2012年中考数学二轮复习考点解密 阅读理解型问题含11真题带解析
2012年中考数学复习考点解密 选择题解题方法(含解析)
2012年中考数学二轮复习考点解密选择题解题方法第一部分讲解部分一.专题诠释选择题是各地中考必考题型之一,2011年各地命题设置上,选择题的数目稳定在8~12题,这说明选择题有它不可替代的重要性.选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养.二.解题策略与解法精讲选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做.解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效.三.考点精讲考点一:直接法从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。
运用此种方法解题需要扎实的数学基础.例1.(2011•广西省柳州市)九(3)班的50名同学进行物理、化学两种实验测试,经最后统计知:物理实验做对的有40人,化学实验做对的有31人,两种实验都做错的有4人,则这两种实验都做对的有()A.17人B.21人C.25人D.37人分析:设这两种实验都做对的有x人,根据九(3)班的50名同学进行物理、化学两种实验测试,经最后统计知:物理实验做对的有40人,化学实验做对的有31人,两种实验都做错的有4人可列方程求解.解:设这两种实验都做对的有x人,(40﹣x)+(31﹣x)+x+4=50,x=25.故都做对的有25人.故选C.评注:本题考查理解题意的能力,关键是以人数做为等量关系构造方程直接求解.考点二:特例法运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。
2012年陕西省中考数学试题分析
2012年陕西省中考数学试题分析初中教育考试网更新:2012-7-6 编辑:静子2012年陕西省中考数学试题分析中考数学刚刚结束,学生们踏出考场纷纷反映,试题几乎与新东方点题会老师所述相差不大,重难点突出,同时参加完模考班的学生更是喜出望外,压轴题与模考班试卷压轴题雷同,同为三角形的内接正方形问题,第二问所用解题思路几乎一致。
下面就为大家解读一下今年的数学中考真题。
【试题结构】今年试题结构较近几年无大的变化,稳定性较强,从题型上看,填空、选择题所占分值为48分,占到了全卷的40%,解答题所占分值为72分,占到了全卷的60%。
从考试内容来看,填空选择注重考查基础知识,考点比较单一,解答题考查内容更为固定,分式的化简、简单的几何证明、统计、测量问题、一次函数的应用、概率、圆的证明、函数与几何仍然是今年解答题考查范围,而压轴题依然延续了以几何题为背景的代几综合题型。
【试题难度】今年考题基本符合4:3:2:1的难度分布,但较去年考题,总体难度有所加大,主要体现在第24题与第25题上。
由于今年不考梯形,以往较难的第16题考点变化,难度有所降低,而第21题一次函数的应用较往年却是大大降低了难度,学生反映“非常容易”。
【重点题型分析】今年考题代数部分重点知识仍然以函数为主线,而几何部分主要围绕着全等以及位似变换,如下就几个重要题型进行简单的分析:1、第10题:作为选择题的压轴题,今年仍然选择了考查二次函数的平移,此类问题是第10题的常考考点,此题难度不大,能做对的学生比较多。
2、第16题:同样作为填空题的压轴,此题年年都是学生们的痛点,得分率不高,但今年梯形退出阵营后,改为利用相似解决的轴对称问题,较往年的梯形辅助线问题难度有所降低,但仍需要细心作答。
总体看来,往年的梯形问题,我们有梯形的辅助线模型,而今年的相似问题,可以利用十大相似模型仍能轻松解决。
3、第24题:今年考题总体难度的加大,第24题是功不可没的,此题虽然延续了二次函数与几何的综合题型,但考察到了等腰三角形、矩形多个几何图形的同时,还涉及到中心对称以及最值问题,考点众多,综合性较强,难度略为偏难,但对于基础扎实,思维灵活的学生来说,此题应不会有太大的困难。
2012年全国中考数学试题分类解析汇编
2012年全国中考数学试题分类解析汇编专题11:方程(组)的应用一、选择题1. (2012宁夏区3分)小颖家离学校1200米3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为【】A.3x5y1200x y16+=⎧⎨+=⎩B.35x y 1.26060x y16⎧+=⎪⎨⎪+=⎩C.3x5y 1.2x y16+=⎧⎨+=⎩D.35x y12006060x y16⎧+=⎪⎨⎪+=⎩【答案】B。
【考点】由实际问题抽象出二元一次方程组。
【分析】要列方程,首先要根据题意找出存在的等量关系。
本题等量关系为:上坡用的时间×上坡的速度+下坡用的时间×下坡速度=1200,上坡用的时间+下坡用的时间=16。
把相关数值代入(注意单位的通一),得35x y 1.26060x y16⎧+=⎪⎨⎪+=⎩。
故选B。
2. (2012宁夏区3分)运动会上,初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x元,根据题意可列方程为【】.A.4030201.5x x-=B.403020x 1.5x-=C.304020x 1.5x-=D.3040201.5x x-=【答案】B。
【考点】由实际问题抽象出分式方程。
【分析】要列方程,首先要根据题意找出存在的等量关系。
本题等量关系为:甲种雪糕数量比乙种雪糕数量多20根。
而甲种雪糕数量为40x,乙种雪糕数量为301.5x。
(数量=金额÷价格)从而得方程:403020x 1.5x-=。
故选B。
3. (2012广东湛江4分)湛江市2009年平均房价为每平方米4000元.连续两年增长后,2011年平均房价达到每平方米5500元,设这两年平均房价年平均增长率为x,根据题意,下面所列方程正确的是【】A.5500(1+x)2=4000 B.5500(1﹣x)2=4000 C.4000(1﹣x)2=5500 D.4000(1+x)2=5500【答案】D。
2012年全国各地中考数学阅读理解型问题试题(附答案)
2012年全国各地中考数学阅读理解型问题试题(附答案)2012年全国各地中考数学解析汇编39 阅读理解型问题 21.(2012四川达州,21,8分)(8分)�の侍獗尘�若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为,面积为,则与的函数关系式为:�0),利用函数的图象或通过配方均可求得该函数的最大值. 提出新问题若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?分析问题若设该矩形的一边长为,周长为,则与的函数关系式为:(�0),问题就转化为研究该函数的最大(小)值了. 解决问题借鉴我们已有的研究函数的经验,探索函数(�0)的最大(小)值.(1)实践操作:填写下表,并用描点法�せ�出函数(�0)的图象:(2)观察猜想:观察该函数的图象,猜想当 = 时,函数(�0)有最值(填“大”或“小”),是 . (3)推理论证:问题背景中提到,通过配方可求二次函数�0)的最大值,请你尝试通过配方求函数(�0)的最大(小)值,以证明你的猜想. 〔提示:当>0时,〕解析:对于(1)按照画函数图象的列表、描点、连线三步骤进行即可;对于(2),由结合图表可知有最小值为4;对于(3),可按照提示,用配方法来求出。
答案:(1) …………………………………………..(1分)………………………………………….(3分)(2)1、小、4………………………………………………………………………..(5分)�ィ�3)证明:………………………………………………(7分)�さ�时,的最小值是4 �ぜ� =1时,的最小值是4………………………………………………………..(8分)点评:本题以阅读理解型的形式,考查学生画函数图象的基本步骤及结合图表求函数最值的观察力,考察了学生的模仿能力、配方思想和类比的能力。
28.(2012江苏省淮安市,28,12分)阅读理解如题28-1图,△ABC 中,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿∠B1A1C 的平分线A1B2折叠,剪掉重叠部分;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合.无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC是△ABC的好角.小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如题28-2图,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如题28-3图,沿△ABC的∠BAC的平分线AB1折叠,剪掉重叠部分;将余下的部分沿∠B1A1C的平分线 A1B2折叠,此时点B1与点C重合.探究发现(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角? .(填:“是”或“不是”). (2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC 的好角,则∠B与∠C(不妨设∠B>∠C)之问的等量关系为.应用提升 (3)小丽找到一个三角形,三个角分别为15º,60º,l05º,发现60º和l05º的两个角都是此三角形的好角.请你完成,如果一个三角形的最小角是4º,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.【解析】(1)利用三角形外角的性质和折叠对称性即可解决;(2)根据第(1)问的结论继续探索;(3)利用“好角”的定义和三角形内角和列出方程解之.