2009-2010学年度七年级下册《相交线与平行线》检测题(二)

合集下载

数学七年级下册 《相交线与平行线》 全章综合训练测试题(二)(含答案)

数学七年级下册 《相交线与平行线》 全章综合训练测试题(二)(含答案)

数学七年级下册《相交线与平行线》全章综合训练测试题(二)(含答案)1.如图,直线AB和CD相交于点O,OE把∠AOC分成两部分,且∠AOE:∠EOC=2:3,(1)如图1,若∠BOD=75°,求∠BOE;(2)如图2,若OF平分∠BOE,∠BOF=∠AOC+12°,求∠EOF.2.已知直线AB和CD交于O,∠AOC的度数为x,∠BOE=90°,OF平分∠AOD.(1)当x=20°时,则∠EOC=度;∠FOD=度.(2)当x=60°时,射线OE′从OE开始以10°/秒的速度绕点O逆时针转动,同时射线OF′从OF开始以8°/秒的速度绕点O顺时针转动,当射线OE′转动一周时射线OF′也停止转动,求至少经过多少秒射线OE′与射线OF′重合?(3)在(2)的条件下,射线OE′在转动一周的过程中,当∠E′OF′=90°时,请直接写出射线OE′转动的时间.3.平面内有任意一点P和∠1,按要求解答下列问题:(1)当点P在∠1外部时,如图①,过点P作PA⊥OM,PB⊥ON,垂足分别为A、B,量一量∠APB和∠1的度数,用数学式子表达它们之间的数量关系;(2)当点P在∠1内部时,如图②,以点P为顶点作∠APB,使∠APB的两边分别和∠1的两边垂直,垂足分别为A、B,用数学式子写出∠APB和∠1的数量关系;(3)由上述情形,用文字语言叙述结论:如果一个角的两边分别和另一个角的两边垂直,那么这两个角.(4)在图②中,若∠1=50°17',求∠APB的度数.4.探究:如图①,AB∥CD∥EF,试说明∠BCF=∠B+∠F.下面给出了这道题的解题过程,请在下列解答中,填上适当的理由.解:∵AB∥CD,(已知)∴∠B=∠1.()同理可证,∠F=∠2.∵∠BCF=∠1+∠2,∴∠BCF=∠B+∠F.()应用:如图②,AB∥CD,点F在AB、CD之间,FE与AB交于点M,FG与CD交于点N.若∠EFG=115°,∠EMB=55°,则∠DNG的大小为度.拓展:如图③,直线CD在直线AB、EF之间,且AB∥CD∥EF,点G、H分别在直线AB、EF上,点Q是直线CD上的一个动点,且不在直线GH上,连结QG、QH.若∠GQH=70°,则∠AGQ+∠EHQ=度.5.综合与探究如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A不重合).BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)求∠ABN、∠CBD的度数;根据下列求解过程填空.解:∵AM∥BN,∴∠ABN+∠A=180°∵∠A=60°,∴∠ABN=,∴∠ABP+∠PBN=120°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP、∠PBN=,()∴2∠CBP+2∠DBP=120°,∴∠CBD=∠CBP+∠DBP=.(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P运动到使∠ACB=∠ABD时,直接写出∠ABC的度数.6.如图,直线AB与CD相交于点E,射线EG在∠AEC内(如图1).(1)若∠BEC的补角是它的余角的3倍,则∠BEC=度;(2)在(1)的条件下,若∠CEG比∠AEG小25度,求∠AEG的大小;(3)若射线EF平分∠AED,∠FEG=100°(如图2),则∠AEG﹣∠CEG=度.7.感知与填空:如图①,直线AB∥CD.求证:∠B+∠D=∠BED.阅读下面的解答过程,井填上适当的理由.解:过点E作直线EF∥CD∴∠2=∠D()∵AB∥CD(已知),EF∥CD,∴AB∥EF()∴∠B=∠1()∵∠1+∠2=∠BED,∴∠B+∠D=∠BED()应用与拓展:如图②,直线AB∥CD.若∠B=22°,∠G=35°,∠D=25°,则∠E+∠F =度.方法与实践:如图③,直线AB∥CD.若∠E=∠B=60°,∠F=80°,则∠D=度.8.探究:如图①,AB∥CD∥EF,点G、P、H分别在直线AB、CD、EF上,连结PG、PH,当点P在直线GH的左侧时,试说明∠AGP+∠EHP=∠GPH.下面给出了这道题的解题过程,请完成下面的解题过程,并填空(理由或数学式).解:如图①,∵AB∥CD()∴∠AGP=∠GPD∵CD∥EF∴∠DPH=∠EHP()∵∠GPD+∠DPH=∠GPH,∴∠AGP+∠EHP=∠GPH()拓展:将图①的点P移动到直线GH的右侧,其他条件不变,如图②.试探究∠AGP、∠EHP、∠GPH之间的关系,并说明理由.应用:如图③,AB∥CD∥EF,点G、H分别在直线AB、EF上,点Q是直线CD上的一个动点,且不在直线GH上,连结QG、QH.若∠GQH=70°,则∠AGQ+∠EHQ=度.9.在综合与实践课上,老师让同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数学活动.(1)如图(1),若三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC间的数量关系;(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG=α,∠CFG=β,则∠AEG与∠CFG的数量关系是什么?用含α,β的式子表示(不写理由).10.(1)已知,如图1,BE平分∠ABC,∠1=∠2,试说明∠AED=∠C成立的理由.下面是小彬同学进行的说理,请你将小彬同学的说理过程或说理根据补充完整.解:因为BE平分∠ABC(已知),所以∠1=①(角平分线的定义),又因为∠1=∠2(已知),所以∠2=∠3(②).所以DE∥BC(③).所以∠AED=∠C(④).(2)如图2,如果a∥b,找出图中各角之间的等量关系(找出3组即可).要使c∥d,那么需要哪两个角相等?为什么?参考答案1.解:(1)∵∠AOC=∠BOD=75°,∠AOE:∠EOC=2:3,∴∠BOC=180°﹣∠BOD=180°﹣75°=105°,∠COE=∠AOC=×75°=45°,∴∠BOE=∠BOC+∠COE=105°+45°=150°;(2)∵OF平分∠BOE,∴∠EOF=∠BOF,∵∠BOF=∠AOC+12°=∠EOF,∴∠FOC+∠COE=∠AOE+∠COE+12°,即:∴∠FOC=∠AOE+12°,设∠AOE=x°,则∠FOC=(x+12)°,∠COE=x°,∵∠AOE+∠EOF+∠BOF=180°∴x+(x+12+x)×2=180,解得,x=26,∴∠EOF=∠COE+∠COF=x°+x°+12°=77°2.解:(1)∵∠BOE=90°,∴∠AOE=90°,∵∠AOC=x=20°,∴∠EOC=90°﹣20°=70°,∠AOD=180°﹣20°=160°,∵OF平分∠AOD,∴∠FOD=∠AOD==80°;故答案为:70,80;(2)当x=60°,∠EOF=90°+60°=150°设当射线OE'与射线OF'重合时至少需要t秒,10t+8t=150,t=,答:当射线OE'与射线OF'重合时至少需要秒;(3)设射线OE'转动的时间为t秒,由题意得:10t+90+8t=150或10t+8t=150+90或360﹣10t=8t﹣150+90或360﹣10t+360﹣8t+90=360﹣150,t=或或或.答:射线OE'转动的时间为秒或秒或秒或秒.3.解:(1)如图1中,设PA交ON于F.∵PA⊥OM,PB⊥ON,∴∠PBF=∠OAF=90°,∵∠PFB=∠OFA,∴∠APB=∠1.故答案为∠APB=∠1.(2)如图2中,∵∠PAO=∠PBO=90°,∴∠APB+∠1=180°.故答案为∠APB+∠1=180°.(3)由上述情形,用文字语言叙述结论:如果一个角的两边分别和另一个角的两边垂直,那么这两个角相等或互补.(4)∵∠APB+∠1=180°,∴∠APB=180°﹣50°17′=129°43′.4.解:探究:∵AB∥CD,∴∠B=∠1.(两直线平行内错角相等)同理可证,∠F=∠2.∵∠BCF=∠1+∠2,∴∠BCF=∠B+∠F.(等量代换)故答案为:两直线平行,内错角相等,等量代换.应用:由探究可知:∠MFN=∠AMF+∠CNF,∴∠CNF=∠DNG=115°﹣55°=60°.故答案为60.拓展:如图③中,当的Q在直线GH的右侧时,∠AGQ+∠EHQ=360°﹣70°=290°,当点Q′在直线GH的左侧时,∠AGQ′+∠EHQ′=∠GQ′H=70°.故答案为70或290.5.解:(1)∵AM∥BN,∴∠ABN+∠A=180°,∵∠A=60°,∴∠ABN=120°∴∠ABP+∠PBN=120°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP、∠PBN=2∠PBD,(角平分线的定义),∴2∠CBP+2∠DBP=120°,∴∠CBD=∠CBP+∠DBP=60°.故答案为120°,2∠PBD,角平分线的定义,60°.(2)∠APB与∠ADB之间数量关系是:∠APB=2∠ADB.不随点P运动变化.理由是:∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN(两直线平行内错角相等),∵BD平分∠PBN(已知),∴∠PBN=2∠DBN(角平分线的定义),∴∠APB=∠PBN═2∠DBN=2∠ADB(等量代换),即∠APB=2∠ADB.(3)结论:∠ABC=30°.理由:∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,由(1)可知∠ABN=120°,∠CBD=60°,∴∠ABC+∠DBN=60°,∴∠ABC=30°6.解:(1)设∠BEC的度数为x,则180﹣x=3(90﹣x),x=45°,∴∠BEC=45°,故答案为:45;(2)∵∠BEC=45°,∴∠AEC=135°,设∠AEG=x°,则∠CEG=x﹣25,由∠AEC=135°,得x+(x﹣25)=135,解得x=80°,∴∠AEG=80°;(3)∵射线EF平分∠AED,∴∠AEF=∠DEF,∵∠FEG=100°,∴∠AEG+∠AEF=100°,∵∠CEG=180°﹣100°﹣∠DEF=80°﹣∠DEF,∴∠AEG﹣∠CEG=100°﹣∠AEF﹣(80°﹣∠DEF)=20°,故答案为:20.7.解:感知与填空:过点E作直线EF∥CD,∴∠2=∠D(两直线平行,内错角相等),∵AB∥CD(已知),EF∥CD,∴AB∥EF(两直线都和第三条直线平行,那么这两条直线也互相平行),∴∠B=∠1(两直线平行,内错角相等),∵∠1+∠2=∠BED,∴∠B+∠D=∠BED(等量代换),故答案为:两直线平行,内错角相等;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换.应用与拓展:过点G作GN∥AB,则GN∥CD,如图②所示:由感知与填空得:∠E=∠B+∠EGN,∠F=∠D+∠FGN,∴∠E+∠F=∠B+∠EGN+∠D+∠FGN=∠B+∠D+∠EGF=22°+25°+35°=82°,故答案为:82.方法与实践:设AB交EF于M,如图③所示:∠AME=∠FMB=180°﹣∠F﹣∠B=180°﹣80°﹣60°=40°,由感知与填空得:∠E=∠D+∠AME,∴∠D=∠E﹣∠AME=60°﹣40°=20°,故答案为:20.8.解:∵AB∥CD(已知)∴∠AGP=∠GPD,∵CD∥EF,∴∠DPH=∠EHP(两直线平行,内错角相等)∵∠GPD+∠DPH=∠GPH∴∠AGP+∠EHP=∠GPH(等量代换).故答案分别为:已知;两直线平行,等量代换;探究:当点P在直线GH的右侧时,其他条件不变,如图2,∠AGP+∠EHP+∠GPH=360°.理由如下:∵AB∥CD,∴∠AGP+∠GPC=180°,∵CD∥EF,∴∠CPH+∠EHP=180°,∴∠AGP+∠GPC+∠CPH+∠EHP=360°,即∠AGP+∠GPH+∠EHP=360°;应用:①当点Q在直线GH的左侧时,则有∠AGQ+∠EHQ=∠GQH.若∠GQH=70°,则∠AGQ+∠EHQ=70°;②当点Q在直线GH的右侧时,则有∠AGQ+∠EHQ+∠GQH=360°.若∠GQH=70°,则∠AGQ+∠EHQ=360°﹣70°=290°.综上所述:若∠GQH=70°,则∠AGQ+∠EHQ=70°或290°.故答案为70或290.9.解:(1)∵AB∥CD,∴∠1=∠EGD.∵∠2+∠FGE+∠EGD=180°,∠2=2∠1,∴2∠1+60°+∠1=180°,解得∠1=40°;(2)如图,过点F作FP∥AB,∵CD∥AB,∴FP∥AB∥CD.∴∠AEF=∠EFP,∠FGC=∠GFP.∴∠AEF+∠FGC=∠EFP+∠GFP=∠EFG.∵∠EFG=90°,∴∠AEF+∠FGC=90°;(3)α+β=300°.理由如下:∵AB∥CD,∴∠AEF+∠CFE=180°.即α﹣30°+β﹣90°=180°,整理得α+β=180°+120°=300°.10.解:(1)因为BE平分∠ABC(已知),所以∠1=∠3(角平分线的定义),又因为∠1=∠2(已知),所以∠2=∠3(等量代换).所以DE∥BC(内错角相等两直线平行).所以∠AED=∠C(两直线平行同位角相等).故答案为∠3,等量代换,内错角相等两直线平行,两直线平行同位角相等.(2)①∵a∥b,∴∠1=∠2,∠3+∠4=180°,∠2=∠3等.②当∠4=∠6或∠3=∠5时,c∥d.理由:∵∠4=∠6,∴c∥d(内错角相等两直线平行).∵∠3=∠5,∴c∥d(同位角相等两直线平行).。

人教版初中七年级数学下册第五章《相交线与平行线》经典习题(含答案解析)(2)

人教版初中七年级数学下册第五章《相交线与平行线》经典习题(含答案解析)(2)

一、选择题1.如图,//AB CD ,EC 分别交,AB CD 于点,F C ,链接DF ,点G 是线段CD 上的点,连接FG ,若13∠=∠,24∠∠=,则结论① C D ∠=∠,②FG CD ⊥,③EC FD ⊥,正确的是( )A .①②B .②③C .①③D .①②③B解析:B【分析】 由平行线的性质和垂直的定义,逐个判断得结论.【详解】∵∠1=∠3,∠2=∠4,又∵∠1+∠2+∠3+∠4=180°,∴∠1+∠2=∠3+∠4=∠1+∠4=90°,∴∠EFD=∠1+∠2=90°,∴EC ⊥FD ,故③正确;∵AB ∥CD ,∴∠1=∠C ,∴∠FGD=∠4+∠C=∠4+∠1=90°,∴FG ⊥CD ,故②正确;∵∠1不一定等于∠2,∴∠C≠∠D ,故①不正确.故选:B .【点睛】本题考查了平行线的性质,三角形的外角性质及垂直的定义,由相等的角和平角的定义得到互余的角是解决本题的关键.2.下列命题中是真命题的有( )①两个角的和等于平角时,这两个角互为邻补角;②过一点有且只有一条直线与已知直线平行;③两条平行线被第三条直线所截,所得的一对内错角的角平分线互相平行;④图形B由图形A平移得到,则图形B与图形A中的对应点所连线段平行(或在同一条直线上)且相等;A.1个B.2个C.3个D.4个B解析:B【分析】根据补角和邻补角的定义可判断①,根据平行公理可判断②,根据平行线的性质和判定可判断③,根据平移的性质可判断④,进而可得答案.【详解】解:两个角的和等于平角时,这两个角互为补角,故命题①是假命题;过直线外一点有且只有一条直线与已知直线平行,故命题②是假命题;两条平行线被第三条直线所截,所得的一对内错角的角平分线互相平行,故命题③是真命题;图形B由图形A平移得到,则图形B与图形A中的对应点所连线段平行(或在同一条直线上)且相等,故命题④是真命题.综上,真命题有2个.故选:B.【点睛】本题考查了真假命题、平行线的判定和性质以及平移的性质等知识,属于基础题型,熟练掌握上述知识是解题的关键.3.下列说法正确的是()A.命题一定是正确的B.定理都是真命题C.不正确的判断就不是命题D.基本事实不一定是真命题B解析:B【分析】根据命题的定义、真命题与假命题的定义逐项判断即可得.【详解】A、命题有真命题和假命题,此项说法错误;B、定理都是经过推论、论证的真命题,此项说法正确;C、不正确的判断是假命题,此项说法错误;D、基本事实是真命题,此项说法错误;故选:B.【点睛】本题考查了命题、真命题与假命题,熟练掌握理解各概念是解题关键.4.下列所示的四个图形中,∠1和∠2是同位角的是()A .②③B .①②③C .①②④D .①④C解析:C【分析】 根据同位角的定义逐一判断即得答案.【详解】图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.故选:C .【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.5.如图,A 是直线l 外一点,过点A 作AB l ⊥于点B ,在直线l 上取一点C ,连接AC ,使2AC AB =,P 在线段BC 上,连接AP .若3AB =,则线段AP 的长不可能是( )A .4B .5C .2D .5.5C解析:C【分析】 根据题意计算出AC 的长度,由垂线段最短得出AP 的范围,选出AP 的长度不可能的选项即可.【详解】3AB =,26AC AB cm ∴==,结合垂线段最短,得:36AP ≤≤.故选:C .【点睛】本题主要考查直线外一点与直线上各点连接的所有线段中,垂线段最短,熟记概念并求出对应线段的范围是解题关键.6.下面命题中是真命题的有()①相等的角是对顶角②直角三角形两锐角互余③三角形内角和等于180°④两直线平行内错角相等A.1个B.2个C.3个D.4个C解析:C【分析】利用平行线的性质、三角形的内角和、直角三角形的性质、对顶角的性质分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故不符合题意;②直角三角形两锐角互余,故符合题意;③三角形内角和等于180°,故符合题意;④两直线平行内错角相等,故符合题意;故选:C.【点睛】此题考查了命题与定理,解题的关键是了解平行线的性质、对顶角的定义、直角三角形的性质及三角形的内角和等知识,难度不大.7.如图,直线a∥b,则∠A的度数是()A.28°B.31°C.39°D.42°C解析:C【解析】试题分析:根据平行线的性质可得∠1=70°,再根据三角形的一个外角等于和它不相邻的两个内角的和可得∠A=70°-31°=39°.故选C.考点:平行线的性质8.如图是郝老师的某次行车路线,总共拐了三次弯,最后行车路线与开始的路线是平行的,已知第一次转过的角度120︒,第三次转过的角度135︒,则第二次拐弯的角度是()A .75︒B .120︒C .135︒D .无法确定A解析:A【解析】 分析:根据两直线平行,内错角相等,得到∠BFD 的度数,进而得出∠CFD 的度数,再由三角形外角的性质即可得到结论.详解:如图,延长ED 交BC 于F .∵DE ∥AB ,∴∠DFB =∠ABF =120°,∴∠CFD =60°.∵∠CDE =∠C +∠CFD ,∴∠C =∠CDE -∠CFD =135°-60°=75°.故选A .点睛:本题考查了平行线的性质及三角形外角的性质.解题的关键是理解题意,灵活应用平行线的性质解决问题,属于中考常考题型.9.如图,一副直角三角板图示放置,点C 在DF 的延长线上,点A 在边EF 上,//AB CD ,90ACB EDF ∠=∠=︒,则CAF ∠=( )A .10︒B .15︒C .20︒D .25︒B解析:B【分析】 根据平行线的性质可知,BAF=EFD=45∠∠ ,由BAC=30∠ 即可得出答案。

(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》检测(包含答案解析)(2)

(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》检测(包含答案解析)(2)

一、选择题1.如图所示,已知//AB CD ,则( ).A .123∠=∠+∠B .123∠∠∠>+C .213∠=∠+∠D .123∠∠∠<+2.如图,一副三角尺按不同的位置摆放,下列摆放方式中α∠与β∠互补的是( ) A . B . C . D .3.下列语句中正确的是( )A .直线AB 和直线BA 是两条不同的直线B .连接两点间的线段叫两点的距离C .一条射线就是一个周角D .一个角的余角比这个角的补角小 4.下列说法正确的是( )A .锐角的补角一定是钝角B .一个角的补角一定大于这个角C .锐角和钝角一定互补D .两个锐角一定互为余角5.如图,已知直线//AD BC ,BE 平分ABC ∠交直线DA 于点E ,若58DAB ∠=︒,则E ∠等于( )A .25°B .29°C .30°D .45°6.如图,直线AB 、CD 相交于点O ,OE 平分AOC ∠,若70BOD ∠=︒,则COE ∠的度数是( )A .70°B .50°C .40°D .35°7.下列说法中:①40°35′=2455′;②如果∠A+∠B =180°,那么∠A 与∠B 互为余角;③经过两点有一条直线,并且只有一条直线;④在同一平面内,不重合的两条直线不是平行就是相交.正确的个数为( ).A .1个B .2个C .3个D .4个 8.如图,∠1=20º,AO ⊥CO ,点B 、O 、D 在同一条直线上,则∠2的度数为( )A .70ºB .20ºC .110ºD .160º9.如图,直线//m n ,在Rt ABC 中,90B ∠=︒,点A 落在直线m 上,BC 与直线n 交于点D ,若2130∠=︒,则1∠的度数为( ).A .30°B .40°C .50°D .65°10.已知a ∥b ,将等腰直角三角形ABC 按如图所示的方式放置,其中锐角顶点B ,直角顶点C 分别落在直线a ,b 上,若∠1=15°,则∠2的度数是( )A .15°B .22.5°C .30°D .45° 11.如图,直线a b ∥,三角板的直角顶点放在直线b 上,两直角边与直线a 相交,如果160∠=︒,那么2∠等于( )A .30B .︒40C .50︒D .60︒12.如图,CB 平分∠ACD ,∠2=∠3,若∠4=60°,则∠5的度数是( )A .60°B .30°C .20°D .40°二、填空题13.一个角的补角比它的余角的3倍少20︒,这个角的度数是_______度.14.如图,点D 、E 分别在AB 、BC 上,DE ∥AC ,AF ∥BC ,∠1=70°,则∠2=_____°.15.如图,已知直线12l l ,130∠=︒,则23∠+∠=_________.16.将一副直角三角板如图放置,点E 在AC 边上,且ED//BC ,∠C=30°,∠F=∠DEF=45°,则∠AEF=_____度.17.关于垂线,小明给出了下面三种说法:①两条直线相交,所构成的四个角中有一个角是直角,那么这两条直线互相垂直;②这两条直线的交点叫垂足;③直线AB CD ⊥,也可以说成CD AB ⊥.其中正确的有______(填序号).18.如图,AB CD ∥,EF 平分BED ∠,66DEF D ︒∠+∠=,28B D ∠-∠=︒,则BED ∠=__________.19.如图,已知AB//CD ,120AFC ∠=︒,13EAF EAB ∠=∠,13ECF ECD ∠=∠,则AEC ∠=____度.20.如图//a b ,M ,N 分别在直线a ,b 上,P 为两条平行线间的一点,则123∠+∠+∠=_________.三、解答题21.如图,直线AB 、CD 相交于点O ,已知80AOC ︒∠=,射线OE 把BOD ∠分成两个角,且∠BOE ;3:5EOD ∠=.(1)求EOB ∠的度数;(2)过点O 作射线OF OE ⊥,求BOF ∠的度数.22.如图,180,AEM CDN EC ︒∠+∠=平分AEF ∠.若62EFC ︒∠=,求C ∠的度数.根据提示将解题过程补充完整.解:180CDM CDN ︒∠+∠=(平角的意义),180AEM CDN ︒∠+∠=(已知), AEM CDM ∴∠=∠//AB CD ∴(___________________)AEF ∴∠+(________)180︒=(两直线平行,同旁内角互补)62EFC ︒∠=,118AEF ︒∴∠= EC 平分AEF ∠,59AEC ︒∴∠=(_________)//AB CD ,59C AEC ︒∴∠=∠=(___________________)23.如图,已知三角形ABC 和射线EM ,用直尺和圆规按下列步骤作图(保留作图痕迹,不写作法):(1)在射线EM 的上方,作NEM B ∠=∠;(2)在射线EN 上作线段DE ,在射线EM 上作线段EF ,使得DE AB =,EF BC =;(3)连接DF ,观察并猜想:DF 与AC 的数量关系是DF ______AC ,填(“>”、“<”或“=”)24.如图,已知长方形ABCD 中,10cm AD =,6cm DC =,点F 是DC 的中点,点E 从A 点出发在AD 上以每秒1cm 的速度向D 点运动,运动时间设为t 秒.(假定0t 10<<)(1)当5t =秒时,求阴影部分(即三角形BEF )的面积;(2)用含t 的式子表示阴影部分的面积;并求出当三角形EDF 的面积等于3时,阴影部分的面积是多少?(3)过点E 作//EG AB 交BF 于点G ,过点F 作//FH BC 交BE 于点H ,请直接写出在E 点运动过程中,EG 和FH 的数量关系.25.利用网格画图,每个小正方形边长均为1(1)过点C 画AB 的平行线CD ;(2)仅用直尺,过点C 画AB 的垂线,垂足为E ;(3)连接CA 、CB ,在线段CA 、CB 、CE 中,线段______最短,理由___________. (4)直接写出△ABC 的面积为 _________.26.已知:如图,O 是直线AB 上一点,OD 是AOC ∠的平分线,COD ∠与COE ∠互余.求证:AOE ∠与COE ∠互补.请将下面的证明过程补充完整;证明:O 是直线AB 上一点,180AOB ∴∠=︒COD ∠与COE ∠互余,COD COE ∴∠+∠=_______︒.90AOD BOE ∴∠+∠=︒ OD 是AOC ∠的平分线,AOD ∴∠=∠_________.(理由:_________)B O E COE ∴∠=∠.(理由:______________)=AOE BOE ∠+∠_______︒.180AOE COE ∴∠+∠=︒AOE ∴∠与COE ∠互补.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据平行线的性质,得3ABO ∠=∠;根据补角的性质,得1801AOB ∠=-∠;根据角的和差的性质计算,即可得到123∠=∠+∠,从而完成求解.【详解】∵//AB CD∴3ABO ∠=∠∵1801AOB ∠=-∠又∵1802ABO ABO ∠=-∠-∠∴312∠=∠-∠∴123∠=∠+∠故选:A .【点睛】本题考查了平行线、角的知识;解题的关键是熟练掌握平行线、补角、角的和差的性质,从而完成求解.2.D解析:D【分析】根据同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.【详解】解:A 、图中∠α+∠β=180°﹣90°=90°,∠α与∠β互余,故本选项不符合题意; B 、图中∠α=∠β,不一定互余,故本选项错误;C 、图中∠α+∠β=180°﹣45°+180°﹣45°=270°,不是互余关系,故本选项错误;D 、图中∠α+∠β=180°,互为补角,故本选项正确.故选:D .【点睛】本题考查了余角和补角,是基础题,熟记概念与性质是解题的关键.3.D解析:D【分析】根据射线、直线的定义,余角与补角,周角的定义,以及线段的性质即可求解.【详解】A 、直线AB 和直线BA 是一条直线,原来的说法是错误的,不符合题意;B 、连接两点间的线段的长度叫两点的距离,原来的说法是错误的,不符合题意;C 、周角的特点是两条边重合成射线.但不能说成周角是一条射线,原来的说法是错误的,不符合题意;D 、一个角的余角比这个角的补角小是正确的,符合题意;故选:D .【点睛】本题考查了射线、直线的定义,余角与补角,周角的定义,以及线段的性质,是基础题,熟记相关概念与性质是解题的关键.4.A解析:A【分析】根据余角和补角的概念判断.【详解】解:A 、锐角的补角一定是钝角,本选项说法正确;B 、一个角的补角一定大于这个角,本选项说法错误,例如:120°的补角是60°,而60°<120°;C 、锐角和钝角一定互补,本选项说法错误,例如20°+120°=140°,20°与120°不互补;D 、两个锐角一定互为余角,本选项说法错误,30°与30°不是互为余角;故选:A .【点睛】此题考查余角和补角的概念,熟记概念是解题的关键.5.B解析:B【分析】根据平行线的性质可知∠ABC=58°,再根据角平分线的性质可求∠EBC=29°,再利用平行线的性质可求∠E .【详解】解:∵//AD BC ,∴58ABC DAB ∠=∠=︒,∵BE 平分ABC ∠, ∴1292EBC ABC ∠=∠=︒, ∵//AD BC ,∴29E EBC ∠=∠=︒,故选B .【点睛】本题考查了平行线的性质和角平分线的性质,灵活运用这两个性质是解题关键. 6.D解析:D【分析】根据对顶角相等求出∠AOC ,根据角平分线的定义计算即可求出∠COE 的度数.【详解】∵∠BOD=70︒,∴∠AOC=∠BOD=70︒,∵OE 平分∠AOC ,∴∠COE=12∠AOC=170352⨯︒=︒, 故选:D .【点睛】 本题考察对顶角、角平分线的定义,掌握对顶角相等、角平分线的定义是解题的关键. 7.B解析:B【分析】根据角的性质计算,可得到①不正确;根据补角和余角的定义,可得到②不正确;根据直线的性质分析,可得③和④正确,从而得到答案.【详解】()40354060352435'''︒=⨯+=,故①不正确;如果∠A+∠B =180°,那么∠A 与∠B 互为补角,故②不正确;③、④正确;故选:B .【点睛】本题考查了角、直线的知识;解题的关键是熟练掌握角的计算、余角和补角、直线的性质,从而完成求解.8.C解析:C【分析】由AO ⊥CO 和∠1=20º求得∠BOC =70º,再由邻补角的定义求得∠2的度数.【详解】∵AO ⊥CO 和∠1=20º,∴∠BOC =90 º-20 º=70º,又∵∠2+∠BOC =180 º(邻补角互补),∴∠2=110º.故选:C .【点睛】考查了邻补角和垂直的定义,解题关键是利用角的度数之间的和差的关系求未知的角的度数.9.B解析:B【分析】l m,利用平行线的判定定理和性质定理进行分析即可得出答案.由题意过点B作直线//【详解】l m,解:如图,过点B作直线//∵直线m//n,//l m,∴//l n,∴∠2+∠3=180°,∵∠2=130°,∴∠3=50°,∵∠B=90°,∴∠4=90°-50°=40°,∵//l m,∴∠1=∠4=40°.故选:B.【点睛】本题主要考查平行线的性质定理和判定定理,熟练掌握两直线平行,平面内其外一条直线平行于其中一条直线则平行于另一条直线是解答此题的关键.10.C解析:C【分析】利用等腰直角三角形的定义求∠3,再由平行线的性质求出∠2即可.【详解】如图,∵△ABC是等腰直角三角形,∴∠1+∠3=45°,∵∠1=15°,∴∠3=30°,∵a∥b,∴∠2=∠3=30°,故选C.【点睛】本题考查平行线的性质,解题的关键是熟练掌握基本知识.11.A解析:A【分析】先由直线a∥b,根据平行线的性质,得出∠3=∠1=60°,再由已知直角三角板得∠4=90°,然后由∠2+∠3+∠4=180°求出∠2.【详解】已知直线a∥b,∴∠3=∠1=60°(两直线平行,同位角相等),∠4=90°(已知),∠2+∠3+∠4=180°(已知直线),∴∠2=180°-60°-90°=30°.故选:A.【点睛】此题考查平行线性质的应用,解题关键是由平行线性质:两直线平行,同位角相等,求出∠3.12.B解析:B【分析】证出∠AB∥CD,由平行线的性质得∠4=∠ACD=∠1+∠2=60°,∠5=∠2,由角平分线定义得∠1=∠2=30°,即可得出答案.【详解】∵∠2=∠3,∴AB∥CD,∴∠4=∠ACD=∠1+∠2=60°,∠5=∠2,∵CB平分∠ACD,∴∠1=∠2=30°,∴∠5=∠2=30°;故选:B.【点睛】本题考查了平行线的判定与性质以及角平分线定义;熟练掌握平行线的判定与性质是解题的关键,属于中考常考题型.二、填空题13.35【分析】设这个角为x度根据一个角的补角比它的余角的3倍少20°构建方程即可解决问题【详解】解:设这个角为x度则180°-x=3(90°-x)-20°解得:x=35°答:这个角的度数是35°故答案解析:35【分析】设这个角为x度.根据一个角的补角比它的余角的3倍少20°,构建方程即可解决问题.【详解】解:设这个角为x度.则180°-x=3(90°-x)-20°,解得:x=35°.答:这个角的度数是35°.故答案为:35.【点睛】本题考查余角、补角的定义,一元一次方程等知识,解题的关键是学会用方程分思想思考问题,属于中考常考题型.14.70【分析】根据两直线平行同位角相等可得∠C=∠1再根据两直线平行内错角相等可得∠2=∠C【详解】∵DE∥AC∴∠C=∠1=70°∵AF∥BC∴∠2=∠C =70°故答案为70【点睛】本题考查了平行线解析:70【分析】根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.【详解】∵DE∥AC,∴∠C=∠1=70°,∵AF∥BC,∴∠2=∠C=70°.故答案为70.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.15.【分析】过∠2的顶点作AB∥可由得出AB∥根据平行线的性质即可解答【详解】如图;过∠2的顶点作AB∥∴∠DAB=又∵∴AB∥∴∠BAC+∠3=180°∴∠2+∠3=∠DAB+∠BAC+∠3=故答案为解析:210 .【分析】过∠2的顶点作AB ∥1l ,可由12l l 得出AB ∥2l ,根据平行线的性质即可解答.【详解】如图; 过∠2的顶点作AB ∥1l ∴∠DAB=130∠=︒ 又∵12l l∴AB ∥2l ∴∠BAC+∠3=180°∴∠2+∠3=∠DAB+∠BAC+∠3=210︒ 故答案为210︒【点睛】本题考查的是平行线的性质及平行公理的推论,掌握平行线的性质定理及平行公理的推论是解答关键.16.165【分析】根据两直线平行内错角相等求出∠DEC 然后由角的和差关系求得∠CEF 最后由邻补角的性质求得结果【详解】解:∵ED ∥BC ∠C=30°∴∠DEC=∠C=30°∵∠DEF=45°∴∠CEF=∠解析:165 【分析】根据两直线平行,内错角相等求出∠DEC ,然后由角的和差关系求得∠CEF ,最后由邻补角的性质求得结果. 【详解】解:∵ED ∥BC ,∠C=30° ∴∠DEC=∠C=30°, ∵∠DEF=45°,∴∠CEF=∠DEF-∠DEC=45°-30°=15°. ∴∠AEF=180°-∠CEF=165°, 故答案为:165. 【点睛】本题考查了角的和差,平行线的性质,邻补角的性质,熟记性质是解题的关键.17.①③【分析】根据垂线的定义分别进行判断可得答案【详解】解:①两条直线相交所构成的四个角中有一个角是直角那么这两条直线互相垂直;①正确;②互相垂直的两条直线的交点叫做垂足故②错误;③直线也可以说成③正解析:①③. 【分析】根据垂线的定义,分别进行判断,可得答案. 【详解】解:①两条直线相交,所构成的四个角中有一个角是直角,那么这两条直线互相垂直;①正确;②互相垂直的两条直线的交点叫做垂足,故②错误; ③直线AB CD ⊥,也可以说成CD AB ⊥,③正确; ∴正确的有:①③. 故答案为:①③. 【点睛】本题考查了垂线,熟练掌握垂线的定义是解题关键.18.【分析】过E 点作EM ∥AB 根据平行线的性质可得∠BED=∠B+∠D 利用角平分线的定义可求得∠B+3∠D=132°结合∠B-∠D=28°即可求解【详解】解:过E 点作EM ∥AB ∴∠B=∠BEM ∵AB ∥C 解析:80︒【分析】过E 点作EM ∥AB ,根据平行线的性质可得∠BED =∠B +∠D ,利用角平分线的定义可求得∠B +3∠D =132°,结合∠B -∠D =28°即可求解. 【详解】解:过E 点作EM ∥AB ,∴∠B =∠BEM , ∵AB ∥CD , ∴EM ∥CD , ∴∠MED =∠D , ∴∠BED =∠B +∠D , ∵EF 平分∠BED , ∴∠DEF =12∠BED , ∵∠DEF +∠D =66°, ∴12∠BED +∠D =66°, ∴∠BED +2∠D =132°,即∠B+3∠D=132°,∵∠B-∠D=28°,∴∠B=54°,∠D=26°,∴∠BED=80°.故答案为:80°.【点睛】本题主要考查平行线的性质,角平分线的定义,作出辅助线证出∠BED=∠B+∠D是解题的关键.19.90【详解】解:如图过点E作EH∥AB过点F作FG∥AB∵AB∥CD∴AB∥FG∥CDAB∥EH∥CD∴又∵∴∴∴即:∴故答案为:90【点睛】本题考查了平行线的性质平行公理作辅助线构造内错角是解题的解析:90【详解】解:如图,过点E作EH∥AB,过点F作FG∥AB,∵AB∥CD,∴AB∥FG∥CD,AB∥EH∥CD,∴AFG FAB,GFC FCD,AFG FAB,GFC FCD,又∵13EAF EAB∠=∠,13ECF ECD∠=∠,∴3EAB EAF,3ECD ECF,∴4FAB EAF,4ECD ECF,∴44120AFC AFG GFC FAB ECD EAF ECF,即:30EAF ECF,∴33390AEC EAB ECD EAF ECF EAF ECF.故答案为:90.【点睛】本题考查了平行线的性质,平行公理,作辅助线构造内错角是解题的关键.20.【分析】过点P作PA∥a如图根据平行公理的推论可得PA∥a∥b根据平行线的性质可得∠1+∠MPA=180°∠3+∠NPA=180°然后两式相加即可求出答案【详解】解:过点P作PA∥a如图∵a∥b∴P解析:360【分析】过点P作PA∥a,如图,根据平行公理的推论可得PA∥a∥b,根据平行线的性质可得∠1+∠MPA=180°,∠3+∠NPA=180°,然后两式相加即可求出答案.【详解】解:过点P作PA∥a,如图,∵a∥b,∴PA∥a∥b,∴∠1+∠MPA=180°,∠3+∠NPA=180°,∴∠1+∠MPA+∠3+∠NPA=360°,∠+∠+∠=360°.即123故答案为:360°.【点睛】本题考查了平行公理的推论和平行线的性质,正确添加辅助线、熟练掌握平行线的性质是解题的关键.三、解答题21.(1)30°;(2)120°或60°【分析】(1)根据对顶角相等可得∠BOD=∠AOC,然后根据比例求解即可;(2)分OF在∠AOD的内部时,∠BOF=∠EOF+∠BOE,OF在∠BOC的内部时,∠BOF=∠EOF-∠BOE进行计算即可得解.【详解】解:(1)∵∠AOC=80°,∴∠BOD=∠AOC=80°,∵∠BOE:∠EOD=3:5,∴∠BOE=80°×3=30°;+35(2)∵OF⊥OE,∴∠EOF=90°,OF在∠AOD的内部时,∠BOF=∠EOF+∠BOE=90°+30°,=120°,OF在∠BOC的内部时,∠BOF=∠EOF-∠BOE=90°-30°,=60°,综上所述:∠DOF=120°或60°.【点睛】本题考查了对顶角相等的性质,角的计算,熟记概念并准确识图是解题的关键.22.见解析【分析】根据同角的补角相等可得出∠AEM=∠CDM,利用“同位角相等,两直线平行”可得出AB∥CD,由“两直线平行,同旁内角互补”及∠EFC=62°可求出∠AEF=118°,结合角平分线的定义可求出∠AEC的度数,再利用“两直线平行,内错角相等”即可求出∠C的度数.【详解】解:∵∠CDM+∠CDN=180°(平角的意义),∠AEM+∠CDN=180°(已知),∴∠AEM=∠CDM,∴AB∥CD,(同位角相等,两直线平行)∴∠AEF+∠EFC=180°,(两直线平行,同旁内角互补)∵∠EFC=62°,∴∠AEF=118°,∵EC平分∠AEF,∴∠AEC=59°,(角平分线的定义)∵AB∥CD,∴∠C=∠AEC=59°.(两直线平行,内错角相等).【点睛】本题考查了平行线的判定与性质以及角平分线,牢记各平行线的判定与性质定理是解题的关键.23.(1)见解析;(2)见解析;(3)=【分析】(1)根据作一个角等于已知角的尺规作图即可解答(2)根据作一条线段等于已知线段的尺规作图即可解答 (3)结合图形易证ABC EDF △≌△,即可得到答案 【详解】 (1)如图所示:作法:①以点B 为圆心任意长为半径画圆弧,交AB ,BC 于点G ,H ②再以点E 为圆心以①中的半径画圆弧,交EM 于点P③再以点P 为圆心GH 长为半径画圆弧,与②所画的圆弧交于点N ,连接EN 即可 (2)如图所示:作法:①用圆规取BC 的长度,以点E 为圆心BC 长为半径画弧,交EM 于点F ,则EF=BC ②用圆规取AB 的长度,以点E 为圆心AB 长为半径画弧,交EN 的延长线于点D ,则DE=AB(3)根据EF=BC ,DE=AB ,B NEM ∠=∠可证ABC EDF △≌△,则DF=AC 【点睛】本题考查了尺规作图,解题关键是熟练掌握作一个角等于已知角的尺规作图方法,以及作一条线段等于已知线段的尺规作图方法.24.(1)4522cm ;(2)23302t cm ⎛⎫- ⎪⎝⎭;218cm ;(3)53EG FH = 【分析】(1)由长方形的性质得出10cm BC AD ==,6cm AB DC ==,由5t =得AE=5,DE=10-5=5,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形即可求解;(2)由题意得AE=t ,DE=10-t ,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形表示出阴影部分的面积;由12EDF S DE DF =⋅△求出t 的值,代入计算即可; (3)由长方形ABCD 得AD CD ⊥,根据平行线的性质得EG HF ⊥,根据平行线间的距离相等可得DE ,AE ,DF ,CF 分别等于,,,EGF EGB EHF BHF △△△△的高,由BEFS 的面积即可得出结论.【详解】解:(1)∵长方形ABCD 中,10cm AD =,6cm DC =, ∴10cm BC AD ==,6cm AB DC ==, ∵点F 是DC 的中点, ∴3cm DF CF ==,当5t =秒时,AE=5cm ,DE=10-5=5 cm , ∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形=()()()1111066510353222⨯-⨯-⨯-⨯ =156015152---=4522cm ; (2)由题意得AE=t ,DE=10-t ,∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形=()()1111066103310222t t ⨯-⨯-⨯-⨯⨯- =360315152tt ---+=3302t -,∴用含t 的式子表示阴影部分的面积为:23302t cm ⎛⎫- ⎪⎝⎭; 当三角形EDF 的面积等于3时,12EDF S DE DF =⋅△=()13102t ⨯⨯-=3, 解得:8t =,8t =时,38=30=182S ⨯-阴影2cm ; (3)∵长方形ABCD∴AD CD ⊥,//,//AB CD AD BC , ∵//EG AB ,//FH BC ,∴EG HF ⊥,,AD EG CD HF ⊥⊥,∴DE ,AE 分别等于,EGF EGB △△的EG 边上的高,DF ,CF 分别等于,EHF BHF △△的FH 边上的高, ∴11112222BEF S EG DE EG AE HF DF HF CF =⋅+⋅=⋅+⋅△, ∴()()1122EG DE AE HF DF CF +=+,即EG AD HF CD ⋅=⋅,∵10cm AD =,6cm DC =, ∴106EG HF =,即53EG FH =. 【点睛】本题是一个动点问题,考查了平行线间的距离,三角形面积的计算,解题的关键是熟练掌握平行线的性质和三角形面积的计算方法.25.(1)见详解;(2)见详解;(3)CE ,垂线段最短;(4)8. 【分析】(1)取点D 作直线CD 即可; (2)取点F 作直线CF 交AB 与E 即可; (3)根据垂线段最短即可解决问题;(4)用割补法,大长方形的面积减去三个小三角形的面积即可; 【详解】解:(1)直线CD 即为所求; (2)直线CE 即为所求;(3)在线段CA 、CB 、CE 中,线段CE 最短,理由:垂线段最短; 故答案为CE ,垂线段最短; (4) S △ABC =18﹣12×1×5﹣12×1×3﹣12×2×6=8, ∴△ABC 的面积为8. 【点睛】本题主要考查垂线、平行线及其做图,注意作图的准确性. 26.90;COD ; 角平分线的定义;等式性质,180. 【分析】根据余角的定义可得∠COD+∠COE=90°,再根据平角的定义可得∠AOD+∠BOE=90°;根据角平分线的定义可得∠AOD=∠COD ,再根据等式性质可得∠BOE=∠COE ,进而得证. 【详解】证明:∵O 是直线AB 上一点 ∴∠AOB=180° ∵∠COD 与∠COE 互余 ∴∠COD+∠COE=90° ∴∠AOD+∠BOE=90°∵OD是∠AOC的平分线∴∠AOD=∠COD(理由:角平分线的定义)∴∠BOE=∠COE(理由:等式性质)∵∠AOE+∠BOE=180°∴∠AOE+∠COE=180°∴∠AOE与∠COE互补.故答案为:90;COD;角平分线的定义;等式性质,180.【点睛】本题考查了余角和补角的知识,解答本题的关键是理解余角和补角的定义,掌握角平分线的性质.。

