苏教版数学中考总复习[中考总复习:方程与不等式综合复习--知识点整理及重点题型梳理](基础)

合集下载

中考数学苏科版知识点总结

中考数学苏科版知识点总结

中考数学苏科版知识点总结一、代数1. 代数基础代数运算规则:加法、减法、乘法、除法整式与分式:整式的概念、分式的概念代数式的计算:同类项、合并同类项、分拆因式、化简代数式2. 一元一次方程与不等式一元一次方程的解:解方程的基本步骤、方程的解、检验方程的解一元一次不等式的解:解不等式的基本步骤、不等式的解、解不等式的规律3. 二元一次方程组二元一次方程组的解:解二元一次方程组的基本步骤、二元一次方程组的解、检验方程组的解4. 分式方程分式方程的解:解分式方程的基本步骤、分式方程的解、检验分式方程的解5. 平方根与整式平方根的概念:正数的平方根、负数的平方根、根号的运算规则完全平方公式:完全平方公式的应用、完全平方公式的推导6. 二次函数二次函数的图象:二次函数图象的性质、二次函数的平移二次函数的性质:二次函数的增减性、二次函数的大于零值和小于零值、二次函数的最值二、几何1. 几何基本概念角的概念:角的基本概念、角的种类、角的性质直线和线段的概念:直线和线段的基本概念、平行线及其性质2. 直角三角形直角三角形的性质:直角三角形的特殊角、勾股定理3. 四边形四边形的性质:平行四边形的性质、矩形的性质、菱形的性质、正方形的性质4. 圆圆的性质:圆的基本概念、圆心角、圆周角、弧、弦、冠、相交弦定理5. 圆的应用圆的应用:切线的性质、切线定理、切线长度定理、切线与半径的关系6. 相似三角形相似三角形的性质:相似三角形的判定、相似三角形的性质、相似三角形的应用三、数据统计与概率1. 统计图与统计量统计图的绘制:直方图、折线图、饼图统计量的计算:平均数、中位数、众数2. 概率基本概率模型:随机事件、概率、事件的概率计算概率分布模型:二项分布、正态分布四、解决实际问题的数学方法1. 实际问题的建立数学模型解决实际问题的步骤:问题的建立、数学模型的建立、模型的求解2. 运用函数解决实际问题用函数解决实际问题:函数的概念、函数的应用3. 运用方程组解决实际问题用方程组解决实际问题:方程组的应用、方程组的解法4. 运用不等式解决实际问题用不等式解决实际问题:不等式的应用、不等式的解法5. 运用统计与概率解决实际问题用统计与概率解决实际问题:统计与概率的应用、统计与概率的计算总结:数学是一门科学而又实用的学科,对于学生来说,学好数学是非常重要的。

最新苏教版初中数学知识点归纳汇总(七、八、九年级)

最新苏教版初中数学知识点归纳汇总(七、八、九年级)

第一部分教材知识梳理系统复习第一单元数与式 第1讲实数知识清单梳理知识点一:实数的概念及分类③开方开不尽的数:女口,;④三角负实数无限不循环小数关键点拨及对应举例(1) 按定义(1)0既不属于正数,也不属于负数.(2)按正、负性分(2)无理数的几种常见形式判断:①有理数限小澈或 正有理数正实数含π的式子;②构造型:如3.010010001…(每两个1之间多个0)就是一个无限不循环小数;负有理数函数型:女口 sin60 ° tan25 °1.实数限循环小数 实数 0(3)失分点警示:开得尽方的含根号实数的数属于有理数,如=2,=-3 ,它们 正无理都属于有理数.最后加减;同级运算,从 左向右进行;如有括号,先 做括号内的运算,按小括 号、中括号、大括号一次进行.计算时,可以结合运 算律,使问题简单化第2讲整式与因式分解二、知识清单梳理10.混合运算第3讲分式三、知识清单梳理第4讲二次根式四、知识清单梳理第二单元方程(组)与不等式(组)第5讲一次方程(组)五理第6讲一元二次方程六、知识清单梳理第7讲分式方程七理第8讲一元一次不等式(组) 八、知识清单梳理元一次不等式,贝U m的值为-1.(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为14.解知识点三(2)解集在数轴上表示x> a兀一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.6.解法先分别求岀各个不等式的解集,再求岀各个解集的公共部分7.不等式组解集的类型假设av b 解集数轴表示口诀X aX bX≥bI I ------- _大大取大X aX b X≤3小小取小r i ].a bX aX ba≤<≤3^^1大小,小大中间找βbX aX b无解大大,小小取不了a时,注意系数的正负性,若系数是负数,则不等式改变方向.(1 )在表示示含有,要用实心圆点表示;表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一第三单元函数第9讲平面直角坐标系与函数九、知识清单梳理(5)点M (x,y )平移的坐标特征:M (x,y ) M ι(x+a,y)M 2(χ+a,y+b)(1) 点M(a,b)到X 轴,y 轴的距离:到X 轴的距离为IbJ ;)到y 轴 的距离为|a|.(2) 平行于X 轴,y 轴直线上的两点间的距离:点 M I (XI ,0),M 2(x 2,O)之间的距离为 X i - X 2|,点 M 1(X 1, y),M 2(X 2, y)间的距离为X i — X 2|;点 M i (0,y i ),M 2(0,y 2)间的距离为 Iy i - y 2∣,点 M ι(x , y i ),M 2(x ,(2)坐标轴上点的坐标特征:①在横轴上 y = 0;②在纵轴上X = 0;③原点? X = 0, y = 0.第二象限 32 - 第一象限 (—,+ )i(+,+ )XB I丄ιL —-3 -2IUi 23 第三象限-1 - 第四象限 (—,—)-2 •(+ ,—)-3 一(3)各象限角平分线上点的坐标①第一、三象限角平分线上的点的横、纵坐标 相等;②第二、四象限角平分线上的点的横、纵坐标 互为相反数(4)点 P ( a,b )的对称点的坐标特征:①关 的点P i(a ,- b);②关于y 轴对称的点 于X 轴对称的坐标为P 2的坐标为(—a , b);③关于原点对称的点 P 3的坐标为(一a , — b).(3)平面直角坐标 系中求图形面积 时,先观察所求图 形是否为规则图 形,若是,再进一步 寻找求这个图形面 积的因素,若找不 到,就要借助割补法,割补法的主要 秘诀是过点向X 轴、 y 轴作垂线,从而将 其割补成可以直接 计算面积的图形来 解决.3.坐标点的距离问 题平行于X 轴的直线 上的点纵坐标相 等;平行于y 轴的 直线上的点的横坐 标相等.第10讲一次函数十、知识清单梳理第11讲反比例函数的图象和性质知识清单梳理4.待疋系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求岀反比例函数系数k即可.例:已知反比例函数图象过点(一3, —1), 则它的解析式是y=3∕x.知识点二:反比例系数的几何意义及与一次函数的综合k(1)意义:从反比例函数y= -(k≠ 0图象上任意一点向X轴和y轴作垂线,X垂线与坐标轴所围成的矩形面积为∣k∣,以该点、一个垂足和原点为顶点的三角形的面积为1∕2∣k∣.(2)常见的面积类型:5.系数k的几何丿意、义失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k< 0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3 ,则该反比例函数解析式为:3yX3y _X7 .(1题意找岀自变量与因变量之间的乘积关系;(2设岀函数表达式;(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b ),则根据中心 对称性,可得另一个交点坐标为 (-a,-b ).【方法二】联立两个函数解析 式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解涉及与面积有6.与次 函 数 的 综 合(3) 在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关 系,可采用假设法,分k > 0和kV 0两种情况讨论,看哪个选项符合要 求即可.也可逐一选项判断、排除.(4) 比较函数值的大小: 主要通过观察图象,图象在上方的值大,图象在 下方的值小,结合交点坐标,确定岀解集的范围关的问题时, ①要善于把点 的横、纵坐标 转化为图形的 边长,对于不 好直接求的面 积往往可分割 转化为较好求的三角形面 积;②也要注 意系数k 的几 何意义.例:如图所示, 三个阴影部分 的面积按从小 到大的顺序排 列为:S A AOC =S知识点三:反比例函数的实际应用(3)依题意求解函数表达式;△OPE > S A BOD J 7 .(4)根据反比例函数的表达式或性质解决相关问题第12讲二次函数的图象与性质十二、知识清单梳理点坐标或对称轴方程与最值,可设顶点式;若已知抛物线与X轴的两个交点坐标,可设交点式.知识点二:二次函数的图象与性质3.次函数的图象和性质(1)比较二次函数函数值大小的方法:①直接代入求值法;②性质法:当自变量在对称轴同侧时,根据函大而减小.减小;当XV J b时,y随X的——2a增大而增大.b 4ac b2 X= ——y最小= ---------- 2a 4a X=b 4ac b2—y最大=------------2a 4a质判断;当自变量在对称轴异侧时,可先利用函数的对称性转化到同侧,再利用性质比较;④图象法:画岀草图,描点后比较函数值大小.失分点警示(2 )在自变量限定范围求二次函数的最值时,首先第13讲二次函数的应用十三、知识清单梳理第四单元图形的初步认识与三角形第14讲平面图形与相交线、平行线过推理来判断命题是否成立的过程证明一个命题是假命题时,只要举岀一个反例署名命题不成立就可以了 .第15讲一般三角形及其性质卜五、知识清单梳理。

苏教版数学中考知识点总结归纳

苏教版数学中考知识点总结归纳

欢迎阅读初中数学知识点大全第一章 实数 一、重要概念1.数的分类及概念 数系表:2x ≥0)个非3<a <1时4.; C.和为0,5 6定义及表示:奇数:2n-1 偶数:2n (n 为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。

②│a│≥0,符号“││”是“非负数”的标志; ③数a 的绝对值只有一个; ④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

实数无理数(无限不循环小数)有理数正分数 负分数 正整数 0 负整数 (有限或无限循环性整数分数正无理数负无理数a(a≥0) -a(a<0)│a │=二、实数的运算运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的分配律)运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。

第二章 代数式 1.代数式与有理式2.3.划分4.5.6.根式 表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

注意:①从外形上判断;②区别:3、7是根式,但不是无理式(是无理数)。

7.算术平方根⑴正数a 的正的平方根(a [a ≥0—与“平方根”的区别]); ⑵算术平方根与绝对值 ①联系:都是非负数,2a =│a │ ② 区别:│a │中,a 为一切实数;a 中,a 为非负51数。

8.同类二次根式、最简二次根式、分母有理化:把分母中的根号划去叫做分母有理化。

化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

运算定律、性质、法则1.分式的加、减、乘、除、乘方、开方法则 2.分式的性质34⑤n ba )(5678.法。

90,b >0)(正用、逆用)10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A.a 1;B.a aba b =;C.b n a m -1. 11.科学记数法:na 10⨯(1≤a <10,n 是整数)一、重要概念1.总体:考察对象的全体。