具体过程见以下解答.【答案】解: (1) 由折叠的性质知,∠B=∠AA1B1.因为∠AA1B1=∠A1B1C+∠C,而∠B=2∠C,所以∠A1B1C=∠C,就是说第二次折叠后∠A1B1C与∠C重合,因此∠BAC是△ABC的好角. (2)因为经过三次折叠∠BAC是△ABC的好角,所以第三次折叠的∠A2B2C=∠C.如图12-4所示. 图12-4 因为∠ABB1=∠AA1B1,∠AA1B1=∠A1B1C+∠C,又∠A1B1C=∠A1A2B2,∠A1A2B2=∠A2B2C+∠C,所以∠ABB1=∠A1B1C+∠C=∠A2B2C+∠C+∠C=3∠C.由上面的探索发现,若∠BAC是△ABC的好角,折叠一次重合,有∠B=∠C;折叠二次重合,有∠B=2∠C;折叠三次重合,有∠B=3∠C;…;由此可猜想若经过n次折叠∠BAC是△ABC的好角,则∠B=n∠C.(3)因为最小角是4º是△ABC的好角,根据好角定义,则可设另两角分别为4mº,4mnº(其中m、n都是正整数).由题意,得4m+4mn+4=180,所以m(n+1)=44.因为m、n都是正整数,所以m与n+1是44的整数因子,因此有:m=1,n+1=44;m=2,n+1=22;m=4,n+1=11;m=11,n+1=4;m=22,n+1=2.所以m=1,n=43;m=2,n=21;m=4,n=10;m=11,n=3;m=22,n=1.所以4m=4,4mn=172;4m=8,4mn=168;4m=16,4mn=160;4m=44,4mn=132;4m=88,4mn=88.所以该三角形的另外两个角的度数分别为:4º,172º;8º,168º;16º,160º;44º,132º;88º,88º.【点评】本题主要考查轴对称图形、等腰三角形、三角形形的内角和定理及因式分解等知识点的理解和掌握,本题是阅读理解题,解决本题的关键是读懂题意,理清题目中数字和字母的对应关系和运算规则,然后套用题目提供的对应关系解决问题,具有一定的区分度.23.(2012湖北咸宁,23,10分)如图1,矩形MNPQ中,点E,F,G,H分别在NP,PQ,QM,MN上,若,则称四边形EFGH为矩形MNPQ的反射四边形.图2,图3,图4中,四边形ABCD为矩形,且,.理解与作图:(1)在图2、图3中,点E,F分别在BC,CD边上,试利用正方形网格在图上作出矩形ABCD的反射四边形EFGH.计算与猜想:(2)求图2,图3中反射四边形EFGH的周长,并猜想矩形ABCD的反射四边形的周长是否为定值?启发与证明:(3)如图4,为了证明上述猜想,小华同学尝试延长GF交BC的延长线于M,试利用小华同学给我们的启发证明(2)中的猜想.【解析】(1)根据网格结构,作出相等的角得到反射四边形;(2)图2中,利用勾股定理求出EF=FG=GH=HE的长度,然后可得周长;图3中利用勾股定理求出EF=GH,FG=HE的长度,然后求出周长,得知四边形EFGH的周长是定值;(3)证法一:延长GH交CB的延长线于点N,再利用“角边角”证明Rt△FCE≌Rt△FCM,根据全等三角形对应边相等可得EF=MF,EC=MC,同理求出NH=EH,NB=EB,从而得到MN=2BC,再证明GM=GN,过点G作GK⊥BC于K,根据等腰三角形三线合一的性质求出MK= MN=8,再利用勾股定理求出GM的长度,然后可求出四边形EFGH的周长;证法二:利用“角边角”证明Rt△FCE≌Rt△FCM,根据全等三角形对应边相等可得EF=MF,EC=MC,再根据角的关系推出∠M=∠HEB,根据同位角相等,两直线平行可得HE∥GF,同理可证GH∥EF,所以四边形EFGH是平行四边形,过点G作GK⊥BC于K,根据边的关系推出MK=BC,再利用勾股定理列式求出GM的长度,然后可求出四边形EFGH的周长.【答案】(1)作图如下: 2分(2)解:在图2中,,∴四边形EFGH的周长为. 3分在图3中,,.∴四边形EFGH的周长为. 4分猜想:矩形ABCD的反射四边形的周长为定值. 5分(3)如图4,证法一:延长GH交CB 的延长线于点N.∵ ,,∴ .而,∴Rt△FCE≌Rt△FCM.∴ ,. 6分同理:,.∴ . 7分∵ ,,∴ .∴ . 8分过点G作GK⊥BC于K,则. 9分∴.∴四边形EFGH的周长为. 10分证法二:∵ ,,∴ .而,∴Rt△FCE≌Rt△FCM.∴ ,. 6分∵ ,,而,∴ .∴HE∥GF.同理:GH∥EF.∴四边形EFGH是平行四边形.∴ .而,∴Rt△FDG≌Rt△HBE.∴ .过点G作GK⊥BC 于K,则∴ .∴四边形EFGH的周长为.【点评】本题主要考查了应用与设计作图,全等三角形的判定与性质,勾股定理的应用,矩形的性质,读懂题意理解“反射四边形EFGH”特征是解题的关键.25.(2012贵州黔西南州,25,14分)问题:已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y,则y=2x,所以x=y2.把x=y2代入已知方程,得(y2)2+y2-1=0.化简,得:y2+2y-4=0.故所求方程为y2+2y-4=0.这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”求新方程(要求:把所求方程化成一般形式): (1)已知方程x2+x-2=0,求一个一元二次方程,使它的根分别是已知方程根的相反数. (2)已知关于x的一元二次方程ax2+bx+c=0(a≠0)有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.【解析】按照题目给出的范例,对于(1)的“根相反”,用“y=-x”作替换;对于(2)的“根是倒数”,用“y=1x”作替换,并且注意有“不等于零的实数根”的限制,要进行讨论.【答案】(1)设所求方程的根为y,则y=-x,所以x=-y.………………(2分) 把x=-y代入已知方程x2+x-2=0,得(-y)2+(-y)-2=0.………………(4分) 化简,得:y2-y-2=0.………………(6分) (2)设所求方程的根为y,则y=1x,所以x=1y.………………(8分) 把x=1y 代如方程ax2+bx+c=0得. a(1y)2+b•1y+c=0,………………(10分) 去分母,得,a+by+cy2=0.……………………(12分) 若c=0,有ax2+bx=0,于是方程ax2+bx+c=0有一个根为0,不符合题意.∴c≠0,故所求方程为cy2+by+a=0(c≠0).……………………(14分) 【点评】本题属于阅读理解题,读懂题意,理解题目讲述的方法的基础;在实际解题时,还要灵活运用题目提供的方法进行解题,实际上是数学中“转化”思想的运用.八、(本大题16分) 26.(2012贵州黔西南州,26,16分)如图11,在平面直角坐标系xoy中,已知抛物线经过点A(0,4),B(1,0),C(5,0)抛物线的对称轴l与x轴相交于点M. (1)求抛物线对应的函数解析式和对称轴. (2)设点P为抛物线(x>5)上的一点,若以A、O、M、P为顶点的四边形的四条边的长度为四个连续的正整数.请你直接写出点P的坐标. (3)连接AC,探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出N的坐标;若不存在,请说明理由.【解析】(1)已知抛物线上三点,用“待定系数法”确定解析式;(2)四边形AOMP中,AO=4,OM=3,过A作x轴的平行线交抛物线于P点,这个P点符合要求“四条边的长度为四个连续的正整数”;(3)使△NAC的面积最大,AC确定,需要N点离AC的距离最大,一种方法可以作平行于AC的直线,计算这条直线与抛物线只有一个交点时,这个交点即为N;另一种方法,过AC上任意一点作y轴的平行线交抛物线于N点,这样△NAC被分成两个三角形,建立函数解析式求最大值.【答案】(1)根据已知条件可设抛物线对应的函数解析式为y=a(x�D1)•(x�D5),………………(1分) 把点A(0,4)代入上式,得a=45.………………(2分) ∴y=45(x�D1)(x�D5)=45x2�D245x +4=�D45(x�D3)2�D165.………………(3分) ∴抛物线的对称轴是x=3.…………(4分) (2)点P的坐标为(6,4).………………(8分) (3)在直线AC下方的抛物线上存在点N,使△NAC的面积最大,由题意可设点N的坐标为(t,45t2�D245t+4)(0<t<5).………………(9分) 如图,过点N作NG∥y轴交AC于点G,连接AN、CN.由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=�D45x+4.………………(10分) 把x=t代入y=�D45x+4得y=�D45t+4,则G(t,�D45t+4).………………(11分) 此时NG=�D45t+4�D(45t2�D245t+4)=�D45t2+205t.………………(12分) ∴S△NAC=12NG•OC=12(-45t2+205t)×5 =�D2t2+10t=�D2(t-52)2+252.………………(13分) 又∵0<t<5,∴当t=52时,△CAN的面积最大,最大值为252 .………………(14分) t=52时,45 t2-245t+4=-3.………………(15分) ∴点N的坐标为(52,-3).……………………(16分) 【点评】本题是一道二次函数、一次函数、三角形的综合题,其中第(3)问也是一道具有难度的“存在性”探究问题.本题主要考查二次函数、一次函数的图象与性质的应用.专项十阅读理解题19. (2012山东省临沂市,19,3分)读一读:式子“1+2+3+4+ (100)表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为,这里“ ”是求和符号,通过以上材料的阅读,计算 = . 【解析】式子“1+2+3+4+……+100”的结果是,即 = ;又∵ ,,………,∴ = + +…+ =1- ,∴ = = + +…+ =1- = . 