讲义 角平分线辅助线

合集下载

角平分线四大辅助线模型 总结+习题+解析

角平分线四大辅助线模型 总结+习题+解析

角平分线四大辅助线模型角平分线的性质为证明线段或角相等开辟了新的途径,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础.涉及到角平分线的考点主要是性质、判定以及四大辅助线模型,在初二上期中、期末考试中都是经常考察的方向。

角平分线性质:角平分线上的点到角两边的距离相等.角平分线判定:到角的两边距离相等的点在角的角平分线上.四大模型1、角平分线+平行线,等腰三角形必出现已知:OC平分∠AOB,CD∥OB交OA于D.则△ODC为等腰三角形,OD=CD.2、角平分线+两垂线,线等全等必出现已知:OC平分∠AOB.辅助线:过点C作CD⊥OA,CE⊥OB.则CD=CE,△ODC ≌△OEC.3、角平分线+一垂线,中点全等必出现已知:OC平分∠AOB,DC垂直OC于点C.辅助线:延长DC交OB于点E.则C是DE的中点,△ODC ≌△OEC.4、角平分线+截长补短线,对称全等必出现已知:OC平分∠AOB,截取OE=OD,连接CD、CE.则△ODC和△OCE关于OC对称,即△ODC ≌△OEC.【核心考点一】角平分线的性质与判定1.(2016•张家界模拟)如图,OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上一个动点,若3PA =,则PQ 的最小值为( )A B .2 C .3 D .【分析】首先过点P 作PB OM ⊥于B ,由OP 平分MON ∠,PA ON ⊥,3PA =,根据角平分线的性质,即可求得PB 的值,又由垂线段最短,可求得PQ 的最小值.2.(2016秋•抚宁县期末)如图,在ABC ∆中,AD 是它的角平分线,8AB cm =,6AC cm =,则:(ABD ACD S S ∆∆= )A .3:4B .4:3C .16:9D .9:16【分析】利用角平分线的性质,可得出ABD ∆的边AB 上的高与ACD ∆的AC 上的高相等,估计三角 形的面积公式,即可得出ABD ∆与ACD ∆的面积之比等于对应边之比.3.(2017春•崇仁县校级月考)如图,在ABC ∆中,90ACB ∠=︒,BE 平分ABC ∠,DE AB ⊥于点D ,如果3AC cm =,那么AE DE +等于( )。

专题4 与角平分线有关的辅助线作法(含答案)

专题4 与角平分线有关的辅助线作法(含答案)

专题4 与角平分线有关的辅助线作法知识解读角平分线所在直线是所在角的对称轴,因此角平分线的性质都是以轴对称为基础的,其辅助线作法也应多从轴对称的角度来考虑,其常用的辅助线构造方法有:(1)过角平分线上一点作到角的两边的垂线段,如图1-4-1①.(2)以顶点为圆心,在角两边截取两条相等的线段,构造全等三角形,如图1-4-1②.(3)利用三线合一定理构造等腰三角形,如图1-4-1③.(4)过角平分线上一点作角的一边的平行线,构造等腰三角形,如图1-4-1④.培优学案典例示范一、过角平分线上一点作两边的垂线段.例1如图1-4-2,AB//CD,E为AD上一点,且BE,CE分别平分∠ABC,∠BC D.求证:AE=E D.【提示】由于角平分线上一点到角的两边的距离相等,而点E是两条角平分线的交点,因此我们可以过点E,分别作AB,BC,CD的垂线段,如图1-4-3.【解答】【技巧点评】过一点作角两边的垂线段,构造的是一对全等的直角三角形,可以得到一些相等的线段和相等的角,但利用角平分线的性质,可以省去证明全等这一环节,直接证得线段相等。

同样由“距离”相等,也能直接得到角平分线.让证明来得更简捷。

跟踪训练1.如图1-4-4,在△ABC中,DC⊥AC,∠1=∠2,DA=D B.求证:AB=2A C.二、角平分线+高=全等三角形例2如图1-4-5,在△ABC中,∠BAC=90°,AB=AC,BE平分∠ABC,CELBE.求证:CE=12B D.【提示】由于BE平分∠ABC,因而可以考虑过点D作BC的垂线或延长CE从而构造全等三角形。

【解答】【技巧点评】当一根线段同时满足“是角平分线”、“是中线”和“是高”中两个时,可考虑将图形补成一个等腰三角形解决问题。

跟踪训练2.如图1-4-6,BD是∠ABC的平分线,AD⊥BD,垂足为D,求证:∠BAD=∠DAC+∠C.三、借助角平分线的轴对称性构造全等三角形例3如图1-4-7,在△ABC中,AD平分∠BAC,∠C=2∠B.求证:AB=AC+C D.【提示】可考感以AD 为对称轴构造全等三角形,可在AB 边上截取AE =AC ,也可以延长AC 到点E ,使得AE =A B. 【解答】【技巧点评】角平分线所在直线是角的对称轴,可以对称着构造全等三角形。

与中点和角平分线相关的辅助线

与中点和角平分线相关的辅助线

一、【角平分线常见辅助线】1. 角平分线+斜线:截长补短2. 角平分线+角平分线垂线:补形法(构造法)3. 角平分线+一边垂线:作另一边垂线4. 图中有角平分线,可向两边作垂线1.如图,AD 是△ABC 的角平分线,DE ⊥AB ,若AB =13cm ,AC =10cm ,DE =3cm ,求△ACD 的面积.2.如图,BD 是∠ABC 的平分线,BC >A B . (1)若∠A +∠C =180°,求证:AD =CD ; (2)若AD =CD ,求证:∠A +∠C =180°.3. 如图,AD ∥BC ,AE 平分∠BAD ,BE 平分∠AB C. 求证:①DE =CE ;②AB =AD +BC ;③AE ⊥BE .4. 如图,△ABC 中,∠A =90°,AB =AC ,CE 平分 ∠ACB 交AB 于点D ,BE 垂直CE 于E. 求证:CD =2BE .BB二、【中点相关的常见辅助线】 1.倍长中线2. 做平行线3. 三线合一1. 如图,△ABC 中,∠A =90°,AB =AC ,点D 是BC 中点,DE ⊥DF .求证:①DE =DF ; ②BE =AF .2. 如图,点D 是BA 延长线上一点,AF 平分∠DAC ,FG 垂直平分BC ,DF 垂直AB 于D ,EF 垂直AC 于E . 求证:BD =CE .3. 如图,在△ABC 中,AB ≠AC ,D ,E 在BC 上,且 DE =EC ,过D 作DF ∥BA 交AE 于点F ,DF =A C . 求证:AE 平分∠BA C .4. 已知在△ABC 中,AB =AC ,∠B =∠ACB ,D 在AB 上,E 在AC 的延长线上, DE 交BC 于F ,且DF =EF . 求证:BD =CE .C DBEAAEBDC ABDCB。

1 角平分线中常用作辅助线的四种方法

1 角平分线中常用作辅助线的四种方法
本文详细介绍了角平分线中常用作辅助线的四种方法。首先,通过作一边的垂线段,可以解决如四边形中与角平分线相关的问题。其次,作两边的垂线段,可以在直角坐标系中证明与角平分线有关的性质,如PC等于PD。第三种方法是延长作对称图形法,通过延长线段并构造对称图形,可以证明与角平分线及三角形边长有关的问边,并连接构造对称图形,从而证明与角平分线及三角形边长之和有关的问题,如AC加CD等于AB。这四种方法均通过具体例题和详细的证明过程进行了阐释,有助于理解和掌握角平分线中辅助线的应用技巧。

八年级数学专题07 角平分线的性质 (知识点串讲)(解析版)

八年级数学专题07 角平分线的性质 (知识点串讲)(解析版)

专题07 角平分线的性质重点突破知识点一角平分线概念:从一个角的顶点引出一条射线,把这个角分成完全相同的角,这条射线叫做这个角的角平分线。

角平分线的性质:角平分线上的点到角两边的距离相等;数学语言:∵∠MOP=∠NOP,PA⊥OM PB⊥ON∴PA=PB判定定理:到角两边距离相等的点在角的平分线上.数学语言:∵PA⊥OM PB⊥ON PA=PB∴∠MOP=∠NOP知识点二角平分线常考四种辅助线:1.图中有角平分线,可向两边作垂线。