苏教版数学中考总复习(知识点考点梳理、重点题型分类巩固练习)(基础版)(家教、补习、复习用)

苏教版数学中考总复习(知识点考点梳理、重点题型分类巩固练习)(基础版)(家教、补习、复习用)

苏教版中考数学总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:实数—知识讲解(基础)【考纲要求】1.了解有理数、无理数、实数的概念;借助数轴理解相反数、绝对值的概念及意义,会比较实数的大小;2.知道实数与数轴上的点一一对应,会用科学记数法表示有理数,会求近似数和有效数字;了解乘方与开方、平方根、算术平方根、立方根的概念,并理解这两种运算之间的关系,了解整数指数幂的意义和基本性质;3.掌握实数的运算法则,并能灵活运用.【知识网络】【考点梳理】考点一、实数的分类1.按定义分类:⎧⎧⎫⎧⎫⎪⎪⎪⎬⎪⎪⎨⎪⎭⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎭⎩⎪⎪⎫⎧⎪⎪⎨⎬⎪⎪⎩⎭⎩正整数自然数整数零有理数有限小数或无限循环小数负整数实数正分数分数负分数正无理数无理数无限不循环小数负无理数 2.按性质符号分类:⎧⎧⎧⎪⎨⎪⎨⎩⎪⎪⎪⎩⎪⎪⎨⎪⎧⎧⎪⎨⎪⎪⎨⎩⎪⎪⎪⎩⎩正整数正有理数正实数正分数正无理数实数零负整数负有理数负实数负分数负无理数 有理数:整数和分数统称为有理数或者“形如nm(m ,n 是整数n≠0)”的数叫有理数. 无理数:无限不循环小数叫无理数. 实数:有理数和无理数统称为实数. 要点诠释:常见的无理数有以下几种形式:(1)字母型:如π是无理数,24ππ、等都是无理数,而不是分数; (2)构造型:如2.10100100010000…(每两个1之间依次多一个0)就是一个无限不循环的小数;(3…都是一些开方开不尽的数;(4)三角函数型:sin35°、tan27°、cos29°等.考点二、实数的相关概念 1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0; (2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数; (3)互为相反数的两个数之和等于0.a 、b 互为相反数⇔a+b=0. 2.绝对值(1)代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.可用式子表示为:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a (2)几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.距离是一个非负数,所以绝对值的几何意义本身就揭示了绝对值的本质,即绝对值是一个非负数.用式子表示:若a 是实数,则|a|≥0. 要点诠释:若,a a =则0a ≥;-,a a =则0a ≤;-a b 表示的几何意义就是在数轴上表示数a 与数b 的点之间的距离. 3.倒数(1)实数(0)a a ≠的倒数是a1;0没有倒数; (2)乘积是1的两个数互为倒数.a 、b 互为倒数1a b ⇔⋅=. 4.平方根(1)如果一个数的平方等于a ,这个数就叫做a 的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a (a ≥0)的平方根记作a ±.(2)一个正数a 的正的平方根,叫做a 的算术平方根.a (a ≥0)的算术平方根记作a . 5.立方根如果x 3=a ,那么x 叫做a 的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;0的立方根仍是0.考点三、实数与数轴规定了原点、正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数. 要点诠释:(1)数轴的三要素:原点、正方向和单位长度. (2)实数和数轴上的点是一一对应的.考点四、实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,正数大于一切负数;两个负数;绝对值大的反而小.3.对于实数a 、b , 若a-b>0⇔a>b ;a-b=0⇔a=b ;a-b<0⇔a<b.4.对于实数a ,b ,c ,若a>b ,b>c ,则a>c.5.无理数的比较大小:利用平方转化为有理数:如果a>b>0, a 2>b 2⇔a>b b a >⇔;或利用倒数转化:如比较417-与154-.要点诠释:实数大小的比较方法:(1)直接比较法:正数都大于0,负数都小于0,正数大于一切负数;两个负数,绝对值大的反而小.(2)数轴法:在数轴上,右边的数总比左边的数大.考点五、实数的运算 1.加法同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.满足运算律:加法的交换律a+b=b+a ,加法的结合律(a+b)+c=a+(b+c). 2.减法减去一个数等于加上这个数的相反数. 3.乘法两数相乘,同号得正,异号得负,并把绝对值相乘.几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.乘法运算的运算律:(1)乘法交换律ab=ba ;(2)乘法结合律(ab)c=a(bc);(3)乘法对加法的分配律a(b+c)=ab+ac . 4.除法(1)除以一个数,等于乘上这个数的倒数.(2)两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0. 5.乘方与开方(1)求n 个相同因数的积的运算叫做乘方,a n所表示的意义是n 个a 相乘.正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数. (2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方. (3)零指数与负指数011(0)(0).pp a a aa a-==≠,≠ 要点诠释:加和减是一级运算,乘和除是二级运算,乘方和开方是三级运算.这三级运算的顺序是三、二、一.如果有括号,先算括号内的;如果没有括号,同一级运算中要从左至右依次运算.考点六、有效数字和科学记数法一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.精确度的形式有两种:(1)精确到哪一位;(2)保留几个有效数字.把一个数用±a ×10n (其中1≤<10,n 为整数)的形式记数的方法叫科学记数法.要点诠释:(1)当要表示的数的绝对值大于1时,用科学记数法写成a ×10n,其中1≤a <10,n 为正整数,其值等于原数中整数部分的数位减去1;(2)当要表示的数的绝对值小于1时,用科学记数法写成a ×10n,其中1≤a <10,n 为负整数,其值等于原数中第一个非零数字前面所用零的个数的相反数(包括小数点前面的零).【典型例题】类型一、实数的有关概念1.(1)a 的相反数是15-,则a 的倒数是_______.(2)实数a 、b 在数轴上对应点的位置如图所示: =______.0ab(3)(泉州市)去年泉州市林业用地面积约为10200000亩,用科学记数法表示为约____________.【答案】(1)5 ; (2)-a-b ; (3)1.02×107亩. 【解析】(1)注意相反数和倒数概念的区别,互为相反数的两个数只有性质符号不同,互为倒数的两个数要改变分子分母的位置;或者利用互为相反数的两个数之和等于0,互为倒数的两个数乘积等于1来计算.(2)此题考查绝对值的几何意义,绝对值和二次根式的化简.注意要去掉绝对值符号,要判别绝对值内的数的性质符号.由图知:0 0 |||| 0 ||().a b a b a b a b a b a b ><<∴+<=+=-+=--,,,,(3)考查科学记数法的概念.【点评】本大题旨在通过几个简单的填空,让学生加强对实数有关概念的理解. 举一反三:【变式】据市旅游局统计,今年“五·一”小长假期间,我市旅游市场走势良好,假期旅游总收入达到8.55亿元,用科学记数法可以表示为( )A .8.55×106B .8.55×107C .8.55×108D .8.55×109【答案】C.类型二、实数的分类与计算2.下列实数227、sin60°、3π、、3.14159、(2- )个A .1B .2C .3D .4【答案】C.【解析】无理数有sin60°、3π【点评】对实数进行分类不能只看表面形式,应先化简,再根据结果去判断.举一反三:【课程名称: 实数 369214 :经典例题1】 【变式】在,30cos ,2π,)23(,4,8,14.30 --,45tan ,712,1010010001.0 ,51-13.0%,3 中,哪些是有理数? 哪些是无理数?【答案】03.14,2),-,45tan ,712,51-13.0%,3 都是有理数; π,cos30,2-0.1010010001,都是无理数.3.(2015•梅州)计算:+|2﹣3|﹣()﹣1﹣(2015+)0.【答案与解析】解:原式=2+3﹣2﹣3﹣1=﹣1.【点评】该题是实数的混合运算,包括绝对值,0指数幂、负整数指数幂等.只要准确把握各自的意义,就能正确的进行运算.举一反三:【课程名称:实数 369214 :经典例题8-9】【变式1】计算:(2015•甘南州)计算:|﹣1|+20120﹣(﹣)﹣1﹣3tan30°.【答案】解:原式=﹣1+1﹣(﹣3)﹣3×=+3﹣=3.【变式2】计算:12004200320022001+⨯⨯⨯ 【答案】设n=2001,则原式=1)3)(2)(1(++++n n n n1)23)(3(22++++=n n n n (把n 2+3n 看作一个整体)=1)3(2)3(222++++n n n n =n 2+3n+1=n(n+3)+1 =2001×2004+1 =4010005.类型三、实数大小的比较4.比较下列每组数的大小:(1)417-与154- (2)a 与a1(a ≠0) 【答案与解析】(140=>,40=>,4+与4+440>+>,44-<- (2)当a<-1或O<a<1时,a<a1;当-1<a<0或a>1时,a>a1; 当a=1±时,a=a1.【点评】(1)有时无理数比较大小,通过平方转化以后也无法进行比较,那么我们可以利用倒数关系比较;(2)这道题实际上是互为倒数的两个数之间的比较大小,我们可以利用数轴进行比较,我们知道,0没有倒数,±1的倒数等于它本身,这样数轴就被这3个数分成了4部分,下面就可以分类讨论每种情况.我们还可以利用函数图象来解决这个问题,把a1的值看成是关于a 的反比例函数,把a 的值看成是关于a 的正比例函数,在坐标系中画出它们的图象,可以很直观的比较出它们的大小.举一反三:【变式】比较下列每组数的大小: (1)817-和511- (2)52+和23+【答案】(1)将其通分,转化成同分母分数比较大小,1785840= ,1188540=, 171185<,所以171185->-.(2)277+=+=+)2277+=+=+<2+<+.类型四、平方根的应用5.已知:x ,y 2690y y +-+=,若axy-3x=y ,则实数a 的值是_______.【答案】14.2690y y -+=2(3)0y +-=两个非负数相加和为0,则这两个非负数必定同时为0,0=,(y-3)2=0, ∴ x=43-, y=3又∵axy-3x=y,∴ a=43()33134433x yxy⨯-++==-⨯.【点评】此题考查的是非负数的性质.类型五、实数运算中的规律探索6.细心观察图形,认真分析各式,然后解答问题21222312,213,214,2SSS+==+==+==1A2AA(1)请用含有n(n是正整数)的等式表示上述变化规律;(2)推算出OA10的长;(3)求出S12+ S22+ S32+…+ S102的值.【答案与解析】(1)由题意可知,图形满足勾股定理,()2,112nSnn n=+=+(2)因为OA1=1,OA2=2,OA3=3…,所以OA10=10(3)S12+ S22+ S32+…+ S102=2222)210()23()22()21(++++=)10321(41++++=455.【点评】近几年各地的中考题中越来越多的出现了一类探究问题规律的题目,这些问题素材的选择、文字的表述、题型的设计不仅考察了数学的基础知识,基本技能,更重点考察了创新意识和能力,还考察了认真观察、分析、归纳、由特殊到一般,由具体到抽象的能力.举一反三:【变式】图中是一幅“苹果图”,第一行有1个苹果,第二行有2个,第三行有4个,•第四行有8个,……你是否发现苹果的排列规律?猜猜看,第十行有______个苹果.【答案】29(512).苏教版中考数学总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:实数—巩固练习 (基础)【巩固练习】 一、选择题1. 在实数-23,0,-3.1415,2-0.1010010001…(每两个1之间依次多1个0),sin30° 这8个实数中,无理数有( )A .1个B .2个C .3个D .4个2.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为( ) A .66.6×107B .6.66×108C .0.666×108D .6.66×1073.(2015•杭州)若k <<k+1(k 是整数),则k=( ) A .6 B .7 C .8 D .94.在三个数0.5、、中,最大的数是( )A .0.5B .C .D .不能确定5.用四舍五入法按要求对0.05049分别取近似值,其中错误的是( ) A .0.1(精确到0.1)B .0.05(精确到百分位)C .0.050(精确到0.001)D .0.05(精确到千分位)6.我国古代的“河图”是由3×3的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.图中给出了“河图”的部分点图,请你推算出P 处所对应的点图是( )二、填空题7. ()0201112=-++y x 则x y= .8. (2014•辽阳)5﹣的小数部分是 .9.若22+-b a 与互为相反数,则a+b 的值为________. 10.已知a 与b 互为相反数,c 与d 互为倒数,m 的绝对值是1,则2m cd mba +-+的值为________.11.已知:22222233445522 33 44 55338815152424+=⨯+=⨯+=⨯+=⨯,,,,,若21010b ba a+=⨯符合前面式子的规律,则a+b=________.12.将正偶数按下表排列:第1列 第2列 第3列 第4列 第1行 2第2行 4 6第3行 8 10 12第4行 14 16 18 20 ……根据上面的规律,则2006所在行、列分别是________.三、解答题13. 计算:(1)2012201280.125⨯ (2)222121⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎭⎫ ⎝⎛+e e e e14.若333)43(,)43(,)43(--=-=-=c b a ,比较a 、b 、c 的大小。

