离散数学2012-2-5 20-29-09

合集下载

离散数学知识点总结

离散数学知识点总结

离散数学知识点总结离散数学是一门重要的数学学科,它涉及到离散的对象和离散的结构,而不是连续的对象和结构。

以下是离散数学的几个重要知识点的总结:集合论- 集合:集合是由元素组成的对象的集合。

集合的运算包括并集、交集和差集等。

集合:集合是由元素组成的对象的集合。

集合的运算包括并集、交集和差集等。

- 子集和超集:如果一个集合的所有元素都是另一个集合的元素,则称前者为后者的子集,反之则称后者为前者的超集。

子集和超集:如果一个集合的所有元素都是另一个集合的元素,则称前者为后者的子集,反之则称后者为前者的超集。

- 幂集:一个集合的幂集是所有可能的子集构成的集合。

幂集:一个集合的幂集是所有可能的子集构成的集合。

逻辑- 命题:一个命题是一个陈述句,可以被判断为真或假。

命题:一个命题是一个陈述句,可以被判断为真或假。

- 逻辑运算:逻辑运算包括与、或、非等,用来连接和否定命题,构成复合命题。

逻辑运算:逻辑运算包括与、或、非等,用来连接和否定命题,构成复合命题。

- 真值表:用来列出复合命题在各种可能情况下的真值。

真值表:用来列出复合命题在各种可能情况下的真值。

关系- 关系:关系用来描述元素之间的联系。

关系可以是二元的或多元的。

关系:关系用来描述元素之间的联系。

关系可以是二元的或多元的。

- 等价关系:等价关系是一种满足自反性、对称性和传递性的关系。

等价关系:等价关系是一种满足自反性、对称性和传递性的关系。

- 偏序关系:偏序关系是一种满足自反性、反对称性和传递性的关系。

偏序关系:偏序关系是一种满足自反性、反对称性和传递性的关系。

- 图的表示:图可以用邻接矩阵或邻接表来表示。

图的表示:图可以用邻接矩阵或邻接表来表示。

图论- 连通性:图中的连通性用来描述图中顶点之间是否存在路径。

连通性:图中的连通性用来描述图中顶点之间是否存在路径。

- 最短路径:最短路径问题是寻找两个顶点之间最短路径的问题。

最短路径:最短路径问题是寻找两个顶点之间最短路径的问题。

离散数学II

离散数学II
b):相同的运算符,从左到右次序计算时,括号 可省去。
c):最外层括号可省。 如,(¬((P ∧ ¬Q) ∨R) →((R ∨P)∨Q))
¬(P ∧ ¬Q∨R) →R ∨P∨Q
21/73
1.1 命题与命题联结词
• 例1.3:符号化下列命题。
a):他既有理论知识又有实践经验 b):i. 如果明天不是雨夹雪则我去学校
26/73
1.2 公式的解释与真值表
• 原子命题在不指派真值时称为命题变元,而
复合命题由原子命题和联结词构成,可以看 作是命题变元的函数,且该函数的值仍为 “真”或“假”,可以称为真值函数(True Value Function)或命题公式。但不是说原 子命题和联结词的一个随便的组合都可以为 命题公式,我们用递归的方法来定义命题公 式。
• 例,(¬ P∧Q),(P→(¬P ∧Q)) ,(((P∧Q) ∧(R
∨Q)) ↔(P →R))是命题公式 (P →Q )∧¬ Q), (P →Q, (¬ P∨Q ∨(R, P∨Q ∨不是命题公式
28/73
1.2 公式的解释与真值表
• 注意:
– 如果G是含有n个命题变元 P1, P2, …,Pn的公式, 通常记为G(P1, …,Pn)或简记为G。
汇集起来的一门综合学科。离散数学的应用遍
及现代科学技术的诸多领域。
–离散数学是随着计算机科学的发展而逐步建立
起来的一门新兴的工具性学科,形成于上上个
世纪七十年代。
2/73
引言
• 课程意义
–离散数学是计算机科学的数学基础,其基本概念、 理论、方法大量地应用在数字电路、编译原理、数 据结构、操作系统、数据库系统、算法设计、人工 智能、计算机网络等专业课程中,是这些课程的基 础课程。