2.角平分线加垂线,三线合一试试看。

3.角平分线平行线,等腰三角形来添。

4.也可将图对折看,对称以后关系出现。

考查题型考查题型一与角平分线有关的计算典例1(2020·廊坊市期末)如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于( ).A.35°B.70°C.110°D.145°【答案】C【详解】∵OC平分∠DOB,∠COB=35°,∴∠BOD=2∠COB=2×35°=70°,∴∠AOD=180°-70°=110°.故选C.变式1-1.(2019·通辽市期末)已知:如图,直线BO⊥AO于点O,OB平分∠COD,∠BOD=22°.则∠AOC的度数是( )A.22°B.46°C.68°D.78°【答案】C【提示】由垂直的定义可知∠AOB=90°,由角平分线的定义可知∠BOC=∠BOD=22°,从而求得∠AOC的度数.【详解】解:∵BO⊥AO,∴∠AOB=90°,∵OB平分∠COD,∴∠BOC=∠BOD=22°,∴∠AOC=90°-22°=68°.故选C.【名师点拨】本题考查了垂直的定义,角平分线的定义.变式1-2.(2018·路北区期末)如图,直线AB、CD相交于点O,∠DOF=90°,OF平分∠AOE,若∠BOD=32°,则∠EOF的度数为()A.32°B.48°C.58°D.64°【答案】C【解析】∵∠DOF=90°,∠BOD=32°,∴∠AOF=90°-32°=58°,∵OF平分∠AOE,∴∠AOF=∠EOF=58°.故选C.变式1-3.(2018·石家庄市期末)如图,O B是∠A O C的平分线,O D是∠C O E的平分线.如果∠A O B=50°,∠C O E =60°,则下列结论错误的是()A.∠A O E=110°B.∠B O D=80°C.∠B O C=50°D.∠D O E=30°【答案】A【提示】根据角平分线的性质,角的和差倍分关系计算作答.【详解】解:∵OB是∠AOC的平分线,OD是∠COE的平分线,如果∠AOB=50°,∠COE=60°,∴A、∠AOE=2∠AOB+∠COE=160°,故错误;B、∠BOD=∠BOC+∠COD=∠AOB+12∠COE=80°,故正确;C、∠BOC=∠AOB=50°,故正确;D、∠DOE=12∠COE=30°,故正确.故选A.【名师点拨】本题结合角平分线的性质考查了角的和差倍分关系计算.变式1-4.(2018·郑州市期末)已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD 的度数是()A.20°或50°B.20°或60°C.30°或50°D.30°或60°【答案】C【解析】试题解析:分为两种情况:如图1,当∠AOB在∠AOC内部时,∵∠AOB=20°,∠AOC=4∠AOB,∴∠AOC=80°,∵OD平分∠AOB,OM平分∠AOC,∴∠AOD=∠BOD=12∠AOB=10°,∠AOM=∠COM=12∠AOC=40°,∴∠DOM=∠AOM-∠AOD=40°-10°=30°;如图2,当∠AOB在∠AOC外部时,∠DOM═∠AOM+∠AOD=40°+10°=50°;故选C.考查题型二角平分线的性质定理典例2(2019·云龙县期中)如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为( )A .6B .5C .4D .3【答案】A 【详解】试题提示:如图,过点P 作PE ⊥OB 于点E ,∵OC 是∠AOB 的平分线,PD ⊥OA 于D ,∴PE=PD ,∵PD=6,∴PE=6,即点P 到OB 的距离是6.故选A .变式2-1.(2019·邵阳市期中)如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,AB=10,S △ABD =15,则CD 的长为( )A .3B .4C .5D .6【答案】A 【详解】作DE ⊥AB 于E , ∵AB=10,S △ABD =15, ∴DE =3,∵AD 平分∠BAC ,∠C =90°,DE ⊥AB , ∴DE =CD =3, 故选A.变式2-2.(2020·景泰县期中)如图所示,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A 、B .下列结论中不一定成立的是( ).A .PA PB = B .PO 平分APB ∠C .OA OB =D .AB 垂直平分OP【答案】D 【提示】根据角平分线上的点到角的两边距离相等可得出PA=PB ,再利用“HL ”证明△AOP 和△BOP 全等,可得出APO BPO ∠=∠,OA=OB ,即可得出答案.【详解】解:∵OP 平分AOB ∠,PA OA ⊥,PB OB ⊥ ∴PA PB =,选项A 正确; 在△AOP 和△BOP 中,PO POPA PB =⎧⎨=⎩, ∴AOP BOP ≅∴APO BPO ∠=∠,OA=OB ,选项B ,C 正确;由等腰三角形三线合一的性质,OP 垂直平分AB ,AB 不一定垂直平分OP ,选项D 错误. 故选:D . 【名师点拨】本题考查的知识点是角平分线的性质以及垂直平分线的性质,熟记性质定理是解此题的关键.变式2-3.(2019·肥城市期末)如图,AD 是ABC 的角平分线,DF AB ⊥,垂足为F ,DE DG =,ADG 和AED 的面积分别为60和35,则EDF 的面积为( )A .25B .5.5C .7.5D .12.5 【答案】D 【提示】过点D 作DH ⊥AC 于H ,根据角平分线上的点到角的两边距离相等可得DF=DH ,再利用“HL”证明Rt △ADF 和Rt △ADH 全等,Rt △DEF 和Rt △DGH 全等,然后根据全等三角形的面积相等列方程求解即可. 【详解】如图,过点D 作DH AC ⊥于H ,AD 是ABC 的角平分线,DF AB ⊥, DF DH ∴=,在Rt ADF 和Rt ADH 中,AD ADDF DH =⎧⎨=⎩, Rt ADF ∴≌()Rt ADH HL ,RtADFRtADH S S ∴=,在Rt DEF 和Rt DGH 中,DE DGDF DH =⎧⎨=⎩Rt DEF ∴≌()Rt DGH HL ,RtDEFRtDGHS S ∴=,ADG 和AED 的面积分别为60和35,Rt DEFRtDGH 35S 60S ∴+=-,RtDEF S ∴=12.5,故选D .【名师点拨】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记掌握相关性质、正确添加辅助线构造出全等三角形是解题的关键.变式2-4.(2019·磴口县期中)如图,△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB 交BC 于点D ,DE ⊥AB ,垂足为E ,且AB=6cm ,则△DEB 的周长为( )A .4cmB .6cmC .8cmD .10cm【答案】B 【解析】 ∵DE ⊥AB , ∴∠C=∠AED=90°, ∵AD 平分∠CAB , ∴∠CAD=∠EAD ,在△ACD 和△AED 中,C AED CAD EAD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△AED(AAS), ∴AC=AE ,CD=DE ,∴BD+DE=BD+CD=BC=AC=AE , BD+DE+BE=AE+BE=AB=6, 所以,△DEB 的周长为6cm. 故选B.考查题型三 角平分线的判定定理典例3.(2019·漳州市期中)如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为( )A .1B .2C .3D .4【答案】B【解析】提示:根据题意点Q是射线OM上的一个动点,要求PQ的最小值,需要找出满足题意的点Q,根据直线外一点与直线上各点连接的所有线段中,垂线段最短,所以我们过点P作PQ垂直OM,此时的PQ最短,然后根据角平分线上的点到角两边的距离相等可得PA=PQ,利用已知的PA的值即可求出PQ的最小值.解答:解:过点P作PQ⊥OM,垂足为Q,则PQ为最短距离,∵OP平分∠MON,PA⊥ON,PQ⊥OM,∴PA=PQ=2,故选B.变式3-1.(2018·广安市期末)如图,DC⊥AC于C,DE⊥AB于E,并且DE=DC,则下列结论中正确的是( )A.DE=DF B.BD=FD C.∠1=∠2 D.AB=AC【答案】C【解析】提示:如图,由已知条件判断AD平分∠BAC即可解决问题.详解:如图,∵DC⊥AC于C,DE⊥AB于E,且DE=DC,∴点D在∠BAC的角平分线上,∴∠1=∠2.故选C.名师点拨:该题主要考查了角平分线的判定及其性质的应用问题;牢固掌握角平分线的性质是解题的关键.变式3-2.(2018·深圳市期末)如图,在△ABC中,∠C=90°,AC=BC,AB=4cm,AD平分∠BAC交BC于点D,DE⊥AB 于点E,则以下结论:①AD平分∠CDE;②DE平分∠BDA;③AE-BE=BD;④△BDE周长是4cm.其中正确的有()A.4个B.3个C.2个D.1个【答案】B【提示】根据角平分线性质求出CD=DE,根据等腰三角形的判定得出BE=DE,求出CD=DE=BE,根据勾股定理和CD=DE 求出AC=AE,求出AC=AE=BC,再逐个判断即可.【详解】解:∵DE⊥AB,∴∠DEA=∠DEB=90°,∵AD平分∠CAB,∴∠CAD=∠BAD,∵∠C=90°,∠CDA+∠C+∠CAD=180°,∠DEA+∠BAD+∠EDA=180°,∴∠CDA=∠EDA,∴①正确;∵在△ABC中,∠C=90°,AC=BC,∴∠CAB=∠B=45°,∵∠C=∠DEA=∠DEB=90°,∴∠CDE=360°-90°-45°-90°=135°,∠BDE=180°-90°-45°=45°,∵∠CDA=∠EDA,∴∠CDA=∠EDA=11352︒⨯=67.5°≠45°,∴∠EDA≠∠BDE,∴DE不平分∠BDA,∴②错误;∵AD平分∠CAB,∠C=90°,DE⊥AB,∴CD=DE,由勾股定理得:AC=AE,∵AC=BC,∴AE=AC=BC,∵∠B=∠BDE=45°,∴BE=DE=CD,∴AE-BE=BC-CD=BD,∴③正确;△BDE周长是BE+DE+BD=BE+CD+BD=BC+BE=AE+BE=AB=4cm,∴④正确;即正确的个数是3,故选:B.【名师点拨】本题考查了等腰三角形的判定、勾股定理、角平分线性质等知识点,能求出AC=AE=BC和CD=DE=BE 是解此题的关键.变式3-3.(2020·嵩县期末)如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角平分线上的点到这个角两边的距离相等B.角的内部到角的两边的距离相等的点在角的平分线上C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确【答案】B【提示】过两把直尺的交点P作PE⊥AO,PF⊥BO,根据题意可得PE=PF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB.【详解】如图,过点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺的宽度相等,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选B.【名师点拨】本题考查角平分线的判定定理,角的内部,到角两边的距离相等的点在这个角的平分线上;熟练掌握定理是解题关键.考查题型四角平分线性质的实际应用典例4.(2020·济南市期末)如图,已知△ABC中,∠C=90°,AD平分∠BAC,且CD:BD=3:4.若BC=21,则点D到AB边的距离为( )A.7 B.9 C.11 D.14【答案】B【提示】先确定出CD=9,再利用角平分线上的点到两边的距离相等,即可得出结论.【详解】解:∵CD:BD=3:4.设CD=3x,则BD=4x,∴BC=CD+BD=7x,∵BC=21,∴7x=21,∴CD=9,过点D作DE⊥AB于E,∵AD是∠BAC的平分线,∠C=90°,∴DE=CD=9,∴点D到AB边的距离是9,故选B.【名师点拨】本题考查了角平分线的性质,线段的和差,解本题的关键是掌握角平分线的性质定理.变式4-1.(2018·成都市期末)如图,在△ABC 中,∠B=90º,AC=10,AD 为此三角形的一条角平分线,若BD=3,则三角形ADC 的面积为()A.3 B.10 C.12 D.15【答案】D【提示】过D作DE⊥AC于E,根据角平分线性质得出BD=DE=3,再利用三角形的面积公式计算即可.【详解】解:过D作DE⊥AC于E.∵AD是∠BAC的角平分线,∠B=90°(DB⊥AB),DE⊥AC,∴BD=DE,∵BD=3,∴DE=3,∴S△ADC=12•AC•DE=12×10×3=15【名师点拨】本题考查了角平分线的性质,注意:角平分线上的点到角两边的距离相等.变式4-2.(2018·潍坊市期中)如图,两条笔直的公路l1、l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A,B,D,已知AB=BC=CD=DA=5公里,村庄C到公路l1的距离为4公里,则村庄C到公路l2的距离是()A.3公里B.4公里C.5公里D.6公里【答案】B【详解】解:如图,连接AC,作CF⊥l1,CE⊥l2;∵AB=BC=CD=DA=5公里,∴四边形ABCD是菱形,∴∠CAE=∠CAF,∴CE=CF=4公里.变式4-3.(2019·东城区期末)已知△ABC,两个完全一样的三角板如图摆放,它们的一组对应直角边分别在AB,AC 上,且这组对应边所对的顶点重合于点M,点M一定在().A .∠A 的平分线上B .AC 边的高上C .BC 边的垂直平分线上D .AB 边的中线上【答案】A 【提示】根据角平分线的判定推出M 在∠BAC 的角平分线上,即可得到答案. 【详解】 如图,∵ME ⊥AB ,MF ⊥AC ,ME=MF , ∴M 在∠BAC 的角平分线上, 故选:A . 【名师点拨】本题主要考查对角平分线的判定定理的理解和掌握,能熟练地利用角平分线的判定定理进行推理是解此题的关键. 变式4-4.(2019·河西区期中)如图,为了促进当地旅游发展,某地要在三条公路围城的一块三角形平地ABC 上修建一个度假村。