(压轴题)人教版初中七年级数学下册第五章《相交线与平行线》模拟测试(含答案解析)(2)

(压轴题)人教版初中七年级数学下册第五章《相交线与平行线》模拟测试(含答案解析)(2)

一、选择题1.(0分)[ID :68953]如图,用直尺和三角尺画图:已知点P 和直线a ,经过点P 作直线b ,使//b a ,其画法的依据是( )A .过直线外一点有且只有一条直线与已知直线平行B .两直线平行,同位角相等C .同位角相等,两直线平行D .内错角相等,两直线平行2.(0分)[ID :68950]如图://AB DE ,50B ∠=︒,110D ∠=︒,BCD ∠的度数为( )A .160︒B .115︒C .110︒D .120︒ 3.(0分)[ID :68944]如图,把一长方形纸片ABCD 沿EG 折叠后,AEG A EG '∠=∠,点A 、B 分别落在A '、B ′的位置,EA '与BC 相交于点F ,已知1125∠=︒,则2∠的度数是( )A .55°B .60°C .70°D .75°4.(0分)[ID :68941]如图,由点B 观察点A 的方向是( ).A .南偏东62︒B .北偏东28︒C .南偏西28︒D .北偏东62︒ 5.(0分)[ID :68928]下列命题中,假命题是( )A .对顶角相等B .同角的余角相等C .面积相等的两个三角形全等D .平行于同一条直线的两直线平行 6.(0分)[ID :68924]如图,直线,a b 被直线c 所截,下列条件中不能判定a//b 的是( )A .25∠=∠B .45∠=∠C .35180∠+∠=︒D .12180∠+∠=︒ 7.(0分)[ID :68922]下列哪个图形是由图1平移得到的( )A .B .C .D .8.(0分)[ID :68920]如图,直线12l l ,130∠=︒,则23∠+∠=( )A .150°B .180°C .210°D .240°9.(0分)[ID :68918]在同一平面内,有3条直线a ,b ,c ,其中直线a 与直线b 相交,直线a 与直线c 平行,那么b 与c 的位置关系是( )A .平行B .相交C .平行或相交D .不能确定 10.(0分)[ID :68910]下列所示的四个图形中,∠1和∠2是同位角的是( )A .②③B .①②③C .①②④D .①④ 11.(0分)[ID :68897]下面命题中是真命题的有( )①相等的角是对顶角 ②直角三角形两锐角互余③三角形内角和等于180°④两直线平行内错角相等A .1个B .2个C .3个D .4个12.(0分)[ID :68891]如图,直线l 与直线AB 、CD 分别相交于点E 、点F ,EG 平分BEF ∠交直线CD 与点G ,若168BEF ∠=∠=︒,则EGF ∠的度数为( ).A .34°B .36°C .38°D .68°13.(0分)[ID :68888]如图,△ABC 经平移得到△EFB ,则下列说法正确的有 ( )①线段AC 的对应线段是线段EB ;②点C 的对应点是点B ;③AC ∥EB ;④平移的距离等于线段BF 的长度.A .1B .2C .3D .414.(0分)[ID :68887]如图,在Rt ABC △中,90,BAC ︒∠=3,AB cm =4AC cm =,把ABC 沿着直线BC 的方向平移2.5cm 后得到DEF ,连接AE ,AD ,有以下结论:①//AC DF ;②//AD BE ;③ 2.5CF cm =;④DE AC ⊥.其中正确的结论有( )A .1个B .2个C .3个D .4个15.(0分)[ID :68883]把一张有一组对边平行的纸条,按如图所示的方式析叠,若∠EFB =35°,则下列结论错误的是( )A .∠C 'EF =35°B .∠AEC =120° C .∠BGE =70°D .∠BFD =110°二、填空题16.(0分)[ID :69044]用一组a ,b 的值说明命题“若a b >,则22a b >”是错误的,这组值可以是a =____,b = ____17.(0分)[ID :69042]如图,已知点O 是直线AB 上一点,过点O 作射线OC ,使∠AOC =110°.现将射线OA 绕点O 以每秒10°的速度顺时针旋转一周.设运动时间为t 秒.当射线OA 、射线OB 、射线OC 中有两条互相垂直时,此时t 的值为__________.18.(0分)[ID :69041]两个角的两边两两互相平行,且一个角的12等于另一个角的13,则这两个角中较小角的度数为____︒. 19.(0分)[ID :69039]在同一平面内,A ∠与B 的两边分别平行,若50A ∠=︒,则B 的度数为__________︒.20.(0分)[ID :69023]在平面内,若OA ⊥OC ,且∠AOC ∶∠AOB =2∶3,则∠BOC 的度数为_______________;21.(0分)[ID :69014]如图,,OA OC OB OD ⊥⊥,4位同学观察图形后分别说了自己的观点.甲:AOB ∠COD =∠;乙:180BOC AOD ∠+∠=︒;丙:90AOB COD ∠+∠=︒;丁:图中小于平角的角有6个;其中正确的结论有__________个.22.(0分)[ID :68992]如图,将直角三角形ABC 沿斜边AC 的方向平移到三角形DEF 的位置,DE 交BC 于点G ,BG =4,EF =12,△BEG 的面积为4,下列结论:①DE ⊥BC ;②△ABC 平移的距离是4;③AD =CF ;④四边形GCFE 的面积为20,其中正确的结论有________(只填写序号).23.(0分)[ID :68983]一副直角三角尺叠放如图 1 所示,现将 45°的三角尺ADE 固定不动,将含 30°的三角尺 ABC 绕顶点 A 顺时针转动(旋转角不超过 180 度),使两块三角尺至少有一组边互相平行.如图 2:当∠BAD=15°时,BC ∥DE .则∠BAD (0°<∠BAD <180°)其它所有可能符合条件的度数为________.24.(0分)[ID :68982]如图,不添加辅助线,请写出一个能判定DE ∥BC 的条件___________.25.(0分)[ID :68974]如图所示,AB ∥CD ,EC ⊥CD .若∠BEC =30°,则∠ABE 的度数为_____.26.(0分)[ID :68960]如图,添加一个你认为合适的条件______使//AD BC .27.(0分)[ID :68958]某商场重新装修后,准备在门前台阶上铺设地毯,已知这种地毯的批发价为每平方米40元,其台阶的尺寸如图所示,则购买地毯至少需要________元.三、解答题28.(0分)[ID :69154]完成下面推理过程,在括号内的横线上填空或填上推理依据. 如图,已知://AB EF ,EP EQ ⊥,90EQC APE ∠+∠=︒,求证://AB CD证明://AB EFAPE ∴∠=__________(__________)EP EQ ⊥ PEQ ∴∠=_________(___________)即90QEF PEF ∠+∠=︒90APE QEF ∴∠+∠=︒90EQC APE ∠+∠=︒EQC ∠=________//EF ∴_______(__________________)//AB CD ∴(________________)29.(0分)[ID :69124]在如图所示的方格纸中,每个小正方形的顶点称为格点,点,,A B C 都在格点上.()1找一格点D ,使得直线//CD AB ,画出直线CD ;()2找一格点E ,使得直线AE BC ⊥于点F ,画出直线AE ,并注明垂足F ; ()3找一格点G ,使得直线BG AB ⊥,画出直线BG ;()4连接AG ,则线段,,AB AF AG 的大小关系是 (用“<”连接).30.(0分)[ID :69095]如图,直线BC 、DE 相交于点O ,OA 、OF 为射线,OA OB ⊥,OF 平分BOE ∠,BOF COD ∠+∠=54.求AOE ∠的度数.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.C2.D3.C4.B5.C6.D7.B8.C9.B10.C11.C12.A13.D14.D15.B二、填空题16.1(答案不唯一)-2(答案不唯一)【分析】举出一个反例:a=1b=-2说明命题若a>b 则a2>b2是错误的即可【详解】解:当a=1b=-2时满足a>b但是a2=1b2=4a2<b2∴命题若a>b则a17.920或27【分析】分4种情况确定垂直关系可得OA的旋转角度从而可求出t的值【详解】解:①当射线OA绕点O顺时针旋转20°时如图1则∠COA=110°-20°=90°故OA⊥OC此时t=20°÷1018.72【分析】如果两个角的两边互相平行则这两个角相等或互补根据题意这两个角只能互补然后列方程求解即可【详解】解:设其中一个角是x°则另一个角是(180-x)°根据题意得解得x=72∴180-x=10819.50或130【分析】由∠A与∠B的两边分别平行可得∠A=∠B或∠A+∠B=180°继而求得答案【详解】解:∵∠A与∠B的两边分别平行∴∠A=∠B或∠A+∠B=180°∵∠A=50°∴∠B=50°或∠20.45°或135°【分析】根据垂直关系可得∠AOC=90°再由∠AOC:∠AOB=2:3可得∠AOB 然后再分两种情况进行计算即可【详解】解:如图∠AOC的位置有两种:一种是∠AOC在∠AOB内一种是在21.3【分析】先根据垂直的定义可得再逐个判断即可得【详解】则甲的结论正确;则乙的结论正确;假设又由题中已知条件不能得到则丙的结论错误;图中小于平角的角为共有6个则丁的结论正确;综上正确的结论有3个故答案22.①③④【分析】根据平移的性质分别对各个小题进行判断:①利用平移前后对应线段是平行的即可得出结果;②平移距离指的是对应点之间的线段的长度;③根据平移前后对应线段相等即可得出结果;④利用梯形的面积公式即23.45°60°105°135°【解析】分析:根据题意画出图形再由平行线的判定定理即可得出结论详解:如图当AC∥DE时∠BAD=∠DAE=45°;当BC∥AD时∠DAE=∠B=60°;当BC∥AE时∵∠24.【分析】根据平行线的判定进行分析可以从同位角相等或同旁内角互补的方面写出结论【详解】∵DE和BC被AB所截∴当时AD∥BC(内错角相等两直线平行)故答案为【点睛】此题考查平行线的性质难度不大25.120°【分析】先根据平行线的性质得到∠GEC=90°再根据垂线的定义以及平行线的性质进行计算即可【详解】过点E作EG∥AB则EG∥CD由平行线的性质可得∠GEC=90°所以∠GEB=90°﹣30°26.∠ADF=∠C或∠A=∠ABE或∠A+∠ABC=180°或∠C+∠ADC=180°(答案不唯一写一个正确的即可)【分析】根据平行线的判定方法即可求解【详解】第一种情况同位角相等两直线平行即∠ADF=27.192【分析】根据平移可知地毯的长度等于横向与纵向的长度之和求出地毯的长度再根据矩形的面积列式求出地毯的面积然后乘以单价计算即可得解【详解】解:地毯的长度至少为:08+16=24(米);24×2×4三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【分析】根据平行线的判定定理即可得出结论.【详解】解:由画法可知,其画法的依据是同位角相等,两直线平行.故选:C.【点睛】本题考查了作图-复杂作图,熟知平行线的判定定理是解答此题的关键.2.D解析:D【分析】如图(见解析),利用平行线的判定与性质、角的和差即可得.【详解】CF AB,如图,过点C作////AB DE,AB DE CF∴,////∴∠=∠∠+∠=︒,BCF B DCF D,180∠=︒∠=︒,50,110B DBCF DCF D∴∠=︒∠=︒-∠=︒,50,18070∴∠=∠+∠=︒,BCD BCF DCF120故选:D.【点睛】本题考查了平行线的判定与性质、角的和差,熟练掌握平行线的判定与性质是解题关键. 3.C解析:C【分析】先根据平行线的性质可得55AEG ∠=︒,再根据平角的定义可得70∠︒=DEF ,然后根据平行线的性质即可得.【详解】由题意得://AD BC ,1125∠=︒,180155AEG ∴∠=︒-∠=︒,AEG A EG '∠=∠,55A EG '∴∠=︒,18070DEF AEG A EG '∴∠=︒-∠-∠=︒,又//AD BC ,270DEF ∴∠=∠=︒,故选:C .【点睛】本题考查了平角的定义、平行线的性质,熟练掌握平行线的性质是解题关键. 4.B解析:B【分析】根据平行线的性质求出∠ABE ,求出∠CBA ,根据图形和角的度数即可得出答案.【详解】解:如图所示:∵东西方向是平行的,∴∠ABE=∠DAB= 62° ,∵∠CBE=90°,∴∠CBA=90°-62°=28°,即由点B 观察点A 的方向是北偏东28°,故选:B .【点睛】本题考查了平行线的性质和方向角的应用,根据题意得出∠ABE 的度数是解题的关键. 5.C解析:C【分析】根据对顶角的性质对A 进行判断;根据余角的性质对B 进行判断;根据三角形全等的判断对C 进行判断;根据平行线的传递性对D 进行判断.【详解】解:A 、对顶角相等,所以A 选项为真命题;B 、同角的余角相等,所以B 选项为真命题;C 、面积相等的两个三角形不一定全等,所以C 选项为假命题;D 、平行于同一条直线的两条直线平行,所以D 选项为真命题.故选:C .【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.D解析:D【分析】根据平行线的判定定理逐项判断即可.【详解】解:A. 由2∠和5∠是同位角,则25∠=∠ ,可得a//b ,故该选项不符合题意;B. 由4∠和5∠是内错角,则45∠=∠,可得a//b ,故该选项不符合题意;C. 由∠3和∠1相等,35180∠+∠=︒,可得a//b ,故该选项不符合题意;D. 由∠1和∠2是邻补角,则12180∠+∠=︒不能判定a//b ,故该选项满足题意. 故答案为D .【点睛】本题主要考查了平行线的判定,掌握同位角相等,两直线平行;同旁内角互补,两直线平行是解答本题的关键.7.B解析:B【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【详解】A.不是由图1平移得到的,故错误;B.是由图1平移得到的,故正确;C.不是由图1平移得到的,故错误;D.不是由图1平移得到的,故错误;故选:B .【点睛】考查平移的性质,平移前后,图形的大小和形状没有变化.8.C解析:C【分析】根据题意作直线l 平行于直线l 1和l 2,再根据平行线的性质求解即可.【详解】解:作直线l 平行于直线l 1和l 212////l l l1430;35180︒︒∴∠=∠=∠+∠=245∠=∠+∠2+3=4+5+3=30180210︒︒︒∴∠∠∠∠∠+=故选C.【点睛】本题主要考查平行线的性质,关键在于等量替换的应用,两直线平行同旁内角互补,两直线平行内错角相等.9.B解析:B【分析】根据a∥c,a与b相交,可知c与b相交,如果c与b不相交,则c与b平行,故b与a 平行,与题目中的b与a相交矛盾,从而可以解答本题.【详解】解:假设b∥c,∵a∥c,∴a∥b,而已知a与b相交于点O,故假设b∥c不成立,故b与c相交,故选:B.【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.10.C解析:C【分析】根据同位角的定义逐一判断即得答案.【详解】图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.故选:C.【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.11.C解析:C【分析】利用平行线的性质、三角形的内角和、直角三角形的性质、对顶角的性质分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故不符合题意;②直角三角形两锐角互余,故符合题意;③三角形内角和等于180°,故符合题意;④两直线平行内错角相等,故符合题意;故选:C.此题考查了命题与定理,解题的关键是了解平行线的性质、对顶角的定义、直角三角形的性质及三角形的内角和等知识,难度不大.12.A解析:A【分析】由角平分线的性质可得∠GEB=12∠BEF=34°,由同位角相等,两直线平行可得CD∥AB,即可求解.【详解】∵EG平分∠BEF,∴∠GEB=12∠BEF=34°,∵∠1=∠BEF=68°,∴CD∥AB,∴∠EGF=∠GEB=34°,故选:A.【点睛】本题考查了平行线的判定和性质,角平分线的定义,灵活运用这些性质进行推理是本题的关键.13.D解析:D【分析】根据平移的特点分别判断各选项即可.【详解】∵△ABC经平移得到△EFB∴点A、B、C的对应点分别为E、F、B,②正确∴BE是AC的对应线段,①正确∴AC∥EB,③正确平移距离为对应点连线的长度,即BF的长度,④正确故选:D【点睛】本题考查平移的特点,注意,在平移过程中,一定要把握住对应点,仅对应点的连线之间才有平行、相等的一些关系.14.D解析:D【分析】根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小可对①②③进行判断;根据∠BAC=90°及平移的性质可对④进行判断,综上即可得答案.∵△ABC沿着直线BC的方向平移2.5cm后得到△DEF,∴AB//DE,AC//DF,AD//CF,CF=AD=2.5cm,故①②③正确.∵∠BAC=90°,∴AB⊥AC,∵AB//DE∴⊥,故④正确.DE AC综上所述:之前的结论有:①②③④,共4个,故选D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.15.B解析:B【分析】根据平行线的性质即可求解.【详解】A.∵AE∥BF,∴∠C'EF=∠EFB=35°(两直线平行,内错角相等),故A选项不符合题意;B.∵纸条按如图所示的方式析叠,∴∠FEG=∠C'EF=35°,∴∠AEC=180°﹣∠FEG﹣∠C'EF=180°﹣35°﹣35°=110°,故B选项符合题意;C.∵∠BGE=∠FEG+∠EFB=35°+35°=70°,故C选项不符合题意;D.∵AE∥BF,∴∠EGF=∠AEC=110°(两直线平行,内错角相等),∵EC∥FD,∴∠BFD=∠EGF=110°(两直线平行,内错角相等),故D选项不符合题意;故选:B.【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.二、填空题16.1(答案不唯一)-2(答案不唯一)【分析】举出一个反例:a=1b=-2说明命题若a>b 则a2>b2是错误的即可【详解】解:当a=1b=-2时满足a>b但是a2=1b2=4a2<b2∴命题若a>b则a解析:1(答案不唯一) -2(答案不唯一)【分析】举出一个反例:a=1,b=-2,说明命题“若a>b,则a2>b2”是错误的即可.【详解】解:当a=1,b=-2时,满足a>b,但是a2=1,b2=4,a2<b2,∴命题“若a>b,则a2>b2”是错误的.故答案为:1、-2.(答案不唯一)【点睛】此题主要考查了命题与定理,要熟练掌握,解答此题的关键是要明确:任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.17.920或27【分析】分4种情况确定垂直关系可得OA的旋转角度从而可求出t的值【详解】解:①当射线OA绕点O顺时针旋转20°时如图1则∠COA=110°-20°=90°故OA⊥OC此时t=20°÷10解析:9、20或27【分析】分4种情况确定垂直关系,可得OA的旋转角度,从而可求出t的值.【详解】解:①当射线OA绕点O顺时针旋转20°时,如图1,则∠COA=110°-20°=90°,故OA⊥OC,此时,t=20°÷10°=2;②当射线OA绕点O顺时针旋转90°时,如图2,则∠AOB=180°-90°=90°,故OA⊥OB,此时,t=90°÷10°=9;③当射线OA绕点O顺时针旋转200°时,如图3,则∠COA=200°-110°=90°,故OA ⊥OC ,此时,t=200°÷10°=20;④当射线OA 绕点O 顺时针旋转270°时,如图4,则∠BOA=270°-180°=90°,故OA ⊥OB ,此时,t=270°÷10°=27,故答案为:2,9,20或27.【点睛】本题主要考查了角的有关计算,注意在分类讨论时要做到不重不漏.18.72【分析】如果两个角的两边互相平行则这两个角相等或互补根据题意这两个角只能互补然后列方程求解即可【详解】解:设其中一个角是x°则另一个角是(180-x)°根据题意得解得x=72∴180-x=108解析:72【分析】如果两个角的两边互相平行,则这两个角相等或互补.根据题意,这两个角只能互补,然后列方程求解即可.【详解】解:设其中一个角是x°,则另一个角是(180-x)°,根据题意,得11(180)23x x =-, 解得x=72,∴180-x=108°;∴较小角的度数为72°.故答案为:72.【点睛】本题考查了平行线的性质,一元一次方程的应用,运用“若两个角的两边互相平行,则两个角相等或互补”,而此题中显然没有两个角相等这一情况是解决此题的突破点.19.50或130【分析】由∠A与∠B的两边分别平行可得∠A=∠B或∠A+∠B=180°继而求得答案【详解】解:∵∠A与∠B的两边分别平行∴∠A=∠B或∠A+∠B=180°∵∠A=50°∴∠B=50°或∠解析:50或130【分析】由∠A与∠B的两边分别平行,可得∠A=∠B或∠A+∠B=180°,继而求得答案.【详解】解:∵∠A与∠B的两边分别平行,∴∠A=∠B或∠A+∠B=180°,∵∠A=50°,∴∠B=50°,或∠B=180°-∠A=180°-50°=130°.故答案为:50或130.【点睛】此题考查了平行线的性质.此题难度适中,注意由∠A与∠B的两边分别平行,可得∠A与∠B相等或互补.20.45°或135°【分析】根据垂直关系可得∠AOC=90°再由∠AOC:∠AOB=2:3可得∠AOB然后再分两种情况进行计算即可【详解】解:如图∠AOC的位置有两种:一种是∠AOC在∠AOB内一种是在解析:45°或135°【分析】根据垂直关系可得∠AOC=90°,再由∠AOC:∠AOB=2:3,可得∠AOB,然后再分两种情况进行计算即可.【详解】解:如图,∠AOC的位置有两种:一种是∠AOC在∠AOB内,一种是在∠AOB外.∵OA⊥OC,∴∠AOC=90°,①当∠AOC在∠AOB内,如图1,∵∠AOC :∠AOB=2:3,∴∠BOC=12∠AOC=45°, ②当∠AOC 在∠AOB 外,如图2,∵∠AOC :∠AOB=2:3,∴∠AOB=32∠AOC=135°, ∴∠BOC=360°-∠AOB-∠AOC=135°.故答案为:45°或135°.【点睛】此题主要考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直.同时做这类题时一定要结合图形.21.3【分析】先根据垂直的定义可得再逐个判断即可得【详解】则甲的结论正确;则乙的结论正确;假设又由题中已知条件不能得到则丙的结论错误;图中小于平角的角为共有6个则丁的结论正确;综上正确的结论有3个故答案 解析:3【分析】先根据垂直的定义可得90AOC BOD ∠=∠=︒,再逐个判断即可得.【详解】,OA OC OB OD ⊥⊥,9090AOB BOC AOC COD BOC BOD ∠+∠=∠=︒⎧∴⎨∠+∠=∠=︒⎩, AOB COD ∴∠=∠,则甲的结论正确;180AOB BOC COD BOC AOC BOD ∠+∠+∠+∠=∠+∠=︒,180AOD BOC ∴∠+∠=︒,则乙的结论正确;假设90AOB COD ∠+∠=︒,90AOB BOC ∠+∠=︒,BOC COD ∴∠=∠,又90COD BOC ∠+∠=︒,45BOC COD ∴∠=∠=︒,由题中已知条件不能得到,则丙的结论错误;图中小于平角的角为,,,,,AOB AOC AOD BOC BOD COD ∠∠∠∠∠∠,共有6个, 则丁的结论正确;综上,正确的结论有3个,故答案为:3.【点睛】本题考查了垂直的定义、角的和差等知识点,熟练掌握角的运算是解题关键. 22.①③④【分析】根据平移的性质分别对各个小题进行判断:①利用平移前后对应线段是平行的即可得出结果;②平移距离指的是对应点之间的线段的长度;③根据平移前后对应线段相等即可得出结果;④利用梯形的面积公式即解析:①③④【分析】根据平移的性质分别对各个小题进行判断:①利用平移前后对应线段是平行的即可得出结果;②平移距离指的是对应点之间的线段的长度;③根据平移前后对应线段相等即可得出结果;④利用梯形的面积公式即可得出结果.【详解】解:∵直角三角形ABC沿斜边AC的方向平移到三角形DEF的位置,∴AB∥DE,∴∠ABC=∠DGC=90°,∴DE⊥BC,故①正确;△ABC平移距离应该是BE的长度,BE>4,故②错误;由平移前后的图形是全等可知:AC=DF,∴AC-DC=DF-DC,∴AD=CF,故③正确;∵△BEG的面积是4,BG=4,∴EG=4×2÷4=2,∵由平移知:BC=EF=12,∴CG=12-4=8,四边形GCFE的面积:(12+8)×2÷2=20,故④正确;故答案为:①③④【点睛】本题主要考查的是平移的性质,正确的掌握平移的性质是解题的关键.23.45°60°105°135°【解析】分析:根据题意画出图形再由平行线的判定定理即可得出结论详解:如图当AC∥DE时∠BAD=∠DAE=45°;当BC∥AD时∠DAE=∠B=60°;当BC∥AE时∵∠解析:45°,60°,105°,135°.【解析】分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,当AC∥DE时,∠BAD=∠DAE=45°;当BC∥AD时,∠DAE=∠B=60°;当BC∥AE时,∵∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;当AB∥DE时,∵∠E=∠EAB=90°,∴∠BAD=∠DAE+∠EAB=45°+90°=135°.故答案为45°,60°,105°,135°.点睛:本题考查了平行线的判定与性质.要证明两直线平行,需使其所构成的同位角、内错角相等(或同旁内角是否互补).24.【分析】根据平行线的判定进行分析可以从同位角相等或同旁内角互补的方面写出结论【详解】∵DE和BC被AB所截∴当时AD∥BC(内错角相等两直线平行)故答案为【点睛】此题考查平行线的性质难度不大解析:DAB B∠=∠【分析】根据平行线的判定进行分析,可以从同位角相等或同旁内角互补的方面写出结论.【详解】∵DE和BC被AB所截,∠=∠时,AD∥BC(内错角相等,两直线平行).∴当DAB B∠=∠故答案为DAB B【点睛】此题考查平行线的性质,难度不大25.120°【分析】先根据平行线的性质得到∠GEC=90°再根据垂线的定义以及平行线的性质进行计算即可【详解】过点E作EG∥AB则EG∥CD由平行线的性质可得∠GEC=90°所以∠GEB=90°﹣30°解析:120°.【分析】先根据平行线的性质,得到∠GEC=90°,再根据垂线的定义以及平行线的性质进行计算即可.【详解】过点E作EG∥AB,则EG∥CD,由平行线的性质可得∠GEC=90°,所以∠GEB=90°﹣30°=60°,因为EG∥AB,所以∠ABE=180°﹣60°=120°.故答案为:120°.【点睛】本题主要考查了平行线的性质和垂直的概念等,解题时注意:两直线平行,同旁内角互补.26.∠ADF=∠C或∠A=∠ABE或∠A+∠ABC=180°或∠C+∠ADC=180°(答案不唯一写一个正确的即可)【分析】根据平行线的判定方法即可求解【详解】第一种情况同位角相等两直线平行即∠ADF=解析:∠ADF=∠C或∠A=∠ABE或∠A+∠ABC=180°或∠C+∠ADC=180°(答案不唯一,写一个正确的即可)【分析】根据平行线的判定方法即可求解.【详解】AD BC;第一种情况,同位角相等,两直线平行,即∠ADF=∠C时,//AD BC;第二种情况,内错角相等,两直线平行,即∠A=∠ABE时,//第三种情况,同旁内角互补,两直线平行,即∠A+∠ABC=180°或∠C+∠ADC=180°时,AD BC;//故答案为∠ADF=∠C或∠A=∠ABE或∠A+∠ABC=180°或∠C+∠ADC=180°.【点睛】本题考查了平行线的判定方法,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.27.192【分析】根据平移可知地毯的长度等于横向与纵向的长度之和求出地毯的长度再根据矩形的面积列式求出地毯的面积然后乘以单价计算即可得解【详解】解:地毯的长度至少为:08+16=24(米);24×2×4解析:192【分析】根据平移可知地毯的长度等于横向与纵向的长度之和求出地毯的长度,再根据矩形的面积列式求出地毯的面积,然后乘以单价计算即可得解.【详解】解:地毯的长度至少为:0.8+1.6=2.4(米);2.4×2×40=192(元).答:铺设梯子的红地毯至少需要2.4米,花费至少192元.故答案为:192【点睛】本题考查了生活中的平移,熟记平移的性质并理解地毯长度的求法是解题的关键.三、解答题28.∠PEF;两直线平行,内错角相等;90°;垂直的定义;∠QEF;CD;内错角相等,两直线平行;同一平面内,平行于同一条直线的两条直线互相平行.【分析】根据平行线的性质得到∠APE=∠PEF,根据余角的性质得到∠EQC=∠QEF根据平行线的判定定理即可得到结论.【详解】证明:∵AB∥EF∴∠APE=∠PEF(两直线平行,内错角相等)∵EP⊥EQ∴∠PEQ=90°(垂直的定义)即∠QEF+∠PEF=90°∴∠APE+∠QEF=90°∵∠EQC+∠APE=90°∴∠EQC=∠QEF∴EF∥CD(内错角相等,两直线平行)∴AB∥CD(同一平面内,平行于同一条直线的两条直线互相平行),故答案为:∠PEF;两直线平行,内错角相等;90°;垂直的定义;∠QEF;CD;内错角相等,两直线平行;同一平面内,平行于同一条直线的两条直线互相平行.【点睛】本题考查了平行线的判定和性质,垂直的定义,熟练掌握平行线的判定和性质是解题的关键.29.<<(1)见解析;(2)见解析;(3)见解析;(4)AF AB AG【分析】(1)将AB沿着BC方向平移,使其过点C,此时经过的格点即为所求;(2)延长CB,作AE与CB交于F点,此时E点即为所求;(3)过B点作AB的垂线,经过的格点即为所求;(4)在两个直角三角形中比较即可得出结论.【详解】(1)如图所示,符合题意的格点有D1,D2两个,画出其中一个即可;(2)如图所示:E 点即为所求,垂足为F 点;(3)如图所示,点G 即为所求;(4)如图所示,显然,在Rt ABF 中,AB AF >;在Rt ABG 中,AG AB >, 故答案为:AF AB AG <<.【点睛】本题考查应用与设计作图,平行线的判定与性质以及垂线的定义,熟练掌握基本性质定理是解题关键.30.126º【分析】设BOF ∠=x ,根据角平分线的定义表示出∠BOE ,再根据对顶角相等求出COD ∠,然后列出方程求出x ,从而得到∠BOE 的度数,再根据垂线的定义求出AOB ∠,最后根据AOE ∠=AOB BOE ∠+∠代入数据进行计算即可得解.【详解】设BOF ∠=x ,∵OF 平分∠BOE ,∴∠BOE =2BOF ∠=2x ,∴COD ∠=∠BOE =2x (对顶角相等),∵BOF COD ∠+∠=54,∴2x x +=54,解得x =18,∴∠BOE =218⨯=36,∵OA OB ⊥,∴AOB ∠=90,∴AOE ∠=AOB BOE ∠+∠=9036+=126.【点睛】本题考查了垂线的定义,对顶角相等的性质,角平分线的定义,是基础题,设出未知数并根据已知条件列出方程求出∠BOE 是解题的关键.。