离散数学基础知识

离散数学基础知识

离散数学基础知识离散数学是计算机科学中一门重要的数学基础学科,它研究离散对象的性质和关系,主要涉及逻辑、集合论、图论、代数结构等方面的内容。

具备扎实的离散数学基础知识对于计算机科学领域的学习和研究都具有重要的意义。

本文将重点介绍离散数学的一些基础知识。

1. 逻辑逻辑是离散数学的基础,它研究判断和推理的规则。

在计算机科学中,逻辑常常用于描述程序的正确性和推理的过程。

逻辑包括命题逻辑和谓词逻辑两个分支。

命题逻辑研究命题与命题之间的关系,它使用命题变量和逻辑运算符来构造复合命题。

常见的逻辑运算符有非(¬)、与(∧)、或(∨)、蕴含(→)和等价(↔)等。

通过逻辑运算符的组合,可以构建出复杂的逻辑表达式,并通过真值表来确定表达式的真值。

谓词逻辑是对命题逻辑的扩展,它引入了量词和谓词,用于描述对象之间的关系。

谓词逻辑包括一阶逻辑和二阶逻辑两个分支。

一阶逻辑主要研究命题中包含变量的情况,而二阶逻辑则允许变量代表集合或者谓词。

2. 集合论集合论是离散数学的另一个重要分支,它研究集合及其运算和关系。

在计算机科学中,集合论被广泛应用于描述数据类型、数据结构和算法等方面。

集合是由一些确定的对象组成的整体,可以用罗素概念公理或者包含-属于公理来描述。

常见的集合运算有并(∪)、交(∩)、差(-)和补(\)等。

通过这些运算,可以构建出各种复杂的集合。

集合论中的函数是一种特殊的关系,它将一个集合的元素映射到另一个集合的元素。

函数可以用来描述计算机程序中的算法和操作。

常见的函数类型有单射、满射、双射等。

3. 图论图论是离散数学的一个重要分支,它研究图的性质和关系。

在计算机科学中,图论被广泛应用于网络、算法和人工智能等方面。

图是由顶点和边组成的结构,可以用来描述对象之间的关系。

图的类型包括有向图和无向图,以及它们的变种如加权图和带标签的图等。

图的常见概念有度、路径、连通性和环等。

图的表示方法有邻接矩阵和邻接表两种。

邻接矩阵使用二维数组来表示顶点之间的连接关系,邻接表则使用链表来表示边的信息。

离散数学

离散数学

13、假言易位
14、等值否定表达式
15、归谬论
( A B) ( A B) A
三、等价演算。 置换定理:如果 A B ,则 ( A) ( B)。 例2、验证下列等价式。
(1) p (q r ) ( p q) r (2)
(3)
p (q r) p (q r) q r q (p q) p 1
中介绍数理逻辑的内容。
第一章数理逻辑
第一节 命题符号化及联结词
内容:命题,逻辑联结词,命题符号化 (1)掌握命题概念 重点: (2)掌握联结词含义及真值表 (3)掌握命题符号化方法
一、命题的概念
命题:能判断真假的陈述句。
真 (记为T或1) 真值 假 (记为F或0)
例1、判断下列句子中哪些是命题。
A A 1 (排中律),
A A 0 (矛盾律)
10、双重否定律
(A) A
二、重要等价式。(逻辑恒等式)
11、蕴涵表达式
12、等值表达式
A B A B
A B ( A B) ( B A)
A B B A
A B A B
(1) 北京是中国的首都。
(2) 雪是黑色的。
(3) 3 4 12 。
(4) 请把门关上!
(5) x 是有理数。
(6) 地球外的星球上也有人。
例1、判断下列句子中哪些是命题。
(7) 明天有课吗?
(8) 本语句是假的。
(9) 小明和小林都是三好生。
(10) 小明和小林是好朋友。 判断一个语句是否为命题,首先看是否为陈 述句,再看其真值是否唯一。 命题常项,命题变项均用 p, q, r,, pi , qi , ri 表示。

(完整word版)离散数学符号表.doc

(完整word版)离散数学符号表.doc

《离散数学》符号表全称量词(任意量词)存在量词├断定符(公式在L 中可证)╞满足符(公式在 E 上有效,公式在 E 上可满足)┐命题的“非”运算∧命题的“合取”(“与”)运算∨命题的“析取”(“或”,“可兼或”)运算→命题的“条件”运算命题的“双条件”运算的A B命题A与B等价关系A B 命题 A 与 B 的蕴涵关系A 公式 A的对偶公式wff 合式公式iff 当且仅当V 命题的“不可兼或”运算(“异或门” )↑命题的“与非” 运算(“与非门”)↓命题的“或非”运算(“或非门” )□模态词“必然”◇模态词“可能”φ空集∈属于(不属于)A (·)集合 A 的特征函数P(A)集合 A 的幂集A 集合 A 的点数A A A (A n)集合A的笛卡儿积R 2R R ( R nR n 1) 关系 R 的“复合”R阿列夫零阿列夫包含真包含∪ 集合的并运算 ∩ 集合的交运算 - (~)集合的差运算集合的对称差运算mm同余加mm同余乘〡限制[ x] R集合关于关系 R 的等价类 A/ R集合 A 上关于 R 的商集 R ( A)集合 A 关于关系 R 的划分 R (A)集合 A 关于划分 的关系 [a]元素 a 产生的循环群 [a] R元素 a 形成的 R 等价类 C r由相容关系 r 产生的最大相容类 I环,理想Z /( n)模 n 的同余类集合a b(mod k)a 与b 模 k 相等r ( R)关系 R 的自反闭包 s( R)关系 R 的对称闭包R ,t( R) 关系 R 的传递闭包R ,rt (R) 关系 R 的自反、传递闭包Hi . 矩阵 H 的第 i 个行向量H. j 矩阵 H 的第 j 个列向量CP 命题演绎的定理( CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则)UG 全称推广规则(全称量词引入规则)US 全称特指规则(全称量词消去规则)I A,R0 恒等关系A 集合 A 的补集X X 所有 X 到自身的映射Y X 所有从集合 X 到集合 Y 的函数K[ A] ( A) 集合 A 的势(基数)R 关系r 相容关系R 否关系R 补关系R 1 ( R c)逆关系R S 关系 R 与关系 S 的复合R R R , R n 关系 R 的n次幂nB2 B2 , B2r 布尔代数 B2的 r 次幂rB2r 含有 2r个元素的布尔代数domf 函数 f 的定义域(前域)ranf 函数 f 的值域f: X Y ( X f Y ) f 是X到Y的函数GCD (x, y) x, y 最大公约数LCM (x, y) x, y 的最小公倍数e 幺元零元a 1 元素 a 的逆元aH (Ha ) H 关于a的左(右)陪集Ker ( f ) 同态映射 f 的核(或称 f 的同态核)A,B,C 合式公式n二项式系数kn多项式系数n1 ,n2 , , n p[1 ,n] 1 到 n 的整数集合[ x]k x( x 1) (x k 1)[ x]k x( x 1) (x k 1)C n k 组合数d (u, v) 点 u 与点 v 间的距离d (v) 点 v 的度数d (v) 点 v 的出度d (v) 点 v 的入度G (V ,E) 点集为 V ,边集为 E 的图G 图G的补图G G图G与图G同构G平面图 G 的对偶图W(G)图 G 的连通分支数(G)图G的点连通度(G)图G的边连通度(G)图G的最小点度(G)图G的最大点度A(G)图 G 的邻接矩阵P(G)图 G 的可达矩阵M(G)图 G 的关联矩阵K n n 阶完全图K n,m完全二分图C复数集N自然数集(包含0 在内)N正自然数集P素数集Q有理数集Q正有理数集Q负有理数集R实数集Z整数集Z m{[ 1] , [ 2] ,,[ m]}Set集范畴Top拓扑空间范畴Ab交换群范畴Grp群范畴Mon单元半群范畴Ring有单位元的(结合)环范畴Rng环范畴CRng交换环范畴R-mod环R的左模范畴mod-R环R的右模范畴Field域范畴Poset偏序集范畴。

离散数学课件-绪论

离散数学课件-绪论
离散数学课件-绪论
目录
• 离散数学的概述 • 离散数学的主要分支 • 离散数学的基本概念 • 离散数学的研究方法 • 离散数学的学习意义和价值
01
离散数学的概述
离散数学的定义
• 离散数学:离散数学是研究数学结构中非连续、分离对象的数 学分支。它主要关注集合论、图论、逻辑、组合数学等领域, 用于描述和研究离散对象之间的关系和性质。
在离散数学中,形式化方法常用于描述集合、关系、图等数学对象,如集合论中的集合定义和关系定 义。
归纳法
归纳法是从个别到一般的推理方法, 通过对一些具体实例的分析,归纳出 一般规律或性质。
VS
在离散数学中,归纳法常用于证明一 些关于自然数的性质和定理,如归纳 法在证明阶乘性质中的应用。
反证法
反证法是一种间接证明方法,通过假设与要 证明的命题相矛盾的命题成立,推出矛盾, 从而证明原命题成立。
逻辑学
01
逻辑学是研究推理和论证的规则 和结构的数学分支。逻辑学为离 散数学的各个分支提供了推理和 证明的工具和方法。
02
逻辑学中的基本概念包括命题、 量词、推理规则、证明等,这些 概念为离散数学的各个分支提供 了推理和证明的工具和方法。
组合数学
组合数学是研究计数、排列和组合问题的数学分支。组合数学在计算机科学、统 计学和运筹学等领域有广泛应用。
离散数学的起源和发展
起源
离散数学的起源可以追溯到古代数学中的一些研究,如几何学和逻辑学。随着 时间的推移,离散数学的各个分支逐渐形成和发展,成为一门独立的学科。
发展
离散数学的发展与计算机科学的发展密切相关。随着计算机科学的兴起,离散 数学在理论和实践方面都得到了广泛的应用和发展。
离散数学的应用领域

