AOBC 的面积=3:1,不随着点A 的位置的改变而改变.6、〔2021〕如图〔1〕,在以AB 为直径的半圆O 内有一点P ,AP 、BP 的延长线分别交半圆O 于点C 、D .求证:AP ·AC+BP ·BD=AB 2.证明:连结AD、BC,过P作PM⊥AB,那么∠ADB=∠AMP=90o,∴点D、M在以AP为直径的圆上;同理:M、C在以BP为直径的圆上.由割线定理得:AP·AC=AM·AB,BP·BD=BM·BA,所以,AP·AC+BP·BD=AM·AB+BM·AB=AB·〔AM+BM〕=AB2.当点P在半圆周上时,也有AP·AC+BP·BD=AP2+BP2=AB2成立,那么:〔1〕如图〔2〕当点P在半圆周外时,结论AP·AC+BP·BD=AB2是否成立?为什么?〔2〕如图〔3〕当点P在切线BE外侧时,你能得到什么结论?将你得到的结论写出来.[解析]〔1〕成立.证明:如图〔2〕,∵∠PCM=∠PDM=900,∴点C、D在以PM为直径的圆上,∴AC·AP=AM·MD,BD·BP=BM·BC,∴AC·AP+BD·BP=AM·MD+BM·BC,由,AM·MD+BM·BC=AB2,∴AP·AC+BP·BD=AB2.〔2〕如图〔3〕,过P作PM⊥AB,交AB的延长线于M,连结AD、BC,那么C、M在以PB为直径的圆上,∴AP·AC=AB·AM,①D、M在以PA为直径的圆上,∴BP·BD=AB·BM,②由图象可知:AB=AM-BM,③由①②③可得:AP·AC-BP·BD=AB·〔AM-BM〕=AB2.7、〔2021〕问题背景;课外学习小组在一次学习研讨中,得到了如下两个命题:①如图1,在正三角形ABC中,M,N分别是AC、AB上的点,BM与CN相交于点O,假设∠BON=60°.那么BM=CN:②如图2,在正方形ABCD中,M、N分别是CD、AD上的点.BM与CN相交于点O,假设∠BON=90°.那么BM=CN.然后运用类似的思想提出了如下命题:③如图3,在正五边形ABCDE中,M、N分别是CD,DE上的点,BM与CN相交于点O,假设∠BON=108°,那么BM=CN.任务要求(1)请你从①.②,③三个命题中选择一个进展证明;(2) 请你继续完成下面的探究;①如图4,在正n(n≧3)边形ABCDEF 中,M,N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明)②如图5,在正五边形ABCDE中,M、N分别是DE,AE上的点,BM与CN 相交于点O,∠BON=108°时,试问结论BM=CN是否还成立,假设成立,请给予证明.假设不成立,请说明理由(I)我选[解析]〔1〕如选命题①证明:在图1中,∵∠BON=60°∴∠1+∠2=60°∵∠3+∠2=60°,∴∠1=∠3又∵BC=CA,∠BCM=∠CAN=60°∴ΔBCM≌ΔCAN∴BM=CN〔2〕如选命题②证明:在图2中,∵∵∠BON=90°∴∠1+∠2=90°∵∠3+∠2=90°,∴∠1=∠3又∵BC=CD,∠BCM=∠CDN=90°∴ΔBCM≌ΔCDN∴BM=CN〔3〕如选命题③证明;在图3中,∵∠BON=108°∴∠1+∠2=108°∵∠2+∠3=108°∴∠1=∠3又∵BC=CD,∠BCM=∠CDN=108°∴ΔBCM≌ΔCDN∴BM=CN(2)①答:当∠BON=(n-2)180n时结论BM=CN成立.②答当∠BON=108°时。
中考数学专题复习 专题四 开放探索型问题备考演练(2021学年)
江西省中考数学专题复习专题四开放探索型问题备考演练编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江西省中考数学专题复习专题四开放探索型问题备考演练)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江西省中考数学专题复习专题四开放探索型问题备考演练的全部内容。