人教版八年级上 册第十二章全等三角形辅助线系列之一---角平分线类辅助线作法大全

人教版八年级上 册第十二章全等三角形辅助线系列之一---角平分线类辅助线作法大全

全等三角形辅助线系列之一 与角平分线有关的辅助线作法大全一、角平分线类辅助线作法角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等.对于有角平分线的辅助线的作法,一般有以下四种.1、角分线上点向角两边作垂线构全等:过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题; 2、截取构全等利用对称性,在角的两边截取相等的线段,构造全等三角形; 3、延长垂线段题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交,构成等腰三角形; 4、做平行线:以角分线上一点做角的另一边的平行线,构造等腰三角形有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形.或通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形.通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形.至于选取哪种方法,要结合题目图形和已知条件.图四图三图二图一QPONMPONM BAAB MNOP PONM BA典型例题精讲【例1】 如图所示,BN 平分∠ABC ,P 为BN 上的一点,并且PD ⊥BC 于D ,2AB BC BD =+.求证:180BAP BCP ∠∠=︒+.【解析】过点P 作PE ⊥AB 于点E .∵PE ⊥AB ,PD ⊥BC ,BN 平分∠ABC ,∴PE PD =. 在Rt △PBE 和Rt △PBC 中, BP BPPE PD =⎧⎨=⎩, ∴Rt △PBE ≌Rt △PBC (HL ),∴BE BD =.∵2AB BC BD +=,BC CD BD =+,AB BE AE =-,∴AE CD =. ∵PE ⊥AB ,PD ⊥BC ,∴90PEB PDB ∠=∠=︒. 在△P AE 和Rt △PCD 中, ∵PE PD PEB PDC AE DC =⎧⎪∠=∠⎨⎪=⎩, ∴△P AE ≌Rt △PCD ,∴PCB EAP ∠=∠.∵180BAP EAP ∠+∠=︒,∴180BAP BCP ∠+∠=︒.【答案】见解析.【例2】 如图,已知:90A ∠=︒,AD ∥BC ,P 是AB 的中点,PD 平分∠ADC ,求证:CP 平分∠DCB .【解析】因为已知PD 平分∠ADC ,所以我们过P 点作PE ⊥CD ,垂足为E ,则PA PE =,由P 是AB的中点,得PB PE =,即CP 平分∠DCB .【答案】作PE ⊥CD ,垂足为E ,∴90PEC A ∠=∠=︒,∵PD 平分∠ADC ,∴PA PE =, 又∵90B PEC ∠=∠=︒,∴PB PE =, ∴点P 在∠DCB 的平分线上, ∴CP 平分∠DCB .【例3】 已知:90AOB ∠=︒,OM 是∠AOB 的平分线,将三角板的直角顶点P 在射线OM 上滑动,两直角边分别与OA 、OB 交于C 、D .(1)PC 和PD 有怎样的数量关系是__________. (2)请你证明(1)得出的结论.PDCBA A BCDPE【解析】(1)PC PD =.(2)过P 分别作PE ⊥OB 于E ,PF ⊥OA 于F , ∴90CFP DEP ∠=∠=︒,∵OM 是∠AOB 的平分线,∴PE PF =,∵190FPD ∠+∠=︒,且90AOB ∠=︒,∴90FPE ∠=︒, ∴290FPD ∠+∠=︒,∴12∠=∠, 在△CFP 和△DEP 中12CPF DEPPF PE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CFP ≌△DEP ,∴PC PD =. 【答案】见解析.【例4】 如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,60B ∠=︒,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F ,请你判断并写出FE 与FD 之间的数量关系(不需证明); (2)如图③,在△ABC 中,60B ∠=︒,请问,在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.【解析】如图①所示;(1)FE FD =.(2)如图,过点F 作FG ⊥AB 于G ,作FH ⊥BC 于H ,作FK ⊥AC 于K , ∵AD 、CE 分别是∠BAC 、∠BCA 的平分线,∴FG FH FK ==, 在四边形BGFH 中,36060902120GFH ∠=︒-︒-︒⨯=︒, ∵AD 、CE 分别是∠BAC 、∠BCA 的平分线,60B ∠=︒, ∴()118060602FAC FCA ∠+∠=︒-︒=︒. 在△AFC 中, ()180********AFC FAC FCA ∠=︒-∠+∠=︒-︒=︒, ∴120EFD AFC ∠=∠=︒,∴EFG DFH ∠=∠, 在△EFG 和△DFH 中,EFG DFH EGF DHF FG FH ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EFG ≌△DFH ,∴FE FD = 【答案】见解析.【例5】 已知120MAN ∠=︒,AC 平分∠MAN ,点B 、D 分别在AN 、AM 上.(1)如图1,若90ABC ADC ∠=∠=︒,请你探索线段AD 、AB 、AC 之间的数量关系,并证明之;(2)如图2,若180ABC ADC ∠+∠=︒,则(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.【解析】(1)得到30ACD ACB ∠=∠=︒后再可以证得12AD AB AC ==,从而,证得结论; (2)过点C 分别作AM 、AN 的垂线,垂足分别为E 、F ,证得△CED ≌△CFB后即可得到AD AB AE ED AF FB AE AF +=-++=+,从而证得结论.【答案】(1)关系是:AD AB AC +=.证明:∵AC 平分∠MAN ,120MAN ∠=︒ ∴60CAD CAB ∠=∠=︒ 又90ADC ABC ∠=∠=︒, ∴30ACD ACB ∠=∠=︒ 则12AD AB AC ==(直角三角形一锐角为30°,则它所对直角边为斜边一半) ∴AD AB AC +=; (2)仍成立.证明:过点C 分别作AM 、AN 的垂线,垂足分别为E 、F ∵AC 平分∠MAN∴CE CF =(角平分线上点到角两边距离相等) ∵180ABC ADC ∠+∠=︒,180ADC CDE ∠+∠=︒ ∴CDE ABC ∠=∠ 又90CED CFB ∠=∠=︒, ∴△CED ≌△CFB (AAS ) ∵ED FB =,∴AD AB AE ED AF FB AE AF +=-++=+ 由(1)知AE AF AC +=, ∴AD AB AC +=.【例6】 如图,在△ABC 中,2C B ∠=∠,AD 平分∠BAC ,求证:AB AC CD -=.【解析】在AB 上截取点E ,使得AE AC =.∵AD 平分∠BAC ,∴EAD CAD ∠=∠,∴△ADE ≌△ADC (SAS ).∴AED C ∠=∠,ED CD =. ∵2C B ∠=∠,∴=2AED B ∠∠.∵AED B EDB ∠=∠+∠,∴B EDB ∠=∠,∴BE DE =. ∴CD BE AB AE AB AC ==-=-.【答案】见解析.【例7】 如图,△ABC 中,AB AC =,108A ∠=︒,BD 平分ABC ∠交AC 于D 点.求证:BC AC CD =+.【解析】在BC 上截取E 点使BE BA =,连结DE .∵BD 平分ABC ∠,∴ABD EBD ∠=∠. 在ABD ∆与EBD ∆中∵AB EB =,ABD EBD ∠=∠,BD BD = ∴ABD EBD ∆∆≌,∴A DEB ∠=∠∵AB AE =, ∴BAD BED ∠=∠,∴72DEC ∠=︒. 又∵361854ADB ∠=︒+︒=︒,∴72CDE ∠=︒ABCDE DCBAAB CD∴CDE DEC ∠=∠,∴CD CE = ∵BC BE EC =+,∴BC AC CD =+【答案】见解析.【例8】 已知ABC ∆中,60A ∠=︒,BD 、CE 分别平分ABC ∠和ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.【解析】在BC 上截取一点F 使得BF BE =,易证BOE BOF ∆∆≌,在根据120BOC ∠=︒推出60BOE COF ∠=∠=︒,再证明OCF OCD ∆∆≌即可.【答案】BC BE CD =+.【例9】 如图:已知AD 为△ABC 的中线,且12∠=∠,34∠=∠,求证:BE CF EF +>.【解析】在DA 上截取DN DB =,连接NE ,NF ,则DN DC =,在△DBE 和△DNE 中:E DCB AOED CBAFOED CBA∵12DN DB ED ED =⎧⎪∠=∠⎨⎪=⎩∴△DBE ≌△DNE (SAS ),∴BE NE = 同理可得:CF NF =在△EFN 中,EN FN EF +>(三角形两边之和大于第三边) ∴BE CF EF +>.【答案】见解析.【例10】 已知:在四边形ABCD 中,BC BA >,180A C ∠+∠=︒,且60C ∠=︒,BD 平分∠ABC ,求证:BC AB DC =+.【解析】在BC 上截取BE BA =,∵BD 平分∠ABC ,∴ABD EBD ∠=∠, 在△BAD 和△BED 中, BA BE ABD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩, ∴△BAD ≌△BED ,∴AD DE =,A BED ∠=∠. ∵180BED DEC ∠+∠=︒,180A C ∠+∠=︒. ∴C DEC ∠=∠,∴DE DC =.∴DC AD =.∵60∠=︒,∴△CDE是等边三角形,C∴DE CD CE=+=+.==,∴BC BE CE AB CD【答案】见解析.【例11】观察、猜想、探究:在△ABC中,2∠=∠.ACB B(1)如图①,当90=+;C∠=︒,AD为∠BAC的角平分线时,求证:AB AC CD (2)如图②,当90∠≠︒,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量C关系?不需要证明,请直接写出你的猜想;(3)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.【解析】(1)过D作DE⊥AB,交AB于点E,理由角平分线性质得到ED=CD,利用HL得到直角三角形AED与直角三角形ACD全等,由全等三角形的对应边相等,对应角相等,得到AE AC=,A CB B∠=∠,利用等量代换及外角性质得到一对角相等,利用等角对等∠=∠,由2AED ACB边得到BE DE=+,等量代换即可得证;=,由AB AE EB(2)AB CD AC=+,理由为:在AB上截取AG AC=,如图2所示,由角平分线定义得到=,利用SAS得到三角形AGD与三角形ACD全等,接下来同(1)一对角相等,再由AD AD即可得证;(3)AB CD AC=,如图3所示,同(2)即可得证.=-,理由为:在AF上截取AG AC【答案】(1)过D作DE⊥AB,交AB于点E,如图1所示,∵AD为∠BAC的平分线,DC⊥AC,DE⊥AB,∴DE DC=,在Rt △ACD 和Rt △AED 中,AD AD =,DE DC =, ∴Rt △ACD ≌Rt △AED (HL ),∴AC AE =,ACB AED ∠=∠, ∵2ACB B ∠=∠,∴2AED B ∠=∠, 又∵AED B EDB ∠=∠+∠,∴B EDB ∠=∠, ∴BE DE DC ==,则AB BE AE CD AC =+=+; (2)AB CD AC =+,理由为: 在AB 上截取AG AC =,如图2所示, ∵AD 为∠BAC 的平分线,∴GAD CAD ∠=∠, ∵在△ADG 和△ADC 中,AG ACGAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴△ADG ≌△ADC (SAS ),∴CD CG =,AGD ACB ∠=∠, ∵2ACB B ∠=∠,∴2AGD B ∠=∠, 又∵AGD B GDB ∠=∠+∠,∴B GDB ∠=∠, ∴BE DG DC ==,则AB BG AG CD AC =+=+; (3)AB CD AC =-,理由为: 在AF 上截取AG AC =,如图3所示, ∵AD 为∠F AC 的平分线,∴GAD CAD ∠=∠, ∵在△ADG 和△ADC 中,AG AC GAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ADG ≌△ADC (SAS ), ∴CD GD =,AGD ACD ∠=∠,即ACB FGD ∠=∠,∵2ACB B ∠=∠,∴2FGD B ∠=∠,又∵FGD B GDB ∠=∠+∠,∴B GDB ∠=∠, ∴BG DG DC ==,则AB BG AG CD AC =-=-.【例12】 如图所示,在△ABC 中,3ABC C ∠=∠,AD 是∠BAC 的平分线,BE ⊥AD 于F .求证:()12BE AC AB =-.【解析】延长BE 交AC 于点F .则AD 为∠BAC 的对称轴,∵BE ⊥AD 于F ,∴点B 和点F 关于AD 对称, ∴12BE EF BF ==,AB AF =,ABF AFB ∠=∠. ∵3ABF FBC ABC C ∠∠=∠=∠+,ABF AFB FBC C ∠=∠=∠∠+, ∴3FBC C FBC C ∠∠∠=∠++, ∴FBC C ∠=∠,∴FB FC =,∴()()111222BE FC AC AF AC AB ==-=-,∴()12BE AC AB =-. 【答案】见解析.【例13】 如图,已知:△ABC 中AD 垂直于∠C 的平分线于D ,DE ∥BC 交AB 于E .求证:EA EB =.【解析】由AD 垂直于∠C 的平分线于D ,可以想到等腰三角形中的三线合一,于是延长AD 交BC 与点F ,得D 是AF 的中点,又因为DE ∥BC ,由三角形中位线定理得EA EB =.【答案】延长AD 交BC 与点F ,∵CD 平分∠ACF ,∴12∠=∠,又AD ⊥CD , ∴ΔADC ≌ΔFDC ,∴AD FD =, 又∵DE ∥BC ,∴EA EB =.【例14】 已知:如图,在△ABC 中,3ABC C ∠=∠,12∠=∠,BE ⊥AE .求证:2AC AB BE -=.【解析】延长BE 交AC 于M ,∵BE ⊥AE ,∴90AEB AEM ∠=∠=︒ 在△ABE 中,∵13180AEB ∠+∠+∠=︒, ∴3901∠=︒-∠ 同理,4902∠=︒-∠∵12∠=∠,∴34∠=∠,∴AB AM =∵BE ⊥AE ,∴2BM BE =, ∴AC AB AC AM CM -=-=, ∵∠4是△BCM 的外角,∴45C ∠=∠+∠ ∵3ABC C ∠=∠,∴3545ABC ∠=∠+∠=∠+∠ ∴34525C C ∠=∠+∠=∠+∠,∴5C ∠=∠ ∴CM BM =,∴2AC AB BM BE -==【答案】见解析.【例15】 如图,已知AB AC =,90BAC ∠=︒,BD 为∠ABC 的平分线,CE ⊥BE ,求证:2BD CE =.【解析】延长CE ,交BA 的延长线于点F .∵BD 为∠ABC 的平分线,CE ⊥BE , ∴△BEF ≌△BEC ,∴BC BF =,CE FE =. ∵90BAC ∠=︒,CE ⊥BE ,∴ABD ACF ∠=∠,又∵AB AC =,∴△ABD ≌△ACF ,∴BD CF =.∴2BD CE =.【答案】见解析.EDCBAFEDCBA课后复习【作业1】如图所示,在△ABC 中,BP 、CP 分别是∠ABC 的外角的平分线,求证:点P 在∠A 的平分线上.【解析】过点P 作PE ⊥AB 于点E ,PG ⊥AC 于点G ,PF ⊥BC 于点F .因为P 在∠EBC 的平分线上,PE ⊥AB ,PH ⊥BC ,所以PE PF =. 同理可证PF PG =. 所以PG PE =,又PE ⊥AB ,PG ⊥AC ,所以P 在∠A 的平分线上,【答案】见解析.【作业2】已知:如图,2AB AC =,BAD CAD ∠=∠,DA DB =,求证:DC ⊥AC .PCBAPABCD【解析】在AB 上取中点E ,连接DE ,则12AE BE AB ==. ∵DA DB =,∴DE ⊥AB ,90AED ∠=︒. 又∵2AB AC =,∴AE AC =.∵BAD CAD ∠=∠,∴△ADE ≌△ADC (SAS ). ∴90AED ACD ∠=∠=︒,即DC ⊥AC .【答案】见解析.【作业3】已知等腰ABC ∆,100A ∠=︒,ABC ∠的平分线交AC 于D ,则BD AD BC +=.【解析】如图,在BC 上截取BE BD =,连接DE ,过D 作DF BC ∥,交AB 于F ,于是32∠=∠,ADF ECD ∠=∠. 又∵12∠=∠,∴13∠=∠,故DF BF =.显然FBCD 是等腰梯形. ∴BF DC =,DF DC =.∵()111218010020222ABC ∠=∠=⨯︒-︒=︒,()11802802BED BDE ∠=∠=︒-∠=︒, ∴180100DEC BED ∠=︒-∠=︒,∴100FAD DEC ∠=∠=︒,∴AFD EDC ∆∆≌,AD EC =. 又∵BE BD =,∴BC BD EC BD AD =+=+.【答案】见解析.EDCBAABCD【作业4】如图,已知在△ABC 中,AD 、AE 分别为△ABC 的内、外角平分线,过顶点B 作BF ⊥AD ,交AD 的延长线于F ,连接FC 并延长交AE 于M .求证:AM ME =.【解析】延长AC ,交BF 的延长线于点N .∵AD 平分∠BAC ,BF ⊥AD ,∴△AFB ≌△AFN ,∴BF NF =. ∵AD 、AE 分别为△ABC 的内、外角平分线,∴EA ⊥F A . ∵BF ⊥AF ,∴BF ∥AE .∴::BF ME CF CM =,::FN AM CF CM =. ∵BF NF =,∴AM ME =.【答案】见解析.ECMF EDCBAN MFEDCBA。