离散数学(精选优秀)PPT

离散数学(精选优秀)PPT

二、命题的表示法
1、命题标识符:表示命题的符号称为命题标识符。在数理逻辑中,使 用大写字母,或带下标的大写字母,或用方括号括起的数字表示命题。
例:P: 今天下雨。 “今天下雨”是一个命题,P是命题标识符。
它形成于七十年代初期,是一门新兴的工具性学科。
离散数学的应用
◆关系型数据库的设计(关系代数) ◆表达式解析(树) ◆编译技术、程序设计语言(代数结构) ◆人工智能、自动推理、机器证明(数理逻辑) ◆网络路由算法(图论) ◆游戏中的人工智能算法(图论、树、博弈论) ◆专家系统(集合论、数理逻辑—知识和推理规则的计算机表达) ◆软件工程—团队开发—时间和分工的优化(图论—网络、划分) ◆(各种)算法的构造、正确性的证明和效率的评估(离散数学的
第一章 命题逻辑
目标语言:就是表达判断的一些语言的汇集。 目标语言和一些符号公式构成了数理逻辑的形式 符号体系。
1-1 命题及其表示法
一、命题
1、定义 能表达判断的陈述句,称作命题(Proposition)。 例:判断下列语句是否为命题: (陈1)述地句球:外述存说在一智件事慧情生的物句。子,句末用句号。 (祈2)使1+句1:=要10求。或者希望别人做什么事或者不做什么事时用的 (句3)子今,天句下末雨用。句号或感叹号。 (疑4)问你句今:年提暑出假问去题的旅句行子吗,?句(末疑用问问号句。) (感5)叹克句里:特带岛有人浓说厚感:情“的克句里子特,岛句末人用是感说叹谎号话。者”。 悖(:相悖反论。)悖论:自相矛盾的陈述。
各分支)
教材
左孝凌,李为鉴,刘永才编著.离散数学.上海: 上海科学技术文献出版社,1982 主要参考教材: 孙吉贵,杨凤杰,欧阳丹彤,李占山编著.离散数 学.高等教育出版社,2002

离散数学第一章

离散数学第一章

例2: “派小王或小李中的一人去开会” 不能符号化为形式P∨Q ,因为这里的“或”表示 的是排斥或。它表示非此即彼,不可兼得。 运算符 ∨表示可兼或,排斥或以后用另一符号表达。也可
以借助于联结词
或。
┒、∧ 、∨共同来表达这种排斥
课堂练习: 将下列命题符号化: (1) 王东梅学过日语或俄语。 (2) 张小燕生于1977年或1978年。 (3) 小元元只能拿一个苹果或一个梨。
常称为“非”运算,所有可能的运算结果可用下表
(真值表)表示。
P
┒P
T F
F T
例: (a) P: 3是偶数。
则┑P: 3不是偶数。
(b)
的”。 (c) (d)
Q: 4 是质数。
则┑Q: 4 不是质数。或 “说4 是质数是不对 R: 我们都是汉族人。 则┒R: 我们不都是汉族人。 S: 今天下雨并且今天下雪。 则 ┒S:今天不下雨或者今天不下雪。
Q:明天下雨
是两个命题,利用联结词“不”、“并且”、 “或” 等可分别构成新命题: “明天不下雪”; “明天下雪并且明天下雨”; “明天下雪或者明天下雨”等。
即 : “非P”;
“P并且Q”;
“P或Q”等。 在代数式x+3 中, x 、 3 叫运算对象, +叫运 算符,x+3 表示运算结果。在命题演算中, 也用同样术语。 联结词就是命题演算中的运算符,叫逻辑运算符或叫命题联 结词。常用的命题联结主要有 5 个。
2.常用命题联结词 1). 否定词┑ 定义:设P为任一命题。复合命题“非P”(或“P的 否定”)称为P的否定,记作 ┑P,读作“非P”。┒ 为否定联结词。┑P为真当且仅当P为假。 由定义可知, ┑P 的逻辑关系为P不成立,因而P

离散数学概述

离散数学概述

1.计算学科的概念
攻关小组的结论是: 攻关小组的结论是:计算学科所研究的根本问 题是能行问题 什么能被(有效地)自动进行)。 能行问题( 题是能行问题(什么能被(有效地)自动进行)。 计算学科的基本原理已纳入理论、抽象和设计这3 计算学科的基本原理已纳入理论、抽象和设计这 个具有科学技术方法意义的过程中。 个具有科学技术方法意义的过程中。学科的各分支 领域正是通过这3个过程来实现它们各自的目标 个过程来实现它们各自的目标。 领域正是通过这 个过程来实现它们各自的目标。 而这3个过程要解决的都是计算过程中的 个过程要解决的都是计算过程中的“ 而这 个过程要解决的都是计算过程中的“能行性 有效性”问题。 ”和“有效性”问题。这两个问题渗透在包括硬件 和软件在内的理论、方法、 和软件在内的理论、方法、技术的研究和应用的研 究和开发之中, 究和开发之中,且学科的方法论的主要理论基础 ――以离散数学为代表的构造性数学与能行性问题 以离散数学为代表的构造性数学与能行性问题 形成了天然的一致。 形成了天然的一致。
1.计算学科的概念
计算学科作为现代技术的标志, 计算学科作为现代技术的标志,已成为世界 各国经济增长的主要动力。 各国经济增长的主要动力。但如何认识这门 学科,它究竟属于理科还是工科, 学科,它究竟属于理科还是工科,属于科学 还是属于工程的范畴, 还是属于工程的范畴,这是困扰国内外计算 机科学界很长时间且争论不休的问题。 机科学界很长时间且争论不休的问题。 计算学科诞生于20世纪 年代初, 世纪40年代初 计算学科诞生于 世纪 年代初,它的理论 基础可以说在这之前就已经建立起来了。 基础可以说在这之前就已经建立起来了。正 是电子数字计算机的问世才促进这一门学科 的发展。 的发展。
1.计算学科的概念
世人一般公认1946年2月14日研制成功 年 月 日研制成功 世人一般公认 的ENIAC(电子数字积分器和计算器, (电子数字积分器和计算器, Electronic Numerical Integrator and Calculator)是世界上第一台通用电子数字 ) 计算机(事实上,早在1943年,英国数学家 计算机(事实上,早在 年 图灵领导制造出了一台名叫“巨人” 图灵领导制造出了一台名叫“巨人”( Colossus)的电子计算机,它专门用于译 )的电子计算机, 由于英国政府的保密制度, 码。由于英国政府的保密制度,故人们对它 的成就了解甚少)。美国的普渡大学于1962 )。美国的普渡大学于 的成就了解甚少)。美国的普渡大学于 年开设了最早的计算机科学学位课程。 年开设了最早的计算机科学学位课程。

