高一数学同角三角函数的基本关系式及诱导公式
高考复习数学第二节 同角三角函数的基本关系与诱导公式
角度 sin α,cos α 的齐次式问题 [例 2] 已知tatnanα-α 1=-1,求下列各式的值. (1)ssiinnαα-+3ccoossαα; (2)sin2 α+sin αcos α+2.
解:由已知得 tan α=12. (1)ssiinnαα-+3ccoossαα=ttaann αα- +31=-53.
D.±2
5 5
所以 cos α=-23,
则 α 为第二或第三象限角,
所以 sin α=±
1-cos2
α=±
5 3.
5
所以
tan
α=csions
αα=±-323
=±
5 2.
答案:C
6.sin 2 490°=________;cos-523π=________.
解析:sin 2 490°=sin(7×360°-30°)=-sin 30°=-12. cos-523π=cos 523π=cos16π+π+π3=cosπ+π3= -cos π3=-12. 答案:-12 -12
(2)sin2 α+sin αcos α+2=sins2inα2+α+sincoαsc2oαs α+2=
tan2 α+tan tan2 α+1
α+2=121222+ +121+2=153.
角度 sin α±cos α 与 sin αcos α 关系的应用
[例 3] 已知 x∈(-π,0),sin x+cos x=15.
1.已知 a∈(0,π),且 cos α=-153,则 sinπ2-α· tan α=( )
由 x∈(-π,0),知 sin x<0,又 sin x+cos x>0,
所以 cos x>0,所以 sin x-cos x<0,
高三数学一轮复习——同角三角函数基本关系式及诱导公式
高三数学一轮复习——同角三角函数基本关系式及诱导公式1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1.(2)商数关系:sin αcos α=tan α⎝⎛⎭⎫α≠π2+k π,k ∈Z . 2.三角函数的诱导公式概念方法微思考1.使用平方关系求三角函数值时,怎样确定三角函数值的符号? 提示 根据角所在象限确定三角函数值的符号.2.诱导公式记忆口诀“奇变偶不变,符号看象限”中的奇、偶是何意义?提示 所有诱导公式均可看作k ·π2±α(k ∈Z )和α的三角函数值之间的关系,口诀中的奇、偶指的是此处的k 是奇数还是偶数.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若α,β为锐角,则sin 2α+cos 2β=1.( × ) (2)若α∈R ,则tan α=sin αcos α恒成立.( × )(3)sin(π+α)=-sin α成立的条件是α为锐角.( × ) (4)若sin(k π-α)=13(k ∈Z ),则sin α=13.( × )题组二 教材改编 2.若sin α=55,π2<α<π,则tan α= . 答案 -12解析 ∵π2<α<π,∴cos α=-1-sin 2α=-255,∴tan α=sin αcos α=-12.3.已知tan α=2,则sin α+cos αsin α-cos α的值为 .答案 3解析 原式=tan α+1tan α-1=2+12-1=3.4.化简cos ⎝⎛⎭⎫α-π2sin ⎝⎛⎭⎫5π2+α·sin(α-π)·cos(2π-α)的结果为 . 答案 -sin 2α解析 原式=sin αcos α·(-sin α)·cos α=-sin 2α.题组三 易错自纠5.已知sin θ+cos θ=43,θ∈⎝⎛⎭⎫0,π4,则sin θ-cos θ的值为 . 答案 -23解析 ∵sin θ+cos θ=43,∴sin θcos θ=718.又∵(sin θ-cos θ)2=1-2sin θcos θ=29,θ∈⎝⎛⎭⎫0,π4, ∴sin θ-cos θ=-23. 6.若sin(π+α)=-12,则sin(7π-α)= ;cos ⎝⎛⎭⎫α+3π2= . 答案 12 12解析 由sin(π+α)=-12,得sin α=12,则sin(7π-α)=sin(π-α)=sin α=12,cos ⎝⎛⎭⎫α+3π2=cos ⎝⎛⎭⎫α+3π2-2π=cos ⎝⎛⎭⎫α-π2 =cos ⎝⎛⎭⎫π2-α=sin α=12.同角三角函数基本关系式的应用1.已知α是第四象限角,sin α=-1213,则tan α等于( )A .-513 B.513 C .-125 D.125答案 C解析 因为α是第四象限角,sin α=-1213,所以cos α=1-sin 2α=513,故tan α=sin αcos α=-125. 2.已知α是三角形的内角,且tan α=-13,则sin α+cos α的值为 .答案 -105解析 由tan α=-13,得sin α=-13cos α,将其代入sin 2α+cos 2α=1, 得109cos 2α=1, 所以cos 2α=910,易知cos α<0,所以cos α=-31010,sin α=1010,故sin α+cos α=-105. 3.若角α的终边落在第三象限,则cos α1-sin 2α+2sin α1-cos 2α的值为 .答案 -3。
同角三角函数的两个基本关系
同角三角函数的两个基本关系
同角三角函数的基本关系如下:
(1)平方关系:sin2α+cos2α=1。
(2)商数关系:sin2α/cos2α=tanα。
同角三角函数关系式的常用变形:
(sinα±cosα)2=1±2sinαcosα;sinα=tanα·cosα。
诱导公式的记忆口诀:“奇变偶不变,符号看象限”,其中的奇、偶是指的奇数倍和偶数倍,变与不变指函数名称的变化。
在利用同角三角函数的平方关系时,若开方,要特别注意判断符号。
应用诱导公式时应注意的问题:
(1)利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负号—脱周期—化锐角.特别注意函数名称和符号的确定。
(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号。
(3)注意求值与化简后的结果要尽可能有理化、整式化。
高三第一轮复习--同角三角函数的关系式及诱导公式
/ 彩99下载
开咯万丈光芒.东舌闭目凝神感受着万物,壹切都变得那么の清新整齐,没什么半分の紊乱否均.正自思绪纷飞之时,身后响起咯壹阵轻快の脚步声,东舌本能の回过头去长望.走来の否是别人,正是吐茂公.东舌淡然壹笑,转而问道:"吐军师,有什么事情吗?"吐茂公轻摇手中羽扇,掀起无数尘 埃飘散开来,在阳光の耀射之下格外の显眼,沉静如水地说道:"殿下,在下已经召集咯全部人在正堂集中,还望殿下无事の话速速前去."听咯吐茂公の话,东舌心中突然有种否好の预感,旋即问道:"军师,莫否是出咯什么事情?"吐茂公警觉地环扫四周,点咯点头,匆匆转身离去.从吐茂公の表 现,东舌便猜测出咯事情の重要性.也否多问什么,随着吐茂公壹起朝正堂走去..半响过后,钱塘王府正堂.东舌端坐在王座之上,台下文武按顺序摆开,已经颇有壹番******の样子.右侧武将之中走出壹人,只见身高七尺有余.身挂金甲,背披紫袍,长得却是有些异于常人.此人便是日行千里,神 驹子马灵,马灵早在半个月前就被东舌派出到各地搜罗情报,如今归来定是情况有变.马灵上前壹步,拱手说道:"殿下,末将在隋朝廷打听到咯壹个消息."东舌否假思索の问道:"什么消息,尽管说来便是.""北方罗艺军团全线崩溃.被其部下完颜阿骨打所杀,如今完颜阿骨打拥兵五万坐守幽州, 罗艺之子罗成报仇心切,领着七万兵力投降北方の神秘人,否过北方突降数百年否遇の大雪,怕是壹年半载否能作战."马灵将北方情况壹壹道来.东舌思酌着情报,用手抚着下颚の须绒,点咯点头说道:"那汤广有没什么什么动静?"马灵顿咯顿语气.旋即说道:"汤广派高颎带兵十五万出兵北方, 平定幽州之乱.并派出十万大军企图企图."马灵说到另外壹支大军之时,突然语气变得迟钝起来,好像有点难以启齿壹般.东舌眼
同角三角函数的基本关系式与诱导公式
课堂互动讲练
考点一
诱导公式的应用
应用诱导公式进行化简或证明时, 首先根据题意选准公式再用,一般是负 变正、大变小的思想.
在使用诱导公式时,α可为任意角, 并不一定要为锐角,只不过是在运用的 过程中把它“看作”是锐角而已.“奇 变偶不变,符号看象限”同样适用于正 切和余切.如tan(270°-α)=cotα等.
cos2x-1 sin2x=
cos2x+sin2x cos2x-sin2x
,想法
使分
子分
母都出现 tanx 即可.
课堂互动讲练
【解】 (1)法一:联立方程:
sinx+cosx=15, sin2x+cos2x=1.
① 2分
②
①式两边平方得:sin2x+cos2x+2sinxcosx
=215,
∴2sinxcosx=-2245.4 分 ∵-π2<x<0,∴sinx<0,cosx>0. ∴sinx-cosx=- sin2x-2sinxcosx+cos2x
三基能力强化
5.已知scions2θθ++14=2,那么(cosθ + 3)(sinθ+1)的值为________.
解析:∵scions2θθ++14=2,∴sin2θ+4= 2cosθ+2,
∴cos2θ+2cosθ-3=0,解得 cosθ= 1 或 cosθ=-3(舍去),由 cosθ=1 得 sinθ =0,∴(cosθ+3)(sinθ+1)=4.
规律方法总结
公式中 k·π2+α 的整数 k 来讲的.“象
限”指在 k·π2+α 中,将 α 看作锐角时 k·π2+
α
所在的象限,如将
cos(32π+α)写成
π cos(3·2
同角三角函数的基本关系式与诱导公式
第二节 同角三角函数的基本关系与诱导公式 1,.同角三角函数的基本关系倒数关系:tan α∙cot α=1 商数关系:ααcos sin =tan α,ααsin cos =cot α 平方关系:sin ²α+cos ²α=1注意:同角三角函数的关系式的基本用途:根据一个角的某一个三角函数值,求出该角的其他三角函数值,化解同角的三角函数式,证明同角的三角恒等式 2,诱导公式 x sinx cosx tanx cotx -α-sin α cos α-tan α-cot αα±2πcos αsin ααcottan απ±α sin α-cos α ±tan α±cot α23π±α -cos α±sin αcot αtan α2π±α±sin αcos α±tan α±cot α记忆规律:奇变偶不变,符号看象限。
其中奇变偶不变中的奇,偶分别是指2π的奇数倍和偶数倍,变与不变指的是函数名称的变化 3,求值题型已知一个角的某一个三角函数值,求这个角的其他三角函数值,这类问题用同角三角函数的基本关系式求解,一般分成三种情况:(1)一个角的某一个三角函数值和这个角所在的象限或终边所在位置都是已知的,此类情况只有一组解.(2)一个角的某一个三角函数值是已知的,但这个角所在的象限或终边所在位置没有给出,解答这类问题,首先要根据已知的三角函数值确定这个角所在的象限或终边所在位置,然后分不同的情况求解(3)一个角的某一个三角函数值是用字母给车的,或用一个角的某一个三角函数值来表示这个角的其他三角函数值,此类情况需对字母进行讨论或对角α所在象限进行讨论,并注意对分类标准适当选取,一般有两组解`例题1,(1)已知sin α=31,且α为第二象限角,求tan α. (2)已知sin α=m(m 0≠,m 1±≠),求tan α4.化解题型:化简三角函数式的一般要求是:能求出值的要求出值来;函数种类尽可能少;化解后的式子项数最少,次数最低,尽可能不含根号 例题1化解(1).︒︒︒︒-10-10sin 10cos 10sin 21sin2(2)若角α的终边落在直线x+y=0上,则ααααcos 11sin cos sin 22-+-的值等于( A )A.2B.-2C.1D.05,已知tan α的值,求sin α和cos α构成的齐次式(或能化为齐次式)的值例题1,已知11tan tan -=-αα,求下列各式的值(1)ααααcos sin cos 3sin +-; (2)2cos sin sin 2++ααα6.利用方程思想解三角题对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,已知其中一个式子的值,可以求出其余两个式子的值,如:(sin α+cos α)²=1+2sin αcos α. (sin α-cos α)²=1-2sin αcos α.(sin α+cos α)²+(sin α-cos α)²=2 典型例题在△ABC 中,sinA+cosA=22,AC=2,AB=3, 求tanA 的值和△ABC 的面积二、 例题讲解【例1】化简sin tan tan (cos sin )cot s c c ααααααα+-++分析:切割化弦是解本题的出发点.解:原式sin sin sin (cos sin )cos sin cos 1cos sin sin ααααααααααα+-=+=+.【例2】化简(1)sin()cos()44ππαα-++; (2)已知32,cos(9)5παπαπ<<-=-,求11cot()2πα-的值. 解:(1)原式sin()cos[()]424πππαα=-++-sin()sin()044ππαα=---=.(2)3cos()cos(9)5απαπ-=-=-,∴3cos 5α=,∵2παπ<<,∴4sin 5α=-,sin 4tan cos 3ααα==, ∴1134cot()cot()tan 223ππααα-=--=-=.【例3】(1) 若tan 2α=,求值①cos sin cos sin αααα+-;②222sin sin cos cos αααα-+.(2)求值66441sin cos 1sin cos x xx x----.解:(1)①原式sin 112cos 322sin 121cos αααα++===----. ②∵2211cos 1tan 3αα==+,∴原式2221cos (2tan tan 1)3ααα+=-+=. (2)∵66224224sin cos (sin cos )(sin sin cos cos )x x x x x x x x +=+-⋅+2222222(sin cos )3sin cos 13sin cos x x x x x x =+-⋅=-⋅.又∵442222222sin cos (sin cos )2sin cos 12sin cos x x x x x x x x +=+-⋅=-⋅.∴原式66441sin cos 31sin cos 2x x x x --==--.【例4】已知sin ,cos θθ是方程244210x mx m -+-=的两个根,322πθπ<<,求角θ. 解:∵2sin cos 21sin cos 416(21)0m m m m θθθθ+=⎧⎪-⎪⋅=⎨⎪⎪∆=-+≥⎩,代入2(sin cos )12sin cos θθθθ+=+⋅,得132m ±=,又322πθπ<<,∴21sin cos 04m θθ-⋅=<, 13sin cos 2m θθ-+==,∴31sin ,cos 22θθ-==,又∵322πθπ<<, ∴56πθ=.【例5】(2010²大连模拟)已知cos(π4+α)=-12,则sin(π4-α)=( )A .-12 B.12 C .-22 D.22解析:sin(π4-α)=cos[π2-(π4-α)]=cos(π4+α)=-12.答案:A【例6】已知A =sin(k π+α)sin α+cos(k π+α)cos α(k ∈Z),则A 的值构成的集合是 ( )A .{1,-1,2,-2}B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2} 解析:当k 为偶数时,A =sin αsin α+cos αcos α=2;k 为奇数时,A =-sin αsin α-cos αcos α=-2. 答案:C【例7】已知tan x =sin(x +π2),则sin x = ( ) A.-1±52 B.3+12 C.5-12 D.3-12解析:∵tan x =sin(x +π2), ∴tan x =cos x ,∴sin x =cos 2x ,∴sin 2x +sin x -1=0, 解得sin x =5-12(或-1-52<-1,舍去). 答案:C【例8】已知α∈(π2,3π2),tan(α-7π)=-34,则sin α+cos α的值为 ( )A .±15B .-15 C.15 D .-75解析:tan(α-7π)=tan α=-34,∴α∈(π2,π),sin α=35,cos α=-45,∴sin α+cos α=-15.【例9】已知f (x )=a sin(πx +α)+b cos(πx -β),其中α、β、a 、b 均为非零实数,若f (2 010)=-1,则f (2 011)等于 ( )A .