【答案】【点评】本题是一道找规律的题目,要求学生的通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.此题重点除首位两项外,其余各项相互抵消的规律.23. (2012浙江省嘉兴市,23,12分)将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′ C′ ,即如图①,∠BAB′ =θ, ,我们将这种变换记为. (1)如图①,对△ABC作变换得△AB′ C′ ,则 : =_______;直线BC与直线B′C′所夹的锐角为_______度; (2)如图② ,△ABC中,∠BAC=30° ,∠ACB=90° ,对△ABC作变换得△AB′ C′ ,使点B、C、在同一直线上,且四边形ABB′C′为矩形,求θ和n的值; (3)如图③ ,△ABC中,AB=AC,∠BAC=36° ,B C=1,对△ABC作变换得△AB′C′ , 使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n的值. 【解析】(1) 由题意知, θ为旋转角, n为位似比.由变换和相似三角形的面积比等于相似比的平方,得 : = 3, 直线BC与直线B′C′所夹的锐角为60°; (2)由已知条件得θ=∠CAC′=∠BAC′-∠BAC=60°.由直角三角形中, 30°锐角所对的直角边等于斜边的一半得n==2. (3) 由已知条件得θ=∠CAC′=∠ACB=72°.再由两角对应相等,证得△ABC∽△B′B A,由相似三角形的性质求得n== . 【答案】(1) 3;60°. (2) ∵四边形ABB′C′是矩形,∴∠BAC′=90°. ∴θ=∠CAC′=∠BAC′-∠BAC=90°-30°=60°. 在Rt△ABB′中,∠ABB′=90°, ∠BAB′=60°, ∴n==2. (3) ∵四边形ABB′C′是平行四边形,∴AC′∥BB′,又∵∠BAC=36°∴θ=∠CAC′=∠ACB=72° ∴∠C′AB′=∠ABB′=∠BAC=36°,而∠B=∠B, ∴△ABC∽△B′BA,∴AB2=CB•B′B=CB•(BC+CB′), 而CB′=AC=AB=B′C′, BC=1, ∴AB2=1•(1+AB) ∴AB=,∵AB>0, ∴n== . 【点评】本题是一道阅读理解题.命题者首先定义了一种变换,要求考生根据这种定义解决相关的问题.读懂定义是解题的关键所在. 本题所涉及的知识点有相似三角形的面积比等于相似比的平方,黄金比等.27.(2011江苏省无锡市,27,8′)对于平面直角坐标系中的任意两点 ,我们把叫做两点间的直角距离,记作 . (1)已知O为坐标原点,动点满足 =1,请写出之间满足的关系式,并在所给的直角坐标系中出所有符合条件的点P所组成的图形;(2)设是一定点,是直线上的动点,我们把的最小值叫做到直线的直角距离,试求点M(2,1)到直线的直角距离。
2012年中考数学二轮复习考点解密:_阅读理解型问题含11真题带解析
ADCBP 1 P 2 P 3 P 4Q 1Q 2 Q 3 Q 4图3阅读理解型问题一、专题诠释阅读理解型问题在近几年的全国中考试题中频频“亮相”,特别引起我们的重视.这类问题一般文字叙述较长,信息量较大,各种关系错综复杂,考查的知识也灵活多样,既考查学生的阅读能力,又考查学生的解题能力的新颖数学题.二、解题策略与解法精讲解决阅读理解问题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含了什么新的数学知识、结论,或揭示了什么数学规律,或暗示了什么新的解题方法,然后展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题.三、考点精讲考点一: 阅读试题提供新定义、新定理,解决新问题(2011连云港)某课题研究小组就图形面积问题进行专题研究,他们发现如下结论: (1)有一条边对应相等的两个三角形面积之比等于这条边上的对应高之比; (2)有一个角对应相等的两个三角形面积之比等于夹这个角的两边乘积之比;…现请你继续对下面问题进行探究,探究过程可直接应用上述结论.(S 表示面积)问题1:如图1,现有一块三角形纸板ABC ,P1,P2三等分边AB ,R1,R2三等分边AC . 经探究知2121R R P P S 四边形=13S △ABC ,请证明.问题2:若有另一块三角形纸板,可将其与问题1中的拼合成四边形ABCD ,如图2,Q1,Q2三等分边DC .请探究2211P Q Q P S 四边形与S 四边形ABCD 之间的数量关系.问题3:如图3,P1,P2,P3,P4五等分边AB ,Q1,Q2,Q3,Q4五等分边DC .若 S 四边形ABCD =1,求3322P Q Q P S 四边形.问题4:如图4,P1,P2,P3四等分边AB ,Q1,Q2,Q3四等分边DC ,P1Q1,P2Q2,P3Q3 将四边形ABCD 分成四个部分,面积分别为S1,S2,S3,S4.请直接写出含有S1,S2,S3,S4的一个等式. A B C图1 P 1 P 2 R 2R 1 A B 图2 P 1 P 2 R 2 R 1D Q 1 Q 2ADP 1 P 2 P 3BQ 1Q 2 Q 3 C图4S 1 S 2 S 3S 4【分析】问题1:由平行和相似三角形的判定,再由相似三角形面积比是对应边的比的平方的性质可得。
(最新最全)2012年全国各地中考数学解析汇编(按章节考点整理)分3个考点精选48题)
(最新最全)2012年全国各地中考数学解析汇编(按章节考点整理)第十一章 因式分解(分3个考点精选48题)11.1 提公因式法(2012北京,9,4)分解因式:269mn mn m ++= .【解析】原式=m (n 2+6n +9)=m (n +3)2【答案】m (n +3)2【点评】本题考查了提公因式及完全平方的知识点。
(2012广州市,13, 3分)分解因式a 2-8a 。
【解析】提取公因式即可分解因式。
【答案】:a(a -8).【点评】本题考查了因式分解的方法。
比较简单。
(2012浙江省温州市,5,4分)把24a a -多项式分解因式,结果正确的是( )A. ()4a a -B. (2)(2)a a +-C. (2)(2)a a a +-D. 2(2)4a --【解析】分解因式按“一提二套”原则:有公因式的先提取公因式,再套用平方差公式或完全平方公式,本题可直接提公因式.【答案】A【点评】有公因式的要先提取公因式,然后再考虑运用平方差公式或完全平方公式进行分解.因式分解要分解到每个多项式因式都不能再分解为止,此题较基础.(湖南株洲市3,9)因式分解:22a a -= .【解析】22(2)a a a a -=-【答案】(2)a a -【点评】本题主要考查因式分解的常用方法及步骤:先提取公因式,再运用公式法进行分解. (2012四川成都,1l ,4分)分解因式:25x x -=________.解析:因式分解的基本方法是提取公因式法、公式法、分组分解法。
本题只有两项,所以,只能用提取公因式法和平方差公式法。
观察可知有公因式x ,提取公因式法分解为x(x-5)。
答案:x(x-5)。
点评:公因式的确定方法是:系数是各项系数的最大公约数,字母是各项都有的字母,指数取最小。
(2012湖北随州,11,4分)分解因式:249x -=______________________。
解析:22249(2)3(23)(23)x x x x -=-=+-。
2012年中考数学二轮复习考点解密_分类讨论(含解析)
2012年中考数学二轮复习考点解密 分类讨论Ⅰ、专题精讲:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解.提高分析问题、解决问题的能力是十分重要的.正确的分类必须是周全的,既不重复、也不遗漏.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行. Ⅱ、典型例题剖析【例1】如图3-2-1,一次函数与反比例函数的图象分别是直线AB 和双曲线.直线AB 与双曲线的一个交点为点C ,CD ⊥x 轴于点D ,OD =2OB =4OA =4.求一次函数和反比例函数的解析式.解:由已知OD =2OB =4OA =4,得A (0,-1),B (-2,0),D (-4,0). 设一次函数解析式为y =kx +b . 点A ,B 在一次函数图象上,∴⎩⎨⎧=+--=,02,1b k b 即⎪⎩⎪⎨⎧-=-=.1,21b k 则一次函数解析式是.121--=x y点C 在一次函数图象上,当4-=x 时,1=y ,即C (-4,1). 设反比例函数解析式为m y x=.点C 在反比例函数图象上,则41-=m ,m =-4.故反比例函数解析式是:xy 4-=.点拨:解决本题的关键是确定A、B、C、D的坐标。
【例2】如图3-2-2所示,如图,在平面直角坐标系中,点O1的坐标为(-4,0),以点O1为圆心,8为半径的圆与x轴交于A、B两点,过点A作直线l与x轴负方向相交成60°角。
以点O2(13,5)为圆心的圆与x轴相切于点D.(1)求直线l的解析式;(2)将⊙O2以每秒1个单位的速度沿x轴向左平移,同时直线l沿x轴向右平移,当⊙O2第一次与⊙O2相切时,直线l也恰好与⊙O2第一次相切,求直线l平移的速度;(3)将⊙O2沿x轴向右平移,在平移的过程中与x轴相切于点E,EG为⊙O2的直径,过点A作⊙O2的切线,切⊙O2于另一点F,连结A O2、FG,那么FG·A O2的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围。
2012版中考数学专题复习精品课件(含10 11真题)专题4 阅读理解问题(54张)
∴△NFN′∽△M′EM,∴ MM ME , NN NF
∵M′E=N′F,∴ MM NF tan(或 sin ).