离散数学答案版(全)

离散数学答案版(全)

第一章命题逻辑内容:命题及命题联结词、命题公式的基本概念,真值表、基本等价式及永真蕴涵式,命题演算的推理理论中常用的直接证明、条件证明、反证法等证明方法。

教学目的:1. 熟练掌握命题、联结词、复合命题、命题公式及其解释的概念。

2. 熟练掌握常用的基本等价式及其应用。

3. 熟练掌握(主)析/合取范式的求法及其应用。

4. 熟练掌握常用的永真蕴涵式及其在逻辑推理中的应用。

5. 熟练掌握形式演绎的方法。

教学重点:1 .命题的概念及判断2 .联结词,命题的翻译3. 主析(合)取范式的求法4. 逻辑推理教学难点:1. 主析(合)取范式的求法2. 逻辑推理1.1命题及其表示法1.1.1 命题的概念数理逻辑将能够判断真假的陈述句称作命题。

1.1.2 命题的表示命题通常使用大写字母 A , B,…,Z或带下标的大写字母或数字表示,如A i, [10], R等,例如A1:我是一名大学生。

A1:我是一名大学生.[10]:我是一名大学生。

R:我是一名大学生。

1.2命题联结词1.2.1否定联结词「P1.2.2合取联结词A1.2.3 析取联结词V1.2.4 条件联结词—125126 与非联结词T性质:(1)P T P=「( PAP)二「P;(2)(P T Q)T( P T Q) -「( P T Q) - PAQ;(3)( P T P)T( Q TQ) -「P T「Q= P V Q。

127 或非联结词J性质:(1) P J P=「( P V Q) =「P;(2)( P J Q );( P J Q) =「( P J Q) = P V Q;(3)( P J P)J( Q J Q) =「P Q=P V-Q) = PAQ1.3 命题公式、翻译与解释1.3.1 命题公式定义命题公式,简称公式,定义为:(1)单个命题变元是公式;(2 )如果P是公式,则「P是公式;(3)如果P、Q是公式,则PAQ、PVQ、P > Q、P Q都是公式;(4)当且仅当能够有限次的应用(1)、(2)、(3)所得到的包括命题变元、联结词和括号的符号串是公式。

离散数学概述

离散数学概述

数理逻辑简介
前提
推理(规则)
结论
集合论(set theroy)概述
20世纪数学中最为深刻的活动, 是关于数学基础的探讨。这 不仅涉及到数学的本性, 也涉及到演绎数学的正确性。数学 中若干悖论的发现, 引发了数学史上的第三次危机, 这种悖论 在集合论中尤为突出。
集合论最初是一门研究数学基础的学科, 它从一个比“数” 更简单的概念----集合出发, 定义数及其运算, 进而发展到整 个数学领域, 在这方面它取得了极大的成功。
达) 软件工程—团队开发—时间和分工的优化(图论—网络、划
分) (各种)算法的构造、正确性的证明和效率的评估(离散数学
的各分支)
目的和任务
由于离散数学的重要地位, 因此通过本课程的教学, 使计算机及应用专业的学生能够掌握数理逻辑、 集合论、近世代数与图论的基本概念、基本定理、 基本方法, 并且培养学生具有一定的抽象思维能力 和逻辑推理能力。同时为计算机及应用专业的其 它重要后续课程(如数据结构、操作系统、编译 原理等课程)奠定比较坚实的基础。
用数学方法来研究推理的规律称为数理逻辑。这里所指的数 学方法, 就是引进一套符号体系的方法, 在其中表达和研究推 理的规律。
数理逻辑简介
通常认为数理逻辑是由莱布尼兹(Leibniz)创立的。 数理逻辑的内容包括:
证明论、模型论、递归论、公理化集合论。 数理逻辑的应用 在形式语义学、程序设计方法学和软件工程领域。 在逻辑程序设计方面。 在数据库理论方面。 在程序自动生成、自动转换等的理论和技术研究中。 在形式语言理论、自动机理论、可计算理论、计算
图论
图论是离散数学的重要组成部分, 是近代应用数学的重要分支。
1736年是图论历史元年, 因为在这一年瑞士数学家欧拉(Euler) 发表了图论的首篇论文——《哥尼斯堡七桥问题无解》, 所以 人们普遍认为欧拉是图论的创始人。

精品课程《离散数学》PPT课件(全)

精品课程《离散数学》PPT课件(全)

言1
为什么学习离散数学?
离散数学是现代数学的一个重要分支,是计算机科学与技术 的理论基础,所以又称为计算机数学,是计算机科学与技术 专业的核心、骨干课程。
它以研究离散量的结构和相互间的关系为主要目标,其研 究对象一般是有限个或可数个元素,因此它充分描述了计算 机科学离散性的特点。
离散数学是什么课?
真值为1
25
1.1 命题符号化及联结词
以下命题中出现的a是给定的一个正整数: (3) 只有 a能被2整除, a才能被4整除。
(4) 只有 a能被4整除, a才能被2整除。
解: 令r: a能被4整除, s: a能被2整除。 真值不确定 (3)符号化为 s r (4)符号化为 r s
真值为1
26
19
1.1 命题符号化及联结词
3.析取词 设p,q为二命题,复合命题“p或q” 称为p与q的析取式,记作p ∨ q,符号∨称 为析取联结词。 运算规则:
p 0 0 1 1 q 0 1 0 1 p∨q 0 1 1 1
20
1.1 命题符号化及联结词
析取运算特点:只有参与运算的二命题全为假时,运算结果才 为假,否则为真。 相容或:二者至少有一个发生,也可二者都发生 排斥或:二者只有一个发生,即非此即彼 例如: (1)小王爱打球或爱跑步。 设p:小王爱打球。 q:小王爱跑步。 则上述命题可符号化为:p ∨ q (2)张晓静是江西人或湖南人。 设p:江西人。 q:湖南人。 则上述命题就不可简单符号化为:p ∨ q 而应描述为(p∧ q) ∨( p∧q)(也可用异或联接词∨)

(1)星期天天气好,带儿子去了动物园; (2)星期天天气好,却没带儿子去动物园; (3)星期天天气不好,却带儿子去了动物园; (4)星期天天气不好,没带儿子去动物园。