(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》检测卷(包含答案解析)(2)

(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》检测卷(包含答案解析)(2)

一、选择题1.如果∠l 与∠2互补,∠2为锐角,则下列表示∠2余角的式子是( )A .90°-∠1B .∠1 - 90°C .∠1 + 90°D .180°-∠1 2.按语句画图:点P 在直线a 上,也在直线b 上,但不在直线c 上,直线a ,b ,c 两两相交正确的是( )A .B .C .D .3.如图,直线AB 、CD 相交于点O ,OE 平分AOC ∠,若70BOD ∠=︒,则COE ∠的度数是( )A .70°B .50°C .40°D .35°4.已知//AB CD ,∠EAF=13∠EAB ,∠ECF=13∠ECD ,若∠E=66°,则∠F 为( )A .23°B .33°C .44°D .46°5.如图,AB ∥CD , ∠BED=110°,BF 平分∠ABE,DF 平分∠CDE,则∠BFD= ( )A .110°B .115°C .125°D .130°6.如图,直线12//,,140l l αβ∠=∠∠=︒,则2∠等于( )A .140︒B .130︒C .120︒D .110︒7.如图,有A ,B ,C 三个地点,且AB ⊥BC ,从A 地测得B 地在A 地的北偏东43°的方向上,那么从B 地测得C 地在B 地的( )A .北偏西47B .南偏东47C .北偏东43D .南偏西43 8.下列图形中,1∠与2∠是对顶角的是( )A .B .C .D . 9.如图,平面内直线////a b c ,点,,A B C 分别在直线,,a b c 上,BD 平分ABC ∠,并且满足a β∠>∠,则,,a βγ∠∠∠关系正确的是( )A . 2a βγ∠=∠+∠B .22a βγ∠=∠-∠C .a βγ∠=∠+∠D . 2a βγ∠=∠-∠10.如图,点P 在直线m 上移动,,A B 是直线n 上的两个定点,且直线//m n .对于下列各值:①点P 到直线n 的距离;②PAB △的周长;③PAB △的面积;④APB ∠的大小.其中不会随点P 的移动而变化的是( )A .①②B .①③C .②④D .③④11.如图,直线a b 、被直线c 所截,若//a b ,则下列不正确的是( )A .12∠=∠B .24∠∠=C .14∠=∠D .15∠=∠ 12.如图,直线a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=40°,那么∠2的度数是( )A .35°B .45°C .50°D .65°二、填空题13.已知β∠的一边与α∠的一边平行,β∠的另一边与α∠的另一边垂直,若53α∠=︒,则β∠=______.14.已知n (3n ≥,且n 为整数)条直线中只有两条直线平行,且任何三条直线都不交于..........同一个点.....如图,当3n =时,共有2个交点;当4n =时,共有5个交点;当5n =时,共有9个交点;…依此规律,当图中有n 条直线时,共有交点________个.15.如图,直线a ∥b ∥c ,直角∠BAC 的顶点A 在直线b 上,两边分别与直线a ,c 相交于点B ,C ,则∠1+∠2的度数是___________.16.如图,//AB CD ,若1120∠=︒,285∠=︒,则3∠=______.17.如图,AB ∥CD ,EG 平分AEN ∠,若EFD ∠=108°,则GEN ∠的度数为_________________.18.如图,AB ∥CD ,CE 平分∠ACD ,若∠A =110°,则∠AEC =_____°.19.如图,若a //b ,则图中x 的度数是______________度.20.如图,直线AB CD 、相交于点,O OE AB ⊥于,56O AOC ∠=︒,则DOE ∠= ______________________.三、解答题21.如图,直线AB ,CD 相交于点O ,OF CD ⊥,OE 平分BOC ∠.(1)若65BOE ∠=︒,求DOE ∠的度数;(2)若:2:3BOD BOE ∠∠=,求AOF ∠的度数.22.作图题:已知∠α,线段m 、n ,请按下列步骤完成作图(不需要写作法,保留作图痕迹)(1)作∠MON =∠α(2)在边OM 上截取OA =m ,在边ON 上截取OB =n .(3)作直线AB .23.已知:如图,O 是直线AB 上一点,OD 是AOC ∠的平分线,COD ∠与COE ∠互余.求证:AOE ∠与COE ∠互补.请将下面的证明过程补充完整;证明:O 是直线AB 上一点,180AOB ∴∠=︒COD ∠与COE ∠互余,COD COE ∴∠+∠=_______︒.90AOD BOE ∴∠+∠=︒ OD 是AOC ∠的平分线,AOD ∴∠=∠_________.(理由:_________)B O E COE ∴∠=∠.(理由:______________) =AOE BOE ∠+∠_______︒. 180AOE COE ∴∠+∠=︒ AOE ∴∠与COE ∠互补. 24.如图,直线AB 和直线BC 相交于点B ,连接AC ,点,,DE H 分别在AB 、AC 、BC 上,连接DE 、DH ,F 是DH 上一点,已知13180︒∠+∠=(1)求证:CEF EAD ∠=∠;(2)若DH 平分BDE ∠,2α∠=∠,求3∠的度数.(用α表示) 25.按要求作图(1)如图,已知线段,a b ,用尺规做一条线段,使它等于+a b (不要求写作法,只保留作图痕迹)(2)已知:∠α,求作∠AOB=∠α(要求:直尺和圆规作图,不写作法,保留作图痕迹)26.把一块含60°角的直角三角尺()0090,60EFG EFG EGF ∠=∠=放在两条平行线,AB CD 之间.(1)如图1,若三角形的60°角的顶点G 放在CD 上,且221∠=∠,求1∠的度数; (2)如图2,若把三角尺的两个锐角的顶点,E G 分别放在AB 和CD 上,请你探索并说明AEF ∠与FGC ∠间的数量关系;(3)如图3,若把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上,请直接写出AEG ∠与CFG ∠的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】首先根据补角的定义可得∠2=180°-∠1,再根据余角定义可得∠2余角的式子是90°-∠2,再进行等量代换即可.【详解】解:∵∠1与∠2互补,∴∠1+∠2=180°,∴∠2=180°-∠1,∴∠2余角的式子是,90°-∠2=90°-(180°-∠1)=∠1-90°,故选:B.【点睛】本题主要考查了补角和余角,关键是掌握余角和补角的定义.2.A解析:A【分析】根据相交线的概念、点与直线的位置关系进行判断即可.【详解】解:A.符合条件,B.不符合点P不在直线c上;C.不符合点P在直线a上;D.不符合直线a、b、c两两相交;故选:A.【点睛】本题考查的是相交线、点与直线的位置关系,正确理解题意、认识图形是解题的关键.3.D解析:D【分析】根据对顶角相等求出∠AOC ,根据角平分线的定义计算即可求出∠COE 的度数.【详解】∵∠BOD=70︒,∴∠AOC=∠BOD=70︒,∵OE 平分∠AOC ,∴∠COE=12∠AOC=170352⨯︒=︒, 故选:D .【点睛】 本题考察对顶角、角平分线的定义,掌握对顶角相等、角平分线的定义是解题的关键. 4.C解析:C【分析】如图(见解析),先根据平行线的性质、角的和差可得66EAB EC C D AE ∠+∠=∠=︒,同样的方法可得F FAB FCD ∠=∠+∠,再根据角的倍分可得,2323FAB EAB FCD ECD ∠=∠∠=∠,由此即可得出答案. 【详解】 如图,过点E 作//EG AB ,则////EG AB CD ,,EAB CE C A D G G E E ∴∠=∠∠∠=,66AEG EAB ECD CE A C G E ∴∠+=∠+=∠=∠∠︒,同理可得:F FAB FCD ∠=∠+∠,11,33EAF EAB ECF ECD ∠=∠∠=∠, ,2323FAB EAB FCD ECD ∴∠=∠∠=∠, ()266443333222F FAB FCD EAB ECD EAB ECD ∴∠=∠+∠=∠+∠=∠+∠=⨯︒=︒,故选:C .【点睛】本题考查了平行线的性质、角的和差倍分,熟练掌握平行线的性质是解题关键.5.C解析:C【分析】先过点E作EM∥AB,过点F作FN∥AB,由AB∥CD,即可得EM∥AB∥CD∥FN,然后根据两直线平行,同旁内角互补,由∠BED=110°,即可求得∠ABE+∠CDE=250°,又由BF平分∠ABE,DF平分∠CDE,根据角平分线的性质,即可求得∠ABF+∠CDF的度数,又由两直线平行,内错角相等,即可求得∠BFD的度数.【详解】解:如图,过点E作EM∥AB,过点F作FN∥AB,∵AB∥CD,∴EM∥AB∥CD∥FN,∴∠ABE+∠BEM=180°,∠CDE+∠DEM=180°,∴∠ABE+∠BED+∠CDE=360°,∵∠BED=110°,∴∠ABE+∠CDE=250°∵BF平分∠ABE,DF平分∠CDE,∴∠ABF=12∠ABE,∠CDF=12∠CDE,∴∠ABF+∠CDF=12(∠ABE+∠CDE)=125°,∵∠DFN=∠CDF,∠BFN=∠ABF,∴∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=125°.故选:C.【点睛】此题考查了平行线的性质与角平分线的定义,解题的关键是注意数形结合思想的应用,注意辅助线的作法.6.A解析:A【分析】作出如下图所示的辅助线,然后再利用平行线的性质即可求解.【详解】解:如图所示,作直线m∥n∥l1∥l2,此时有∠3=∠1=40°,∠6=180°-∠2,∠4=∠5,又∠α=∠3+∠4,∠β=∠5+∠6=∠5+(180°-∠2),且∠α=∠β,∴∠3+∠4=∠5+(180°-∠2),由于∠4=∠5,∴∠3=180°-∠2,代入数据:40°=180°-∠2,∴∠2=140°,故选:A.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.熟记性质并作辅助线是解题的关键.7.A解析:A【分析】根据方向角的概念和平行线的性质求解.【详解】解:∵AF∥DE,∴∠ABE=∠FAB=43°,∵AB⊥BC,∴∠ABC=90°,∴∠CBD=180°-∠ABC-∠ABE=47°,∴C地在B地的北偏西47°的方向上.故选:A.【点睛】本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.解析:C【分析】根据对顶角的定义即可判断.【详解】解:A 、∠1与∠2的两边没有都互为反向延长线,故A 不是对顶角;B 、∠1与∠2的两边没有都互为反向延长线,故B 不是对顶角;C 、∠1与∠2符合对顶角定义,是对顶角,故C 选项正确;D 、∠1与∠2没有公共顶点,故D 不是对顶角;故选:C.【点睛】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.9.A解析:A【分析】由平行线的性质可得∠ABC=a β∠+∠,然后根据1=2ABC βγ∠+∠∠求解即可. 【详解】解:∵////a b c ,∴∠ABE=∠α,∠CBE=∠β,∴∠ABC=a β∠+∠,∵BD 平分ABC ∠,∴∠CBD 1=2ABC ∠, ∴()1=2βγαβ∠+∠∠+∠, ∴2a βγ∠=∠+∠.故选A .【点睛】本题考查了角平分线的定义,以及平行线的性质,熟练掌握平行线的性质是解答本题的关键.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.解析:B【分析】根据平行线间的距离不变即可判断①;根据三角形的周长和点P的运动变化可判断②④;根据同底等高的三角形的面积相等可判断③;进而可得答案.【详解】m n,解:∵直线//∴①点P到直线n的距离不会随点P的移动而变化;∵PA、PB的长随点P的移动而变化,∴②△PAB的周长会随点P的移动而变化,④∠APB的大小会随点P的移动而变化;∵点P到直线n的距离不变,AB的长度不变,∴③△PAB的面积不会随点P的移动而变化;综上,不会随点P的移动而变化的是①③.故选:B.【点睛】本题主要考查了平行线间的距离和同底等高的三角形的面积相等等知识,属于基础题型,熟练掌握平行线间的距离的概念是关键.11.D解析:D【分析】根据平行线的性质得出∠2=∠4,∠1=∠4,根据对顶角相等和邻补角互补得出∠1=∠2,∠1+∠5=180°,即可得出选项.【详解】解:∵a∥b,∴∠2=∠4,∠1=∠4,∵∠4+∠5=180°,∴∠1+∠5=180°,∵∠1=∠2(对顶角相等),所以选项A、B、C答案正确,只有选项D答案错误;故选:D.【点睛】本题考查了平行线的性质,对顶角相等,邻补角互补等知识点,能灵活运用知识点进行推理是解此题的关键.12.C解析:C【分析】根据两条直线平行,同位角相等得∠1的同位角是40°,再根据平角的定义和垂直定义即可求得∠2.【详解】解:∵a∥b,∴BC与b所夹锐角等于∠1=40°,又AB⊥BC,∴∠ABC=90°∴∠2=180°-90°-40°=50°故选:C.【点睛】本题考查了平行线的性质以及平角的概念,熟练应用两直线平行同位角相等是解题关键.二、填空题13.143°或37°【分析】分AB∥CFEF⊥BD和AB∥CFEF⊥BD两种情况画出图形根据平行线的性质和垂直的定义求解【详解】解:如图1AB∥CFEF⊥BD∵AB∥CF∴∠CFD=∠α=53°∵EF⊥解析:143°或37°【分析】分AB∥CF,EF⊥BD和AB∥CF,EF⊥BD两种情况,画出图形,根据平行线的性质和垂直的定义求解.【详解】解:如图1,AB∥CF,EF⊥BD,∵AB∥CF,∴∠CFD=∠α=53°,∵EF⊥BD,∴∠DFE=90°,∴∠β=∠CFD+∠DFE=53°+90°=143°;如图2,AB∥CF,EF⊥BD,∵AB∥CF,∴∠CFD=∠α=53°,∵EF⊥BD,∴∠EFD=90°,∴∠β=∠EFD-∠CFD=90°-53°=37°;故答案为:143°或37°.【点睛】本题考查了平行线的性质,垂直的定义,解题的关键是根据题意画出图形,分类讨论求出结果.14.【分析】首先通过观察图形找到交点个数与直线条数之间的规律然后列出n条直线时交点个数关于n的代数式即可【详解】∵当n=3时每增加一条直线交点的个数就增加n−1即:当n=3时共有2个交点;当n=4时共有解析:222n n--【分析】首先通过观察图形,找到交点个数与直线条数之间的规律,然后列出n 条直线时,交点个数关于n的代数式即可.【详解】∵当n=3时,每增加一条直线,交点的个数就增加n−1.即:当n=3时,共有2个交点;当n=4时,共有5个交点;当n=5时,共有9个交点;…,∴n条直线共有交点2+3+4+…+(n−1)=222n n--个.故答案为:222n n--.【点睛】本题考查了相交线.解题的关键是,仔细观察图形,发现规律.15.270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°再结合∠BAC是直角即可得出结果【详解】解:如图所示∵a∥b∴∠1+∠3=180°则∠3=180°-∠1∵b∥c∴∠2+∠4=180°解析:270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC是直角即可得出结果.【详解】解:如图所示,∵a∥b,∴∠1+∠3=180°,则∠3=180°-∠1,∵b∥c∴∠2+∠4=180°,则∠4=180°-∠2,∵∠BAC是直角,∴∠3+∠4=180°-∠1+180°-∠2,∴90°=360°-(∠1+∠2),∴∠1+∠2=270°.故答案为:270°【点睛】本题主要考查的是平行线的性质,掌握平行线的性质是解题的关键.16.【分析】过点E作EF∥AB由平行线的性质可知AB∥CD∥EF故可得出∠4及∠5的度数再由平行线的性质即可求出∠3的度数【详解】过点E作EF∥AB∵AB∥CD∴AB∥CD∥EF∴∠1+∠4=180°∠解析:145【分析】过点E作EF∥AB,由平行线的性质可知AB∥CD∥EF,故可得出∠4及∠5的度数,再由平行线的性质即可求出∠3的度数.【详解】过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠1+∠4=180°,∠3+∠5=180°,∵∠1=120°,∠2=85°,∴∠4=60°,∴∠5=180°-∠4-∠2=35°,∴∠3=180°-35°=145°.故答案为:145°.【点睛】本题考查了平行线的判定和性质,根据题意作出辅助线,构造出平行线是解答此题的关键.17.36°【分析】由平行线的性质得再由角平分线的定义即可求出答案【详解】解:∵=108°∴∵∥∴∵平分∴;故答案为:36°【点睛】本题考查了平行线的性质角平分线的定义以及邻补角的定义解题的关键是熟练掌握解析:36°【分析】由平行线的性质,得AEN CFE ∠=∠,再由角平分线的定义,即可求出答案.【详解】解:∵EFD ∠=108°,∴18010872CFE ∠=︒-︒=︒,∵AB ∥CD ,∴72AEN CFE ∠=∠=︒,∵EG 平分AEN ∠, ∴172362GEN ∠=⨯︒=︒; 故答案为:36°.【点睛】 本题考查了平行线的性质,角平分线的定义,以及邻补角的定义,解题的关键是熟练掌握所学的性质定理进行解题.18.35【分析】首先根据AB ∥CD 得到∠ACD70°再由CE 平分∠ACD 得到∠ACE =∠DCE =35°最后由两直线平行内错角相等得到∠AEC =35°【详解】解:∵AB ∥CD ∴∠AEC =∠DCE ∠A+∠A解析:35【分析】首先根据AB ∥CD ,得到∠ACD 70°,再由CE 平分∠ACD ,得到∠ACE =∠DCE =35°,最后由两直线平行内错角相等,得到∠AEC =35°.【详解】解:∵AB ∥CD ,∴∠AEC =∠DCE ,∠A +∠ACD =180°,∴∠ACD =180°﹣∠A =180°﹣110°=70°,∵CE 平分∠ACD ,∴∠ACE =∠DCE =1702︒⨯=35°, ∴∠AEC =∠DCE =35°;【点睛】本题考查了平行线的基本性质:两直线平行,同旁内角互补;两直线平行,内错角相等.熟记并灵活运用平行线基本性质是解本题的关键.19.72【分析】根据平角的定义可求再根据平行线的性质即可求解【详解】解:如图过两平行线中间角的顶点作的平行线由平行线的性质可得解得故答案为:72【点睛】考查了平行线的性质关键是熟悉两直线平行内错角相等的解析:72【分析】∠=︒,再根据平行线的性质即可求解.根据平角的定义可求160【详解】解:如图,过两平行线中间角的顶点作a的平行线,∠=︒-︒=︒,118012060x+︒=︒+︒+︒,由平行线的性质可得48603030x=︒.解得72故答案为:72.【点睛】考查了平行线的性质,关键是熟悉两直线平行,内错角相等的知识点.20.34°【分析】先求出∠AOD的度数再求∠DOE的度数即可【详解】解:∵∠AOC=56°∴∠AOD=180°-56°=124°∵OE⊥AB∴∠AOE=90°∴∠DOE=124°-90°=34°故答案为解析:34°【分析】先求出∠AOD的度数,再求∠DOE的度数即可.【详解】解:∵∠AOC=56°,∴∠AOD=180°-56°=124°,∵OE⊥AB,∴∠AOE=90°,∴∠DOE=124°-90°=34°.【点睛】本题考查了邻补角的定义,垂直的定义,以及角的和差计算,熟练掌握邻补角的定义和垂直的定义是解答本题的关键.三、解答题21.(1)115°;(2)45°【分析】(1)根据角平分线的定义求出∠EOC 的度数,根据邻补角的性质求出∠DOE 的度数即可; (2)根据题意设BOD x ∠=°,则32COE BOE x ∠=∠=°,然后根据180COE BOE BOD ∠+∠+∠=︒计算即可得出BOD ∠,从而利用对顶角及余角的概念求解即可.【详解】(1)∵OE 平分BOC ∠,65BOE ∠=︒,∴65EOC BOE ∠=∠=︒,∴18065115DOE ∠=︒-︒=︒.(2)∵:2:3BOD BOE ∠∠=,设BOD x ∠=°,则32COE BOE x ∠=∠=° , ∵180COE BOE BOD ∠+∠+∠=︒, ∴3318022x x x ++=, ∴45x =. ∵OF CD ⊥,BOD AOC ∠=∠,∴90COF ∠=︒,∴904545AOF ∠=︒-︒=︒.【点睛】本题考查与角平分线相关的计算,以及列一元一次方程求解角度问题,理解角平分线的定义并根据题意运用方程思想求解是解题的关键.22.(1)见解析;(2)见解析;(3)见解析【分析】(1)先画一条射线ON ,以∠α的顶点为圆心,任意长度为半径画弧,交∠α的两个边于两个点,这两个点的距离记为a ,接着以点O 为圆心,同样的长度为半径画弧,交ON 于一个点,以这个点为圆心,a 为半径画弧,与刚刚画的弧有一个交点,连接这个点和点O ,得到射线OM ,即可得到∠MON =∠α;(2)以点O 为圆心,m 为半径画弧,交OM 于点A ,以点O 为圆心,n 为半径画弧,交ON 于点B ;(3)连接AB ,线段AB 所在的直线即直线AB .【详解】解:(1)如图所示,(2)如图所示,(3)如图所示,【点睛】本题考查尺规作图,解题的关键是掌握作已知角度的方法,截取线段和画直线的方法.23.90;COD;角平分线的定义;等式性质,180.【分析】根据余角的定义可得∠COD+∠COE=90°,再根据平角的定义可得∠AOD+∠BOE=90°;根据角平分线的定义可得∠AOD=∠COD,再根据等式性质可得∠BOE=∠COE,进而得证.【详解】证明:∵O是直线AB上一点∴∠AOB=180°∵∠COD与∠COE互余∴∠COD+∠COE=90°∴∠AOD+∠BOE=90°∵OD是∠AOC的平分线∴∠AOD=∠COD(理由:角平分线的定义)∴∠BOE=∠COE(理由:等式性质)∵∠AOE+∠BOE=180°∴∠AOE+∠COE=180°∴∠AOE与∠COE互补.故答案为:90;COD;角平分线的定义;等式性质,180.【点睛】本题考查了余角和补角的知识,解答本题的关键是理解余角和补角的定义,掌握角平分线的性质.24.(1)见解析(2)90°+1 2α【分析】(1)根据平行线的判定和性质解答即可;(2)根据平行线的性质解答即可.【详解】解:(1)∵∠3+∠DFE=180°,∠1+∠3=180°∴∠DFE=∠1,∴AB∥EF,∴∠CEF=∠EAD;(2)∵AB∥EF,∴∠2+∠BDE=180°又∵∠2=α∴∠BDE=180°−α又∵DH平分∠BDE∴∠1=12∠BDE=12(180°−α)∴∠3=180°− 12(180°−α)=90°+12α.【点睛】本题考查了角平分线定义,平行线的性质和判定等知识点,注意:①内错角相等,两直线平行,②两直线平行,同旁内角互补.25.(1)作图见解析;(2)作图见解析.【分析】(1)根据题意,作一条长射线,在射线上连续截取a和b即可;(2)作射线OA,通过截取角度即可得解.【详解】(1)作射线CF,在射线上顺次截取CD=a,DE=b,如下图所示,线段CE即为所求:(2)首先作射线OA ,如下图所示,∠AOB 即为所求:【点睛】本题主要考查了尺规作图,属于基础题,熟练掌握尺规作图的相关方法是解决本题的关键.26.(1)40°;(2)∠AEF+∠FGC=90°;(3)AEG ∠+CFG ∠=300°【分析】(1)根据平行线的性质得:1=∠EGD ,结合∠2=2∠1和平角的定义,即可求解; (2)过点F 作FP ∥AB ,根据平行线的性质和直角的意义,即可求解;(3)根据平行线的性质得∠AEF+∠CFE=180°,结合条件,即可求解.【详解】(1)∵AB ∥CD ,∴∠1=∠EGD ,∵∠2+∠FGE+∠EGD=180°,∠2=2∠1,∴2∠1+60°+∠1=180°,解得∠1=40°;(2)如图,过点F 作FP ∥AB ,∵CD ∥AB ,∴FP ∥AB ∥CD ,∴∠AEF=∠EFP ,∠FGC=∠GFP .∴∠AEF+∠FGC=∠EFP+∠GFP=∠EFG ,∵∠EFG=90°,∴∠AEF+∠FGC=90°;(3) AEG ∠+CFG ∠=300°,理由如下:∵AB ∥CD ,∴∠AEF+∠CFE=180°,即AEG ∠−30°+CFG ∠−90°=180°,整理得:AEG ∠+CFG ∠=300°.【点睛】本题主要考查平行线的性质,添加辅助线,构造相等的角,是解题的关键。

(压轴题)人教版初中七年级数学下册第五章《相交线与平行线》模拟检测(包含答案解析)(2)

(压轴题)人教版初中七年级数学下册第五章《相交线与平行线》模拟检测(包含答案解析)(2)