(完整版)苏教版数学中考知识点总结

(完整版)苏教版数学中考知识点总结
11.科学记数法: (1≤a<10,n是整数)
第三章 统计初步
一、重要概念
1.总体:考察对象的全体。 2.个体:总体中每一个考察对象。
3.样本:从总体中抽出的一部分个体。 4.样本容量:样本中个体的数目。
5.众数:一组数据中,出现次数最多的数据。
6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)
6.乘法公式:(正、逆用) (a+b)(a-b)=
(a±b) =
7.除法法则:⑴单÷单;⑵多÷单。
8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。
9.算术根的性质: = ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)
10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .
二、相似三角形性质1.对应线段…;2.对应周长…;3.对应面积…。
三、相关作图 ①作第四比例项;②作比例中项。
四、证(解)题规律、辅助线
1.“等积”变“比例”,“比例”找“相似”。
2.找相似找不到,找中间比。方法:将等式左右两边的比表示出来。
⑴ ⑵

3.添加辅助平行线是获得成比例线段和相似三角形的重要途径。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式
没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。

苏教版数学中考知识点总结

苏教版数学中考知识点总结

苏教版数学中考知识点总结数学中考知识点总结1中位线概念(1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。

(2)梯形中位线定义:连接梯形两腰中点的线段叫做梯形的中位线。

注(1)区分三角形的中线和三角形的中线。

三角形的中线是连接顶点与其对边中点的线段,而三角形的中线是连接三角形两边中点的线段。

(2)梯形中线是连接两腰中点的线段,而不是两底中点。

(3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时三角形的中位线就变成梯形的中位线。

中位线定理(1)三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.(2)梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.中位线定理推广三角形有三条中线。

首尾相连时,每个小三角形的面积等于原三角形的四分之一,这四个三角形全等。

数学中考知识点总结21.单项式:在代数式中,若只含有乘法(包括乘方)运算。

或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。

2.系数:单项中的数值因子叫做这个单项的系数。

所有字母的指数之和叫做这个单项式的次数。

任何非零数字的零次方等于1。

3.多项式:几个单项式之和称为多项式。

4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。

5.常数项:不带字母的项称为常数项。

6.多项式的排列(1)按一个字母的指数由大到小排列一个多项式,叫做按这个字母的降序排列多项式。

(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

7.多项式的排列时注意:(1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。

(2)有两个或两个以上字母的多项式,排列时,要注意:a.先确认按照哪个字母的指数来排列。

苏教版数学中考知识点总结

苏教版数学中考知识点总结

苏教版数学中考知识点总结苏教版数学中考学问点总结1函数①位置确实定与平面直角坐标系位置确实定坐标变换平面直角坐标系内点的特征平面直角坐标系内点坐标的符号与点的象限位置对称问题:P(x,y)→Q(x,- y)关于x轴对称P(x,y)→Q(- x,y)关于y轴对称P(x,y)→Q(- x,-y)关于原点对称变量、自变量、因变量、函数的定义函数自变量、因变量的取值范围(使式子有意义的条件、图象法) 56、函数的图象:变量的改变趋势描述②一次函数与正比例函数一次函数的定义与正比例函数的定义一次函数的图象:直线,画法一次函数的性质(增减性)一次函数y=kx+b(k≠0)中k、b符号与图象位置待定系数法求一次函数的解析式(一设二列三解四回)一次函数的平移问题一次函数与一元一次方程、一元一次不等式、二元一次方程的关系(图象法)一次函数的实际应用一次函数的综合应用(1)一次函数与方程综合(2)一次函数与其它函数综合(3)一次函数与不等式的综合(4)一次函数与几何综合苏教版数学中考学问点总结2一、代数式1. 概念:用基本的运算符号(加、减、乘、除、乘方、开方)把数与字母连接而成的式子叫做代数式。

单独的一个数或字母也是代数式。

2. 代数式的值:用数代替代数式里的字母,根据代数式的运算关系,计算得出的结果。

二、整式单项式和多项式统称为整式。

1. 单项式:1)数与字母的乘积这样的代数式叫做单项式。

单独的一个数或字母(可以是两个数字或字母相乘)也是单项式。

2) 单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。

3) 单项式的次数:一个单项式中,全部字母的指数的和叫做这个单项式的次数。

2. 多项式:1)几个单项式的和叫做多项式。

在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。

一个多项式有几项就叫做几项式。

2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。

3. 多项式的排列:1).把一个多项式按某一个字母的指数从大到小的挨次排列起来,叫做把多项式按这个字母降幂排列。

中考总复习方程与不等式综合复习--知识讲解

中考总复习方程与不等式综合复习--知识讲解

中考总复习方程与不等式综合复习--知识讲解方程和不等式是数学中的重要内容,也是中考数学考试中经常出现的题型。

掌握方程和不等式的解法和应用,对于提高中考数学成绩至关重要。

下面将对方程和不等式的知识进行讲解,帮助同学们更好地复习和理解。

一、一元一次方程一元一次方程是形如ax + b = 0的方程,其中a和b是已知数,x是未知数。

解一元一次方程的基本步骤如下:1. 移项:将方程中的常数项移到方程的另一侧,得到ax = -b。

2.化简:将方程中的系数和常数进行运算和化简,得到x的系数为1,b的相反数为其常数项。

3.消元:将方程两边同时除以系数a,得到x=-b/a。

二、一元二次方程一元二次方程是形如ax² + bx + c = 0的方程,其中a、b 和 c 是已知数,x 是未知数。

解一元二次方程的基本步骤如下:1. 判别式:计算判别式D = b² - 4ac。

2.判断解的情况:a.当D>0时,方程有两个不相等的实根。

b.当D=0时,方程有两个相等的实根。

c.当D<0时,方程没有实数解。

3.求解实根:根据判别式的情况,应用二次根式公式x=(-b±√D)/2a求得方程的实根。

三、一元一次不等式一元一次不等式是形如ax + b > 0 或 ax + b < 0的不等式,其中a、b 是已知数,x 是未知数。

解一元一次不等式的基本步骤如下:1.移项:根据不等式的符号,将常数项移到不等式的另一侧。

2.化简:将不等式中的系数进行运算和化简。

3.计算不等号的符号:根据不等式的规则,计算出x的取值范围。

四、一元一次不等式组一元一次不等式组是形如{ax + by > 0, cx + dy < 0}的不等式组,其中a、b、c、d 是已知数,x、y 是未知数。

解一元一次不等式组的基本步骤如下:1.分别解出两个不等式的解集。

2.将解集进行交集操作,得到不等式组的解集。

苏教版数学中考总复习资料

苏教版数学中考总复习资料

苏教版数学中考总复习资料第五章方程组★重点★一元一次、一元二次方程,二元一次方程组的解法;方程的有关应用题特别是行程、工程问题☆ 内容提要☆一、基本概念1.方程、方程的解根、方程组的解、解方程组2. 分类:二、解方程的依据—等式性质1.a=b←→a+c=b+c2.a=b←→ac=bc c≠0三、解法1.一元一次方程的解法:去分母→去括号→移项→合并同类项→系数化成1→解。

2. 元一次方程组的解法:⑴基本思想:“消元”⑵方法:①代入法②加减法四、一元二次方程1.定义及一般形式:2.解法:⑴直接开平方法注意特征⑵配方法注意步骤—推倒求根公式⑶公式法:⑷因式分解法特征:左边=03.根的判别式:4.根与系数顶的关系:逆定理:若,则以为根的一元二次方程是:。

5.常用等式:五、可化为一元二次方程的方程1.分式方程⑴定义⑵基本思想:⑶基本解法:①去分母法②换元法如,⑷验根及方法2.无理方程⑴定义⑵基本思想:⑶基本解法:①乘方法注意技巧!!②换元法例,⑷验根及方法3.简单的二元二次方程组由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。

六、列方程组解应用题一概述列方程组解应用题是中学数学联系实际的一个重要方面。

其具体步骤是:⑴审题。

理解题意。

弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。

⑵设元未知数。

①直接未知数②间接未知数往往二者兼用。

一般来说,未知数越多,方程越易列,但越难解。

⑶用含未知数的代数式表示相关的量。

⑷寻找相等关系有的由题目给出,有的由该问题所涉及的等量关系给出,列方程。

一般地,未知数个数与方程个数是相同的。

⑸解方程及检验。

⑹答案。

综上所述,列方程组解应用题实质是先把实际问题转化为数学问题设元、列方程,在由数学问题的解决而导致实际问题的解决列方程、写出答案。

在这个过程中,列方程起着承前启后的作用。

因此,列方程是解应用题的关键。

二常用的相等关系1. 行程问题匀速运动基本关系:s=vt⑴相遇问题同时出发:+ = ;⑵追及问题同时出发:若甲出发t小时后,乙才出发,而后在B处追上甲,则⑶水中航行: ;2. 配料问题:溶质=溶液×浓度溶液=溶质+溶剂3.增长率问题:4.工程问题:基本关系:工作量=工作效率×工作时间常把工作量看着单位“1”。