离散数学ppt

离散数学ppt

如果X Y,则将A中的X用Y置换所得到 的命题公式B与A等价。 例题: 1、证明:(PQ) (P Q) P 2、证明:(PQ) (Q R) (P Q) R 对偶式: 对偶的概念: 对偶定理:设A,B是命题公式,如果 A B,则A* B*
第四节 主析取范式与主合取范式 命题公式的规范化 1、命题联结的归约:最小命题联结词组 2、命题范式 定义1:一个命题公式称为合取范式,如果它具 有如下形式:A1 A2 …An,其中A1 , A2 , …,An都是由命题变元或其否定所组成 的析取式。 定义1:一个命题公式称为析取范式,如果它具 有如下形式:A1 A2 … An,其中A1 ,
注: ①双条件联结词与自然语言中的
“当且仅当”,“充分必要”类似, 但也不尽相同。
②二元运算
命题联结词除了上述五个之外,还有不可 兼析取、条件否定、与非、或非联结词。 在一个复合命题中往往含有多个命题联结 词,其运算的次序是:、、、、 第二节 命题公式及其分类 直观地说,由命题变元、命题常量、命题 联结词、括号组成的一个有意义的式子 成为命题公式。
类似于主析取范式,也有主合取范式。 定义:n个命题变元的析取式,称为布尔大 项或析取,如果每个命题变元或其否定 不能同时出现,但二者必须出现且仅出 现一个。 注:①n个命题变元构成的布尔 大项有2n个 ②布尔大项的编码:命题变元-0,其否定-1 布尔大项的常见性质: 1、每个大项当其真值指派与编码相同时,
的量词。 例子: 所有人都要呼吸:(x)M(x)H(x) 每个学生都要参加考试: (x)P(x)Q(x) 2、存在量词- 用以表示“有一些”,“至少有一个”等 概念的量词。 例子: 有些人是聪明的:
有的人早饭吃面包: 全称量词与存在量词统称为量词。 在上面的例子中,每个由量词确定的表达 式,都与个体域有关。我们通常总是在 全总个体域中考虑问题,因此就要通过 相应的谓词对个体变元的取值范围加以 说明,这就是特性谓词。一般地,对全 称量词,特性谓词常做蕴含的前件;对 存在量词,特性谓词常作合取项。

【精选文档】离散数学图论课件PPT资料

【精选文档】离散数学图论课件PPT资料

若V1 V,E1 E,则称G1是G的子图,记为G1 G;
deg(v3)=5,deg+(v3)=2,deg-(v3)=3;
无自回路的线图称为简单图。
于是|V1|为偶数(因为V1中的结点v之deg(v)都为奇数),即奇度数的结点个数为偶数。
(o)
(p)
二、度数
定义 在无向图G=<V,E>中,与结点v(vV)关联的边的条 数,称为该结点的度数,记为deg(v);
3) 在一个图中,关联结点vi和vj的边e,无论是有向的还是无 向的,均称边e与结点vi和vj相关联,而vi和vj称为邻接点, 否则称为不邻接的;
4) 关联于同一个结点的两条边称为邻接边; 5) 图中关联同一个结点的边称为自回路(或环); 6) 图中不与任何结点相邻接的结点称为孤立结点; 7) 仅由孤立结点组成的图称为零图; 8) 仅含一个结点的零图称为平凡图;
离散数学图论课件
(优选)离散数学图论课件
离散数学
2
图的术语
1) 若边e与结点无序偶(u,v)相对应,则称边e为无向边,记为 e=(u,v),这时称u,v是边e的两个端点;
2) 若边e与结点有序偶<u,v>相对应,则称边e为有向边(或 弧),记为e=<u,v>,这时称u是边e的始点(或弧尾),v是 边e的终点(或弧头),统称为e的端点;
δ(G)最小度,Δ(G)最大度
定义 在图G=<V,E>中,对任意结点vV,若度数deg(v)为 奇数,则称此结点为奇度数结点,若度数deg(v)为偶数, 则称此结点为偶度数结点。
例:
例:
deg(v )=3,deg (v )=2,deg (v )=1; 例:如下图所示,图(a)、图(b)、图(c)和图+ (d)所表示的图形实际上都是-一样的。

离散数学 离散数学课件-资格考试-

离散数学 离散数学课件-资格考试-

例1.8求下列公式的真值表,并求成真赋值。 (1) ( p q) r (2) (p p) (q q) (3) (p q) q r
定义1.10设A为一命题公式 1 若A在它的各种赋值下取值均为真,则称A是重 言式或永真式。 2 若A在它的各种赋值下取值均为假,则称A是矛 盾式或永假式。 3 若A不是矛盾式,则称A是可满足式。
第二章 命题逻辑等值演算
2.1等值式
定义2.1设A,B是两个命题公式,若A,B构成的等价 式A B为重言式,则称A与B等值,记为A B。
例2.1判断下面两个公式是否等值:
(p q),
pq
例2.2判断下面各组公式是否等值: (1)p (q r) 与 (p q) r (2) ( p q) r与 (p q) r
3 下午马芳或去看电影或去游泳。她没去 看电影,所以去游泳了。
4 若气温超过30。 C,则王小燕必去游泳。 若她去游泳,她就不去看电影了,所以王小 燕没去看电影,下午
气温超过了30。 C。
3.2自然推理系统
定义3.2 一个形式系统I由下面四个部分组成:
(1)非空的字母表集,记作A(I)。 (2)A(I)中符号构成的公式集,记作E (I)。
3 E(I)中一些特殊的公式组成的公理集, 记作AX(I)。 4 推理规则集,记作R(I)。
定义3.3自然推理系统P定义如下: 1。字母表
(1)命题变项符号:p,q,r,…pi,qi,ri … 2 联结词符号: , , , , 。 3 号与逗号(),。 2。合式公式。
3。推理规则 1 前提引入规则 2 结论引入规则 3 置换规则 4 假言推理规则 5 附加规则
定理2.1 (1)一个简单析取式是重言式当且仅当它同时含 某个命题变项及它的否定式。 (2)一个简单合取式是矛盾式当且仅当它同时含某个命题 变项及它的否定式。

离散数学-详解

离散数学-详解

离散数学-详解离散数学(Discrete Mathematics)目录• 1 什么是离散数学• 2 离散数学的发展• 3 离散数学与现代信息技术• 4 参考文献什么是离散数学离散数学是研究离散量的结构及其相互关系的数学学科,离散数学是数学几个分支的总称,研究基于离散空间而不是连续的数学结构。

更一般地,离散数学被视为处理可数集合(与整数子集基数相同的集合,包括有理数集但不包括整数集)的数学分支。

与光滑变化的实数不同,离散数学的研究对象———例如整数、图和数学逻辑中的命题———不是光滑变化的,而是拥有不等、分立的值。

离散数学中的对象集合可以是有限或者是无限的。

特别是,有限数学一词通常指代离散数学处理有限集合的那些部分,特别是在与商业相关的领域。

包括基本的概率论、线性规划、矩阵和行列式的理论。

离散数学的应用遍及现代科学技术的诸多领域,它在各学科领域,特别在计算机科学与技术领域有着广泛的应用,同时离散数学也是程序设计语言、数据结构、操作系统、编译技术、人工智能、数据库、算法设计与分析、理论计算机科学等必不可少的科研基础。