一、选择题1.(0分)[ID:68957]下列定理中,没有逆定理的是().A.两直线平行,同旁内角互补B.线段垂直平分线上的任意一点到这条线段两个端点的距离相等C.等腰三角形两个底角相等D.同角的余角相等2.(0分)[ID:68954]在下列命题中,为真命题的是()A.相等的角是对顶角B.平行于同一条直线的两条直线互相平行C.同旁内角互补D.垂直于同一条直线的两条直线互相平行3.(0分)[ID:68933]如图,将直角边长为a(a>1)的等腰直角三角形ABC沿BC向右平移1个单位长度,得到三角形DEF,则图中阴影部分面积为()A.a-12B.a-1C.a+1 D.a2-1 4.(0分)[ID:68922]下列哪个图形是由图1平移得到的()A.B.C .D .5.(0分)[ID :68921]如图,如果AB ∥EF ,EF ∥CD ,下列各式正确的是( )A .∠1+∠2−∠3=90°B .∠1−∠2+∠3=90°C .∠1+∠2+∠3=90°D .∠2+∠3−∠1=180° 6.(0分)[ID :68915]如图,将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF 若5BC cm ,则EC 的长为( )A .2cmB .4cmC .6cmD .8cm7.(0分)[ID :68911]光线在不同介质中的传播速度不同,因此当光线从空气射向水中时,会发生折射.如图,在空气中平行的两条入射光线,在水中的两条折射光线也是平行的.若水面和杯底互相平行,且∠1=122°,则∠2=( )A .61°B .58°C .48°D .41°8.(0分)[ID :68906]已知,//AB CD ,且2CD AB ,ABE △和CDE △的面积分别为2和8,则ACE △的面积是( )A .3B .4C .5D .69.(0分)[ID :68897]下面命题中是真命题的有( )①相等的角是对顶角②直角三角形两锐角互余③三角形内角和等于180°④两直线平行内错角相等A .1个B .2个C .3个D .4个10.(0分)[ID :68888]如图,△ABC 经平移得到△EFB ,则下列说法正确的有 ()①线段AC 的对应线段是线段EB ;②点C 的对应点是点B ;③AC ∥EB ;④平移的距离等于线段BF 的长度.A .1B .2C .3D .411.(0分)[ID :68886]下列命题是真命题的有( )个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角的平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A .0B .1C .2D .312.(0分)[ID :68882]如图,下列不能判定DF ∥AC 的条件是( )A.∠A=∠BDF B.∠2=∠4C.∠1=∠3 D.∠A+∠ADF=180°13.(0分)[ID:68881]如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为()A.10°B.20°C.25°D.30°14.(0分)[ID:68880]如图,直线a∥b,则∠A的度数是()A.28°B.31°C.39°D.42°∕∕,AF交CD于点E,且15.(0分)[ID:68872]如图,已知AB CD⊥∠=︒,则A,40BE AF BED∠的度数是()A.40︒B.50︒C.80︒D.90︒二、填空题∠=∠=∠=︒,则∠4的度数是___________.16.(0分)[ID:69047]已知:如图,1235417.(0分)[ID:69031]如图,将一张长方形纸片按如图所示折叠,如果∠1=55°,那么∠2=_____°.18.(0分)[ID:69018]如图,在长方形草地内修建了宽为2米的道路,则草地面积为_______米2.19.(0分)[ID :69017]将一副三角板中的两块直角三角尺的直角顶点C 按如图方式叠放在一起(其中,60A ︒∠=,30D ︒∠=;45E B ︒∠=∠=),当90ACE ︒∠<且点E 在直线AC 的上方,使ACD △的一边与三角形ECB 的某一边平行时,写出ACE ∠的所有可能的值____.20.(0分)[ID :69009]若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠B =_____度.21.(0分)[ID :69004]用反证法证明“一个三角形中最大的内角不小于60”时,第一步我们要先假设:______.22.(0分)[ID :68990]如图,已知AB ,CD ,EF 互相平行,且∠ABE =70°,∠ECD =150°,则∠BEC =________°.23.(0分)[ID :68982]如图,不添加辅助线,请写出一个能判定DE ∥BC 的条件___________.24.(0分)[ID :68980]如图,AB ∥CD ,∠B =75°,∠E =27°,则∠D 的度数为_____.25.(0分)[ID :68967]如图,AB ∥CD ,∠β=130°,则∠α=_______°.26.(0分)[ID :68963]如图,直线////a b c ,直角三角板的直角顶点落在直线b 上,若135∠=︒,则2∠等于_______.27.(0分)[ID :68962]在数学拓展课程《玩转学具》课堂中,老师把我们常用的一副三角板带进了课堂.(1)嘉嘉将一副三角板按如图1所示的方式放置,使点A 落在DE 上,且//BC DE ,则ACE ∠的度数为__________.(2)如图2,淇淇将等腰直角三角板放在一组平行的直线与之间,并使直角顶点A 在直线a 上,顶点C 在直线b 上,现测得130∠=,则2∠的度数为__________.三、解答题28.(0分)[ID :69156]如图,直线AB 与直线CD 相交于点O ,射线OE 在AOD ∠内部,OA 平分EOC ∠.(1)当OE CD ⊥时,写出图中所有与BOD ∠互补的角.(2)当:2:3EOC EOD ∠∠=时,求BOD ∠的度数.29.(0分)[ID :69112]如图,直线AB ∥CD ,EB 平分∠AED ,170∠=︒,求∠2的度数.30.(0分)[ID:69094]如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,∠A=30°,求∠B的度数.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.B3.A4.B5.D6.A7.B8.B9.C10.D11.B12.B13.C14.C15.B二、填空题16.126°【分析】由∠1=∠2及对顶角相等可得出∠1=∠5利用同位角相等两直线平行可得出l1∥l2利用两直线平行同旁内角互补可求出∠6的度数再利用对顶角相等可得出∠4的度数【详解】解:给各角标上序号如17.110【分析】根据平行线的性质和折叠的性质可以得到∠2的度数本题得以解决【详解】如图:由折叠的性质可得∠1=∠3∵∠1=55°∴∠1=∠3=55°∵长方形纸片的两条长边平行∴∠2=∠1+∠3∴∠2=18.144【分析】先求出道路的总长度进而求出道路的面积最后用总面积减去道路的面积即可【详解】解:由图形得到了的总长度为20+10-2=28米所以道路的总面积为28×2=56米2所以草地面积为20×10-19.30°或45°【分析】分2种情况进行讨论:当CB∥AD时当EB∥AC时根据平行线的性质和角的和差关系分别求得∠ACE角度即可【详解】解:当时;当时故答案为:30°或45°【点睛】本题主要考查了平行线20.55或20【分析】根据平行线性质得出∠A+∠B=180°①∠A=∠B②求出∠A=3∠B﹣40°③把③分别代入①②求出即可【详解】解:∵∠A与∠B的两边分别平行∴∠A+∠B =180°①∠A=∠B②∵∠21.答案不唯一例如一个三角形中最大的内角小于【分析】根据反证法的步骤从命题的反面出发假设出结论【详解】解:∵用反证法证明在一个三角形中最大的内角不小于60°∴第一步应假设结论不成立即假设最大的内角小于622.40【解析】根据平行线的性质先求出∠BEF和∠CEF的度数再求出它们的差就可以了解:∵AB∥EF∴∠BEF=∠ABE=70°;又∵EF∥CD∴∠CEF=180°-∠ECD=180°-150°=30°23.【分析】根据平行线的判定进行分析可以从同位角相等或同旁内角互补的方面写出结论【详解】∵DE和BC被AB所截∴当时AD∥BC(内错角相等两直线平行)故答案为【点睛】此题考查平行线的性质难度不大24.48°【分析】将BE与CD交点记为点F由两直线平行同位角相等得出∠EFC度数再利用三角形外角的性质可得答案【详解】解:如图所示将BE与CD交点记为点F∵AB∥CD∠B =75°∴∠EFC=∠B=75°25.50【分析】根据平行线的性质解答即可【详解】解:∵AB∥CD∴=∠1∵∠1+=180°∠=130°∴∠1=180°-=180°-130°=50°∴=50°故答案为:50【点睛】本题考查了平行线的性质26.【分析】如图利用平行线的性质得出∠3=35°然后进一步得出∠4的度数从而再次利用平行线性质得出答案即可【详解】如图所示∵∴∴∠4=90°−∠3=55°∵∴∠2=∠4=55°故答案为:55°【点睛】本27.15°15°【分析】(1)根据平行线的性质得出∠D+∠BCD=180°从而得到∠BCD再利用角的和差得到∠ACE;(2)根据平行线的性质得出∠2+∠BAC+∠ACB+∠1=180°再由等腰直角三角形三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【分析】把一个命题的条件和结论互换就得到它的逆命题.再分析逆命题是否为真命题.【详解】解:A 、逆命题是:同旁内角互补,两直线平行,是真命题,故本选项不符合题意; B 、逆命题是:到线段两个端点的距离相等的点在这条线段的垂直平分线上,是真命题,故本选项不符合题意;C 、逆命题是:如果三角形有两个角相等,那么这个三角形是等腰三角形,是真命题,故本选项不符合题意;D 、逆命题是:如果两个角相等,那么这两个角是同一个角的余角,是假命题,故本选项符合题意.故选:D .【点睛】本题主要考查了互逆定理的知识,如果一个定理的逆命题是假命题,那这个定理就没有逆定理.2.B解析:B【分析】根据对顶角、平行公理的推论、平行线的判定、同旁内角逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、平行于同一条直线的两条直线互相平行,此项是真命题;C 、两直线平行,同旁内角互补,此项是假命题;D 、在同一平面内,垂直于同一条直线的两条直线互相平行,此项是假命题;故选:B .【点睛】本题考查了命题与定理、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.3.A解析:A【分析】直接根据平移的性质得到DE=AB=a ,EF=BC=a ,EC=a-1,结合三角形面积公式即可求解.【详解】解:根据平移的性质得,DE=AB=a ,EF=BC=a ,EC=a-1,∴阴影部分的面积为:111(1)(1)222a a a a a ⨯--⨯-=- 故选:A .【点睛】本题考查了平移的性质,比较简单,注意熟练掌握平移性质的内容. 4.B解析:B【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【详解】A.不是由图1平移得到的,故错误;B.是由图1平移得到的,故正确;C.不是由图1平移得到的,故错误;D.不是由图1平移得到的,故错误;故选:B .【点睛】考查平移的性质,平移前后,图形的大小和形状没有变化.5.D解析:D【分析】根据平行线的性质,即可得到∠3=∠COE ,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.【详解】∵EF ∥CD∴∠3=∠COE∴∠3−∠1=∠COE−∠1=∠BOE∵AB ∥EF∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°故选:D .【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补. 6.A解析:A【分析】由平移性质可得:BC=EF ,CF=3,cm 可得EC=EF-CF .【详解】因为将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF所以EF=5BC cm ,CF=3,cm所以EC=5-3=2(cm)故选:A【点睛】考核知识点:平移性质.抓住平移性质:对应边相等,是解题关键.7.B解析:B【分析】由水面和杯底互相平行,利用“两直线平行,同旁内角互补”可求出∠3的度数,由水中的两条折射光线平行,利用“两直线平行,同位角相等”可得出∠2的度数.【详解】如图,∵水面和杯底互相平行,∴∠1+∠3=180°,∴∠3=180°﹣∠1=180°﹣122°=58°.∵水中的两条折射光线平行,∴∠2=∠3=58°.故选:B .【点睛】本题考查了平行线的性质,牢记“两直线平行,同旁内角互补”和“两直线平行,同位角相等”是解题的关键.8.B解析:B【分析】利用平行线间的距离相等可知ABC 与ACD △的高相等,底边之比等于面积之比,设ACE △的面积为x ,建立方程即可求解.【详解】∵//AB CD∴ABC 与ACD △的高相等∵2CD AB =∴=2ACD ABC S S设ACE △的面积为x ,则=8+=+ACD CDE ACE SS S x ,=2+=+ABC ABE ACE S S S x ∴()822+=+x x解得4x =∴=4ACE S故选B .【点睛】本题考查平行线间的距离问题,由平行线间的距离相等得到两三角形的高相等,从而建立方程是解题的关键.9.C解析:C【分析】利用平行线的性质、三角形的内角和、直角三角形的性质、对顶角的性质分别判断后即可确定正确的选项.解:①相等的角不一定是对顶角,故不符合题意;②直角三角形两锐角互余,故符合题意;③三角形内角和等于180°,故符合题意;④两直线平行内错角相等,故符合题意;故选:C.【点睛】此题考查了命题与定理,解题的关键是了解平行线的性质、对顶角的定义、直角三角形的性质及三角形的内角和等知识,难度不大.10.D解析:D【分析】根据平移的特点分别判断各选项即可.【详解】∵△ABC经平移得到△EFB∴点A、B、C的对应点分别为E、F、B,②正确∴BE是AC的对应线段,①正确∴AC∥EB,③正确平移距离为对应点连线的长度,即BF的长度,④正确故选:D【点睛】本题考查平移的特点,注意,在平移过程中,一定要把握住对应点,仅对应点的连线之间才有平行、相等的一些关系.11.B解析:B【分析】根据平行线的性质定理、平行公理、对顶角和邻补角的概念判断即可.【详解】解:对顶角相等,邻补角互补,故①是真命题;两条平行线被第三条直线所截,同位角的平分线平行,故②是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故③是假命题;过直线外一点有且只有一条直线与已知直线平行,故④是假命题;故正确的个数只有1个,故选:B.【点睛】本题考查的是平行的公理和应用,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.12.B解析:B根据选项中角的关系,结合平行线的判定,进行判断.【详解】解:A.∠A=∠BDF,由同位角相等,两直线平行,可判断DF∥AC;B.∠2=∠4,不能判断DF∥AC;C.∠1=∠3由内错角相等,两直线平行,可判断DF∥AC;D.∠A+∠ADF=180°,由同旁内角互补,两直线平行,可判断DF∥AC;故选:B.【点睛】此题考查平行线的判定,熟练掌握内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.13.C解析:C【解析】分析:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故选C.14.C解析:C【解析】试题分析:根据平行线的性质可得∠1=70°,再根据三角形的一个外角等于和它不相邻的两个内角的和可得∠A=70°-31°=39°.故选C.考点:平行线的性质15.B解析:B【分析】直接利用垂线的定义结合平行线的性质得出答案.解:∵,40BE AF BED ⊥∠=︒,∴50FED ∠=︒,∵AB CD ∕∕,∴50A FED ∠=∠=︒.故选B .【点睛】此题主要考查了平行线的性质以及垂线的定义,正确得出FED ∠的度数是解题关键.二、填空题16.126°【分析】由∠1=∠2及对顶角相等可得出∠1=∠5利用同位角相等两直线平行可得出l1∥l2利用两直线平行同旁内角互补可求出∠6的度数再利用对顶角相等可得出∠4的度数【详解】解:给各角标上序号如解析:126°.【分析】由∠1=∠2及对顶角相等可得出∠1=∠5,利用“同位角相等,两直线平行”可得出l 1∥l 2,利用“两直线平行,同旁内角互补”可求出∠6的度数,再利用对顶角相等可得出∠4的度数.【详解】解:给各角标上序号,如图所示.∵∠1=∠2,∠2=∠5,∴∠1=∠5,∴l 1∥l 2,∴∠3+∠6=180°.∵∠3=54°,∴∠6=180°-54°=126°,∴∠4=∠6=126°.故答案为:126°.【点睛】本题考查了平行线的判定与性质,牢记平行线的各判定与性质定理是解题的关键. 17.110【分析】根据平行线的性质和折叠的性质可以得到∠2的度数本题得以解决【详解】如图:由折叠的性质可得∠1=∠3∵∠1=55°∴∠1=∠3=55°∵长方形纸片的两条长边平行∴∠2=∠1+∠3∴∠2=解析:110【分析】根据平行线的性质和折叠的性质,可以得到∠2的度数,本题得以解决.【详解】如图:由折叠的性质可得,∠1=∠3,∵∠1=55°,∴∠1=∠3=55°,∵长方形纸片的两条长边平行,∴∠2=∠1+∠3,∴∠2=110°,故答案为:110.【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.18.144【分析】先求出道路的总长度进而求出道路的面积最后用总面积减去道路的面积即可【详解】解:由图形得到了的总长度为20+10-2=28米所以道路的总面积为28×2=56米2所以草地面积为20×10-解析:144【分析】先求出道路的总长度,进而求出道路的面积,最后用总面积减去道路的面积即可.【详解】解:由图形得到了的总长度为20+10-2=28米,所以道路的总面积为28×2=56米2,所以草地面积为20×10-56=144米2.故答案为:144【点睛】本题考查了请不规则图形的面积,根据题意求出道路的总长度是解题关键,注意应减去重合的部分.19.30°或45°【分析】分2种情况进行讨论:当CB∥AD时当EB∥AC时根据平行线的性质和角的和差关系分别求得∠ACE角度即可【详解】解:当时;当时故答案为:30°或45°【点睛】本题主要考查了平行线解析:30°或45°【分析】分2种情况进行讨论:当CB∥AD时,当EB∥AC时,根据平行线的性质和角的和差关系分别求得∠ACE角度即可.【详解】解:当//CB AD 时,18060120,1209030ACB ACE ︒︒︒︒︒︒∠=-=∠=-=;当//EB AC 时,45ACE E ︒∠=∠=.故答案为:30°或45°.【点睛】本题主要考查了平行线的性质,解题时注意分类讨论思想的运用,分类时不能重复,也不能遗漏.20.55或20【分析】根据平行线性质得出∠A+∠B =180°①∠A =∠B②求出∠A =3∠B ﹣40°③把③分别代入①②求出即可【详解】解:∵∠A 与∠B 的两边分别平行∴∠A+∠B =180°①∠A =∠B②∵∠解析:55或20【分析】根据平行线性质得出∠A+∠B =180°①,∠A =∠B②,求出∠A =3∠B ﹣40°③,把③分别代入①②求出即可.【详解】解:∵∠A 与∠B 的两边分别平行,∴∠A+∠B =180°①,∠A =∠B②,∵∠A 比∠B 的3倍少40°,∴∠A =3∠B ﹣40°③,把③代入①得:3∠B ﹣40°+∠B =180°,∠B =55°,把③代入②得:3∠B ﹣40°=∠B ,∠B =20°,故答案为:55或20.【点睛】本题考查平行线的性质,解题的关键是掌握由∠A和∠B的两边分别平行,即可得∠A =∠B或∠A+∠B=180°,注意分类讨论思想的应用.21.答案不唯一例如一个三角形中最大的内角小于【分析】根据反证法的步骤从命题的反面出发假设出结论【详解】解:∵用反证法证明在一个三角形中最大的内角不小于60°∴第一步应假设结论不成立即假设最大的内角小于6解析:答案不唯一,例如一个三角形中最大的内角小于60【分析】根据反证法的步骤,从命题的反面出发假设出结论.【详解】解:∵用反证法证明在一个三角形中,最大的内角不小于60°,∴第一步应假设结论不成立,即假设最大的内角小于60°.故答案为:最大的内角小于60°.【点睛】本题考查了反证法的步骤,熟记反证法的步骤:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.22.40【解析】根据平行线的性质先求出∠BEF和∠CEF的度数再求出它们的差就可以了解:∵AB∥EF∴∠BEF=∠ABE=70°;又∵EF∥CD∴∠CEF=180°-∠ECD=180°-150°=30°解析:40【解析】根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差就可以了.解:∵AB∥EF,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°-∠ECD=180°-150°=30°,∴∠BEC=∠BEF-∠CEF=40°;故应填40.“点睛”本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.23.【分析】根据平行线的判定进行分析可以从同位角相等或同旁内角互补的方面写出结论【详解】∵DE和BC被AB所截∴当时AD∥BC(内错角相等两直线平行)故答案为【点睛】此题考查平行线的性质难度不大解析:DAB B∠=∠【分析】根据平行线的判定进行分析,可以从同位角相等或同旁内角互补的方面写出结论.【详解】∵DE和BC被AB所截,∠=∠时,AD∥BC(内错角相等,两直线平行).∴当DAB B∠=∠故答案为DAB B【点睛】此题考查平行线的性质,难度不大24.48°【分析】将BE与CD交点记为点F由两直线平行同位角相等得出∠EFC 度数再利用三角形外角的性质可得答案【详解】解:如图所示将BE与CD交点记为点F∵AB∥CD∠B=75°∴∠EFC=∠B=75°解析:48°【分析】将BE与CD交点记为点F,由两直线平行同位角相等得出∠EFC度数,再利用三角形外角的性质可得答案.【详解】解:如图所示,将BE与CD交点记为点F,∵AB∥CD,∠B=75°,∴∠EFC=∠B=75°,又∵∠EFC=∠D+∠E,且∠E=27°,∴∠D=∠EFC﹣∠E=75°﹣27°=48°,故答案为:48°.【点睛】本题考查平行线的性质和三角形外角性质,解题的关键是掌握两直线平行,同位角相等这一性质.25.50【分析】根据平行线的性质解答即可【详解】解:∵AB∥CD∴=∠1∵∠1+=180°∠=130°∴∠1=180°-=180°-130°=50°∴=50°故答案为:50【点睛】本题考查了平行线的性质解析:50【分析】根据平行线的性质解答即可.【详解】解:∵AB∥CD,∠ =∠1,∴α∵∠1+β∠=180°,∠β=130°,∴∠1=180°-β∠=180°-130°=50°,∴α∠=50°,故答案为:50.【点睛】本题考查了平行线的性质和平角的定义,解题的关键掌握平行线的性质和平角的定义. 26.【分析】如图利用平行线的性质得出∠3=35°然后进一步得出∠4的度数从而再次利用平行线性质得出答案即可【详解】如图所示∵∴∴∠4=90°−∠3=55°∵∴∠2=∠4=55°故答案为:55°【点睛】本解析:55︒【分析】如图,利用平行线的性质得出∠3=35°,然后进一步得出∠4的度数,从而再次利用平行线性质得出答案即可.【详解】如图所示,∵//a b ,135∠=︒,∴335∠=︒,∴∠4=90°−∠3=55°,∵////a b c ,∴∠2=∠4=55°.故答案为:55°.【点睛】本题主要考查了平行线的性质,熟练掌握相关概念是解题关键.27.15°15°【分析】(1)根据平行线的性质得出∠D+∠BCD=180°从而得到∠BCD 再利用角的和差得到∠ACE ;(2)根据平行线的性质得出∠2+∠BAC+∠ACB+∠1=180°再由等腰直角三角形解析:15° 15°【分析】(1)根据平行线的性质得出∠D+∠BCD=180°,从而得到∠BCD ,再利用角的和差得到∠ACE ;(2)根据平行线的性质得出∠2+∠BAC+∠ACB+∠1=180°,再由等腰直角三角形的性质得到∠BAC=90°,∠ACB=45°,结合∠1的度数可得结果.【详解】解:(1)由三角板的性质可知:∠D=60°,∠ACB=45°,∠DCE=90°,∵BC ∥DE ,∴∠D+∠BCD=180°,∴∠BCD=120°,∴∠BCE=∠BCD-∠DCE=30°,∴∠ACE=∠ACB-∠BCE=15°,故答案为:15°;(2)∵a ∥b ,∴∠2+∠BAC+∠ACB+∠1=180°,∵△ABC 为等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠2=180°-∠BAC-∠ACB=45°,∵∠1=30°,∴∠2=15°,故答案为:15°.【点睛】本题考查了三角板的性质,平行线的性质,解题时注意:两直线平行,同旁内角互补.三、解答题28.(1)AOD ∠、BOC ∠、∠BOE ;(2)36°.【分析】(1)根据题意,由角平分线的定义,先求出45AOC AOE BOD ∠=∠=∠=︒,然后求出135AOD BOC BOE ∠=∠=∠=︒,即可得到答案;(2)根据角的比例,先求出72EOC ∠=︒,由角平分线的定义和对顶角定理,即可得到答案.【详解】解:(1)∵OE CD ⊥,∴90COE EOD ∠=∠=︒,∵OA 平分EOC ∠, ∴190452AOC AOE ∠=∠=⨯︒=︒, ∴45BOD ∠=︒,∴18045135AOD BOC BOE ∠=∠=∠=︒-︒=︒,∴与BOD ∠互补的角有AOD ∠、BOC ∠、∠BOE ;(2)根据题意,∵:2:3EOC EOD ∠∠=,又∵180EOC EOD ∠+∠=︒, ∴21807223EOC ∠=⨯︒=︒+, ∵OA 平分EOC ∠, ∴172362AOC AOE ∠=∠=⨯︒=︒, ∴36BOD AOC ∠=∠=︒;【点睛】 本题考查了角平分线的定义,余角和补角的定义,对顶角相等,以及平角的定义,解题的关键是熟练掌握所学的知识,正确的理解题意,得到角的关系进行解题.29.55︒.【分析】先根据对顶角相等可得170BAE ∠=∠=︒,再根据平行线的性质可得110AED ∠=︒,然后根据角平分线的定义可得55BED ∠=︒,最后根据平行线的性质即可得.【详解】170∠=︒,170BAE ∴∠=∠=︒,//AB CD ,180110AED BAE ∴∠=︒-∠=︒, EB 平分AED ∠,1552BED AED ∴∠=∠=︒, 又//AB CD ,255BED ∴∠=∠=︒.【点睛】 本题考查了对顶角相等、平行线的性质、角平分线的定义,熟练掌握平行线的性质是解题关键.30.(1)CD 与EF 平行.理由见解析;(2)∠B=35°【分析】(1)先根据垂直的定义得到∠CDB=∠EFB=90°,然后根据同位角相等,两直线平行可判断EF ∥CD ;(2)由EF ∥CD ,根据平行线的性质得∠2=∠BCD ,而∠1=∠2,所以∠1=∠BCD ,根据内错角相等,两直线平行得到DG ∥BC ,所以∠ACB=∠3=115°,根据三角形的内角和即可得到结论.【详解】(1)CD 与EF 平行.理由如下:∵CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°,∴EF∥CD;(2)∵EF∥CD,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠ACB=∠3=115°,∵∠A=30°,∴∠B=35°.【点评】本题考查了平行线的判定与性质,注意:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,同位角相等.。

七年级数学(下)《相交线与平行线》复习测试题 含答案

七年级数学(下)《相交线与平行线》复习测试题 含答案

七年级数学(下)《相交线与平行线》复习测试题一、选择题(每小题3分,共30分)1.如图,直线AB、CD相交于点O,所形成的∠1,∠2,∠3,∠4中,属于对顶角的是( )A.∠1和∠2B.∠2和∠3C.∠3和∠4D.∠2和∠42.如图,直线AB、CD被直线EF所截,则∠3的同旁内角是( )A.∠1B.∠2C.∠4D.∠53.如图,已知AB⊥CD,垂足为点O,图中∠1与∠2的关系是( )A.∠1+∠2=180°B.∠1+∠2=90°C.∠1=∠2D.无法确定4.如图,梯子的各条横档互相平行,若∠1=80°,则∠2的度数是( )A.80°B.100°C.110°D.120°5.在下列图形中,哪组图形中的右图是由左图平移得到的?( )6.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中假命题有( )A.1个B.2个C.3个D.4个7.平面内三条直线的交点个数可能有( )A.1个或3个B.2个或3个C.1个或2个或3个D.0个或1个或2个或3个8.下列图形中,由AB∥CD,能得到∠1=∠2的是( )9.如图,直线a∥b,直线c分别与a、b相交于点A、B.已知∠1=35°,则∠2的度数为( )A.165°B.155°C.145°D.135°10.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是( )A.∠1=∠2B.∠3=∠4C.∠5=∠BD.∠B+∠BDC=180°二、填空题(每小题4分,共20分)11.将命题“两直线平行,同位角相等”写成“如果……那么……”的形式是____________________.12.两条平行线被第三条直线所截,同旁内角的度数之比是2∶7,那么这两个角的度数分别是__________.13.如图,AB,CD相交于点O,AC⊥CD于点C,若∠BOD=38°,则∠A等于__________.14.如图,BC⊥AE,垂足为点C,过C作CD∥AB.若∠ECD=48°,则∠B=__________.15.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=__________度.三、解答题(共50分)16.(7分)如图,已知AB⊥BC,BC⊥CD,∠1=∠2.试判断BE与CF的位置关系,并说明你的理由.解:BE∥CF.理由:∵AB⊥BC,BC⊥CD(已知),∴∠__________=∠__________=90°(垂直的定义).∵∠1=∠2(已知),∴∠ABC-∠1=∠BCD-∠2,即∠EBC=∠BCF.∴BE∥CF(____________________).17.(9分)如图,直线AB、CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE;(2)过点P画CD的垂线,与AB相交于F点;(3)说明线段PE、PO、FO三者的大小关系,其依据是什么?18.(10分)如图,O是直线AB上一点,OD平分∠AOC.(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数;(2)若∠AOD和∠DOE互余,且∠AOD=13∠AOE,请求出∠AOD和∠COE的度数.19.(12分)如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?20.(12分)如图,已知AB∥CD,分别探究下面四个图形中∠APC和∠PAB、∠PCD的关系,请从你所得四个关系中选出任意一个,说明你探究的结论的正确性.结论:(1)____________________;(2)____________________;(3)____________________;(4)____________________.选择结论:____________________,说明理由.参考答案变式练习1.C2.∵∠AOC=70°,∴∠BOD=∠AOC=70°.∵∠BOE∶∠EOD=2∶3,∴∠BOE=223×70°=28°.∴∠AOE=180°-28°=152°.3.C4.121°5.C6.8 复习测试1.D2.B3.B4.B5.C6.C7.D8.B9.C 10.A11.如果两直线平行,那么同位角相等12.40°,140°13.52°14.42°15.8016.ABC BCD 内错角相等,两直线平行17.(1)(2)图略;(3)PE<PO<FO,依据是垂线段最短.18.(1)∵OD平分∠AOC,∠AOC=60°,∴∠AOD=12×∠AOC=30°,∠BOC=180°-∠AOC=120°.(2)∵∠AOD和∠DOE互余,∴∠AOE=∠AOD+∠DOE=90°.∵∠AOD=13∠AOE,∴∠AOD=13×90°=30°.∴∠AOC=2∠AOD=60°.∴∠COE=90°-∠AOC=30°.19.(1)AE∥FC.理由:∵∠1+∠2=180°,∠2+∠CDB=180°, ∴∠1=∠CDB.∴AE∥FC.(2)AD∥BC.理由:∵AE∥CF,∴∠C=∠CBE.又∠A=∠C,∴∠A=∠CBE.∴AD∥BC.(3)BC平分∠DBE.理由:∵DA平分∠BDF,∴∠FDA=∠ADB.∵AE∥CF,AD∥BC,∴∠FDA=∠A=∠CBE,∠ADB=∠CBD.∴∠CBE=∠CBD.∴BC平分∠DBE.20.(1)∠PAB+∠APC+∠PCD=360°(2)∠APC=∠PAB+∠PCD(3)∠APC=∠PCD-∠PAB(4)∠APC=∠PAB-∠PCD(1)过P点作EF∥AB,∴EF∥CD,∠PAB+∠APF=180°.∴∠PCD+∠CPF=180°.∴∠PAB+∠APC+∠PCD=360°.。

北师大版七年级数学下册第二章《相交线与平行线》专项测试题 附答案解析二

北师大版七年级数学下册第二章《相交线与平行线》专项测试题 附答案解析二

北师大版七年级数学下册第二章《相交线与平行线》专项测试题 附答案解析二第二章相交线与平行线专项测试题(二)一、单项选择题(本大题共有 15 小题,每小题 3 分,共 45 分)1、如图,下列叙述正确的是()、A、 和 是同旁内角 B、 和 是同位角 C、 和 是同位角 D、 和 是内错角 2、如图,下列说法错误的是( )、A、 与 是同位角 B、 与 是内错角 C、 与 是同旁内角 D、 与 是同旁内角 3、在同一平面内,两条不重合的直线的位置关系可能是( ) A、 平行或相交 B、 垂直或平行 C、 垂直或相交 D、 平行、垂直或相交 4、下列说法正确的是( ) A、 在同一平面内,两条不相交的射线相互平行北师大版七年级数学下册第二章《相交线与平行线》专项测试题 附答案解析二B、 在同一平面内,两条不相交的线段一定平行C、 在同一平面内,两条不平行的直线一定相交D、 两条不相交的直线一定相互平行5、如图,于点 ,点 到直线 的距离是( )A、 线段 的长度 B、 线段 的长度 C、 线段 的长度 D、 线段 6、已知两条平行线被第三条直线所截,则以下说法不正确的是( ) A、 一对同旁内角的平分线互相垂直 B、 一对同旁内角的平分线互相平行 C、 一对内错角的平分线互相平行 D、 一对同位角的平分线互相平行 7、在下列说法中,正确的是( ) A、 钝角的补角一定是锐角 B、 相等的角互为余角 C、 两个锐角的和为钝角 D、 一条射线把一个角分成两个角,这条射线叫做这个角的平分线 8、下列命题中正确的有( ) ①相等的角是对顶角; ②若 , ,则 ; ③同位角相等; ④邻补角的平分线互相垂直. A、 个北师大版七年级数学下册第二章《相交线与平行线》专项测试题 附答案解析二B、 个 C、 个 D、 个 9、图中的尺规作图是作( )A、 角的平分线 B、 一个角等于已知角 C、 一条线段等于已知线段 D、 线段的垂直平分线 10、下列属于尺规作图的是( ) A、 作一条线段等于已知线段 B、 用圆规画半径 的圆 C、 用量角器画一个 的角 D、 用刻度尺和圆规作 11、下列说法不正确的是( ) A、 平行于同一直线的两直线平行 B、 在同一平面内,过直线外一点只能画一条直线与已知直线垂直 C、 同一平面内两条不相交的直线是平行线 D、 过任意一点可作已知直线的一条平行线北师大版七年级数学下册第二章《相交线与平行线》专项测试题 附答案解析二12、如图, ()于点 ,于点 ,下列关系中一定成立的是A、B、C、D、13、如图所示,,① 与 互相垂直② 与 互相垂直③点 到 的垂线段是线段④点 到 的距离是线段⑤线段 的长度是点 到 的距离⑥线段 是点 到 的距离。

(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》检测卷(含答案解析)(2)

(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》检测卷(含答案解析)(2)

一、选择题1.如图所示,已知//AB CD ,则( ).A .123∠=∠+∠B .123∠∠∠>+C .213∠=∠+∠D .123∠∠∠<+2.下列说法正确的是( )A .锐角的补角一定是钝角B .一个角的补角一定大于这个角C .锐角和钝角一定互补D .两个锐角一定互为余角 3.已知A ∠与B 互补,B 与C ∠互余,若120A ∠=︒,则C ∠的度数是( ) A .70︒ B .60︒ C .30 D .20︒4.下列说法正确的有( )①绝对值等于本身的数是正数.②将数60340精确到千位是6.0×104.③连结两点的线段的长度,叫做这两点的距离.④若AC =BC ,则点C 就是线段AB 的中点.⑤不相交的两条直线是平行线A .1个B .2个C .3个D .4个 5.已知∠1=43°27′,则∠1的余角为( ) A .136°33′ B .136°73′ C .46°73′ D .46°33′ 6.我们利用尺规作图可以作一个角()''A O B ∠等于已知角()AOB ∠,如下所示:(1)作射线OA ;(2)以O 为圆心,任意长为半径作弧,交OA 于C ,交OB 于D ;(3)以O '为圆心,OC 为半径作弧,交OA '于'C ;(4)以C '为圆心,OC 为半径作弧,交前面的弧于D ;(5)连接'O D '作射线,O B ''则A O B '''∠就是所求作的角.以上作法中,错误的一步是( )A .()2B .()3C .()4D .()57.如图,直线12l l //,被直线3l 、4l 所截,并且34l l ⊥,144∠=,则2∠等于( )A .56°B .36°C .44°D .46°8.如图,AB //CD ,AD ⊥AC ,∠BAD =35°,则∠ACD =( )A .35°B .45°C .55°D .70°9.如图,在三角形ABC 中,90ACB ∠=︒,4AC =,点D 是线段BC 上任意一点,连接AD ,则线段AD 的长不可能...是( )A .3B .4C .5D .610.如图,修建一条公路,从王村沿北偏东75︒方向到李村,从李村沿北偏西25︒方向到张村,从张村到杜村的公路平行从王村到李村的公路,则张杜两村公路与李张两村公路方向夹角的度数为( ).A .100︒B .80︒C .75︒D .50︒11.下面四个图形中,∠1与∠2是对顶角的是( )A .B .C .D .12.如图,直线AB ∥CD ,AP 平分∠BAC ,CP ⊥AP 于点P ,若∠1=50°,则∠2的度数为( )A .30°B .40°C .50°D .60°二、填空题13.已知70AOB ∠=︒,COB ∠与AOB ∠互余,则AOC ∠的度数为______. 14.如图,两直线交于点O ,134∠=︒,则2∠的度数为_____________;3∠的度数为_________.15.已知:如图,12354∠=∠=∠=︒,则∠4的度数是___________.16.若∠A 的余角与∠A 的补角的度数和比平角的13多110︒,则∠A =____________. 17.如图,AB ∥CD ,AB ⊥AE ,∠CAE =42°,则∠ACD 的度数为__.18.如图,AB ∥CD ,EG 平分AEN ∠,若EFD ∠=108°,则GEN ∠的度数为_________________.19.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使∠COD =90°,当∠AOC =50°时,∠BOD 的度数是____________.20.如图,直线//a b ,1120∠=︒,240∠=︒,则3∠的度数为_______.三、解答题21.如图,直线CD 经过AOB ∠的顶点O ,OE 平分AOB ∠,OF 平分BOD ∠.(1)若COE ∠=4DOE ∠,求DOE ∠的度数.(2)若BOD ∠=13AOB ∠,且AOB EOF ∠+∠=160︒,求BOD ∠和EOF ∠的度数. 22.如图1,∠AOB =∠COD =90°.(1)若∠BOC =2∠AOC ,求∠BOC 的大小;(2)试探究∠BOC 与∠DOA 之间的数量关系;(3)若把图1中∠AOB 绕点O 转动到图2的位置,试说明(2)中∠BOC 与∠DOA 之间的数量关系还成立吗?23.如图,已知点O 在直线AB 上,作射线OC ,点D 在平面内,BOD ∠与AOC ∠互余.(1)若:4:5AOC BOD ∠∠=,则BOD ∠=______________;(2)若()045AOC αα∠=︒<︒,ON 平分COD ∠、补全图形,求出AON ∠的值(用含α的式子表示).24.如图,直线AB ,CD 相交于点O ,OA 平分EOC ∠.(1)若70EOC ∠=︒,求BOD ∠的度数;(2)若:4:5∠∠=EOC EOD ,求BOC ∠的度数.25.如图,A ,O ,B 三点在同一条直线上,90DOE ∠=︒.(1)写出图中AOD ∠的补角是______,DOC ∠的余角是______;(2)如果OE 平分BOC ∠,36DOC ∠=︒,求AOE ∠的度数.26.如图,在线段MN 上求作一点P ,使∠APM =∠BPM ,(保留作图痕迹,不必写出作法与证明).【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据平行线的性质,得3ABO ∠=∠;根据补角的性质,得1801AOB ∠=-∠;根据角的和差的性质计算,即可得到123∠=∠+∠,从而完成求解.【详解】∵//AB CD∴3ABO ∠=∠∵1801AOB ∠=-∠又∵1802ABO ABO ∠=-∠-∠∴312∠=∠-∠∴123∠=∠+∠故选:A .【点睛】本题考查了平行线、角的知识;解题的关键是熟练掌握平行线、补角、角的和差的性质,从而完成求解.2.A解析:A【分析】根据余角和补角的概念判断.【详解】解:A 、锐角的补角一定是钝角,本选项说法正确;B 、一个角的补角一定大于这个角,本选项说法错误,例如:120°的补角是60°,而60°<120°;C 、锐角和钝角一定互补,本选项说法错误,例如20°+120°=140°,20°与120°不互补;D 、两个锐角一定互为余角,本选项说法错误,30°与30°不是互为余角;故选:A .【点睛】此题考查余角和补角的概念,熟记概念是解题的关键.3.C解析:C【分析】先根据互补角的定义可得60B ∠=︒,再根据互余角的定义即可得.【详解】 A ∠与B 互补,且120A ∠=︒,18060B A ∴∠=︒-∠=︒,又B ∠与C ∠互余,9030C B ∴∠=︒-∠=︒,故选:C .【点睛】本题考查了互补角、互余角,熟练掌握互补角与互余角的定义是解题关键.4.B解析:B【分析】根据绝对值的性质,科学记数法与近似数,两点之间的距离,线段的中点的定义,平行线的定义对各小题分析判断即可得解.【详解】解:①绝对值等于本身的数是非负数,故①错误;②将数60340精确到千位是6.0×104,故②正确;③连接两点的线段的长度就是两点间的距离,故③正确;④当点A 、B 、C 不共线时,AC=BC ,则点C 也不是线段AB 的中点,故④错误; ⑤不相交的两条直线如果不在同一平面,它们不是平行线,故⑤错误;故选:B .【点睛】本题考查绝对值的性质,科学记数法与近似数,两点之间的距离,线段的中点的定义,平行线的定义等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.5.D解析:D【分析】根据余角的定义进行计算即可得答案.【详解】∵∠1=43°27′,∴∠1的余角为90°-43°27′=46°33′,故选:D.【点睛】此题考查了余角的定义及角度的计算,如果两个角的和是90°,那么这两个角互余;熟练掌握余角的定义是解题关键.6.C解析:C【分析】根据作一个角等于已知角的方法解决问题即可.【详解】解:(4)错误.应该是以C'为圆心,CD为半径作弧,交前面的弧于D';故选:C.【点睛】本题考查作图-复杂作图,作一个角等于已知角,解题的关键是熟练掌握五种基本作图,属于中考常考题型.7.D解析:D【分析】依据l1∥l2,即可得到∠1=∠3=44°,再根据l3⊥l4,可得∠2=90°-44°=46°.【详解】解:如图,∵l1∥l2,∴∠1=∠3=44°,又∵l3⊥l4,∴∠2=90°-44°=46°,故选:D.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.8.C解析:C【分析】由平行线的性质可得∠ADC =∠BAD =35°,再由垂线的定义可得△ACD 是直角三角形,进而根据直角三角形两锐角互余的性质即可得出∠ACD 的度数.【详解】∵AB ∥CD ,∠BAD=35°,∴∠ADC =∠BAD =35°,∵AD ⊥AC ,∴∠ADC+∠ACD =90°,∴∠ACD =90°﹣35°=55°,故选:C .【点睛】本题主要考查平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.9.A解析:A【分析】根据垂线段最短即可判断.【详解】∵90ACB ∠=︒∴点A 到线段CB 最短的最短距离为AC=4∴AD 的长最短为4故选A .【点睛】本题考查了垂线段最短,直线外一点与直线上各点连接的所有线段中,垂线段最短. 10.B解析:B【分析】根据平行线同位角相等和同旁内角互补的性质,即可完成求解.【详解】∵王村沿北偏东75︒方向到李村∴175∠=∵从张村到杜村的公路平行从王村到李村的公路,且从李村沿北偏西25︒方向到张村∴()()2180125180752580∠=-∠+=-+=∴张杜两村公路与李张两村公路方向夹角的度数为80︒故选:B.【点睛】本题考查了方位角、平行线的知识;解题的关键是熟练掌握平行线同位角相等和同旁内角互补的性质,从而完成求解.11.D解析:D【分析】根据对顶角的定义,可得答案.【详解】解:由对顶角的定义,得D选项是对顶角,故选:D.【点睛】考核知识点:对顶角.理解定义是关键.12.B解析:B【分析】根据平行线的性质和角平分线的定义可得∠ACD=80°,再根据CP⊥AP,可得出∠ACP的度数,即可得∠2的度数.【详解】∵AB∥CD,∴∠BAC+∠ACD=180°,∵AP平分∠BAC,∴∠BAC=2∠1=100°,∴∠ACD=180°﹣100°=80°,∵CP⊥AP,∴∠P=90°,∴∠ACP=90°﹣∠1=90°﹣50°=40°,∴∠2=∠ACD-∠ACP=80°﹣40°=40°.故选:B.【点睛】本题考查平行线的性质、角平分线的定义及垂直的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.二、填空题13.90°或50°【分析】根据互余的特点分射线OC 在内部和外部进行求解即可;【详解】∵与互余∴当OC 在内部时;当OC 在外部时;故答案是90°或50°【点睛】本题主要考查了角的计算准确计算是解题的关键解析:90°或50°【分析】根据互余的特点,分射线OC 在AOB ∠内部和外部进行求解即可;【详解】∵70AOB ∠=︒,COB ∠与AOB ∠互余,∴20COB ∠=︒,当OC 在AOB ∠内部时,702050AOC ∠=︒-︒=︒;当OC 在AOB ∠外部时,702090AOC ∠=︒+︒=︒;故答案是90°或50°.【点睛】本题主要考查了角的计算,准确计算是解题的关键.14.【分析】根据平角的性质及对顶角的性质求解即可【详解】解:∵∴=180°-∠1=180°-34°=146°;∵∠1与∠3互为对顶角∴∠3=∠1=故答案为:146°;【点睛】本题主要考查了角的运算解题的解析:146︒ 34︒【分析】根据平角的性质及对顶角的性质求解即可.【详解】解:∵134∠=︒∴2∠=180°-∠1=180°-34°=146°;∵∠1与∠3互为对顶角∴∠3=∠1=34︒故答案为:146°;34︒.【点睛】本题主要考查了角的运算,解题的关键是熟练运用平角的性质及对顶角的性质. 15.126°【分析】由∠1=∠2及对顶角相等可得出∠1=∠5利用同位角相等两直线平行可得出l1∥l2利用两直线平行同旁内角互补可求出∠6的度数再利用对顶角相等可得出∠4的度数【详解】解:给各角标上序号如解析:126°.【分析】由∠1=∠2及对顶角相等可得出∠1=∠5,利用“同位角相等,两直线平行”可得出l 1∥l 2,利用“两直线平行,同旁内角互补”可求出∠6的度数,再利用对顶角相等可得出∠4的度数.解:给各角标上序号,如图所示.∵∠1=∠2,∠2=∠5,∴∠1=∠5,∴l1∥l2,∴∠3+∠6=180°.∵∠3=54°,∴∠6=180°-54°=126°,∴∠4=∠6=126°.故答案为:126°.【点睛】本题考查了平行线的判定与性质,牢记平行线的各判定与性质定理是解题的关键.16.50°【分析】设∠A=x根据余角补角及平角的定义列方程求出x的值即可得答案【详解】设∠A=x∴∠A的余角为90°-x补角为180°-x∵∠的余角与∠的补角的度数和比平角的多∴(90°-x)+(180解析:50°【分析】设∠A=x,根据余角、补角及平角的定义列方程求出x的值即可得答案.【详解】设∠A=x,∴∠A的余角为90°-x,补角为180°-x,∵∠A的余角与∠A的补角的度数和比平角的1多110 ,3∴(90°-x)+(180°-x)=1×180°+110°,3解得:x=50°,故答案为:50°【点睛】本题考查余角与补角,解答此类题一般根据一个角的余角和补角列出代数式和方程(组)求解.熟记互为余角的两个角的和为90°,互为补角的两个角的和为180°是解题关键.17.132°【分析】直接利用平行线的性质结合垂直定义得出∠BAC度数以及∠ACD的度数【详解】解:∵AB⊥AE∠CAE=42°∴∠BAC=90°﹣42°=48°∵AB∥CD∴∠BAC+∠ACD=180°解析:132°直接利用平行线的性质结合垂直定义得出∠BAC 度数以及∠ACD 的度数.【详解】解:∵AB ⊥AE ,∠CAE =42°,∴∠BAC =90°﹣42°=48°,∵AB ∥CD ,∴∠BAC +∠ACD =180°,∴∠ACD =132°.故答案为:132°.【点睛】此题主要考查了平行线的性质,正确得出∠BAC 度数是解题关键.18.36°【分析】由平行线的性质得再由角平分线的定义即可求出答案【详解】解:∵=108°∴∵∥∴∵平分∴;故答案为:36°【点睛】本题考查了平行线的性质角平分线的定义以及邻补角的定义解题的关键是熟练掌握解析:36°【分析】由平行线的性质,得AEN CFE ∠=∠,再由角平分线的定义,即可求出答案.【详解】解:∵EFD ∠=108°,∴18010872CFE ∠=︒-︒=︒,∵AB ∥CD ,∴72AEN CFE ∠=∠=︒,∵EG 平分AEN ∠, ∴172362GEN ∠=⨯︒=︒; 故答案为:36°.【点睛】 本题考查了平行线的性质,角平分线的定义,以及邻补角的定义,解题的关键是熟练掌握所学的性质定理进行解题.19.40°或140°【分析】先根据题意可得OC 分在AB 同侧和异侧两种情況讨论并画出图然后根据OC ⊥OD 与∠AOC =50°计算∠BOD 的度数【详解】解:当OCOD 在直线AB 同侧时如图∵∠COD =90°∠A解析:40°或140°【分析】先根据题意可得OC 分在AB 同侧和异侧两种情況讨论,并画出图,然后根据OC ⊥OD 与∠AOC =50°,计算∠BOD 的度数.【详解】解:当OC 、OD 在直线AB 同侧时,如图∵∠COD=90°,∠AOC=50°∴∠BOD=180°-∠COD-∠AOC=180°-90°-50°=40°当OC、OD在直线AB异侧时,如图∵∠COD=90°,∠AOC=50°∴∠BOD=180-∠AOD=180°-(∠DOC-∠AOC)=180°-(90°-50°)=140°.故答案为:40°或140°【点睛】解答此类问题时,要注意对不同的情况进行讨论,避免出现漏解.20.【分析】如图(见解析)先根据平行线的性质可得再根据领补角的定义可得然后根据平角的定义即可得【详解】如图故答案为:【点睛】本题考查了平行线的性质领补角的定义平角的定义熟练掌握各定义与性质是解题关键解析:80︒【分析】∠=∠=︒,再根据领补角的定义可得如图(见解析),先根据平行线的性质可得4240∠=︒,然后根据平角的定义即可得.560【详解】a b∠=︒,如图,//,240∴∠=∠=︒,4240∠=︒,1120∴∠=︒-∠=︒,5180160318045*********∴∠=︒-∠-∠=︒-︒-︒=︒,故答案为:80︒.【点睛】本题考查了平行线的性质、领补角的定义、平角的定义,熟练掌握各定义与性质是解题关键.三、解答题21.(1)=36DOE ∠︒;(2)=40BOD ∠︒,=40EOF ∠︒【分析】(1)设DOE x ∠=,由题意易得4COE x ∠=,然后根据∠COE+∠EOD=180°可求解; (2)由题13BOD AOB =∠∠,则设3AOB y ∠=,则有BOD y ∠=,进而可得1122BOF DOF BOD y ∠=∠=∠=,1322AOE BOE AOB y ∠=∠=∠=,然后可得EOF DOE DOF y ∠=∠+∠=,最后根据角的和差关系可求解.【详解】解:(1)设DOE x ∠=,4COE DOE ∠=∠,4COE x ∴∠=,∵∠COE+∠EOD=180°,即4180x x +=︒,解得36x =︒∴∠DOE=36°;(2)由题13BOD AOB =∠∠,则设3AOB y ∠=,BOD y ∴∠= OF 平分BOD ∠,OE 平分AOB ∠1122BOF DOF BOD y ∴∠=∠=∠=,1322AOE BOE AOB y ∠=∠=∠=, 12DOE BOE BOD y ∴∠=∠-∠=, EOF DOE DOF y ∴∠=∠+∠=∵160AOB EOF ∠+∠=︒,即3160y y +=︒,解得40y =︒,∴40BOD ∠=︒,40EOF ∠=︒.【点睛】本题主要考查角平分线的定义、补角及角的和差关系,熟练掌握角平分线的定义、补角及角的和差关系是解题的关键.22.(1)60°;(2)∠BOC 与∠DOA 互补;(3)仍然成立,理由见详解【分析】(1)根据条件可得:∠AOB=3∠AOC ,求出∠AOC 的度数,进而即可求解;(2)推出∠DOA+∠BOC=180° ,即可得到结论;(3)推出∠DOA+∠BOC=180°即可得到结论.【详解】(1)∵∠AOB =90°,∠BOC =2∠AOC ,∠AOB=∠BOC+∠AOC ,∴∠AOB=3∠AOC ,∴∠AOC=30°,∴∠BOC =2∠AOC=60°;(2)∵∠AOB =∠COD =90°,∠DOC=∠BOC+∠BOD ,∠DOA=∠DOB+∠AOB , ∴∠DOA+∠BOC=∠DOB+∠AOB+∠BOC=∠COD+∠AOB=90°+90°=180°,∴∠BOC 与∠DOA 互补;(3)仍然成立,理由如下:∵∠DOA+∠BOC=360°-∠AOB-∠DOC=360°-90°-90°=180°,∴∠BOC 与∠DOA 互补.【点睛】本题主要考查角的和,差,倍,分以及补角的定义,掌握角的的和,差,倍,分关系,是解题的关键.23.(1)50BOD ∠=︒;(2)图见详解,点D 在BOC ∠内,45AON α∠=+︒;点D 在BOC ∠外,45AON ∠=︒.【分析】(1)由BOD ∠与AOC ∠互余,知90BOD AOC ∠+∠=︒,再由:4:5AOC BOD ∠∠=知BOD ∠占90°的545+,问题可解; (2)分两种情形,当点D 在BOC ∠内时,先得90COD ∠=︒,再求得45CON ∠=︒,最后得AON ∠;当点D 在BOC ∠外时,先求得COD AOD α∠=+∠,再用α表示AOD ∠,得902COD α∠=︒+,据ON 平分COD ∠得45NOC α∠=︒+,最后得45AON ∠=︒.【详解】解:(1)∵:4:5AOC BOD ∠∠=,BOD ∠与AOC ∠互余, ∴5905045BOD ∠=︒⨯=︒+; (2)分两种情形:情形一:点D 在BOC ∠内.在045α︒<≤︒的条件下,补全图形如下:.∵BOD ∠与AOC ∠互余,∴90BOD AOC ∠+∠=︒,∴90COD ∠=︒,∵ON 平分COD ∠,∴45CON ∠=︒,∴45AON α∠=+︒;情形二:点D 在BOC ∠外.在045α︒<≤︒的条件下,补全图形如下:∵BOD ∠与AOC ∠互余,()045AOC αα∠=︒<︒∴90BOD α∠=︒-∴COD AOD α∠=+∠(180)[180(90)]BOD ααα=+︒-∠=+︒-︒-902α=︒+,即902COD α∠=︒+∵ON 平分COD ∠ ∴11(902)4522NOC COD αα∠=∠=︒+=︒+ ∴(45)45AON NOC AOC αα∠=∠-∠=︒+-=︒即45AON ∠=︒.综上所述,点D 在BOC ∠内,45AON α∠=+︒;点D 在BOC ∠外,45AON ∠=︒.【点睛】考查余角、角平分线的概念及角的和与差等,其关键是熟悉相关概念并能结合图形进行应用.24.(1)35BOD ∠=︒;(2)140∠=︒BOC【分析】(1)首先根据角平分线的性质得出∠AOC ,然后利用对顶角相等即可得出∠BOD ; (2)首先设4EOC x ∠=,则5EOD x ∠=,然后根据平角的性质构建方程,得出∠EOC ,再利用角平分线的性质得出∠AOC ,最后由平角得旋转即可得出∠BOC 即可.【详解】()170,EOC OA ∠=︒平分EOC ∠,1352AOC EOC ∴∠=∠=︒, 35BOD AOC ∴∠=∠=︒;()2设4EOC x ∠=,则5EOD x ∠=,,54180x x ∴+=︒,解得20x =︒,则80EOC ∠=︒,又OA 平分0E C ∠,40AOC ∴∠=︒,180********BOC AOC ∴∠=︒-∠=︒-︒=︒.【点睛】本题主要考查利用角平分线、对顶角以及平角的性质求解角的度数,熟练掌握,即可解题.25.(1)BOD ∠,COE ∠;(2)126︒【分析】(1)根据补角和余角的定义得出结果;(2)利用90DOE ∠=︒,36DOC ∠=︒,求出COE ∠的度数,再根据角平分线的性质得BOE COE ∠=∠,再由AOE AOB BOE ∠=∠-∠即可求出结果.【详解】解:(1)∵180AOD BOD ∠+∠=︒,∴AOD ∠的补角是BOD ∠,∵90DOC COE DOE ∠+∠=∠=︒,∴DOC ∠的余角是COE ∠,故答案是:BOD ∠,COE ∠;(2)∵90DOE ∠=︒,36DOC ∠=︒,∴903654COE DOE DOC ∠=∠-∠=︒-︒=︒,∵OE 平分COB ∠,∴54BOE COE ∠=∠=︒,∵A ,O ,B 三点在一条直线上,∴18054126AOE AOB BOE ∠=∠-∠=︒-︒=︒.【点睛】本题考查角度的求解,解题的关键是掌握余角和补角的定义,角平分线的性质. 26.见解析【分析】作点B关于直线MN的对称点B′,作直线AB′交MN于点P,连接BP,点P即为所求.【详解】解:如图,点P即为所求.【点睛】本题考查作图−基本作图,解题的关键是理解题意,灵活运用所学知识解决问题.。