NN NF
cos
①当α=45°时,tanα=1,则MM′=N′N;
②当α≠45°时,MM′≠N′N,则 MM tan(或 sin ).
NN
cos
方法二:在方形环中,∠D=90°,
2
猜想:一般地,当α为锐角时,有cos(180°+α)=-cosα,
由此可知cos240°的值等于______.
【解析】根据归纳的规律,cos240°=cos(180°+60°)= -cos60°= 1 .
2 答案: 1
2
7.(2011·内江中考)阅读理解:同学们,我们曾经研究过n×n
正方形网格,得到网格中正方形总个数的表达式为12+22+32+…
【自主解答】(1) 3 (2)如图:
作点B关于CD的对称点E,则点E正好在圆周上,连接OA、OB、 OE,连接AE交CD于一点P,AP+BP最短,
因为 A»D 的度数为60°,点B是 A»D 的中点, 所以∠AEB=15°, 因为点B关于CD的对称点是点E,所以∠BOE=60°, 所以△OBE为等边三角形, 所以∠OEB=60°,所以∠OEA=45°, 又因为OA=OE, 所以△OAE为等腰直角三角形,所以AE= 2 2. 所以图中点P即为所求.BP+AP的最小值为 2 2.
再如题(b)图,在等边三角形ABC中,AB=2,点E是AB的中点, AD是高,在AD上找一点P,使BP+PE的值最小. 做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE 交AD于一点,则这点就是所求的点P,故BP+PE的最小值为___.
2012中考数学试题解析
2012中考数学试题解析继承发展创新西安铁一中初三数学备课组组长高级教师王丽莉数学今年的数学试卷,紧贴《课程标准》与《中考说明》,在重基础、重能力、重过程、重方法、重思维品质考察的基础上,力求稳定中有变化,变化中有发展,发展中有创新。
主要体现在以下几个方面:相对稳定——试卷的结构、题量、分值、考查内容、考查模式及各题位所考查的知识点,延续了近几年的命题风格,难易程度与往年相当,试题起点低,入口宽,重视基础,所涵盖的知识、方法与过去也大致相同,说明我省的考题趋于成熟稳定,并具有可继承性和可发展性的特点,考生复习时有章可循,有据可依,见到试题倍感亲切,有助于克服紧张心理,考出真正水平。
凸显变化——根据发展的需要,试题继承了以往全面考查“四基”的特点,更加突出了对核心知识与能力的考察,如在选择题和解答题中,多次不同程度涉及相似三角形知识,在试题的制高点渗透了位似图形,第10题、16题、25题均从不同程度考察了最优化问题,在填空题中增设开放的结论,加大了有助于考生持续发展的内容的考察力度,和去年相比,试题的跨度也有适度加大,更有助于发挥试题的甄别与选拔的功能。
和谐人文——试题图文并茂,表述简约,对重点字词加着重符号,温馨提示,体现出试题的人文关怀;应用题多以群众喜闻乐见的内容为背景,如空气质量、借阅图书等,贴近生活热点,积极向上,体现出试题独特的教育价值取向;第13题设计了自主选择,我市多数学生选择用计算器直接计算,爽快、温和的题感,愉悦的氛围,兼顾了不同地区考生的差别,增加了考生的自信心。
这也是今年我省试题的创新点和亮点之一。
立足发展——试题延伸与发展的生长点,在18题、20题、25题中均有不同程度的体现。
18题增设了运用基本相似图形的简单计算,20题则在去年对测量问题直接考察的基础上,延伸为对方程、几何模型和转化能力的综合考察,25题既求最小值,又求最大值,增加了量化的维度,同时也加大了探究的深度与广度;试题的创新点还表现在试题的原创性,如16题的学科间综合,24题的在阅读理解中经历“再发现”和“再创造”的过程等。
2012年中考数学试题及答案
2012年中考数学试题及答案反思与总结2012年中考数学试题及答案2012年中考数学试题已成为过去,但我们仍能从中获得一些宝贵的经验和教训。
本文将对2012年中考数学试题进行分析,并梳理出一些解题技巧和策略,帮助读者更好地应对数学考试。
试题分析2012年中考数学试题整体难度适中,涵盖了多个知识点和解题方法,能全面考察学生的数学素养和解题能力。
下面我们来逐题分析、解题技巧和策略。
1. 选择题选择题是考试中常见的题型,也是考察学生基础知识掌握情况和运用能力的有效手段。
2012年中考数学试题的选择题涉及了代数、几何、概率等各个知识点,可以通过以下几个策略来解答选择题:a. 仔细阅读题目,寻找关键信息。
试题中常常会有一些关键信息,通过仔细阅读题目,找到这些关键信息可以帮助我们更快地理解题意和确定解题思路。
b. 排除法。
如果对某个选项有把握,可以先选定该选项,然后通过排除其他选项来确定最终答案。
c. 反证法。
有时我们可以通过反证法来判断选项的正确性,即假设选项错误,看是否能得出矛盾的结论。
2. 解答题解答题是考查学生解题能力和思维灵活性的重要环节。
2012年中考数学试题的解答题有一定难度,但也有一些常用的解题技巧可供参考:a. 建立数学模型。
在解答题中,建立数学模型是一种常见的解题思路。
通过将问题转化成数学表达式或图形,可以更直观地理解问题并找到解题方法。
b. 利用已知条件。
解答题往往会给出一些已知条件,我们要善于利用这些条件,可以通过列方程、画图等方式,将已知条件与待求之间建立联系,从而解题。
c. 注意题目要求。
不同的题目可能需要求解的是不同的量或者达到不同的目标,解题时一定要认真阅读题目,明确题目要求,确保解答正确。
3. 概率题概率题是中考数学试题中的重点和难点,需要对概率的基本概念和计算方法有一定的掌握。
在解答概率题时,可以采用以下方法:a. 理清问题。
概率问题往往比较绕,需要我们仔细分析题目,理清问题所涉及的条件和要求,确定解题途径。
2012年中考数学综合型问题试题考点解析归总
2012年中考数学综合型问题试题考点解析归总综合型问题一、选择题1.(2011重庆江津4分)下列说法不正确是A、两直线平行,同位角相等B、两点之间直线最短C、对顶角相等D、半圆所对的圆周角是直角【答案】B。
【考点】平行线的性质,对顶角的性质,线段公理,圆周角定理。
【分析】利用平行线的性质可以判断A正确;利用两点之间线段最短的线段公理可以判断B错误;利用对顶角相等的性质可以判断C正确;利用圆周角定理可以判断D正确。
故选B。
2.(2011重庆潼南4分)如图,在平行四边形ABCD中(AB≠B C),直线EF经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点E、F,下列结论:①AO=BO;②OE=OF;③△EAM∽△EBN;④△EAO≌△CNO,其中正确的是A、①②B、②③C、②④D、③④【答案】B。
【考点】平行四边形的性质,全等三角形的判定和性质,相似三角形的判定。
【分析】①根据平行四边形的对边相等的性质即可求得AO≠BO,即判定该选项错误;②由ASA可证△AOE≌△COF,即可求得EO=FO,该选项正确;③根据相似三角形的判定即可求得△EAM∽△EBN,该选项正确;④易证△EAO≌△FCO,而△FCO和△CNO不全等,根据全等三角形的传递性即可判定该选项错误。
即②③正确。
故选B。
3.(2011浙江杭州3分)正方形纸片折一次,沿折痕剪开,能剪得的图形是A. 锐角三角形B. 钝角三角形C. 梯形D. 菱形【答案】 C。
【考点】剪纸问题。
【分析】此题可以直接作图,由图形求得答案,也可利用排除法求解:如图,若沿着EF剪下,可得梯形ABEF与梯形FECD,∴能剪得的图形是梯形;∵如果剪得的有三角形,则一定是直角三角形,∴排除A与B;如果有四边形,则一定有两个角为90°,且有一边为正方形的边,∴不可能是菱形,排除D。
故选C。
4.(2011浙江义乌3分)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连结CE交AD于点F,连结BD 交 CE于点G,连结BE. 下列结论中:① CE=BD;② △ADC是等腰直角三角形;③ ∠ADB=∠AEB;④ CD AE=EF CG;一定正确的结论有A.1个 B.2个 C.3个 D.4个【答案】D。
年陕西中考数学真题(含答案)
2012年陕西中考数学真题(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2012年陕西中考数学真题(含答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2012年陕西中考数学真题(含答案)的全部内容。
2012年陕西省中考数学试卷参考答案与试题解析一、选择题(共10个小题,共计30分,每小题只有一个选项是符合题意的) 1.如果零上5℃记作+5℃,那么零下7℃可记作( ) A . ﹣7℃B . +7℃C . +12℃D . ﹣12℃考点: 正数和负数。
