Li-decorated oxidized graphene2012
“Graphene”研究及翻译
“Graphene”研究及翻译摘要:查阅近5年我国SCI、EI期源刊有关石墨烯研究873篇,石墨烯研究的有关翻译存在很大差异。
从石墨烯的发现史及简介,谈石墨烯内涵及研究的相关翻译。
指出“石墨烯”有关术语翻译、英文题目、摘要撰写应注意的问题。
关键词:石墨烯;石墨烯术语;翻译石墨烯是目前发现的唯一存在的二维自由态原子晶体,它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2杂化碳的基本结构单元,具有很多奇异的电子及机械性能。
因而吸引了化学、材料等其他领域科学家的高度关注。
近5年我国SCI、EI期源刊研究论文873篇,论文质量良莠不齐,发表的论文有35.97%尚未被引用过,占国际论文被引的4.84%左右。
石墨烯研究的有关翻译也存在很大差异。
为了更好的进行国际学术交流,规范化专业术语。
本文就“graphene”的内涵及翻译谈以下看法。
l “Graphene”的发现史及简介1962年,Boehm等人在电镜上观察到了数层甚至单层石墨(氧化物)的存在,1975年van Bom-mel等人报道少层石墨片的外延生长研究,1999年德克萨斯大学奥斯汀分校的R Ruoff等人对用透明胶带从块体石墨剥离薄层石墨片的尝试进行相关报道。
2004年曼彻斯特大学的Novoselov和Geim小组以石墨为原料,通过微机械力剥离法得到一系列叫作二维原子晶体的新材料——石墨烯,并于10月22日在Sclence期刊上发表有关少层乃至单层石墨片的独特电学性质的文章,2010年Gelm和No-voselov获得了诺贝尔物理学奖。
石墨烯有着巨大的比表面积(2630 m2/g)、极高的杨氏模量(1.06 TPa)和断裂应力(~130GPa)、超高电导率(~106 S/cm)和热导率(5000W/m·K)。
石墨烯中的载流子迁移率远高于传统的硅材料,室温下载流子的本征迁移率高达200000 cm2/V.s),而典型的硅场效应晶体管的电子迁移率仅约1000 cm2/V.s。
氧化石墨烯的制备及应用研究进展
氧化石墨烯的制备及应用研究进展孟竹;黄安平;张文学;郭效军;张永霞;朱博超【摘要】The new carbon material graphene oxide has been widely concerned with its excellent structural prop-erties. The simple and safe preparation method is also suitable for mass production. Atpresent,graphene oxide has been applied in many fields and has good research results. This article,referring to the latest literature,mainly in-troduces the method of preparing oxidized graphite with widely used Hummers and the new preparation method using different oxidation systems. The development of the application fields ofmedical,polymer,electrochemical and dye treatment by using the excellent specific surface area of oxidized graphite and many hydrophilic groups were summa-rized,and the problems in the preparation and application of the oxidized graphene were summed up,and its poten-tial application in the future was prospected.%新型碳材料氧化石墨烯因其优良的结构性能得到广泛的关注,简单、安全的制备方法也适合大量生产,目前氧化石墨烯已被应用在诸多领域并有良好的研究成果.该文主要介绍了广泛使用的Hummers制备氧化石墨烯的方法以及使用不同氧化体系的新型制备方法,综述了利用氧化石墨烯优异的比表面积和诸多的亲水基团等特性在医学、聚合物、电化学、染料处理等应用领域的发展现状,总结了氧化石墨烯在制备及应用中易出现的问题,并对其未来潜在的应用前景做出展望.【期刊名称】《合成材料老化与应用》【年(卷),期】2017(046)006【总页数】6页(P95-99,111)【关键词】氧化石墨烯;制备;应用【作者】孟竹;黄安平;张文学;郭效军;张永霞;朱博超【作者单位】西北师范大学化学化工学院,甘肃兰州730070;中国石油兰州化工研究中心,甘肃兰州730060;中国石油兰州化工研究中心,甘肃兰州730060;中国石油兰州化工研究中心,甘肃兰州730060;西北师范大学化学化工学院,甘肃兰州730070;西北师范大学化学化工学院,甘肃兰州730070;中国石油兰州化工研究中心,甘肃兰州730060【正文语种】中文【中图分类】O613.712004年英国曼彻斯特大学的两位科学家安德烈·杰姆和克斯特亚·诺沃消洛夫发现了石墨烯,由于其特殊的蜂窝状二维结构,在力学强度上拥有突出的表现:杨氏模量(~1000GPa),断裂强度(~130GPa),弹性模量(~0.25TPa),而且具有良好的导电性(106S/cm),优异的比表面积(2630m2/g)[1]。
华中科技大学 2015湖北省大学生优秀科研成果获奖名单(公布20160307)
科研论文《Syntaxin opening by the MUN domain underlies the function of Munc13 in synaptic-vesicle priming》
生命科学与技术学院 2011 王申
马聪
一等奖
科研论文《Intrinsic Charge Storage Capability of Transition Metal
从鑫 程川 廖一鸣 董长 旭 叶一霏
缪灵
zigzag edges》
4
2015007
科研论文《Lithium-decorated oxidized first principles study》
graphyne
for hydrogen storage
by
严泽宇 汪浪 陈举龙 黄
光学与电子信息学院 2011 丽蓓 祝超
附件1
华中科技大学2015年湖北省大学生优秀科研成果获奖名单
序 成果编 号号
成果名称
所在院系
1
2015004