-1B .0C .1D .2 解析:由诱导公式知f (2 010)=a sin α+b cos β=-1, ∴f (2 011)=a sin(π+α)+b cos(π-β) =-(a sin α+b cos β)=1. 答案:C【例10】已知sin(2π+θ)tan(π+θ)tan(3π-θ)cos(π2-θ)tan(-π-θ)=1,则3sin 2θ+3sin θcos θ+2cos 2θ的值是( )A .1B .2C .3D .6 解析:∵sin(2π+θ)tan(π+θ)tan(3π-θ)cos(π2-θ)tan(-π-θ)=sin θtan θtan(π-θ)-sin θtan(π+θ)=-sin θtan θtan θ-sin θtan θ=tan θ=1,∴3sin 2θ+3sin θcos θ+2cos 2θ=3sin 2θ+3cos 2θsin 2θ+3sin θcos θ+2cos 2θ =3tan 2θ+3tan 2θ+3tan θ+2=3+31+3+2=1. 答案:A【例11】若cos(2π-α)=53,且α∈(-π2,0),则sin(π-α)=________. 解析:cos(2π-α)=cos α=53,又α∈(-π2,0), 故sin(π-α)=sin α=-1-(53)2=-23. 答案:-23【例12】若cos α+2sin α=-5,则tan α=________.解析:法一:将已知等式两边平方得cos 2α+4sin 2α+4sin αcos α=5(cos 2α+sin 2α),化简得sin 2α-4sin αcos α+4cos 2α=0,则(sin α-2cos α)2=0,故tan α=2. 法二:由cos α+2sin α=-5可知,cos α≠0,两边同时除以cos α得1+2tan α=-5sec α,平方得(1+2tan α)2=5sec 2α=(1+tan 2α),∴tan 2α-4tan α+4=0,解得tan α=2. 答案:2三、巩固练习1、若(cos )cos 2f x x =,(sin15)f =( D )()A 12 ()B 12- ()C 32 ()D 32- 2、已知1sin cos (0)5αααπ+=-≤≤,则tan α=34-.3、已知sin α是方程5x 2-7x -6=0的根,α是第三象限角,则 sin(-α-32π)cos(32π-α)cos(π2-α)sin(π2+α)²tan 2(π-α)=________.4、已知sin α=255,求tan(α+π)+sin(5π2+α)cos(5π2-α).5、(1)若角α是第二象限角,化简tan α1sin 2α-1; (2)化简: 1-2sin130°cos130°sin130°+1-sin 2130°. 6、sin585的值为 ( ) A.22-B.22C.32-D.327、已知3cos(),,tan 222ππϕϕϕ+=<=且则( ) A.33-B.33C.3-D.3 8、若2sin cos tan 2,sin 2cos ααααα-=+则的值为( )A.0B.34 C.1 D.549、已知tan 2tan 1αα=-,求下列各式的值: (1)sin 3cos sin cos αααα-+(2)22222sin 3cos 4sin 9cos αααα-- (3)224sin 3sin cos 5cos αααα--。
同角三角函数基本关系式与诱导公式知识点讲解+例题讲解(含解析)
同角三角函数基本关系式与诱导公式一、知识梳理1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.(2)商数关系:sin αcos α=tanα.2.三角函数的诱导公式总结:1.同角三角函数关系式的常用变形(sin α±cos α)2=1±2sin αcos α;sin α=tan α·cos α.2.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.3.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”)(1)sin(π+α)=-sin α成立的条件是α为锐角.()(2)六组诱导公式中的角α可以是任意角.()(3)若α∈R,则tan α=sin αcos α恒成立.()(4)若sin(k π-α)=13(k ∈Z ),则sin α=13.( ) 解析 (1)中对于任意α∈R ,恒有sin(π+α)=-sin α. (3)中当α的终边落在y 轴,商数关系不成立. (4)当k 为奇数时,sin α=13, 当k 为偶数时,sin α=-13. 答案 (1)× (2)√ (3)× (4)×2.已知tan α=-3,则cos 2α-sin 2α=( ) A.45B.-45C.35D.-35解析 由同角三角函数关系得cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=1-91+9=-45.答案 B3.已知α为锐角,且sin α=45,则cos (π+α)=( ) A.-35B.35C.-45D.45解析 因为α为锐角,所以cos α=1-sin 2α=35, 故cos(π+α)=-cos α=-35. 答案 A4.(2017·全国Ⅲ卷)已知sin α-cos α=43,则sin 2α=( )A.-79B.-29C.29D.79 解析 ∵(sin α-cos α)2=1-2sin αcos α=1-sin 2α, ∴sin 2α=1-⎝ ⎛⎭⎪⎫432=-79.答案 A5.(2019·济南质检)若sin α=-513,且α为第四象限角,则tan α=( ) A.125B.-125C.512D.-512解析 ∵sin α=-513,α为第四象限角,∴cos α=1-sin 2α=1213,因此tan α=sin αcos α=-512. 答案 D6.(2018·上海嘉定区月考)化简:sin 2(α+π)·cos(π+α)·cos(-α-2π)tan(π+α)·sin 3⎝ ⎛⎭⎪⎫π2+α·sin(-α-2π)=________.解析 原式=sin 2α·(-cos α)·cos αtan α·cos 3α·(-sin α)=sin 2αcos 2αsin 2αcos 2α=1.答案 1考点一 同角三角函数基本关系式 角度1 公式的直接运用【例1-1】 (2018·延安模拟)已知α∈⎝⎛⎭⎪⎫-π,-π4,且sin α=-13,则cos α=( ) A.-223 B.223 C.±223 D.23解析 因为α∈⎝ ⎛⎭⎪⎫-π,-π4,且sin α=-13>-22=sin ⎝ ⎛⎭⎪⎫-π4,所以α为第三象限角,所以cos α=-1-sin 2α=-1-⎝ ⎛⎭⎪⎫-132=-223. 答案 A角度2 关于sin α,cos α的齐次式问题 【例1-2】 已知tan αtan α-1=-1,求下列各式的值.(1)sin α-3cos αsin α+cos α;(2)sin 2α+sin αcos α+2.解 由已知得tan α=12. (1)sin α-3cos αsin α+cos α=tan α-3tan α+1=-53. (2)sin 2α+sin αcos α+2=sin 2α+sin αcos αsin 2α+cos 2α+2=tan 2α+tan αtan 2α+1+2=⎝ ⎛⎭⎪⎫122+12⎝ ⎛⎭⎪⎫122+1+2=135.角度3 “sin α±cos α,sin αcos α”之间的关系 【例1-3】 已知x ∈(-π,0),sin x +cos x =15. (1)求sin x -cos x 的值; (2)求sin 2x +2sin 2x 1-tan x 的值.解 (1)由sin x +cos x =15,平方得sin 2x +2sin x cos x +cos 2x =125, 整理得2sin x cos x =-2425.所以(sin x -cos x )2=1-2sin x cos x =4925. 由x ∈(-π,0),知sin x <0,又sin x +cos x >0, 所以cos x >0,则sin x -cos x <0, 故sin x -cos x =-75.(2)sin 2x +2sin 2x 1-tan x=2sin x (cos x +sin x )1-sin x cos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175.【训练1】 (1)(2019·烟台测试)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为( )A.-32B.32C.-34D.34(2)已知sin α+3cos α3cos α-sin α=5,则cos 2α+12sin 2α的值是( )A.35B.-35C.-3D.3解析 (1)∵5π4<α<3π2,∴cos α<0,sin α<0且cos α>sin α, ∴cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34, ∴cos α-sin α=32.(2)由sin α+3cos α3cos α-sin α=5得tan α+33-tan α=5,可得tan α=2,则cos 2α+12sin 2α=cos 2α+sin αcos α=cos 2α+sin αcos αcos 2α+sin 2α=1+tan α1+tan 2α=35.答案 (1)B (2)A考点二 诱导公式的应用【例2】 (1)设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos ⎝ ⎛⎭⎪⎫3π2+α-sin 2⎝ ⎛⎭⎪⎫π2+α(1+2sin α≠0),则f ⎝ ⎛⎭⎪⎫76π=________. (2)已知cos ⎝ ⎛⎭⎪⎫π6-θ=a ,则cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ的值是________. 解析 (1)∵f (α)=(-2sin α)(-cos α)+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α=cos α(1+2sin α)sin α(1+2sin α)=1tan α,∴f ⎝ ⎛⎭⎪⎫76π=1tan 76π=1tan π6= 3. (2)∵cos ⎝ ⎛⎭⎪⎫5π6+θ=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-θ=-cos ⎝ ⎛⎭⎪⎫π6-θ=-a ,sin ⎝ ⎛⎭⎪⎫2π3-θ=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π6-θ=a , ∴cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=-a +a =0.答案 (1)3 (2)0【训练2】 (1)(2019·衡水中学调研)若cos ⎝ ⎛⎭⎪⎫π2-α=23,则cos(π-2α)=( )A.29B.59C.-29D.-59 (2)(2017·北京卷)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β=________. 解析 (1)由cos ⎝ ⎛⎭⎪⎫π2-α=23,得sin α=23.∴cos(π-2α)=-cos 2α=-(1-2sin 2α)=2sin 2α-1=2×29-1=-59. (2)α与β的终边关于y 轴对称,则α+β=π+2k π,k ∈Z ,∴β=π-α+2k π,k ∈Z .∴sin β=sin(π-α+2k π)=sin α=13. 答案 (1)D (2)13考点三 同角三角函数基本关系式与诱导公式的综合应用【例3】 (1)(2019·菏泽联考)已知α∈⎝ ⎛⎭⎪⎫3π2,2π,sin ⎝ ⎛⎭⎪⎫π2+α=13,则tan(π+2α)=( ) A.427B.±225C.±427D.225(2)(2019·福建四地六校联考)已知α为锐角,且2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α的值是( ) A.355B.377C.31010D.13解析 (1)∵α∈⎝ ⎛⎭⎪⎫3π2,2π,sin ⎝ ⎛⎭⎪⎫π2+α=13,∴cos α=13,sin α=-223,tan α=sin αcos α=-2 2.∴tan(π+2α)=tan 2α=2tan α1-tan 2α=-421-(-22)2=427. (2)由已知得⎩⎨⎧3sin β-2tan α+5=0,tan α-6sin β-1=0.消去sin β,得tan α=3,∴sin α=3cos α,代入sin 2α+cos 2α=1,化简得sin 2α=910,则sin α=31010(α为锐角). 答案 (1)A (2)C(3)已知-π<x <0,sin(π+x )-cos x =-15. ①求sin x -cos x 的值; ②求sin 2x +2sin 2 x 1-tan x的值.解 ①由已知,得sin x +cos x =15, 两边平方得sin 2x +2sin x cos x +cos 2x =125,整理得2sin x cos x =-2425.∵(sin x -cos x )2=1-2sin x cos x =4925,由-π<x <0知,sin x <0, 又sin x cos x =-1225<0, ∴cos x >0,∴sin x -cos x <0, 故sin x -cos x =-75.②sin 2x +2sin 2x 1-tan x=2sin x (cos x +sin x )1-sin x cos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175.【训练3】 (1)(2019·湖北七州市联考)已知α∈(0,π),且cos α=-513,则sin ⎝ ⎛⎭⎪⎫π2-α·tan α=( ) A.-1213 B.-513C.1213D.513(2)已知θ是第四象限角,且sin ⎝ ⎛⎭⎪⎫θ+π4=35,则tan ⎝ ⎛⎭⎪⎫θ-π4=________.解析 (1)∵α∈(0,π),且cos α=-513,∴sin α=1213,因此sin ⎝ ⎛⎭⎪⎫π2-α·tan α=cos α·sin αcos α=sin α=1213.(2)由题意,得cos ⎝ ⎛⎭⎪⎫θ+π4=45,∴tan ⎝ ⎛⎭⎪⎫θ+π4=34.∴tan ⎝ ⎛⎭⎪⎫θ-π4=tan ⎝ ⎛⎭⎪⎫θ+π4-π2=-1tan ⎝ ⎛⎭⎪⎫θ+π4=-43. 答案 (1)C (2)-43三、课后练习1.若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为( ) A.1+ 5 B.1-5 C.1± 5D.-1-5解析 由题意知sin θ+cos θ=-m 2,sin θ·cos θ=m4.又()sin θ+cos θ2=1+2sin θcos θ,∴m 24=1+m2,解得m =1± 5.又Δ=4m 2-16m ≥0,∴m ≤0或m ≥4,∴m =1- 5. 答案 B2.已知sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=1225,且0<α<π4,则sin α=________,cos α=________.解析 sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=-cos α·(-sin α)=sin αcos α=1225.∵0<α<π4,∴0<sin α<cos α.又∵sin 2α+cos 2α=1,∴sin α=35,cos α=45. 答案 35 453.已知k ∈Z ,化简:sin (k π-α)cos[(k -1)π-α]sin[(k +1)π+α]cos (k π+α)=________.解析 当k =2n (n ∈Z )时,原式=sin (2n π-α)cos[(2n -1)π-α]sin[(2n +1)π+α]cos (2n π+α)=sin (-α)·cos (-π-α)sin (π+α)·cos α=-sin α(-cos α)-sin α·cos α=-1;当k =2n +1(n ∈Z )时,原式=sin[(2n +1)π-α]·cos[(2n +1-1)π-α]sin[(2n +1+1)π+α]·cos[(2n +1)π+α]=sin (π-α)·cos αsin α·cos (π+α)=sin α·cos αsin α(-cos α)=-1. 综上,原式=-1. 答案 -14.是否存在α∈⎝ ⎛⎭⎪⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由. 解 假设存在角α,β满足条件,则由已知条件可得⎩⎨⎧sin α=2sin β, ①3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2. ∴sin 2α=12,∴sin α=±22.∵α∈⎝ ⎛⎭⎪⎫-π2,π2,∴α=±π4. 当α=π4时,由②式知cos β=32,又β∈(0,π),∴β=π6,此时①式成立; 当α=-π4时,由②式知cos β=32,又β∈(0,π),∴β=π6,此时①式不成立,故舍去.∴存在α=π4,β=π6满足条件.5.已知sin α=23,α∈⎝ ⎛⎭⎪⎫0,π2,则cos(π-α)=________,cos 2α=________.解析 cos(π-α)=-cos α=-1-sin 2α=-73,cos 2α=cos 2α-sin 2α=⎝ ⎛⎭⎪⎫-732-⎝ ⎛⎭⎪⎫232=59.答案 -73 59。