分析: 在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 解答: 解:∵“正”和“负”相对,∴零上5℃记作+5℃,则零下7℃可记作﹣7℃. 故选A .点评: 此题考查了正数与负数的定义.解题关键是理解“正”和“负"的相对性,确定一对具有相反意义的量.2.如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是( )考点: 简单组合体的三视图。
分析: 细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.解答: 解:从左边看竖直叠放2个正方形.故选C .点评: 考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.3.计算(﹣5a 3)2的结果是( ) A .﹣10a 5 B .10a 6 C .﹣25a 5 D .25a 6 考点: 幂的乘方与积的乘方.分析: 利用积的乘方与幂的乘方的性质求解即可求得答案. 解答: 解:(﹣5a 3)2=25a 6.故选D .点评: 此题考查了积的乘方与幂的乘方的性质.注意幂的乘方法则:底数不变,指数A .B .C .D .相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.4.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱打分情况(满分100分)如表,从中去掉一个最高分和一个最低分,则余下的分数的平均分是()分数(分)8992959697评委(位)12211A .92分B.93分C.94分D.95分考点:加权平均数.分析:先去掉一个最低分去掉一个最高分,再根据平均数等于所有数据的和除以数据的个数列出算式进行计算即可.解答:解:由题意知,最高分和最低分为97,89,则余下的数的平均数=(92×2+95×2+96)÷5=94.故选C.点评:本题考查了加权平均数,关键是根据平均数等于所有数据的和除以数据的个数列出算式.5.如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=()A .1:2B.2:3C.1:3D.1:4考点:相似三角形的判定与性质;三角形中位线定理。
卓顶精文2012考研数二真题及解析.doc
20GG 年全国硕士研究生入学统一考试数学二复习复习试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x xy x +=-渐近线的条数为()(A )0 (B )1 (C )2(D )3(2)设函数2()(1)(2)()x x nx f x e e e n =---,其中n 为正整数,则'(0)f =(A )1(1)(1)!n n ---(B )(1)(1)!n n -- (C )1(1)!n n --(D )(1)!n n -(3)设a n >0(n =1,2,…),S n =a 1+a 2+…a n ,则数列(s n )有界是数列(a n )收敛的 (A)充分必要条件.(B)充分非必要条件. (C)必要非充分条件.(D )即非充分地非必要条件.(4)设2kx keI e =⎰sin G d G (k=1,2,3),则有D(A )I 1<I 2<I 3.(B)I 2<I 2<I 3.(C)I 1<I 3<I 1,(D)I 1<I 2<I 3.(5)设函数f (G,y )可微,且对任意G ,y 都有(,)f x y x∂∂>0,(,)f x y y ∂∂<0,f (G 1,y 1)<f (G 2,y 2)成立的一个充分条件是(A)G 1>G 2,y 1<y 2.(B)G 1>G 2,y 1>y 1. (C)G 1<G 2,y 1<y 2.(D)G 1<G 2,y 1>y 2.(6)设区域D 由曲线,1,2,sin =±==y x x y π围成,则())(15⎰⎰=-dxdy y xππ--)(2)(2)()(D C B A(7)设1234123400110,1,1,1c c c c αααα-⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪===-= ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭其中1234,,,c c c c 为任意常数,则下列向量组线性相关的是()(A )123,,ααα(B )124,,ααα (C )134,,ααα(D )234,,ααα(8)设A 为3阶矩阵,P 为3阶可逆矩阵,且1112P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭,()123,,P ααα=,()1223,,Q αααα=+则1Q AQ -=()(A )121⎛⎫ ⎪ ⎪ ⎪⎝⎭(B )112⎛⎫ ⎪⎪ ⎪⎝⎭ (C )212⎛⎫ ⎪ ⎪ ⎪⎝⎭(D )221⎛⎫ ⎪ ⎪ ⎪⎝⎭二、填空题:9-14小题,每小题4分,共24分,请将答案写在答.题纸..指定位置上. (9)设()y y x =是由方程21y x y e -+=所确定的隐函数,则________。
2012年中考数学复习考点解密 怎样解选择题(含解析)
2012年中考数学二轮复习考点解密怎样解选择题Ⅰ、专题精讲:选择题是中考试题中必有的固定题型,它具有考查面宽、解法灵活、评分客观等特点.选择题一般由题干(题没)和选择支(选项)组成.如果题干不是完全陈述句,那么题干加上正确的选择支,就构成了一个真命题;而题干加上错误的选择支,构成的是假命题,错误的选择支也叫干扰支,解选择题的过程就是通过分析、判断、推理用除干扰支,得出正确选项的过程.选择题的解法一般有七种:1.直接求解对照法:直接根据选择题的题设,通过计算、推理、判断得出正确选项.2.排除法:有些选择题可以根据题设条件和有关知识,从4个答案中,排除3个答案,根据答案的唯一性,从而确定正确的答案,这种方法也称为剔除法或淘汰法或筛选法.3.特殊值法:根据命题条件.’选择题中所研究的量可以在某个范围内任意取值,这时可以取满足条件的一个或若干特殊值代人进行检验,从而得出正确答案.4.作图法:有的选择题可通过命题条件的函数关系或几何意义,作出函数的图象或几何图形,借助于图象或图形的直观性从中找出正确答案.这种应用“数形结合”来解数学选择题的方法,我们称之为“作图法”.5.验证法:直接将各选择支中的结论代人题设条件进行检验,从而选出符合题意的答案.6.定义法:运用相关的定义、概念、定理、公理等内容,作出正确选择的一种方法.7.综合法:为了对选择题迅速、正确地作出判断,有时需要综合运用前面介绍的几种方法.解选择题的原则是既要注意题目特点,充分应用供选择的答案所提供的信息,又要有效地排除错误答案可能造成的于抗,须注意以下几点:(1)要认真审题;(2)要大胆猜想;(3)要小心验证;(4)先易后难,先简后繁.Ⅱ、典型例题剖析【例1】若半径为3,5的两个圆相切,则它们的圆心距为()A.2 B.8 C.2或8 D.1或4解:C 点拨:本题可采用“直接求解对照法”.两圆相切分为内切和外切,当两圆内切时,它们的圆心距为:5—3=2,当两圆外切时,它们的圆心距为:3+5=8.【例2】如图3-4-1所示,对a 、b 、c 三种物体的重量判断正确的是( )A .a <cB .a <bC .a >cD .b <c解:C 点拨:根据图形可知:2a=3b ,2b=3c ,所以a >b ,b >c .因此a >c ,所以选择C .【例3】已知一次函数y=kx -k ,若y 随x 的增大而减小,则该函数的图象经过( )A .第一、二、三象限;B .第一、二、四象限C 第二、三、四象限;D .第一、三、四象限解:B 点拨:本题可采用“定义法”.因为y 随x 的增大而减小,所以k <0.因此必过第二、四象限,而-k >0.所以图象与y 轴相交在正半轴上,所以图象过第一、二、四象限.【例4】下列函数中,自变量x 的取值范围是x ≥2的是( )2.2 .x A y x B y -=--= 2.4 .2C y xD y x =-=- 解:B 点拨:本题可采用“定义法”分别计算每个自变量x 的取值范围,A .x ≤2;B .x ≥2;C .-2≤x ≤2;D .x >2.通过比较选择B .【例5】某闭合电路中,电源电压为定值,电流I(A)与电阻R(Ω)成反比例,图3-4-2表示的是该电路中电流I 与电阻R 之间函数关系的图象,则用电阻R 表示电流I 的函数解析式为( )A 、R I 6=B 、R I 6-=;C 、R I 3=D 、RI 2= 解:本可用定义法,选A.