科研论文《中国图书情报与档案管理学科研究的国际化水平比较——基于InCites数 据库的研究》
公共管理学
入学 年份
成果完成人
2012 黄闪闪,曾润喜,吴凡
指导教 获奖等 师级
曾润喜 一等奖
2
Байду номын сангаас
2015005
缪灵
一等奖 一等奖
5 2015022 科研论文《 广东东源县南园古村 国家历史文化名城研究中心历史街区调研 》 建筑与城市规划学院 2013 赵苒婷
赵逵 二等奖
6 2015023 科技制作《Euk.cement:基于活体真核细胞的自动胶结试剂盒》
雪花膏
雪花膏的定义雪花膏是一种较古老的护肤膏霜,早在19世纪80年代,欧洲就有“夏士莲”牌雪花膏,我国在20世纪初就有“双妹”牌雪花膏。
雪花膏是一种传统的大众化的护肤化妆品,它是一种洁白犹如雪花似的软膏,故中文名为雪花膏。
将它涂搽在皮肤上,起始有乳白痕迹,再搽则很快消失(Vanish),与雪的融化相似,因而为雪花膏。
雪花膏的发展20世纪三四十年代,城市的街头到处都能看见雅霜的广告。
雅霜是中国最早有规模生产的化妆品之一,俗称“雪花膏”,产地上海,旧日的广告上,印着当时的当红明星白杨,甜心一般的笑容,胸前一束鲜花,那扮相让当时的女人心向往之。
广告上说它是“最为爱美仕女之妆台良伴”。
化妆品不但让人更美丽,还意味着保养和护理皮肤,哪怕只是早上用洗面奶洗脸,然后擦一点点雪花膏。
或许还不是所有人都认识雪花膏,特别是年轻一辈,因为它几乎已经退出历史舞台。
在新中国成立60年后的今天,化妆品可谓琳琅满目,不仅种类繁多,功效也层出不穷。
三四十年代,香脂和雪花膏盛行。
小时候洗完脸,经常会被母亲叫去擦一点雪花膏,擦完后清香扑鼻,味道不比现在的差。
雪花膏盛行于上个世纪三四十年代,但它并不指某一品牌,而是护肤化妆品的统称。
建国前后,最流行的品牌当属百雀羚。
它是香脂的代表,也是名媛贵族首选的护肤佳品,更是影响了几代人的护肤奢侈品。
此外还有友谊、红梅、雅霜等,按现在的话来说就是当时比较火的雪花膏知名品牌,只是现在能回忆起它们的人已经很少了。
五六十年代,化妆品被称为奢侈品。
护肤品对于上世纪五六十年代的人来说有些奢侈,可用可不用,只有在冬天脸上干得不行时,才迫不得已抹上一点。
赶时髦可是富人们的生活,对那些当时并不富有的穷人而言,也只能够用得起蛤蜊油。
蛤蜊油是那个时候护肤品中最为流行、最为大众化的润肤用品。
一到冬天冻手冻脚皮肤吹皴的现象司空见惯,抹点蛤蜊油权当护肤美容。
蛤蜊油是当时既价廉又物美的化妆品,且就外包装而言,据说也是绝对的赏心悦目。
2015年湖北省大学生优秀科研成果获奖成果名单
王璐瑶
2015035
武汉理工大学
设计方案《“互联网+”模式下的无人驾驶渡船》
2012
张康贺、刘聪聪、龚帅、杨甜甜、王祥
2015036
武汉理工大学
科研论文《Novel Polygonal Vanadium Oxide Nanoscrolls as StableCathode for Lithium Storage》
2012
李彬、蒋永鹏
2015022
华中科技大学
科研论文《广东东源县南园古村国家历史文化名城研究中心历史街区调研》
2013
赵苒婷
2015023
华中科技大学
科技制作《Euk.cement:基于活体真核细胞的自动胶结试剂盒》
2012
唐淑妍
2015024
华中科技大学
科技制作《Nanofingers:生物因子平衡的通用震荡缓冲器》
2011
李斯贝,欧阳维枝
2015047
中南民族大学
系列科研论文《OBS网络节点中数据多概率输出模型研究》等
2012
张晴、侯睿
2015048
中南民族大学
科研论文《Controlling hydrogenation selectivity with Pd catalysts on carbon nitrides functionalized silica》
2012
陈欢乐
2015045
华中农业大学
科研论文《Molecularly imprinted calixarene fiber for solid-phase microextraction of four organophosphorous pesticides in fruits》
参比电极校准
Synthesis of Mildly Oxidized Graphene Oxide (mGO) mGO was made by a modified Hummers method using a lower concentration of oxidizing agent. Graphite flakes (1 g, Superior Graphite Co.) were grounded with NaCl (20 g) for 10-15 minutes. Afterwards, the NaCl was washed away by repeatedly rinsing with water in a vacuum filtration apparatus. The remaining graphite was dried in an oven at 70°C for 30 minutes. The dried solid was transferred to a 250 ml round bottom flask. 23 ml of concentrated sulfuric acid was added and the mixture was stirred at room temperature for 24 hours. Next, the flask was heated in an oil bath at 40°C. 100 mg of NaNO3 was added to the suspension and allowed to dissolve in 5 minutes. This step was followed by the slow addition of 500 mg of KMnO4 (3 g for Hummers’ GO), keeping the reaction temperature below 45°C. The solution was allowed to stir for 30 minutes. Afterwards, 3 ml of water was added to the flask, followed by another 3 ml after 5 minutes. After another 5 minutes, 40 ml of water was added. 15 minutes later, the flask was removed from the oil bath and 140 ml of water
纤维中石墨烯材料的定性检测方法研究