2023苏教版数学中考考点归纳

2023苏教版数学中考考点归纳

2023苏教版数学中考考点归纳苏教版数学中考考点归纳1.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。

(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

重点知识:初中数学第一课,认识正数与负数!新初一的来~2.相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

3.绝对值1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。

①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.2.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a(a 0)0(a=0)﹣a(a 0)重点知识:初中数学第二课,有理数的相关知识!新初一的来~4.有理数大小比较1.有理数的大小比较比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。

方程与不等式综合复习—知识讲解及经典例题解析

方程与不等式综合复习—知识讲解及经典例题解析

中考总复习:方程与不等式综合复习—知识讲解及经典例题解析【考纲要求】1.会从定义上判断方程(组)的类型,并能根据定义的双重性解方程(组)和研究分式方程的增根情况;2.掌握解方程(组)的方法,明确解方程组的实质是“消元降次”、“化分式方程为整式方程”、“化无理式为有理式”;3.理解不等式的性质,一元一次不等式(组)的解法,在数轴上表示解集,以及求特殊解集;4.列方程(组)、列不等式(组)解决社会关注的热点问题;5. 解方程或不等式是中考的必考点,运用方程思想与不等式(组)解决实际问题是中考的难点和热点.【知识网络】【考点梳理】考点一、一元一次方程1.方程含有未知数的等式叫做方程.2.方程的解能使方程两边相等的未知数的值叫做方程的解.3.等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式.4.一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项. 5.一元一次方程解法的一般步骤整理方程 —— 去分母—— 去括号—— 移项—— 合并同类项——系数化为1——(检验方程的解).6.列一元一次方程解应用题(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且根据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看作已知量),填入有关的代数式是获得方程的基础. 要点诠释:列方程解应用题的常用公式:(1)行程问题: 距离=速度×时间 时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效×工时 工时工作量工效=工效工作量工时=; (3)比率问题: 部分=全体×比率 全体部分比率= 比率部分全体=;(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; (5)商品价格问题: 售价=定价·折·101,利润=售价-成本, %100⨯-=成本成本售价利润率;(6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abh ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h.考点二、一元二次方程 1.一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程. 2.一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项. 3.一元二次方程的解法(1)直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法.直接开平方法适用于解形如b a x =+2)(的一元二次方程.根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根.(2)配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用.配方法的理论根据是完全平方公式2222()a ab b a b ±+=±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±.(3)公式法公式法是用求根公式求一元二次方程的解的方法,它是解一元二次方程的一般方法.一元二次方程)0(02≠=++a c bx ax 的求根公式:21,240)2b x b ac a-±=-≥ (4)因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法.4.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆. 5.一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么ab x x -=+21,a cx x =21.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商. 要点诠释:一元二次方程的解法中直接开平方法和因式分解法是特殊方法,比较简单,但不是所有的一元二次方程都能用这两种方法去解,配方法和公式法是普通方法,一元二次方程都可以用这两种方法去解.(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中0≠a .(2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负.考点三、分式方程 1.分式方程分母里含有未知数的方程叫做分式方程. 2.解分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”.它的一般解法是:①去分母,方程两边都乘以最简公分母;②解所得的整式方程;③验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根.口诀:“一化二解三检验”.3.分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法.要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.考点四、二元一次方程(组)1.二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是ax+by=c(a≠0,b≠0).2.二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解.3.二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组.4.二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.5.二元一次方程组的解法①代入消元法;②加减消元法.6.三元一次方程(组)(1)三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程叫三元一次方程.(2)三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.要点诠释:二元一次方程组的解法:消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想.(1)代入消元法:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法.(3)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解.教材中主要是研究有唯一解的情况,对于其他情况,可根据学生的接受能力给予渗透.考点五、不等式(组)1.不等式的概念(1)不等式用不等号表示不等关系的式子,叫做不等式.(2)不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式.2.不等式基本性质(1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;(2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变;(3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变.3.一元一次不等式(1)一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.(2)一元一次不等式的解法解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤将x项的系数化为1.4.一元一次不等式组(1)一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式组.当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集.(2)一元一次不等式组的解法①分别求出不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.注:不等式有等号的在数轴上用实心圆点表示.要点诠释:用符号“<”“>”“≤ ”“≥”“≠”表示不等关系的式子,叫做不等式.(1)不等式的其他性质:①若a >b ,则b <a ;②若a >b ,b >c ,则a >c ;③若a ≥b ,且b ≥a ,•则a=b ;④若a 2≤0,则a=0;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号. (2)任意两个实数a 、b 的大小关系:①a -b >O ⇔a >b ;②a -b=O ⇔a=b ;③a-b <O ⇔a <b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c .【典型例题】类型一、方程的综合运用1.如图所示,是在同一坐标系内作出的一次函数y 1、y 2的图象1l 、2l ,设111y k x b =+,222y k x b =+,则方程组111222,y k x b y k x b =+⎧⎨=+⎩的解是( )不等式组 (其中a >b )图示 解集 口诀x ax b >⎧⎨>⎩ bax a > (同大取大)x ax b <⎧⎨<⎩ b ax b <(同小取小) x ax b <⎧⎨>⎩ bab x a << (大小取中间)x ax b >⎧⎨<⎩ba无解 (空集) (大大、小小找不到)A .2,2x y =-⎧⎨=⎩ B .2,3x y =-⎧⎨=⎩ C .3,3x y =-⎧⎨=⎩ D .3,4x y =-⎧⎨=⎩【思路点拨】图象1l 、2l 的交点的坐标就是方程组的解. 【答案】B ;【解析】由图可知图象1l 、2l 的交点的坐标为(-2,3),所以方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为2,3.x y =-⎧⎨=⎩【总结升华】方程组与函数图象结合体现了数形结合的数学思想,这也是中考所考知识点的综合与相互渗透.2.近年来,由于受国际石油市场的影响,汽油价格不断上涨.请你根据下面的信息,帮小明计算今年5月份汽油的价格.如图所示.【思路点拨】根据“用150元给汽车加油今年比去年少18.75升”列方程. 【答案与解析】解:设今年5月份汽油价格为x 元/升,则去年5月份的汽油价格为(x-1.8)元/升.根据题意,得15015018.751.8x x-=-,整理,得21.814.40x x --=.解这个方程,得x 1=4.8,x 2=-3.经检验两根都为原方程的根,但x 2=-3不符合实际意义,故舍去. 【总结升华】解题的关键是从对话中挖掘出有效的数学信息,构造数学模型,从而解决问题,让同学们更进一步地体会到数学就在我们身边.类型二、解不等式(组)3.已知A =a+2,B =a 2-a+5,C =a 2+5a-19,其中a >2. (1)求证:B-A >0,并指出A 与B 的大小关系; (2)指出A 与C 哪个大?说明理由. 【思路点拨】计算B-A 结果和0比大小,从而判断A 与B 的大小;同理计算C-A ,根据结果来比较A 与C 的大小. 【答案与解析】(1)证明:B-A =a 2-2a+3=(a-1)2+2.∵ a >2,∴ (a-1)2>0,∴ (a-1)2+2>0.∴ a 2-2a+3>0,即B-A >0. 由此可得B >A .(2)解:C-A =a 2+4a-21=(a+7)(a-3). ∵ a >2,∴ a+7>0.当2<a <3时,a-3<0, ∴ (a+7)(a-3)<0.∴ 当2<a <3时,A 比C 大;当a =3时,a-3=0, ∴ (a+7)(a-3)=0.∴ 当a =3时,A 与C 一样大;当a >3时,a-3>0, ∴ (a+7)(a-3)>0.∴ 当a >3时,C 比A 大. 【总结升华】比较大小通常用作差法,结果和0比大小,此时常常用到因式分解或配方法. 本题考查了整式的减法、十字相乘法分解因式,渗透了求差比较大小的思路及分类讨论的思想. 举一反三:【变式1】已知:A=222+-a a ,B=2, C=422+-a a ,其中1>a .(1)求证:A-B>0; (2)试比较A 、B 、C 的大小关系,并说明理由. 【答案】(1)A-B=222222(21)a a a a a a -+-=-=- ∵1>a ,∴0,210a a >-> ∴A-B>0(2) ∵C-B=22224222(1)10a a a a a -+-=-+=-+> ∴C>B∵A-C=22222242(2)(1)a a a a a a a a -+-+-=+-=+- ∵1>a ,∴20,10a a +>-> ∴A>C>B【变式2】如图,要使输出值y 大于100,则输入的最小正整数x 是______.【答案】解:设n 为正整数,由题意得 ⎩⎨⎧>+⨯>-.1001342,100)12(5n n 解得⋅>887n 则n 可取的最小正整数为11.若x 为奇数,即x =21时,y =105; 若x 为偶数,即x =22时,y =101. ∴满足条件的最小正整数x 是21.类型三、方程(组)与不等式(组)的综合应用4.宏志高中高一年级近几年来招生人数逐年增加,去年达到550名,其中有面向全省招收的“宏志班”学生,也有一般普通班的学生.由于场地、师资等限制,今年招生最多比去年增加100人,其中普通班学生可多招20%,“宏志班”学生可多招10%,问今年最少可招收“宏志班”学生多少名? 【思路点拨】根据招生人数列等式,根据今年招生最多比去年增加100人列不等式. 【答案与解析】设去年招收“宏志班”学生x 名,普通班学生y 名,由条件得550,10%20%100.x y x y +=⎧⎨+≤⎩将y =550-x 代入不等式,可解得x ≥100,于是(1+10%)x ≥110. 故今年最少可招收“宏志班”学生110名. 【总结升华】本题属于列方程与不等式组综合题. 举一反三:【变式】为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维持交通秩序,若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人.求这个中学共选派值勤学生多少人?共有多少个交通路口安排值勤?【答案】设这个学校选派值勤学生x 人,共到y 个交通路口值勤.根据题意得478,48(1)8.x y x y -=⎧⎨≤--<⎩①②由①可得x =4y+78,代入②,得4≤78+4y-8(y-1)<8,解得19.5<y ≤20.5.根据题意y 取20,这时x 为158,即学校派出的是158名学生,分到了20个交通路口安排值勤.5.已知关于x 的一元二次方程 2(2)(1)0m x m x m ---+=.(其中m 为实数) (1)若此方程的一个非零实数根为k , ① 当k = m 时,求m 的值;② 若记1()25m k k k+-+为y ,求y 与m 的关系式;(2)当14<m <2时,判断此方程的实数根的个数并说明理由. 【思路点拨】(1)由于k 为此方程的一个实数根,故把k 代入原方程,即可得到关于k 的一元二次方程,①把k=m 代入关于k 的方程,即可求出m 的值;②由于k 为原方程的非零实数根,故把方程两边同时除以k ,便可得到关于y 与m 的关系式; (2)先求出根的判别式,再根据m 的取值范围讨论△的取值即可. 【答案与解析】(1)∵ k 为2(2)(1)0m x m x m ---+=的实数根,∴ 2(2)(1)0m k m k m ---+=.※① 当k = m 时,∵ k 为非零实数根,∴ m ≠ 0,方程※两边都除以m ,得(2)(1)10m m m ---+=.整理,得 2320m m -+=.解得 11m =,22m =.∵ 2(2)(1)0m x m x m ---+=是关于x 的一元二次方程, ∴ m ≠ 2. ∴ m= 1.② ∵ k 为原方程的非零实数根,∴ 将方程※两边都除以k ,得(2)(1)0mm k m k---+=. 整理,得 1()21m k k m k +-=-.∴ 1()254y m k k m k=+-+=+.(2)解法一:22[(1)]4(2)3613(2)1m m m m m m m ∆=----=-++=--+ .当14<m <2时,m >0,2m -<0.∴ 3(2)m m -->0,3(2)1m m --+>1>0,Δ>0.∴ 当14<m <2时,此方程有两个不相等的实数根.解法二:直接分析14<m <2时,函数2(2)(1)y m x m x m =---+的图象,∵ 该函数的图象为抛物线,开口向下,与y 轴正半轴相交,∴ 该抛物线必与x 轴有两个不同交点.∴ 当14<m <2时,此方程有两个不相等的实数根.解法三:222[(1)]4(2)3613(1)4m m m m m m ∆=----=-++=--+.结合23(1)4m ∆=--+关于m 的图象可知,(如图)当14<m ≤1时,3716<∆≤4; 当1<m <2时,1<∆<4.∴ 当14<m <2时,∆>0.∴ 当14<m <2时,此方程有两个不相等的实数根. 【总结升华】和一元二次方程的根有关的问题往往可以借助于二次函数图象解决,数形结合使问题简化. 举一反三:【变式1】已知关于x 的一元二次方程2x 2+4x+k ﹣1=0有实数根,k 为正整数.(1)求k 的值(2)当此方程有两个非零的整数根时,将关于x 的二次函数y=2x 2+4x+k ﹣1的图象向右平移1个单位,向下平移2个单位,求平移后的图象的解析式.【答案】解:(1)∵方程2x 2+4x+k ﹣1=0有实数根,∴△=42﹣4×2×(k ﹣1)≥0,∴k≤3.又∵k 为正整数,∴k=1或2或3.(2)当此方程有两个非零的整数根时,当k=1时,方程为2x 2+4x=0,解得x 1=0,x 2=﹣2;不合题意,舍去.当k=2时,方程为2x 2+4x+1=0,解得x 1=﹣1+,x 2=﹣1﹣;不合题意,舍去. 当k=3时,方程为2x 2+4x+2=0,解得x 1=x 2=﹣1;符合题意.因此y=2x 2+4x+2的图象向右平移1个单位,向下平移2个单位,得出y=2x 2﹣2.【变式2】已知:关于x 的方程()0322=-+-+k x k x (1)求证:方程()0322=-+-+k x k x 总有实数根;(2)若方程()0322=-+-+k x k x 有一根大于5且小于7,求k 的整数值; (3)在⑵的条件下,对于一次函数b x y +=1和二次函数2y =()322-+-+k x k x ,当71<<-x 时,有21y y >,求b 的取值范围.【答案】⑴证明:∵△=(k -2)2-4(k -3)=k 2-4k +4-4k +12= k 2-8k +16=(k -4)2≥0∴此方程总有实根。