专题四开放探索型问题备考演练一、填空题1.(2016·益阳)我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数y =-\f(3,x)的图象上有一些整点,请写出其中一个整点的坐标__答案不唯一,如:(-3,1)__.2.在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是__AB=AD(答案不唯一)__.(写出一个即可)3.(2016·吉林)如图,四边形ABCD内接于⊙O,∠DAB=130°,连接OC,点P是半径OC 上任意一点,连接DP,BP,则∠BPD可能为__60°(∠BPD可能为50°~100°之间的任意一个数)__度.(写出一个即可)4.(2016·西宁)⊙O的半径为1,弦AB=\r(3),弦AC=错误!,则∠BAC的度数为__75°或15°__.二、解答题5.(2017·安顺模拟)已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.[解](1)证明:在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC,∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE,∴∠DAE=∠DAC+∠CAE=12×180°=90°,又∵AD⊥BC,CE⊥AN,∴∠ADC=∠CEA=90°,∴四边形ADCE为矩形.(2)当△ABC满足∠BAC=90°时,四边形ADCE是一个正方形.理由:假设∠BAC=90°.∵AB=AC,∴∠ACB=∠B=45°,∵AD⊥BC,∴∠CAD=∠ACD=45°,∴DC=AD,∵四边形ADCE为矩形,∴矩形ADCE是正方形.∴当∠BAC=90°时,四边形ADCE是一个正方形.6.(2016·雅安)如图已知Rt△ABC中,∠B=90°,AC=20,AB=10,P是边AC上一点(不包括端点A,C),过点P作PE⊥BC于点E,过点E作EF∥AC,交AB于点F.设PC=x,PE=y。
中考数学复习解题方法突破 新题型 第三讲 探索型问题
2021年
11
规律目之一.一般地,图形个数一般都与序号相联 系,可观察前面给出的简单的图形,找出序号与图形个数之间的联系,将这个规律 用代数式表示,然后运用得到的规律求解.
2021年
12
【思路点拨】
本题考查了反比例函 数的综合应用,用到的知 识是三角函数、平行四边 形、反比例函数、三角形 的面积等,要注意运用数 形结合的思想.
9
2021年
探究提高 本题属于规律探索型
问题,数学对象所具备的 状态或关系不明确时,需 对其本质属性进行探索, 从而寻求、发现其所服从 的某一特定规律或具有的 不变性.解题方法一般是 利用特殊值(特殊点、特 殊数量、特殊线段、特殊 位置等)进行归纳、概括, 从特殊到一般,从而得出 规律.
10
【思路点拨】 (1)根据平移的性质求出AB1和AB2的长; (2)根据(1)中所求得出数字变化规律, 进而得出ABn=(n+1)×5+1求出n即可.
2021年
13
2021年
14
2021年
15
2021年
探究提高 存在探索题是指在一
定条件下,需探索发现某 种数学关系是否存在的问 题.解题方法一般是先对 结论作肯定存在的假设, 然后由此肯定的假设出发, 结合已知条件进行推理论 证,若导出矛盾,则否定 先前假设;若推出合理的 结论,则说明假设正确, 引出问题的结论.
6
• 对所学的新知识的思维迁移,进行发现,这种方法 (1)直观探索法 多用于图形性质的发现;
(2)归纳探索法
(3)类比探索法
2021年
7
实战突破
2021年
8
1. (2013·湖州)将连续的正整数按以下规律排列,则位于第 7 行、第七列的数 x 是 .