纤维中石墨烯材料的定性检测方法研究摘要自石墨烯的发现以来,其各项优异的性能吸引了研究学者对石墨烯的研究热潮。
石墨烯材料与纤维的结合能够提高纤维强力和杨氏模量,并且还可以使织物或纤维获得导电、防紫外线、远红外、抗菌等特殊功能。
随着人们生活水平的提高,含石墨烯材料功能性服装也愈加吸引消费者的眼球,但产品质量参差不齐,扰乱了石墨烯材料纺织品市场秩序,已经引起相关检测机构的关注。
为了更好地保护消费者的合法权益,也为了能够促进我国石墨烯材料功能纺织品市场健康发展,急需制定相应的检测方法来维护市场秩序。
本文对纤维中石墨烯材料的定性检测方法进行了深入的研究,最终确立了纤维中石墨烯材料的定性检测方法,并对纤维中石墨烯材料的定量检测方法进行了初步的探索,研究内容和结论如下:(1)纤维中石墨烯材料的定性检测:采用扫描电镜(SEM),原子力显微镜(AFM),拉曼光谱(Raman)以及场发射透射电镜联合能谱仪(HRTEM-EDS)对三种不同基质纤维(聚酯纤维、聚酰胺纤维和粘胶纤维)中的石墨烯材料进行鉴定,结果显示仅有HRTEM-EDS能够得到较好的检测结果。
HRTEM-EDS检测方法包括分离检测和原位检测两种实施手段:分离检测是对纤维主体溶解后采用离心分离的方法提取试样中的部分颗粒物质,原位检测是对试样进行机械切割使得纤维中的聚集体暴露在试样的切面,然后通过EDS测试聚集体C元素含量,利用HRTEM从边缘观察其层数,对聚集体进行定性分析,并根据石墨烯材料的含量确定纤维中是否含有石墨烯材料。
聚集体微区C元素质量百分含量≥60%,聚集体边缘层数应≤10层,同时满足两个条件说明是石墨烯材料。
此外,研究发现,多数纤维中添加物是石墨烯材料和石墨的混合体,随机选取10个颗粒物质聚集体,当不少于60%以上聚集体中含有石墨烯材料时,即P值≥60%,可定性纤维中含有石墨烯材料。
本文建立的纤维中石墨烯材料的定性检测方法具有简便、快捷的特点,可以直观、准确地鉴别纤维中的颗粒物质。
阳离子改性半乳甘露聚糖和含有该物质的化妆材料组合物[发明专利]
专利名称:阳离子改性半乳甘露聚糖和含有该物质的化妆材料组合物
专利类型:发明专利
发明人:武田博光,森芳彦
申请号:CN200710141629.8
申请日:20040507
公开号:CN101129306A
公开日:
20080227
专利内容由知识产权出版社提供
摘要:本发明提供具有如下特性的阳离子改性半乳甘露聚糖:在配入毛发处理用组合物中时,可给予优异的调理效果及干燥后良好的湿润感和柔软性,在配入身体用清洗剂等皮肤化妆材料组合物中时,可以改善调理效果及由乳化性能产生的使用感。
具体而言,涉及通过在半乳甘露聚糖所含的部分羟基上引入特定的含季氮原子的基团而形成的阳离子改性半乳甘露聚糖,以及含有该阳离子改性半乳甘露聚糖的化妆材料组合物,其中半乳甘露聚糖是由豆科植物胡芦巴(学名Trigonellafoenum-graecum)的种子胚乳部分得到的在以甘露糖为结构单元的主链上形成了半乳糖单元侧链且甘露糖与半乳糖的组成比为1∶1的非离子性多糖类。
申请人:东邦化学工业株式会社
地址:日本东京
国籍:JP
代理机构:中国国际贸易促进委员会专利商标事务所
代理人:陈昕
更多信息请下载全文后查看。
一种宠物用解结喷剂[发明专利]
专利名称:一种宠物用解结喷剂专利类型:发明专利
发明人:孔恒,杨丽,高泮金
申请号:CN201210334817.3申请日:20120911
公开号:CN102871874A
公开日:
20130116
专利内容由知识产权出版社提供
摘要:本发明公开了一种宠物用解结喷剂,包括按照重量百分比计的下列组分:去离子
水,95.97%-98.6%;乙二胺四乙酸二钠,0.05%-0.1%;十六烷基三甲基氯化胺,0.5%-1%;甘油,1%-2%;二甲聚硅氧烷,0.5%-1%;乙烯基吡咯烷酮和醋酸乙烯酯的共聚物,1%-2%;水溶性硅油,0.2%-0.5%;凯松,0.006%;乙烯基吡咯烷酮/苯乙烯共聚物,0.5%-1%;氢氧化
钠,0.0001%-0.2%;香精,0.2%-0.3%。
本发明可以消除宠物的毛糙,顺滑毛发,使毛结经过简单梳理就能打开,保持毛发湿润及光泽,防止毛结的形成,能在宠物毛发表面形成一层保护膜,减少风沙、尘土和污水对宠物毛发的侵害。
申请人:青岛美今生物科技有限公司
地址:266000 山东省青岛城阳双埠环海经济开发区华海路11号
国籍:CN
更多信息请下载全文后查看。
1-{2-咪唑[1,2-a]吡啶基}愈创兰烃薁的合成
1-{2-咪唑[1,2-a]吡啶基}愈创兰烃薁的合成王道林;李帝;宋勇澄;曹亮【摘要】以1-氯乙酰基愈创兰烃奠和取代2-氨基吡啶为原料,一锅法合成了一系列未见文献报道的1-{2-咪唑[1,2-a]吡啶基}愈创兰烃薁衍生物,收率47%~ 74%,其结构经1H NMR,IR和元素分析表征.%A series of novel 1-| imidazo[ 1,2-a]pyridin-2-yl) guaiazulenes in yields of 47% ~74% were synthesized by the condensation of l-(chloroacyl)guaiazulene with 2-aminopyridines under mild conditions. The structures were characterized by ' H NMR, IR and elemental analysis.【期刊名称】《合成化学》【年(卷),期】2012(020)001【总页数】4页(P111-113,127)【关键词】氯乙酰基愈创兰烃薁;2-氨基吡啶;咪唑[1,2-a]吡啶;合成【作者】王道林;李帝;宋勇澄;曹亮【作者单位】渤海大学化学化工学院辽宁省功能化合物合成与应用重点实验室,辽宁锦州121003;渤海大学化学化工学院辽宁省功能化合物合成与应用重点实验室,辽宁锦州121003;东北师范大学化学学院,吉林长春130024;渤海大学化学化工学院辽宁省功能化合物合成与应用重点实验室,辽宁锦州121003【正文语种】中文【中图分类】O626咪唑[1,2-a]吡啶类衍生物在抗病毒[1]、抗溃疡[2]等诸多方面显示出良好的生物活性和药用价值。
另外,作为荧光材料[3]和有机合成的重要中间体[4]也应用广泛。
发现和筛选具有新颖化学结构和高效低毒的药理活性的咪唑[1,2-a]吡啶类衍生物,在药物合成领域倍受关注[5]。
新一代抗癌光敏剂
新一代抗癌光敏剂
佚名
【期刊名称】《国际医药卫生导报》
【年(卷),期】2001(000)010
【摘要】@@由黄金陵教授和陈耐生教授负责的福州大学功能材料研究所研制成功的高效新型抗癌光敏剂"汰而清"(暂名)已被国家科技部列为全国重点开发的10个一类创新药物之一,不久将申请进入临床试验研究.细胞实验和动物实验表明,汰而清比血卟啉具有药效高、毒性小的优点.