离散数学的发展历史上,离散数学涉及各个领域的一系列挑战性问题。

在图论中,大量研究的动机是企图证明四色定理。

这些研究虽然从1852年开始,但是直至1976年四色理论才得到证明,是由肯尼斯·阿佩尔和沃尔夫冈·哈肯大量使用计算机辅助来完成的。

在逻辑领域,大卫·希尔伯特于1900年提出的公开问题清单的第二个问题是要证明算术公理是一致的。

1931年,库尔特·哥德尔的第二不完备定理证明这是不可能的———至少算术本身不可能。

大卫·希尔伯特的第十个问题是要确定某一整系数多项式丢番图方程是否有一个整数解。

1970年,尤里·马季亚谢维奇证明这不可能做到。

第二次世界大战时盟军基于破解纳粹德军密码的需要,带动了密码学和理论计算机科学的发展。

英国的布莱切利园因而发明出第一部数字电子计算器———巨像计算机。

离散数学的定义精简版

离散数学的定义精简版

图1.每个无向图所有结点度总和等于边数的2倍.2每个无向图中,奇数度的结点必为偶数个.3G=<V ,E>是有向图, 则G 的所有结点的出度之和等于入度之和.4无向完全图Kn, 有边数 5有n 个结点的有向简单完全图有边数为n(n-1).6有n 个结点的有向完全图, 有边数 n2.12 两个图同构的必要条件:1.结点个数相等. 2.边数相等.3.度数相同的结点数相等. 4. 对应的结点的度数相等.17 在一个有n 个结点的图中,如果从结点vi 到vj 存在一条路,则从vi 到vj 必存在一条长度不多于n-1的路.19 连通分支:令G=<V ,E>是无向图, R 是V 上连通关系, 设R 对V 的商集中有等价类V1,V2,V3,…, Vn ,这n 个等价类构成的n 个子图分别记作G(V1),G(V2),G(V3),…, G(Vn),并称它们为G 的连通分支. 并用W(G)表示G 中连通分支数.28 如果从u 到v 不可达,则d<u,v>=∞29 图的直径: G 是个有向图, 定义D=max{d<u,v>} u,v ∈V 为图G 的直径.30强连通、单侧连通和弱连通:在简单有向图G 中,如果任何两个结点间相互可达, 则称G 是强连通. 如果任何一对结点间, 至少有一个结点到另一个结点可达, 则称G 是单侧连通. 如果将G 看成无向图后(即把有向边看成无向边)是连通的,则称G 是弱连通.31一个有向图G 是强连通的,当且仅当G 中有一个回路, 此回路至少包含每个结点一次. 32一. 邻接矩阵这是以结点与结点之间的邻接关系确定的矩阵.1.定义:设G=<V ,E>是个简单图,V={v1,v2,v3,…,vn }, 一个n ×n 阶矩阵A=(aij)称为G 的邻接矩阵. 其中:aij ={ 1 vi 与vj 邻接, 即(vi,vj)∈E 或 < vi,vj >∈E0 否则33从邻接矩阵看图的性质:无向图:每行1的个数=每列1的个数=对应结点的度有向图:每行1的个数=对应结点的出度每列1的个数=对应结点的入度34在(A(G1))2 中a342 =2 表示从v3到v4有长度为2的路有2条:在(A(G1))3中a233 =6 表示从v2到v3有长度为3的路有6条:设G=<V ,E>是简单图,令V={v1,v2,v3,…,vn}, G 的邻接矩阵(A(G))k 中的第 i 行第j 列元素aijk=m, 表示在图G 中从vi 到vj 长度为k 的路有m 条.35二.可达性矩阵1.定义:设G=<V ,E>是个简单图,V={v1,v2,v3,…,vn }, 一个n ×n 阶矩阵P=(pij)称为G 的可达性矩阵. 其中: pij ={1 vi 到vj 可达, (至少有一条路)0 否则)1(21 n n37三.完全关联矩阵此矩阵是按照结点与边之间的关联关系确定的矩阵.1.无向图的完全关联矩阵1).定义:设G=<V,E>是个无向图,V={v1,v2,v3,…,vm },E={e1,e2,e3,…,en },一个m×n阶矩阵M=(mij)称为G的完全关联矩阵. 其中:mij ={ 1 vi与ej关;0 否则2).从关联矩阵看图的性质:a)每列只有二个1.(因为每条边只关联两个结点)b)每行中1的个数为对应结点的度数.c)如果两列相同,则说明对应的两条边是平行边.2.有向图的完全关联矩阵1).定义:设G=<V,E>是个简单有向图,V={v1,v2,v3,…,vm },E={e1,e2,e3,…,en },一个m×n阶矩阵M=(mij)称为G的完全关联矩阵. 其中: mij ={1 vi是ej的起点;-1 vi是ej的终点;0 vi与ej不关联2).从关联矩阵看图的性质:a)每列只有一个1和一个-1.(每条边有一个起点一个终点)b)每行中1的个数为对应结点的出度.-1个数是结点入度38关键路径:就是各个结点的缓冲时间均为0的路径.39 欧拉路:在无孤立结点的图G中,如果存在一条路,它经过图中每条边一次且仅一次, 称此路为欧拉路.40 欧拉回路:在无孤立结点的图G中,若存在一条回路,它经过图中每条边一次且仅一次,称此回路为欧拉回路.41有欧拉路与有欧拉回路的判定:无向图G具有欧拉路,当且仅当G是连通的,且有零个或两个奇数度的结点.42无向图G具有欧拉回路,当且仅当G是连通的,且所有结点的度都是偶数.43汉密尔顿图:定义:设G=<V,E>是个无向有限图,汉密尔顿路:通过G中每个结点恰好一次的路.汉密尔顿回路(H回路):通过G中每个结点恰好一次的回路.汉密尔顿图(H图):具有汉密尔顿回路(H回路)的图.44汉密尔顿图的判定:到目前为止并没有判定H图的充分和必要条件.(充分条件):G是完全图,则G是H图.(充分条件)设G是有n个结点的简单图,若G中每对结点度数之和大于等于n-1(n),则G 有一条H路(H回路)注意:上述条件只是充分条件,而不是必要条件,即不满足这个条件的, 也可能有H路.45 (必要条件) 若图G=<V,E>有H回路,则对V的任何非空子有限集S, 均有W(G-S)≤|S|, 其中W(G-S)是从G中删去S中所有结点及与这些结点关联的边所得到的子图的连通分支数. 48完全二部图:令G=<V,E>是以V1,V2为互补的结点子集的二部图,如果V1中的每个结点都与V2中每个结点相邻接,则称G是完全二部图. 如果|V1|=m, |V2|=n 则G记作Km,n 49.二部图的判定: 定理G=<V,E>是二部图当且仅当它的所有回路的长度都是偶数.52两个重要的非平面图:K5和K3,353 欧拉公式G是个连通的平面图, 设v、e、r分别表示G中结点数、边数、面数, 则有v-e+r=2. 称此式为欧拉公式.54 平面图的判定(必要条件) 设G是有v 个结点、e条边的连通简单平面图, 若v≥3, 则e ≤3v-6.55一个图是平面图的充分且必要条件是它不含有任何与K5、K3,3在2度结点内同构的子图.56如果G1和G2是同构的,或者通过反复插入或删去度数为2的结点, 使得它们变成同构的图, 称G1和G2 是在2度结点内同构.树1度数为1的结点,称为叶结点. 分支结点(内结点):度数大于1的结点.2无回路且e=v-1 其中e是T的边数,v是T的结点数.3如果图G的生成子图是树,则称此树为G的生成树.4图G中,不在其生成树里的边,称作弦. 所有弦的集合,称为该生成树的补.5连通图至少有一棵生成树. 寻找生成树的方法:深度优先;广度优先.6一棵生成树中的所有边的权之和称为该生成树的权. 具有最小权的生成树,称为最小生成树.7根树:如果一棵有向树,恰有一个结点的入度为0,其余所有结点的入度均为1,则称此树为根树. 1.树根:入度为0的结点. 2.叶:出度为0的结点. 3.分支结点(内结点):出度不为0的结点. 8在有向树中,如果规定了每一层上的结点的次序,称之为有序树.9 1.m叉树:在根树中,如果每个结点的出度最大是m, 则称此树是m叉树.2.完全m叉树:在根树中,如果每个结点的出度都是m或者等于0, 则称此树是完全m叉树.3. 正则m叉树:在完全m叉树中,如果所有树叶的层次相同, 则称之为正则m叉树.10 T是棵完全m叉树, 有t个叶结点, i个分支结点,则(m-1)i=t -1 .11 m叉有序树转化成二叉树:方法是:1.每个结点保留左儿子结点, 剪掉右边其它分支. 被剪掉的结点如下处理.2.同一个层次的结点, 从左到右依次画出.12 1.先序遍历⑴访问根结点.⑵先序遍历左子树⑶先序遍历右子树2.中序遍历⑴中序遍历左子树⑵访问根结点.⑶中序遍历右子树3.后序遍历⑴后序遍历左子树⑵后序遍历右子树⑶访问根结点.代数系统20 <X,★>和<X,★, ο>是代数系统, ★,ο是二元运算:1.封闭性:∀x,y∈X, 有x★y∈X。