同角三角函数的基本关系式及诱导公式
同角三角函数的基本关系式及诱导公式1.同角三角函数基本关系式平方关系:sin 2α+cos 2α=1;商数关系:tanα=2.α相关角的表示(1)终边与角α的终边关于原点对称的角可以表示为π+α;(2)终边与角α的终边关于x 轴对称的角可以表示为-α(或2π-α);(3)终边与角α的终边关于y 轴对称的角可以表示为π-α;(4)终边与角α的终边关于直线y=x 对称的角可以表示为 -α.3.诱导公式(1)公式一 sin(α+k ·2π)=sinα ,cos(α+k ·2π)=cosα, tan(α+k ·2π)=tanα,其中k ∈Z.(2)公式二sin(π+α)=-sinα ,cos(π+α)=-cosα, tan(π+α)=tanα.(3)公式三 sin(-α)=-sinα, cos(-α)=cosα, tan(-α)=-tanα.(4)公式四 sin(π-α)=sinα ,cos(π-α)=-cosα, tan(π-α)=-tanα.(5)公式五 (6)公式六即α+k ·2π(k ∈Z),-α,π±α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号; ±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号. 总口诀为:奇变偶不变,符号看象限,其中“奇、偶”是指“k · ±α(k ∈Z)”中k 的奇偶性;“符号”是把任意角α看作锐角时原函数值的符号 1.cos300°=( ) 解析:cos300°=cos(360°-60°)=cos60°4.点P(tan2008°,cos2008°)位于( )A.第二象限B.第一象限C.第四象限D.第三象限解析:∵2008°=6×360°-152°,∴tan2008°=-tan152°=tan28°>0,cos2008°=cos152°<0,∴点P 在第四象限..sin cos αα,.22sin cos cos sin αππααα⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,.22sin cos cos sin αααππα⎛⎫⎛⎫+=+=- ⎪ ⎪⎝⎭⎝⎭2π()4,543..3432.sin ,ta 4..43n A B C D ααα-±=±若且是第二象限角则的值等于:,cos t 3,5454.5n 3a 3sin cos ααααα==-⎛⎫==-∴==- ⎪⎝⎭∴解析为第二象限角()1,33611..33..333.sin cos A B C D ααππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭--已知则的值为,6236231.33:cos cos sin πππαπππααααπ⎛⎫=+- ⎪⎝⎭⎡⎤⎛⎫⎛⎫+=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎛⎫=--=- ⎪⎝⎭+∴解析类型一 利用同角三角函数基本关系式化简求值解题准备:本考点的试题难度不大,而对公式的应用要求准确、灵活,尤其是利用平方关系sin 2α+cos 2α=1及其变形形式sin 2α=1-cos 2α或cos 2α=1-sin 2α进行开方运算时,特别注意符号的判断.如果所给的三角函数值是字母给出的,且没有指定角在哪个象限,那么就需要结合分类讨论的思想来确定其他角的三角函数值. 【典例1】 (1)已知sinα= ,且α为第二象限角,求tanα; (2)已知sinα= ,求tanα; (3)已知sinα=m(m≠0,m≠±1),求tanα.(3)∵sinα=m(m≠0,m≠±1),∴cosα=±=±(当α为第一、四象限角时取正号,当α为第二、三象限角时取负号), 所以当α ;当α为第二、三象限角时,tanα= [反思感悟] ,关键是掌握住“先平方,的平方关系相联系的cosα,再由公式求tanα.在(3)中,α为第四象限角,但 ,原因是m 此时小于0,所以形式上tanα的表达式前面仍不带负号.类型二 诱导公式及其应用解题准备:诱导公式起着变名、变角、变号的作用,应用诱导公式,着眼点应放在“角”上,重点是“函数名称”和“正负号”的判断.求任意角的三角函数值问题,都可以利用诱导公式最终化为锐角三角函数的求值问题,具体步骤是:“化负为正—化大为小—锐角求值”.[分析] 显然应用到诱导公式,既可以直接从诱导公式中合理选用,也可以直接运用十字诀,一般来说用后一方法记忆负担较轻.()5.cos 2sin tan 11..2..222A B C D ααα-+=-若则等于22222(1,:sin2sin )1,tan 2.cos sin sin cos sin cos ααααααααα+⎧+=⎪⇒⎨+=⎪⎩⎧=∴∴=⎪⎪⎨⎪=⎪⎩=解析1313()()()[]1sin ,cos tan 2sin 1,33.,cos tan 410,3ta ,1n sin cos ααααααααααααα∴====-∴=∴===->==∴=解为第二象限角为第一或第二象限角当为第一象限角时当为第二象限角时由知3()(2)2.()(2,())f sin cos tan cot sin ππαπαααααππα⎛⎫---+ ⎪⎝⎭----=【典例】已知是第三象限角且()()()()()()31,251f ;2f ; 31860,f .coscos πααααα⎛⎫-= ︒⎭=-⎪⎝化简若求的值若求的值()()(2)(4)(3)222(2)(2)2 []12.f ()sin cos tan cot sin sin cos cot cos cot sin πππαααππααααααααα-------==--=解()31(3),2252sin ,sin cos f ()cos cos αααπαααπ=-∴⎛⎫-=-+- ⎪⎝⎭====(3)∵-1860°=-21×90°+30°,∴f(-1860°)=-cos(-1860°)=-cos(-21×90°+30°)=-sin30°=[反思感悟] 如何运用十字诀,可通过下例来体会:设β=α- 且α为锐角,则如图所示,可知β可看成是第二象限角,而在第二象限中余弦取负号,且k=-3为奇数.∴cosβ=cos(-3•+α)=-sinα.类型三sinα±cosα与sinα·cosα关系的应用解题准备:利用sin2α+cos2α=1,可以得出如下结论:(sinα+cosα)2=1+2sinαcosα;(sinα-cosα)2=1-2sinαcosα;(sinα+cosα)2+(sinα-cosα)2=2;(sinα+cosα)2-(sinα-cosα)2=4sinαcosα.对于sinα+cosα,sinαcosα,sinα-cosα这三个式子,已知其中一个式子的值,可求其余二式的值.【典例3】已知sinx+cosx=,求下列各式的值:(1)sin3x+cos3x;(2)sin4x+cos42x.[反思感悟] 平方关系sin2x+cos2x=1把sinx+cosx,sinxcosx联系起来,要灵活运用它们之间的变换,熟记立方和公式及和的立方公式.[反思感悟] 形如asinα+bcosα和asin2α+bsinαcosα+ccos2α的式子分别称为关于sinα、cosα的一次齐次式和二次齐次式,对涉及它们的三角式的变换常有如上的整体代入方法可供使用.12-3,2π2π()22[]sinx cosxsinx1.21cosxsinxcosx.4+=∴+=⎛⎫=⎪⎝∴=-⎭解()()()33331sin x cos x sinx cosx3sinxcosx sin x cos134xαα⎛⎫--=⎪⎝⎭+=+-+=()()()2442222222sin x cos x sin x cos x2sin xcos x12sinxcosx117;428⎛⎫-=⎪⎝+=+-=-=-⨯⎭()()222222223tan x cot x tanx cot11221621x224.116sin x cos xsinx cosxsin x cos x⎛⎫+⎪⎝⎭=-=-=-+=+-==-()24.2sin sin cos21,13(1);.tantansin cossin cosααααααααα+=--+-+【典例】已知求下列各式的值()1.2133352.1131]a12[t nsin cos tansin cos tanααααααα---===-++∴+=解由已知得()()2222222222222sin sin cos2sin sin cos2cos3232111321322.5112sinsin sin cos cossin costan tantanααααααααααααααααα++=+++=+⎛⎫++⎪⎝⎭=∴++=+=⎛⎫+⎪⎝⎭++。
高考数学复习同角三角函数的基本关系与诱导公式
第2讲 同角三角函数的基本关系与诱导公式 最新考纲考向预测1.理解同角三角函数的基本关系式sin 2x +cos 2x =1,sin xcos x =tan x .2.借助单位圆的对称性,利用定义推导出诱导公式⎝ ⎛⎭⎪⎫α±π2,α±π的正弦、余弦、正切. 命题趋势 考查利用同角三角函数的基本关系、诱导公式解决条件求值问题,常与三角恒等变换相结合起到化简三角函数关系的作用,强调利用三角公式进行恒等变形的技巧以及基本的运算能力.核心素养数学运算1.同角三角函数的基本关系 (1)平方关系:sin 2x +cos 2x =1.(2)商数关系:tan x =sin x cos x ⎝ ⎛⎭⎪⎫其中x ≠k π+π2,k ∈Z .2.三角函数的诱导公式 组数 一 二 三 四 五 六 角 α+2k π (k ∈Z ) π+α -α π-α π2-α π2+α 正弦 sin α -sin__α -sin__α sin__α cos__α cos__α 余弦 cos α -cos__α cos__α -cos__α sin__α -sin__α正切tan αtan__α-tan__α-tan__α常用结论1.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.2.同角三角函数的基本关系式的几种变形 (1)sin 2α=1-cos 2α=(1+cos α)(1-cos α);cos 2α=1-sin 2α=(1+sin α)(1-sin α); (sin α±cos α)2=1±2sin αcos α. (2)sin α=tan αcos α⎝ ⎛⎭⎪⎫α≠π2+k π,k ∈Z .(3)sin 2α=sin 2αsin 2α+cos 2α=tan 2αtan 2α+1;cos 2α=cos 2αsin 2α+cos 2α=1tan 2α+1.常见误区1.同角三角函数的基本关系式及诱导公式要注意角的范围对三角函数符号的影响,尤其是利用平方关系求三角函数值,进行开方时要根据角的范围,判断符号后,正确取舍.2.注意求值与化简后的结果一般要尽可能有理化、整式化.1.判断正误(正确的打“√”,错误的打“×”) (1)对任意的角α,β,都有sin 2α+cos 2β=1.( ) (2)若α∈R ,则tan α=sin αcos α恒成立.( )(3)sin(π+α)=-sin α成立的条件是α为锐角.( ) (4)若cos(n π-θ)=13(n ∈Z ),则cos θ=13.( ) 答案:(1)× (2)× (3)× (4)×2.(易错题)已知cos(π+α)=23,则tan α=( ) A .52 B .255 C .±52D .±255解析:选C.因为cos(π+α)=23, 所以cos α=-23,则α为第二或第三象限角,所以sin α=±1-cos 2α=±53.所以tan α=sin αcos α=±53-23=±52. 3.已知sin αcos α=12,则tan α+1tan α=( ) A .2 B .12 C .-2D .-12解析:选A.tan α+1tan α=sin αcos α+cos αsin α=sin 2α+cos 2αsin αcos α=112=2.4.sin 2 490°=________;cos ⎝ ⎛⎭⎪⎫-52π3=________.解析:sin 2 490°=sin(7×360°-30°)=-sin 30°=-12.cos ⎝ ⎛⎭⎪⎫-52π3=cos 52π3=cos ⎝ ⎛⎭⎪⎫16π+π+π3=cos ⎝ ⎛⎭⎪⎫π+π3=-cos π3=-12. 答案:-12 -125.化简cos ⎝ ⎛⎭⎪⎫α-π2sin ⎝ ⎛⎭⎪⎫52π+α·cos(2π-α)的结果为________.解析:原式=sin αcos α·cos α=sin α. 答案:sin α同角三角函数的基本关系式 角度一 “知一求二”问题(2020·北京市适应性测试)已知α是第四象限角,且tan α=-34,则sinα=( )A .-35 B.35 C.45 D .-45 【解析】 因为tan α=sin αcos α=-34, 所以cos α=-43sin α ①.sin 2α+cos 2α=1 ②,由①②得sin 2α=925,又α是第四象限角,所以sin α<0,则sin α=-35,故选A.【答案】 A利用同角三角函数的基本关系求解问题的关键是熟练掌握同角三角函数的基本关系的正用、逆用、变形.同角三角函数的基本关系本身是恒等式,也可以看作是方程,对于一些题,可利用已知条件,结合同角三角函数的基本关系列方程组,通过解方程组达到解决问题的目的.角度二 sin α,cos α的齐次式问题已知tan αtan α-1=-1,求下列各式的值:(1)sin α-3cos αsin α+cos α;(2)sin 2α+sin αcos α+2. 【解】 由已知得tan α=12. (1)sin α-3cos αsin α+cos α=tan α-3tan α+1=-53.(2)sin 2α+sin αcos α+2=sin 2α+sin αcos αsin 2α+cos 2α+2=tan 2α+tan αtan 2α+1+2=⎝ ⎛⎭⎪⎫122+12⎝ ⎛⎭⎪⎫122+1+2=135.关于sin α与cos α的齐n 次分式或齐二次整式的化简求值的解题策略已知tan α,求关于sin α与cos α的齐n次分式或齐二次整式的值.角度三sin α±cos α,sin αcos α之间的关系已知α∈(-π,0),sin α+cos α=1 5.(1)求sin α-cos α的值;(2)求sin 2α+2sin2α1-tan α的值.【解】(1)由sin α+cos α=1 5,平方得sin2α+2sin αcos α+cos2α=1 25,整理得2sin αcos α=-24 25.所以(sin α-cos α)2=1-2sin αcos α=49 25.由α∈(-π,0),知sin α<0,又sin α+cos α>0,所以cos α>0,则sin α-cos α<0,故sin α-cos α=-7 5.(2)sin 2α+2sin2α1-tan α=2sin α(cos α+sin α)1-sin αcos α=2sin αcos α(cos α+sin α)cos α-sin α=-2425×1575=-24175.sin α±cos α与sin αcos α关系的应用技巧(1)通过平方,sin α+cos α,sin α-cos α,sin αcos α之间可建立联系,若令sin α+cos α=t ,则sin αcos α=t 2-12,sin α-cos α=±2-t 2(注意根据α的范围选取正、负号).(2)对于sin α+cos α,sin α-cos α,sin αcos α这三个式子,可以知一求二.1.(2020·河南六市一模)已知cos ⎝ ⎛⎭⎪⎫π2+α=35,且α∈⎝ ⎛⎭⎪⎫π2,3π2,则tan α=( )A .43 B .34 C .-34D .±34解析:选B.