【总页数】1页(P24)
【正文语种】中文
【中图分类】R97
【相关文献】
1.新型抗癌光敏剂"福大赛因"一期临床试验的临床观察和护理 [J], 邵红岩;阳桃梅;谢路萍
2.新一代抗癌光敏剂 [J],
3.纳米二氧化钛抗癌光敏剂灭杀肿瘤细胞的研究进展 [J], 徐丽霜;隋丽丽;葛欣;张俊
4.二氢卟吩p6醚类光敏剂的合成及光动力抗癌活性研究 [J], 马福家; 孟志; 张星杰; 王媛; 马志强; 姚建忠
5.新型抗癌光敏剂的研究与产业化 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
国外化妆品原料新动态
国外化妆品原料新动态
佚名
【期刊名称】《化工文摘》
【年(卷),期】2001(000)009
【摘要】耕正公司发明了一种含有L-抗坏血酸衍生物作为皮肤增白剂的护肤品。
该产品是具有美白效果的乳液,采用了更具稳定性的L-抗坏血酸衍生物,并且在使用过程中具有良好的肤感。
产品配方中含有L-抗坏血酸磷酸酯和L-抗坏血酸硫酸酯、乙氧基化蓖麻油和/或聚氧乙烯山梨醇脂肪酸酯、汉生胶、鲸蜡醇以及油类(如矿物油、甘油等)。
【总页数】1页(P51)
【正文语种】中文
【中图分类】TQ658
【相关文献】
1.国外护肤化妆品研究开发新动态 [J], 刘景华
2.化妆品原料商新动态 [J], 张静
3.国外化妆品用新原料(三) [J],
4.国外化妆品用新原料(四) [J], 朱立弘
5.国外新型化妆品原料及其应用配方 [J], 杨雄麟
因版权原因,仅展示原文概要,查看原文内容请购买。
f127水凝胶的成分
f127水凝胶的成分
f127水凝胶是一种常见的高分子材料,由于其出色的吸水性能和稳定性,被广泛应用于化妆品、医疗器械、农业等领域。
f127水凝胶的主要成分是聚乙烯氧化物-聚丙烯酸酯共聚物。
这种共聚物具有较高的亲水性,能够迅速吸收周围的水分并形成凝胶状物质。
它具有优异的保湿性能,能够有效锁住皮肤表面的水分,避免水分的流失。
这使得f127水凝胶成为许多化妆品中不可或缺的成分之一。
除了保湿性能,f127水凝胶还具有良好的稳定性和渗透性。
它能够在皮肤上形成一层薄膜,有效阻隔外界的刺激物质,同时又能够让皮肤呼吸。
这种薄膜可以使化妆品更加持久,让妆容更加持久。
在医疗器械领域,f127水凝胶也发挥着重要的作用。
它可以作为药物的载体,将药物包裹在凝胶中,延缓药物的释放,提高药物的疗效。
此外,f127水凝胶还可以用于伤口的修复和愈合,它能够促进新生组织的生长,加速伤口的愈合过程。
在农业领域,f127水凝胶被用作土壤改良剂。
它可以吸收大量的水分,并将水分释放到植物需要的时候,保证植物的水分供应。
这不仅可以提高农作物的产量,还可以减少水资源的浪费。
f127水凝胶作为一种多功能的高分子材料,具有出色的吸水性能和稳定性,被广泛应用于化妆品、医疗器械和农业等领域。
它的应用
为我们的生活带来了便利,提高了我们的生活质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Lithium-decorated oxidized porous graphene for hydrogen storage by first principles studyShi-han Huang, Ling Miao, Yu-jie Xiu, Ming Wen, Cong Li et al.Citation: J. Appl. Phys. 112, 124312 (2012); doi: 10.1063/1.4770482View online: /10.1063/1.4770482View Table of Contents: /resource/1/JAPIAU/v112/i12Published by the American Institute of Physics.Related ArticlesEffect of transition-metal additives on hydrogen desorption kinetics of MgH2Appl. Phys. Lett. 102, 033902 (2013)Polylithiated (OLi2) functionalized graphane as a potential hydrogen storage materialAppl. Phys. Lett. 101, 243902 (2012)Ultra-high hydrogen storage capacity of Li-decorated graphyne: A first-principles predictionJ. Appl. Phys. 112, 084305 (2012)Octagraphene as a versatile carbon atomic sheet for novel nanotubes, unconventional fullerenes, and hydrogen storageJ. Appl. Phys. 112, 074315 (2012)High pressure phase determination and electronic properties of lithiumamidoboraneAppl. Phys. Lett. 101, 111902 (2012)Additional information on J. Appl. Phys.Journal Homepage: /Journal Information: /about/about_the_journalTop downloads: /features/most_downloadedInformation for Authors: /authorsDownloaded 16 Feb 2013 to 115.156.234.98. Redistribution subject to AIP license or copyright; see /about/rights_and_permissionsLithium-decorated oxidized porous graphene for hydrogen storage by first principles studyShi-han Huang,Ling Miao,a)Yu-jie Xiu,Ming Wen,Cong Li,Le Zhang,and Jian-jun JiangSchool of Optical and Electronic Information,Huazhong University of Science and Technology,Wuhan,Hubei 430074,People’s Republic of China(Received 25September 2012;accepted 27November 2012;published online 20December 2012)The first-principles calculations are performed to investigate the geometric stability and the hydrogen storage capacity of lithium-decorated oxidized porous graphene (PG).Due to strong interaction between Li and O atom,two stable Li decorated structures have relatively high Li binding energies of 3.84and 3.04eV,which could eliminate the clustering problem for Li atoms on PG surface.One doped Li atom could hold five H 2molecules and the binding energy of each H 2is above 0.2eV.The interaction of H 2molecules with Li atom results from charge exchange between H 2’s r orbital and Li’s 2s orbital.In the final structure with two Li-O groups in one carbon pore,a hydrogen storage capacity of 9.43wt.%could be achieved.By the combination of the advantage of Li decoration and oxidized porous graphene,Li-OPG possesses remarkable geometric stability and high hydrogenstorage capacity.VC 2012American Institute of Physics .[/10.1063/1.4770482]I.INTRODUCTIONHydrogen energy is believed to be a promising energysource because it is abundant and environmental friendly.In searching for an ideal H 2storage medium with high gravi-metric and volumetric density operating at ambient condi-tions,a plenty of metal-decorated nanostructures have been proposed to serve as hydrogen sorbents.1–4In these materials,metal atoms distributed on the sur-face of nanostructures are assumed to be the H 2adsorbing centers.To adsorb and desorb H 2molecule under moderate temperature and pressure,the suitable H 2binding energy should be in the range of 0.2–0.6eV/H 2.5The transition met-als,such as Ti 6–8and Fe,9were first tried to serve as doping metal on the nanostructure.It is proved that they have a Kubas interaction with H2molecules.10However,this inter-action seems to be excessively strong,since the H 2binding energy is above 0.6eV and the H-H bond breaks up.Aside from transition metals,alkaline metals 11–14and alkaline earth metals 15–19tend to adsorb H 2molecules through a moderate interaction with H 2binding energy around 0.2eV,in which H 2remains in molecule form.According to the pre-vious calculations,20–22a calcium atom could hold up to four H 2molecules around,and the moderate interaction with av-erage H 2binding energy around 0.2eV (GGA value)permits H 2recycling at ambient conditions.Except the similar bind-ing mechanism of H 2molecule,lithium has a more advant-age of the smallest atomic mass to achieve higher gravimetric hydrogen storage density.Furthermore,the co-hesive energy of Li is substantially smaller than those of transition metals.23Thus,Li atoms are not likely to form clusters because of the repulsion between Li atoms induced by remaining positive charge of each lithium atom.On the other hand,an appropriate nanostructure should be chosen to fixate the decorating metal steadily with highdensity.So far,a lot of nanostructures,including