【例6】在△ABC 中,∠C=90°,如果tanA=512,那么sinB 的值等于( ) 512512. . . .1313125A B C D 解:B 点拨:本题可用“特殊值”法,在△ABC 中,∠C=90°,故选B .【例7】在345,2,8y a a ) A .1个 B .2个 C .3个·D .4个解: B 点拨:对照最简二次根式应满足的两个条件:①被开方数的因数是整数,因式是整式;②被开方数中不含能开方的因数或因式,运用“定义法”可知,此题只有45a 与2y 是最简二次根式,故选B .Ⅲ、同步跟踪配套试(30分 25分钟)一、选择题(每题3分,共30分):1.在△ABC 中,∠A =30°,∠B=60°,AC=6,则△ABC 的外接圆的半径为( )A .2 3B .3 3C . 3D .32.若x <-1,则012,,x x x --的大小关系是( )A .012x x x -->>B .120x x x -->>;C .021x x x -->>D .210x x x -->>3.在△ABC 中,AB=24,AC=18.D 是 AC 上一点,AD=12,在AB 上取一点 E ,使得以 A 、D 、E 为顶点的三角形与△ABC 相似,则AE 的长为( ).A .16B .14C .16或 14D .16或 94.若函数y=28(3)m m x --是正比例函数,则常数m 的值是( )A .-7B .±7C .士3D .-35.如图3-4-3所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是( )A . 带①去B .带②去C .带③去D .带①和②去6、已知二次函数y=ax 2+bx +c 的图象如图3-4-4所示,则函数y=ax +b 的图象只可能是图3-4-5中的( )7.一个圆台形物体的上底面积是下底面积的1/4,如图3-4-6所示放在桌面上,对桌面的压强是200帕,翻转过来对桌面的压强是( )A .50帕B .80帕C .600帕D .800帕8.⊙O 的直径为10,弦AB 的长为8,M 是弦AB 上的动点,则OM 的长的取值范围是( )A .3≤OM ≤5B .4≤OM ≤5C .3<OM <5D .4<OM <59.若二次函数y=ax 2+c ,当x 取x 1,x 2,(x 1≠x 2)时,函数值相等,则当x 取x 1,x 2时,函数值为( )A .a +cB .a -cC .-cD .c10 如果212,3,35b a b a b a a b -+=≠≠+-且则的值为( ) A 、0 B 、15 C 、- 15D .没有意义 Ⅳ、同步跟踪巩固试题(10分 60分钟)一、选择题(每题4分,共100分)1.若3222x x x x +=-+,则x 的取值范围是( )A 、x<0B 、x ≥-2C 、-2≤x ≤0D -2<x <02.若22114,x x x x+=+则的值是( ) A .12 B .13 C .14 D .153.如图3-4-7所示,四个平面图形,其中既是轴对称图形又是中心对称图形的是( )4.如果水位下降5m ,记作-5m ,那么水位上升2m ,记作( )A .3mB .7mC .2mD .-7m5.已知数轴上的A 点到原点的距离为3,那么在数轴上到点A 的距离为2的点所表示的数有( )A .1个B .2个C .3个D .4个6.下列说法中正确的是( )A .绝对值最小的实数是零;B .实数a 的倒数是1a;C .两个无理数的和、差、积、商仍是无理数;D .一个数平方根和它本身相等,这个数是0或17、将1021(),(2),(3)6---这三个数按从小到大的顺序排列正确的结果是( ) 01210211.(2)()(3) .()(2)(3)66A B ---<<-<-<-;20102111.(3)(2)() .(2)(3)()66C D ---<-<-<-< 8.下列因式分解错误的是( )A. 32228122(46)a a a a a a -+=-=;B. 256(2)(3)x x x x -+=--;C. 22()()()a b c a b c a b c --=-+--;D. 22422(1)a a a -+-=-+9.一条信息可通过图3-4-8的网络线由上 (A 点)往下向各站点传送.例如要将信息传到b 2点可由经a 1的站点送达,也可由经出的站点送达,共有两条传送途径,则信息由A 到达山的不同途径共有( )A .3条B .4条C .6条D .12条10. 如图3-4-9所示,在同一直角坐标系内,二次函数y=ax 2+(a+c )x+c 与一次函数y=ax+c 的大致图象正确的是( )11. 如图 3-4-10所示,在Rt △ABC 中,∠C=90°,AB=4,△ABC 的面积为2,则 tanA+tanB 等于( )A 、45B 、52C 、165D 、4 12. 关于x ,y 的二元一次方程组59x y k x y k+=⎧⎨-=⎩的解也是二元一次方程2x +3y=6的解,则k 的值是( )3344. . . .4433A B C D -- 13. 如图3-4-11所示,在同心圆中,。
山东省聊城市2012年中考数学专题复习讲义 阅读理解
中考数学专题:阅读理解题(含答案)所谓数学的阅读理解题,就是题目首先提供一定的材料,或介绍一个概念,或给出一种解法等,让你在理解材料的基础上,获得探索解决问题的方法,从而加以运用,解决实际问题.其目的在于考查学生的阅读理解能力、收集处理信息的能力和运用知识解决实际问题的能力.阅读理解题的篇幅一般都较长,试题结构大致分两部分:一部分是阅读材料,别一部分是根据阅读材料需解决的有关问题.阅读材料既有选用与教材知识相关的内容的,也有广泛选用课外知识的.考查目标除了初中数学和基础知识外,更注重考查阅读理解、分析转化、X例运用、探索归纳等多方面的素质和能力.因此,这类问题需要学生通过对阅读材料的阅读理解,然后进行合情推理,就其本质进行归纳加工、猜想、类比和联想,作出合情判断和推理.解决型阅读题的关键是首先仔细阅读信息,弄清信息所提供的数量关系,然后将信息转化为数学问题,感悟数学思想和方法,形成科学的思维方式和思维策略,进而解决问题.类型之一考查掌握新知识能力的阅读理解题命题者给定一个陌生的定义或公式或方法,让你去解决新问题,这类考题能考查解题者自学能力和阅读理解能力,能考查解题者接收、加工和利用信息的能力。
1.让我们轻松一下,做一个数字游戏:第一步:取一个自然数n1=5 ,计算n12+1得a1;第二步:算出a1的各位数字之和得n2,计算n22+1得a2;第三步:算出a2的各位数字之和得n3,再计算n23+1得a3;…………依此类推,则a=____________.2.用“⇒”与“⇐”表示一种法则:(a⇒b)= -b,(a⇐b)= -a,如(2⇒3)= -3,则()() 2010201120092008⇒⇐⇒=.3.符号“a bc d”称为二阶行列式,规定它的运算法则为:a bad bcc d=-,请你根据上述规定求出下列等式中x的值:211 1111x x= --类型之二 模仿型阅读理解题在已有知识的基础上,设计一个陌生的数学情景,通过阅读相关信息,根据题目引入新知识进行猜想解答的一类新题型.解题关键是理解材料中所提供的解题途径和方法,运用归纳与类比的方法 去探索新的解题方法.问题解答并不太难,虽出发点低,但落脚点高.是“学生的可持续发展”理念的体现. 4.阅读材料,解答下列问题. 例:当0a >时,如6a =则66a ==,故此时a 的绝对值是它本身当0a =时,a =,故此时a 的绝对值是零当0a <时,如6a =-则66(6)a =-==--,故此时a 的绝对值是它的相反数∴综合起来一个数的绝对值要分三种情况,即0000aa a a a a >⎧⎪==⎨⎪-<⎩当当当这种分析方法涌透了数学的分类讨论思想.问:(1的各种展开的情况. (2与a 的大小关系.5.阅读理解:若m q p 、、为整数,且三次方程023=+++m qx px x 有整数解c ,则将c 代入方程得:023=+++m qc pc c ,移项得:qc pc c m ---=23,即有:()q pc c c m ---⨯=2, 由于m c q pc c 及与---2都是整数,所以c 是m 的因数.上述过程说明:整数系数方程023=+++m qx px x 的整数解只可能是m 的因数.例如:方程023423=-++x x x 中-2的因数为±1和±2,将它们分别代入方程023423=-++x x x 进行验证得:x=-2是该方程的整数解,-1、1、2不是方程的整数解.