2024年中考数学二轮复习题型突破课件—与角平分线有关的辅助线问题

2024年中考数学二轮复习题型突破课件—与角平分线有关的辅助线问题
100°, ∠ABC = 40°, ∴ ∠ACB = 40°, ∠DFC =
180°- ∠BFD = 80°.∴ ∠FDC = 60°.∵ ∠EDC =
∠ADB=180°-∠1-∠A=180°-20°-100°=60°,
∴ ∠EDC = ∠FDC. 又 ∵ CD = CD , ∴
△DCE≌△DCF.∴ CE=CF.∴ BC=BF+CF=AB
积是
16
.
第3题
1
2
3
4
5
6
7
4. 如图,∠ADE=∠BDE=15°,EF∥DB,EC⊥DB于点C.若EC= 3,
则EF的长为
2
.
第4题
1
2
3
4
5
6
7
5. 如图,在△ABC中,AD是∠BAC的平分线,BE是△ABD的边AD上的
中线.若△ABC的面积是24,AB=5,AC=3,则△ABE的面积是
2024年中考数学二轮复习题型突破—与角平分线有关的辅助线问

主讲人:XXX
类型1 作垂线
模型解读:如图,P是∠MON的平分线上一点,过点P作PA⊥OM于点
A,PB⊥ON于点B,则PA=PB,△OAP≌△OBP.
典例1 如图,∠AOB=30°,OC平分∠AOB,CD⊥OA于点D,CE∥AO
交OB于点E,OE=20cm,求CD的长.
∠NBD.在△CDM和△BDN中,∵ ∠CMD=∠BND=90°,∠MCD=
∠NBD,DM=DN,∴ △CDM≌△BDN.∴ CD=BD
第6题答案
1
2
3
4
5
6
7
7. 如图,在△ABC中,∠BAC=60°,∠ABC=80°,∠BAC与∠ABC的平

微专题8 角平分线常见问题及辅助线作法++++课件+2025年九年级中考数学总复习人教版(山东)

微专题8 角平分线常见问题及辅助线作法++++课件+2025年九年级中考数学总复习人教版(山东)

【解析】(1)在AC上截取AE,使得AE=AB,连接DE,
∵AD平分∠BAC,∴∠BAD=∠DAC,
∵AD=AD,∴△ABD≌△AED(SAS),
∴∠B=∠AED,BD=DE,
∵∠B=2∠C,
∴∠AED=2∠C,∠AED=∠C+∠EDC,∴∠C=∠EDC,
∴DE=CE,
∴BD=EC,
∵AE+EC=AC,
BE和MN分别平分∠ABC和∠EMC.下列结论不正确的是
A.∠MBE=∠MEB
B.MN∥BE
C.S△BEM=S△BEN
D.∠MBN=∠MNB
(D )
4
2.(2024·东营河口区模拟)如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,
过点O作EF∥AB交BC于F,交AC于E,过点O作OD⊥BC于D,下列四个结论:
1
①∠AOB=90°+ ∠C;
2
②AE+BF=EF;
③当∠C=90°时,E,F分别是AC,BC的中点;
④若OD=a,CE+CF=2b,则S△CEF=ab.
其中正确的是 ( C )
A.①②
B.③④
C.①②④
D.①③④
5
3.(2023·枣庄市中区模拟)如图,在△ABC中,AB=AC,D是BC边上的中点,连接AD,BE
12
类型3
特点
相遇角平分线的垂线,联想“三线合一”
从角一边上的一点作角平分线的垂线,构造等腰三角形利用“三线合一”
解题
示例
P是∠MON的平分线上一点,A是射线OM上一点,AP⊥OP于点P,延长AP
结论 交ON于点B,Rt△AOP≌Rt△BOP,
△AOB是等腰三角形

有关角平分线的辅助线做法_含例题与分析

有关角平分线的辅助线做法_含例题与分析

由角平分线想到的辅助线角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。

对于有角平分线的辅助线的作法,一般有两种。

①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。

通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。

至于选取哪种方法,要结合题目图形和已知条件。

与角有关的辅助线(一)、截取构全等如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD ,从而为我们证明线段、角相等创造了条件。

例1. 如图1-2,AB//CD ,BE 平分∠ABC ,CE 平分∠BCD ,点E 在AD 上,求证:BC=AB+CD 。

分析:此题中就涉及到角平分线,可以利用角平分线来构造全等三角形,即利用解平分线来构造轴对称图形,同时此题也是证明线段的和差倍分问题,在证明线段的和差倍分问题中常用到的方法是延长法或截取法来证明,延长短的线段或在长的线段长截取一部分使之等于短的线段。