九年级数学下册 26.3 实践与探索练习题 华东师大版(2021年整理)
九年级数学下册 26.3 实践与探索练习题(新版)华东师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学下册26.3 实践与探索练习题(新版)华东师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学下册 26.3 实践与探索练习题(新版)华东师大版的全部内容。
26。
3实践与探索练习题一、选择题1、已知抛物线y=x2﹣2x﹣2与x轴的一个交点为(m,0),则代数式m2﹣2m+2014的值为()A.2014 B.2015 C.2016 D. 20172、二次函数y=ax2+bx+c(a≠0,a,b,c为常数)的图象如图,ax2+bx+c=m有实数根的条件是()A.m≥﹣2 B.m≥5C.m≥0D.m>43、已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:则下列判断中正确的是()A.抛物线开口向上B.抛物线与y轴交于负半轴C.当x=3时,y<0 D.方程ax2+bx+c=0有两个相等实数根4、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数值y>0时,x的取值范围是( )A.x<﹣1 B.x>3 C.﹣1<x<3 D.x<﹣1或x>35、二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t 为实数)在﹣1<x<4的范围内有解,则t的取值范围是( )A.t≥﹣1 B.﹣1≤t<3 C.﹣1≤t<8 D.3<t<86、某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足:y1=﹣x2+10x,y2=2x,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为()A.30万元B.40万元C.45万元D.46万元7、如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为()A.y=(x—3)2 B.y=(x-3)2C.y=(x+3)2D.y=(x+3)28、烟花厂为国庆观礼特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t (s)的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A.2s B.4s C.6s D.8s9、某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y=(x>0),若该车某次的刹车距离为5m,则开始刹车时的速度为()A.40 m/s B.20 m/s C.10 m/s D. 5 m/s10、如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,点B坐标(﹣1,0),下面的四个结论:①OA=3;②a+b+c<0;③ac>0;④b2﹣4ac>0.其中正确的结论是()A.①④B.①③C.②④D.①②二、填空题1、如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P (4,0)在该抛物线上,则4a﹣2b+c的值为.2、如图,二次函数y=ax2+bx+3的图象经过点A(﹣1,0),B(3,0),那么一元二次方程ax2+bx=0的根是.3、抛物线y=x2+1与双曲线y=的交点A的横坐标是1,则关于x的不等式﹣+x2+1<0的解集是.4、如图,抛物线y=ax2+bx与直线y=kx相交于O(0,0)和A(3,2)两点,则不等式ax2+bx<kx的解集为.5、如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为米.6、如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是.三、解答题1、在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].2、某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)3、如图,二次函数y=x2﹣2x+c的图象与x轴分别交于A,B两点,顶点M关于x轴的对称点是M.(1)若A(﹣2,0),求二次函数的关系式;(2)在(1)的条件下,求四边形AMBM的面积.(3)当c=0时,试判断四边形AMBM的形状,并请说明理由.4、先阅读理解下面的例题,再按要求解答后面的问题例题:解一元二次不等式x2﹣3x+2>0.解:令y=x2﹣3x+2,画出y=x2﹣3x+2如图所示,由图象可知:当x<1或x>2时,y>0.所以一元二次不等式x2﹣3x+2>0的解集为x<1或x>2.填空:(1)x2﹣3x+2<0的解集为1<x<2 ;(2)x2﹣1>0的解集为x<﹣1或x>1 ;用类似的方法解一元二次不等式﹣x2﹣5x+6>0.5、如图,排球运动员站在点O处练习发球,将球从点O正上方2米的点A处发出把球看成点,其运行的高度y(米)与运行的水平距离x(米)满足关系式y=a(x﹣6)2+h,已知球网与点O 的水平距离为9米,高度为2。