离散数学部分概念和公式总结

离散数学部分概念和公式总结

离散数学部分概念和公式总结命题:称能判断真假的陈述句为命题。

命题公式:若在复合命题中,p、q、r等不仅可以代表命题常项,还可以代表命题变项,这样的复合命题形式称为命题公式。

命题的赋值:设A为一命题公式,p ,p ,…,p 为出现在A中的所有命题变项。

给p ,p ,…,p 指定一组真值,称为对A的一个赋值或解释。

若指定的一组值使A的值为真,则称成真赋值。

真值表:含n(n≥1)个命题变项的命题公式,共有2^n组赋值。

将命题公式A在所有赋值下的取值情况列成表,称为A的真值表。

命题公式的类型:(1)若A在它的各种赋值下均取值为真,则称A为重言式或永真式。

(2)若A在它的赋值下取值均为假,则称A为矛盾式或永假式。

(3)若A至少存在一组赋值是成真赋值,则A是可满足式。

主析取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合取式全是极小项,则称该析取范式为A的主析取范式。

主合取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合析式全是极大项,则称该析取范式为A的主析取范式。

命题的等值式:设A、B为两命题公式,若等价式A↔B是重言式,则称A与B是等值的,记作A<=>B。

约束变元和自由变元:在合式公式∀x A和∃x A中,称x为指导变项,称A为相应量词的辖域,x称为约束变元,x的出现称为约束出现,A中其他出现称为自由出现(自由变元)。

一阶逻辑等值式:设A,B是一阶逻辑中任意的两公式,若A↔B为逻辑有效式,则称A与B是等值的,记作A<=>B,称A<=>B为等值式。

前束范式:设A为一谓词公式,若A具有如下形式Q1x1Q2x2Q k…x k B,称A为前束范式。

集合的基本运算:并、交、差、相对补和对称差运算。

笛卡尔积:设A和B为集合,用A中元素为第一元素,用B中元素为第二元素构成有序对组成的集合称为A和B的笛卡尔积,记为A×B。

二元关系:如果一个集合R为空集或者它的元素都是有序对,则称集合R是一个二元关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012春课件作业
第一部分集合论
第一章集合的基本概念和运算
1-1 设集合 A ={{1,2},a,4,3},下面命题为真是(选择题)[ ] A.2 ∈A; B.1 ∈ A; C.3 ∈A; D.{1,2} ⊆ A。

1-2 A,B,C 为任意集合,则他们的共同子集是(选择题) [ ] A.C; B.A; C.B; D.Ø。

1-3 设 S = {N,Z,Q,R},判断下列命题是否正确(是非题)
(1) N ⊆ Q,Q ∈S,则 N ⊆ S,[](2)-1 ∈Z,Z ∈S,则 -1 ∈S 。

[]
1-4 设集合 B = {4,3} ∩Ø, C = {4,3} ∩{ Ø },D ={ 3,4,Ø },
E = {x│x ∈R 并且 x2 - 7x + 12 = 0},
F = { 4,Ø,3,3},
试问:集合 B 与那个集合之间可用等号表示(选择题) [ ]
A. C;
B. D;
C. E;
D. F.
1-5 用列元法表示下列集合
A = { x│x ∈N 且 3-x 〈 3 } (选择题)
题解与分析:本题以谓词给出集合的表达式。

要求把解析表达式所含的元素列出;有的集合的元素需要通过计算才能得到,如下:
A = { 1,2,3,4,……} 所以选 [ ]
A. N;
B. Z;
C. Q;
D. Z+
第二章二元关系
2-1 给定 X =(3, 2,1),R 是 X 上的二元关系,其表达式如下:
R = {〈x,y〉x,y ∈X 且 x ≤ y } (综合题)
求:(1)domR =?; (2)ranR =?; (3)R 的性质。