但无论延长还是截取都要证明线段的相等,延长要证明延长后的线段与某条线段相等,截取要证明截取后剩下的线段与某条线段相等,进而达到所证明的目的。

简证:在此题中可在长线段BC 上截取BF=AB ,再证明CF=CD ,从而达到证明的目的。

这里面用到了角平分线来构造全等三角形。

另外一个全等自已证明。

此题的证明也可以延长BE 与CD 的延长线交于一点来证明。

自已试一试。

例2. 已知:如图1-3,AB=2AC ,∠BAD=∠CAD ,DA=DB ,求证DC ⊥ACB图1-2DBC分析:此题还是利用角平分线来构造全等三角形。

构造的方法还是截取线段相等。

其它问题自已证明。

例3. 已知:如图1-4,在△ABC 中,∠C=2∠B,AD 平分∠BAC ,求证:AB-AC=CD分析:此题的条件中还有角的平分线,在证明中还要用到构造全等三角形,此题还是证明线段的和差倍分问题。

专题03与角平分线有关的辅助线的三种考法(解析版)【压轴必考】八年级数学上册压轴题攻略(人教版)

专题03与角平分线有关的辅助线的三种考法(解析版)【压轴必考】八年级数学上册压轴题攻略(人教版)

专题03 与角平分线有关的辅助线的三种考法类型一、角平分线上的点向两边作垂线例1.如图,已知30AOB Ð=°,P 是AOB Ð的平分线OC 上的任意一点,PD OA ∥交OB 于点D ,PE OA ^于点E ,如果8cm OD =,求PE 的长.【答案】4cm【详解】如图,过点P 作PF ⊥OB 于点F ,∵OC 平分∠AOB ,PE ⊥OA ,∴PF =PE ,∠EOP =∠DOP∵PD P OA ,∠AOB =30°,∴∠PDF =∠AOB =30°,∴∠DPO =∠EOP =∠DOP ,∴ PD =OD =8cm在Rt △PDF 中,∵∠DFP=90°,∠FDP=30°∴PF =12PD =4cm ,∴ PF =PE =4cm .【变式训练1】如图,ABC D 中,90ACB Ð=°,点,D E 分别在边BC ,AC 上,DE DB =,DEC B Ð=Ð.求证: AD 平分BAC Ð.【答案】见解析【详解】证明:过点D 作DF AB ^于点F . 90DFB \Ð=°90ACB Ð=°Q ,DFB ACB DC AC \Ð=Ð^.在DCE D 和DFB D 中,,,,DCE DFB DEC B DE DB Ð=ÐìïÐ=Ðíï=î()DCE DFB AAS \D D ≌.DC DF \=.\点D 在BAC Ð的平分线上.\AD 平分BAC Ð..【变式训练2】图,已知AE ⊥AB ,AF ⊥AC .AE =AB ,AF =AC ,BF 与CE 相交于点M .(1)EC =BF ;(2)EC ⊥BF ;(3)连接AM ,求证:AM 平分∠EMF .【答案】(1)见解析.(2)见解析.(3)见解析.【解析】(1)证明:∵AE ⊥AB ,AF ⊥AC ,∴∠BAE =∠CAF =90°,∴∠BAE +∠BAC =∠CAF +∠BAC ,即∠EAC =∠BAF ,在△ABF 和△AEC 中,∵AE AB EAC BAF AF AC =ìïÐ=Ðíï=î,∴△ABF ≌△AEC (SAS ),∴EC =BF ;(2)根据(1),∵△ABF ≌△AEC ,∴∠AEC =∠ABF ,∵AE ⊥AB ,∴∠BAE =90°,∴∠AEC +∠ADE =90°,∵∠ADE =∠BDM (对顶角相等),∴∠ABF +∠BDM =90°,在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°,所以EC⊥BF.(3)作AP⊥CE于P,AQ⊥BF于Q.如图:∵△EAC≌△BAF,∴AP=AQ(全等三角形对应边上的高相等).∵AP⊥CE于P,AQ⊥BF于Q,∴AM平分∠EMF.【变式训练3】已知点C是∠MAN平分线上一点,∠BCD的两边CB、CD分别与射线AM、AN相交于B,D两点,且∠ABC+∠ADC=180°.过点C作CE⊥AB,垂足为E.(1)如图1,当点E在线段AB上时,求证:BC=DC;(2)如图2,当点E在线段AB的延长线上时,探究线段AB、AD与BE之间的等量关系;(3)如图3,在(2)的条件下,若∠MAN=60°,连接BD,作∠ABD的平分线BF交AD于点F,交AC于点O,连接DO并延长交AB于点G.若BG=1,DF=2,求线段DB的长.【答案】(1)见解析;(2)AD﹣AB=2BE,理由见解析;(3)3.【详解】(1)证明:如图1,过点C作CF⊥AD,垂足为F,∵AC平分∠MAN,CE⊥AB,CF⊥AD,∴CE=CF,∵∠CBE +∠ADC =180°,∠CDF +∠ADC =180°,∴∠CBE =∠CDF ,在△BCE 和△DCF 中,90CBE CDF CEB CFD CE CF °Ð=ÐìïÐ=Ð=íï=î,∴△BCE ≌△DCF (AAS )∴BC =DC ;(2)解:AD ﹣AB =2BE ,理由如下:如图2,过点C 作CF ⊥AD ,垂足为F ,∵AC 平分∠MAN ,CE ⊥AB ,CF ⊥AD ,∴CE =CF ,AE =AF ,∵∠ABC +∠ADC =180°,∠ABC +∠CBE =180°,∴∠CDF =∠CBE ,在△BCE 和△DCF 中,90CBE CDF CEB CFD CE CF °Ð=ÐìïÐ=Ð=íï=î,∴△BCE ≌△DCF (AAS ),∴DF =BE ,∴AD =AF +DF =AE +DF =AB +BE +DF =AB +2BE ,∴AD ﹣AB =2BE ;(3)解:如图3,在BD 上截取BH =BG ,连接OH ,∵BH =BG ,∠OBH =∠OBG ,OB =OB在△OBH 和△OBG 中,BH BG OBH OBG OB OB =ìïÐ=Ðíï=î,∴△OBH ≌△OBG (SAS )∴∠OHB =∠OGB ,∵AO 是∠MAN 的平分线,BO 是∠ABD 的平分线,∴点O 到AD ,AB ,BD 的距离相等,∴∠ODH =∠ODF ,∵∠OHB =∠ODH +∠DOH ,∠OGB =∠ODF +∠DAB ,∴∠DOH =∠DAB =60°,∴∠GOH =120°,∴∠BOG =∠BOH =60°,∴∠DOF =∠BOG =60°,∴∠DOH =∠DOF ,在△ODH 和△ODF 中,DOH DOF OD OD ODH ODF Ð=Ðìï=íïÐ=Ðî,∴△ODH ≌△ODF (ASA ),∴DH =DF ,∴DB =DH +BH =DF +BG =2+1=3.类型二、过边上的点向角平分线作垂线构造等腰三角形例1.如图,△ABC 的面积为9cm 2,BP 平分∠ABC ,AP ⊥BP 于P ,连接PC ,则△PBC 的面积为______cm 2.【答案】4.5【详解】解:延长AP 交BC 于E ,∵BP 平分∠ABC ,∴∠ABP=∠EBP,∵AP ⊥BP ,∴∠APB=∠EPB=90°,在△ABP 和△EBP 中,ABP EBP PB PB APB EPB Ð=Ðìï=íïÐ=Ðî,∴△ABP ≌△EBP (ASA ),∴AP=PE ,∴,APB EPB ACP ECP S S S S ==V V V V ∴119 4.522BPC ABC S S ==´=V V cm 2,故答案为4.5.【变式训练1】如图,在△ABC 中,∠A =90°,AB =AC ,∠ABC 的平分线BD 交AC 于点D ,CE ⊥BD ,交BD 的延长线于点E ,若BD =4,则CE =________.【答案】2【详解】解:如图,延长BA 、CE 相交于点F ,∵BD 平分∠ABC ,∴∠ABD=∠CBD ,在△BCE 和△BFE 中,90ABD CBD BE BE BEF BEC ìïíïÐÐÐаî====,∴△BCE ≌△BFE (ASA ),∴CE=EF,∵∠BAC=90°,CE ⊥BD ,∴∠ACF+∠F=90°,∠ABD+∠F=90°,∴∠ABD=∠ACF ,在△ABD 和△ACF 中,90ABD ACF AB AC BAC CAF ìïíïÐÐÐаî====,∴△ABD ≌△ACF (ASA ),∴BD=CF ,∵CF=CE+EF=2CE ,∴BD=2CE=4,∴CE=2.故答案为:2.【变式训练2】如图,在△ABC 中,∠C =90°,BC =AC ,D 是AC 上一点,AE ⊥BD 交BD 的延长线于E ,AE =12BD ,且DF ⊥AB 于F ,求证:CD =DF 【答案】见解析【解析】证明:延长AE 、BC 交于点F. 如图所示:∵AE ⊥BE ,∴∠BEA=90°,又∠ACF=∠ACB=90°,∴∠DBC+∠AFC=∠FAC+∠AFC=90°,∴∠DBC=∠FAC ,在△ACF 和△BCD 中,90ACF BCD AC BC FAC DBC Ð=Ð=°ìï=íïÐ=Ðî,∴△ACF ≌△BCD(ASA),∴AF=BD.又AE=12BD ,∴AE=12AF ,即点E 是AF 的中点,∴AB=BF ,∴BD 是∠ABC 的角平分线,∵∠C=90°,DF ⊥AB 于F ,∴CD=DF.类型三、利用角平分线的性质,在角两边截长补短例1.已知:如图,//AC BD ,AE ,BE 分别平分CAB Ð和ABD Ð,点E 在CD 上.用等式表示线段AB 、AC 、BD三者之间的数量关系,并证明.【答案】AB=AC+BD,证明见详解.【详解】解:延长AE,交BD的延长线于点F,∵//AC BD,∴∠F=∠CAF,∵AE平分CABÐ,∴∠CAF=∠BAF,∴∠F=∠BAF,∴AB=BF,∵BE平分ABFÐ,∴AE=EF,∵∠F=∠CAF,∠AEC=∠FED,∴△ACE≌△FDE,∴AC=DF,∴AB=BF=BD+DF=BD+AC.【变式训练1】如图1,在△ABC中,∠BAC的平分线AD与∠BCA的平分线CE交于点O.(1)求证:∠AOC=90°+12∠ABC;(2)当∠ABC=90°时,且AO=3OD(如图2),判断线段AE,CD,AC之间的数量关系,并加以证明.【答案】(1)见解析;(2)43AE+CD=AC,证明见解析【解析】(1)证明:∵∠ABC+∠ACB+∠BAC=180°,∴∠BAC+∠BCA=180°-∠ABC,∵∠BAC的平分线AD与∠BCA的平分线CE交于点O.