(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》测试卷(含答案解析)(2)

(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》测试卷(含答案解析)(2)

一、选择题1.如图,//AB CD ,120BAE ∠=︒,40DCE ∠=︒,则AEC ∠=( )A .70︒B .80︒C .90︒D .100︒ 2.在同一平面内,两条直线的位置关系可能是( )A .相交或垂直B .垂直或平行C .平行或相交D .相交或垂直或平行3.如图,某地域的江水经过B 、C 、D 三点处拐弯后,水流的方向与原来相同,若∠ABC =125°,∠BCD =75°,则∠CDE 的度数为( )A .20°B .25°C .35°D .50°4.如图所示,下列条件能判断a ∥b 的有( )A .∠1+∠2=180°B .∠2=∠4C .∠2+∠3=180°D .∠1=∠3 5.把一把直尺和一块三角板ABC 含30度,60度,按如图所示摆放,直尺一边与三角板的两直角边分别交于点D 和E ,另一边与三角板的两直角边分别交于点F 和A ,∠CED=50°,则∠CFA 的大小为( )A .40︒B .50︒C .60︒D .70︒6.一辆行驶中的汽车经过两次拐弯后,仍向原方向行驶,则两次拐弯的角度可能是( ) A .先右转30,后左转60︒B .先右转30后左转60︒C .先右转30后左转150︒D .先右转30,后左转307.如图,直线a b ∥,三角板的直角顶点放在直线b 上,两直角边与直线a 相交,如果160∠=︒,那么2∠等于( )A .30B .︒40C .50︒D .60︒ 8.如图,在墙面上安装某一管道需经两次拐弯,拐弯后的管道与拐弯前的管道平行.若第一个弯道处142B ∠=︒,则第二个弯道处∠C 的度数为( )A .38°B .142°C .152°D .162° 9.下列图形中,1∠与2∠是对顶角的是( )A .B .C .D . 10.如图,在△ABC 中,∠ABC =60°,点C 在直线b 上,若直线a ∥b ,∠2=26°,则∠1的度数为( )A .26°B .28°C .34°D .36°11.如图,点P 在直线m 上移动,,A B 是直线n 上的两个定点,且直线//m n .对于下列各值:①点P 到直线n 的距离;②PAB △的周长;③PAB △的面积;④APB ∠的大小.其中不会随点P 的移动而变化的是( )A .①②B .①③C .②④D .③④ 12.如图,已知∠1=∠2,∠D =68°,则∠BCD =( )A .98°B .62°C .88°D .112°二、填空题13.如图,点P 、Q 分别在一组平行直线AB 、CD 上,在两直线间取一点E 使得250BPE DQE ∠+∠=︒,点F 、G 分别在BPE ∠、CQE ∠的角平分线上,且点F 、G 均在平行直线AB 、CD 之间,则PFG FGQ ∠-∠=__________.14.如图,直线AB 与CD 相交于点O ,OM AB ⊥,若55DOM ∠=︒,则AOC ∠=______°.15.如图,直线a ∥b ,直线a 、b 被直线c 所截,若∠2=60°,则∠1的度数为_____.16.一副直角三角尺按如图1所示方式叠放,现将含45°角的三角尺ADE 固定不动,将含30°角的三角尺ABC 绕顶点A 顺时针转动,当两块三角尺至少有一组边互相平行,则∠BAD (0°<∠BAD <90°)所有符合条件的度数为_____.17.已知∠A 与∠B 的两边分别平行,其中∠A 为x °,∠B 的为(210﹣2x )°,则∠A =____度.18.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使∠COD =90°,当∠AOC =50°时,∠BOD 的度数是____________.19.如图,要把池中的水引到D 处,可过D 点作CD ⊥AB 于C ,然后沿CD 开渠,可使所开渠道最短,试说明设计的依据:______.20.如图,直线a ∥b ,点A ,B 位于直线a 上,点C ,D 位于直线b 上,且AB :CD =1:2,如果△ABC 的面积为10,那么△BCD 的面积为_____.三、解答题21.如图,已知PE 平分,BEF PF ∠平分,135,255DFE ∠∠=︒∠=︒.(1)试说明://AB CD ;(2)求AEP CFP EPF ∠+∠+∠的度数.22.如图,将长方形纸片的一角折叠,使顶点A 落在A '处,EF 为折痕,点F 在线段AD 上,且点F 不与点D 重合,点E 在线段AB 上,此时∠AFE 和∠AEF 互为余角,若EA '恰好平分∠FEB ,回答下列问题.(1)求∠AEF 的度数;(2)∠A FD '= 度.23.如图,直线AB 与直线CD 相交于点O ,射线OE 在AOD ∠内部,OA 平分EOC ∠. (1)当OE CD ⊥时,写出图中所有与BOD ∠互补的角.(2)当:2:3EOC EOD ∠∠=时,求BOD ∠的度数.24.从一个锐角()4590αα︒<<︒顶点出发在角的内部引一条射线,把α分成两个角,若其中一个角与α互余,则这条射线叫做锐角α的余分线,这个角叫做锐角α的余分角. 例如:图①中,当60,30AOB BOC ∠=︒∠=︒时,BOC ∠与AOB ∠互余,那么OC 是AOB ∠的余分线,BOC ∠是AOB ∠的余分角.(1)若70AOB ∠=︒,OC 是它的余分线,则AOC ∠=_________;(2)如图②,EOB ∠是平角,BOC ∠是AOB ∠的余分角,90AOD ∠=︒,试说明DOE BOC ∠=∠.(3)如图③,在(2)的条件下,若OF 是AOB ∠的平分线,14DOE ∠=︒,求COF ∠度数.25.如图,已知点O 在直线AB 上,作射线OC ,点D 在平面内,BOD ∠与AOC ∠互余.(1)若:4:5AOC BOD ∠∠=,则BOD ∠=______________;(2)若()045AOC αα∠=︒<︒,ON 平分COD ∠、补全图形,求出AON ∠的值(用含α的式子表示).26.直线AB 、CD 相交于点O ,OE 平分AOD ∠,90FOC ,50BOF ∠=︒,求AOC ∠与AOE ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】过点E 作//EF AB ,先根据平行线的判定可得//EF CD ,再根据平行线的性质分别可得AEF ∠和CEF ∠的度数,然后根据角的和差即可得.【详解】如图,过点E 作//EF AB ,120BAE ∠=︒,18060AEF BAE ∴∠=︒-∠=︒,又//AB CD ,//EF CD ∴,40DCE CEF ∴=∠=∠︒,6040100AEC AEF CEF ∴∠=∠+∠=︒+︒=︒,故选:D .【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题关键. 2.C解析:C【分析】根据两条直线有一个交点的直线是相交线,没有交点的直线是平行线,可得答案.【详解】在同一平面内,两条直线有一个交点,两条直线相交;在同一平面内,两条直线没有交点,两条直线平行,故C正确;故选:C.【点睛】本题主要考查了同一平面内,两条直线的位置关系,注意垂直是相交的一种特殊情况,不能单独作为一类.3.A解析:A【分析】由题意可得AB∥DE,过点C作CF∥AB,则CF∥DE,由平行线的性质可得∠BCF+∠ABC=180°,所以能求出∠BCF,继而求出∠DCF,再由平行线的性质,即可得出∠CDE的度数.【详解】解:由题意得,AB∥DE,如图,过点C作CF∥AB,则CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=180°-125°=55°,∴∠DCF=75°-55°=20°,∴∠CDE=∠DCF=20°.故选:A.【点睛】本题考查的知识点是平行线的性质,关键是过C点先作AB的平行线,由平行线的性质求解.4.B解析:B【分析】通过平行线的判定的相关知识点,并结合题中所示条件进行相应的分析,即可得出答案.【详解】A.∠1 ,∠2是互补角,相加为180°不能证明平行,故A错误.B.∠2=∠4,内错角相等,两直线平行,所以B正确.C. ∠2+∠3=180°,不能证明a∥b,故C错误.D.虽然∠1=∠3,但是不能证明a∥b;故D错误.故答案选:B.【点睛】本题考查的知识点是平行线的判定,解题的关键是熟练的掌握平行线的判定.5.A解析:A【分析】先根据∠CED=50°,DE∥AF,即可得到∠CAF=50°,即可得出∠CFA的大小.【详解】解:∵DE∥AF,∠CED=50°,∴∠CAF=∠CED=50°,∴∠CFA=90°-50°=40°,故选:A.【点睛】本题主要考查了平行线的性质以及直角三角形的性质的运用,解题解题的关键是掌握平行线的性质:两直线平行,同位角相等.6.D解析:D【分析】根据平行线的性质分别判断即可.【详解】解:因为两次拐弯后,行驶的方向与原来的方向相同,所以两边拐弯的方向相反,形成的角是同位角,故选:D.【点睛】本题考查平行线的性质,利用两直线平行,同位角相等是解题的关键.7.A解析:A【分析】先由直线a∥b,根据平行线的性质,得出∠3=∠1=60°,再由已知直角三角板得∠4=90°,然后由∠2+∠3+∠4=180°求出∠2.【详解】已知直线a∥b,∴∠3=∠1=60°(两直线平行,同位角相等),∠4=90°(已知),∠2+∠3+∠4=180°(已知直线),∴∠2=180°-60°-90°=30°.故选:A.此题考查平行线性质的应用,解题关键是由平行线性质:两直线平行,同位角相等,求出∠3.8.B解析:B【分析】由AB∥CD得∠B=∠C,根据∠B=142°得∠C=142°.【详解】如图,∵拐弯后的管道与拐弯前的管道平行,∴AB∥CD,∴∠B=∠C,又∵∠B=142°,∴∠C=142°,故选:B.【点睛】本题考查了平行线的性质的应用和等量代换相关知识,重点掌握平行线的性质,难点是从生活实际中抽象出平行线和相交线.9.C解析:C【分析】根据对顶角的定义即可判断.【详解】解:A、∠1与∠2的两边没有都互为反向延长线,故A不是对顶角;B、∠1与∠2的两边没有都互为反向延长线,故B不是对顶角;C、∠1与∠2符合对顶角定义,是对顶角,故C选项正确;D、∠1与∠2没有公共顶点,故D不是对顶角;故选:C.【点睛】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.10.C解析:C【分析】如图,过点B作BE∥a.想办法证明∠1+∠2=60°即可解决问题.如图,过点B作BE∥a.∵a∥b,a∥BE,∴b∥BE,∴∠1=∠ABE,∠2=∠CBE,∵∠ABC=∠ABE+∠CBE=60°,∴∠1+∠2=60°,∵∠2=26°,∴∠1=34°,故选:C.【点睛】本题考查平行线的判定和性质,解题的关键是学会添加常用辅助线,构造平行线解决问题.11.B解析:B【分析】根据平行线间的距离不变即可判断①;根据三角形的周长和点P的运动变化可判断②④;根据同底等高的三角形的面积相等可判断③;进而可得答案.【详解】m n,解:∵直线//∴①点P到直线n的距离不会随点P的移动而变化;∵PA、PB的长随点P的移动而变化,∴②△PAB的周长会随点P的移动而变化,④∠APB的大小会随点P的移动而变化;∵点P到直线n的距离不变,AB的长度不变,∴③△PAB的面积不会随点P的移动而变化;综上,不会随点P的移动而变化的是①③.故选:B.【点睛】本题主要考查了平行线间的距离和同底等高的三角形的面积相等等知识,属于基础题型,熟练掌握平行线间的距离的概念是关键.12.D解析:D【分析】由∠1=∠2证明直线AD//BC,根据平行线的性质得∠D+∠BCD=180°,计算∠BCD的度数为112°.【详解】解:∵∠1=∠2,∴AD//BC ,∴∠D+∠BCD =180°,又∵∠D =68°,∴∠BCD =112°,故选:D .【点睛】本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.35°【分析】过点F 作过点G 作利用平行线的性质和角平分线的定义即可求解【详解】过点F 作过点G 作∵平分平分设∵∴∴∵∴∴∴故【点睛】本题考查平行线的性质根据题意作出平行线是解题的关键解析:35°【分析】过点F 作//FK AB ,过点G 作//GH CD ,利用平行线的性质和角平分线的定义即可求解.【详解】过点F 作//FK AB ,过点G 作//GH CD ,∵PF 平分BPE ∠,QG 平分CQE ∠,设BPF EPF x ∠==,CQG EQG y ∠=∠=,∵250BPE DQE ∠+∠=︒∴21802250BPE DQE x y ∠+∠=+︒-=︒,∴35x y -=︒,∵//,//,//FK AB GH CD AB CD ,∴//////AB FK GH CD ,∴PFK BPF x ∠=∠=,HGQ CQG y ∠=∠=,KFG HGQ =∠,∴()PFG FGQ PFK KFG HGF HGQ ∠-∠=∠+∠-∠+∠35x KFG HGF y x y =+∠-∠-=-=︒故35PFG FGQ ∠-∠=︒.【点睛】本题考查平行线的性质,根据题意作出平行线是解题的关键.14.35°【分析】先根据垂直的定义和角的和差求出∠BOD 的度数再根据对顶角相等的性质解答即可【详解】解:∵∴∠BOM=90°∵∴∠BOD=90°-55°=35°∴∠AOC=∠BOD=35°故答案为:35解析:35°【分析】先根据垂直的定义和角的和差求出∠BOD 的度数,再根据对顶角相等的性质解答即可.【详解】解:∵OM AB ⊥,∴∠BOM =90°,∵55DOM ∠=︒,∴∠BOD =90°-55°=35°,∴∠AOC =∠BOD =35°,故答案为:35.【点睛】本题考查了垂直的定义、对顶角的性质和角的和差计算,属于基础题目,熟练掌握基本知识是解题的关键.15.120°【分析】根据平行线的性质解答即可【详解】解:∵a ∥b ∠2=60°∴∠1=180°﹣60°=120°故答案为:120°【点睛】本题考查了平行线的性质解题的关键是掌握两直线平行同旁内角互补的知识点解析:120°【分析】根据平行线的性质解答即可.【详解】解:∵a ∥b ,∠2=60°,∴∠1=180°﹣60°=120°.故答案为:120°.【点睛】本题考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补的知识点. 16.45°和60°【分析】根据题意画出图形分情况讨论:∥或BC ∥AD 再由平行线的性质定理或判定定理即可得出结论【详解】解:如图当AC ∥DE 时此时重合∠BAD =∠DAE =45°;当BC ∥AD 时∠DAB =∠解析:45°和60°【分析】根据题意画出图形,分情况讨论:AC∥DE或BC∥AD,再由平行线的性质定理或判定定理即可得出结论.【详解】解:如图,当AC∥DE时,DEA CAB∴∠=∠=︒90,AB AE重合,此时,∴∠BAD=∠DAE=45°;当BC∥AD时,∠DAB=∠B=60°;综上所述,当两块三角尺至少有一组边互相平行,则∠BAD(0°<∠BAD<90°)所有符合条件的度数为45°和60°,故答案为:45°和60°.【点睛】本题考查的是平行线的性质与判定,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键.17.70或30【分析】分∠A=∠B与∠A+∠B=180°两种情况进行讨论即可求解【详解】解:根据题意有两种情况:(1)当∠A=∠B可得:x=210﹣2x解得:x=70;(2)当∠A+∠B=180°时可得解析:70或30.【分析】分∠A=∠B与∠A+∠B=180°两种情况进行讨论即可求解.【详解】解:根据题意,有两种情况:(1)当∠A=∠B,可得:x=210﹣2x,解得:x=70;(2)当∠A+∠B=180°时,可得:x+210﹣2x=180,解得:x=30.故答案为:70或30.【点睛】本题考查的是平行线的性质,在解答此题时要注意分类讨论.18.40°或140°【分析】先根据题意可得OC分在AB同侧和异侧两种情況讨论并画出图然后根据OC⊥OD与∠AOC=50°计算∠BOD的度数【详解】解:当OCOD在直线AB同侧时如图∵∠COD=90°∠A解析:40°或140°【分析】先根据题意可得OC分在AB同侧和异侧两种情況讨论,并画出图,然后根据OC⊥OD与∠AOC=50°,计算∠BOD的度数.【详解】解:当OC、OD在直线AB同侧时,如图∵∠COD=90°,∠AOC=50°∴∠BOD=180°-∠COD-∠AOC=180°-90°-50°=40°当OC、OD在直线AB异侧时,如图∵∠COD=90°,∠AOC=50°∴∠BOD=180-∠AOD=180°-(∠DOC-∠AOC)=180°-(90°-50°)=140°.故答案为:40°或140°【点睛】解答此类问题时,要注意对不同的情况进行讨论,避免出现漏解.19.垂线段距离最短【分析】过直线外一点作直线的垂线这一点与垂足之间的线段就是垂线段且垂线段最短【详解】解:过D点引CD⊥AB于C然后沿CD开渠可使所开渠道最短根据垂线段最短故答案为:垂线段距离最短【点睛解析:垂线段距离最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段, 且垂线段最短.【详解】解:过D 点引CD ⊥AB 于C ,然后沿CD 开渠,可使所开渠道最短,根据垂线段最短. 故答案为: 垂线段距离最短.【点睛】本题主要考查垂线段的应用,解决本题的关键是要掌握垂线段距离最短.20.20【分析】根据条件可得出△ABC 的面积与△BCD 的面积的比再根据已知条件即可得出结论;【详解】解:∵a ∥b ∴△ABC 的面积:△BCD 的面积=AB :CD =1:2∴△BCD 的面积=10×2=20故答案解析:20【分析】根据条件可得出△ABC 的面积与△BCD 的面积的比,再根据已知条件即可得出结论;【详解】解:∵a ∥b ,∴△ABC 的面积:△BCD 的面积=AB :CD =1:2,∴△BCD 的面积=10×2=20.故答案为:20.【点睛】本题主要考查了平行线之间的距离和三角形面积的知识点,准确分析计算是解题的关键.三、解答题21.(1)见解析;(2)360°【分析】(1)由PE 与PF 分别为角平分线,得到两对角相等,根据∠1与∠2的度数求出∠BEF 与∠EFD 的度数之和为180°,利用同旁内角互补两直线平行即可得证;(2)过点P 作//PG AB ,得//PG CD ,再根据平行线的性质可得结论.【详解】解:(1)证明:∵PE 平分∠BEF ,PF 平分∠DFE ,∠1=35°,∠2=55°,∴∠1=∠BEP=12∠BEF ,∠2=∠PFD=12∠EFD , ∴∠BEF=70°,∠EFD=110°,即∠BEF+∠EFD=180°,∴AB ∥CD ;(2)过点P 作//PG AB// ,AB CD//,PG CD ∴180,AEP GPE ∴∠+∠=︒180,CFP GPF ∴∠+∠=︒360AEP CFP EPF ∴∠+∠+∠=︒【点睛】此题考查了平行线的性质性质和判定,熟练掌握平行线的判定方法是解本题的关键. 22.(1)60°;(2)120【分析】(1)根据折叠的性质以及角平分线的定义可知∠AEF =∠A'EF =∠A'EB ,再根据平角的定义求解即可;(2)根据折叠的性质、互余的定义以及(1)的结论可得∠AFA'的度数,进而得出∠A'FD 的度数.【详解】解:(1)根据折叠的性质可得∠AEF =∠A'EF ,∵EA'恰好平分∠FEB ,∴∠AEF =∠A'EF =∠A'EB ,∵∠AEF+A'EF+∠A'EB =180°,所以∠AEF =60°;(2)∵∠AFE 和∠AEF 互为余角,∴∠AFE =90°﹣∠AEF =30°,根据折叠的性质可得∠AFA'=2∠AFE =60°,∴∠A'FD =180°﹣∠AFA'=120°.故答案为:120.【点睛】本题主要考查了角的计算问题,掌握折叠的性质并理清相关角的关系是解答本题的关键. 23.(1)AOD ∠、BOC ∠、∠BOE ;(2)36°.【分析】(1)根据题意,由角平分线的定义,先求出45AOC AOE BOD ∠=∠=∠=︒,然后求出135AOD BOC BOE ∠=∠=∠=︒,即可得到答案;(2)根据角的比例,先求出72EOC ∠=︒,由角平分线的定义和对顶角定理,即可得到答案.【详解】解:(1)∵OE CD ⊥,∴90COE EOD ∠=∠=︒,∵OA 平分EOC ∠, ∴190452AOC AOE ∠=∠=⨯︒=︒, ∴45BOD ∠=︒,∴18045135AOD BOC BOE ∠=∠=∠=︒-︒=︒,∴与BOD ∠互补的角有AOD ∠、BOC ∠、∠BOE ;(2)根据题意,∵:2:3EOC EOD ∠∠=,又∵180EOC EOD ∠+∠=︒, ∴21807223EOC ∠=⨯︒=︒+, ∵OA 平分EOC ∠, ∴172362AOC AOE ∠=∠=⨯︒=︒, ∴36BOD AOC ∠=∠=︒;【点睛】 本题考查了角平分线的定义,余角和补角的定义,对顶角相等,以及平角的定义,解题的关键是熟练掌握所学的知识,正确的理解题意,得到角的关系进行解题.24.(1)20°或50°;(2)见解析;(3)24°【分析】(1)根据余分线的定义分情况讨论,从而求解;(2)根据余分角的定义可得90BOC AOB ∠+∠=︒,根据题意可得90DOE AOB ∠+∠=︒,从而利用同角的余角相等可以得到结论;(3)根据上一问的结论可得14BOC ∠=︒,然后利用余分角和角平分线的定义求得角的数量关系,从而求解.【详解】解:(1)∵70AOB ∠=︒,OC 是它的余分线,∴90AOC AOB 或90BOC AOB ∠+∠=︒∴90AOC AOB 或()90AOB AOC AOB ∠-∠+∠=︒解得:=20AOC ∠︒或=50AOC ∠︒故答案为:20°或50°(2)∵BOC ∠是AOB ∠的余分角,∴90BOC AOB ∠+∠=︒,∵EOB ∠是平角,90AOD ∠=︒,∴90DOE AOB ∠+∠=︒,∴BOC DOE ∠=∠(3)∵BOC DOE ∠=∠,14DOE ∠=︒,∴14BOC ∠=︒,∵BOC ∠是AOB ∠的余分角,∴901476AOB ∠=︒-︒=︒,∵OF 平分AOB ∠, ∴11763822BOF AOB ∠=∠=⨯=︒, ∴381424COF ∠=︒-︒=︒【点睛】 本题考查角平分线的定义及角的数量关系,正确理解题意准确计算并注意分类讨论思想的运用是解题关键.25.(1)50BOD ∠=︒;(2)图见详解,点D 在BOC ∠内,45AON α∠=+︒;点D 在BOC ∠外,45AON ∠=︒.【分析】(1)由BOD ∠与AOC ∠互余,知90BOD AOC ∠+∠=︒,再由:4:5AOC BOD ∠∠=知BOD ∠占90°的545+,问题可解; (2)分两种情形,当点D 在BOC ∠内时,先得90COD ∠=︒,再求得45CON ∠=︒,最后得AON ∠;当点D 在BOC ∠外时,先求得COD AOD α∠=+∠,再用α表示AOD ∠,得902COD α∠=︒+,据ON 平分COD ∠得45NOC α∠=︒+,最后得45AON ∠=︒.【详解】解:(1)∵:4:5AOC BOD ∠∠=,BOD ∠与AOC ∠互余,∴5905045BOD ∠=︒⨯=︒+; (2)分两种情形:情形一:点D 在BOC ∠内.在045α︒<≤︒的条件下,补全图形如下:.∵BOD ∠与AOC ∠互余,∴90BOD AOC ∠+∠=︒,∴90COD ∠=︒,∵ON 平分COD ∠,∴45CON ∠=︒,∴45AON α∠=+︒;情形二:点D 在BOC ∠外.在045α︒<≤︒的条件下,补全图形如下:∵BOD ∠与AOC ∠互余,()045AOC αα∠=︒<︒∴90BOD α∠=︒-∴COD AOD α∠=+∠(180)[180(90)]BOD ααα=+︒-∠=+︒-︒-902α=︒+,即902COD α∠=︒+∵ON 平分COD ∠ ∴11(902)4522NOC COD αα∠=∠=︒+=︒+ ∴(45)45AON NOC AOC αα∠=∠-∠=︒+-=︒即45AON ∠=︒.综上所述,点D 在BOC ∠内,45AON α∠=+︒;点D 在BOC ∠外,45AON ∠=︒.【点睛】考查余角、角平分线的概念及角的和与差等,其关键是熟悉相关概念并能结合图形进行应用.26.40AOC ∠=︒;70AOE ∠=︒【分析】先利用平角定义与90FOC求出90FOD ∠=︒,再利用互余关系求=40BOD ∠︒,利用对顶角性质求40AOC ∠=︒,利用邻补角定义,求出140AOD ∠=︒,利用角平分线定义便可求出AOE ∠.【详解】 解:90FOC ∠=︒,∴1801809090FOD FOC ∠=︒-∠=︒-︒=︒, ∵50BOF ∠=︒,90-50=40BOD FOD BOF ∴∠=∠-∠=︒︒︒,AOC ∠与BOD ∠是对顶角,40AOC BOD ∴∠=∠=︒;COD ∠是一个平角,∴∠AOC+∠AOD=180º,∵40AOC ∠=︒,140AOD ∴∠=︒, OE 平分AOD ∠, 12AOE AOD ∴∠=∠, 70AOE ∴∠=︒.【点睛】本题考查的知识点是对顶角、邻补角、两角互余、角平分线的意义,解题关键是熟练利用角平分线定理.。

(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》检测题(答案解析)(2)

(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》检测题(答案解析)(2)