苏教版数学中考总复习[中考冲刺:几何综合问题--知识点整理及重点题型梳理](基础)

苏教版数学中考总复习[中考冲刺:几何综合问题--知识点整理及重点题型梳理](基础)

苏教版中考数学总复习重难点突破知识点梳理及重点题型巩固练习中考冲刺:几何综合问题—知识讲解(基础)【中考展望】几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力.这类题型在近几年全国各地中考试卷中占有相当的分量,不仅有选择题、填空题、几何推理计算题以及代数与几何的综合计算题,还有更注重考查学生分析问题和解决问题能力的探究性的问题、方案设计的问题等等.主要特点是图形较复杂,覆盖面广、涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.几何综合题的呈现形式多样,如折叠类型、探究型、开放型、运动型、情景型等,背景鲜活,具有实用性和创造性,考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力.以几何为主的综合题常常在一定的图形背景下研究以下几个方面的问题:1、证明线段、角的数量关系(包括相等、和、差、倍、分及比例关系等);2、证明图形的位置关系(如点与线、线与线、线与圆、圆与圆的位置关系等);3、几何计算问题;4、动态几何问题等.【方法点拨】一、几何计算型综合问题,常常涉及到以下各部分的知识:1、与三角形有关的知识;2、等腰三角形,等腰梯形的性质;3、直角三角形的性质与三角函数;4、平行四边形的性质;5、全等三角形,相似三角形的性质;6、垂径定理,切线的性质,与正多边形有关的计算;7、弧长公式与扇形面积公式.二、几何论证型综合题的解答过程,要注意以下几个方面:1、注意图形的直观提示,注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形;2、注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础,要由已知联想经验,由未知联想需要,不断转化条件和结论来探求思路,找到解决问题的突破点;3、要运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题,还要灵活运用数学思想方法如数形结合、分类讨论、转化、方程等思想来解决问题.【典型例题】类型一、动态几何型问题1.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6),那么:⑴当t为何值时,△QAP为等腰直角三角形?⑵求四边形QAPC 的面积;提出一个与计算结果有关的结论;⑶当t 为何值时,以点Q 、A 、P 为顶点的三角形与△ABC 相似?【思路点拨】⑴中应由△QAP 为等腰直角三角形这一结论,需补充条件AQ=AP ,由AQ=6-t ,AP=2t ,可求出t 的值;⑵中四边形QAPC 是一个不规则图形,其面积可由矩形面积减去△DQC 与△PBC 的面积求出; ⑶中由于题目中未给出三角形的相似对应方式,因此需分类讨论.【答案与解析】【总结升华】本题是动态几何题,同时也是一道探究题.要求学生具有一定的发现、归纳和表达能力,这就要求我们通过计算分析,抓住其本质,揭示出变中不变的规律.四边形QAPC 的面积也可由△QAC 与△CAP 的面积求出,;⑶中考查了分类讨论的数学思想,结论具有一定的开放性.2.(永春县校级月考)如图,在梯形ABCD 中,AD ∥BC ,AD=3,CD=5,BC=10,梯形的高为4,动点M 从点B 出发沿线段BC 以每秒2个单位长度向终点C 运动;动点N 同时从点C 出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒(1)直接写出梯形ABCD 的中位线长;D AB C QP(2)当MN∥AB时,求t的值;(3)试探究:t为何值时,使得MC=MN.【思路点拨】(1)直接利用梯形中位线的定理求出即可;(2)平移梯形的一腰,根据平行四边形的性质和相似三角形的性质求解;(3)利用MC=MN时,结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.【答案与解析】解:(1)∵AD=3,BC=10,∴梯形ABCD的中位线长为:(3+10)÷2=6.5;(2)如图1,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形.∵MN∥AB,∴MN∥DG,∴BG=AD=3.∴GC=10﹣3=7.由题意知,当M、N运动到t秒时,CN=t,CM=10﹣2t.∵DG∥MN,∴△MNC∽△GDC.∴=,即=.解得,t=;(3)当MC=MN时,如图2,过M作MF⊥CN于F点,FC=NC=t.∵∠C=∠C,∠MFC=∠DHC=90°,∴△MFC∽△DHC,∴=,即=,解得:t=.综上所述,t=时,MC=MN.【总结升华】解决动点问题,首先就是要找谁在动,谁没动,通过分析动态条件和静态条件之间的关系求解,但是对于大多数题目来说,都有一个由动转静的拐点.3.(2016秋•泗阳县期末)(1)已知:如图1,△ABC为等边三角形,点D为BC边上的一动点(点D不与B、C重合),以AD为边作等边△ADE,连接CE.求证:①BD=CE,②AC=CE+CD;聪明的小明做完上题后进行了进一步变式探究.(2)如图2,在△ABC中,∠BAC=90°,AC=AB,点D为BC上的一动点(点D不与B、C重合),以AD 为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE,类比题(1),请你猜想线段BD、CD、DE之间会有怎样的关系,请直接写出,不需论证;(3)如图3,在(2)的条件下,若D点在BC的延长线上运动,以AD为边作等腰Rt△ADE,∠D AE=90°(顶点A、D、E按逆时针方向排列),连接CE.①题(2)的结论还成立吗?请说明理由;②连结BE,若BE=10,BC=6,求AE的长.【思路点拨】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,进而就可以得出△ABD≌△ACE,即可得出结论;②由△ABD≌△ACE,以及等边三角形的性质,就可以得出AC=DC+CE;(2)先判定△ABD≌△ACE(SAS),得出∠B=∠ACE=45°,BD=CE,在Rt△DCE中,根据勾股定理得出CE2+CD2=DE2,即可得到BD2+CD2=DE2;(3)①运用(2)中的方法得出BD2+CD2=DE2;②根据Rt△BCE中,BE=10,BC=6,求得=8,进而得出CD=8﹣6=2,在Rt△DCE中,求得,最后根据△ADE是等腰直角三角形,即可得出AE的长.【答案与解析】解:(1)①如图1,∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;②∵BD=CE,AC=BC,又∵BC=BD+CD,∴AC=CE+CD;(2)BD2+CD2=DE2.证明:如图2,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE=45°,BD=CE,∴∠B+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;(3)①(2)中的结论还成立.理由:如图3,∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABC=∠ACE=45°,BD=CE,∴∠ABC+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°=∠ECD,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;②∵Rt△BCE中,BE=10,BC=6,∴=8,∴BD=CE=8,∴CD=8﹣6=2,∴Rt△DCE中,∵△ADE是等腰直角三角形,==∴【总结升华】本题属于三角形综合题,主要考查了全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质以及勾股定理的综合应用.举一反三:【变式】△ABC是等边三角形,P为平面内的一个动点,BP=BA,若0︒<∠PBC<180°,且∠PBC平分线上的一点D满足DB=DA,(1)当BP与BA重合时(如图1),∠BPD= °;(2)当BP 在∠ABC 的内部时(如图2),求∠BPD 的度数;(3)当BP 在∠ABC 的外部时,请你直接写出∠BPD 的度数,并画出相应的图形.【答案】(1)∠BPD= 30°;(2)如图3,连结CD .∵ 点D 在∠PBC 的平分线上,∴ ∠1=∠2.∵ △ABC 是等边三角形,∴ BA=BC=AC ,∠ACB= 60°.∵ BP=BA ,∴ BP=BC .∵ BD= BD ,∴ △PBD ≌△CBD .∴ ∠BPD=∠3.∵ DB=DA ,BC=AC ,CD=CD ,∴ △BCD ≌△ACD .∴ 134302ACB ∠=∠=∠=︒.∴ ∠BPD =30°.(3)∠BPD= 30°或 150°.类型二、几何计算型问题【几何综合问题 例1 】4.如图,直角三角形纸片ABC 中,∠ACB=90°,AC=8,BC=6.折叠该纸片使点B 与点C 重合,折痕与AB 、BC 的交点分别为D 、E.(1) DE 的长为 ;(2) 将折叠后的图形沿直线AE剪开,原纸片被剪成三块,其中最小一块的面积等于.【答案与解析】【总结升华】考查了折叠的性质、直角三角形的性质、三角形中位线的性质以及相似三角形的判定与性质.此题难度适中,注意数形结合思想的应用,注意掌握折叠前后图形的对应关系,是一道典型的几何综合题.举一反三【变式】在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB′E,那么△AB′E与四边形AECD重叠部分的面积是 . 【答案】在Rt△ABE中,∵∠B=45°,AB=2,∴AE=BE=2 ,∴S △ABE =1.由翻折的性质可知:△AB ′E ≌△ABE ,∴EB ′=EB=2∴B ′C=BB ′-BC=22-2,∵四边形ABCD 是菱形,∴CF ∥BA .∴∠ B ′FC=∠B ′AB=90°, ∠B ′CF=∠B=45°∴CF='2B C ∴S B FC △' =221CF =3-22 ∴S 阴=S B E ′△A -S B FC′△=22-2.5.如图,在等腰梯形ABCD 中,AB∥DC,∠A=45°,AB=10 cm ,CD=4 cm ,等腰直角△PMN 的斜边MN=10 cm , A 点与N 点重合, MN 和AB 在一条直线上,设等腰梯形ABCD 不动,等腰直角△PMN 沿AB 所在直线以1 cm /s 的速度向右移动,直到点N 与点B 重合为止.(1)等腰直角△PMN 在整个移动过程中与等腰梯形ABCD 重叠部分的形状由________形变化为________形;(2)设当等腰直角△PMN 移动x (s)时,等腰直角△PMN 与等腰梯形ABCD 重叠部分的面积为y(cm 2),求y与x 之间的函数关系式;(3)当x=4 (s)时,求等腰直角△PMN 与等腰梯形ABCD 重叠部分的面积.【思路点拨】(1)根据已知求出∠PNM=∠DAB=45°,求出∠AEN ,根据等腰直角三角形的判定判断即可;推出∠DAB=∠PNM=45°,根据等腰梯形的判定判断即可;(2)可分为以下两种情况:①当0<x ≤6时,重叠部分的形状为等腰直角△EAN ,AN=x (cm ),过点E 作EH ⊥AB 于点H ,则EH 平分AN ,求出EH ,根据三角形的面积公式求出即可;②当6<x ≤10时,重叠部分的形状是等腰梯形ANED ,求出AN=x (cm ),CE=BN=10-x ,DE=x-6,过点D 作DF ⊥AB 于F ,过点C 作CG ⊥AB 于G ,求出DF ,代入梯形面积公式求出即可.【答案与解析】(1)等腰直角三角形;等腰梯形.(2)等腰直角△PMN 在整个移动过程中与等腰梯形ABCD 重合部分图形的形状可分为以下两种情况:①当0<x≤6时,重叠部分的形状为等腰直角△EAN(如图①).此时AN=x(cm),过点E作EH⊥AB于点H,则EH平分AN,∴EH=AN=x,∴y=S△ANE=AN·EH=x·x=.②当6<x≤10时,重叠部分的形状是等腰梯形ANED(如图②).此时,AN=x(cm),∵∠PNM=∠B=45°,∴EN∥BC,∵CE∥BN,∴四边形ENBC是平行四边形,CE=BN=10-x,DE=4-(10-x)=x-6,过点D作DF⊥AB于F,过点C作CG⊥AB于G,则AF=BG,DF=AF=(10-4)=3,∴y=S梯形ANED=(DE+AN)·DF=(x-6+x)×3=3x-9.综上,.(3)当等腰直角△PMN运动到PN边经过点D时,移动时间为6(s),∴当x=4 (s)时,y=x2=×42=4.∴当x=4 (s)时,等腰直角△PMN与等腰梯形ABCD重叠部分的面积是4cm2.【总结升华】本题主要考查对等腰梯形的性质和判定,等腰三角形的性质和判定,三角形的内角和定理,三角形的面积,平移的性质,等腰直角三角形等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.举一反三:【变式】如图,等腰梯形ABCD中,AB=15,AD=20,∠C=30°.点M、N同时以相同速度分别从点A、点D开始在AB、AD(包括端点)上运动.(1)设ND的长为x,用x表示出点N到AB的距离,并写出x的取值范围;(2)当五边形BCDNM面积最小时,请判断△AMN的形状.【答案】(1)过点N作BA的垂线NP,交BA的延长线于点P.则AM=x,AN=20-x.∵四边形ABCD是等腰梯形,AB∥CD,∠D=∠C=30°,∴∠PAN=∠D=30°.在Rt△APN中,PN=AN×sin∠PAN=(20-x),即N到AB距离为(20-x).∵点N在AD上,0≤x≤20,点M在AB上,0≤x≤15,∴x取值范围是0≤x≤15.(2)∵S五边形BCDNM=S梯形-S△AMN且S梯形为定值,∴当S五边形BCDMN最小时,应使S△AMN最大据(1),S△AMN=AM·NP=.∵<0,∴当x=10时,S△AMN有最大值.∴当x=10时,S五边形BCDNM有最小值.当x=10时,即ND=AM=10,AN=AD-ND=10,即AM=AN.则当五边形BCDNM面积最小时,△AMN为等腰三角形.。