因为cos ⎝ ⎛⎭⎪⎫π2+α=35,所以sin α=-35.又α∈⎝ ⎛⎭⎪⎫π2,3π2,所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=34.2.已知tan α=-34,则sin α(sin α-cos α)=( ) A.2125 B.2521 C.45D.54解析:选 A.sin α(sin α-cos α)=sin 2α-sin αcos α=sin 2α-sin αcos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1,将tan α=-34代入得原式=⎝ ⎛⎭⎪⎫-342-⎝ ⎛⎭⎪⎫-34⎝ ⎛⎭⎪⎫-342+1=2125.3.(一题多解)已知sin α-cos α=2,α∈(0,π),则tan α=( ) A .-1 B .-22 C .22D .1解析:选A.方法一:由⎩⎨⎧sin α-cos α=2,sin 2α+cos 2α=1,得2cos 2α+22cos α+1=0,即(2cos α+1)2=0, 所以cos α=-22.又α∈(0,π),所以α=3π4, 所以tan α=tan 3π4=-1.方法二:因为sin α-cos α=2, 所以2sin ⎝ ⎛⎭⎪⎫α-π4=2,所以sin ⎝ ⎛⎭⎪⎫α-π4=1.因为α∈(0,π),所以α=3π4,所以tan α=-1.法三:由sin α-cos α=2得1-sin 2α=2,所以sin 2α=-1. 设sin α+cos α=t ,所以1+sin 2α=t 2,所以t =0.由⎩⎨⎧sin α-cos α=2,sin α+cos α=0得sin α=22,cos α=-22, 所以tan α=-1.诱导公式的应用(1)sin(-1 200°)cos 1 290°=________.(2)已知角θ的顶点在坐标原点,始边与x 轴正半轴重合,终边在直线3x -y =0上,则sin ⎝ ⎛⎭⎪⎫3π2+θ+2cos (π-θ)sin ⎝ ⎛⎭⎪⎫π2-θ-sin (π-θ)等于________.【解析】 (1)原式=-sin 1 200°cos 1 290° =-sin(3×360°+120°)cos(3×360°+210°) =-sin 120°cos 210°=-sin(180°-60°)cos(180°+30°) =sin 60°cos 30°=32×32=34.(2)由题意可知tan θ=3,原式=-cos θ-2cos θcos θ-sin θ=-31-tan θ=32.【答案】 (1)34 (2)32【引申探究】 (变问法)若本例(2)的条件不变,则cos ⎝ ⎛⎭⎪⎫π2+θ-sin (-π-θ)cos ⎝ ⎛⎭⎪⎫11π2-θ+sin ⎝ ⎛⎭⎪⎫9π2+θ=________.解析:由题意可知tan θ=3, 原式=-sin θ+sin (π+θ)cos ⎝ ⎛⎭⎪⎫6π-π2-θ+sin ⎝ ⎛⎭⎪⎫4π+π2+θ =-sin θ-sin θcos ⎝ ⎛⎭⎪⎫π2+θ+sin ⎝ ⎛⎭⎪⎫π2+θ=-2sin θ-sin θ+cos θ=2tan θtan θ-1=2×33-1=3.答案:3(1)诱导公式用法的一般思路①化负为正,化大为小,化到锐角为止;②角中含有加减π2的整数倍时,用公式去掉π2的整数倍. (2)常见的互余和互补的角①常见的互余的角:π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等; ②常见的互补的角:π3+θ与2π3-θ;π4+θ与3π4-θ等.1.已知sin ⎝ ⎛⎭⎪⎫α-π3=13,则cos ⎝ ⎛⎭⎪⎫α+π6的值是( )A .-13 B.13 C.223 D .-223解析:选A.因为sin ⎝ ⎛⎭⎪⎫α-π3=13,所以cos ⎝ ⎛⎭⎪⎫α+π6=cos ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫α-π3=-sin ⎝ ⎛⎭⎪⎫α-π3=-13.2.(多选)已知A =sin (k π+α)sin α+cos (k π+α)cos α+tan (k π+α)tan α,则A 的值可以是( )A .3B .-3C .1D .-1解析:选AD.由已知可得,当k 为偶数时,A =sin (k π+α)sin α+cos (k π+α)cos α+tan (k π+α)tan α=sin αsin α+cos αcos α+tan αtan α=3;当k 为奇数时,A =sin (k π+α)sin α+cos (k π+α)cos α+tan (k π+α)tan α=-sin αsin α+-cos αcos α+tan αtan α=-1,所以A 的值可以是3或-1.故答案为AD.同角三角函数的基本关系式与诱导公式的综合应用(2020·湖北宜昌一中期末)已知α是第三象限角,且cos α=-1010. (1)求tan α的值;(2)化简并求cos (π-α)2sin (-α)+sin ⎝ ⎛⎭⎪⎫π2+α的值.【解】 (1)因为α是第三象限角,cos α=-1010, 所以sin α=-1-cos 2α=-31010,所以tan α=sin αcos α=3.(2)原式=-cos α-2sin α+cos α=cos α2sin α-cos α=12tan α-1,由(1)知tan α=3,所以原式=12×3-1=15.求解诱导公式与同角关系综合问题的基本思路和化简要求基本 思路①分析结构特点,选择恰当公式; ②利用公式化成单角三角函数;③整理得最简形式化简 要求①化简过程是恒等变换;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值1.已知sin ⎝ ⎛⎭⎪⎫5π2+α=35,所以tan α的值为( )A .-43B .-34C .±43D .±34解析:选C.sin ⎝ ⎛⎭⎪⎫5π2+α=sin ⎝ ⎛⎭⎪⎫π2+α=cos α=35,所以sin α=±45,tan α=sin αcos α=±43.2.已知tan(π-α)=-23,且α∈⎝ ⎛⎭⎪⎫-π,-π2,则cos (-α)+3sin (π+α)cos (π-α)+9sin α的值为( )A .-15B .-37 C.15 D.37解析:选 A.因为tan(π-α)=-23,所以tan α=23,所以cos (-α)+3sin (π+α)cos (π-α)+9sin α=cos α-3sin α-cos α+9sin α=1-3tan α-1+9tan α=1-2-1+6=-15,故选A.[A 级 基础练]1.(多选)已知x ∈R ,则下列等式恒成立的是( ) A .sin(-x )=sin x B .sin ⎝ ⎛⎭⎪⎫3π2-x =cos xC .cos ⎝ ⎛⎭⎪⎫π2+x =-sin xD .cos(x -π)=-cos x解析:选CD.sin(-x )=-sin x ,故A 不成立;sin ⎝ ⎛⎭⎪⎫3π2-x =-cos x ,故B 不成立;cos ⎝ ⎛⎭⎪⎫π2+x =-sin x ,故C 成立;cos(x -π)=-cos x ,故D 成立.2.(多选)若sin α=45,且α为锐角,则下列选项中正确的有( )A .tan α=43 B .cos α=35 C .sin α+cos α=85D .sin α-cos α=-15解析:选AB.因为sin α=45,且α为锐角, 所以cos α=1-sin 2α=1-⎝ ⎛⎭⎪⎫452=35,故B 正确, 所以tan α=sin αcos α=4535=43,故A 正确,所以sin α+cos α=45+35=75≠85,故C 错误, 所以sin α-cos α=45-35=15≠-15,故D 错误.3.已知角α是第二象限角,且满足sin ⎝ ⎛⎭⎪⎫5π2+α+3cos(α-π)=1,则tan(π+α)=( )A . 3B .- 3C .-33D .-1解析:选B.由sin ⎝ ⎛⎭⎪⎫5π2+α+3cos(α-π)=1,得cos α-3cos α=1,所以cos α=-12, 因为角α是第二象限角,所以sin α=32, 所以tan(π+α)=tan α=sin αcos α=- 3.4.已知f (α)=sin (2π-α)cos ⎝ ⎛⎭⎪⎫π2+αcos ⎝ ⎛⎭⎪⎫-π2+αtan (π+α),则f ⎝ ⎛⎭⎪⎫π3=( ) A .12 B .22 C .32D .-12解析:选A.f (α)=sin (2π-α)cos ⎝ ⎛⎭⎪⎫π2+αcos ⎝ ⎛⎭⎪⎫-π2+αtan (π+α)=-sin α·(-sin α)sin α·tan α=sin 2αsin α·sin αcos α=cos α,则f ⎝ ⎛⎭⎪⎫π3=cos π3=12.5.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上一点A (2sin α,3)(sin α≠0),则cos α=( )A .12B .-12C .32D .-32解析:选A.由三角函数定义得tan α=32sin α,即sin αcos α=32sin α,得3cos α=2sin 2α=2(1-cos 2α),解得cos α=12或cos α=-2(舍去).故选A.6.计算:sin 11π6+cos 10π3的值为________.解析:原式=sin ⎝ ⎛⎭⎪⎫2π-π6+cos ⎝ ⎛⎭⎪⎫3π+π3=-sin π6-cos π3=-12-12=-1.答案:-17.已知sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=1225,且0<α<π4,则sin α=________,cos α=________.解析:sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=-cos α·(-sin α)=sin αcos α=1225.因为0<α<π4,所以0<sin α<cos α.又因为sin 2α+cos 2α=1,所以sin α=35,cos α=45.答案:35 45 8.化简1-2sin 40°cos 40°cos 40°-1-sin 250°=________. 解析:原式=sin 240°+cos 240°-2sin 40°cos 40°cos 40°-cos 50°=|sin 40°-cos 40°|sin 50°-sin 40°=|sin 40°-sin 50°|sin 50°-sin 40°=sin 50°-sin 40°sin 50°-sin 40°=1.答案:19.已知sin(3π+α)=2sin ⎝ ⎛⎭⎪⎫3π2+α,求下列各式的值:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+sin 2α.解:由已知得sin α=2cos α. (1)原式=2cos α-4cos α5×2cos α+2cos α=-16.(2)原式=sin 2α+2sin αcos αsin 2α+cos 2α=sin 2α+sin 2αsin 2α+14sin 2α=85.10.已知角θ的终边与单位圆x 2+y 2=1在第四象限交于点P ,且点P 的坐标为⎝ ⎛⎭⎪⎫12,y .(1)求tan θ的值;(2)求cos ⎝ ⎛⎭⎪⎫π2-θ+cos (θ-2π)sin θ+cos (π+θ)的值.解:(1)由θ为第四象限角,终边与单位圆交于点P ⎝ ⎛⎭⎪⎫12,y ,得⎝ ⎛⎭⎪⎫122+y 2=1,y <0,解得y =-32,所以tan θ=-3212=- 3.(2)因为tan θ=-3, 所以cos ⎝ ⎛⎭⎪⎫π2-θ+cos (θ-2π)sin θ+cos (π+θ)=sin θ+cos θsin θ-cos θ=tan θ+1tan θ-1=-3+1-3-1=2- 3. [B 级 综合练]11.(多选)已知角θ的终边与坐标轴不重合,式子1-sin 2(π+θ)化简的结果为-cos θ,则( )A .sin θ>0,tan θ>0B .sin θ<0,tan θ>0C .sin θ<0,tan θ<0D .sin θ>0,tan θ<0解析:选BD.1-sin 2(π+θ)=1-sin 2θ=cos 2θ=|cos θ|=-cos θ,所以cos θ<0,角θ的终边落在第二或三象限,所以sin θ>0,tan θ<0或sin θ<0,tan θ>0,故选BD.12.(2020·陕西汉中月考)已知角α为第二象限角,则cos α·1+sin α1-sin α+sin 2α1+1tan 2α=( )A .1B .-1C .0D .2解析:选B.因为角α为第二象限角,所以sin α>0,cos α<0,所以cos α 1+sin α1-sin α=cos α(1+sin α)2cos 2α=cos α·1+sin α|cos α|=-1-sin α,sin 2α1+1tan 2α=sin 2α1+cos 2αsin 2α=sin 2αsin 2α+cos 2αsin 2α=sin 2α1sin 2α=sin 2α⎪⎪⎪⎪⎪⎪1sin α=sin α,所以cos α1+sin α1-sin α+sin 2α1+1tan 2α=-1-sin α+sin α=-1.故选B.13.是否存在α∈⎝ ⎛⎭⎪⎫-π2,π2,β∈()0,π使等式sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.解:假设存在角α,β满足条件. 由已知条件可得⎩⎨⎧sin α=2sin β,①3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2.所以sin 2α=12,所以sin α=±22.因为α∈⎝ ⎛⎭⎪⎫-π2,π2,所以α=±π4. 当α=π4时,由②式知cos β=32, 又β∈(0,π),所以β=π6,此时①式成立; 当α=-π4时,由②式知cos β=32,又β∈(0,π), 所以β=π6,此时①式不成立,故舍去. 所以存在α=π4,β=π6满足条件. 14.在△ABC 中,(1)求证:cos 2A +B 2+cos 2 C2=1;(2)若cos ⎝ ⎛⎭⎪⎫π2+A sin ⎝ ⎛⎭⎪⎫3π2+B tan(C -π)<0,求证:△ABC 为钝角三角形.证明:(1)在△ABC 中,A +B =π-C , 所以A +B 2=π2-C2,所以cos A +B 2=cos ⎝ ⎛⎭⎪⎫π2-C 2=sin C 2,所以cos 2A + B 2+cos 2C2=1.(2)若cos ⎝ ⎛⎭⎪⎫π2+A sin ⎝ ⎛⎭⎪⎫3π2+B tan(C -π)<0,所以(-sin A )(-cos B )tan C <0, 即sin A cos B tan C <0.因为在△ABC 中,0<A <π,0<B <π,0<C <π且sin A >0, 所以⎩⎨⎧cos B <0,tan C >0或⎩⎨⎧cos B >0,tan C <0,所以B 为钝角或C 为钝角,所以△ABC 为钝角三角形.[C 级 创新练]15.(2020·山东肥城统考)公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现黄金分割比例为5-12≈0.618,这一数值也可以表示为m =2sin 18°.若m 2+n =4,则m n2cos 227°-1=( )A .4B .3C .2D .1解析:选C.因为m =2sin 18°,且m 2+n =4,所以n =4-m 2=4-4sin 218°=4(1-sin 218°)=4cos 218°,所以m n2cos 227°-1=2sin 18°4cos 218°cos 54°=4sin 18°cos 18°sin 36°=2.故选C.16.已知α,β∈(0,2π)且α<β,若关于x 的方程(x +sin α)(x +sin β)+1=0有实数根,则代数式3sin ⎝ ⎛⎭⎪⎫π2+α+cos ⎝ ⎛⎭⎪⎫3π2-β2-sin (π-α)cos ⎝ ⎛⎭⎪⎫3π2+β=________.解析:整理方程(x +sin α)(x +sin β)+1=0得x 2+x (sin α+sin β)+sin αsin β+1=0.由题意得Δ=(sin α+sin β)2-4sin αsin β-4≥0, 即(sin α-sin β)2≥4①.因为-1≤sin α≤1,-1≤sin β≤1,所以sin α-sin β∈[-2,2],从而(sin α-sin β)2≤4②.由①②得sin α-sin β=±2,所以⎩⎨⎧sin α=1,sin β=-1或⎩⎨⎧sin α=-1,sin β=1.因为α,β∈(0,2π)且α<β,所以α=π2,β=3π2,即⎩⎨⎧sin α=1,sin β=-1.