nanotube,24–30graphene,31–36fullerence,37–40metal organic framework,41–46small organic molecules,47,48etc.,have been studied.The metal binding energy is an important criterion to measure nanostructure’s ability to fix metal atom.Sun et al.37pro-posed a Li 12C 60structure bonding Li atom to every pentago-nal face of C 60fullerene.In a lithium doped graphene structure proposed by Ataca et al.,31metal binding energy is 1.93eV and 0.86eV with a minimum Li-Li distance of9.77A˚and 4.92A ˚,respectively.Li 12Si 60H 60composite has been proposed to study the hydrogen adsorption ability.49Recently,porous graphene (PG),a regular 2D polyphe-nylene networks with single atom wide pores and sub nanometre periodicity,have successfully fabricated of by surface-assisted coupling of specifically designed molecular building blocks.50PG could be also considered as a defect graphene sheet with repeat missed carbon ring that is termi-nated by hydrogen bonds.As well as the experimental inves-tigations,51there were several theoretical works which studied the electronic properties,52gas separation,53and hydrogen storage 54of PG.Du et al.55have studied the hydrogen storage capacity of Li doped porous graphene.In this work,we designed a novel hydrogen storage material named lithium-decorated oxidized porous graphene (Li-OPG),based on the experimentally prepared porous gra-phene.In Li-OPG structure,lithium atom is expected to have a stronger interaction with oxygen than with carbon atom.Furthermore,it is able to achieve higher hydrogen storage density,because of the lower density of porous graphene than that of normal graphene,and the carbon pore in the po-rous graphene providing more space for lithium atoms and H 2molecules.To validate the feasibility of Li-OPG,the fol-lowing three issues must be addressed.First,is the Li-OPG structure stable enough for practical synthesis?Second,how many H 2could one Li atom adsorbed and what is the binding mechanism?Third,is the hydrogen storage capacity satisfy-ing?We studied these questions by first principle calculations.a)Author to whom correspondence should be addressed.E-mail:miaoling@.0021-8979/2012/112(12)/124312/5/$30.00VC 2012American Institute of Physics 112,124312-1JOURNAL OF APPLIED PHYSICS 112,124312(2012)PUTATIONAL METHODSAll calculations were carried out by SIESTA code 56with the framework of density function theory (DFT).57,58General-ized gradient approximation (GGA)described by Perdew-Burke-Ernzerhof (PBE)59was chosen as the exchange correlation potential,and the Troullier-Martins scheme norm-conserving pseudopotentials 60was employed to represent the interaction between localized pseudoatomic orbitals and ionic cores.The double-f basis set was adopted to ensure a good computational convergence.The energy cutoff was 150Ry.The Brillouin zone sampling was performed using a Monkhorst-Pack special k points gird.61All structures werefully relaxed with the force on each atom less than 0.05eV/A˚.The lattice constants a and c of hexangular 3Â3Â1supercellare 7.38A˚and 22.14A ˚,respectively.The c parameter of the supercell was designed to be large enough to render the inter-action between the layer and its periodic image negligible.III.RESULTS AND DISCUSSION A.Li-OPG structureFirst of all,we constructed OPG structure based on the experimentally prepared porous graphene,by replacing a hydrogen atom with an oxygen atom,as shown in Fig.1(a).Like the relationship of graphene and graphene oxide,here oxidized porous graphene is constructed by introducing the oxidation group on porous graphene,which is expected to re-alize experimentally in an oxidation process.Furthermore,calculations are performed to discuss the different oxidation sites on PG structure (sites A,B,and C in Fig.1).The com-parison of total energy (À2368.99,À2365.78,À2363.94eV,respectively)of these three configurations shows that the site A is most favorable for oxygen atom adsorption,and this OPG structure has been chosen for following Li atoms and H 2molecules adsorption.Then Li-OPG structure was formed by adsorbing a Li atom on the OPG surface near oxygen atom,and two stable Li adsorption sites noted as Flat-Li and Erect-Li are shown in Figs.1(b)and 1(c).In the relaxed OPG structure,the carbon plane tends to curve a little after oxidizing rather than staying smooth asporous graphene does.In Fig.1(a),the distance d 1(1.46A˚)between oxygen and carbon atoms is very close to that inother C ¼O molecules (about 1.43A˚),which means a strong covalent C ¼O bond has formed here.The calculated C ÀCbond lengths d 2(1.40A˚)and d 3(1.38A ˚)are also close to the origin C ÀC bond (1.42A˚)in graphene,and almost equal to that in original porous graphene terminated by hydrogenbonds,indicating that this oxygen atom replacing hardly affect the adjacent carbon structure.For the Li-OPG model,there are two stable Li adsorbing structures,in which the dis-tance between Li atom and O atom are both 1.70A˚.This bond is relatively shorter than other Li doped structure,indicating a stronger interaction between Li and O.For con-venience,we denoted these two structures as Flat-Li and Erect-Li afterwards,as the Li-O bonds are parallel and per-pendicular to the carbon plane,respectively.To characterize the stability of Li adsorbing on OPG,the binding energy of Li atom was calculated as E Mb ¼E Li-OPG ÀE OPG ÀE Li .Here,E Li-OPG and E OPG are the energies of relaxed Li-OPG and OPG structures,respec-tively.E Li is the energy of a free Li atom.As a result,E Mb of Flat-Li and Erect-Li turn out to be 3.84eV and 3.04eV (Table I ).To figure out the cause of the E Mb difference,we calculated the charge transfer of Li-OPG structure.The Mul-liken charge analysis indicates that Li becomes positively charged by donating 0.319and 0.433electrons to O and H bonded to C possess charge of around À0.2j e j .It is reasona-ble that the neighboring negatively charged H atoms attract the positively charged Li atom.Therefore,Flat-Li has a higher E Mb .It should be noted that the calculated E Mb are much higher than the Li bulk cohesive energy (1.62eV),and the Li atoms keep away from each other with a nearest dis-tance of 7.38A˚,which means doped Li atoms are unlikely to cluster on OPG structure.In addition,we calculated the E Mb in Li doped porous graphene to be 1.08eV (Du et al.calcu-lated this value to be 1.81eV based on the local-density approximation (LDA)computations 55).Compared to the E Mb of Li doped graphene and Li 12C 60,which was demon-strated to be 1.93(LDA)31and 1.78eV (GGA),37the E Mb of Li-OPG is significantly higher.B.Hydrogen binding energy of Li-OPGFirst,we investigated the adsorption of one H 2molecule to the Li atom of Li-OPG structure.Similarly,hydrogenFIG.1.