2021版新数学一轮学案:第八章第九讲第三课时定点、定值、探索性问题含解析
2021版新高考数学(山东专用)一轮学案:第八章第九讲第三课时定点、定值、探索性问题含解析第三课时定点、定值、探索性问题KAO DIAN TU PO HU DONG TAN JIU考点突破·互动探究考点一圆锥曲线的定值问题——自主练透例1 (2018·北京高考)已知抛物线C:y2=2px(p〉0)经过点P(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线P A交y轴于M,直线PB交y轴于N。
(1)求直线l的斜率的取值范围;(2)设O为原点,错误!=λ错误!,错误!=μ错误!,求证:错误!+错误!为定值.[解析](1)因为抛物线y2=2px过点(1,2),所以2p=4,即p=2。
故抛物线C的方程为y2=4x,由题意知,直线l的斜率存在且不为0.设直线l的方程为y=kx+1(k≠0).由错误!得k2x2+(2k-4)x+1=0.依题意Δ=(2k-4)2-4×k2×1〉0,解得k〈0或0<k〈1。
又P A,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3.所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(2)设A(x1,y1),B(x2,y2),由(1)知x1+x2=-错误!,x1x2=错误!.直线P A的方程为y-2=错误!(x-1).令x=0,得点M的纵坐标为y M=错误!+2=错误!+2。
同理得点N的纵坐标为y N=错误!+2。
由错误!=λ错误!,错误!=μ错误!得λ=1-y M,μ=1-y N。
所以1λ+错误!=错误!+错误!=错误!+错误!=错误!·错误!=错误!·错误!=2。
所以错误!+错误!为定值.名师点拨☞求解定值问题常用的方法(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.〔变式训练1〕(2020·河南八市重点高中联盟联考)已知椭圆C:错误!+错误!=1(a>b〉0)的左右焦点分别是F1,F2,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=错误!x+3相切,点P在椭圆C上,|PF1|=2,∠F1PF2=60°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北辰教育学科教师辅导教案在读学校:年级:课时数: 3 学员姓名:辅导科目:学科教师:授课类型C-2019年中考数学一轮备考-探索题专题星级★★★★★教学目的授课日期及时段年月日教学内容27.(10分)如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D,E分别是边AB,AC的中点,点P从点D出发沿DE方向运动,过点P作PQ⊥BC于Q,过点Q作QR∥BA交AC于R,当点Q与点C重合时,点P停止运动.设BQ=x,QR=y.(1)求点D到BC的距离DH的长;(2)求y关于x的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)根据三角形相似的判定定理求出△BHD∽△BAC,根据相似三角形的性质求出DH的长;(2)根据△RQC∽△ABC,根据三角形的相似比求出y关于x的函数关系式;(3)画出图形,根据图形进行讨论:①当PQ=PR时,过点P作PM⊥QR于M,则QM=RM.由于∠1+∠2=90°,∠C+∠2=90°,∴∠1=∠C.∴cos∠1=cosC==,∴=,即可求出x的值;②当PQ=RQ时,﹣x+6=,x=6;③当PR=QR时,则R为PQ中垂线上的点,于是点R为EC的中点,故CR=CE=AC=2.由于tanC==,x=.【解答】解:(1)在Rt△ABC中,∵∠A=90°,AB=6,AC=8,∴BC==10.∵∠DHB=∠A=90°,∠B=∠B.∴△BHD∽△BAC,∴=,∴DH=•AC=×8=(3分)(2)∵QR∥AB,∴∠QRC=∠A=90°.∵∠C=∠C,∴△RQC∽△ABC,∴=,∴=,即y关于x的函数关系式为:y=x+6.(6分)(3)存在,分三种情况:①当PQ=PR时,过点P作PM⊥QR于M,则QM=RM.∵∠1+∠2=90°,∠C+∠2=90°,∴∠1=∠C.∴cos∠1=cosC==,∴=,∴=,∴x=.②当PQ=RQ时,﹣x+6=,∴x=6.③作EM⊥BC,RN⊥EM,∴EM∥PQ,当PR=QR时,则R为PQ中垂线上的点,∴EN=MN,∴ER=RC,∴点R为EC的中点,∴CR=CE=AC=2.∵tanC==,∴=,∴x=.综上所述,当x为或6或时,△PQR为等腰三角形.