因此3sin ⎝ ⎛⎭⎪⎫π2+α+cos ⎝ ⎛⎭⎪⎫3π2-β2-sin (π-α)cos ⎝ ⎛⎭⎪⎫3π2+β=3cos α-sin β2-sin αsin β=12+1=13.答案:13第2讲 同角三角函数的基本关系与诱导公式 最新考纲考向预测1.理解同角三角函数的基本关系式sin 2x +cos 2x =1,sin xcos x =tan x .2.借助单位圆的对称性,利用定义推导出诱导公式⎝ ⎛⎭⎪⎫α±π2,α±π的正弦、余弦、正切. 命题趋势 考查利用同角三角函数的基本关系、诱导公式解决条件求值问题,常与三角恒等变换相结合起到化简三角函数关系的作用,强调利用三角公式进行恒等变形的技巧以及基本的运算能力.核心素养数学运算1.同角三角函数的基本关系 (1)平方关系:sin 2x +cos 2x =1.(2)商数关系:tan x =sin x cos x ⎝ ⎛⎭⎪⎫其中x ≠k π+π2,k ∈Z .2.三角函数的诱导公式 组数 一 二 三 四 五 六 角 α+2k π (k ∈Z ) π+α -α π-α π2-α π2+α 正弦 sin α -sin__α -sin__α sin__α cos__α cos__α 余弦 cos α -cos__α cos__α -cos__α sin__α -sin__α正切tan αtan__α-tan__α-tan__α常用结论1.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.2.同角三角函数的基本关系式的几种变形 (1)sin 2α=1-cos 2α=(1+cos α)(1-cos α);cos 2α=1-sin 2α=(1+sin α)(1-sin α); (sin α±cos α)2=1±2sin αcos α. (2)sin α=tan αcos α⎝ ⎛⎭⎪⎫α≠π2+k π,k ∈Z .(3)sin 2α=sin 2αsin 2α+cos 2α=tan 2αtan 2α+1;cos 2α=cos 2αsin 2α+cos 2α=1tan 2α+1.常见误区1.同角三角函数的基本关系式及诱导公式要注意角的范围对三角函数符号的影响,尤其是利用平方关系求三角函数值,进行开方时要根据角的范围,判断符号后,正确取舍.2.注意求值与化简后的结果一般要尽可能有理化、整式化.1.判断正误(正确的打“√”,错误的打“×”) (1)对任意的角α,β,都有sin 2α+cos 2β=1.( ) (2)若α∈R ,则tan α=sin αcos α恒成立.( )(3)sin(π+α)=-sin α成立的条件是α为锐角.( ) (4)若cos(n π-θ)=13(n ∈Z ),则cos θ=13.( ) 答案:(1)× (2)× (3)× (4)×2.(易错题)已知cos(π+α)=23,则tan α=( ) A .52 B .255 C .±52D .±255解析:选C.因为cos(π+α)=23, 所以cos α=-23,则α为第二或第三象限角,所以sin α=±1-cos 2α=±53.所以tan α=sin αcos α=±53-23=±52. 3.已知sin αcos α=12,则tan α+1tan α=( ) A .2 B .12 C .-2D .-12解析:选A.tan α+1tan α=sin αcos α+cos αsin α=sin 2α+cos 2αsin αcos α=112=2.4.sin 2 490°=________;cos ⎝ ⎛⎭⎪⎫-52π3=________.解析:sin 2 490°=sin(7×360°-30°)=-sin 30°=-12.cos ⎝ ⎛⎭⎪⎫-52π3=cos 52π3=cos ⎝ ⎛⎭⎪⎫16π+π+π3=cos ⎝ ⎛⎭⎪⎫π+π3=-cos π3=-12. 答案:-12 -125.化简cos ⎝ ⎛⎭⎪⎫α-π2sin ⎝ ⎛⎭⎪⎫52π+α·cos(2π-α)的结果为________.解析:原式=sin αcos α·cos α=sin α. 答案:sin α同角三角函数的基本关系式 角度一 “知一求二”问题(2020·北京市适应性测试)已知α是第四象限角,且tan α=-34,则sinα=( )A .-35 B.35 C.45 D .-45 【解析】 因为tan α=sin αcos α=-34, 所以cos α=-43sin α ①.sin 2α+cos 2α=1 ②,由①②得sin 2α=925,又α是第四象限角,所以sin α<0,则sin α=-35,故选A.【答案】 A利用同角三角函数的基本关系求解问题的关键是熟练掌握同角三角函数的基本关系的正用、逆用、变形.同角三角函数的基本关系本身是恒等式,也可以看作是方程,对于一些题,可利用已知条件,结合同角三角函数的基本关系列方程组,通过解方程组达到解决问题的目的.角度二 sin α,cos α的齐次式问题已知tan αtan α-1=-1,求下列各式的值:(1)sin α-3cos αsin α+cos α;(2)sin 2α+sin αcos α+2. 【解】 由已知得tan α=12. (1)sin α-3cos αsin α+cos α=tan α-3tan α+1=-53.(2)sin 2α+sin αcos α+2=sin 2α+sin αcos αsin 2α+cos 2α+2=tan 2α+tan αtan 2α+1+2=⎝ ⎛⎭⎪⎫122+12⎝ ⎛⎭⎪⎫122+1+2=135.关于sin α与cos α的齐n 次分式或齐二次整式的化简求值的解题策略已知tan α,求关于sin α与cos α的齐n次分式或齐二次整式的值.角度三sin α±cos α,sin αcos α之间的关系已知α∈(-π,0),sin α+cos α=1 5.(1)求sin α-cos α的值;(2)求sin 2α+2sin2α1-tan α的值.【解】(1)由sin α+cos α=1 5,平方得sin2α+2sin αcos α+cos2α=1 25,整理得2sin αcos α=-24 25.所以(sin α-cos α)2=1-2sin αcos α=49 25.由α∈(-π,0),知sin α<0,又sin α+cos α>0,所以cos α>0,则sin α-cos α<0,故sin α-cos α=-7 5.(2)sin 2α+2sin2α1-tan α=2sin α(cos α+sin α)1-sin αcos α=2sin αcos α(cos α+sin α)cos α-sin α=-2425×1575=-24175.sin α±cos α与sin αcos α关系的应用技巧(1)通过平方,sin α+cos α,sin α-cos α,sin αcos α之间可建立联系,若令sin α+cos α=t ,则sin αcos α=t 2-12,sin α-cos α=±2-t 2(注意根据α的范围选取正、负号).(2)对于sin α+cos α,sin α-cos α,sin αcos α这三个式子,可以知一求二.1.(2020·河南六市一模)已知cos ⎝ ⎛⎭⎪⎫π2+α=35,且α∈⎝ ⎛⎭⎪⎫π2,3π2,则tan α=( )A .43 B .34 C .-34D .±34解析:选B.因为cos ⎝ ⎛⎭⎪⎫π2+α=35,所以sin α=-35.又α∈⎝ ⎛⎭⎪⎫π2,3π2,所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=34.2.已知tan α=-34,则sin α(sin α-cos α)=( ) A.2125 B.2521 C.45D.54解析:选 A.sin α(sin α-cos α)=sin 2α-sin αcos α=sin 2α-sin αcos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1,将tan α=-34代入得原式=⎝ ⎛⎭⎪⎫-342-⎝ ⎛⎭⎪⎫-34⎝ ⎛⎭⎪⎫-342+1=2125.3.(一题多解)已知sin α-cos α=2,α∈(0,π),则tan α=( ) A .-1 B .-22 C .22D .1解析:选A.方法一:由⎩⎨⎧sin α-cos α=2,sin 2α+cos 2α=1,得2cos 2α+22cos α+1=0,即(2cos α+1)2=0, 所以cos α=-22.又α∈(0,π),所以α=3π4, 所以tan α=tan 3π4=-1.方法二:因为sin α-cos α=2, 所以2sin ⎝ ⎛⎭⎪⎫α-π4=2,所以sin ⎝ ⎛⎭⎪⎫α-π4=1.因为α∈(0,π),所以α=3π4,所以tan α=-1.法三:由sin α-cos α=2得1-sin 2α=2,所以sin 2α=-1. 设sin α+cos α=t ,所以1+sin 2α=t 2,所以t =0.由⎩⎨⎧sin α-cos α=2,sin α+cos α=0得sin α=22,cos α=-22, 所以tan α=-1.诱导公式的应用(1)sin(-1 200°)cos 1 290°=________.(2)已知角θ的顶点在坐标原点,始边与x 轴正半轴重合,终边在直线3x -y =0上,则sin ⎝ ⎛⎭⎪⎫3π2+θ+2cos (π-θ)sin ⎝ ⎛⎭⎪⎫π2-θ-sin (π-θ)等于________.【解析】 (1)原式=-sin 1 200°cos 1 290° =-sin(3×360°+120°)cos(3×360°+210°) =-sin 120°cos 210°=-sin(180°-60°)cos(180°+30°) =sin 60°cos 30°=32×32=34.(2)由题意可知tan θ=3,原式=-cos θ-2cos θcos θ-sin θ=-31-tan θ=32.【答案】 (1)34 (2)32【引申探究】 (变问法)若本例(2)的条件不变,则cos ⎝ ⎛⎭⎪⎫π2+θ-sin (-π-θ)cos ⎝ ⎛⎭⎪⎫11π2-θ+sin ⎝ ⎛⎭⎪⎫9π2+θ=________.解析:由题意可知tan θ=3, 原式=-sin θ+sin (π+θ)cos ⎝ ⎛⎭⎪⎫6π-π2-θ+sin ⎝ ⎛⎭⎪⎫4π+π2+θ =-sin θ-sin θcos ⎝ ⎛⎭⎪⎫π2+θ+sin ⎝ ⎛⎭⎪⎫π2+θ=-2sin θ-sin θ+cos θ=2tan θtan θ-1=2×33-1=3.答案:3(1)诱导公式用法的一般思路①化负为正,化大为小,化到锐角为止;②角中含有加减π2的整数倍时,用公式去掉π2的整数倍. (2)常见的互余和互补的角①常见的互余的角:π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等; ②常见的互补的角:π3+θ与2π3-θ;π4+θ与3π4-θ等.1.已知sin ⎝ ⎛⎭⎪⎫α-π3=13,则cos ⎝ ⎛⎭⎪⎫α+π6的值是( )A .-13 B.13 C.223 D .-223解析:选A.因为sin ⎝ ⎛⎭⎪⎫α-π3=13,所以cos ⎝ ⎛⎭⎪⎫α+π6=cos ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫α-π3=-sin ⎝ ⎛⎭⎪⎫α-π3=-13.2.(多选)已知A =sin (k π+α)sin α+cos (k π+α)cos α+tan (k π+α)tan α,则A 的值可以是( )A .3B .-3C .1D .-1解析:选AD.由已知可得,当k 为偶数时,A =sin (k π+α)sin α+cos (k π+α)cos α+tan (k π+α)tan α=sin αsin α+cos αcos α+tan αtan α=3;当k 为奇数时,A =sin (k π+α)sin α+cos (k π+α)cos α+tan (k π+α)tan α=-sin αsin α+-cos αcos α+tan αtan α=-1,所以A 的值可以是3或-1.故答案为AD.同角三角函数的基本关系式与诱导公式的综合应用(2020·湖北宜昌一中期末)已知α是第三象限角,且cos α=-1010. (1)求tan α的值;(2)化简并求cos (π-α)2sin (-α)+sin ⎝ ⎛⎭⎪⎫π2+α的值.【解】 (1)因为α是第三象限角,cos α=-1010, 所以sin α=-1-cos 2α=-31010,所以tan α=sin αcos α=3.(2)原式=-cos α-2sin α+cos α=cos α2sin α-cos α=12tan α-1,由(1)知tan α=3,所以原式=12×3-1=15.求解诱导公式与同角关系综合问题的基本思路和化简要求基本 思路①分析结构特点,选择恰当公式; ②利用公式化成单角三角函数;③整理得最简形式化简 要求①化简过程是恒等变换;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值1.已知sin ⎝ ⎛⎭⎪⎫5π2+α=35,所以tan α的值为( )A .-43B .-34C .±43D .±34解析:选C.sin ⎝ ⎛⎭⎪⎫5π2+α=sin ⎝ ⎛⎭⎪⎫π2+α=cos α=35,所以sin α=±45,tan α=sin αcos α=±43.2.已知tan(π-α)=-23,且α∈⎝ ⎛⎭⎪⎫-π,-π2,则cos (-α)+3sin (π+α)cos (π-α)+9sin α的值为( )A .-15B .-37 C.15 D.37解析:选 A.因为tan(π-α)=-23,所以tan α=23,所以cos (-α)+3sin (π+α)cos (π-α)+9sin α=cos α-3sin α-cos α+9sin α=1-3tan α-1+9tan α=1-2-1+6=-15,故选A.[A 级 基础练]1.(多选)已知x ∈R ,则下列等式恒成立的是( ) A .sin(-x )=sin x B .sin ⎝ ⎛⎭⎪⎫3π2-x =cos xC .cos ⎝ ⎛⎭⎪⎫π2+x =-sin xD .cos(x -π)=-cos x解析:选CD.sin(-x )=-sin x ,故A 不成立;sin ⎝ ⎛⎭⎪⎫3π2-x =-cos x ,故B 不成立;cos ⎝ ⎛⎭⎪⎫π2+x =-sin x ,故C 成立;cos(x -π)=-cos x ,故D 成立.2.(多选)若sin α=45,且α为锐角,则下列选项中正确的有( )A .tan α=43 B .cos α=35 C .sin α+cos α=85D .sin α-cos α=-15解析:选AB.因为sin α=45,且α为锐角, 所以cos α=1-sin 2α=1-⎝ ⎛⎭⎪⎫452=35,故B 正确, 所以tan α=sin αcos α=4535=43,故A 正确,所以sin α+cos α=45+35=75≠85,故C 错误, 所以sin α-cos α=45-35=15≠-15,故D 错误.3.已知角α是第二象限角,且满足sin ⎝ ⎛⎭⎪⎫5π2+α+3cos(α-π)=1,则tan(π+α)=( )A . 3B .- 3C .-33D .-1解析:选B.由sin ⎝ ⎛⎭⎪⎫5π2+α+3cos(α-π)=1,得cos α-3cos α=1,所以cos α=-12, 因为角α是第二象限角,所以sin α=32, 所以tan(π+α)=tan α=sin αcos α=- 3.4.已知f (α)=sin (2π-α)cos ⎝ ⎛⎭⎪⎫π2+αcos ⎝ ⎛⎭⎪⎫-π2+αtan (π+α),则f ⎝ ⎛⎭⎪⎫π3=( ) A .12 B .22 C .32D .-12解析:选A.f (α)=sin (2π-α)cos ⎝ ⎛⎭⎪⎫π2+αcos ⎝ ⎛⎭⎪⎫-π2+αtan (π+α)=-sin α·(-sin α)sin α·tan α=sin 2αsin α·sin αcos α=cos α,则f ⎝ ⎛⎭⎪⎫π3=cos π3=12.5.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上一点A (2sin α,3)(sin α≠0),则cos α=( )A .12B .-12C .32D .-32解析:选A.由三角函数定义得tan α=32sin α,即sin αcos α=32sin α,得3cos α=2sin 2α=2(1-cos 2α),解得cos α=12或cos α=-2(舍去).故选A.6.计算:sin 11π6+cos 10π3的值为________.解析:原式=sin ⎝ ⎛⎭⎪⎫2π-π6+cos ⎝ ⎛⎭⎪⎫3π+π3=-sin π6-cos π3=-12-12=-1.答案:-17.已知sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=1225,且0<α<π4,则sin α=________,cos α=________.