一、选择题1.下列说法不正确...的是( ) A .对顶角相等B .两点确定一条直线C .一个角的补角一定大于这个角D .垂线段最短 2.一个角的余角比这个角的一半大15°,则这个角的度数为( )A .70°B .60°C .50°D .35° 3.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=50°,则∠AED 为( )A .130°B .115°C .125°D .120° 4.用一副三角板不能画出的角是( ).A .75°B .105°C .110°D .135° 5.已知//AB CD ,∠EAF=13∠EAB ,∠ECF=13∠ECD ,若∠E=66°,则∠F 为( )A .23°B .33°C .44°D .46°6.如图,直线//m n ,在Rt ABC 中,90B ∠=︒,点A 落在直线m 上,BC 与直线n 交于点D ,若2130∠=︒,则1∠的度数为( ).A .30°B .40°C .50°D .65°7.下列图形中,1∠与2∠是对顶角的是( )A .B .C .D . 8.α∠与β∠的度数分别是219m -和77m -,且α∠与β∠都是γ∠的补角,那么α∠与β∠的关系是( ).A .不互余且不相等B .不互余但相等C .互为余角但不相等D .互为余角且相等9.如图,点P 在直线m 上移动,,A B 是直线n 上的两个定点,且直线//m n .对于下列各值:①点P 到直线n 的距离;②PAB △的周长;③PAB △的面积;④APB ∠的大小.其中不会随点P 的移动而变化的是( )A .①②B .①③C .②④D .③④10.下列说法中正确的有( )①在同一平面内,不相交的两条直线必平行②过一点有且只有一条直线与已知直线垂直③相等的角是对顶角:④两条直线被第三条直线所截,所得的同位角相等⑤两条平行线被第三条直线所截,一对内错角的角平分线互相平行A .4个B .3个C .2个D .1个11.如图,将三角板的直角顶点放在直尺的一边上,若∠1=25°, 则∠2的度数为( )A .55°B .60°C .65°D .75°12.如图,已知CB ∥DF ,则下列结论成立的是( )A .∠1=∠2B .∠2=∠3C .∠1=∠3D .∠1+∠2=180º二、填空题13.一副三角板按图1的形式摆放,把含45°角的三角板固定,含30°角的三角板绕直角顶点逆时针旋转,设旋转的角度为α(0180α︒<<︒).在旋转过程中,当两块三角板有两边平行时,α的度数为______.14.下列说法:①对顶角相等;②两点间线段是两点间距离;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤若AC BC =,则点C 是线段AB 的中点;⑥同角的余角相等正确的有_________.(填序号)15.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.16.如图,172∠=︒,262∠=︒,362∠=︒,则4∠的度数为__________.17.用直尺和三角板按如图所示放置,若∠1=70°,则∠2的度数为_________.18.已知∠A 与∠B 的两边分别平行,其中∠A 为x °,∠B 的为(210﹣2x )°,则∠A =____度.19.如图是一汽车探照灯纵剖面,从位于O 点的灯泡发出的两束光线OB ,OC 经过灯碗反射以后平行射出,如果62ABO ∠=︒,46DCO ∠=︒,则BOC ∠的度数是________︒.20.如图,已知11∥l 2,∠C =90°,∠1=40°,则∠2的度数是_____.三、解答题21.如图,直线CD 经过AOB ∠的顶点O ,OE 平分AOB ∠,OF 平分BOD ∠.(1)若COE ∠=4DOE ∠,求DOE ∠的度数.(2)若BOD ∠=13AOB ∠,且AOB EOF ∠+∠=160︒,求BOD ∠和EOF ∠的度数. 22.已知O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图a .①若60AOC ∠=︒,求DOE ∠的度数;②若AOC α∠=,直接写出DOE ∠的度数.(用含α的式子表示)(2)将图a 中的COD ∠绕点O 顺时针旋转至图b 的位置,试探究DOE ∠和AOC ∠之间的数量关系,写出你的结论,并说明理由.23.如图,直线AB 与CD 相交于点O ,30AOC ∠=︒,射线OE 从OC 开始绕点O 按顺时针方向旋转到OB .(1)当OE AB ⊥时,求EOD ∠的度数.(2)当OE 平分COB ∠时,求EOD ∠的度数.24.如图,已知长方形ABCD 中,10cm AD =,6cm DC =,点F 是DC 的中点,点E 从A 点出发在AD 上以每秒1cm 的速度向D 点运动,运动时间设为t 秒.(假定0t 10<<)(1)当5t =秒时,求阴影部分(即三角形BEF )的面积;(2)用含t 的式子表示阴影部分的面积;并求出当三角形EDF 的面积等于3时,阴影部分的面积是多少?(3)过点E 作//EG AB 交BF 于点G ,过点F 作//FH BC 交BE 于点H ,请直接写出在E 点运动过程中,EG 和FH 的数量关系.25.在如图所示的方格中,每个小正方形的边长为1,点A B C D 、、、在方格纸中小正方形的顶点上.(1)画线段AB ;(2)画图并说理:①画出点C 到线段AB 的最短线路CE ,理由是 ;②画出一点P ,使AP DP CP EP +++最短,理由是 .26.已知:直线AB 与直线CD 交于点O ,过点O 作OE CD ⊥.(1)如图1,若2AOE AOC ∠=∠,求∠BOE 的度数;(2)如图2,过点O 画直线FG 满足射线OF 在EOD ∠内部,且使2AOC EOF ∠=∠,在不添加任何辅助线的情况下,请直接写出与EOF ∠互余的角.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据对顶角的性质,直线的性质,补角的定义,垂线段的性质依次判断即可得到答案.【详解】解:A 、对顶角相等,故该项不符合题意;B 、两点确定一条直线,故该项不符合题意;C 、一个角的补角一定不大于这个角,故该项符合题意;D 、垂线段最短,故该项不符合题意;故选:C .【点睛】此题考查对顶角的性质,直线的性质,补角的定义,垂线段的性质,正确理解各性质及定义是解题的关键.2.C解析:C【分析】设这个角的度数为x ,则它的余角为90x ︒-,根据题意列方程求解即可.【详解】解:设这个角的度数为x ,则它的余角为90x ︒-,190152x x ∴︒--=︒, 解得:50x =︒,故选:C .【点睛】本题考查余角的概念,掌握利用一元一次方程解决余角问题是解题的关键.3.B解析:B【分析】根据平行线的性质和角平分线的性质计算即可;【详解】∵AB ∥CD ,∴180C CAB ∠+∠=︒,∵∠C=50°,∴130CAB ∠=︒,∵AE 平分∠CAB ,∴65CAE BAE ∠=∠=︒,又∵180BAE AED ∠+∠=︒,∴18065115AED ∠=︒-︒=︒;故选:B .【点睛】本题主要考查了平行线的性质,结合角平分线的性质求解是解题的关键.4.C解析:C【分析】105°=60°+45°,105°角可以用一幅三角板中的60°角和45°角画;75°=45°+30°,75°角可以用一幅三角板中的45°角和30°角画;135°=90°+45°,135°角可以用一幅三角板中的直角和90°角或45°角画;110°角用一副三角板不能画出.【详解】解:105°角可以用一幅三角板中的60°角和45°角画;75°角可以用一幅三角板中的45°角和30°角画;110°角用一副三角板不能画出;135°角可以用一幅三角板中的直角和90°角或45°角画。

(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》检测题(包含答案解析)(2)

(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》检测题(包含答案解析)(2)

一、选择题1.如图所示,已知//AB CD ,则( ).A .123∠=∠+∠B .123∠∠∠>+C .213∠=∠+∠D .123∠∠∠<+2.如图,已知直线//AD BC ,BE 平分ABC ∠交直线DA 于点E ,若58DAB ∠=︒,则E ∠等于( )A .25°B .29°C .30°D .45° 3.一个角的补角,等于这个角的余角的3倍,则这个角是( )A .30°B .35°C .40°D .45° 4.如图,直线//a b ,直线l 与a ,b 分别相交于A ,B 两点,过点A 作直线l 的垂线交直线b 于点C ,若1=62∠︒,则2∠的度数为( )A .62︒B .38︒C .32︒D .28︒5.如图,直线,a b 与直线,c d 相交,已知341100∠=∠∠=︒,,则2∠的度数为( )A .110︒B .100︒C .80︒D .70︒6.下列四个说法中,正确的是( )A .相等的角是对顶角B .平移不改变图形的形状和大小,但改变直线的方向C .两条直线被第三条直线所截,内错角相等D .两直线相交形成的四个角相等,则这两条直线互相垂直7.将一直角三角板与等宽的纸条如图放置,顶点C 在纸条边FG 上,且DE//FG ,当132∠=︒时,∠2的度数是( )A .48°B .32°C .58°D .64°8.如图,CB 平分∠ACD ,∠2=∠3,若∠4=60°,则∠5的度数是( )A .60°B .30°C .20°D .40°9.如图,直线a ,b 被直线c 所截,//a b ,若140∠=︒,则( )A .250∠=︒B .350∠=︒C .4160∠=︒D .540∠=︒ 10.如图所示,如果 AB ∥ CD ,则∠α、∠β、∠γ之间的关系为( )A .∠α+∠β+∠γ=180°B .∠α-∠β+∠γ=180°C .∠α+∠β-∠γ=180°D .∠α-∠β-∠γ=180°[11.如图,在墙面上安装某一管道需经两次拐弯,拐弯后的管道与拐弯前的管道平行.若第一个弯道处142B ∠=︒,则第二个弯道处∠C 的度数为( )A .38°B .142°C .152°D .162°12.如图,直线a b 、被直线c 所截,若//a b ,则下列不正确的是( )A .12∠=∠B .24∠∠=C .14∠=∠D .15∠=∠二、填空题13.一个角的余角比它的补角的一半少30,则这个角的度数为___________. 14.如图,AB ∥CD ,AB ⊥AE ,∠CAE =42°,则∠ACD 的度数为__.15.如图,//,//,62AC ED AB FD A ∠=︒,则EDF ∠度数为___________.16.如图,直线////a b c ,直角三角板的直角顶点落在直线b 上,若135∠=︒,则2∠等于_______.17.已知直线//a b ,将一个含有45度角的直角三角板(90︒∠=C )按如图位置摆放,若160∠=︒,则2∠的度数是_____________.18.如图AB ∥CD ,2832B D E ∠=︒∠=︒∠=,,则____________19.如图,点 B 在点 C 北偏东 39°方向,点 B 在点 A 北偏西 23°方向,则∠ABC 的度数为 ___________.20.如图,DE ∥BC ,EF ∥AB ,图中与∠BFE 互补的角有_____个.三、解答题21.已知AOC ∠和BOC ∠是互为邻补角,50BOC ︒∠=,将一个三角板的直角顶点放在点O 处(注:90DOE ︒∠=,30DEO ︒∠=).(1)如图1,使三角板的短直角边OD 与射线OB 重合,则COE ∠= .(2)将三角板DOE 如图2放置,长直角边OE 恰好平分AOC ∠,请说明OD 所在射线是BOC ∠的平分线.(3)将三角板DOE 如图3放置,使14COD AOE ∠=∠时,求BOD ∠的度数.(4)拓展:将图1中的三角板绕点O 以每秒5︒的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,OE 恰好与直线OC 重合,求t 的值.(注:“旋转一周”是指三角板DOE 在这个平面内绕着这个平面内的点O 转动一周.)22.已知:如图,BD 平分ABC ∠,BE 将ABC ∠分为2:3两部分,12DBE ∠=︒,求ABC ∠的度数和ABE ∠的补角的度数.23.如图,已知A 、O 、B 三点在同一条直线上,OD 平分AOC ∠,OE 平分BOC ∠.(1)若54BOC ∠=︒,求DOE ∠的度数;(2)若BOC α∠=,求DOE ∠的度数;(3)请写出图中与∠BOE 互余的角.24.如图,∠AOC 与∠BOC 互余,OD 平分∠BOC ,∠EOC =4∠AOE .(1)若∠AOD =70°,求∠AOE 的度数;(2)若∠DOE =63°,求∠EOC 的度数.25.如图,已知∠1=∠2,∠A =29°,求∠C 的度数.26.如图,已知直线AB 和CD 相交于O 点,射线OE AB ⊥于O ,射线OF CD ⊥于O ,且20BOF ∠=︒.求EOD ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据平行线的性质,得3ABO ∠=∠;根据补角的性质,得1801AOB ∠=-∠;根据角的和差的性质计算,即可得到123∠=∠+∠,从而完成求解.【详解】∵//AB CD∴3ABO ∠=∠∵1801AOB ∠=-∠又∵1802ABO ABO ∠=-∠-∠∴312∠=∠-∠∴123∠=∠+∠故选:A .【点睛】本题考查了平行线、角的知识;解题的关键是熟练掌握平行线、补角、角的和差的性质,从而完成求解.2.B解析:B【分析】根据平行线的性质可知∠ABC=58°,再根据角平分线的性质可求∠EBC=29°,再利用平行线的性质可求∠E .【详解】解:∵//AD BC ,∴58ABC DAB ∠=∠=︒,∵BE 平分ABC ∠, ∴1292EBC ABC ∠=∠=︒, ∵//AD BC ,∴29E EBC ∠=∠=︒,故选B .【点睛】本题考查了平行线的性质和角平分线的性质,灵活运用这两个性质是解题关键. 3.D解析:D【分析】设这个角的度数是x ,根据题意列得1803(90)x x ︒-=︒-,求解即可.【详解】设这个角的度数是x ,则︒-=︒-x x1803(90)解得x=45︒,故选:D.【点睛】此题考查余角、补角定义,与余角补角有关的计算,正确掌握余角、补角的定义是解题的关键.4.D解析:D【分析】根据平行线的性质可得∠1+∠2+90°=180°,由∠1=62°可求解∠2的度数.【详解】解:∵a∥b,∴∠1+∠2+∠BAC=180°,∵∠BAC=90°,∠1=62°,∴∠2=180°-∠1-∠BAC=180°-62°-90°=28°,故选:D.【点睛】本题主要考查平行线的性质,掌握平行线的性质是解题的关键.5.B解析:B【分析】根据平行线的性质定理和判定定理即可解答,由∠ 3=∠4可知a与b平行,从而推出∠2=∠1,即可得解;【详解】∵∠3=∠4,∴ a与b平行,∴∠1=∠2∴∠2=∠1=100°,故选:B.【点睛】本题考查了平行线的性质与判定,解决问题的关键是准确掌握平行线的判定与性质,并熟练运用;6.D解析:D【分析】根据对顶角的概念、平移的性质、平行线的性质以及垂直的概念进行判断.【详解】A.相等的角不一定是对顶角,而对顶角必定相等,故A错误;B.平移不改变图形的形状和大小,也不改变直线的方向,故B错误;C.两条直线被第三条直线所截,内错角不一定相等,故C错误;D.两直线相交形成的四个角相等,则这四个角都是90°,即这两条直线互相垂直,故D正确.故选D.【点睛】本题考查了平移的性质、对顶角、平行线以及垂直的定义,解题时注意:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.7.C解析:C【分析】先根据平行线的性质,求得∠3的度数,再根据平角的定义,求得∠2的度数.【详解】解:如图,∵DE∥FG,∠1=32°,∴∠3=32°,∴∠2=180°-90°-32°=58°.故选:C.【点睛】本题主要考查的是平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.8.B解析:B【分析】证出∠AB∥CD,由平行线的性质得∠4=∠ACD=∠1+∠2=60°,∠5=∠2,由角平分线定义得∠1=∠2=30°,即可得出答案.【详解】∵∠2=∠3,∴AB∥CD,∴∠4=∠ACD=∠1+∠2=60°,∠5=∠2,∵CB平分∠ACD,∴∠1=∠2=30°,∴∠5=∠2=30°;故选:B.【点睛】本题考查了平行线的判定与性质以及角平分线定义;熟练掌握平行线的判定与性质是解题的关键,属于中考常考题型.9.D解析:D【分析】根据平行线的性质、对顶角相等、邻补角的定义解答即可.【详解】∵a∥b,∴∠2=∠1=40°,∵∠3与∠1是对顶角,∠5与∠2是对顶角,∴∠3=∠5=40°,∵∠4+∠1=180°,∴∠4=180°-∠1=140°,故选:D.【点睛】此题考查相交线与平行线,掌握平行线的性质、对顶角相等、邻补角的定义是解题的关键. 10.C解析:C【分析】过E作EF∥AB,由平行线的质可得EF∥CD,∠α+∠AEF=180°,∠FED=∠γ,由∠β=∠AEF+∠FED即可得∠α、∠β、∠γ之间的关系.【详解】解:过点E作EF∥AB,∴∠α+∠AEF=180°(两直线平行,同旁内角互补),∵AB∥CD,∴EF∥CD,∴∠FED=∠EDC(两直线平行,内错角相等),∵∠β=∠AEF+∠FED,又∵∠γ=∠EDC,∴∠α+∠β-∠γ=180°,故选:C.【点睛】本题主要考查了平行线的性质,正确作出辅助线是解答此题的关键.11.B解析:B【分析】由AB∥CD得∠B=∠C,根据∠B=142°得∠C=142°.【详解】如图,∵拐弯后的管道与拐弯前的管道平行,∴AB∥CD,∴∠B=∠C,又∵∠B=142°,∴∠C=142°,故选:B.【点睛】本题考查了平行线的性质的应用和等量代换相关知识,重点掌握平行线的性质,难点是从生活实际中抽象出平行线和相交线.12.D解析:D【分析】根据平行线的性质得出∠2=∠4,∠1=∠4,根据对顶角相等和邻补角互补得出∠1=∠2,∠1+∠5=180°,即可得出选项.【详解】解:∵a∥b,∴∠2=∠4,∠1=∠4,∵∠4+∠5=180°,∴∠1+∠5=180°,∵∠1=∠2(对顶角相等),所以选项A、B、C答案正确,只有选项D答案错误;故选:D.【点睛】本题考查了平行线的性质,对顶角相等,邻补角互补等知识点,能灵活运用知识点进行推理是解此题的关键.二、填空题13.【分析】这个角的度数为x根据题意列一元一次方程并求解即可得到答案【详解】这个角的度数为x 根据题意得:∴∴故答案为:【点睛】本题考查了一元一次方程的知识;解题的关键是熟练掌握一元一次方程的性质从而完成 解析:60︒【分析】这个角的度数为x ,根据题意,列一元一次方程并求解,即可得到答案.【详解】这个角的度数为x根据题意得:()()190301802x x -+=- ∴180260180x x -+=-∴60x =故答案为:60︒.【点睛】本题考查了一元一次方程的知识;解题的关键是熟练掌握一元一次方程的性质,从而完成求解. 14.132°【分析】直接利用平行线的性质结合垂直定义得出∠BAC 度数以及∠ACD 的度数【详解】解:∵AB ⊥AE ∠CAE =42°∴∠BAC =90°﹣42°=48°∵AB ∥CD ∴∠BAC +∠ACD =180°解析:132°【分析】直接利用平行线的性质结合垂直定义得出∠BAC 度数以及∠ACD 的度数.【详解】解:∵AB ⊥AE ,∠CAE =42°,∴∠BAC =90°﹣42°=48°,∵AB ∥CD ,∴∠BAC +∠ACD =180°,∴∠ACD =132°.故答案为:132°.【点睛】此题主要考查了平行线的性质,正确得出∠BAC 度数是解题关键.15.62°【分析】首先根据两直线平行同位角相等求出∠DEB 的度数再根据两直线平行内错角相等求出∠EDF 的度数【详解】解:∵AC//DE ∠A=62°∴∠DEB=∠A=62°(两直线平行同位角相等)∵DF/ 解析:62°【分析】首先根据两直线平行,同位角相等求出∠DEB 的度数,再根据两直线平行,内错角相等求出∠EDF 的度数.【详解】解:∵AC//DE ,∠A=62°,∴∠DEB=∠A=62°(两直线平行,同位角相等),∵DF//AB ,∴∠EDF=∠DEB=62°(两直线平行,内错角相等).故答案为:62°.【点睛】本题考查了平行线的性质,解决本题的关键是熟记平行线的性质.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补. 16.【分析】如图利用平行线的性质得出∠3=35°然后进一步得出∠4的度数从而再次利用平行线性质得出答案即可【详解】如图所示∵∴∴∠4=90°−∠3=55°∵∴∠2=∠4=55°故答案为:55°【点睛】本解析:55︒【分析】如图,利用平行线的性质得出∠3=35°,然后进一步得出∠4的度数,从而再次利用平行线性质得出答案即可.【详解】如图所示,∵//a b ,135∠=︒,∴335∠=︒,∴∠4=90°−∠3=55°,∵////a b c ,∴∠2=∠4=55°.故答案为:55°.【点睛】本题主要考查了平行线的性质,熟练掌握相关概念是解题关键.17.75°【分析】先根据对顶角的性质求得∠4=60°然后由三角形外角的性质得∠5=105°然后根据补角的定义求得∠3最后运用平行线的性质解答即可【详解】解:如图所示∵∠4=∠1=60°∠B=45°∴∠5解析:75°【分析】先根据对顶角的性质求得∠4=60°,然后由三角形外角的性质得∠5=105°,然后根据补角的定义求得∠3,最后运用平行线的性质解答即可.【详解】解:如图所示.∵∠4=∠1=60°,∠B=45°∴∠5=∠4+∠B=60°+45°=105°,∵∠5+∠3=180°∴∠3=180°-∠5=75°∵直线a//b.∴∠2=∠3=75°.故答案为:75°.【点睛】本题考查了等腰直角三角形的性质、平行线的性质、三角形外角的性质等知识:根据三角形外角的性质以及邻补角互补求得∠3的度数是解答本题的关键.18.60°【分析】过点E作EF∥AB然后根据两直线平行内错角相等求解即可【详解】解:如图过点E作EF∥AB∵AB∥CD∴AB∥EF∥CD∴∠1=∠B=28°∠2=∠D=32°∴∠E=∠1+∠2=28°+ 解析:60°【分析】过点E作EF∥AB,然后根据两直线平行,内错角相等求解即可.【详解】解:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠1=∠B=28°,∠2=∠D=32°,∴∠E=∠1+∠2=28°+32°=60°.故答案为:60°.【点睛】本题考查了平行线的性质,此类题目过拐点作平行线是常用的方法之一,要熟练掌握并灵活运用.19.62°【分析】过B作BF∥CD则BF∥AE依据平行线的性质即可得到∠CBF=39°∠ABF=23°进而得出∠ABC的度数【详解】如图所示过B作BF∥CD则BF∥AE∵点B在点C北偏东39°方向点B在解析:62°【分析】过B作BF∥CD,则BF∥AE,依据平行线的性质即可得到∠CBF=39°,∠ABF=23°,进而得出∠ABC的度数.【详解】如图所示,过B作BF∥CD,则BF∥AE,∵点B在点C北偏东39°方向,点B在点A北偏西23°方向,∴∠BCD=39°,∠BAE=23°,∴∠CBF=39°,∠ABF=23°,∴∠ABC=39°+23°=62°,故答案为62°.【点睛】本题主要考查了平行线的性质以及方向角,解题时注意:方向角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.20.4【分析】先找到∠BFE的邻补角∠EFC再根据平行线的性质求出与∠EFC 相等的角即可【详解】∵DE∥BC∴∠DEF=∠EFC∠ADE=∠B又∵EF∥AB∴∠B =∠EFC∴∠DEF=∠EFC=∠ADE解析:4【分析】先找到∠BFE的邻补角∠EFC,再根据平行线的性质求出与∠EFC相等的角即可.【详解】∵DE∥BC,∴∠DEF=∠EFC,∠ADE=∠B,又∵EF∥AB,∴∠B=∠EFC,∴∠DEF=∠EFC=∠ADE=∠B,∵∠BFE的邻补角是∠EFC,∴与∠BFE 互补的角有:∠DEF 、∠EFC 、∠ADE 、∠B .故答案为4.【点睛】本题主要考查的是平行线的性质,解题时注意:两直线平行,同旁内角互补且同位角相等.三、解答题21.(1)40︒;(2)见解析;(3)58︒;(4)28或64【分析】(1)根据角的大小关系求解;(2)根据角平分线的意义和余角、补角求解;(3)设∠COD=x°,则∠AOE=4x°,由已知条件可得关于x 的方程,解方程后可得∠COD 的度数,从而得到∠BOD 的度数;(4)由题意可分OE 与射线OC 的反射延长线重合与OE 与射线OC 重合两种情况讨论.【详解】解:(1)由图可知,∠COE=∠DOE-∠COB=90°-50°=40°,故答案为40°;(2)OE 平分AOC ∠,12COE AOE COA ∴∠=∠=∠, 90EOD ︒∠=,90AOE DOB ︒∴∠+∠=,90COE COD ︒∠+∠=,COD DOB ∴∠=∠,OD ∴所在射线是BOC ∠的平分线;(3)设COD x ︒∠=,则4AOE x ︒∠=,90DOE ︒∠=,50BOC ︒∠=,540x ∴=,8x ∴=,即8COD ︒∠=58BOD ︒∴∠=(4)如图,分两种情况:在一周之内,当OE 与射线OC 的反向延长线重合时,三角板绕点O 旋转了140︒, 5140t =,28t =;当OE 与射线OC 重合时,三角板绕点O 旋转了320︒,5320t =,64t =.所以当28t =秒或64秒时,OE 与直线OC 重合.综上所述,t 的值为28或64..【点睛】本题考查旋转的综合应用,熟练掌握角度的大小关系及和差计算、余角和补角的定义及定理、角平分线的定义及有关证明、空间想象能力及方程思想方法在几何中的应用是解题关键 .22.ABC ∠的度数为120︒,ABE ∠的补角的度数为132︒.【分析】由角平分线的定义,则∠CBD=∠DBA ,根据BE 分∠ABC 分2:3两部分这一关系列出方程求解.【详解】解:∵BD 平分ABC ∠∴∠CBD=∠DBA由题意,设∠ABE=2x ︒,则∠CBE=3x ︒,∴∠ABC=5x ︒,∠CBD=∠DBA=52x ︒ ∵12DBE ∠=︒∴12ABD ABE ∠-∠=︒,52122x x -=,解得:24x = ∴∠ABE=2×24=48︒;∠ABC=5×24=120︒∴ABE ∠的补角的度数为18048132︒-︒=︒答:ABC ∠的度数为120︒,ABE ∠的补角的度数为132︒.【点睛】本题考查一元一次方程的应用及角的运算和补角的定义,正确理解题意,运用方程思想解题是关键.23.(1)90︒;(2)90︒;(3)COD ∠,AOD ∠【分析】(1)由OD 平分∠AOC ,OE 平分∠BOC ,得出∠DOE=12(∠BOC+∠COA)求解即可; (2)利用(1)的结论求解即可;(3)根据(1)(2)找出互余的角即可.【详解】解:(1)∵OE 平分BOC ∠,∴1=2COE BOE BOC ∠∠=∠, OD 平分AOC ∠,12AOD DOC AOC ∴∠=∠=∠, ∴∠DOE=12(∠BOC+∠COA)=12×180°=90°; (2)由(1)知11()1809022DOE BOC COA ∠=∠+∠=⨯︒=︒; (3)∵90DOE ∠=︒,∴∠AOD+∠BOE=90°,∵∠AOD=∠COD ,∴∠COD+∠BOE=90°,∴与∠BOE 互余的角有COD ∠,AOD ∠;【点睛】此题考查角平分线的意义,以及余角的意义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.24.(1)10°;(2)48°【分析】(1)由题意易得∠AOB =90°,则有∠BOD =20°,∠BOC =2∠BOD =40°,然后根据角的和差关系可求解;(2)设∠COD =∠BOD =x °,则∠EOC =63°-x °,则有∠AOE =634x ︒-︒,由∠AOE +∠EOC +∠COB =90°可得634x ︒-︒+63°-x °+2x °=90°,进而问题可求解. 【详解】解:(1)∵∠AOC 与∠BOC 互余,∴∠AOC +∠BOC =90°,∴∠AOB =90°,又∵∠AOD =70°,∴∠BOD =20°,∵OD 平分∠BOC ,∴∠BOC =2∠BOD =40°,∴∠AOC =50°,又∵∠EOC =4∠AOE 且∠EOC +∠AOE =∠AOC ,∴4∠AOE +∠AOE =50°,∴∠AOE =10°(2)设∠COD =∠BOD =x °,则∠EOC =63°-x °,∴∠AOE =634x ︒-︒,由∠AOE+∠EOC+∠COB=90°可得634x︒-︒+63°-x°+2x°=90°,解之得x=15,∴∠EOC=63°-x°=63°-15°=48°.【点睛】本题主要考查角平分线的定义及角的和差关系,熟练掌握角平分线的定义及角的和差关系是解题的关键.25.∠C的度数是151°.【分析】根据对顶角相等,等量代换得∠1=∠3,根据同位角相等判断两直线平行,再由两直线平行得同旁内角互补则可解答.【详解】解:如图,∵∠1=∠2又∵∠2=∠3∴∠1=∠3∴AB∥CD∴∠A+∠C=180°,又∵∠A=29°∴∠C=151°答:∠C的度数是151°.【点睛】本题考查了对顶角的性质、平行线的性质和判定,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.26.20︒【分析】直接利用垂线的定义结合互余两角的关系得出答案.【详解】解:因为OF⊥CD,OE⊥AB,∴∠BOE=∠FOD=90︒,∴∠BOF+∠EOF=∠EOF+∠EOD,∴∠EOD=∠BOF=20︒.【点睛】本题主要考查了垂线,正确把握垂线的定义是解题关键.。

(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》检测题(含答案解析)(2)

(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》检测题(含答案解析)(2)