(a)OPG structure;(b)and (c)top view and side view of two Li-OPG structures.TABLE I.The distance between Li and O d Li-O ,the Li binding energy E Mb ,the charge of Li Q Li and the charge of O Q O of two Li-OPG structures.d Li-O /A˚E Mb /eV Q Li /|e |Q O /|e |Flat-Li1.70 3.84þ0.319À0.125Erect-Li1.703.04þ0.433À0.170binding energy is calculated as E Hb ¼(E H-Li-OPG ÀE Li-OPG ÀE H ).Here E H-Li-OPG and E Li-OPG are the energies of relaxed H-Li-OPG and Li-OPG structures,respectively.E H is the energy of a H 2molecule.These two relaxed structures are shown as insets in Figs.2(a)and 2(b).And E Hb along with length of H-H bond and distance from metal atom to H 2molecule are shown in Table II .As we could see,E Hb of Erect-Li structure is much higher than that of Flat-Li struc-ture.Besides,Erect-Li has a longer H-H length and shorter distance between Li and H 2molecule.According to the charge analysis,Li atom in Erect-Li structure possesses a larger positive charge.Therefore,the Li atom’s 2s orbital is emptier and provide more room for H 2molecule’s electron.To further probe the interaction nature between deco-rated Li atom and H 2molecule,the partial density of states (PDOS)of Li 2s orbital and two H atoms’1s orbital were shown in Fig.3.Li atom’s 2s orbital has a slight overlap with r bond of H 2molecule at 9eV lower than Fermi Energy.This proves that Li atom’s empty 2s orbital exchanges electrons with r bond of H 2molecule.Here,the 1st and 2nd hydrogen all belong to the first adsorbing H 2molecule,and these two distances between hydrogen and Li atom are almost equal with each other after the structure relaxation.So,the interactions of two H atoms with Li atom and corresponding PDOS are very similar.Furthermore,the overlap peak in Figs.3(a)and 3(b)was compared.We found that the overlap peak is higher in Erect-Li structure.It is indicated that the interaction between Li and H 2molecule ismuch stronger in Erect-Li system.Thus,it explains for the higher E Hb in Erect-Li system.Next,more H 2molecules were added one by one to these two Li-OPG structures to determine their hydrogen absorption abilities,as displayed in Fig.3.The calculated E Hb of the 1st to 6th H 2molecules were listed in Table II .From the 1st to the 5th H 2molecule,E Hb of Flat-Li system decreases slowly from 0.32eV to 0.22.The moderate interaction of Li atom and H 2molecule is similar with the calcium case with H 2binding energy around 0.2eV (GGA value).20While in Erect-Li system,E Hb of the first two H 2molecules are above 0.5eV but drops significantly to the same magnitude as that of Flat-Li system from the third H 2molecule.At the same time,the distance from Li to H 2increases as E Hb decreases.Interest-ingly,E Hb of the 6th H 2molecule in these two systems falls down simultaneously to around 0.05eV,which is much lower than 0.2eV.Thus,one Li atom in these two Li-OPG structures could adsorb a maximum number of five H 2molecules.We also compared our results to that of other carbon nanostructure based hydrogen storage materials.As Sun et al.37reported,the total interaction energy of 60H 2mole-cules with Li 12C 60is 4.5eV,which means the average bind-ing energy of 0.075eV/H 2molecule (GGA).In the case of Li doped graphene,reported by Ataca et al.,31four H 2mole-cule could be absorbed by Li atom effectively,and the binding energies of the four H 2are 0.05eV,0.41eV,0.18eV,and 0.19eV (LDA),respectively.Relatively,Li-OPG has a higher hydrogen binding energy.What is more,we also calculated the average E Hb of Li doped porous graphene.It turned out to be 0.29eV,which is comparable to that of Li-FOPG.Since Li-FOPG has a higher E Mb ,it is apparently more advisable.C.Hydrogen storage capacity of Li-OPGSo far,the calculations lead to the conclusion that one Li atom could adsorb five H 2molecules.And next,we dem-onstrated that two Li-O groups could exist stably in one car-bon pore.Three configurations of Flat-Li and six configurations of Erect-Li with two oxygen atoms in the same missing ring are considered as shown in Fig.4.The total energies of these structures depend on the oxygen atom places and Li adsorption sites,and the relative values D E are also listed.The three configurations of Flat-Li with lower relative energies about 1.5–2.5eV are chosen to calculated the hydrogen storage capacity.In these structures showninFIG.2.(a)PDOS of one H 2molecule adsorbed Flat-Li system;(b)PDOS of one H 2molecule adsorbed Erect-Li system.TABLE II.The H 2binding energies E Hb and the distances between H 2and Li d H-Li of the 1st to 6th H 2molecule on two Li-FOPG structures.E Hb /eVd H-Li /A˚N H 2Flat-Li Erect-Li Flat-Li Erect-Li 10.320.59 2.02 1.9720.300.54 2.02 2.0330.300.32 2.38 2.1540.270.27 2.23 2.2050.220.21 3.13 2.1360.060.053.532.56FIG.3.