∴∠OAC=12∠BAC,∠OCA=12∠BCA,∴∠OAC+∠OCA=12(∠BAC+∠BCA)=12(180°-∠ABC)=90°-12∠ABC,∴∠AOC=180°-(∠OAC+∠OCA)=180°-(90°-12∠ABC),即∠AOC =90°+12∠ABC ;(2)解:43AE +CD =AC ,证明:如图2,∵∠AOC =90°+12∠ABC =135°,∴∠EOA =45°,在AC 上分别截取AM 、CN ,使AM =AE ,CN =CD ,连接OM ,ON ,则在△AEO 和△AMO 中,AE AM EAO MAO AO AO =ìïÐ=Ðíï=î,∴△AEO ≌△AMO ,同理△DCO ≌△NCO ,∴∠EOA =∠MOA ,∠CON =∠COD ,OD =ON ,∴∠EOA =∠MOA =∠CON =∠COD =45°,∴∠MON =∠MOA =45°,过M 作MK ⊥AD 于K ,ML ⊥ON 于L ,∴MK =ML ,S △AOM =12AO ×MK ,S △MON =12ON ×ML ,∴AOM MON S AO ON S D D =,∵AOM MON S AM S MN D D =,∴AO AM ON MN=,∵AO =3OD ,∴31AO OD =,∴31AO AM ON MN ==,∴AN =43AM =43AE ,∵AN +NC =AC ,∴43AE +CD =AC .【变式训练2】如图,∠B =∠C =90°,E 是BC 的中点,DE 平分∠ADC .求证:AE 是∠DAB 的平分线.(提示:过点E 作EF ⊥AD ,垂足为F .)【答案】见解析【详解】证明:过点E作EF⊥DA于点F,∵∠C=90°,DE平分∠ADC,∴CE=EF,∵E是BC的中点,∴BE=CE,∴BE=EF,又∵∠B=90°,EF⊥AD,∴AE平分∠DAB.【变式训练3】如图所示,已知B(﹣2,0),C(2,0),A为y轴正半轴上的一点,点D为第二象限一动点,点E在BD的延长线上,CD交AB于点F,且∠BDC=∠BAC.(1)求证:∠ABD=∠ACD;(2)求证:AD平分∠CDE;(3)若在D点运动的过程中,始终有DC=DA+DB,在此过程中,∠BAC的度数是否发生变化?如果变化,请说明理由;如果不变,请求出∠BAC的度数.【答案】(1)证明过程见解析;(2)证明过程见解析;(3)∠BAC =60°,理由见解析【解析】(1)证明:∵∠BDC =∠BAC ,∠DFB =∠AFC ,又∵∠ABD +∠BDC +∠DFB =∠BAC +∠ACD +∠AFC =180°,∴∠ABD =∠ACD ;(2)证明:过点A 作AM ⊥CD 于点M ,作AN ⊥BE 于点N ,如下图所示:则∠AMC =∠ANB =90°.∵OB =OC ,OA ⊥BC ,∴AB=AC ,由(1)可知:∠ABD =∠ACD ,∴△ACM ≌△ABN (AAS ),∴AM =AN .∴DA 平分∠CDE .(角的两边距离相等的点在角的平分线上);(3)解:∠BAC 的度数为60°,理由如下:在CD 上截取CP=BD ,连接AP ,如下图所示:∵CD=AD+BD ,∴AD=PD .∵AB=AC ,∠ABD =∠ACD ,BD=CP ,∴△ABD ≌△ACP (SAS ) ,∴AD=AP ,∠BAD =∠CAP ,∴AD=AP=PD ,即△ADP 是等边三角形,∴∠DAP =60°.∴∠BAC =∠BAP +∠CAP =∠BAP +∠BAD =60°.【变式训练4】已知:如图1,在ABC V 中,AD 是BAC Ð的平分线.E 是线段AD 上一点(点E 不与点A ,点D 重合),满足2Ð=ÐABE ACE .(1)如图2,若18Ð=°ACE ,且EA EC =,则DEC Ð=________°,AEB Ð=_______°.(2)求证:AB BE AC +=.(3)如图3,若BD BE =,请直接写出ABE Ð和BAC Ð的数量关系.【答案】(1)36,126;(2)见解析;(3)3180Ð+Ð=°ABE BAC 【详解】(1)∵18Ð=°ACE ,且EA EC =,∴∠EAC =∠ACE =18°,∴∠DEC =∠EAC +∠ACE =36°,又∵AD 是BAC Ð的平分线,∴∠BAD =∠CAD =18°,∵2Ð=ÐABE ACE ,∴∠ABE =36°,∴1801836126Ð=°-°-°=°AEB ;故答案为:36,126(2)在AC 上截取AF AB =,连接FE ,又∵AE =AE ,EAF EAB Ð=Ð,∴()V V ≌AEF AEB SAS ,∴EF EB =,AFE ABEÐ=Ð∵∠AFE =∠ACE +∠FEC ,∠ABE =2∠ACE ,∴FEC FCE Ð=Ð,∴EF FC=∴=+=+AC AF FC AB BE ;(3)∵BD BE =,∴BED BDE Ð=Ð,∵BED ABE BAE Ð=Ð+Ð,Ð=Ð+ÐBDE DAC ACD ,∠CAD =∠BAE ,∴∠ACD =∠ABE ,∵∠ABE =2∠ACE ,∴∠ACD =2∠ACE ,∴CE 平分∠ACB ,∴点E 到CA 、CB 的距离相等,又∵AD 是BAC Ð的平分线,∴点E 到AC 、AB 的距离相等,∴点E 到BA 、BC 的距离相等,∴BE 是ABD Ð的平分线,∴∠ABE =∠CBE ,∴Ð=Ð=ÐABE ACD DBE ,又∵180ACB ABC BAC Ð+Ð+Ð=°,∴2180Ð+Ð+Ð=°ABE ABE BAC ,即3180Ð+Ð=°ABE BAC .课后训练1.如图①,CDE Ð是四边形ABCD 的一个外角,AD //BC ,BC BD =,点F 在CD 的延长线上,FAB FBA Ð=Ð,FG AE ^,垂足为G .(1)求证:①DC 平分BDE Ð;②BC DG AG +=.(2)如图②,若4AB =,3BC =,1DG =.求AFD Ð的度数.【答案】(1)①见解析;②见解析;(2)90°【解析】(1)解:①∵AD ∥BC ,∴∠C =∠CDE ,∵BC =BD ,∴∠C =∠CDB ,∴∠CDB =∠CDE ,∴DC 平分BDE Ð;②如图,过点F 作FH ⊥BD ,交BD 延长线于H ,∵∠FDG =∠CDE ,∠FDH =∠CDB ,∠EDC =∠CDB ,∴∠FDG =∠FDH ,∵FG ⊥AE ,FH ⊥BD ,∴FH =FG ,∠H =∠FGD =∠AGF =90°,∵FD =FD ,∴Rt △FHD ≌Rt △FGD (HL ),∴DH =DG ,∵FAB FBA Ð=Ð,∴FB =FA ,∴Rt △FHB ≌Rt △FGA (HL )∴BH =AG ,∵BD =BC ,∴AG =BH =BD +DH =BC +DG ,即AG =BC +DG ;(2)解:∵AB =4,BC =3,DG =1,∴BD =BC =3,AG =BC +DG =3+1=4,∴AD =AG +DG =4+1=5,∵AB 2+BD 2=42+32=52=AD 2,∴∠ABD =90°,过点F 作FM ⊥AB 于M ,交AD 于N ,如图,则∠AMF =∠BMF =90°=∠ABD ,∴FM ∥BD ,∴∠BFM =∠FBD ,∵FAB FBA Ð=Ð,∴FB =FA ,∴AM =12AB =2,∠AFM =∠BFM ,∴∠AFM =∠FBD ,由(1)②知,Rt △FHB ≌Rt △FGA ,∴∠FAG =∠FBD ,∴∠FAG =∠AFN ,∵FM ∥BD ,∴∠MFD =∠BDC ,∵∠BDC =∠CDE =∠FDG ,∴∠MFD =∠FDG ,∴∠AFM +∠FAG +∠DFN +∠FDG =180°,∴2∠AFM +2∠DFN =180°,∴2∠AFD =180°,∴∠AFD =90°.2.已知:如图1,四边形ABCD 中,135ABC Ð=°,连接AC 、BD ,交于点E ,BD BC AD AC ^=,.(1)求证:90DAC Ð=°;(2)如图2,过点B 作BF AB ^,交DC 于点F ,交AC 于点G ,若2DBF CBF S S =V V ,求证:AG CG =;(3)如图3,在(2)的条件下,若3AB =,求线段GF 的长.【答案】(1)见解析;(2)见解析;(3)52【解析】(1)解:如图,过点A 作AP ⊥BD 于点P ,AF ⊥BC ,交CB 的延长线于点F ,∵AP ⊥BD ,AF ⊥BC ,BD ⊥BC∴四边形APBF 是矩形∵∠ABC =135°,∠DBC =90°,∴∠ABP =45°,且∠APB =90°,∴AP =PB ,∴四边形APBF 是正方形,∴AP =AF ,且AD =AC ,∴ΔΔRt APD Rt AFC HL ≌(),∴∠DAP =∠FAC ,∵∠FAC +∠PAC =90°,∴∠DAP +∠PAC =90°,∴∠DAC =90°(2)如图,过点F 作FM ⊥BC 于点M ,FN ⊥BD 于点N ,过点C 作CP ⊥BF 于点P ,在BD 上截取DH =BC ,连接AH ,∵∠ABC =135°,∠ABF =90°,∴∠CBF =45°,且∠DBC =90°,∴∠DBF =∠CBF ,且FN ⊥BD ,FM ⊥BC ,∴FN =FM ,∵S △DBF =2S △CBF ,∴1122BD FN BC FM ´´=´´×2,∴BD =2BC ,∴BH =BD ﹣DH =BD ﹣BC =BC ,∵∠AED =∠BEC ,∠DAC =∠DBC =90°,∴∠ADH =∠ACB ,且AD =AC ,DH =BC ,∴△ADH ≌△ACB (SAS ),∴∠AHD =∠ABC =135°,AH =AB ,∴∠AHB =∠ABD =45°,∴∠HAB =90°,∵BC =BH ,∠HAB =∠BPC ,∠AHB =∠FBC =45°,∴△AHB ≌△PBC (AAS ),∴AB =PC ,∵AB =PC ,且∠ABP =∠BPC ,∠AGB =∠CGP ,∴△AGB ≌△CGP (AAS ),∴AG =GC(3)解:如图,∵AB =3=PC ,∠PBC =45°,PC ⊥BF ,∴BP =PC=3,∵△AGB ≌△CGP ,∴BG =PG =32,在Rt PGC D 中,CG ∴AG =GC ,∴AC =AD =2AG =在Rt ADC D 中,CD ,∵S △DBF =2S △CBF ,∴DF =2FC∵DF +FC =DC ,∴F C在Rt PFC D 中,PF =1,∴FG =PG +PF =1+32 =52.3.如图1,正方形ABCD 中,点E 是BC 延长线上一点,连接DE ,过点B 作BF ⊥DE 于点F ,交CD 于点G .(1)求证:CG =CE ;(2)如图2,连接FC ,AC .