一、选择题1.下列说法正确的是( )A .锐角的补角一定是钝角B .一个角的补角一定大于这个角C .锐角和钝角一定互补D .两个锐角一定互为余角2.一个角的余角是它的补角的25,这个角是( ) A .30B .60︒C .120︒D .150︒ 3.一艘船停留在海面上,如果从船上看灯塔位于北偏东30°,那么从灯塔看船上位于灯塔的( )A .北偏东30°B .北偏东60°C .南偏西30°D .南偏西60° 4.如图,//AB CD ,120BAE ∠=︒,40DCE ∠=︒,则AEC ∠=( )A .70︒B .80︒C .90︒D .100︒ 5.在同一平面内,两条直线的位置关系可能是( )A .相交或垂直B .垂直或平行C .平行或相交D .相交或垂直或平行6.下列说法正确的有( )①绝对值等于本身的数是正数.②将数60340精确到千位是6.0×104.③连结两点的线段的长度,叫做这两点的距离.④若AC =BC ,则点C 就是线段AB 的中点.⑤不相交的两条直线是平行线A .1个B .2个C .3个D .4个7.如图,直线//a b ,直线l 与a ,b 分别相交于A ,B 两点,过点A 作直线l 的垂线交直线b 于点C ,若1=62∠︒,则2∠的度数为( )A .62︒B .38︒C .32︒D .28︒8.如图,∠1=20º,AO ⊥CO ,点B 、O 、D 在同一条直线上,则∠2的度数为( )A .70ºB .20ºC .110ºD .160º9.如图,已知AB ∥CD ,EF ⊥CD ,若∠1=126°,则∠2的度数为( )A .26°B .36°C .54°D .64° 10.如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°,则∠2的度数为( )A .55°B .50°C .45°D .40°11.在同一平面内,a 、b 、c 是直线,下列说法正确的是( )A .若a ∥b ,b ∥c 则 a ∥cB .若a ⊥b ,b ⊥c ,则a ⊥cC .若a ∥b ,b ⊥c ,则a ∥cD .若a ∥b ,b ∥c ,则a ⊥c12.如图,直线a ,b 被直线c 所截,则下列说法中错误的是( )A .∠1与∠2是邻补角B .∠1与∠3是对顶角C .∠2与∠4是同位角D .∠3与∠4是内错角二、填空题13.如图,已知://AB DE ,80B ∠=︒,CM 平分BCD ∠,CN CM ⊥,则NCE ∠的度数是______.14.如图,直线a ∥b ∥c ,直角∠BAC 的顶点A 在直线b 上,两边分别与直线a ,c 相交于点B ,C ,则∠1+∠2的度数是___________.15.如图AB ∥CD ,2832B D E ∠=︒∠=︒∠=,,则____________16.如图,点 B 在点 C 北偏东 39°方向,点 B 在点 A 北偏西 23°方向,则∠ABC 的度数为 ___________.17.如图,l 1∥l 2,AB ⊥l 1,垂足为O ,BC 交l 2于点E ,若∠ABC =125°,则∠1=_____°.18.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2等于________.19.如图,已知11∥l 2,∠C =90°,∠1=40°,则∠2的度数是_____.20.如图,直线AB CD 、相交于点,O OE AB ⊥于,56O AOC ∠=︒,则DOE ∠= ______________________.三、解答题21.如图,平面上有五个点A ,B ,C ,D ,E .按下列要求画出图形.(1)连接BD ;(2)画直线AC 交BD 于点M ;(3)过点A 作线段AP BD ⊥于点P ;(4)请在直线AC 上确定一点N ,使B ,E 两点到点N 的距离之和最小(保留作图痕迹).22.如图,直线AB ,CD 相交于点O ,OF CD ⊥,OE 平分BOC ∠.(1)若65BOE ∠=︒,求DOE ∠的度数;(2)若:2:3BOD BOE ∠∠=,求AOF ∠的度数.23.如图,直线AB 和直线BC 相交于点B ,连接AC ,点,,D E H 分别在AB 、AC 、BC 上,连接DE 、DH ,F 是DH 上一点,已知13180︒∠+∠=(1)求证:CEF EAD ∠=∠;(2)若DH 平分BDE ∠,2α∠=∠,求3∠的度数.(用α表示)24.如图,已知∠1=∠2,∠A =29°,求∠C 的度数.25.如图所示,直线AB 、CD 相交于点O ,OE 是∠BOD 的平分线,∠AOE =140°.猜想与说理:(1)图中与∠COE 互补的角是 .(2)因为∠AOD +∠AOC =180°,∠BOC +∠AOC =180°,所以根据 ,可以得到∠AOD =∠BOC .探究与计算:(3)请你求出∠AOC 的度数.联想与拓展:(4)若以点O 为观测中心,OB 为正东方向,则射线OC 的方向是 . 26.小红同学在做作业时,遇到这样一道几何题:已知:AB ∥CD ∥EF ,∠A =110°,∠ACE =100°,过点E 作EH ⊥EF,垂足为E ,交CD 于H 点.(1)依据题意,补全图形;(2)求∠CEH 的度数.小明想了许久对于求∠CEH的度数没有思路,就去请教好朋友小丽,小丽给了他如图2所示的提示:请问小丽的提示中理由①是;提示中②是:度;提示中③是:度;提示中④是:,理由⑤是.提示中⑥是度;【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据余角和补角的概念判断.【详解】解:A、锐角的补角一定是钝角,本选项说法正确;B、一个角的补角一定大于这个角,本选项说法错误,例如:120°的补角是60°,而60°<120°;C、锐角和钝角一定互补,本选项说法错误,例如20°+120°=140°,20°与120°不互补;D、两个锐角一定互为余角,本选项说法错误,30°与30°不是互为余角;故选:A.【点睛】此题考查余角和补角的概念,熟记概念是解题的关键.2.A解析:A【分析】设这个角的度数是x°,根据题意得出方程2901805x x -=-(),求出方程的解即可.【详解】 解:设这个角的度数是x°,则2901805x x -=-(),解得:x=30,即这个角的度数是30°,故选A .【点睛】本题考查了余角和补角,注意:∠A 的余角是90°-∠A ,∠A 的补角是180°-∠A . 3.C解析:C【分析】根据方向角的表示方法,可得答案.【详解】解:设此船位于海面上的C 处,灯塔位于D 处,射线CA 、DB 的方向分别为正北方向与正南方向,如图所示.∵从船上看灯塔位于北偏东30°,∴∠ACD=30°.又∵AC ∥BD ,∴∠CDB=∠ACD=30°.即从灯塔看船位于灯塔的南偏西30°.故选:C .【点睛】本题考查了方向角,理解题意画出图形是解题的关键.4.D解析:D【分析】过点E 作//EF AB ,先根据平行线的判定可得//EF CD ,再根据平行线的性质分别可得AEF ∠和CEF ∠的度数,然后根据角的和差即可得.【详解】如图,过点E 作//EF AB ,∠=︒,BAE120∴∠=︒-∠=︒,18060AEF BAEAB CD,又//∴,EF CD//∴=∠=CEF∠︒,DCE40∴∠=∠+∠=︒+︒=︒,AEC AEF CEF6040100故选:D.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题关键.5.C解析:C【分析】根据两条直线有一个交点的直线是相交线,没有交点的直线是平行线,可得答案.【详解】在同一平面内,两条直线有一个交点,两条直线相交;在同一平面内,两条直线没有交点,两条直线平行,故C正确;故选:C.【点睛】本题主要考查了同一平面内,两条直线的位置关系,注意垂直是相交的一种特殊情况,不能单独作为一类.6.B解析:B【分析】根据绝对值的性质,科学记数法与近似数,两点之间的距离,线段的中点的定义,平行线的定义对各小题分析判断即可得解.【详解】解:①绝对值等于本身的数是非负数,故①错误;②将数60340精确到千位是6.0×104,故②正确;③连接两点的线段的长度就是两点间的距离,故③正确;④当点A、B、C不共线时,AC=BC,则点C也不是线段AB的中点,故④错误;⑤不相交的两条直线如果不在同一平面,它们不是平行线,故⑤错误;故选:B.【点睛】本题考查绝对值的性质,科学记数法与近似数,两点之间的距离,线段的中点的定义,平行线的定义等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.7.D解析:D【分析】根据平行线的性质可得∠1+∠2+90°=180°,由∠1=62°可求解∠2的度数.【详解】解:∵a∥b,∴∠1+∠2+∠BAC=180°,∵∠BAC=90°,∠1=62°,∴∠2=180°-∠1-∠BAC=180°-62°-90°=28°,故选:D.【点睛】本题主要考查平行线的性质,掌握平行线的性质是解题的关键.8.C解析:C【分析】由AO⊥CO和∠1=20º求得∠BOC=70º,再由邻补角的定义求得∠2的度数.【详解】∵AO⊥CO和∠1=20º,∴∠BOC=90 º-20 º=70º,又∵∠2+∠BOC=180 º(邻补角互补),∴∠2=110º.故选:C.【点睛】考查了邻补角和垂直的定义,解题关键是利用角的度数之间的和差的关系求未知的角的度数.9.B解析:B【分析】根据补角性质,可知∠1的补角是54°,利用平行线中角的性质,可以得知∠CEM=54°,然后利用角的和与差,得知∠1=90°与54°的差.【详解】如图所示:∠AOM=180°-∠1=180°-126°=54°,∵AB∥CD∴∠AOM=∠CEM=54°,∴∠1=90°-∠CEM=90°-54°=36°.故选B.【点睛】考查角度的求解,学生熟练掌握角度的和与差,补角的性质以及平行线中角的性质,本题解题关键是平行线中角的性质.10.D解析:D【分析】如图,根据平行线的性质求出∠3的度数即可解决问题.【详解】如图,∵AB//CD,∴∠3=∠1=50°,∵∠2+∠3=180°-90°=90°,∴∠2=90°-∠3=40°,故选D.【点睛】本题考查了平行线的性质,三角板的性质等知识,解题的关键是灵活运用所学知识解决问题.11.A解析:A【分析】根据线段垂直平分线上的定义,平行公理以及平行线的性质对各选项分析判断后利用排除法求解.【详解】解:A.在同一平面内,若a∥b,b∥c,则a∥c正确,故本选项正确;B.在同一平面内,若a⊥b,b⊥c,则a∥c,故本选项错误;C.在同一平面内,若a∥b,b⊥c,则a⊥c,故本选项错误;D.在同一平面内,若a∥b,b∥c,则a∥c,故本选项错误.故选:A.12.D解析:D【详解】解:∠3与∠4是同旁内角.故选:D二、填空题13.40°【分析】先根据AB∥DE∠B=70°CM平分∠DCB可求出∠BCM及∠BCE 的度数再根据CM⊥CN可求出∠BCN的度数再由∠NCE=∠BCE-∠BCN即可解答【详解】解:∵AB∥DE∠B=80解析:40°【分析】先根据AB∥DE,∠B=70°,CM平分∠DCB可求出∠BCM及∠BCE的度数,再根据CM⊥CN 可求出∠BCN的度数,再由∠NCE=∠BCE-∠BCN即可解答.【详解】解:∵AB∥DE,∠B=80°,∴∠DCB=180°-∠B=180°-80°=100°,∠BCE=∠B=80°,∵CM平分∠DCB,∴∠BCM=12∠DCB=12×100°=50°,∵CM⊥CN,垂足为C,∴∠BCN=90°-∠BCM=90°-50°=40°,∴∠NCE=∠BCE-∠BCN=80°-40°=40°.故答案为:40°.【点睛】此题主要考查平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补,属于基础题,注意细心掌握.14.270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°再结合∠BAC是直角即可得出结果【详解】解:如图所示∵a∥b∴∠1+∠3=180°则∠3=180°-∠1∵b∥c∴∠2+∠4=180°解析:270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC是直角即可得出结果.【详解】解:如图所示,∵a∥b,∴∠1+∠3=180°,则∠3=180°-∠1,∵b∥c∴∠2+∠4=180°,则∠4=180°-∠2,∵∠BAC是直角,∴∠3+∠4=180°-∠1+180°-∠2,∴90°=360°-(∠1+∠2),∴∠1+∠2=270°.故答案为:270°【点睛】本题主要考查的是平行线的性质,掌握平行线的性质是解题的关键.15.60°【分析】过点E作EF∥AB然后根据两直线平行内错角相等求解即可【详解】解:如图过点E作EF∥AB∵AB∥CD∴AB∥EF∥CD∴∠1=∠B=28°∠2=∠D=32°∴∠E=∠1+∠2=28°+ 解析:60°【分析】过点E作EF∥AB,然后根据两直线平行,内错角相等求解即可.【详解】解:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠1=∠B=28°,∠2=∠D=32°,∴∠E=∠1+∠2=28°+32°=60°.故答案为:60°.【点睛】本题考查了平行线的性质,此类题目过拐点作平行线是常用的方法之一,要熟练掌握并灵活运用.16.62°【分析】过B作BF∥CD则BF∥AE依据平行线的性质即可得到∠CBF=39°∠ABF=23°进而得出∠ABC的度数【详解】如图所示过B作BF∥CD则BF∥AE∵点B在点C北偏东39°方向点B在解析:62°【分析】过B作BF∥CD,则BF∥AE,依据平行线的性质即可得到∠CBF=39°,∠ABF=23°,进而得出∠ABC的度数.【详解】如图所示,过B作BF∥CD,则BF∥AE,∵点B在点C北偏东39°方向,点B在点A北偏西23°方向,∴∠BCD=39°,∠BAE=23°,∴∠CBF=39°,∠ABF=23°,∴∠ABC=39°+23°=62°,故答案为62°.【点睛】本题主要考查了平行线的性质以及方向角,解题时注意:方向角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.17.【分析】过B作BF∥l2利用平行线的性质可得∠1=∠FBC然后求出∠FBC 的度数即可【详解】过B作BF∥l2∵l1∥l2∴BF∥l1∥l2∴∠ABF=∠2∠1=∠FBC∵AB⊥l1∴∠2=90°∴∠解析:【分析】过B作BF∥l2,利用平行线的性质可得∠1=∠FBC,然后求出∠FBC的度数即可.【详解】过B作BF∥l2,∵l1∥l2,∴BF∥l1∥l2,∴∠ABF=∠2,∠1=∠FBC,∵AB⊥l1,∴∠2=90°,∴∠ABF=90°,∵∠ABC=125°,∴∠FBC=35°,∴∠1=35°,故答案为:35.【点睛】本题主要考查了平行线的性质,关键是正确作出辅助线,掌握平行线的性质定理.18.25°【分析】根据平行线的性质求出∠AEC即可求出答案【详解】解:如图:∵AB∥CD∠1=20°∴∠1=∠AEC=20°∴∠2=45°-20°=25°故答案为:25°【点睛】本题考查平行线的性质的应解析:25°【分析】根据平行线的性质求出∠AEC,即可求出答案.【详解】解:如图:∵AB∥CD,∠1=20°,∴∠1=∠AEC=20°,∴∠2=45°-20°=25°.故答案为:25°.【点睛】本题考查平行线的性质的应用,能求出∠AEC的度数是解题的关键,注意:两直线平行,内错角相等.19.50°【分析】通过作平行线l利用平行线的性质将角与角间的关系转化为∠1+∠2=∠3+∠4易得∠2的度数【详解】解:如图过点C作直线l使l∥11∥l2则∠1=∠3∠2=∠4∵∠3+∠4=90∠1=40解析:50°【分析】通过作平行线l,利用平行线的性质将角与角间的关系转化为∠1+∠2=∠3+∠4,易得∠2的度数.【详解】解:如图,过点C作直线l,使l∥11∥l2,则∠1=∠3,∠2=∠4.∵∠3+∠4=90,∠1=40°,∴∠2=90°﹣40°=50°.故答案是:50°.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.20.34°【分析】先求出∠AOD的度数再求∠DOE的度数即可【详解】解:∵∠AOC=56°∴∠AOD=180°-56°=124°∵OE⊥AB∴∠AOE=90°∴∠DOE=124°-90°=34°故答案为解析:34°【分析】先求出∠AOD的度数,再求∠DOE的度数即可.【详解】解:∵∠AOC=56°,∴∠AOD=180°-56°=124°,∵OE⊥AB,∴∠AOE=90°,∴∠DOE=124°-90°=34°.故答案为:34°.【点睛】本题考查了邻补角的定义,垂直的定义,以及角的和差计算,熟练掌握邻补角的定义和垂直的定义是解答本题的关键.三、解答题21.(1)作图见解析;(2)作图见解析;(3)作图见解析;(4)作图见解析.【分析】(1)、(2)、(3)利用几何语言画出对应的几何图形;(4)连接BE交AC于N,则点N满足条件.【详解】解:(1)如图,线段BD为所作;(2)如图,点M为所作;(3)如图,AP为所作;(4)如图,点N为所作.【点睛】本题考查按要求画直线、射线、线段,画垂线,两点之间线段最短.掌握直线、射线、线段的定义及画法是解题关键.(4)中需注意,两点之间线段最短.22.(1)115°;(2)45°【分析】(1)根据角平分线的定义求出∠EOC 的度数,根据邻补角的性质求出∠DOE 的度数即可; (2)根据题意设BOD x ∠=°,则32COE BOE x ∠=∠=°,然后根据180COE BOE BOD ∠+∠+∠=︒计算即可得出BOD ∠,从而利用对顶角及余角的概念求解即可.【详解】(1)∵OE 平分BOC ∠,65BOE ∠=︒,∴65EOC BOE ∠=∠=︒,∴18065115DOE ∠=︒-︒=︒.(2)∵:2:3BOD BOE ∠∠=,设BOD x ∠=°,则32COE BOE x ∠=∠=° , ∵180COE BOE BOD ∠+∠+∠=︒, ∴3318022x x x ++=, ∴45x =. ∵OF CD ⊥,BOD AOC ∠=∠,∴90COF ∠=︒,∴904545AOF ∠=︒-︒=︒.【点睛】本题考查与角平分线相关的计算,以及列一元一次方程求解角度问题,理解角平分线的定义并根据题意运用方程思想求解是解题的关键.23.(1)见解析(2)90°+12α 【分析】(1)根据平行线的判定和性质解答即可;(2)根据平行线的性质解答即可.【详解】解:(1)∵∠3+∠DFE=180°,∠1+∠3=180°∴∠DFE=∠1,∴AB∥EF,∴∠CEF=∠EAD;(2)∵AB∥EF,∴∠2+∠BDE=180°又∵∠2=α∴∠BDE=180°−α又∵DH平分∠BDE∴∠1=12∠BDE=12(180°−α)∴∠3=180°− 12(180°−α)=90°+12α.【点睛】本题考查了角平分线定义,平行线的性质和判定等知识点,注意:①内错角相等,两直线平行,②两直线平行,同旁内角互补.24.∠C的度数是151°.【分析】根据对顶角相等,等量代换得∠1=∠3,根据同位角相等判断两直线平行,再由两直线平行得同旁内角互补则可解答.【详解】解:如图,∵∠1=∠2又∵∠2=∠3∴∠1=∠3∴AB∥CD∴∠A+∠C=180°,又∵∠A=29°∴∠C=151°答:∠C的度数是151°.【点睛】本题考查了对顶角的性质、平行线的性质和判定,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.25.(1)∠BOE 和∠DOE ;(2)同角的补角相等;(3)∠AOC=80°;(4)北偏西10°【分析】(1)根据互为补角的两角之和为180°可得出与∠COE互补的角;(2)根据同角(或等角)的补角相等即可解答;(3)先求出∠BOE,继而根据角平分线的性质得出∠DOB,再由对顶角相等可得出∠AOC 的度数;(4)根据补角的定义求得∠BOC的值,然后根据直角是90°和方向角的定义即可解答.【详解】解:(1)因为OE是∠BOD的平分线,∠COE+∠DOE=180°,所以∠BOE =∠DOE,故与∠COE互补的角有:∠BOE 和∠DOE ;(2)因为同角(或等角)的补角相等,所以∠AOD+∠AOC=180°,∠BOC+∠AOC=180°时,∠AOD=∠BOC.即答案为:同角的补角相等;(3)由题意得,∠BOE=180°-∠AOE=40°,因为OE是∠BOD的平分线,所以∠BOD=2∠BOE=80°所以∠AOC=80°;(4)如图,MN为南北方向,由(3)得∠AOC=80°,所以∠BOC=180°-∠AOC=180°-80°=100°,又因为∠BOM=90°,所以∠MOC=∠BOC-∠BOM=100°- 90°=10°,故射线OC的方向是北偏西10°.【点睛】本题考查补角和方位角的知识,结合图形进行考查比较新颖,注意掌握互为补角的两角之和为180°,另外本题还用到对顶角相等及角平分线的性质.26.(1)补图见解析;(2)两直线平行,同旁内角互补,70,30,∠CEF,两直线平行,内错角相等,60.【分析】(1)按照题中要求作出线段EH⊥EF于点E,交CD于点H即可;(2)按照“小丽所给提示”的思路结合题中的已知条件根据“平行线的性质、垂直的定义”进行分析解答即可.【详解】解:(1)依据题意补全图形如下图所示:;(2)根据题意可得:①:两直线平行,同旁内角互补;②:70°;③:30°;④:∠CEF;⑤:两直线平行,内错角相等;⑥:60°故答案为:两直线平行,同旁内角互补,70,30,∠CEF,两直线平行,内错角相等,60.【点睛】“读懂小丽的思路过程,熟悉平行线的性质”是解答本题的关键.。

(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》检测卷(答案解析)(2)

(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》检测卷(答案解析)(2)

一、选择题1.如图,直线AB ∥CD ,AE ⊥CE ,∠1=125°,则∠C 等于( )A .35°B .45°C .50°D .55° 2.已知A ∠与B 互补,B 与C ∠互余,若120A ∠=︒,则C ∠的度数是( )A .70︒B .60︒C .30D .20︒ 3.如图,//AB CD ,120BAE ∠=︒,40DCE ∠=︒,则AEC ∠=( )A .70︒B .80︒C .90︒D .100︒ 4.如图,直线AB ,CD 被直线EF 所截,与AB ,CD 分别交于点E ,F ,下列描述: ①∠1和∠2互为同位角 ②∠3和∠4互为内错角③∠1=∠4 ④∠4+∠5=180°其中,正确的是( )A .①③B .②④C .②③D .③④ 5.如图,修建一条公路,从王村沿北偏东75︒方向到李村,从李村沿北偏西25︒方向到张村,从张村到杜村的公路平行从王村到李村的公路,则张杜两村公路与李张两村公路方向夹角的度数为( ).A .100︒B .80︒C .75︒D .50︒6.如图,直线12//,,140l l αβ∠=∠∠=︒,则2∠等于( )A .140︒B .130︒C .120︒D .110︒ 7.如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°,则∠2的度数为( )A .55°B .50°C .45°D .40°8.如图,CB 平分∠ACD ,∠2=∠3,若∠4=60°,则∠5的度数是( )A .60°B .30°C .20°D .40°9.如图,已知∠1=∠2,∠3=30°,则∠B 的度数是( )A .20B .30C .40D .6010.如图,AB ∥EF ,∠ABP =14∠ABC ,∠EFP =14∠EFC ,已知∠FCD =60°,则∠P 的度数为( )A .60°B .80°C .90°D .100°11.如图,若//AB CD ,EF CD ⊥,154∠=,则2∠=( )A .36B .46C .54D .126 12.如果A ∠与B 的两边分别平行,A ∠比B 的3倍少36,则A ∠的度数是( ) A .18 B .126 C .18或126D .以上都不对 二、填空题13.如图,已知://AB DE ,80B ∠=︒,CM 平分BCD ∠,CN CM ⊥,则NCE ∠的度数是______.14.一副三角板按图1的形式摆放,把含45°角的三角板固定,含30°角的三角板绕直角顶点逆时针旋转,设旋转的角度为α(0180α︒<<︒).在旋转过程中,当两块三角板有两边平行时,α的度数为______.15.下列说法:①对顶角相等;②两点间线段是两点间距离;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤若AC BC =,则点C 是线段AB 的中点;⑥同角的余角相等正确的有_________.(填序号)16.如图,直线a ∥b ∥c ,直角∠BAC 的顶点A 在直线b 上,两边分别与直线a ,c 相交于点B ,C ,则∠1+∠2的度数是___________.17.在同一平面上有三条互相平行的直线,,a b c ,已知a 与b 的距离为5,cm b 与c 的距离为2cm ,则a 与c 的距离为________.18.如图,已知直线12l l ,130∠=︒,则23∠+∠=_________.19.如图,AB ∥CD ,则∠B+∠D+∠P =_____.20.如图,已知AB//CD ,120AFC ∠=︒,13EAF EAB ∠=∠,13ECF ECD ∠=∠,则AEC ∠=____度.三、解答题21.问题情境:我市某中学班级数学活动小组遇到问题:如图1,AB ∥CD ,3PAB 10︒=∠, 120PCD ︒∠=,求APC ∠度数.经过讨论形成的思路是:如图2,过P 作PE ∥AB ,通过平行线性质,可求得APC ∠度数.(1)按该数学活动小组的思路,请你帮忙求出APC ∠度数;(2)问题迁移:如图3,AD ∥BC ,点P 在A 、B 两点之间运动时, ADP α∠=,BCP β∠=.请你判断 CPD ∠、α、 β之间有何数量关系?并说明理由; (3)拓展应用:如图4,已知两条直线AB ∥CD ,点P 在两平行线之间,且BEP ∠的平分线与 DFP ∠的平分线相交于点Q ,求2P Q ∠+∠的度数.22.如图,找出标注角中的同位角、内错角和同旁内角.23.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD , OF ⊥CD ,若∠BOC 比∠DOE 大75o .求∠AOD 和∠EOF 的度数.24.如图,点D 、E 分别为AB 、AC 上的点,点F 、G 为BC 上的点,连接DE ,连接DG 、EF 交于点H .已知12180∠+∠=︒,3B ∠=∠,若66C ∠=︒,求DEC ∠的度数.请你将下面解答过程填写完整.解:∵12180∠+∠=︒∴//AB ________∴3ADE ∠=∠(________________________)∵3B ∠=∠∴_______B =∠∴//DE BC (____________________________)∴180C DEC ∠+∠=︒∵66C ∠=︒∴114DEC ∠=︒25.补全解答过程:如图,EF ∥AD ,∠1=∠2,若∠BAC =70°,求∠AGD .解:∵EF ∥AD ,(已知)∴∠2= ,(两直线平行,同位角相等).又∵∠1=∠2,(已知)∴∠1=∠3,(等量代换)∴AB ∥ ,( )∴∠AGD +∠BAC =180°.( )∵∠BAC =70°,(已知)∴∠AGD = .26.按要求作图(1)如图,已知线段,a b ,用尺规做一条线段,使它等于+a b (不要求写作法,只保留作图痕迹)(2)已知:∠α,求作∠AOB=∠α(要求:直尺和圆规作图,不写作法,保留作图痕迹)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】过点E 作EF ∥AB ,则EF ∥CD ,利用“两直线平行,内错角相等”可得出∠BAE =∠AEF 及∠C =∠CEF ,结合∠AEF +∠CEF =90°可得出∠BAE +∠C =90°,由邻补角互补可求出∠BAE 的度数,进而可求出∠C 的度数.【详解】解:过点E 作EF ∥AB ,则EF ∥CD ,如图所示.∵EF ∥AB ,∴∠BAE =∠AEF .∵EF ∥CD ,∴∠C =∠CEF .∵AE ⊥CE ,∴∠AEC =90°,即∠AEF +∠CEF =90°,∴∠BAE +∠C =90°.∵∠1=125°,∠1+∠BAE =180°,∴∠BAE =180°﹣125°=55°,∴∠C =90°﹣55°=35°.故选:A .【点睛】本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键.2.C解析:C【分析】先根据互补角的定义可得60B ∠=︒,再根据互余角的定义即可得.【详解】 A ∠与B 互补,且120A ∠=︒,18060B A ∴∠=︒-∠=︒,又B ∠与C ∠互余,9030C B ∴∠=︒-∠=︒,故选:C .【点睛】本题考查了互补角、互余角,熟练掌握互补角与互余角的定义是解题关键.3.D解析:D【分析】过点E 作//EF AB ,先根据平行线的判定可得//EF CD ,再根据平行线的性质分别可得AEF ∠和CEF ∠的度数,然后根据角的和差即可得.【详解】如图,过点E 作//EF AB ,120BAE ∠=︒,18060AEF BAE ∴∠=︒-∠=︒,又//AB CD ,//EF CD ∴,40DCE CEF ∴=∠=∠︒,6040100AEC AEF CEF ∴∠=∠+∠=︒+︒=︒,故选:D .【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题关键. 4.C解析:C【分析】根据同位角,内错角,同旁内角的定义判断即可.【详解】①∠1和∠2互为邻补角,故错误;②∠3和∠4互为内错角,故正确;③∠1=∠4,故正确;④∵AB 不平行于CD ,∴∠4+∠5≠180°故错误,故选:C.【点睛】本题考查了同位角,内错角,同旁内角的定义,熟记定义是解题的关键.5.B解析:B【分析】根据平行线同位角相等和同旁内角互补的性质,即可完成求解.【详解】∵王村沿北偏东75︒方向到李村∴175∠=∵从张村到杜村的公路平行从王村到李村的公路,且从李村沿北偏西25︒方向到张村∴()()∠=-∠+=-+=2180125180752580∴张杜两村公路与李张两村公路方向夹角的度数为80︒故选:B.【点睛】本题考查了方位角、平行线的知识;解题的关键是熟练掌握平行线同位角相等和同旁内角互补的性质,从而完成求解.6.A解析:A【分析】作出如下图所示的辅助线,然后再利用平行线的性质即可求解.【详解】解:如图所示,作直线m∥n∥l1∥l2,此时有∠3=∠1=40°,∠6=180°-∠2,∠4=∠5,又∠α=∠3+∠4,∠β=∠5+∠6=∠5+(180°-∠2),且∠α=∠β,∴∠3+∠4=∠5+(180°-∠2),由于∠4=∠5,∴∠3=180°-∠2,代入数据:40°=180°-∠2,∴∠2=140°,故选:A.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.熟记性质并作辅助线是解题的关键.7.D解析:D【分析】如图,根据平行线的性质求出∠3的度数即可解决问题.【详解】如图,∵AB//CD,∴∠3=∠1=50°,∵∠2+∠3=180°-90°=90°,∴∠2=90°-∠3=40°,故选D.【点睛】本题考查了平行线的性质,三角板的性质等知识,解题的关键是灵活运用所学知识解决问题.8.B解析:B【分析】证出∠AB∥CD,由平行线的性质得∠4=∠ACD=∠1+∠2=60°,∠5=∠2,由角平分线定义得∠1=∠2=30°,即可得出答案.【详解】∵∠2=∠3,∴AB∥CD,∴∠4=∠ACD=∠1+∠2=60°,∠5=∠2,∵CB平分∠ACD,∴∠1=∠2=30°,∴∠5=∠2=30°;故选:B.【点睛】本题考查了平行线的判定与性质以及角平分线定义;熟练掌握平行线的判定与性质是解题的关键,属于中考常考题型.9.B解析:B【分析】根据内错角相等,两直线平行,得AB∥CE,再根据性质得∠B=∠3.【详解】因为∠1=∠2,所以AB∥CE所以∠B=∠3=30故选B【点睛】熟练运用平行线的判定和性质.10.A解析:A【分析】过C作CQ∥AB,利用平行线的判定与性质进行解答即可.【详解】解:过C作CQ∥AB,∵AB∥EF,∴AB∥EF∥CQ,∴∠ABC+∠BCQ=180°,∠EFC+∠FCQ=180°,∴∠ABC+∠BCF+∠EFC=360°,∵∠FCD=60°,∴∠BCF=120°,∴∠ABC+∠EFC=360°﹣120°=240°,∵∠ABP=14∠ABC,∠EFP=14∠EFC,∴∠ABP+∠PFE=60°,∴∠P=60°.故选:A.【点睛】此题考查平行线的性质,关键是利用平行线的判定与性质进行解答.11.A解析:A【分析】根据平行线的性质可求解∠GFD的度数,再结合垂线的定义可求解.【详解】解:∵AB//CD,∠1=54°,∴∠GFD=∠1=54°,∵EF⊥CD,∴∠EFD=90°,即∠2+∠GFD=90°,∴∠2=36°.故选:A.【点睛】本题主要考查平行线的性质,垂线的定义,掌握平行线的性质是解题的关键.12.C解析:C【分析】由∠A与∠B的两边分别平行,即可得∠A与∠B相等或互补,然后分两种情况,分别从∠A与∠B相等或互补去分析,即可求得∠A的度数.【详解】解:∵∠A与∠B的两边分别平行,∴∠A与∠B相等或互补.分两种情况:①如图1,当∠A+∠B=180°时,∠A=3∠B-36°,解得:∠A=126°;②如图2,当∠A=∠B,∠A=3∠B-36°,解得:∠A=18°.所以∠A=18°或126°.故选:C.【点睛】此题考查的是平行线的性质,如果两角的两边分别平行,则这两个角相等或互补.此题还考查了方程组的解法.解题要注意列出准确的方程组.二、填空题13.40°【分析】先根据AB∥DE∠B=70°CM平分∠DCB可求出∠BCM及∠BCE 的度数再根据CM⊥CN可求出∠BCN的度数再由∠NCE=∠BCE-∠BCN即可解答【详解】解:∵AB∥DE∠B=80解析:40°【分析】先根据AB∥DE,∠B=70°,CM平分∠DCB可求出∠BCM及∠BCE的度数,再根据CM⊥CN 可求出∠BCN的度数,再由∠NCE=∠BCE-∠BCN即可解答.【详解】解:∵AB∥DE,∠B=80°,∴∠DCB=180°-∠B=180°-80°=100°,∠BCE=∠B=80°,∵CM平分∠DCB,∴∠BCM=12∠DCB=12×100°=50°,∵CM⊥CN,垂足为C,∴∠BCN=90°-∠BCM=90°-50°=40°,∴∠NCE=∠BCE-∠BCN=80°-40°=40°.故答案为:40°.【点睛】此题主要考查平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补,属于基础题,注意细心掌握.14.30°或45°或120°或135°或165°【分析】分五种情况进行讨论分别依据平行线的性质进行计算即可得到∠α的度数【详解】解:①当CD∥OB时∠α=∠D=30°②当OC∥AB时∠OEB=∠COD=解析:30°或45°或120°或135°或165°【分析】分五种情况进行讨论,分别依据平行线的性质进行计算即可得到∠α的度数.【详解】解:①当CD∥OB时,∠α=∠D=30°②当OC∥AB时,∠OEB=∠COD=90°,此时∠α=90°-∠B=90°-45°=45°③当DC∥OA时,∠DOA=∠D=30°,此时∠α=∠AOB+∠AOD=90°+30°=120°④当OD∥AB时,∠AOD=∠A=45°,此时∠α=∠A+∠AOD=90°+45°=135°⑤当CD∥AB时,延长BO交CD于点E,则∠CEO=∠B=45°∴∠DEO=180°-∠CEO=135°∴∠DOE=180°-∠DEO-∠D=15°此时∠α=180°-∠DOE=180°-15°=165°综上,在旋转过程中,当两块三角板有两边平行时, 的度数为30°或45°或120°或135°或165°【点睛】本题主要考查了平行线的性质的运用.在旋转过程中,注意分情况讨论是解题关键.15.①④⑥【分析】利用对顶角的性质判断①利用两点距离定义判定②利用平行公理判定③利用垂线公里判定④利用线段中点定义判定⑤利用余角的性质判定⑥【详解】①对顶角相等正确;②由两点间线段的长度是两点间距离所以解析:①④⑥【分析】利用对顶角的性质判断①,利用两点距离定义判定②,利用平行公理判定③,利用垂线公里判定④,利用线段中点定义判定⑤,利用余角的性质判定⑥.【详解】①对顶角相等正确;②由两点间线段的长度是两点间距离,所以两点间线段是两点间距离不正确;③由过直线外一点有且只有一条直线与已知直线平行,所以过一点有且只有一条直线与已知直线平行不正确;④过一点有且只有一条直线与已知直线垂直正确;=,点C在AB上,则点C是线段AB的中点,所以若⑤由线段中点的性质,若AC BC=,则点C是线段AB的中点不正确;AC BC⑥同角的余角相等正确;正确的有①④⑥.故答案为:①④⑥.【点睛】本题考查对顶角性质,两点间的距离,平行公理,垂线公里,线段的中点,余角的性质等问题,掌握对顶角性质,两点间的距离,平行公理,垂线公里,线段的中点,余角的性质是解题关键.16.270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°再结合∠BAC是直角即可得出结果【详解】解:如图所示∵a∥b∴∠1+∠3=180°则∠3=180°-∠1∵b∥c∴∠2+∠4=180°解析:270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC是直角即可得出结果.【详解】解:如图所示,∵a∥b,∴∠1+∠3=180°,则∠3=180°-∠1,∵b ∥c∴∠2+∠4=180°,则∠4=180°-∠2,∵∠BAC 是直角,∴∠3+∠4=180°-∠1+180°-∠2,∴90°=360°-(∠1+∠2),∴∠1+∠2=270°.故答案为:270°【点睛】本题主要考查的是平行线的性质,掌握平行线的性质是解题的关键.17.7cm 或3cm 【分析】根据abc 这三条平行直线的位置不同结合两平行线间的距离的定义得出结果【详解】分两种情况:①当直线b 在直线a 与c 之间时如图a 与c 的距离为5+2=7厘米;②当直线c 在直线a 与b 之间解析:7cm 或3cm【分析】根据a 、b 、c 这三条平行直线的位置不同,结合两平行线间的距离的定义,得出结果.【详解】分两种情况:①当直线b 在直线a 与c 之间时,如图.a 与c 的距离为5+2=7厘米;②当直线c 在直线a 与b 之间时,如图.a 与c 的距离为5-2=3厘米.故答案为:7cm 或3cm .【点睛】本题考查了两平行线间的距离的求法.得出a 、b 、c 这三条平行直线的不同位置关系是解决此题的关键.18.【分析】过∠2的顶点作AB ∥可由得出AB ∥根据平行线的性质即可解答【详解】如图;过∠2的顶点作AB ∥∴∠DAB=又∵∴AB ∥∴∠BAC+∠3=180°∴∠2+∠3=∠DAB+∠BAC+∠3=故答案为解析:210 .【分析】过∠2的顶点作AB ∥1l ,可由12l l 得出AB ∥2l ,根据平行线的性质即可解答.【详解】如图; 过∠2的顶点作AB∥1l∠=︒∴∠DAB=130l l又∵12∴AB∥l2∴∠BAC+∠3=180°∴∠2+∠3=∠DAB+∠BAC+∠3=210︒故答案为210︒【点睛】本题考查的是平行线的性质及平行公理的推论,掌握平行线的性质定理及平行公理的推论是解答关键.19.360°【分析】过P作PF∥AB利用平行线的性质可得∠B+∠2=180°∠D+∠1=180°进而可得答案【详解】过P作PF∥AB如下图所示:∵AB∥CD∴AB∥CD∥FP∴∠B+∠2=180°∠D+解析:360°【分析】过P作PF∥AB,利用平行线的性质可得∠B+∠2=180°,∠D+∠1=180°,进而可得答案.【详解】过P作PF∥AB,如下图所示:∵AB∥CD,∴AB∥CD∥FP,∴∠B+∠2=180°,∠D+∠1=180°,∴∠B+∠2+∠1+∠D=360°,∴∠B+∠D+∠BPD=360°.故答案为:360°.【点睛】本题考查平行的性质,解题关键在于两直线平行,同旁内角互补.20.90【详解】解:如图过点E 作EH ∥AB 过点F 作FG ∥AB ∵AB ∥CD ∴AB ∥FG ∥CDAB ∥EH ∥CD ∴又∵∴∴∴即:∴故答案为:90【点睛】本题考查了平行线的性质平行公理作辅助线构造内错角是解题的 解析:90【详解】解:如图,过点E 作EH ∥AB ,过点F 作FG ∥AB ,∵AB ∥CD ,∴AB ∥FG ∥CD ,AB ∥EH ∥CD ,∴AFG FAB ,GFC FCD , AFG FAB ,GFC FCD ,又∵13EAF EAB ∠=∠,13ECF ECD ∠=∠, ∴3EAB EAF ,3ECD ECF ,∴4FAB EAF ,4ECD ECF , ∴44120AFC AFG GFC FAB ECD EAF ECF , 即:30EAF ECF , ∴33390AEC EAB ECD EAF ECF EAF ECF . 故答案为:90.【点睛】本题考查了平行线的性质,平行公理,作辅助线构造内错角是解题的关键.三、解答题21.(1)110°;(2)∠CPD =α+β,见解析;(3)360°【分析】(1)过P 作PE ∥AB ,构造同旁内角,通过平行线性质,可得∠APC=50°+60°=110°. (2)过P 作PE ∥AD 交CD 于E ,推出AD ∥PE ∥BC ,根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案;(3)由(1)可得3P 60BEP DFP +∠+∠=∠︒,()22P Q P BEQ DFQ ∠+∠=∠+∠+∠再进行代入求解即可得出结论.【详解】解:(1)如图2,过点P 作PE ∥AB ,∵AB ∥CD ,∴PE ∥AB ∥CD .∴∠A +∠APE =180°,∠C +∠CPE =180°∵∠PAB =130°,∠PCD =120°,∴∠APE =50°,∠CPE =60°,∴∠APC =∠APE +∠CPE =110°.(2)∠CPD =α+β,理由如下:如图3,过P 作PE ∥AD 交CD 于E .∵AD ∥BC ,∴AD ∥PE ∥BC ,∴∠DPE =α,∠CPE =β,∴∠CPD =∠DPE +∠CPE =α+β.(3)由(1)可得,3P 60BEP DFP +∠+∠=∠︒又QE 平分PEB ∠,QF 平分PFQ ∠∴2,2BEP BEQ DFP DFQ ∠=∠∠=∠∴()22P Q P BEQ DFQ ∠+∠=∠+∠+∠22P BEQ DFQ =∠+∠+∠360P BEP DFP ︒=∠+∠+∠=【点睛】本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.22.同位角有∠4与∠8、∠4与∠7、∠2与∠3;内错角有∠1与∠3、∠7与∠6、∠6与∠8;同旁内角有∠1与∠4、∠3与∠8,∠1与∠7.【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角;内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角;同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角,结合图形进行分析即可.【详解】同位角有∠4与∠8、∠4与∠7、∠2与∠3;内错角有∠1与∠3、∠7与∠6、∠6与∠8;同旁内角有∠1与∠4、∠3与∠8,∠1与∠7.【点睛】本题主要考查了三线八角,解题关键是掌握同位角的边构成“F ”形,内错角的边构成“Z ”形,同旁内角的边构成“U ”形.23.∠AOD=110°,∠EOF=55°【分析】设∠BOD=2x ,利用角平分线的∠BOE=x ;由∠BOC 比∠DOE 大75°可求∠BOC=∠DOE+75°=x+75°.根据题意列出方程x+75°+2x =180°,得出x=35°,求出∠BOD=70°,即可求出∠AOD=180°-70°=110°,由FO ⊥CD ,可求∠BOF=90°-∠BOD=20°,可求∠EOF=∠FOB+∠BOE=55°.【详解】解:设∠BOD=2x ,∵OE 平分∠BOD ,∴∠DOE=∠EOB=1BOD 2∠=x , ∵∠BOC=∠DOE+75°=x+75°.∴x+75°+2x =180°,解得:x=35°,∴∠BOD=2×35°=70°, ∴∠AOD=180°-∠BOD=180°-70°=110°,∵FO ⊥CD ,∴∠BOF=90°-∠BOD=90°-70°=20°,∴∠EOF=∠FOB+∠BOE=20°+35°=55°.【点睛】本题考查了角平分线、垂线、邻补角,一元一次方程等知识;弄清各个角之间的数量关系是解题的关键.24.见解析.【分析】先根据平行线的判定可得//AB EF ,再根据平行线的性质可得3ADE ∠=∠,从而可得ADE B ∠=∠,然后根据平行线的判定与性质可得.【详解】解:∵12180∠+∠=︒,∴//AB EF ,∴3ADE ∠=∠(两直线平行,内错角相等),∵3B ∠=∠,∴ADE B ∠=∠,∴//DE BC (同位角相等,两直线平行),∴180C DEC ∠+∠=︒,∵66C ∠=︒,∴114DEC ∠=︒.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题关键. 25.∠3;DG ;内错角相等,两直线平行;两直线平行,同旁内角互补;110°【分析】由EF ∥AD ,可得∠2=∠3,由等量代换可得∠1=∠3,可得AB ∥DG ,根据平行线的性质可得∠BAC+∠AGD=180°,即可求解.【详解】∵EF ∥AD (已知),∴∠2=∠3.(两直线平行,同位角相等)又∵∠1=∠2,(已知)∴∠1=∠3,(等量代换)∴AB ∥DG .(内错角相等,两直线平行)∴∠BAC+∠AGD=180°.(两直线平行,同旁内角互补)又∵∠BAC=70°,(已知)∴∠AGD=110°.故答案为:∠3;DG ;内错角相等,两直线平行;两直线平行,同旁内角互补;110°.【点睛】本题主要考查了平行线的判定与性质,理解平行线的判定与性质进行证明是解此题的关键.26.(1)作图见解析;(2)作图见解析.【分析】(1)根据题意,作一条长射线,在射线上连续截取a 和b 即可;(2)作射线OA ,通过截取角度即可得解.【详解】(1)作射线CF ,在射线上顺次截取CD=a ,DE=b ,如下图所示,线段CE 即为所求:(2)首先作射线OA ,如下图所示,∠AOB 即为所求:【点睛】本题主要考查了尺规作图,属于基础题,熟练掌握尺规作图的相关方法是解决本题的关键.。