(a)Side view of Flat-Li structure adsorbing five H 2molecules;(b)side view of Erect-Li structure adsorbing five H 2molecules.Fig.4,Li atoms remain separate instead of clustering.Because Li atoms are positively charged by O atom,they tend to repel each other due to the charge repulsion.Since the two Li atoms are adsorbed on different sides of OPG at each configuration,the interactions between these Li atoms are small.The sufficient space of missed carbon ring ensures the five H 2molecules adsorbing near each Li atom like the single Li atom case,as shown in Fig.5.The av-erage binding energies of H 2molecules are 0.25–0.32eV.We also calculated the binding energies (0.15–0.20eV)of fifth H 2molecules at these situations,and found appropriate adsorptions could be expected for these 5th H 2molecules.It should be noted that the hydrogen storage densities of these Li-OPG structures all reach 9.43wt.%.It is much higher than the criteria (6wt.%)set for on board application.IV.CONCLUSIONSBy performing first principles calculations,we have demonstrated that lithium-decorated oxidized porous gra-phene is a promising hydrogen storage material.It is remark-able that Li-OPG possess a Li binding energy above 3eV.This large metal binding energy is very important in avoid-ing metal clustering.One Li atom in Li-OPG could adsorb five H 2molecules.The adsorption of H 2on Li atom origi-nates from slight charge exchange between 2s orbital of Li atom and r bond of H 2molecule.Finally,it was shown that Li-OPG structure with two Li-O groups in one carbon pore could reach storage capacity of 9.43wt.%.It should be noted that the high ideal value about 9.43%profits from the combined contributions of light mass of Li atom and sparse structure of OPG with sufficient space for H 2adsorption.The hydrogen storage capacity strongly depends on density of missing rings and Li atoms in Li-OPG model almost proportionally.Theoretically,a perfect repeated oxy-gen atom replacing will induce a regular Li adsorption at each missing rings,and a maximal hydrogen storage capacity was given.Of course,this theoretical limit will be hard to reach,especially considering many uncertain factors though the ex-perimental preparation.As porous graphene has been success-fully synthesized,there is hope to obtain Li-OPG and apply it into hydrogen storage in the future.ACKNOWLEDGMENTSThis research work was supported by National Natural Science Foundation of China (Grant No.61172003)and Innovative Foundation of Huazhong University of Science and Technology (Grant No.2012QN151).Computational resources provided by Center of Computational Material Design and Measurement Simulation,Huazhong University of Science and Technology.1A.C.Dillon,K.M.Jones,T.A.Bekkedahl,C.H.Kiang,D.S.Bethune,and M.J.Heben,“Storage of hydrogen in single-walled nanotube,”Nature 386,377(1997).2T.Yildirim and S.Ciraci,“Titanium-decorated carbon nanotube as a potential high-capacity hydrogen storage medium,”Phys.Rev.Lett.94,175501(2005).3Y.Zhao,Y.H.Kim,A.C.Dillon,M.J.Heben,and S.B.Zhang,“Hydrogen storage in novel organometallic buckyballs,”Phys.Rev.Lett.94,155504(2005).4I.Cabria and M.J.L o pez,“Enhancement of hydrogen physisorption on graphene and carbon nanotubes by Li doping,”J.Chem.Phys.123,204721(2005).FIG.4.Decorated OPG structures with two Li atoms,(a)-(c)three configu-rations of Flat-Li and (d)-(j)six configurations of Erect-Li,the value is rela-tive total energy DE.FIG.5.(a)-(c)Three kinds of double-Li system and corresponding average H 2binding energies.5Y.H.Kim,Y.Zhao,A.Williamson,M.J.Heben,and S.B.Zhang,“Nondissociative adsorption of H2molecules in light-element-doped full-erenes,”Phys.Rev.Lett.96,016102(2006).6L.Huang,Y.C.Liu,K.E.Gubbins,and M.B.Nardelli,“Ti-decorated C60 as catalyst for hydrogen generation and storage,”Appl.Phys.Lett.96, 063111(2010).7J.Guo,Z.Liu,S.Liu,X.Zhao,and K.Huang,“High-capacity hydrogen storage medium:Ti doped fullerene,”Appl.Phys.Lett.98,023107(2011). 8E.Durgun,Y.R.Jang,and S.Ciraci,“Hydrogen storage capacity of Ti-doped boron-nitride and B/Be-substituted carbon nanotube,”Phys.Rev.B 76,073413(2007).9W.I.Choi,S.H.Jhi,K.Kim,and T.H.Kim,“Divacancy-nitrogen-assisted transition metal dispersion and hydrogen adsorption in defective graphene:Afirst-principles study,”Phys.Rev.B81,085441(2010).10G.J.Kubas,“Fundamental of H2binding and reactivity on transition met-als underlying hydrogenase function and H2production and storage,”Chem.Rev.107,4152(2007).11K.R.S.Chandrakumar and S.K.Ghosh,“Alkali-metal-induced enhance-ment of hydrogen adsorption in C60fullerene:An ab initio study,”Nano Lett.8,13(2008).12M.Ni,L.Huang,L.Guo,and Z.Zeng,“Hydrogen storage in Li-doped charged single-walled carbon nanotubes,”Int.J.Hydrogen Energy35,3546(2010).13C.S.Liu and Z.Zeng,“Boron-tuned bonding mechanism of Li-graphene com-plex for reversible hydrogen storage,”Appl.Phys.Lett.96,123101(2010). 14D.Saha and S.Deng,“Hydrogen adsorption on Pd-and Ru-doped C60full-erene at an ambient temperature,”Langmuir27,6780(2011).15M.C.Nguyen,M.H.Cha,K.Choi,Y.Lee,and J.Ihm,“Calcium-hydroxyl group complex for potential hydrogen storage media:A density functional theory study,”Phys.Rev.B79,233408(2009).16H.Lee,B.Huang,W.Duan,and J.Ihm,“Beryllium-dihydrogen com-plexes on nanostructures,”Appl.Phys.Lett.96,143120(2010).17Z.Yang and J.Ni,“Hydrogen storage on calcium-decorated BC3sheet:A first principles study,”Appl.Phys.Lett.97,253117(2010).18A.Reyhani,S.Z.Mortazavi,S.Mirershadi,A.N.Golikand,and A.Z. Moshfegh,“H2adsorption mechanism in Mg modified multi-walled carbon nanotubes for hydrogen storage,”Int.J.Hydrogen Energy36,1(2011).19J.Cha,C.H.Choi,and N.Park,“Ab initio study of Kubas-type dihydrogenfix-ation onto d-orbital states of Ca adatoms,”Chem.Phys.Lett.513,256(2011). 