若BF 平分∠DBE ,求证:CF 平分∠ACE ;(3)如图3,若G 为DC 中点,AB =2,求EF【答案】(1)证明见详解;(2)证明见详解;【解析】(1)证明:∵四边形ABCD 是正方形,∴BC =DC ,∠BCG =∠DCE =90°,∵BF ⊥DE ,∴∠DFG =∠BCG =90°,∵∠DGF =∠BGC ,∴∠GBC =∠EDC ,在△BCG 和△DCE 中,BCG DCE BC DC GBC EDC Ð=Ðìï=íïÐ=Ðî,∴△BCG ≌△DCE (ASA ),∴CG =CE ;(2)证明:∵BF 平分∠DBE ,BF ⊥DE ,∴DF =EF ,∴CF 是Rt △DCE 的中线,∴CF =EF ,∴∠E =∠FCE ,∵四边形ABCD 是正方形,∴∠DBE =∠ACB =45°,∵BF 平分∠DBE ,∴∠FBE 12=∠DBE =22.5°,∴∠E =90°﹣∠FBE =90°﹣22.5°=67.5°,∴∠FCE =67.5°,∴∠ACF =180°﹣∠FCE ﹣∠ACB =180°﹣67.5°﹣45°=67.5°,∴∠ACF =∠FEC ,∴CF 平分∠ACE ;(3)解:∵四边形ABCD 是正方形,∴∠BCG =90°,AB =BC =CD=2,BD ==∵G 为DC 中点,∴CG =GD 12=CD=1,在Rt△BCG 中,由勾股定理得:BG ===设GF =x ,在Rt △BDF 和Rt △DFG 中,由勾股定理得:BD 2﹣BF 2=DF 2,DG 2﹣GF 2=DF 2,∴2222-=1-x x (),解得:x =,∴DF 2=12﹣22025=,∴DF =,由(1)知:△BCG ≌△DCE ,∴BG =DE =,∴EF =DE ﹣DF =4.已知:在四边形ABCD 中,180,B CAD DE AC Ð+°Ð=^于E ,且2AD AE =.(1)如图1,求B Ð的度数;(2)如图2,BF 平分ABC Ð交AC 于F ,点G 在BC 上,连接FG ,且AF FG =.求证:AB BG =;(3)如图3,在(2)的条件下,AF AD =,过点F 作FH CD ^,且2CH CG =,若21,52CD AB ==,求线段BF 的长.【答案】(1)120°;(2)见解析;(3)3.【解析】(1)解:如图1,取AD 的中点F ,连接EF ,∵DE ⊥AC ,∴∠AED =90°,∴AD =2AF =2EF ,∵AD =2AE ,∴AE =EF =AF ,∴∠CAD =60°,∵∠B +∠CAD =180°,∴∠B =120°;(2)证明:如图2,作FM ⊥BC 于M ,FN ⊥AB 于点N ,∴∠BMF =∠BNF =90°,∠GMF =∠ANF =90°,∵BF 平分∠ABC ,∴FM =FN ,在Rt △BFM 和Rt △BFN 中,BF BF FM FN =ìí=î,∴Rt △BFM ≌Rt △BFN (HL ),∴BM =BN ,在Rt △FMG 和Rt △FNA 中,FG FA FM FN=ìí=î,∴Rt △FMG ≌Rt △FNA (HL ),∴MG =NA ,∴BN +NA =BM +MG ,∴AB =BG .(3)如图3,连接AG ,DF ,DG ,作FM ⊥BC 于M ,延长GF 交AD 于N ,∵AF =AD ,∠DAE =60°,∴△ADF 是等边三角形,∴∠AFD =60°,AF =DF ,∵GF =AF ,∠DFC =180°-∠AFD =120°,∴AF =GF =DF ,∴∠FGD =∠FDG ,∠FAG =∠FGA ,∴∠AGD =12∠AFN +12∠DFN =12∠AFD =12×60°=30°,∵∠ADC =120°,AD =DG ,∴∠DGA =∠DAG =1802ADC °-Ð=30°,∴∠DGC =180°-∠DGA -∠AGD =180°-30°-30°=120°,∴∠DGC =∠DFC ,∵∠1=∠2,∴180°-∠DGC -∠1=180°-∠DFC -∠2,∴∠GCF =∠FDG ,∠DCF =∠FGD ,∴∠GCF =∠DCF ,∵FH ⊥CD ,∴FM =FH ,∵∠FMG =∠FHD =90°,∴Rt △FMG ≌Rt △FHD (HL ),∴DH =MG ,同理可得:△MCF ≌△HCF (HL ),∴CM =CH =2CG ,∴GM =CG =DH ,∴3CG =CD =212,∴GM =CG =72,∴BM =BG -GM =AB -GM =5-72=32,在Rt △BFM 中,∠BFM =90°-∠FBM =90°-60°=30°,∴BF =2BM =3.5.如图1,ABC D 的ABC Ð和ACB Ð的平分线BE ,CF 相交于点G ,60BAC Ð=°.(1)求BGC Ð的度数;(2)如图2,连接AG ,求证:AG 平分BAC Ð;(3)如图3,在⑵的条件下,在AC 上取点H ,使得AGH BGC Ð=Ð,且8AH =,10BC =,求ABC D 的周长.【答案】(1)120°;(2)见解析;(3)28【详解】(1)证明:如图1,BE CF Q 、分别平分ABC ACB ÐÐ、,111 , 2 22ABC ACB \Ð=ÐÐ=Ð,()()11112 180 90 222ABC ACB A A \Ð+Ð=Ð+Ð=°-Ð=°-Ð,60BAC Ð=°Q ,() 1 180 ********BGC A \Ð=°-Ð+Ð=°+Ð=°;(2)如图2,过点G 分别作GM ⊥AB 于M ,GN ⊥BC 于N , GQ ⊥AC 于Q ,BE Q 平分ABC Ð, GM ⊥AB 于M ,GN ⊥BC 于N ,GM GN \=,同理GN GQ =,GM GQ \=,∵GM ⊥AB 于M , GQ ⊥AC 于Q , AG \平分BAC Ð ;(3)解:∵GM ⊥AB 于M , GQ ⊥AC 于Q ,GM =GQ ,∴AG 平分BAC Ð,∵又60BAC Ð=°, 30BAG CAG \Ð=Ð=°,在BC 上取点K ,使 BK BA =,BE Q 平分ABC Ð,ABG CBG \Ð=Ð,又BG BG =Q ,ABG KBG \D D ≌,BKG BAG \Ð=Ð,30BKG BAG \Ð=Ð= ,=18030150GKC \Ð-= ,120AGH BGC Ð=Ð=°Q , 30CAG Ð=°,120 30 150GHC \Ð=°+°=°,GKC GHC \Ð=Ð,又CG CG =Q ,KCG HCG Ð=Ð,KCG HCG \D D ≌,CK CH \=,△ABC 的周长为:()()2210828AB BC CA AB BK KC AH CH BC AH ++=++++=+=´+=, ABC \D 的周长是28.6.如图所示,AD 是ABC V 的高,点H 为AC 的垂直平分线与BC 的交点,HC AB =.(1)如图1,求证:2B C Ð=Ð;(2)如图2,若2DAF B C Ð=Ð-Ð,求证:AC BF BA =+;(3)在(2)的条件下,若12AC =,CF 10=,求DF 的长.【答案】(1)见解析;(2)见解析;(3)1【详解】解:(1)连接AH ,∵H 为AC 的垂直平分线与BC 的交点,∴HA HC =,HAC C Ð=Ð,∵HC AB =,∴AB AH =,∴B AHB Ð=Ð,∵AHB C HAC Ð=Ð+Ð,∴2AHB C Ð=Ð,∴2B C Ð=Ð.(2)∵2DAF B C Ð=Ð-Ð,∴1122DAF B C Ð=Ð-Ð,在Rt ADF V 中,9090DAF AFD FAC C Ð=°-Ð=°-Ð-Ð,∴119022FAC C B C °-Ð-Ð=Ð-Ð∴[]111190180()2222FAC B C B C BAC Ð=°-Ð-Ð=°-Ð+Ð=Ð,即AF 平分BAC Ð, 在AC 上截取AG AB =,连接FG ,在BAF △和GAF V 中,AB AG BAF GAF AF AF =ìïÐ=Ðíï=î,∴()BAF GAF SAS V V ≌,∴BF FG =,AB =AG ,B AGF Ð=Ð,∵2B CÐ=Ð∴2AGF C Ð=Ð,∴GFC C Ð=Ð,∴FG GC BF ==,∴AC GC AG BE BA =+=+.(3)在DB 上截取DM DF =,连接AM ,在ADF V 和ADM △中,AD AD ADF ADM DF DM =ìïÐ=Ðíï=î,∴()ADF ADM SAS V V ≌,∴DAF DAM Ð=Ð,∴2MAC DAF FAC Ð=Ð+Ð,由(2)可知119022FAC B C Ð=°-Ð-Ð,又∵2DAF B C Ð=Ð-Ð,2B C Ð=Ð.∴11131909029022222MAC B C B C C C C Ð=Ð-Ð+°-Ð-Ð=+´Ð-Ð=-°Ð°.∵()11111180909022222AMC AFM C FAC C BAC C B C B C C °Ð=Ð=Ð+Ð=Ð+Ð=Ð+-Ð-Ð=-Ð+°Ð=-а∴MAC AMC Ð=Ð ,∴AC MC =∴2MC CF AC CF DF -=-=,∴12102DF-=∴1DF =.7.教材呈现:如图是华师版八年级上册数学教材第96页的部分内容.请根据教材中的分析,结合图①,写出“角平分线的性质定理”完整的证明过程.定理应用:(1)如图②.在△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D .若AC =3,BC =4,求CD 的长;(2)如图③.在△ABC 中,∠ACB =90°,AD 平分∠BAC 交BC 于点D ,点P 在AD 上,点M 在AC 上.若AC =6,BC =8,则PC +PM 的最小值为 .【答案】教材呈现:证明见解析;定理应用:(1)32;(2)245.【详解】教材呈现:OC Q 是AOB Ð的平分线,POD POE \Ð=Ð,,PD OA PE OB ^^Q ,90PDO PEO \Ð=Ð=°,在POD V 和POE △中,POD POE PDO PEO OP OP Ð=ÐìïÐ=Ðíï=î,()POD POE AAS \@V V ,PD PE \=;定理应用:(1)如图,过点D 作DE AB ^于点E ,Q 在ABC V 中,90,3,4C AC BC Ð=°==,5AB \==,Q AD 平分BAC Ð,且90C Ð=°,CD DE \=,在Rt ACD △和Rt AED △中,AD AD CD ED =ìí=î,()Rt ACD Rt AED HL \@V V ,3AC AE \==,532BE AB AE \=-=-=,设CD DE x ==,则4BD BC CD x =-=-,在Rt BDE V 中,222DE BE BD +=,即2222(4)x x +=-,解得32x =,即CD 的长为32;(2)如图,过点M 作MN AD ^,交AB 于点N ,连接PN,Q AD 平分BAC Ð,AD \垂直平分MN (等腰三角形的三线合一),PM PN \=,PC PM PC PN \+=+,由两点之间线段最短得:当点,,C P N 在同一条直线上时,PC PN +取得最小值,最小值为CN ,又由垂线段最短得:当CN AB ^时,CN 取得最小值,Q 在ABC V 中,90,6,8ACB AC BC Ð=°==,10AB \==,又1122Rt ABC S AC BC AB CN =×=×V Q ,11681022CN \´´=´,解得245CN =,即PC PM +的最小值为245,故答案为:245.。