江苏中考数学复习知识点及经典题型

江苏中考数学复习知识点及经典题型

知识点1:直角坐标系与点的位置1.直角坐标系中,点A (3,0)在y 轴上。

2.直角坐标系中,x 轴上的任意点的横坐标为0. 3.直角坐标系中,点A (1,1)在第一象限. 4.直角坐标系中,点A (-2,3)在第四象限. 5.直角坐标系中,点A (-2,1)在第二象限.知识点2:一元二次方程的基本概念1.一元二次方程3x 2+5x-2=0的常数项是-2.2.一元二次方程3x 2+4x-2=0的一次项系数为4,常数项是-2. 3.一元二次方程3x 2-5x-7=0的二次项系数为3,常数项是-7. 4.把方程3x(x-1)-2=-4x 化为一般式为3x 2-x-2=0.知识点3:基本函数的概念及性质1.函数y=-8x 是一次函数. 2.函数y=4x+1是正比例函数. 3.函数x y 21-=是反比例函数. 4.抛物线y=-3(x-2)2-5的开口向下. 5.抛物线y=4(x-3)2-10的对称轴是x=3. 6.抛物线2)1(212+-=x y 的顶点坐标是(1,2).7.反比例函数xy 2=的图象在第一、三象限. 知识点4:已知自变量的值求函数值1.当x=2时,函数y=32-x 的值为1. 2.当x=3时,函数y=21-x 的值为1.3.当x=-1时,函数y=321-x 的值为1.知识点5:数据的平均数中位数与众数1.数据13,10,12,8,7的平均数是10. 2.数据3,4,2,4,4的众数是4.3.数据1,2,3,4,5的中位数是3.知识点6:特殊三角函数值1.cos30°=23. 2.sin 260°+ cos 260°= 1.3.2sin30°+ tan45°= 2. 4.tan45°= 1.5.cos60°+ sin30°= 1.知识点7:圆的基本性质1.半圆或直径所对的圆周角是直角. 2.任意一个三角形一定有一个外接圆.3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. 4.在同圆或等圆中,相等的圆心角所对的弧相等. 5.同弧所对的圆周角等于圆心角的一半. 6.同圆或等圆的半径相等. 7.过三个点一定可以作一个圆. 8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等. 10.经过圆心平分弦的直径垂直于弦。

最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编

最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编

中考数学方程(组)与不等式(组)复习知识点总结一、方程【知识梳理】1、知识结构方程分式方程的应用分式方程的解法分式方程的概念分式方程的关系根的判别式,根与系数一元二次方程的解法念一元二次方程的有关概一元二次方程二元一次方程组的应用二元一次方程组的解法二元一次方程组一元一次方程的应用一元一次方程的解法一元一次方程整式方程2、知识扫描(1)只含有一个未知数,并且未知数的次数是1的整式方程,叫做一元一次方程。

(2)含有2个未知数,并且所含未知数的项的次数都是1次,这样的方程叫二元一次方程.(3)含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.(4)二元一次方程组的解法有法和法.(5)只含有1 个未知数,并且未知数的最高次数是2且系数不为0的整式方程,叫做一元二次方程,其一般形式为)0(02a cbx ax。

(6)解一元二次方程的方法有:①直接开平方法;②配方法;③公式法;④因式分解法例:(1)042x(2)0342x x(3)4722x x (4)0232x x(7)一元二次方程的根的判别式:ac b42叫做一元二次方程的根的判别式。

对于一元二次方程)0(02a cbx ax当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根;反之也成立。

(8)一元二次方程的根与系数的关系:如果)0(02acbx ax的两个根是21,x x 那么ab x x 21,ac x x 21(9)一元二次方程)0(02a cbx ax的求根公式:)04(2422ac baacb bx(10)分母中含有未知数的方程叫分式方程.(11)解分式方程的基本思想是将分式方程通过去分母转化为整式方程.◆解分式方程的步骤◆1、去分母,化分式方程为整式方程;◆2、解这个整式方程;◆3、验根。

注意:(1)解分式方程的基本思想是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.(2)因为解分式方程时可能产生增根,所以解分式方程必须检验,检验是解分式方程必要的步骤.二、不等式【知识梳理】1、知识结构解法性质概念不等式2、知识扫描(1) 只含有一个未知数,并且未知数的次数是1,系数不为 0 的不等式,叫做一元一次不等式。