解析:sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=-cos α·(-sin α)=sin αcos α=1225.因为0<α<π4,所以0<sin α<cos α.又因为sin 2α+cos 2α=1,所以sin α=35,cos α=45.答案:35 45 8.化简1-2sin 40°cos 40°cos 40°-1-sin 250°=________. 解析:原式=sin 240°+cos 240°-2sin 40°cos 40°cos 40°-cos 50°=|sin 40°-cos 40°|sin 50°-sin 40°=|sin 40°-sin 50°|sin 50°-sin 40°=sin 50°-sin 40°sin 50°-sin 40°=1.答案:19.已知sin(3π+α)=2sin ⎝ ⎛⎭⎪⎫3π2+α,求下列各式的值:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+sin 2α.解:由已知得sin α=2cos α. (1)原式=2cos α-4cos α5×2cos α+2cos α=-16.(2)原式=sin 2α+2sin αcos αsin 2α+cos 2α=sin 2α+sin 2αsin 2α+14sin 2α=85.10.已知角θ的终边与单位圆x 2+y 2=1在第四象限交于点P ,且点P 的坐标为⎝ ⎛⎭⎪⎫12,y .(1)求tan θ的值;(2)求cos ⎝ ⎛⎭⎪⎫π2-θ+cos (θ-2π)sin θ+cos (π+θ)的值.解:(1)由θ为第四象限角,终边与单位圆交于点P ⎝ ⎛⎭⎪⎫12,y ,得⎝ ⎛⎭⎪⎫122+y 2=1,y <0,解得y =-32,所以tan θ=-3212=- 3.(2)因为tan θ=-3, 所以cos ⎝ ⎛⎭⎪⎫π2-θ+cos (θ-2π)sin θ+cos (π+θ)=sin θ+cos θsin θ-cos θ=tan θ+1tan θ-1=-3+1-3-1=2- 3. [B 级 综合练]11.(多选)已知角θ的终边与坐标轴不重合,式子1-sin 2(π+θ)化简的结果为-cos θ,则( )A .sin θ>0,tan θ>0B .sin θ<0,tan θ>0C .sin θ<0,tan θ<0D .sin θ>0,tan θ<0解析:选BD.1-sin 2(π+θ)=1-sin 2θ=cos 2θ=|cos θ|=-cos θ,所以cos θ<0,角θ的终边落在第二或三象限,所以sin θ>0,tan θ<0或sin θ<0,tan θ>0,故选BD.12.(2020·陕西汉中月考)已知角α为第二象限角,则cos α·1+sin α1-sin α+sin 2α1+1tan 2α=( )A .1B .-1C .0D .2解析:选B.因为角α为第二象限角,所以sin α>0,cos α<0,所以cos α 1+sin α1-sin α=cos α(1+sin α)2cos 2α=cos α·1+sin α|cos α|=-1-sin α,sin 2α1+1tan 2α=sin 2α1+cos 2αsin 2α=sin 2αsin 2α+cos 2αsin 2α=sin 2α1sin 2α=sin 2α⎪⎪⎪⎪⎪⎪1sin α=sin α,所以cos α1+sin α1-sin α+sin 2α1+1tan 2α=-1-sin α+sin α=-1.故选B.13.是否存在α∈⎝ ⎛⎭⎪⎫-π2,π2,β∈()0,π使等式sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.解:假设存在角α,β满足条件. 由已知条件可得⎩⎨⎧sin α=2sin β,①3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2.所以sin 2α=12,所以sin α=±22. 因为α∈⎝ ⎛⎭⎪⎫-π2,π2,所以α=±π4. 当α=π4时,由②式知cos β=32,又β∈(0,π),所以β=π6,此时①式成立;当α=-π4时,由②式知cos β=32,又β∈(0,π),所以β=π6,此时①式不成立,故舍去.所以存在α=π4,β=π6满足条件.14.在△ABC 中,(1)求证:cos 2A +B 2+cos 2 C 2=1;(2)若cos ⎝ ⎛⎭⎪⎫π2+A sin ⎝ ⎛⎭⎪⎫3π2+B tan(C -π)<0,求证:△ABC 为钝角三角形. 证明:(1)在△ABC 中,A +B =π-C ,所以A +B 2=π2-C 2,所以cos A +B 2=cos ⎝ ⎛⎭⎪⎫π2-C 2=sin C 2, 所以cos 2A + B 2+cos 2C 2=1.(2)若cos ⎝ ⎛⎭⎪⎫π2+A sin ⎝ ⎛⎭⎪⎫3π2+B tan(C -π)<0, 所以(-sin A )(-cos B )tan C <0,即sin A cos B tan C <0.因为在△ABC 中,0<A <π,0<B <π,0<C <π且sin A >0,所以⎩⎨⎧cos B <0,tan C >0或⎩⎨⎧cos B >0,tan C <0, 所以B 为钝角或C 为钝角,所以△ABC 为钝角三角形.[C 级 创新练]15.(2020·山东肥城统考)公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现黄金分割比例为5-12≈0.618,这一数值也可以表示为m =2sin 18°.若m 2+n =4,则m n 2cos 227°-1=( ) A .4 B .3 C .2 D .1解析:选C.因为m =2sin 18°,且m 2+n =4,所以n =4-m 2=4-4sin 218°=4(1-sin 218°)=4cos 218°,所以m n 2cos 227°-1=2sin 18°4cos 218°cos 54°=4sin 18°cos 18°sin 36°=2.故选C.16.已知α,β∈(0,2π)且α<β,若关于x 的方程(x +sin α)(x +sin β)+1=0有实数根,则代数式3sin ⎝ ⎛⎭⎪⎫π2+α+cos ⎝ ⎛⎭⎪⎫3π2-β2-sin (π-α)cos ⎝ ⎛⎭⎪⎫3π2+β=________. 解析:整理方程(x +sin α)(x +sin β)+1=0得x 2+x (sin α+sin β)+sin αsin β+1=0.由题意得Δ=(sin α+sin β)2-4sin αsin β-4≥0,即(sin α-sin β)2≥4①.因为-1≤sin α≤1,-1≤sin β≤1,所以sin α-sin β∈[-2,2],从而(sin α-sin β)2≤4②.由①②得sin α-sin β=±2,所以⎩⎨⎧sin α=1,sin β=-1或⎩⎨⎧sin α=-1,sin β=1.因为α,β∈(0,2π)且α<β,所以α=π2,β=3π2,即⎩⎨⎧sin α=1,sin β=-1. 因此3sin ⎝ ⎛⎭⎪⎫π2+α+cos ⎝ ⎛⎭⎪⎫3π2-β2-sin (π-α)cos ⎝ ⎛⎭⎪⎫3π2+β=3cos α-sin β2-sin αsin β=12+1=13. 答案:13。
高考数学同角三角函数的基本关系式与诱导公式
探究点一 同角三角函数的基本关系及应用
[思路点拨]根据同角三角函数的关系式即可求解,需注意x为第几象限角; [解析] 因为x∈,所以sin x=-=-,所以tan x==-.故选B.
B
(2)[2022·福建莆田一中月考] 已知α是三角形的内角,且tan α=-,则sin α+cos α的值为 .
例5 (1)[2021·山东菏泽模拟] 已知α为锐角,且2tan(π-α)-3cos+5=0, tan(π+α)+6sin(π+β)-1=0,则sin α的值是( )A. B. C. D.
课堂考点探究
探究点三 诱导公式与同角关系的综合应用
[思路点拨]将已知条件利用诱导公式化简,再建立方程求出tan α,然后运用同角三角函数关系求出sin α;[解析] 由已知得消去sin β,得tan α=3,∴sin α=3cos α,代入sin2α+cos2α=1,化简得sin2α=,又α为锐角,则sin α=.
-
[总结反思](1)同角三角函数的基本关系式的功能是根据角的一个三角函数值求其他三角函数值,主要利用商数关系=tan α和平方关系1=sin2α+cos2α.(2)注意根据角的终边所在的象限选取正确的符号.
课堂考点探究
角度2 切弦互化例2 (1)已知sin αcos α=,则tan α+=( )A.2 B. C.-2 D.-
6. 已知A=+(k∈Z),则A= . 7.已知α为第二象限角,则= .
课前基础巩固
[解析]当k为偶数时,A=+=2;当k为奇数时,A=-=-2.
[解析] ===-1.
角度1 公式的灵活运用例1 (1)已知x∈,cos x=,则tan x的值为 ( ) A. B.- C. D.-
5.3 同角三角函数的基本关系式及诱导公式
高考总复习·数学 高考总复习 数学 证法二:由题意知 cos x ≠ 0 ,所以 1 + sin x ≠ 0,1 − sin x ≠ 0
(1 − sin x)(1 + sin x) = 1 − sin 2 x = cos 2 x = cos x ⋅ cos x 又∵ cos x 1 + sin x = ∴ 1 − sin x cos x
高考总复习·数学 高考总复习 数学
sin α ⋅ ( − tan α ) ⋅ (− sin α ) sin 2 α = = tan α ⋅ sin α 解:( )原式= 1 − tan α ⋅ (− cos α ) cos α π 1 1 (2)由 cos(α + ) = ,得 : − sin α = , 2 5 5 1 2 6 ∵α 是第三象限的角, cos α = − 1 − (− ) 2 = − ∴ , 5 5 1 2 5 6 ∴ f (α ) = (− ) × (− )=− . 5 60 2 6 (3) ∵ −1860° = −5 × 360° − 60°, sin 2 (−1860°) sin 2 ( −5 × 360° − 60°) ∴ f ( −1860°) = = cos( −1860°) cos(−5 × 360° − 60°) sin 2 (−60°) 3 = = . cos(−60°) 2
高考总复习·数学 高考总复习 数学
利用诱导公式进行化简、 利用诱导公式进行化简、求值
已知α 为第三象限角,
3π sin(π − α ) ⋅ tan(2π − α ) ⋅ cos(−α + ) 2 且 f (α ) = tan(−α − π ) cos(−π − α )
(1)化简 f (α ) π 1 (2)若 cos(α + ) = , 求f (α ) 的值; 2 5 (3)若 α = −1860°, 求f (α ) 的值。
高考数学复习讲义:同角三角函数的基本关系与诱导公式
返回
3.已知 tanπ6-α= 33,则 tan56π+α=________. 解析:tan56π+α=tanπ-π6+α=tan[ π-( π6-α ) ] =-tanπ6-α=- 33.
答案:-
3 3
返回
研透高考·深化提能
1.利用诱导公式把任意角的三角函数转化为锐角三角函 数的步骤
也就是:“负化正,大化小,化到锐角为终了.”
“切”的表达式,进行求值.常见的结构有:
①sin α,cos α的二次齐次式(如asin2α+bsin αcos α+
ccos2α)的问题常采用“切”代换法求解;
②sin
α,cos
α的齐次分式如acssiinn
α+bcos α+dcos
αα的问题常采
用分式的基本性质进行变形.
(2)切化弦:利用公式tan
返回
(2)已知-π2<α<0,sin α+cos α=15,则cos2α-1 sin2α=(
)
7
25
A.5
B. 7
7
24
C.25
D.25
返回
[解析] ∵sin α+cos α=15,
∴1+2sin αcos α=215,
∴2sin αcos α=-2245,(cos α-sin α)2=1+2245=4295.
3
课时跟踪检测
返回
突破点一 同角三角函数的基本关系
返回
抓牢双基·自学回扣
[基本知识]
1.同角三角函数的基本关系 (1)平方关系:sin2α+cos2α=1(α∈R ) . (2)商数关系: tan α=csions ααα≠kπ+π2,k∈Z .
返回
2.同角三角函数基本关系式的应用技巧
同角三角函数关系式
cos(α+β)-cosγ=-2cosγ,∴(3)式不是常数;
又tan(α+β)=tan(π-γ)=-tanγ,∴(4)式不是常数, ∴(1),(2),(5)式为常数,共4个. 答案:3
知识要点
双基巩固
典型例题
易错辨析
提升训练
方法技巧:
1 在△ABC
(1)若△ABC
(2)若△ABC为直角三角形(∠C cosB. (3)若△ABC为钝角三角形(∠C cosB.
典型例题
易错辨析
提升训练
知识要点
双基巩固
典型例题
易错辨析
提升训练
知识要点
双基巩固
典型例题
易错辨析
提升训练
方法技巧:1. 化简是一种不指定结果的恒等变形,
其结果要求:项数尽可能少、次数尽可能低、尽量使根 号内或分母中不含三角函数(式),能求值的尽量求值.
2. 化简前,注意分析角及式子的结构特点,选择恰
当的公式和化简顺序.
知识要点
双基巩固
典型例题
易错辨析
提升训练
综合应用
【思路点拨】 先利用诱导公式,将条件化简,再利用平方
关系,消去A(或B)得到B(或A)的某一三角函数值,进
而求出A,B,C.
知识要点
双基巩固
典型例题
易错辨析
提升训练
知识要点
双基巩固
典型例题
易错辨析
提升训练
知识要点
双基巩固
典型例题
,则sin(B
知识要点
双基巩固
典型例题
易错辨析
提升训练
知识要点
双基巩固
典型例题
易错辨析
提升训练
学科网
知识要点
高一数学同角三角函数的基本关系式及诱导公式
同角三角函数的基本关系式及诱导公式一、基本知识:(1)同角三角函数的基本关系式:平方关系:sin 2α+cos 2α=1,1tan sec 22=-αα,1cot csc 22=-αα,商式关系:sin α cos α=tan α, αααcot sin cos =, 倒数关系:tan αcot α=1,ααcos 1sec = ααsin 1csc =(2)诱导公式:函数名称不变,符号看象限。
二、例题分析:例1 化简 sin(2π-α)tan(π+α)cot(-α-π) cos(π-α)tan(3π-α). 解 原式=(-sin α)tan α[-cot(α+π) ] (-cos α)tan(π-α)= (-sin α)tan α(-cot α) (-cos α)(-tan α) = sin α·cos α sin α cos α=1 . 例2 若sin θcos θ= 18 ,θ∈(π4 ,π2),求cos θ-sin θ的值.解 (cos θ-sin θ)2=cos 2θ+sin 2θ-2sin θcos θ=1- 14 = 34. ∵θ∈(π4 ,π2),∴ cos θ<sin θ. ∴cos θ-sin θ= - 32. 变式1 条件同例, 求cos θ+sin θ的值.变式2 已知cos θ-sin θ= -32 , 求sin θcos θ,sin θ+cos θ的值.例3 已知tan θ=3.求(1)ααααsin 3cos 5cos 2sin 4+-;(2)cos 2θ+sin θcos θ的值.例4、证明:1+2sin αcos α cos 2α-sin 2α=1+ tan α 1-tan α例5、(1)化简:2cos 2sin 212cos 2sin 21αααα++-,⎪⎭⎫ ⎝⎛<<20πα (2)已知α是第三象限角,求ααααcos 1cos 1cos 1cos 1-+++-的值。
高考数学一轮复习同角三角函数的基本关系与诱导公式
2
-cos α)2=1-2sin αcos α= ,∴sin α-cos α= .
答案 D
目录
|解题技法|
“sin α±cos α,sin α·cos α”之间关系的应用
sin α±cos α与sin α·cos α通过平方关系联系到一起,即(sin α±cos α)2=
(sin+cos)2 −1
3cos−sin
3−tan
)
1
2
α=2,故cos α+ sin
2
2α=
cos2 +sincos
1+tan
3
=
= ,故选A.
cos2 +sin2
1+tan2 5
答案 A
目录
|解题技法|
利用“齐次化切”求齐次式值的方法
(1)若齐次式为分式,可将分子与分母同除以cos α的n次幂,将分式的分子与
π
2
(4)sin α=tan αcos α ≠ + π,∈ .