(12分)【点评】本题很复杂,把一次函数与三角形的知识相结合,使题目的综合性加强,提高了难度,解答此题的关键是根据题意画出图形,用数形结合的方法解答.27. (1)提出问题:如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),联结AM,以AM为边作等边△AMN,联结CN.求证:∠ABC=∠ACN.(2)类比探究:如图2,在等边△ABC中,点M是边BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.(3)拓展延伸:如图3,在等腰△ABC中,BA=BC,点M是边BC上的任意一点(不含端点B、C),联结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.联结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.解答:(1)证明:∵△ABC、△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60∘,∴∠BAM=∠CAN,∵在△BAM和△CAN中,⎧⎩⎨⎪⎪AB=AC∠BAM=∠CANAM=AN∴△BAM≌△CAN(SAS),∴∠ABC=∠ACN.(2)结论∠ABC=∠ACN仍成立;理由如下:∵△ABC、△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60∘,∴∠BAM=∠CAN,∵在△BAM和△CAN中,⎧⎩⎨⎪⎪AB=AC∠BAM=∠CANAM=AN∴△BAM≌△CAN(SAS),∴∠ABC=∠ACN.(3)∠ABC=∠ACN;理由如下:∵BA=BC,MA=MN,顶角∠ABC=∠AMN,∴底角∠BAC=∠MAN,∴△ABC∽△AMN,∴ABAC=AMAN,又∵∠BAM=∠BAC−∠MAC,∠CAN=∠MAN−∠MAC,∴∠BAM=∠CAN,∴△BAM∽△CAN,∴∠ABC=∠ACN.27.(10分)(2016•徐州模拟)△ABC和△DBE是绕点B旋转的两个相似三角形,其中∠ABC与∠DBE、∠A与∠D为对应角.(1)如图1,若△ABC和△DBE分别是以∠ABC与∠DBE为顶角的等腰直角三角形,且两三角形旋转到使点B、C、D在同一条直线上的位置时,请直接写出线段AD与线段EC的关系;(2)若△ABC和△DBE为含有30°角的直角三角形,且两个三角形旋转到如图2的位置时,试确定线段AD与线段EC的关系,并说明理由;(3)若△ABC和△DBE为如图3的两个三角形,且∠ACB=α,∠BDE=β,在绕点B旋转的过程中,直线AD与EC 夹角的度数是否改变?若不改变,直接用含α、β的式子表示夹角的度数;若改变,请说明理由.【考点】旋转的性质;相似三角形的判定与性质.【分析】(1)连接AD、CE,然后证得△ABD≌△BCE,根据所得的等角和等边来判断AD、EC的关系.(2)连接AD、EC并延长,设交点为点F,根据已知条件,易证得△ABD∽△CBE,得AB:BC=BD:BE,而∠1、∠2同为∠3的余角,则可证得△ABD=△CBE,得∠5=∠7+30°,而∠6=120°﹣∠5,由此可证得∠7+∠6=90°,即AD ⊥CE.(3)根据上面的求解过程可知:在绕点B旋转的过程中,直线AD与EC夹角的度数不改变,解题思路和方法同(2).【解答】解:(1)线段AD与线段CE的关系是AD⊥EC,AD=EC;(2分)理由:连接AD、CE;∵△ABC、△BED都是等腰直角三角形,∴AB=BC,BD=BE,∠ABC=∠EBD=90°,∴△ABD≌△CBE,∴AD=CE,∠DAB=∠BCE;∵∠BEC+∠BCE=90°,∴∠BEC+∠DAE=90°,即AD⊥CE;故线段AD与线段EC的关系是AD⊥EC,AD=EC.(2)如图2,连接AD、EC并延长,设交点为点F;∵△ABC∽△DBE,∴,∴.∵∠ABC=∠DBE=90°,∴∠1+∠3=90°,∠2+∠3=90°∴∠1=∠2∴△ABD∽△CBE.(4分)∴.在Rt△ACB中,,∵,∴.(5分)又∵∠DBE=90°,∠DEB=30°,∴∠4=60°,∴∠5+∠6=120°.∵△ABD∽△CBE,∴∠5=∠CEB=30°+∠7,∴∠7=∠5﹣30°,∠6=120°﹣∠5,∴∠7+∠6=90°,∴∠DFE=90°即AD⊥CE.(6分)(3)在绕点B旋转的过程中,直线AD与EC夹角的度数不改变,且∠AFE=(180﹣α﹣β)度.(8分)【点评】本题考查了图形的旋转变化以及相似三角形的判定和性质,理清图中角与角之间的关系,是解答此题的关键.18.(3分)(2016•盐都区模拟)如图,圆心都在x轴正半轴上的半圆O1、半圆O2、…、半圆O n与直线相切,设半圆O1、半圆O2、…、半圆O n的半径分别是r1、r2、…、r n,则当r1=1时,r2016=32015.【考点】切线的性质;一次函数图象上点的坐标特征.【分析】先求出r1=1,r2=3,r3=9…r n=3n﹣1,根据规律即可解决.