2009-2010学年度七年级下册《相交线与平行线》检测题

2009-2010学年度七年级下册《相交线与平行线》检测题

2009~2010学年度七年级数学下册 《相交线与平行线》检测题(二)本试卷满分120分 时间:100分钟一 填空(6×4=24分)1,两个邻补角的平分线,一对对顶角的平分线2,如图1 A,D 是直线L 1上两点,B,C 是直线 L 2上两点,且AB ⊥BC,CD ⊥AD,点A 到直线L 2的距 离是 ,点A 与点B 的距离是。

3,已知点P(2m ﹢3,3m﹣1)在第一,三象限坐标轴夹角平分线上,则m= .4,在平面直角坐标系中,点M 在y 轴上,且到原点的距离为3个单位长度,则点M 坐标 ,过点N(2,-4)且平行x 轴的直线与y 轴交点坐标 .5,一条公路两次转弯后和原来方向相反,如果第一次拐角是360,第二次拐角是 度,依据是 。

6,如图2,AB ∥EF,则∠1`等于 . 二 选择(10×4=40分)7,如果两个角的两边分别平行,而其中的一个角比另一个角的4倍少300,则这两个角是( ) A 420,1380B 100, 100C 420,1380或100,100D 以上都不对 8,如图(3)同位角共有( ) A 4对 B 8对 C 12对 D 16对9,如图(4)一个矩形的两边分别是8 ,4,建立如图 所示平面直角坐标系,则不在矩形上的点是( ) A (0,4) B (4,8) C (8,4) D (8,0) 10,若(a ﹢2)2﹢∣b ﹣3∣=0,则点M(a,b)在( )图1图2DEACxA 第一象限B 第二象限C 第三象限D 第四象限11,在直角坐标系中,点(1,-3)先向右平移3个单位长度,再向上平移4个单位长度后点的坐标( ) A (-2,-3) B (4,1) C (4,-7) D (5,0) 12,如图(5)下列条件①∠1=∠3 ②∠2=∠3 ③∠4=∠5 ④∠2﹢∠4=1800中能判断直线L 1∥L 2的有( ) A 1个 B 2个 C 3个 D 4个 13,点A(m,n)满足mn=0,则点A 在 ( ) 上.A 原点B 坐标轴C x 轴D 第四象限 14,下列说法中正确的是( ) A 过点P 画线段AB 的垂线B P 点是直线AB 外一点,Q 是直线上一点,连接PQ,使PQ ⊥ABC 过一点有且只有一条直线垂直于已知直线D 过一点有且只有一条直线平行于已知直线 15,如图(6)∠1,∠2,∠3从小到大的顺序为( ) A ∠1﹤∠2﹤∠3B ∠2﹤∠1﹤∠3C ∠3﹤∠2﹤∠1D ∠2﹤∠3﹤∠1 16,下列命题错误的是( ) A 同位角不一定相等 B 内错角都相等C 同旁内角可能相等D 同旁内角相等则两直线平行 三 解答题(7×8=56)17,如图(7)点P 是∠ABC 内一点(1) 画图:①过点P 作BC 的垂线,D 是垂足②过点P 作BC 的平行线交AB 于E , 过点P 作AB 的平行线交BC 于F.(2)∠EPF 等于∠B 吗? 为什么?18,如图(8)已知⊿ABC ,将⊿ABC 沿北偏东800方向平移3cm ,画出平移后的图形 ⊿A ˊB ˊC ˊ.图5l 2l 154321图6600235001图7CABy19,如图(9)直线AB,CD 相交于点O ,OE 平分∠BOD,OE ⊥OF, ∠DOF=700,求∠AOC 的度数 20、如图(10)方格中有一条美丽可爱的小鱼(1)若方格的边长为1 则小鱼的面积为(2) 画出小鱼向左平移3格后的图形(不要求步骤和过程)。

七年级数学下册_相交线与平行线测试题及答案(2),推荐文档

七年级数学下册_相交线与平行线测试题及答案(2),推荐文档

一、填空题相交线与平行线测试题1. 一个角的余角是30º,则这个角的补角是.2.一个角与它的补角之差是20º,则这个角的大小是.3. 时钟指向3 时30 分时,这时时针与分针所成的锐角是.4. 如图②,∠1 = 82º,∠2 = 98º,∠3 = 80º,则∠4 =度.5. 如图➂,直线AB,CD,EF 相交于点O,AB⊥CD,OG 平分∠AOE,∠FOD = 28º,则∠BOE =度,∠AOG =度.6. 如图➃,AB∥CD,∠BAE = 120º,∠DCE = 30º,则∠AEC =度.7. 把一张长方形纸条按图⑤中,那样折叠后,若得到∠AOB′= 70º,则∠OGC = .8. 如图➆,正方形ABCD 中,M 在DC 上,且BM = 10,N 是AC 上一动点,则DN+ MN 的最小值为.9. 如图所示,当半径为30cm 的转动轮转过的角度为120 时,则传送带上的物体A 平移的距离为cm 。

10. 如图所示,在四边形ABCD 中,AD∥BC,BC>AD,∠B 与∠C 互余,将AB,CD 分别平移到图中EF 和EG 的位置,则△EFG 为三角形,若AD=2cm,BC=8cm,则FG = 。

11. 如图9,如果∠1=40°,∠2=100°,那么∠3 的同位角等于,∠3 的内错角等于,∠3 的同旁内角等于.12. 如图10,在△ABC 中,已知∠C=90°,AC=60 cm,AB=100 cm,a、b、c…是在△ABC 内部的矩形,它们的一个顶点在AB 上,一组对边分别在AC 上或与AC 平行,另一组对边分别在BC 上或与BC 平行. 若各矩形在AC 上的边长相等,矩形a 的一边长是72 cm,则这样的矩形a、b、c…的个数是_.A E DB F G CAB二、选择题1. 下列正确说法的个数是( ) ①同位角相等 ②对顶角相等 ➂等角的补角相等➃两直线平行,同旁内角相等A . 1, B. 2, C. 3,D.42. 下列说法正确的是( )A. 两点之间,直线最短;B. 过一点有一条直线平行于已知直线;C. 和已知直线垂直的直线有且只有一条;D. 在平面内过一点有且只有一条直线垂直于已知直线.3. 下列图中∠1 和∠2 是同位角的是( )A. ⑴、⑵、⑶,B. ⑵、⑶、⑷,C. ⑶、⑷、⑸,D. ⑴、⑵、⑸4. 如果一个角的补角是 150°,那么这个角的余角的度数是 ( )A.30°B.60°C.90°D.120° 5. 下列语句中,是对顶角的语句为 ( )A.有公共顶点并且相等的两个角B.两条直线相交,有公共顶点的两个角C.顶点相对的两个角D.两条直线相交,有公共顶点没有公共边的两个角 6. 下列命题正确的是 ( ) A.内错角相等B. 相等的角是对顶角C. 三条直线相交 ,必产生同位角、内错角、同旁内角D. 同位角相等,两直线平行7. 两平行直线被第三条直线所截,同旁内角的平分线 () A. 互相重合B.互相平行C.互相垂直D.无法确定8. 在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

(典型题)初中数学七年级数学下册第二单元《相交线与平行线》检测题(包含答案解析)

(典型题)初中数学七年级数学下册第二单元《相交线与平行线》检测题(包含答案解析)

一、选择题1.如图,AD BC ⊥,ED AB ⊥,表示点D 到直线AB 距离的是线段( )的长度A .DB B .DEC .DAD .AE2.已知一个角是这个角的余角的13,则这个角的度数是( ). A .45︒B .60︒C .67.5︒D .22.5︒ 3.一艘船停留在海面上,如果从船上看灯塔位于北偏东30°,那么从灯塔看船上位于灯塔的( )A .北偏东30°B .北偏东60°C .南偏西30°D .南偏西60° 4.我们利用尺规作图可以作一个角()''A O B ∠等于已知角()AOB ∠,如下所示:(1)作射线OA ;(2)以O 为圆心,任意长为半径作弧,交OA 于C ,交OB 于D ;(3)以O '为圆心,OC 为半径作弧,交OA '于'C ;(4)以C '为圆心,OC 为半径作弧,交前面的弧于D ;(5)连接'O D '作射线,O B ''则A O B '''∠就是所求作的角.以上作法中,错误的一步是( )A .()2B .()3C .()4D .()55.如图,直线AB ,CD 被直线EF 所截,与AB ,CD 分别交于点E ,F ,下列描述: ①∠1和∠2互为同位角 ②∠3和∠4互为内错角③∠1=∠4 ④∠4+∠5=180°其中,正确的是( )A .①③B .②④C .②③D .③④6.把一把直尺和一块三角板ABC 含30度,60度,按如图所示摆放,直尺一边与三角板的两直角边分别交于点D 和E ,另一边与三角板的两直角边分别交于点F 和A ,∠CED=50°,则∠CFA 的大小为( )A .40︒B .50︒C .60︒D .70︒7.已知点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,PA =4 cm ,PB =5 cm ,PC =2 cm ,则点P 到直线m 的距离为( )A .4 cmB .5 cmC .小于2 cmD .不大于2 cm 8.一辆行驶中的汽车经过两次拐弯后,仍向原方向行驶,则两次拐弯的角度可能是( ) A .先右转30,后左转60︒B .先右转30后左转60︒C .先右转30后左转150︒D .先右转30,后左转309.如图,CB 平分∠ACD ,∠2=∠3,若∠4=60°,则∠5的度数是( )A .60°B .30°C .20°D .40°10.如图,直线AD //BC ,AC 平分∠DAB ,若∠1=65°,则∠2的度数为( )A .65°B .50°C .60°D .70°11.如图,直线a b 、被直线c 所截,若//a b ,则下列不正确的是( )A .12∠=∠B .24∠∠=C .14∠=∠D .15∠=∠ 12.如图,将三角板的直角顶点放在直尺的一边上,若∠1=25°, 则∠2的度数为( )A .55°B .60°C .65°D .75°二、填空题13.若3240A '∠=︒,则A ∠的补角的度数为_________.14.一个锐角的补角比它的余角的3倍少40︒,这个锐角的度数是______.15.如图,直线AB ,CD 相交于点O ,AO 平分COE ∠,且50EOD ∠=︒,则DOB ∠的度数是________.16.如图,直线a ,b ,//a b ,点C 在直线b 上,90DCB ∠=︒,若170∠=︒,则2∠的度数为______.17.如图,直线AB 与CD 相交于点O ,OM AB ⊥,若55DOM ∠=︒,则AOC ∠=______°.18.观察下列图形:已知a b ,在第一个图中,可得∠1+∠2=180°,则按照以上规律:112n P P ∠+∠+∠++∠=…_________度.19.如图,ED//AC ,BE//CD ,若C 60∠=︒,则E _______∠=︒20.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使∠COD =90°,当∠AOC =50°时,∠BOD 的度数是____________.三、解答题21.如图,直线CD 经过AOB ∠的顶点O ,OE 平分AOB ∠,OF 平分BOD ∠.(1)若COE ∠=4DOE ∠,求DOE ∠的度数.(2)若BOD ∠=13AOB ∠,且AOB EOF ∠+∠=160︒,求BOD ∠和EOF ∠的度数. 22.如图,已知A 、O 、B 三点在同一条直线上,OD 平分AOC ∠,OE 平分BOC ∠.(1)若54BOC ∠=︒,求DOE ∠的度数;(2)若BOC α∠=,求DOE ∠的度数;(3)请写出图中与∠BOE 互余的角.23.如图,已知点O 在直线AB 上,作射线OC ,点D 在平面内,BOD ∠与AOC ∠互余.(1)若:4:5AOC BOD ∠∠=,则BOD ∠=______________;(2)若()045AOC αα∠=︒<︒,ON 平分COD ∠、补全图形,求出AON ∠的值(用含α的式子表示).24.如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,OF 平分COE ∠,2AOD BOD =∠∠.(1)求DOE ∠的度数;(2)求BOF ∠的度数.25.小红同学在做作业时,遇到这样一道几何题:已知:AB ∥CD ∥EF ,∠A =110°,∠ACE =100°,过点E 作EH ⊥EF,垂足为E ,交CD 于H 点.(1)依据题意,补全图形;(2)求∠CEH 的度数.小明想了许久对于求∠CEH 的度数没有思路,就去请教好朋友小丽,小丽给了他如图2所示的提示:请问小丽的提示中理由①是 ; 提示中②是: 度;提示中③是: 度;提示中④是: ,理由⑤是 .提示中⑥是 度;26.如图,已知直线AB 和CD 相交于O 点,射线OE AB ⊥于O ,射线OF CD ⊥于O ,且20BOF ∠=︒.求EOD ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据从直线外一点到这直线的垂线段的长度叫做点到直线的距离解答.【详解】解:∵ED ⊥AB ,∴点D 到直线AB 距离的是线段DE 的长度.故选:B .【点睛】本题考查了点到直线的距离的定义,是基础题,熟记概念并准确识图是解题的关键. 2.D解析:D【分析】设这个角的度数为x ,则它的余角为90°-x ,再根据题意列出方程,求出x 的值即可;【详解】解:设这个角的度数为x ,则它的余角为90°-x ,依题意得:()1903x x =︒- , 解得:x=22.5,故选:D .【点睛】 本题考查的是余角的定义,能根据题意列出关于x 的方程是解题的关键.3.C解析:C【分析】根据方向角的表示方法,可得答案.【详解】解:设此船位于海面上的C 处,灯塔位于D 处,射线CA 、DB 的方向分别为正北方向与正南方向,如图所示.∵从船上看灯塔位于北偏东30°,∴∠ACD=30°.又∵AC ∥BD ,∴∠CDB=∠ACD=30°.即从灯塔看船位于灯塔的南偏西30°.故选:C .【点睛】本题考查了方向角,理解题意画出图形是解题的关键.4.C解析:C【分析】根据作一个角等于已知角的方法解决问题即可.【详解】解:(4)错误.应该是以C'为圆心,CD 为半径作弧,交前面的弧于D';故选:C .【点睛】本题考查作图-复杂作图,作一个角等于已知角,解题的关键是熟练掌握五种基本作图,属于中考常考题型.5.C解析:C【分析】根据同位角,内错角,同旁内角的定义判断即可.【详解】①∠1和∠2互为邻补角,故错误;②∠3和∠4互为内错角,故正确;③∠1=∠4,故正确;④∵AB不平行于CD,∴∠4+∠5≠180°故错误,故选:C.【点睛】本题考查了同位角,内错角,同旁内角的定义,熟记定义是解题的关键.6.A解析:A【分析】先根据∠CED=50°,DE∥AF,即可得到∠CAF=50°,即可得出∠CFA的大小.【详解】解:∵DE∥AF,∠CED=50°,∴∠CAF=∠CED=50°,∴∠CFA=90°-50°=40°,故选:A.【点睛】本题主要考查了平行线的性质以及直角三角形的性质的运用,解题解题的关键是掌握平行线的性质:两直线平行,同位角相等.7.D解析:D【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥m时,PC是点P到直线m的距离,即点P到直线m的距离2cm,当PC不垂直直线m时,点P到直线m的距离小于PC的长,即点P到直线m的距离小于2cm,综上所述:点P到直线m的距离不大于2cm,故选D.【点睛】此题考查了点到直线的距离,利用了垂线段最短的性质.8.D解析:D【分析】根据平行线的性质分别判断即可.【详解】解:因为两次拐弯后,行驶的方向与原来的方向相同,所以两边拐弯的方向相反,形成的角是同位角,故选:D.【点睛】本题考查平行线的性质,利用两直线平行,同位角相等是解题的关键.9.B解析:B【分析】证出∠AB∥CD,由平行线的性质得∠4=∠ACD=∠1+∠2=60°,∠5=∠2,由角平分线定义得∠1=∠2=30°,即可得出答案.【详解】∵∠2=∠3,∴AB∥CD,∴∠4=∠ACD=∠1+∠2=60°,∠5=∠2,∵CB平分∠ACD,∴∠1=∠2=30°,∴∠5=∠2=30°;故选:B.【点睛】本题考查了平行线的判定与性质以及角平分线定义;熟练掌握平行线的判定与性质是解题的关键,属于中考常考题型.10.B解析:B【分析】根据平行线性质得出∠1=∠DAC=65°,∠2+∠BAD=180°,求出∠BAD,即可得出∠2的度数【详解】解:∵AD∥BC,∴∠1=∠DAC=65°,∵AC平分∠DAB,∴∠BAD=2∠DAC =130°,∵AD∥BC,∴∠2+∠BAD=180°,∴∠2=180°-130°=50°故选:B.【点睛】本题考查了平行线性质和角平分线定义,关键是求出∠BAD的度数.11.D解析:D【分析】根据平行线的性质得出∠2=∠4,∠1=∠4,根据对顶角相等和邻补角互补得出∠1=∠2,∠1+∠5=180°,即可得出选项.【详解】解:∵a ∥b ,∴∠2=∠4,∠1=∠4,∵∠4+∠5=180°,∴∠1+∠5=180°,∵∠1=∠2(对顶角相等),所以选项A 、B 、C 答案正确,只有选项D 答案错误;故选:D .【点睛】本题考查了平行线的性质,对顶角相等,邻补角互补等知识点,能灵活运用知识点进行推理是解此题的关键.12.C解析:C【分析】先根据角的和差可得365∠=︒,再根据平行线的性质即可得.【详解】如图,由题意得:12//,490l l ∠=︒13180490∴∠+∠=︒-∠=︒125∠=︒∵390165∴∠=︒-∠=︒又12//l l2365∴∠=∠=︒故选:C .【点睛】本题考查了角的和差、平行线的性质等知识点,理解题意,掌握平行线的性质是解题关键.二、填空题13.【分析】根据互补两角之和为180°解答即可【详解】解:∵该角度数为32°40′∴它的补角的度数=180°-32°40′=147°20′故答案为:【点睛】本题考查了补角的知识解答本题的关键在于熟练掌握解析:14720'︒【分析】根据互补两角之和为180°,解答即可.【详解】解:∵该角度数为32°40′,∴它的补角的度数=180°-32°40′=147°20′.故答案为:14720'︒.【点睛】本题考查了补角的知识,解答本题的关键在于熟练掌握互补两角之和为180°. 14.【分析】设这个角为α根据余角的和等于90°补角的和等于180°表示出这个角的补角与余角然后根据题意列出方程求解即可【详解】解:设这个角为α则它的补角为180°-α余角为90°-α根据题意得180°-解析:25︒【分析】设这个角为α,根据余角的和等于90°,补角的和等于180°表示出这个角的补角与余角,然后根据题意列出方程求解即可.【详解】解:设这个角为α,则它的补角为180°-α,余角为90°-α,根据题意得,180°-α=3(90°-α)-40°,解得α=25°.故答案为:25°.【点睛】本题考查了余角与补角的定义,熟记“余角的和等于90°,补角的和等于180°”是解题的关键.15.【分析】根据求出利用AO 平分求得即可得到∠DOB=【详解】∵∴∵AO 平分∴∴∠DOB=故答案为:【点睛】此题考查求一个角的补角角平分线的性质对顶角相等正确理解补角定义求出是解题的关键解析:65︒【分析】根据180COE EOD ∠+∠=︒,50EOD ∠=︒,求出130COE ∠=︒,利用AO 平分COE ∠,求得65AOC ∠=︒,即可得到∠DOB=65AOC ∠=︒.【详解】∵180COE EOD ∠+∠=︒,50EOD ∠=︒,∴130COE ∠=︒,∵AO 平分COE ∠,∴65AOC ∠=︒,∴∠DOB=65AOC ∠=︒,故答案为:65︒.【点睛】此题考查求一个角的补角,角平分线的性质,对顶角相等,正确理解补角定义求出130COE ∠=︒是解题的关键.16.20°【分析】根据对顶角的性质和平行线的性质求解即可;【详解】如图∵与是对顶角∴∵点C 在直线b 上∴∴;故答案是:20°【点睛】本题主要考查了平行线的性质结合对顶角性质求解是解题的关键解析:20°【分析】根据对顶角的性质和平行线的性质求解即可;【详解】如图,∵170∠=︒,1∠与3∠是对顶角,∴370∠=︒,∵//a b ,点C 在直线b 上,90DCB ∠=︒,∴23180DCB ∠+∠+∠=︒,∴21803180709020DCB ∠=︒-∠-∠=︒-︒-︒=︒;故答案是:20°.【点睛】本题主要考查了平行线的性质,结合对顶角性质求解是解题的关键.17.35°【分析】先根据垂直的定义和角的和差求出∠BOD 的度数再根据对顶角相等的性质解答即可【详解】解:∵∴∠BOM=90°∵∴∠BOD=90°-55°=35°∴∠AOC=∠BOD=35°故答案为:35解析:35°【分析】先根据垂直的定义和角的和差求出∠BOD 的度数,再根据对顶角相等的性质解答即可.【详解】解:∵OM AB ⊥,∴∠BOM =90°,∵55DOM ∠=︒,∴∠BOD =90°-55°=35°,∴∠AOC =∠BOD =35°,故答案为:35.【点睛】本题考查了垂直的定义、对顶角的性质和角的和差计算,属于基础题目,熟练掌握基本知识是解题的关键.18.(n ﹣1)×180【分析】分别过P1P2P3作直线AB 的平行线P1EP2FP3G 由平行线的性质可得出:∠1+∠3=180°∠5+∠6=180°∠7+∠8=180°∠4+∠2=180°于是得到∠1+∠解析:(n ﹣1)×180【分析】分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180°于是得到∠1+∠2=10°,∠1+∠P 1+∠2=2×180,∠1+∠P 1+∠P 2+∠2=3×180°,∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,根据规律得到结果∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.【详解】解:如图,分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,∵AB ∥CD ,∴AB ∥P 1E ∥P 2F ∥P 3G .由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180° ∴(1)∠1+∠2=180°,(2)∠1+∠P 1+∠2=2×180,(3)∠1+∠P 1+∠P 2+∠2=3×180°,(4)∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,∴∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.故答案为:(n+1)×180.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,利用两直线平行,同旁内角互补是解答此题的关键.19.60°【分析】根据平行线的性质可求∠ABE 再根据平行线的性质可求∠E【详解】解:∵BE ∥CD ∠C=60°∴∠ABE=60°∵ED ∥AC ∴∠E=60°故答案为:60【点睛】考查了平行线的性质关键是熟悉解析:60°【分析】根据平行线的性质可求∠ABE,再根据平行线的性质可求∠E.【详解】解:∵BE∥CD,∠C=60°,∴∠ABE=60°,∵ED∥AC,∴∠E=60°.故答案为:60.【点睛】考查了平行线的性质,关键是熟悉两直线平行,同位角相等;两直线平行,内错角相等的知识点.20.40°或140°【分析】先根据题意可得OC分在AB同侧和异侧两种情況讨论并画出图然后根据OC⊥OD与∠AOC=50°计算∠BOD的度数【详解】解:当OCOD在直线AB同侧时如图∵∠COD=90°∠A解析:40°或140°【分析】先根据题意可得OC分在AB同侧和异侧两种情況讨论,并画出图,然后根据OC⊥OD与∠AOC=50°,计算∠BOD的度数.【详解】解:当OC、OD在直线AB同侧时,如图∵∠COD=90°,∠AOC=50°∴∠BOD=180°-∠COD-∠AOC=180°-90°-50°=40°当OC、OD在直线AB异侧时,如图∵∠COD =90°,∠AOC =50°∴∠BOD =180-∠AOD =180°-(∠DOC-∠AOC)=180°-(90°-50°)=140°.故答案为:40°或140°【点睛】解答此类问题时,要注意对不同的情况进行讨论,避免出现漏解.三、解答题21.(1)=36DOE ∠︒;(2)=40BOD ∠︒,=40EOF ∠︒【分析】(1)设DOE x ∠=,由题意易得4COE x ∠=,然后根据∠COE+∠EOD=180°可求解; (2)由题13BOD AOB =∠∠,则设3AOB y ∠=,则有BOD y ∠=,进而可得1122BOF DOF BOD y ∠=∠=∠=,1322AOE BOE AOB y ∠=∠=∠=,然后可得EOF DOE DOF y ∠=∠+∠=,最后根据角的和差关系可求解.【详解】解:(1)设DOE x ∠=,4COE DOE ∠=∠,4COE x ∴∠=,∵∠COE+∠EOD=180°,即4180x x +=︒,解得36x =︒∴∠DOE=36°;(2)由题13BOD AOB =∠∠,则设3AOB y ∠=,BOD y ∴∠= OF 平分BOD ∠,OE 平分AOB ∠1122BOF DOF BOD y ∴∠=∠=∠=,1322AOE BOE AOB y ∠=∠=∠=, 12DOE BOE BOD y ∴∠=∠-∠=, EOF DOE DOF y ∴∠=∠+∠=∵160AOB EOF ∠+∠=︒,即3160y y +=︒,解得40y =︒,∴40BOD ∠=︒,40EOF ∠=︒.【点睛】本题主要考查角平分线的定义、补角及角的和差关系,熟练掌握角平分线的定义、补角及角的和差关系是解题的关键.22.(1)90︒;(2)90︒;(3)COD ∠,AOD ∠【分析】(1)由OD 平分∠AOC ,OE 平分∠BOC ,得出∠DOE=12(∠BOC+∠COA)求解即可; (2)利用(1)的结论求解即可;(3)根据(1)(2)找出互余的角即可.【详解】解:(1)∵OE 平分BOC ∠, ∴1=2COE BOE BOC ∠∠=∠, OD 平分AOC ∠,12AOD DOC AOC ∴∠=∠=∠, ∴∠DOE=12(∠BOC+∠COA)=12×180°=90°; (2)由(1)知11()1809022DOE BOC COA ∠=∠+∠=⨯︒=︒; (3)∵90DOE ∠=︒,∴∠AOD+∠BOE=90°,∵∠AOD=∠COD ,∴∠COD+∠BOE=90°,∴与∠BOE 互余的角有COD ∠,AOD ∠;【点睛】此题考查角平分线的意义,以及余角的意义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.23.(1)50BOD ∠=︒;(2)图见详解,点D 在BOC ∠内,45AON α∠=+︒;点D 在BOC ∠外,45AON ∠=︒.【分析】(1)由BOD ∠与AOC ∠互余,知90BOD AOC ∠+∠=︒,再由:4:5AOC BOD ∠∠=知BOD ∠占90°的545+,问题可解; (2)分两种情形,当点D 在BOC ∠内时,先得90COD ∠=︒,再求得45CON ∠=︒,最后得AON ∠;当点D 在BOC ∠外时,先求得COD AOD α∠=+∠,再用α表示AOD ∠,得902COD α∠=︒+,据ON 平分COD ∠得45NOC α∠=︒+,最后得45AON ∠=︒.【详解】解:(1)∵:4:5AOC BOD ∠∠=,BOD ∠与AOC ∠互余, ∴5905045BOD ∠=︒⨯=︒+; (2)分两种情形:情形一:点D 在BOC ∠内.在045α︒<≤︒的条件下,补全图形如下:.∵BOD ∠与AOC ∠互余,∴90BOD AOC ∠+∠=︒,∴90COD ∠=︒,∵ON 平分COD ∠,∴45CON ∠=︒,∴45AON α∠=+︒;情形二:点D 在BOC ∠外.在045α︒<≤︒的条件下,补全图形如下:∵BOD ∠与AOC ∠互余,()045AOC αα∠=︒<︒∴90BOD α∠=︒-∴COD AOD α∠=+∠(180)[180(90)]BOD ααα=+︒-∠=+︒-︒-902α=︒+,即902COD α∠=︒+∵ON 平分COD ∠ ∴11(902)4522NOC COD αα∠=∠=︒+=︒+ ∴(45)45AON NOC AOC αα∠=∠-∠=︒+-=︒ 即45AON ∠=︒.综上所述,点D 在BOC ∠内,45AON α∠=+︒;点D 在BOC ∠外,45AON ∠=︒.【点睛】考查余角、角平分线的概念及角的和与差等,其关键是熟悉相关概念并能结合图形进行应用.24.(1)30°,(2)45°.【分析】(1)根据邻补角的和等于180°求出∠BOD 的度数,然后根据角平分线的定义解答; (2)先求出∠COE 的度数,再根据角平分线的定义求出∠EOF ,再根据∠BOF =∠EOF -∠BOE ,代入数据进行计算即可得解.【详解】解:(1)∵2AOD BOD ∠∠,∠AOD +∠BOD =180°,∴∠BOD =13×180°=60°, ∵OE 平分∠BOD , ∴∠DOE =∠BOE=12∠BOD =12×60°=30°; (2)∠COE =∠COD ﹣∠DOE =180°﹣30°=150°,∵OF 平分∠COE ,∴∠EOF =12∠COE =12×150°=75°, 由(1)得,∠BOE =30°,∴∠BOF =∠EOF -∠BOE =75°-30°=45°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,比较简单,准确识图并熟记性质与概念是解题的关键.25.(1)补图见解析;(2)两直线平行,同旁内角互补,70,30,∠CEF ,两直线平行,内错角相等,60.【分析】(1)按照题中要求作出线段EH ⊥EF 于点E ,交CD 于点H 即可;(2)按照“小丽所给提示”的思路结合题中的已知条件根据“平行线的性质、垂直的定义”进行分析解答即可.【详解】解:(1)依据题意补全图形如下图所示:;(2)根据题意可得:①:两直线平行,同旁内角互补;②:70°;③:30°;④:∠CEF ;⑤:两直线平行,内错角相等;⑥:60°故答案为:两直线平行,同旁内角互补,70,30,∠CEF,两直线平行,内错角相等,60.【点睛】“读懂小丽的思路过程,熟悉平行线的性质”是解答本题的关键.26.20︒【分析】直接利用垂线的定义结合互余两角的关系得出答案.【详解】解:因为OF⊥CD,OE⊥AB,∴∠BOE=∠FOD=90︒,∴∠BOF+∠EOF=∠EOF+∠EOD,∴∠EOD=∠BOF=20︒.【点睛】本题主要考查了垂线,正确把握垂线的定义是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009~2010学年度七年级数学下册 《相交线与平行线》检测题(二)
本试卷满分120分 时间:100分钟 一 二 三
总分
一 填空(6×4=24分)
1,两个邻补角的平分线 ,一对对顶角的平分线 。

2,如图1 A,D 是直线L 1上两点,B,C 是直线 L 2上两点,且AB ⊥BC,CD ⊥AD,点A 到直线L 2的距 离是 ,点A 与点B 的距离是。

3,已知点P(2m ﹢3,3m ﹣1)在第一,三象限坐标轴夹角平分线上,则
m= .
4,在平面直角坐标系中,点M 在y 轴上,且到原点的距离为3个单位长度,则点M 坐标 ,过点N(2,-4)且平行x 轴的直线与y 轴交点

标 .
5,一条公路两次转弯后和原来方向相反,如果第一次拐角是360
,第二次拐角是 度,依据是 。

6,如图2,AB ∥EF,则∠1`等于 . 二 选择(10×4=40分)
7,如果两个角的两边分别平行,而其中的一个角比另一个角的4倍少300
,则这两个角是( ) A 420
,1380
B 100
, 100
C 420
,1380
或100
,100
D 以上都不对 8,如图(3)同位角共有( ) A 4对 B 8对 C 12对 D 16对
9,如图(4)一个矩形的两边分别是8 ,4,建立如图 所示平面直角坐标系,则不在矩形上的点是( ) A (0,4) B (4,8) C (8,4) D (8,0) 10,若(a ﹢2)2
﹢∣b ﹣3∣=0,则点M(a,b)在( )
图1
图2
D
C
E
B
A
A
C
B
D
l 1
l 2
图3
l 4
l 3
l 2
l 1 8
y
4
图4
O
x
A 第一象限
B 第二象限
C 第三象限
D 第四象限
11,在直角坐标系中,点(1,-3)先向右平移3个单位长度,再向上平移4个单位长度后点的坐标( ) A (-2,-3) B (4,1) C (4,-7) D (5,0) 12,如图(5)下列条件①∠1=∠3 ②∠2=∠3 ③∠4=∠5 ④∠2﹢∠4=1800
中能判断直线L 1∥L 2的有( ) A 1个 B 2个 C 3个 D 4个 13,点A(m,n)满足mn=0,则点A 在 ( ) 上.
A 原点
B 坐标轴
C x 轴
D 第四象限 14,下列说法中正确的是( ) A 过点P 画线段AB 的垂线
B P 点是直线AB 外一点,Q 是直线上一点,连接PQ,使PQ ⊥AB
C 过一点有且只有一条直线垂直于已知直线
D 过一点有且只有一条直线平行于已知直线 15,如图(6)∠1,∠2,∠3从小到大的顺序为( ) A ∠1﹤∠2﹤∠3
B ∠2﹤∠1﹤∠3
C ∠3﹤∠2﹤∠1
D ∠2﹤∠3﹤∠1 16,下列命题错误的是( ) A 同位角不一定相等 B 内错角都相等
C 同旁内角可能相等
D 同旁内角相等则两直线平行 三 解答题(7×8=56)
17,如图(7)点P 是∠ABC 内一点
(1) 画图:①过点P 作BC 的垂线,D 是垂足
②过点P 作BC 的平行线交AB 于E , 过点P 作AB 的平行线交BC 于F.
(2)∠EPF 等于∠B 吗? 为什么?
18,如图(8)已知⊿ABC ,将⊿ABC 沿北偏东800
方向平移3cm ,画出平移后的图形 ⊿A ˊB ˊC ˊ.
图5
l 2
l 1
5
4
3
2
1
图6
600
2
3
5001
图7
C
A
B
y
图11
A B x
C
O 19,如图(9)直线AB,CD 相交于点O ,OE 平分∠
BOD,OE ⊥OF, ∠DOF=700
,求∠AOC 的度数 20、如图(10)方格中有一条美丽可爱的小鱼
(1)若方格的边长为1 则小鱼的面积为
(2) 画出小鱼向左平移3格后的图形
(不要求步骤和过程)。

21、如图11、⊿ABC 在直角坐标系中,点A (2,2)、点B (1,0)、点C (4,-1)
(1)请写出⊿ABC 各点坐标 (2) 求出⊿ABC 面积
(3)把⊿ABC 向上平移两个单位,再向右平移两个单位为得到⊿A 'B 'C ,并写出A ' , B '
,C 点坐标。

22、如图 已知AB ∥CD ,分别探究下面四个图形中,∠APC ,∠PAB 和∠PCD 大小关系,并从所得四个关系中任选一个加以说明,证明所探究结论的正确性。

结论 (1) (2)
(3) (4) 选择结论 说明理由是什么? 23、如图13 ,AD 、AE 是两条射线,∠2+∠3+∠4= ∠1+∠2+∠5=1800
(1)求∠1+∠2+∠3的度数。

(2)由(1)题结果能得到⊿ABC 中 “∠B+ ∠C+∠BAC=180
0 ”的结论吗? 试写出推理过程。

2009~2010年七年级数学下册检测题
----------《相交线平行线》《平面直角坐标系》答案 一,填空
1,互相垂直,成一条直线
图10
2,线段AB的长,线段AB的长
3,4
4,(0,3)或(0,-3),(0.-4)5,144,两直线平行,同旁内角互补6,750
二,选择
711 DCBBB 1216 CBDDB
三,解答题
17.(1)略
(2)相等
理由:∵PF∥AB
∴∠EFP=∠AEP
∵PE∥BC
∴∠AEP=∠B
∴∠B=∠EPF
18,略
19,400
20,略
21,(1)略
(2)3.5
(3)略。

相关文档
最新文档