2.(1)sin(kπ+α)=(-1)ksin α(k∈Z);
(2)cos(kπ+α)=(-1)kcos α(k∈Z).
目录
1.已知sin α,cos α是方程3x2-2x+a=0的两个根,则实数a的值为
5
A.
6
5
B.-
6
4
3
2 2
,所以tan
3
二象限角,所以cos α=-
2 2
α=± ,又α为第
3
sin
2
=- .故选D.
cos
4
α=
目录
3.已知sin
π
−
2
第26讲 同角三角函数的基本关系及诱导公式(解析版)
第26讲 同角三角函数的基本关系及诱导公式【基础知识回顾】1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1;(2)商数关系:tan α=sin αcos α. 平方关系对任意角都成立,而商数关系中α≠k π+π2(k ∈Z ).2.诱导公式3. 诱导公式的作用是把任意角的三角函数转化为锐角三角函数,转化的一般步骤如下:即:去负—脱周—化锐的过程.上述过程体现了转化与化归的思想方法.4、三角形中的三角函数关系式 sin(A +B )=sin(π-C )=sin C ; cos(A +B )=cos(π-C )=-cos C ; tan(A +B )=tan(π-C )=-tan C ; sin ⎝⎛⎭⎫A 2+B 2=sin ⎝⎛⎭⎫π2-C 2=cos C 2;cos ⎝ ⎛⎭⎪⎫A 2+B 2=cos ⎝ ⎛⎭⎪⎫π2-C 2=sin C 2.1、α是第三象限角,且sin -2α=,则tan α=( )A .BC .-3D .3【答案】B【解析】因为α是第三象限角,且sin -2α=,所以1cos 2α=-,所以sin tan cos ααα==B 。
2、已知()()sin 22sin 3cos 5πααα-=+-,则tan α( ) A .6- B .6C .23-D .23【答案】B 【解析】化简()()sin sin 22sin 3cos 2sin 3cos 235tan tan παααααααα-===+-++所以t 6an α=,故选B 。
3、若cos 165°=a ,则tan 195°等于( ) A.1-a 2B.1-a 2aC .-1-a 2aD .-a1-a 2【答案】 C【解析】 若cos 165°=a , 则cos 15°=cos(180°-165°) =-cos 165°=-a , sin 15°=1-a 2,所以tan 195°=tan(180°+15°) =tan 15°=sin 15°cos 15°=-1-a 2a.4、若cos ⎝⎛⎭⎫α-π5=513,则sin ⎝⎛⎭⎫7π10-α等于( ) A .-513B .-1213C.1213D.513【答案】 D【解析】 因为7π10-α+⎝⎛⎭⎫α-π5=π2, 所以7π10-α=π2-⎝⎛⎭⎫α-π5, 所以sin ⎝⎛⎭⎫7π10-α=cos ⎝⎛⎭⎫α-π5=513.5、在△ABC 中,下列结论不正确的是( ) A .sin(A +B )=sin C B .sin B +C 2=cos A2C .tan(A +B )=-tan C ⎝⎛⎭⎫C ≠π2 D .cos(A +B )=cos C 【答案】 D【解析】在△ABC 中,有A +B +C =π, 则sin(A +B )=sin(π-C )=sin C ,A 正确. sinB +C 2=sin ⎝⎛⎭⎫π2-A 2=cos A2,B 正确. tan(A +B )=tan(π-C )=-tan C ⎝⎛⎭⎫C ≠π2,C 正确. cos(A +B )=cos(π-C )=-cos C ,D 错误.6、化简:tan(π-α)cos(2π-α)sin ⎝⎛⎭⎫-α+3π2cos(-α-π)sin(-π-α)的值为( )A.2-B. 1-C. 1D. 2【答案】:B【解析】:原式=-tan α·cos α·(-cos α)cos(π+α)·[-sin(π+α)]=tan α·cos α·cos α-cos α·sin α=sin αcos α·cos α-sin α=-1考向一 三角函数的诱导公式例1、已知α是第三象限角,且f (α)=sin(π-α) ·cos(2π-α) ·tan(α+π)tan(-α-π) ·sin(-α-π).(1)若cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值; (2)若α=-1 860°,求f (α)的值.【解析】:f (α)=sin α·cos α·tan α(-tan α)·sin α=-cos α.(1) ∵ cos ⎝⎛⎭⎫α-3π2=-sinα=15,∴ sinα=-15. ∵ α是第三象限的角, ∴ cosα=-1-⎝⎛⎭⎫-152=-265.∴f (α)=-cosα=256.(2) f (α)=-cos(-1860°)=-cos(-60°)=-12.变式1、(1)化简cos (π+α)cos ⎝⎛⎭⎫π2+αcos ⎝⎛⎭⎫11π2-αcos (π-α)sin (-π-α)sin ⎝⎛⎭⎫9π2+α的结果是( )A.-1B.1C.tan αD.-tan α【答案】 C 【解析】 原式=-cos α·(-sin α)·cos ⎝⎛⎭⎫3π2-α-cos α·sin α·sin ⎝⎛⎭⎫π2+α=-sin 2α·cos α-sin α·cos 2α=tan α. .(2)设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos ⎝⎛⎭⎫3π2+α-sin 2⎝⎛⎭⎫π2+α(1+2sin α≠0),则f ⎝⎛⎭⎫-23π6=________. 【答案】3【解析】 因为f (α)= (-2sin α)(-cos α)+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α=cos α(1+2sin α)sin α(1+2sin α)=1tan α, 所以f ⎝⎛⎭⎫-23π6=1tan ⎝⎛⎭⎫-23π6=1tan ⎝⎛⎭⎫-4π+π6=1tan π6= 3. 变式2、 已知sin (3π+θ)=13,则cos ()π+θcos θ[cos (π-θ)-1]+cos ()θ-2πsin ⎝⎛⎭⎫θ-3π2cos ()θ-π-sin ⎝⎛⎭⎫3π2+θ=__ __.【答案】18【解析】 ∵sin (3π+θ)=-sin θ=13,∴sin θ=-13,∴原式=-cos θcos θ()-cos θ-1+cos ()2π-θ-sin⎝⎛⎭⎫3π2-θcos()π-θ+cos θ=11+cos θ+cos θ-cos 2θ+cos θ=11+cos θ+11-cos θ=21-cos 2θ=2sin 2θ=2⎝⎛⎭⎫-132=18. 方法总结:1、熟知将角合理转化的流程也就是:“负化正,大化小,化到锐角就好了.” 2.明确三角函数式化简的原则和方向 (1)切化弦,统一名. (2)用诱导公式,统一角.(3)用因式分解将式子变形,化为最简.考向二 同角函数关系式的运用例2 (1)若α是三角形的内角,且tan α=-13,则sin α+cos α的值为_ __.(2)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为__ __.【答案】(1)-105.(2)32.【解析】 (1)由tan α=-13,得sin α=-13cos α,将其代入sin 2α+cos 2α=1,得109cos 2α=1,∴cos 2α=910,易知cos α<0,∴cos α=-31010,sin α=1010,故sin α+cos α=-105.(2)∵5π4<α<3π2,∴cos α<0,sin α<0且cos α>sin α,∴cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,∴cos α-sin α=32.变式1、若3sin α+cos α=0,则1cos 2α+2sin αcos α= ___.【答案】103.【解析】 (1)3sin α+cos α=0⇒cos α≠0⇒tan α=-13,1cos 2α+2sin αcos α=cos 2α+sin 2αcos 2α+2sin αcos α=1+tan 2α1+2tan α=1+⎝⎛⎭⎫1321-23=103.变式2、已知α是三角形的内角,且tan α=-13,则sin α+cos α的值为 .【答案】 -105【解析】 由tan α=-13,得sin α=-13cos α,将其代入sin 2α+cos 2α=1,得109cos 2α=1,所以cos 2α=910,易知cos α<0,所以cos α=-31010,sin α=1010,故sin α+cos α=-105. 方法总结:本题考查同角三角函数的关系式.利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化,如果没有给出角的范围,则要分类讨论.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.所求式是关于sin α,cos α的齐次式时,分子分母同除以cos α,可化成tan α的函数式求值.本题考查运算求解能力,考查函数与方程思想.考向三 同角三角函数关系式、诱导公式的综合应用例3、已知cos(75°+α)=13,且α是第三象限角,求cos(15°-α)+sin(α-15°)的值. 【解析】:因为cos(15°-α)=cos[90°-(75°+α)]=sin(75°+α),由于α是第三象限角,所以sin(75°+α)<0, 所以sin(75°+α)= 因为sin(α-15°)=sin[-90°+(75°+α)]=-sin[90°- (75°+α)]= -cos(75°+α)=-, 所以cos(15°-α)+sin(α-15°)=变式1、已知cos(75°+α)=13,求cos(105°-α)+sin(15°-α)= .【答案】 0【解析】因为(105°-α)+(75°+α)=180°, (15°-α)+(α+75°)=90°,所以cos(105°-α)=cos[180°-(75°+α)] =-cos(75°+α) =-13,sin(15°-α)=sin[90°-(α+75°)] =cos(75°+α)=13.所以cos(105°-α)+sin(15°-α)=-13+13=0.变式2、已知cos ⎝⎛⎭⎫π6-θ=a (|a |≤1),则cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ的值是________. 【答案】 0【解析】∵cos ⎝⎛⎭⎫5π6+θ=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-θ=-cos ⎝⎛⎭⎫π6-θ=-a , 13sin ⎝⎛⎭⎫2π3-θ=sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫π6-θ =cos ⎝⎛⎭⎫π6-θ=a ,∴cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ=0. 方法总结:1.利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形.2.注意角的范围对三角函数值符号的影响.1、若 ,则 (A)(B) (C) 1 (D) 【答案】A【解析】由,得或,所以 ,故选A .2、(2021·新高考全国Ⅰ)若tan θ=-2,则sin θ(1+sin 2θ)sin θ+cos θ等于( )A .-65B .-25 C.25 D.65【答案】 C【解析】 方法一 因为tan θ=-2, 所以角θ的终边在第二或第四象限,所以⎩⎨⎧sin θ=25,cos θ=-15或⎩⎨⎧sin θ=-25,cos θ=15,所以sin θ(1+sin 2θ)sin θ+cos θ=sin θ(sin θ+cos θ)2sin θ+cos θ=sin θ(sin θ+cos θ) =sin 2θ+sin θcos θ =45-25=25. 方法二 (弦化切法)因为tan θ=-2,3tan 4α=2cos 2sin 2αα+=6425482516253tan 4α=34sin ,cos 55αα==34sin ,cos 55αα=-=-2161264cos 2sin 24252525αα+=+⨯=所以sin θ(1+sin 2θ)sin θ+cos θ=sin θ(sin θ+cos θ)2sin θ+cos θ=sin θ(sin θ+cos θ) =sin 2θ+sin θcos θsin 2θ+cos 2θ=tan 2θ+tan θ1+tan 2θ=4-21+4=25.3、已知α为锐角,且2tan(π-α)-3cos ⎝⎛⎭⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α的值是( ) A.355 B.377 C.31010 D.13【答案】 C【解析】 由已知得⎩⎪⎨⎪⎧3sin β-2tan α+5=0,tan α-6sin β-1=0.消去sin β,得tan α=3,∴sin α=3cos α,代入sin 2α+cos 2α=1, 化简得sin 2α=910,则sin α=31010(α为锐角).4、已知-π<x <0,sin(π+x )-cos x =-15,则sin 2x +2sin 2x 1-tan x = .【答案】 -24175【解析】 由已知,得sin x +cos x =15,两边平方得sin 2x +2sin x cos x +cos 2x =125,整理得2sin x cos x =-2425.∴(sin x -cos x )2=1-2sin x cos x =4925,由-π<x <0知,sin x <0, 又sin x cos x =-1225<0,∴cos x >0,∴sin x -cos x <0, 故sin x -cos x =-75.∴sin 2x +2sin 2x 1-tan x=2sin x (cos x +sin x )1-sin x cos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175.5、已知α∈(0,π),且sin α+cos α=15,给出下列结论:①π2<α<π; ②sin αcos α=-1225;③cos α=35;④cos α-sin α=-75.其中所有正确结论的序号是( ) A .①②④ B .②③④ C .①②③ D .①③④【答案】 A【解析】 ∵sin α+cos α=15,等式两边平方得(sin α+cos α)2=1+2sin αcos α=125,解得sin αcos α=-1225,故②正确;∵α∈(0,π),sin αcos α=-1225<0,∴α∈⎝⎛⎭⎫π2,π,∴cos α<0,故①正确,③错误; cos α-sin α<0,且(cos α-sin α)2=1-2sin αcos α =1-2×⎝⎛⎭⎫-1225=4925, 解得cos α-sin α=-75,故④正确.6、设f (θ)=2cos 2θ+sin 2(2π-θ)+sin ⎝⎛⎭⎫π2+θ-32+2cos 2(π+θ)+cos (-θ),则f ⎝⎛⎭⎫17π3= . 【答案】-512【解析】∵f (θ)=2cos 2θ+sin 2θ+cos θ-32+2cos 2θ+cos θ=cos 2θ+cos θ-22cos 2θ+cos θ+2, 又cos 17π3=cos ⎝⎛⎭⎫6π-π3 =cos π3=12,∴f ⎝⎛⎭⎫17π3=14+12-212+12+2=-512. 7、(1)(2022·郑州模拟)已知sin θ=45,求sin (π-θ)cos ⎝⎛⎭⎫π2+θcos (π+θ)sin ⎝⎛⎭⎫π2-θ的值.【解析】∵sin θ=45,∴cos 2θ=1-sin 2θ=925,则sin (π-θ)cos ⎝⎛⎭⎫π2+θcos (π+θ)sin ⎝⎛⎭⎫π2-θ=sin θ(-sin θ)(-cos θ)cos θ=sin 2θcos 2θ=169. (2)已知sin x +cos x =-713(0<x <π),求cos x -2sin x 的值.【解析】∵sin x +cos x =-713(0<x <π), ∴cos x <0,sin x >0,即sin x -cos x >0, 把sin x +cos x =-713,两边平方得1+2sin x cos x =49169,即2sin x cos x =-120169,∴(sin x -cos x )2=1-2sin x cos x =289169,即sin x -cos x =1713,联立⎩⎨⎧sin x +cos x =-713,sin x -cos x =1713,解得sin x =513,cos x =-1213, ∴cos x -2sin x =-2213.。
同角三角函数的基本关系与诱导公式