解决问题:(1)根据上面的学习,请你确定方程07523=+++x x x 的整数解只可能是哪几个整数?(2)方程034223=+--x x x 是否有整数解?若有,请求出其整数解;若没有,请说明理由6.实际问题:某学校共有18个教学班,每班的学生数都是40人.为了解学生课余时间上网情况,学校打算做一次抽样调查,如果要确保全校抽取出来的学生中至少有10人在同一班级,那么全校最少需抽取多少名学生?建立模型:为解决上面的“实际问题”,我们先建立并研究下面从口袋中摸球的数学模型:在不透明的口袋中装有红、黄、白三种颜色的小球各20个(除颜色外完全相同),现要确保从口袋中随机摸出的小球至少有10个是同色的,则最少需摸出多少个小球?为了找到解决问题的办法,我们可把上述问题简单化:(1)我们首先考虑最简单的情况:即要确保从口袋中摸出的小球至少有2个是同色的,则最少需摸出多少个小球?假若从袋中随机摸出3个小球,它们的颜色可能会出现多种情况,其中最不利的情况就是它们的颜色各不相同,那么只需再从袋中摸出1个小球就可确保至少有2个小球同色,即最少需摸出小球的个数是:1+3=4(如图①);(2)若要确保从口袋中摸出的小球至少有3个是同色的呢?我们只需在(1)的基础上,再从袋中摸出3个小球,就可确保至少有3个小球同色,即最少需摸出小球的个数是:1+3×2=7(如图②)(3)若要确保从口袋中摸出的小球至少有4个是同色的呢?我们只需在(2)的基础上,再从袋中摸出3个小球,就可确保至少有4个小球同色,即最少需摸出小球的个数是:1+3×3=10(如图③):(10)若要确保从口袋中摸出的小球至少有10个是同色的呢?我们只需在(9)的基础上,再从袋中摸出3个小球,就可确保至少有10个小球同色,即最少需摸出小球的个数是:1+3×(10-1)=28(如图⑩)模型拓展一:在不透明的口袋中装有红、黄、白、蓝、绿五种颜色的小球各20分(除颜色外完全相同),现从袋中随机摸球:(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是 ; (2)若要确保摸出的小球至少有10个同色,则最少需摸出小球的个数是 ; (3)若要确保摸出的小球至少有n 个同色(20n <),则最少需摸出小球的个数是 . 模型拓展二:在不透明口袋中装有m 种颜色的小球各20个(除颜色外完全相同),现从袋中随机摸球:(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是 . (2)若要确保摸出的小球至少有n 个同色(20n <),则最少需摸出小球的个数是 . 问题解决:(1)请把本题中的“实际问题”转化为一个从口袋中摸球的数学模型; (2)根据(1)中建立的数学模型,求出全校最少需抽取多少名学生.类型之三 操作型阅读理解题操作型阅读理解题通常先提供图形变化的方法步骤.解题的时候,你只要根据题目所提供的操作步骤一步步解题即可.它能有效检测学生的创新意识和创新能力的好题型,是中考改革的必然产物.这类问题能较好地考查学生用数学的能力,具有很强的开放性并具有一定的趣味性和挑战性.7.阅读理解:对于任意正实数a 、b ,∵2≥0, ∴a b -+≥0,∴a b +≥,只有当a =b 时,等号成立.结论:在a b +≥(a 、b 均为正实数)中,若ab 为定值p ,则a+b≥,只有当a =b 时,a+b 有最小值.根据上述内容,回答下列问题:若m >0,只有当m = 时,1m m +有最小值 .思考验证:如图1,AB 为半圆O 的直径,C 为半圆上任意一点(与点A 、B 不重合),过点C作CD⊥AB,垂足为D ,AD =a ,DB =b .试根据图形验证a b +≥2ab ,并指出等号成立时的条件.探索应用:如图2,已知A(-3,0),B(0,-4),P 为双曲线x y 12=(x >0)上的任意一点,过点P 作PC⊥x 轴于点C ,PD⊥y 轴于点D .求四边形ABCD 面积的最小值,并说明此时四边形ABCD 的形状.8.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A 、B 、C 、D 分别是“蛋圆”与坐标轴的交点,已知点D 的坐标为(0,-3),AB 为半圆的直径,半圆圆心M 的坐标为(1,0),半圆半径为2.请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值X 围; (2)你能求出经过点C 的“蛋圆”切线的解析式吗?试试看; (3)开动脑筋想一想,相信你能求出经过点D 的“蛋圆”切线的解析式.9.请阅读下列材料:问题:如图1,在菱形ABCD 和菱形BEFG 中,点A,B,E 在同一条直线上,P 是线段DF 的中点,连结PG,PC .若60ABC BEF ∠=∠=,探究PG 与PC 的位置关系及PGPC 的值.小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)写出上面问题中线段PG 与PC 的位置关系及PGPC 的值;(2)将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若图1中2(090)ABC BEF αα∠=∠=<<,将菱形BEFG 绕点B 顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出PGPC 的值(用含α的式子表示). 解:(1)线段PG 与PC 的位置关系是 ;PGPC =.参考答案1.【解析】本题是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阅读理解型问题一、专题诠释阅读理解型问题在近几年的全国中考试题中频频“亮相”,特别引起我们的重视.这类问题一般文字叙述较长,信息量较大,各种关系错综复杂,考查的知识也灵活多样,既考查学生的阅读能力,又考查学生的解题能力的新颖数学题.二、解题策略与解法精讲解决阅读理解问题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含了什么新的数学知识、结论,或揭示了什么数学规律,或暗示了什么新的解题方法,然后展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题.三、考点精讲考点一: 阅读试题提供新定义、新定理,解决新问题(2011连云港)某课题研究小组就图形面积问题进行专题研究,他们发现如下结论: (1)有一条边对应相等的两个三角形面积之比等于这条边上的对应高之比; (2)有一个角对应相等的两个三角形面积之比等于夹这个角的两边乘积之比;…现请你继续对下面问题进行探究,探究过程可直接应用上述结论.(S 表示面积) 问题1:如图1,现有一块三角形纸板ABC ,P1,P2三等分边AB ,R1,R2三等分边AC .经探究知2121R R P P S 四边形=13S △ABC ,请证明.问题2:若有另一块三角形纸板,可将其与问题1中的拼合成四边形ABCD ,如图2,Q1,Q2三等分边DC .请探究2211P Q Q P S 四边形与S 四边形ABCD 之间的数量关系.问题3:如图3,P1,P2,P3,P4五等分边AB ,Q1,Q2,Q3,Q4五等分边DC .若S 四边形ABCD =1,求3322P Q Q P S四边形. 问题4:如图4,P1,P2,P3四等分边AB ,Q1,Q2,Q3四等分边DC ,P1Q1,P2Q2,P3Q3将四边形ABCD 分成四个部分,面积分别为S1,S2,S3,S4.请直接A BC图1P 1P 2R 2 R 1A图2P 1 P 2 R 2R 1Q 1Q 2ADP 1 P 2 P 3Q 1Q 2 Q 3 C图4S 1 S 2 S 3 S 4AD CBP 1 P 2 P 3 P 4Q 1Q 2 Q 3 Q 4图3写出含有S1,S2,S3,S4的一个等式.【分析】问题1:由平行和相似三角形的判定,再由相似三角形面积比是对应边的比的平方的性质可得。
问题2:由问题1的结果和所给结论(2)有一个角对应相等的两个三角形面积之比等于夹这个角的两边乘积之比,可得。
问题3:由问题2的结果经过等量代换可求。
问题4:由问题2可知S1+S4=S2+S3=12A B C DS 。