【解答】解:设A、B、C是切点,由题意直线y=x与x轴的夹角为30°,在RT△OO1A中,∵AO1=1,∠AOO1=30°,∴OO1=2AO1=2,同理:OO2=2BO2,OO3=2CO3,∴3+r2=2r2,∴r2=3,9+r3=2r3,r3=9,∴r1=1,r2=3,r3=9…r n=3n﹣1,∴r2016=32015.故答案为32015.【点评】本题考查圆的切线的性质、直角三角形中30度角的性质、学会从特殊到一般的推理方法,寻找规律是解决问题的关键.16.将边长为1的正方形纸片按如图所示方法进行对折,记第1次对折后得到的图形面积为1S,第2次对折后得到的图形面积为2S,…,第n次对折后得到的图形面积为S n,请根据图2化简,12342017S S S S+S++++=……▲.第17题10、如图,每个图案都是由大小相同的正方形组成,按照此规律,第n 个图形中这样的正方形的总个数可用含n 的代数式表示为______________。
【考点】规律型:图形的变化类.【分析】设第n 个图案中正方形的总个数为a n ,根据给定图案写出部分a n 的值,根据数据的变化找出变换规律“a n =n (n+1)”,由此即可得出结论.【解答】解:设第n 个图案中正方形的总个数为an , 观察,发现规律:a 1=2,a 2=2+4=6,a 3=2+4+6=12,…, ∴a n =2+4+…+2n=22)+n(2n =n (n+1).故答案为:n (n+1).【点评】本题考查了规律型中的图形的变化类,解题的关键是找出变换规律“an=n (n+1)”.本题属于基础题,难度不大,根据给定图案写出部分图案中正方形的个数,根据数据的变化找出变化规律是关键.18.如图,已知1OB ,以OB 为直角边作等腰直角三角形1A BO .再以1OA 为直角边作等腰直角三角形21A AO ,如此下去,则线段n OA 的长度为 .【分析】利用等腰直角三角形的性质以及勾股定理分别求出各边长,进而得出答案. 【解答】解:∵△OBA 1为等腰直角三角形,OB=1, ∴BA 1=OB=1,OA 1=OB=;∵△OA 1A 2为等腰直角三角形, ∴A 1A 2=OA 1=,OA 2=OA 1=2;∵△OA 2A 3为等腰直角三角形,∴A 2A 3=OA 2=2,OA 3=OA 2=2;∵△OA 3A 4为等腰直角三角形, ∴A 3A 4=OA 3=2,OA 4=OA 3=4.∵△OA 4A 5为等腰直角三角形, ∴A 4A 5=OA 4=4,OA 5=OA 4=4,∵△OA 5A 6为等腰直角三角形, ∴A 5A 6=OA 5=4,OA 6=OA 5=8.∴OA n 的长度为()n. 故答案为:()n.27.如图,将边长为6的正三角形纸片ABC 按如下顺序进行两次折叠,展开后,得折痕,AD BE (如图①),点O 为其交点.(1)探求AO 与OD 的数量关系,并说明理由; (2)如图②,若,P N 分别为,BE BC 上的动点. ①当PN PD +的长度取得最小值时,求BP 的长度;②如图③,若点Q 在线段BO 上,1BQ =,则QN NP PD ++的最小值= .解答:(1)AO=2OD.理由:∵△ABC是等边三角形,∴∠BAO=∠ABO=∠OBD=30°∴AO=OB,∵BD=CD,∴AD⊥BC,∴∠BDO=90°,∴OB=2OD,∴AO=2OD.(2)如图,作点D关于BE的对称点D′,过D′作D′N⊥BC于N交BE于P,则此时PN+PD的长度取得最小值,∵BE垂直平分DD′,∴BD=BD′,∵∠ABC=60°,∴△BDD′是等边三角形,∴BN=12BD=32,∵∠PBN=30°,∴BNPB=3√2,∴PB=3√.(3)如图,作Q关于BC的对称点Q′,作D关于BE的对称点D′,连接Q′D′,即为QN+NP+PD的值最小值,根据轴对称的定义可知:∠Q′BN=∠QBN=30°,∠QBQ′=60°,∴△BQQ′为等边三角形,△BDD′为等边三角形,∴∠D′BQ′=90°,∴在Rt△D′BQ′中,D′Q′=32+12−−−−−−√=10−−√,∴QN+NP+PD的最小值=10−−√.17.(3分)(2018•徐州)如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n个图案中白色正方形比黑色正方形多4n+3 个.(用含n的代数式表示)【考点】38:规律型:图形的变化类.【专题】2A:规律型.【分析】利用给出的三个图形寻找规律,发现白色正方形个数=总的正方形个数﹣黑色正方形个数,而黑色正方形个数第1个为1,第二个为2,由此寻找规律,总个数只要找到边与黑色正方形个数之间关系即可,依此类推,寻找规律.【解答】解:第1个图形黑、白两色正方形共3×3个,其中黑色1个,白色3×3﹣1个,第2个图形黑、白两色正方形共3×5个,其中黑色2个,白色3×5﹣2个,第3个图形黑、白两色正方形共3×7个,其中黑色3个,白色3×7﹣3个,依此类推,第n个图形黑、白两色正方形共3×(2n+1)个,其中黑色n个,白色3×(2n+1)﹣n个,即:白色正方形5n+3个,黑色正方形n个,故第n个图案中白色正方形比黑色正方形多4n+3个.【点评】本题考查了几何图形的变化规律,是探索型问题,图中的变化规律是解题的关键.。