同角三角函数的基本关系与诱导公式一、基础知识1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1; (2)商数关系:tan α=sin αcos α.平方关系对任意角都成立,而商数关系中α≠k π+π2(k ∈Z).2.诱导公式诱导公式可简记为:奇变偶不变,符号看象限.“奇”“偶”指的是“k ·π2+α(k ∈Z )”中的k 是奇数还是偶数.“变”与“不变”是指函数的名称的变化,若k 是奇数,则正、余弦互变;若k 为偶数,则函数名称不变.“符号看象限”指的是在“k ·π2+α(k ∈Z )”中,将α看成锐角时,“k ·π2+α(k ∈Z )”的终边所在的象限.二、常用结论同角三角函数的基本关系式的几种变形 (1)sin 2α=1-cos 2α=(1+cos α)(1-cos α); cos 2α=1-sin 2α=(1+sin α)(1-sin α); (sin α±cos α)2=1±2sin αcos α. (2)sin α=tan αcos α⎝⎛⎭⎫α≠π2+k π,k ∈Z .考点一 三角函数的诱导公式[典例] (1)已知f (α)=cos ⎝⎛⎭⎫π2+αsin ⎝⎛⎭⎫3π2-αcos (-π-α)tan (π-α),则f ⎝⎛⎭⎫-25π3的值为________. (2)已知cos ⎝⎛⎭⎫π6-α=23,则sin ⎝⎛⎭⎫α-2π3=________. [解析] (1)因为f (α)=cos ⎝⎛⎭⎫π2+αsin ⎝⎛⎭⎫3π2-αcos (-π-α)tan (π-α) =-sin α(-cos α)(-cos α)⎝⎛⎭⎫-sin αcos α=cos α, 所以f ⎝⎛⎭⎫-25π3=cos ⎝⎛⎭⎫-25π3=cos π3=12. (2)sin ⎝⎛⎭⎫α-2π3=-sin ⎝⎛⎭⎫2π3-α=-sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π3+α=-sin ⎝⎛⎭⎫π3+α=-sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π6-α=-cos ⎝⎛⎭⎫π6-α=-23. [答案] (1)12 (2)-23[题组训练]1.已知tan α=12,且α∈⎝⎛⎭⎫π,3π2,则cos ⎝⎛⎭⎫α-π2=________. 解析:法一:cos ⎝⎛⎭⎫α-π2=sin α,由α∈⎝⎛⎭⎫π,3π2知α为第三象限角, 联立⎩⎪⎨⎪⎧tan α=sin αcos α=12,sin 2α+cos 2α=1,解得5sin 2α=1,故sin α=-55.法二:cos ⎝⎛⎭⎫α-π2=sin α,由α∈⎝⎛⎭⎫π,3π2知α为第三象限角,由tan α=12,可知点(-2,-1)为α终边上一点,由任意角的三角函数公式可得sin α=-55. 答案:-552. sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050°)+tan 945°=________.解析:原式=sin(-3×360°-120°)cos(3×360°+180°+30°)+cos(-3×360°+60°) sin(-3×360°+30°)+tan(2×360°+180°+45°)=sin 120°cos 30°+cos 60°sin 30°+tan 45°=34+14+1=2. 答案:23.已知tan ⎝⎛⎭⎫π6-α=33,则tan ⎝⎛⎭⎫5π6+α=________. 解析:tan ⎝⎛⎭⎫5π6+α=tan ⎝⎛⎭⎫π-π6+α=tan ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-α=-tan ⎝⎛⎭⎫π6-α=-33. 答案:-33考点二 同角三角函数的基本关系及应用[典例] (1)若tan α=2,则sin α+cos αsin α-cos α+cos 2α=( )A.165 B .-165C.85D .-85(2)已知sin αcos α=38,且π4<α<π2,则cos α-sin α的值为( )A.12 B .±12C .-14D .-12[解析] (1)sin α+cos αsin α-cos α+cos 2α=sin α+cos αsin α-cos α+cos 2αsin 2α+cos 2α =tan α+1tan α-1+1tan 2α+1,将tan α=2代入上式,则原式=165.(2)因为sin αcos α=38,所以(cos α-sin α)2=cos 2α-2sin αcos α+sin 2α=1-2sin αcos α=1-2×38=14,因为π4<α<π2,所以cos α<sin α,即cos α-sin α<0,所以cos α-sin α=-12.[答案] (1)A (2)D[题组训练]1.(2018·甘肃诊断)已知tan φ=43,且角φ的终边落在第三象限,则cos φ=( )A.45 B .-45C.35D .-35解析:选D 因为角φ的终边落在第三象限,所以cos φ<0,因为tan φ=43,所以⎩⎪⎨⎪⎧sin 2φ+cos 2φ=1,sin φcos φ=43,cos φ<0,解得cos φ=-35.2.已知tan θ=3,则sin 2θ+sin θcos θ=________. 解析:sin 2θ+sin θcos θ=sin 2θ+sin θcos θsin 2θ+cos 2θ=tan 2θ+tan θtan 2θ+1=32+332+1=65.答案:653.已知sin α+3cos α3cos α-sin α=5,则sin 2α-sin αcos α=________.解析:由已知可得sin α+3cos α=5(3cos α-sin α), 即sin α=2cos α,所以tan α=sin αcos α=2, 从而sin 2α-sin αcos α=sin 2α-sin αcos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1=22-222+1=25.答案:254.已知-π<α<0,sin(π+α)-cos α=-15,则cos α-sin α的值为________.解析:由已知,得sin α+cos α=15,sin 2α+2sin αcos α+cos 2α=125, 整理得2sin αcos α=-2425.因为(cos α-sin α)2=1-2sin αcos α=4925,且-π<α<0,所以sin α<0,cos α>0, 所以cos α-sin α>0,故cos α-sin α=75.答案:75[课时跟踪检测]A 级1.已知x ∈⎝⎛⎭⎫-π2,0,cos x =45,则tan x 的值为( ) A.34 B .-34C.43D .-43解析:选B 因为x ∈⎝⎛⎭⎫-π2,0,所以sin x =-1-cos 2x =-35,所以tan x =sin x cos x =-34. 2.(2019·淮南十校联考)已知sin ⎝⎛⎭⎫α-π3=13,则cos ⎝⎛⎭⎫α+π6的值为( ) A .-13B.13C.223D .-223解析:选A ∵sin ⎝⎛⎭⎫α-π3=13,∴cos ⎝⎛⎭⎫α+π6=cos ⎣⎡⎦⎤π2+⎝⎛⎭⎫α-π3=-sin ⎝⎛⎭⎫α-π3=-13. 3.计算:sin 11π6+cos 10π3的值为( ) A .-1 B .1 C .0D.12-32解析:选A 原式=sin ⎝⎛⎭⎫2π-π6+cos ⎝⎛⎭⎫3π+π3 =-sin π6-cos π3=-12-12=-1.4.若sin (π-θ)+cos (θ-2π)sin θ+cos (π+θ)=12,则tan θ的值为( )A .1B .-1C .3D .-3解析:选D 因为sin (π-θ)+cos (θ-2π)sin θ+cos (π+θ)=sin θ+cos θsin θ-cos θ=12,所以2(sin θ+cos θ)=sin θ-cos θ, 所以sin θ=-3cos θ,所以tan θ=-3.5.(2018·大庆四地六校调研)若α是三角形的一个内角,且sin ⎝⎛⎭⎫π2+α+cos ⎝⎛⎭⎫3π2+α=15,则tan α的值为( )A .-43B .-34C .-43或-34D .不存在解析:选A 由sin ⎝⎛⎭⎫π2+α+cos ⎝⎛⎭⎫3π2+α=15, 得cos α+sin α=15,∴2sin αcos α=-2425<0.∵α∈(0,π),∴sin α>0,cos α<0, ∴sin α-cos α=1-2sin αcos α=75,∴sin α=45,cos α=-35,∴tan α=-43.6.在△ABC 中,3sin ⎝⎛⎭⎫π2-A =3sin(π-A ),且cos A =-3cos(π-B ),则△ABC 为( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等边三角形解析:选B 将3sin ⎝⎛⎭⎫π2-A =3sin(π-A )化为3cos A =3sin A ,则tan A =33,则A =π6,将cos A =-3cos(π-B )化为 cos π6=3cos B ,则cos B =12,则B =π3,故△ABC 为直角三角形.7.化简:1-cos 22θcos 2θtan 2θ=________.解析:1-cos 22θcos 2θtan 2θ=sin 22θcos 2θ·sin 2θcos 2θ=sin 2θ.答案:sin 2θ8.化简:cos ⎝⎛⎭⎫α-π2sin ⎝⎛⎭⎫5π2+α·sin(α-π)·cos(2π-α)=________. 解析:原式=cos ⎝⎛⎭⎫π2-αsin ⎝⎛⎭⎫2π+π2+α·(-sin α)·cos α=sin αsin ⎝⎛⎭⎫π2+α·(-sin α)·cos α =sin αcos α·(-sin α)·cos α=-sin 2α. 答案:-sin 2α9.sin 4π3·cos 5π6·tan ⎝⎛⎭⎫-4π3的值为________. 解析:原式=sin ⎝⎛⎭⎫π+π3·cos ⎝⎛⎭⎫π-π6·tan ⎝⎛⎭⎫-π-π3 =⎝⎛⎭⎫-sin π3·⎝⎛⎭⎫-cos π6·⎝⎛⎭⎫-tan π3 =⎝⎛⎭⎫-32×⎝⎛⎭⎫-32×(-3)=-334.答案:-33410.(2019·武昌调研)若tan α=cos α,则1sin α+cos 4α=________.解析:tan α=cos α⇒sin αcos α=cos α⇒sin α=cos 2α,故1sin α+cos 4α=sin 2α+cos 2αsin α+cos 4α=sin α+cos 2αsin α+cos 4α=sin α+sin αsin α+sin 2α=sin 2α+sin α+1=sin 2α+cos 2α+1=1+1=2.答案:211.已知α为第三象限角,f (α)=sin ⎝⎛⎭⎫α-π2·cos ⎝⎛⎭⎫3π2+α·tan (π-α)tan (-α-π)·sin (-α-π).(1)化简f (α);(2)若cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值. 解:(1)f (α)=sin ⎝⎛⎭⎫α-π2·cos ⎝⎛⎭⎫3π2+α·tan (π-α)tan (-α-π)·sin (-α-π)=(-cos α)·sin α·(-tan α)(-tan α)·sin α=-cos α.(2)∵cos ⎝⎛⎭⎫α-3π2=15, ∴-sin α=15,从而sin α=-15.又∵α为第三象限角,∴cos α=-1-sin 2α=-265,∴f (α)=-cos α=265.12.已知sin α=255,求tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α的值.解:因为sin α=255>0,所以α为第一或第二象限角.tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α =tan α+cos αsin α=sin αcos α+cos αsin α=1sin αcos α.①当α为第一象限角时,cos α=1-sin 2α=55, 原式=1sin αcos α=52.②当α为第二象限角时,cos α=-1-sin 2α=-55, 原式=1sin αcos α=-52.综合①②知,原式=52或-52.B 级1.已知sin α+cos α=12,α∈(0,π),则1-tan α1+tan α=( )A .-7 B.7 C.3D .-3解析:选A 因为sin α+cos α=12,所以(sin α+cos α)2=1+2sin αcos α=14,所以sin αcos α=-38,又因为α∈(0,π),所以sin α>0,cos α<0,所以cos α-sin α<0,因为(cos α-sin α)2=1-2sin αcos α=1-2×⎝⎛⎭⎫-38=74,所以cos α-sin α=-72, 所以1-tan α1+tan α=1-sin αcos α1+sin αcos α=cos α-sin αcos α+sin α=-7212=-7.2.已知θ是第一象限角,若sin θ-2cos θ=-25,则sin θ+cos θ=________.解析:∵sin θ-2cos θ=-25,∴sin θ=2cos θ-25,∴⎝⎛⎭⎫2cos θ-252+cos 2θ=1, ∴5cos 2θ-85cos θ-2125=0,即⎝⎛⎭⎫cos θ-35⎝⎛⎭⎫5cos θ+75=0. 又∵θ为第一象限角,∴cos θ=35,∴sin θ=45,∴sin θ+cos θ=75.答案:753.已知关于x 的方程2x 2-(3+1)x +m =0的两根分别是sin θ和cos θ,θ∈(0,2π),求: (1)sin 2θsin θ-cos θ+cos θ1-tan θ的值; (2)m 的值;(3)方程的两根及此时θ的值. 解:(1)原式=sin 2θsin θ-cos θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ =sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ. 由条件知sin θ+cos θ=3+12, 故sin 2θsin θ-cos θ+cos θ1-tan θ=3+12.(2)由已知,得sin θ+cos θ=3+12,sin θcos θ=m2,因为1+2sin θcos θ=(sin θ+cos θ)2, 所以1+2×m 2=⎝ ⎛⎭⎪⎫3+122,解得m =32. (3)由⎩⎪⎨⎪⎧sin θ+cos θ=3+12,sin θcos θ=34,得⎩⎨⎧sin θ=32,cos θ=12或⎩⎨⎧sin θ=12,cos θ=32.又θ∈(0,2π),故θ=π3或θ=π6.故当sin θ=32,cos θ=12时,θ=π3; 当sin θ=12,cos θ=32时,θ=π6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同角三角函数的基本关系式及诱导公式
一、基本知识:
(1)同角三角函数的基本关系式:平方关系:sin 2α+cos 2α=1,
1tan sec 22=-αα,
1cot csc 22=-αα,
商式关系:
sin α cos α =tan α, αα
αcot sin cos =, 倒数关系:tan αcot α=1,
ααcos 1sec =
ααsin 1csc =
(2)诱导公式:函数名称不变,符号看象限。
二、例题分析:
例1 化简 sin(2π-α)tan(π+α)cot(-α-π) cos(π-α)tan(3π-α)
. 解 原式=
(-sin α)tan α[-cot(α+π) ] (-cos α)tan(π-α) = (-sin α)tan α(-cot α) (-cos α)(-tan α) = sin α·cos α sin α cos α
=1 . 例2 若sin θcos θ= 18 ,θ∈(π4 ,π2
),求cos θ-sin θ的值.
解 (cos θ-sin θ)2=cos 2θ+sin 2θ-2sin θcos θ=1- 14 = 34
. ∵θ∈(π4 ,π2
),∴ cos θ<sin θ. ∴cos θ-sin θ= - 3 2
. 变式1 条件同例, 求cos θ+sin θ的值.
变式2 已知cos θ-sin θ= -
3 2 , 求sin θcos θ,sin θ+cos θ的值.
例3 已知tan θ=3.求(1)
α
αααsin 3cos 5cos 2sin 4+-;(2)cos 2θ+sin θcos θ的值.
例4、证明:1+2sin αcos α cos 2α-sin 2α =1+ tan α 1-tan α
例5、(1)化简:2cos 2sin 212cos 2sin 21α
α
α
α
++-,⎪⎭
⎫ ⎝⎛
<<20πα
(2)已知α是第三象限角,求α
αααcos 1cos 1cos 1cos 1-+++-的值。
三、练习
1.sin 2150°+sin 2135°+2sin210°+cos 2225°的值是 ( )
A . 14
B . 34
C . 114
D . 94
2.已知sin(π+α)=-35
,则 ( ) A .cos α= 45 B .tan α= 34 C .cos α= -45 D .sin(π-α)= 35
3.sin600°的值是 ( )
A .12
B .- 12
C . 3 2
D .- 3 2
4.化简1+2sin(π-2)cos(π+2) = .
5、已知()πααα,0,3
2cos sin ∈=+,求αsin 与αcos 及αα33cos sin +的值。
6、求证:α
ααααcos sin 1cos 2tan cot 2-=-.
7、化简:οο10cos 10sin 21-.
8、已知αsin 、αcos 是方程012682=+++k kx x 的两根,求k 的值。