2-2 设 R 是正整数集合上的关系,即
R = {〈x,y〉│x,y ∈Z+ 且 x + 3y = 12},(选择题)
试给出 dom(R 。

R)。

[ ] A. 3; B. {3}; C. 〈3,3〉; D.{〈3,3〉}。

2-3 判断下列映射 f:A→B 中的双射函数。

(选择题) [ ] (1)A = {1,2,3},B = {4,5}, f = {〈1,4〉〈2,4〉〈3,5〉}。

(2)A = {1,2,3} = B, f = {〈1,1〉〈2,2〉〈3,3〉}。

(3)A = B = R, f = x 。

(4)A = B = N, f = x2。

(5)A = B = N, f = x + 1 。

A.(1)和(2);
B.(2)和(3);
C.(3)和(4);
D.(4)和(5)
2-4 设 A ={1,2,3,4},A 上的二元关系
R ={〈x,y〉︱(x-y)能被3整除},则自然映射g:A→A/R使g(1) = [ ] A.{1,2};B.{1,3};C.{1,4};D.{1}。

2-5 设A ={1,2,3},则商集A/I A = [ ] A.{3};B.{2};C.{1};D.{{1},{2},{3}}。

2-6.设f(x)=x+1,g(x)=x-1 都是从实数集合R到R的函数,则f。

g=[ ] A.x+1;B.x-1;C.x;D.x2。

第三章结构代数(群论初步) (3-1),(3-2)为选择题
3-1 给出集合及二元运算,判断是否代数系统,何种代数系统?
(1)S1 = {1,1/4,1/3,1/2,2,3,4},二元运算 * 是普通乘法。

(2)S2 = {a1,a2,……,an},ai ∈R,i = 1,2,……,n ;
二元运算。

定义如下:对于所有 ai,aj ∈S2,都有 ai 。

aj = ai 。

(3)S3 = {0,1},二元运算 * 是普通乘法。

(1)二元运算*在S1上不封闭.所以,"S1,*"不能构成代数系统。

所以选[ ] A.不构成代数系统;B.只是代数系统。

;C.半群;D.群。

(2)由二元运算的定义不难知道,。

在 S2 内是封闭的,所以,〈S2,。

〉构成代数系统;然后看该代数系统的类型:该代数系统只是半群。

所以选[ ] A.不能构成代数系统;B.只是代数系统;C.半群;D.群。

(3)很明显,〈{0,1},*〉构成代数系统;满足结合律,为半群;1是幺元,为独异点;
而 0 为零元;结论:仅为独异点,而不是群。

所以选[ ] A.不能构成代数系统;B.半群;C.独异点;D.群。

3-2 在自然数集合上,下列那种运算是可结合的[]A.x*y = max(x,y) ;B.x*y = 2x+y ;
C.x*y = x2+y2;D.x*y =︱x-y︱..
3-3 设 Z 为整数集合,在 Z 上定义二元运算。

,对于所有 x,y ∈Z 都有
x 。

y = x + y – 4,
试问〈Z,。

〉能否构成群,为什麽?(综合题)
第二部分图论方法
第四章图(选择题,是非题,填空题)
4-1 10个顶点的简单图G中有4个奇度顶点,G的补图中有r个偶数度顶点。

[ ] A.r =10 ;B.r = 6;C.r = 4;D.r = 9。

4-2 无向图G中有10条边,4个3度顶点,其余顶点度数全是2,共有几个顶点. [ ]
4-3 1条边的图 G 中,所有顶点的度数之和为。

第五章树(5-1),(5-2)为计算题
5-1 握手定理的应用(指无向树)
(1)在一棵树中有7片树叶,3个3 度顶点,其余都是4度顶点,全树几个顶点 [ ] (2)一棵树有两个 4 度顶点,3 个 3 度顶点,其余都是树叶,问有几片叶 [ ]
5-2 一棵树中有 i 个顶点的度数为 i(=2,…k),其余顶点都是树叶,问树叶多少片?
5-3 求最优 2 元树:用 Huffman 算法求带权为 1,2,3,5,7,8 的最优 2 元树 T。

问:权 W(T)= ;树高层。

(填空题)
5-4 以下给出的符号串集合中,那些是前缀码(以下是非题)
B1 = {0,10,110,1111}; [ ] B2 = {1,01,001,000}; [ ] B3 = {a,b,c,aa,ac,aba,abb,abc} [ ] B4 = {1,11,101,001,0011} [ ]
5-5 11 阶无向连通图 G 中有 17 条边,其任一棵生成树 T 中必有6条树枝 [ ] 5-6 二元正则树有奇数个顶点。

[ ]
5-7 通信中 a,b,c,d,e,f,g,h 出现的频率分别为 30%;20%;15%.10%,10%,5%,5%,5%;
求传输他们的最佳前缀码。

(综合题)
1、最优二元树 T;
2、二元树的权 W(T);
3、每个字母的码字;
第三部分逻辑推理理论
第六章命题逻辑
6-1 判断下列语句是否命题,简单命题或复合命题。

(填空题)(1)2月 17 号新学期开始。

()命题
(2)离散数学很重要。

()命题
(3)离散数学难学吗?()命题
(4)C 语言具有高级语言的简洁性和汇编语言的灵活性。

()命题
(5)x + 5 > 2 。

()命题
(6)今天没有下雨,也没有太阳,是阴天。

()命题
6-2 将下列命题符号化. (填空题)(1)2 是偶素数。

(2)小李不是不聪明,而是不好学。

(3)明天考试英语或考数学。

(兼容或)
6-3 求下列命题公式的主析取范式,并由此指出该公式的类型(等值演算)
(1)﹃(p→q)∧ q <=>
(2)((p→q)∧ p)→q <=>
(3)(p→q)∧ q <=>
6-4 令p:经一堑;q:长一智。

命题’’只有经一堑,才能长一智’’符号化为[ ] A.p→q;B.q→p;C.p∧q;D.﹁q→﹁p.
6-5p:天气好;q:我去游玩.命题”如果天气好,则我去游玩”符号化为[]A.p→q;B.q→p;C.p∧q;D.﹁q→p
6-6 将下列推理命题符号化,然后用不同方法判断推理结果是否正确。

(综合题)如果今天下雨,则明天不上体育课。

今天下雨了。

所以,明天没有上体育课。

第七章谓词逻辑
7-1 在谓词逻辑中用 0 元谓词将下列命题符号化(填空题)
(1)这台机器不能用。

(2)如果 2 > 3,则 2 > 5。

7-2 设域为整数集合Z+,命题∀x∀y彐z(x-y = z)的真值为(填空题)7-3 在谓词逻辑中将下列命题符号化(填空题)人固有一死。

《附录》习题符号集
Ø 空集, ∪并, ∩交,⊕对称差,~绝对补,∑累加或主析取范式表达式缩写 , -普通减法, ÷普通除法, ㏑自然对数, ㏒对数,﹃非,∀量词”所有”,”每个”,∨析取联结词,∧合取联结词,彐量词”存在”,”有的”。

2012 年 2 月 10 号.。

相关文档
最新文档