解:问题1:∵P1,P2三等分边AB ,R1,R2三等分边AC ,∴P1R1∥P2R2∥BC .∴△AP1 R1∽△AP2R2∽△ABC ,且面积比为1:4:9. ∴2121R R P P S 四边形=4-19 S △ABC =13S △ABC 问题2:连接Q1R1,Q2R2,如图,由问题1的结论,可知 ∴2121R R P P S 四边形=13S △ABC ,2211Q R R Q S 四边形=13S △ACD ∴2121R R P P S 四边形+2211Q R R Q S 四边形=13S 四边形ABCD 由∵P1,P2三等分边AB ,R1,R2三等分边AC ,Q1,Q2三等分边DC , 可得P1R1:P2R2=Q2R2:Q1R1=1:2,且P1R1∥P2R2,Q2R2∥Q1R1. ∴∠P1R1A =∠P2R2A ,∠Q1R1A =∠Q2R2A .∴∠P1R1Q1=∠P2R2 Q2. 由结论(2),可知111Q R P S ∆=222Q R P S ∆.∴2211P Q Q P S 四边形=2211P R R P S 四边形+2211Q R R Q S 四边形=13S 四边形ABCD . 问题3:设2211P Q Q P S 四边形=A ,4433P Q Q P S 四边形=B ,设3322P Q Q P S 四边形=C , 由问题2的结论,可知A =1333P ADQ S 四边形,B =13CBQ P S 22四边形.A +B =13 (S 四边形ABCD +C)=13(1+C).AC图2P 1 P 2R 2R 1DQ 12又∵C =13 (A +B +C),即C =13 [13 (1+C)+C].整理得C =15,即3322P Q Q P S 四边形=15问题4:S1+S4=S2+S3.【点评】该种阅读理解题给出新的定理,学生需要学会新定理,借助于试题告诉的信息(结论1、2)来解决试题考点二、阅读试题信息,归纳总结提炼数学思想方法(2011北京)阅读下面材料: 小伟遇到这样一个问题,如图1,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O 。
若梯形ABCD 的面积为1,试求以AC ,BD ,A D B C +的长度为三边长的三角形的面积。
C小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可。
他先后尝试了翻折,旋转,平移的方法,发现通过平移可以解决这个问题。
他的方法是过点D 作AC 的平行线交BC 的延长线于点E ,得到的△BDE 即是以AC ,BD ,A D B C +的长度为三边长的三角形(如图2)。
参考小伟同学的思考问题的方法,解决下列问题:如图3,△ABC 的三条中线分别为AD ,BE ,CF 。
(1)在图3中利用图形变换画出并指明以AD ,BE ,CF 的长度为三边长的一个三角形(保留画图痕迹);(2)若△ABC 的面积为1,则以AD ,BE ,CF 的长度为三边长的三角形的面积等于_______。
【分析】:根据平移可知,△ADC ≌△ECD ,且由梯形的性质知△ADB与△ADC 的面积相等,即△BDE 的面积等于梯形ABCD 的面积.(1)分别过点F 、C 作BE 、AD 的平行线交于点P ,得到的△CFP 即是以AD 、BE 、CF 的长度为三边长的一个三角形.(2)由平移的性质可得对应线段平行且相等,对应角相等.结合图形知以AD ,BE ,CF 的长度为三边长的三角形的面积等于△ABC 的面积的.解答:解:△BDE 的面积等于1.(1)如图.以AD、BE 、CF 的长度为三边长的一个三角形是△CFP .图1图2DABC图9-3(2)以AD 、BE 、CF 的长度为三边长的三角形的面积等于.【点评】:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等. 考点三、阅读相关信息,通过归纳探索,发现规律,得出结论(2009河北)如图9-1至图9-5,⊙O 均作无滑动滚动,⊙O 1、⊙O 2、⊙O 3、⊙O 4均表示⊙O 与线段AB 或BC 相切于端点时刻的位置,⊙O 的周长为c .阅读理解:(1)如图9-1,⊙O 从⊙O 1的位置出发,沿AB 滚动到⊙O 2的位置,当AB = c 时,⊙O 恰好自转1周.(2)如图9-2,∠ABC 相邻的补角是n °,⊙O 在∠ABC 外部沿A -B -C 滚动,在点B 处,必须由⊙O 1的位置旋转到⊙O 2的位置,⊙O 绕点B 旋转的角∠O 1BO 2 = n °,⊙O 在点B 处自转360n 周. 实践应用:(1)在阅读理解的(1)中,若AB = 2c ,则⊙O 自转 周;若AB = l ,则⊙O 自转 周.在阅读理解的(2)中,若∠ABC = 120°,则⊙O 在点B 处自转 周;若∠ABC = 60°,则⊙O 在点B 处自转_____ 周.(2)如图9-3,∠ABC=90°,AB=BC=12c .⊙O 从⊙O 1的位置出发,在∠ABC外部沿A -B -C 滚动到⊙O 4的位置,⊙O 自转 周.拓展联想:(1)如图9-4,△ABC 的周长为l ,⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部,按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,⊙O 自转了多少周?请说明理由.(2)如图9-5,多边形的周长为l ,⊙O 从与某边相切于点D 的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D 的位置,直接..写出⊙O 自转的周数.【分析】:(1)当AB = c 时,⊙O 恰好自转1周.(2)如图9-2,∠ABC 相邻的补角是n °,⊙O 在∠ABC 外部沿A -B -C 滚动,在点B 处,必须由⊙O 1的位置旋转到⊙O 2的位置,⊙O 绕点B 旋转的角∠O 1BO 2 = n °,⊙O 在点B 处自转360n 周,通过上面可以知道圆的转动规律。
解:实践应用(1)2;lc .16;13.[来源:Z&xx&](2)54.拓展联想[来源:学§科§网Z §X §X §K](1)∵△ABC 的周长为l,∴⊙O 在三边上自转了lc 周.又∵三角形的外角和是360°,A图9-4 图9-5图9-1 AB图9-2∴在三个顶点处,⊙O自转了3601360=(周).∴⊙O共自转了(lc+1)周.(2)lc+1.[来源:学*科*网]【评析】:本题以课题学习的形式呈现,从简单的“圆在直线段和角外部滚动的周数”的数学事实出发,循序渐进,层层深入,引导学生在解决问题的过程中,不断产生认知发展,进而在不知不觉中提炼归纳出一般性的结论,使自己对知识的认识得到升华考点四、阅读试题信息,借助已有数学思想方法解决新问题(2011南京)问题情境:已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?数学模型:设该矩形的长为x,周长为y,则y与x的函数关系式为2()(0)ay x xx=+>.探索研究:⑴我们可以借鉴以前研究函数的经验,先探索函数1(0)y x xx=+>的图象性质.①填写下表,画出函数的图象:②观察图象,写出该函数两条不同类型的性质;③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数1y xx=+(x>0)的最小值.解决问题:⑵用上述方法解决“问题情境”中的问题,直接写出答案.【分析】⑴将x值代入函类数关系式求出y值, 描点作图即可.然后分析函数图像.⑵仿⑴③2()ay xx=+=222⎡⎤+⎢⎥⎣⎦=222⎡+-⎢⎣=2+所以,当,即x=2()(0)ay x xx=+>的最小值为解答:⑴①函数1y xx=+(0)x>的图象如图.②本题答案不唯一,下列解法供参考.当01x<<时,y随x增大而减小;当1x>时,y随x增大而增大;当1x=时函数1y xx=+(0)x>的最小值为2.③1y xx=+=22+=22+-=22+当=0,即1x=时,函数1y xx=+(0)x>的最小值为2.⑵仿⑴③2()ay xx=+=222⎡⎤+⎢⎥⎣⎦=222⎡+-⎢⎣=2+当,即x=2()(0)ay x xx=+>的最小值为⑵当该矩形的长为【点评】:画和分析函数的图象,借助图像分析函数性质.类比一元二次方程的配方法求1y xx=+函数的最大(小)值.考点五、阅读图表等统计资料,提供有关信息解决相关问题(2011无锡)十一届全国人大常委会第二十次会议审议的个人所得税法修正案草案(简称“个税法草案”),拟将现行个人所得税的起征点由每月2000元提高到3000元,并将9级1 注:“月应纳税额”为个人每月收入中超出起征点应该纳税部分的金额. “速算扣除数”是为快捷简便计算个人所得税而设定的一个数.例如:按现行个人所得税法的规定,某人今年3月的应纳税额为2600元,他应缴税款可以用下面两种方法之一来计算:方法一:按1~3级超额累进税率计算,即500×5%+1500×10%十600×15%=265(元). 方法二:用“月应纳税额x 适用税率一速算扣除数”计算,即2600×15%一l25=265(元)。