苏教版初三重点与备考要点

苏教版初三重点与备考要点

苏教版初三重点与备考要点初三是学生们升入高中前的重要阶段,对于初三学生来说,掌握苏教版初三的重点知识和备考要点是至关重要的。

本文将就苏教版初三的重点与备考要点进行详细论述。

一、数学在数学科目中,初三学生应重点掌握以下知识点:1.立体几何:包括立体图形的计算、表面积和体积的计算等内容。

要重点掌握各种多面体的特征及计算方法。

2.方程与不等式:需要掌握一元一次方程、一元二次方程以及一元一次不等式和一元二次不等式的解法。

3.集合与函数:学生需要了解集合的概念、集合的表示方式以及集合运算;同时需要理解函数的定义、函数的特点以及函数的应用。

4.统计与概率:包括数据的收集和整理、频率分布、概率计算等内容。

要重点掌握常见的统计方法和概率计算方法。

备考要点:1.理清重点知识:通过系统地复习课本中的各章节内容,将重点知识点进行分类整理,弄清楚各个知识点之间的联系和应用。

2.做题巩固:做大量的习题,巩固基本知识,培养解题的思维能力。

同时要注意总结解题方法和技巧,把握常考题型的特点。

3.注意解题步骤:在解题过程中,要注重解题步骤和逻辑思维的清晰性,减少出错的可能性。

二、语文在语文科目中,初三学生应注重以下重点与备考要点:1.阅读与写作:要培养良好的阅读习惯,提高阅读理解和写作能力。

阅读理解要注重理解文章的主旨和细节,培养快速阅读和准确理解的能力。

写作要注重逻辑清晰、语言表达准确、修辞得当。

2.古诗文:要熟悉重要的古代文学作品以及文学常识。

了解古代文学的特点和流派,理解古代文化的内涵。

3.现代文阅读:要关注时事热点,了解社会发展变化。

注重文学鉴赏和理解,提高阅读文学作品的能力。

备考要点:1.多读多练:多读优秀的文学作品,注重理解和品味作品的内涵。

多做阅读理解的练习,培养快速准确理解的能力。

2.加强写作训练:做好写作准备,积累素材,提高表达和组织能力。

多写作文,模拟考试的形式进行训练。

3.注重积累与总结:对课文内容要进行总结与归纳,积累重点词汇和短语,做好重点知识的梳理,为备考复习提供便利。

苏教版中考知识点

苏教版中考知识点

苏教版中考知识点1. 苏教版中考数学知识点:a. 整数与分数:包括整数的意义、比较大小、四则运算等基本运算法则;分数的概念、简便法、比较大小、四则运算、化简等。

b. 代数与方程:包括代数式的概念、加减乘除法则、多项式的乘法、因式分解、整式的运算等;方程的概念、一元一次方程与一元一次方程组的解法等。

c. 几何与图形:包括几何图形的概念、性质、分类与判定、面积与体积计算等;坐标系与图形的位置关系、对称性等。

d. 数据与统计:包括数据的收集、整理、统计与表示、图表的制作与分析、平均数的计算等。

2. 苏教版中考语文知识点:a. 词语与句子:包括词的意义与形式、词的分类与辨析、词语的使用与运用等;句子的类型、基本成分、语序与语法错误等。

b. 阅读与理解:包括文章的主旨、段落的结构、词句的含义、推理与评论等;常见修辞手法的辨析与运用等。

c. 写作与表达:包括记叙文、说明文、议论文等文体的特点与写作规范;写作技巧与表达能力的提升、作文结构与语言的合理运用。

d. 古代文学与现代文学:包括古代文学作品的阅读与分析、作者的生平与创作背景、流派与风格等;现代文学的发展与演变、经典作品与当代文学的代表作等。

3. 苏教版中考英语知识点:a. 词汇与语法:包括基本词汇、短语与常用句型的掌握与运用、基本语法知识的理解与运用等。

b. 听力与口语:包括听力技巧的培养、基础对话与日常交际用语的练习、口语表达与交流的能力等。

c. 阅读与理解:包括阅读材料的理解与推测、识别文章的主题、主旨、作者意图等;基础阅读理解题、完型填空题的解答技巧等。

d. 写作与表达:包括书面表达的能力与技巧、作文的结构与语言运用等。

以上是苏教版中考常见的数学、语文、英语知识点的简要总结,希望能对你的学习有所帮助。

苏教版数学中考复习之专题四方程与方程组

苏教版数学中考复习之专题四方程与方程组

实用标准文案中考复习之专题四方程与方程组教学准备一. 教学目标:1.掌握一元一次方程、二元一次方程组、一元二次方程、分式方程的定义,2.使学生掌握解方程的根本思想、方法、步骤。

并能熟练运用各技巧解一元一次方程、二元一次方程组、一元二次方程、分式方程。

3.列一元一次方程二元一次方程组、一元二次方程、分式方程解应用题。

二 .教学重点与难点1.一元二次方程、分式方程的解法及其运用2.列方程解决生活实际中的问题三 . 知识要点知识点 1、方程〔组〕的解〔整数解〕等概念。

使等式左右两边相等的未知数的值叫做方程的解知识点 2、一元一次方程及二元一次方程组的定义只含有一个未知数并且未知数的次数是 1 系数不为0 的方程叫做一元一次方程几个二元一次方程组成一组,叫做二元一次方程组知识点 3、一元一次方程、二元一次方程组的解法一元一次方程的解法是:去分母,去括号,移项,合并同类,系数化为1二元一次方程组的解法是:通过加减,代入消元转化为一元一次方程知识点 4、一元一次方程与一次函数、一元一次不等式之间的关系当为二元一次方程中的一个未知数的取值确定范围时,可利用一元一次不等式组确定另一个未知数的取值范围由于任何二元一次方程都可以转化为一次函数的形式,所以解二元一次方程可以转化为:当y=0时,求x 的值。