20E.Beheshti,A.Nojeh,and P.Servati,“Afirst-principles study of calcium-decorated,boron-doped graphene for high capacity hydrogen storage,”Carbon49,1561(2011).21H.Lee,J.Ihm,M.L.Cohen,and S.G.Louie,“Calcium-decorated carbon nanotubes for high-capacity hydrogen storage:First-principles calcu-lations,”Phys.Rev.B80,115412(2009).22C.Ataca,E.Akt€u rk,and S.Ciraci,“Hydrogen storage of calcium atoms adsorbed on graphene:First-principles plane wave calculations,”Phys. Rev.B79,041406(2009).23Z.Zhou,J.Zhao,X.Gao,Z.Chen,J.Yan,P.R.Schleyer,and M.Mori-naga,“Do composite single-walled nanotubes have enhanced capability for lithium storage,”Chem.Mater.17,992(2005).24S.Meng,E.Kaxiras,and Z.Zhang,“Metal-diboride nanotubes as high-capacity hydrogen storage media,”Nano Lett.7,663(2007).25Y.Park,G.Kim,and Y.H.Lee,“Adsorption and dissociation of hydrogen molecules on a Pt atom on defective carbon nanotubes,”Appl.Phys.Lett. 92,083108(2008).26X.Yang,R.Q.Zhang,and J.Ni,“Stable calcium adsorbates on carbon nanostructures:Applications for high-capacity hydrogen storage,”Phys. Rev.B79,075431(2009).27W.Lin,Y.H.Zhao,Q.Jiang,and verina,“Enhanced hydrogen stor-age on Li-dispersed carbon nanotubes,”J.Phys.Chem.C113,2028(2009). 28X.Wang and K.M.Liew,“Hydrogen storage in silicon carbide nanotubes by lithium doping,”J.Phys.Chem.C115,3491(2011).29A.Hui,C.S.Liu,and Z.Zeng,“Radial deformation-induced high-capacity hydrogen storage in Li-decorated zigzag boron nanotubes,”Phys.Rev.B 83,115456(2011).30J.Zhou,Q.Wang,Q.Sun,and P.Jena,“Enhanced hydrogen storage on Li functionalized BC3nanotube,”J.Phys.Chem.C115,6136(2011).31C.Ataca,E.Aktork,S.Ciraci,and tunel,“High-capacity hydrogen storage by metalized graphene,”Appl.Phys.Lett.93,043123(2008).32Y.H.Kim,Y.Y.Sun,and S.B.Zhang,“Ab initio calculation predicting the existence of an oxidized calcium dihydrogen complex to store molecu-lar hydrogen in densities up to100g/L,”Phys.Rev.B79,115424(2009). 33Z.M.Ao and F.M.Peeters,“High-capacity hydrogen storage in Al-adsorbed graphene,”Phys.Rev.B81,205406(2010).34M.Zhou,Y.Lu,C.Zhang,and Y.P.Feng,“Strain effects on hydrogen storage capacity of metal-decorated graphene:Afirst principles study,”Appl.Phys.Lett.97,103109(2010).35H.L.Park,S.C.Yi,and Y.C.Chung,“Hydrogen adsorption on Li metal in boron-substituted graphene:An ab initio approach,”Int.J.Hydrogen Energy35,3583(2010).36H.An,C.S.Liu,Z.Zeng,C.Fan,and X.Ju,“Li-doped B2C graphene as potential hydrogen storage medium,”Appl.Phys.Lett.98,173101(2011). 37Q.Sun,P.Jena,Q.Wang,and M.Marquez,“First-principles study of hydrogen storage on Li12C60,”J.Am.Chem.Soc.128,9741(2006).38M.Yoon,S.Yang,C.Hicke,E.Wang,D.Geohegan,and Z.Zhang,“Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage,”Phys.Rev.Lett.100,206806(2008).39M.Li,Y.Li,Z.Zhou,P.Shen,and Z.Chen,“Ca-coated boron fullerenes and nanotubes as superior hydrogen storage materials,”Nano Lett.9,1944 (2009).40H.Lee,B.Huang,W.Duan,and J.Ihm,“Ab initio study of beryllum-decorated fullerenes for hydrogen storage,”J.Appl.Phys.107,084304(2010). 41Y.Y.Sun,K.Lee,Y.H.Kim,and S.B.Zhang,“Ab initio design of Ca-decorated organic frameworks for high capacity molecular hydrogen stor-age with enhanced binding,”Appl.Phys.Lett.95,033109(2009).42M.M.Wu,Q.Wang,Q.Sun,P.Jena,and Y.Kawazoe,“First-principles study of hydrogen adsorption in metal-doped COF-10,”J.Chem.Phys. 133,154706(2010).43X.Zou,G.Zhou,W.Duan,K.Chol,and J.Ihm,“A chemical modification strategy for hydrogen storage in covalent organic frameworks,”J.Phys. Chem.C114,13402(2010).44K.Sirinivasu and S.K.Ghosh,“Tuning the metal binding energy and hydrogen storage in alkali metal decorated MOF-5through boron doping: A theoretical investigation,”J.Phys.Chem.C115,16984(2011).45M.Dixit,T.A.Maark,and S.Pal,“Ab initio and periodic DFT investiga-tion of hydrogen storage on light metal-decorated MOF-5,”Int.J.Hydro-gen Energy36,10816(2011).46S.Y.Lee and S.J.Park,“Effect of platinum doping of activated carbon on hydrogen storage behaviors of metal-organic framworks-5,”Int.J.Hydro-gen Energy36,8381(2011).47B.Huang,H.Lee,W.Duan,and J.Ihm,“Hydrogen storage in alkali-metal-decorated organic molecules,”Appl.Phys.Lett.93,063107(2008). 48S.Banerjee,C.G.S.Pillai,and C.Majumder,“Hydrogen adsorption behavior of doped corannulene:Afirst principle study,”Int.J.Hydrogen Energy36,4976(2011).n,D.Cao,and W.Wang,“Li12Si60H60fullerene composite:A prom-ising hydrogen storage medium,”ACS Nano3,3294(2009).50M.Bieri,M.Treier,J.M.Cai,K.Ait-Mansour,P.Ruffieus,O.Groning,P. Groning,M.Kastler,R.Rieger,X.L.Feng,K.Mullen,and R.Fasel,“Porous graphenes:Two dimensional polymer synthesis with atomic pre-cision,”mun.45,6919(2009).51Q.Xi,X.Chen,D.G.Evans,and W.S.Yang,“Gold nanoparticle-embedded porous graphene thinfilms fabricated via layer-by-layer self-assembly and subsequent thermal annealing for electrochemical sensing,”Langmuir28,9885(2012).52G.Brunetto,P.A.S.Autreto,L.D.Machado et al.,“Nonzero gap two-dimensional carbon allotrope from porous graphene,”J.Phys.Chem.C 116,12810(2012).53D.E.Jiang,V.R.Cooper,and S.Dai,“Porous graphene as the ultimate membrane for gas separation,”Nano Lett.9,4019(2009).54P.Reunchan and S.H.Jhi,“Metal-dispersed porous graphene for hydro-gen storage,”Appl.Phys.Lett.98,093103(2011).55A.Du,Z.Zhu,and S.C.Smith,“Multifunctional porous graphene for nanoelectronics and hydrogen storage:New properties revealed byfirst principle calculations,”J.Am.Chem.Soc.132,2876(2010).56J.M.Soler,E.Artacho,J.D.Gale,A.Garc ıa,J.Junquera,P.Ordej o n,and D.S a nchez-Portal,“The SIESTA method for ab initio order-N materials simulation,”J.Phys.Condens.Matter14,2745(2002).57P.C.Hohenberg and W.Kohn,“Inhomogeneous electron gas,”Phys.Rev. 136,B864(1964).58W.Kohn and L.J.Sham,“Self-consistent equations including exchange and correlation effects,”Phys.Rev.140,A1133(1965).59J.P.Perdew,K.Burke,and M.Ernzerhof,“Generalized gradient approxi-mation made simple,”Phys.Rev.Lett.77,3865(1996).60N.Troullier and J.L.Martins,“Efficient pseudopotentials for plane-wave calculations,”Phys.Rev.B43,1993(1991).61H.J.Monkhorst and J.D.Pack,“Special points for Brillouin-zone integra-tions,”Phys.Rev.B13,5188(1976).。