从图象上看,这相当于纵坐标,确定横坐标的值。

知识点 5、一元二次方程的定义ax2+ bx+c=0〔a≠0〕,a,b, c 均为常数,尤其a 不为零要切记。

知识点 6、一元二次方程的几种解法如因式分解法、公式法等,弄清化一元二次方程为一元一次方程的转化思想。

知识点 7、分式方程的解法〔1〕去分母,把分式方程转化为整式方程〔2〕解整式方程〔3〕检验知识点 8、解分式方程要验根的原因解分式方程时我们在方程的两边同乘了一个可能使分母为0 的整式 .文档因为解分式方程可能产生增根,所以解分式方程必须检验.知识点 9、关于行程、工程、储蓄、打折销售等根本类型应用题的分析掌握生活中问题的数学建模的方法,多做一些综合性的训练。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版中考数学总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:方程与不等式综合复习—知识讲解(基础)【考纲要求】1.会从定义上判断方程(组)的类型,并能根据定义的双重性解方程(组)和研究分式方程的增根情况;2.掌握解方程(组)的方法,明确解方程组的实质是“消元降次”、“化分式方程为整式方程”、“化无理式为有理式”;3.理解不等式的性质,一元一次不等式(组)的解法,在数轴上表示解集,以及求特殊解集;4.列方程(组)、列不等式(组)解决社会关注的热点问题;5. 解方程或不等式是中考的必考点,运用方程思想与不等式(组)解决实际问题是中考的难点和热点.【知识网络】【考点梳理】考点一、一元一次方程1.方程含有未知数的等式叫做方程. 2.方程的解能使方程两边相等的未知数的值叫做方程的解. 3.等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式. (2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式. 4.一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项. 5.一元一次方程解法的一般步骤整理方程 —— 去分母—— 去括号—— 移项—— 合并同类项——系数化为1——(检验方程的解).6.列一元一次方程解应用题(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且根据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看作已知量),填入有关的代数式是获得方程的基础. 要点诠释:列方程解应用题的常用公式:(1)行程问题: 距离=速度×时间 时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效×工时 工时工作量工效=工效工作量工时=; (3)比率问题: 部分=全体×比率 全体部分比率= 比率部分全体=;(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; (5)商品价格问题: 售价=定价·折·101,利润=售价-成本, %100⨯-=成本成本售价利润率;(6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abh ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h.考点二、一元二次方程 1.一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程. 2.一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项. 3.一元二次方程的解法(1)直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法.直接开平方法适用于解形如b a x =+2)(的一元二次方程.根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根.(2)配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用.配方法的理论根据是完全平方公式2222()a ab b a b ±+=±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±.(3)公式法公式法是用求根公式求一元二次方程的解的方法,它是解一元二次方程的一般方法.一元二次方程)0(02≠=++a c bx ax 的求根公式:21,240)2b x b ac a-±=-≥ (4)因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法.4.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆. 5.一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么ab x x -=+21,a cx x =21.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商. 要点诠释:一元二次方程的解法中直接开平方法和因式分解法是特殊方法,比较简单,但不是所有的一元二次方程都能用这两种方法去解,配方法和公式法是普通方法,一元二次方程都可以用这两种方法去解.考点三、分式方程 1.分式方程分母里含有未知数的方程叫做分式方程.2.解分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”.它的一般解法是:①去分母,方程两边都乘以最简公分母;②解所得的整式方程;③验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根.3.分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法.要点诠释:解分式方程时,求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根.考点四、二元一次方程(组)1.二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是ax+by=c(a≠0,b≠0).2.二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解.3.二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组.4.二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.5.二元一次方程组的解法①代入消元法;②加减消元法.6.三元一次方程(组)(1)三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程叫三元一次方程.(2)三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.要点诠释:二元一次方程组的解法:消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想.(1)代入消元法:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法.考点五、不等式(组)1.不等式的概念(1)不等式用不等号表示不等关系的式子,叫做不等式.(2)不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式.2.不等式基本性质(1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;(2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变;(3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变.3.一元一次不等式(1)一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.(2)一元一次不等式的解法解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤将x项的系数化为1.4.一元一次不等式组(1)一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式组.当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集.(2)一元一次不等式组的解法①分别求出不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.要点诠释:用符号“<”“>”“≤”“≥”“≠”表示不等关系的式子,叫做不等式.【典型例题】类型一、方程的综合运用1.如图所示,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于, y ax by kx=+⎧⎨=⎩的二元一次方程组的解是________.【思路点拨】两图象的交点就是方程组的解. 【答案】4,2x y =-⎧⎨=-⎩【解析】由图象可知y =ax+b 与y =kx 的交点P 的坐标为(-4,-2),所以二元一次方程组,y ax b y kx =+⎧⎨=⎩的解为4,2.x y =-⎧⎨=-⎩【总结升华】方程组与函数图象结合体现了数形结合的数学思想,这也是中考所考知识点的综合与相互渗透,平时应加强这方面的练习与思考.举一反三:【变式】已知关于x 的一元二次方程()0312=-+--m x m x .(1)求证:不论m 取何值时,方程总有两个不相等的实数根.(2)若直线()31+-=x m y 与函数m x y +=2的图象的一个交点的横坐标为2,求关于x 的一元二次方程()0312=-+--m x m x 的解.【答案】(1)证明:()[]()3412----=∆m m124122+-+-=m m m 1362+-=m m ()432+-=m∵不论m 取何值时,()032≥-m ∴()0432>+-m ,即0>∆∴不论m 取何值时,方程总有两个不相等的实数根.. (2)将2=x 代入方程()0312=-+--m x m x ,得3=m再将3=m 代入,原方程化为022=-x x , 解得2,021==x x .2.已知: 关于x 的一元一次方程kx =x +2 ①的根为正实数,二次函数y =ax 2-bx +kc (c ≠0)的图象与x 轴一个交点的横坐标为1.(1)若方程①的根为正整数,求整数k 的值;(2)求代数式akcab b kc +-22)(的值;(3)求证: 关于x 的一元二次方程ax 2-bx +c =0 ②必有两个不相等的实数根. 【思路点拨】(1)根据一元一次方程及根的条件,求k 的值; (2)把交点坐标代入二次函数的解析式求出值;(3)根据根的判别式和一元一次方程的根为正实数得出x 有两不相等的实数根.【答案与解析】(1)解:由 kx =x +2,得(k -1) x =2.依题意 k -1≠0.∴ 12-=k x . ∵ 方程的根为正整数,k 为整数, ∴ k -1=1或k -1=2. ∴ k 1= 2, k 2=3.(2)解:依题意,二次函数y=ax 2-bx+kc 的图象经过点(1,0), ∴ 0 =a-b+kc, kc = b-a .∴222222222a ab ab b a ab b a b a ab b a b akc ab b kc -+-+-=-+--=+-)()()(=.122-=--a ab aba(3)证明:方程②的判别式为 Δ=(-b)2-4ac= b 2-4ac.由a ≠0, c ≠0, 得ac ≠0.( i ) 若ac<0, 则-4ac>0. 故Δ=b 2-4ac>0. 此时方程②有两个不相等的实数根.( ii ) 证法一: 若ac>0, 由(2)知a-b+kc =0, 故 b=a+kc.Δ=b 2-4ac= (a+kc)2-4ac=a 2+2kac+(kc)2-4ac = a 2-2kac+(kc)2+4kac-4ac=(a-kc)2+4ac(k-1).∵ 方程kx=x+2的根为正实数, ∴ 方程(k-1) x=2的根为正实数.由 x>0, 2>0, 得 k-1>0. ∴ 4ac(k-1)>0.∵ (a-kc)2≥0,∴Δ=(a-kc)2+4ac(k-1)>0. 此时方程②有两个不相等的实数根. 证法二: 若ac>0,∵ 抛物线y=ax 2-bx+kc 与x 轴有交点,∴ Δ1=(-b)2-4akc =b 2-4akc ≥0. (b 2-4ac)-( b 2-4akc)=4ac(k-1).由证法一知 k-1>0,∴ b 2-4ac> b 2-4akc ≥0.∴ Δ= b 2-4ac>0. 此时方程②有两个不相等的实数根. 综上, 方程②有两个不相等的实数根. 【总结升华】方程与函数综合题. 中考所考知识点的综合与相互渗透. 举一反三:【变式】已知关于x 的一元二次方程0)2()1(22=+---m m x m x .(1)若x=-2是这个方程的一个根,求m 的值和方程的另一个根; (2)求证:对于任意实数m ,这个方程都有两个不相等的实数根. 【答案】(1)解:把x =-2代入方程,得0)2()2()1(24=+--⋅--m m m ,即022=-m m .解得01=m ,22=m .当0=m 时,原方程为022=+x x ,则方程的另一个根为0=x . 当2=m 时,原方程为0822=+-x x ,则方程的另一个根为4=x . (2)证明:[][])2(4)1(22+-⨯---m m m 482+=m ,∵对于任意实数m ,02≥m , ∴0482>+m . ∴对于任意实数m ,这个方程都有两个不相等的实数根.类型二、解不等式(组)3.(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【思路点拨】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可. 【答案与解析】 解:,∵解不等式①得:x ≤1, 解不等式②得:x >﹣2,∴不等式组的解集为:﹣2<x ≤1. 在数轴上表示不等式组的解集为:【总结升华】注意解不等式组的解题步骤,在数轴上表示不等式组时,能根据不等式的解集找出不等式组的解集. 举一反三:【变式】(2014•泗县校级模拟)求不等式组的整数解,并在数轴上表示出来.【答案】 解:,由①得:x >﹣2, 由②得:x≤6,∴不等式组的解集是:﹣2<x≤6.∴整数解是:﹣1,0,1,2,3,4,5,6. 在数轴上表示出来为:.类型三、方程(组)与不等式(组)的综合应用4.如果关于x 的方程22124x m x x +=--的解也是不等式组12,22(3)8xx x x -⎧>-⎪⎨⎪-≤-⎩的一个解, 求m 的取值范围.【思路点拨】解方程求出x 的值(是用含有m 的式子表示的),再解不等式组求出x 的取值范围,最后方程的解与不等式组的解结合起来求m 的取值范围. 【答案与解析】解方程22124x mx x +=--,得x =-m-2. 因为24(4)x m m -=+,所以m ≠-4且m ≠0时,有240x -≠. 所以方程22124x mx x +=--的解为x =-m-2. 其中m ≠-4且m ≠0.解不等式组12,22(3)8,xx x x -⎧>-⎪⎨⎪-≤-⎩得x ≤-2.由题意,得-m-2≤-2,解得m ≥0.所以m 的取值范围是m >0.【总结升华】方程与不等式的综合题,是中考考查的重点之一. 举一反三:【课程名称:方程与不等式综合复习 405277 :例1】【变式】如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .【答案】解不等式组得:34-22b a x +≤<,因为不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,所以4-20312a b =⎧⎪⎨+=⎪⎩ 解得21a b =⎧⎨=-⎩所以1a b +=.5. 某采摘农场计划种植B A 、两种草莓共6亩,根据表格信息,解答下列问题:(1)若该农场每年草莓全部被采摘的总收入为46000O 元,那么B A 、两种草莓各种多少亩?(2)若要求种植A 种草莓的亩数不少于种植B 种草莓的一半,那么种植A 种草莓多少亩时,可使该农场每年草莓全部被采摘的总收入最多? 【思路点拨】(1)根据等量关系:总收入=A 地的亩数×年亩产量×采摘价格+B 地的亩数×年亩产量×采摘价格,列方程求解;(2)这是一道只有一个函数关系式的求最值问题,根据题意确定自变量的取值范围,由函数y 随x 的变化求出最大利润.【答案与解析】设该农场种植A 种草莓x 亩,B 种草莓)6(x -亩 依题意,得:460000)6(200040120060=-⨯+⨯x x 解得:5.2=x , 5.36=-x (2)由)6(21x x -≥,解得2≥x 设农场每年草莓全部被采摘的收入为y 元,则:4800008000)6(200040120060+-=-⨯+⨯=x x x y ∴当2=x 时,y 有最大值为464000答:(l)A 种草莓种植2.5亩, B 种草莓种植3.5亩.(2)若种植A 种草莓的亩数不少于种植B 种草莓的一半,那么种植A 种草莓2亩时,可使农场每年草莓全部被采摘的总收入最多.【总结升华】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y 随x 的变化,结合自变量的取值范围确定最值. 举一反三:【变式】某运输公司用10辆相同的汽车将一批苹果运到外地,每辆汽车能装8吨甲种苹果,或10吨乙种苹果,或11吨丙种苹果.公司规定每辆车只能装同一种苹果,而且必须 满载.已知公司运送了甲、乙、丙三种苹果共100吨,且每种苹果不少于一车.(1)设用x 辆车装甲种苹果,y 辆车装乙种苹果,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2设此次运输的利润为W (万元),问:如何安排车辆分配方案才能使运输利润W 最大,并求出最大利润.【答案】(1)∵ 81011(10)100x y x y ++--=,∴ y 与x 之间的函数关系式为 310y x =-+.∵ y ≥1,解得x ≤3.∵ x ≥1,10x y --≥1,且x 是正整数,∴ 自变量x 的取值范围是x =1或x =2或x =3.(2)80.22100.2111(10)0.20.1421W x y x y x =⨯+⨯+--⨯=-+.因为W 随x 的增大而减小,所以x 取1时,可获得最大利润,此时20.86W =(万元).获得最大运输利润的方案为:用1辆车装甲种苹果,用7辆车装乙种苹果,2辆车装丙种苹果.类型四、用不等式(组)解决决策性问题6.为了美化家园,创建文明城市,园林部门决定利用现有的3600盆甲种花卉和2900盆乙种花卉综合上述信息,解答下列问题:(1)符合题意的搭配方案有哪儿种?(2)若搭配一个A 种造型的成本为1000元,搭配一个B 种选型的成本为1200元,试说明选用(1)中哪种方案成本最低?【思路点拨】本题首先需要从文字和表格中获取信息,建立不等式(组),然后求出其解集,根据实际问题的意义,再求出正整数解,从而确定搭配方案.【答案与解析】解:(1)设搭配x 个A 种造型,则需要搭配(50-x)个B 种造型,由题意,得9040(50)3600,30100(50)2900,x x x x +-≤⎧⎨+-≤⎩解得30≤x ≤32. 所以x 的正整数解为30,31,32.所以符合题意的方案有3种,分别为:A 种造型30个,B 种造型20个;A 种造型31个,B 种造型19个;A 种造型32个,B 种造型18个.(2)由题意易知,三种方案的成本分别为:第一种方案:30×1000+20×1200=54000;第二种办案:31×1000+19×1200=53800;第三种方案:32×1000+18×1200=53600.所以第三种方案成本最低.【总结升华】实际问题的“最值问题”一般是指“成本最低”、“利润最高”、“支出最少”等问题. 举一反三:【课程名称:方程与不等式综合复习 405277:例4】【变式】某商场“家电下乡”指定型号冰箱,彩电的进价和售价如下表所示:(1)按国家政策,购买“家电下乡”产品享受售价13%的政府补贴.若到该商场购买了冰箱,彩电各一台,可以享受多少元的补贴?(2)为满足需求,商场决定用不超过85000元采购冰箱,彩电共40台,且冰箱的数量不少于彩电数量 的56. ①请你帮助该商场设计相应的进货方案;②用哪种方案商场获得利润最大?(利润=售价-进价),最大利润是多少?【答案】(1)(2420+1980)×13%=572(元)(2)①设冰箱采购x 台,则彩电采购(40-x )台,解不等式组得231821117x ≤≤,因为x 为整数,所以x =19、20、21, 方案一:冰箱购买19台,彩电购买21台,方案二:冰箱购买20台,彩电购买20台,方案一:冰箱购买21台,彩电购买19台.②设商场获得总利润为y 元,则y =(2420-2320)x +(1980-1900)(40-x )=20x +3200∵20>0,∴y 随x 的增大而增大,∴当x =21时,y 最大=20×21+3200=3620(元).。

相关文档
最新文档