角平分线定理使用中的几种辅助线作法

角平分线定理使用中的几种辅助线作法

角平分线定理使用中的几种辅助线作法一、已知角平分线,构造三角形例题:如图所示,在△ABC 中,∠ABC=3∠C ,AD 是∠BAC 的平分线,BE ⊥AD 于F 。

求证:1()2BE AC AB =- 证明:延长BE 交AC 于点F 。

因为角是轴对称图形,对称轴是角的平分线所在的直线, 所以AD 为∠BAC 的对称轴, 又因为BE ⊥AD 于F ,所以点B 和点F 关于AD 对称, 所以BE=FE=12BF ,AB=AF ,∠ABF=∠AFB 。

因为∠ABF +∠FBC=∠ABC=3∠C ,∠ABF=∠AFB=∠FBC +∠C , 所以∠FBC +∠C +∠FBC=3∠C , 所以∠FBC=∠C ,所以FB=FC ,所以BE=12FC=12(AC -AF )=12(AC -AB ), 所以1()2BE AC AB =-。

二、已知一个点到角的一边的距离,过这个点作另一边的垂线段如图所示,∠1=∠2,P 为BN 上的一点,并且PD ⊥BC 于D ,AB +BC=2BD 。

求证:∠BAP +∠BCP=180°。

证明:经过点P 作PE ⊥AB 于点E 。

因为PE ⊥AB ,PD ⊥BC ,∠1=∠2,所以PE=PD 。

在Rt △PBE 和Rt △PBC 中21F E DCBANPEDCBABP BPPE PD =⎧⎨=⎩所以Rt △PBE ≌Rt △PBC (HL ), 所以BE=BD 。

因为AB +BC=2BD ,BC=CD +BD ,AB=BE -AE , 所以AE=CD 。

因为PE ⊥AB ,PD ⊥BC , 所以∠PEB=∠PDB=90°. 在△PAE 和Rt △PCD 中PE PD PEB PDC AE DC =⎧⎪∠=∠⎨⎪=⎩所以△PAE ≌Rt △PCD , 所以∠PCB=∠EAP 。

因为∠BAP +∠EAP=180°, 所以∠BAP +∠BCP=180°。

专题教材-第2讲:角平分线专题-讲义

专题教材-第2讲:角平分线专题-讲义

角平分线专题1、掌握角平分线的定义、性质及判定定理;2、掌握与角平分线有关的常用辅助线作法,即角平分线的四大基本模型;3、掌握角平分线的常见倒角模型及相关结论。

1、角平分线的四大基本模型;2、角平分线的常见倒角模型及相关结论。

角平分线(1)定义:从一个顶点出发,把一个角分成相等的两个角的射线,叫作这个角的角平分线。

(2)角平分线的性质定理:1如果一条射线是一个角的平分线,那么它把这个角分成两个相等的角。

2在角的平分线上的点到这个角的两边的距离相等。

注意:1在利用角平分线的性质时,“角平分线”和“两个垂直”这两个条件缺一不可。

2角是以其平分线为对称轴的轴对称图形。

(3)角平分线的判定定理:1在角的内部,如果一条射线的端点与角的顶点重合,且把这个角分成两个等角,那么这条射线是这个角的平分线。

2在角的内部,到一个角的两边的距离相等的点在这个角的平分线上。

(4)三角形的三条角平分线交于一点,称作三角形的内心,三角形的内心到三角形三边的距离相等。

类型一:角平分线倒角模型例1.如图所示,把一副三角板(30°,60°,90°和45°,45°,90°)如图(1)放置在平面直角坐标系中,点A在y轴正半轴上,直角边AC与y轴重合,斜边AD与y轴重合,直角边AE交x轴于点F,斜边AB交x轴于点G,O是AC的中点,AC=8.(1)把图(1)中的Rt△AED绕A点顺时针旋转α(0°≤α<90°)得图(2)。

此时△AGH 的面积是10,△AHF的面积是8,分别求F,H,B三点的坐标。

(2)如图(3),设∠AHF的平分线和∠AGH的平分线交于点M,∠EFH的平分线和∠FOC的平分线交于点N,当改变α的大小时,∠N+∠M的值是否会改变?若改变,请说明理由;若不改变,请求出其值.练习1.如图所示,已知点A是y轴上一动点,B是x轴上一动点,点C在线段OB上,连接AC,AC正好是∠OAB的角平分线,∠ABD=∠DBx.问动点A,B在运动的过程中,AC与BD 所在直线得夹角是否发生变化,若变化,请说明理由;若不变,请直接写出具体值.练习2.探究与发现:探究一:我们知道,三角形的一个外角等于它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图(1),∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠EDC的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图(2),在△ADC中,DP,CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图(3),在四边形ABCD中,DP,CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.探究四:若将上题中的四边形ABCD改为六边形ABCDEF,如图(4),请直接写出∠P与∠A+∠B+∠E+∠F的数量关系.本题考查三角形内角和定理,坐标与图形性质,平行线的性质,三角形的面积。

等边三角形中的常用辅助线(经典)

等边三角形中的常用辅助线(经典)

等边三角形中的常用辅助线(经典)================================================ ==============概述--------------------------------------------------------------在等边三角形中,常用的辅助线能够帮助我们解决与三角形相关的几何问题。

本文将介绍几条经典的常用辅助线。

中线--------------------------------------------------------------等边三角形的中线是连接任意两个顶点与对边中点的线段。

在等边三角形中,三条中线都相等且相交于一个点,称为重心。

中线的特点如下:- 三条中线相等- 三条中线的交点即为三角形的重心- 重心到三角形各顶点的距离相等,都为中线长度的2/3角平分线--------------------------------------------------------------等边三角形的角平分线是从每个顶点出发,将对角线平分的线段。

在等边三角形中,三条角平分线相等且相交于一个点,称为内心。

角平分线的特点如下:- 三条角平分线相等- 三条角平分线的交点即为三角形的内心- 内心到三角形各边的距离相等,都为角平分线长度的2/3高线--------------------------------------------------------------等边三角形的高线是从每个顶点垂直于对边的线段。

在等边三角形中,三条高线相等且相交于一个点,称为垂心。

高线的特点如下:- 三条高线相等- 三条高线的交点即为三角形的垂心- 垂心到三角形各顶点的距离相等,都为高线长度的2/3总结--------------------------------------------------------------等边三角形中的常用辅助线包括中线、角平分线和高线。

初一春季讲义.09全等三角形的辅助线之角平分线

初一春季讲义.09全等三角形的辅助线之角平分线
①如左图,当D,B在线段MA,NA上时,求证:CD=CB
②如右图,当D在线段MA延长线,B在射线AN上时,求证:CD=CB
如图所示,AC为∠MAN平分线,过点C发射两条射线CD,CB,使得∠DCB+∠MAN=180°,分别交直线MA,NA于点D,B。
①如左图,当D,B在线段MA,NA上时,求证:CD=CB
②如右图,当D在线段MA延长线,B在射线AN上时,求证:CD=CB
如图所示,正方形ABCD底边的延长线为CE,CF为∠DCE的角平分线,P为底边BC所在直线上第一个动点,连接AP,过点P作直线PF⊥AP,交CF于点F
1)求证:AP=PF
2)当点P移动到CE上时,求证:AP=PF
第九讲全等三角形的辅助线之角平分线
一、角平分线的定义
【概念】把一个角分成两个相等的角的射线叫做角的平分线。
【性质】在角的平分线上的点到这个角的两边的距离相等。
【判定】如果一条射线的端点与角的顶点重合,且把一个角分成两个等角,那么这条射线是这个角的平分线,到一个角两边距离相等的点在这个角的平分线上。
二、角平分线的三大模型
【概念】
如图,在△ABC中,∠B=2∠C,∠BAC的平分线,AD交BC与D.求证: .
(1)如图,△ABC中,∠A的平分线交BABC中, ,∠BAC的平分线AD交BC与D.求证: .
在△ABC中,已知 与 的角平分线交于点D,连接AD,求证:AD平分
如图,已知 , ,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,求证:①AC=AE+CD②
如图,已知 ,AD、CE分别是 、 的平分线,AD、CE相交于点F.
求证:①AC=AE+CD②
如图所示,∠MAN=120°,AC为∠MAN平分线,过点C发射两条射线CD,CB,使得∠DCB=60°,分别交直线MA,NA于点D,B。

人教版八年级下数学机构讲义:角平分线及中点相关辅助线

人教版八年级下数学机构讲义:角平分线及中点相关辅助线

一、角平分线相关辅助线1.对于几何图形的每条辅助线的画出都是有据可依的,没有一条辅助线是“天兵天将”的。

2.辅助线的来源在于我们平时对辅助线画法的积累以及对题目深刻的理解与研究,所以平时要注意开发我们的思维,清晰几何辅助线的产生以及具体的解题思路。

3.解题过程:分析题目(条件和结论),可从条件出发或者从结论出发或者二者同时进行分析知识点一:由角平分线想到的辅助线技巧一:截长补短技巧二:角分线上点向角两边作垂线构全等过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。

知识归纳角平分线及中点相关辅助线技巧三:作角平分线的垂线构造等腰三角形从角的一边上的一点作角平分线的垂线,使之与角的两边相交,则截得一个等腰三角形,垂足为底边上的中点,该角平分线又成为底边上的中线和高,以利用中位线的性质与等腰三角形的三线合一的性质。

(如果题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交)。

技巧四:做平行例1:如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。

【对应练习】1、如图,AB=2AC,∠BAD=∠CAD,DA=DB,求证DC⊥AC。

精讲精练2、已知如图,在△ABC中,∠B=60°,AD、CE是△ABC的角平分线,并且它们交于点O,(1)求:∠AOC的度数;(2)求证:AC=AE+CD.例2:如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。

求证:∠ADC+∠B=180。

【对应练习】1、如图,在△ABC中,∠A=90 ,AB=AC,∠ABD=∠CBD。

求证:BC=AB+AD。

2、已知如图,△ABC的角平分线BM、CN相交于点P。

求证:∠BAC的平分线也经过点P。

例3:已知:如图,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE。

1、如图,已知E 是正方形ABCD 的边CD 的中点,点F 在BC 上,且∠DAE=∠FAE.求证:AF=AD+CF2、如图所示,BD=DC,DE ⊥BC,交∠BAC 的平分线于E ,EM ⊥AB,EN ⊥AC,求证:BM=CN二、中点相关辅助线一、与中点有关的概念 三角形中线的定义:三角形顶点和对边中点的连线三角形中线的相关定理: 直角三角形斜边的中线等于斜边的一半等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边.直角三角形斜边中线:直角三角形斜边中线等于斜边一半知识归纳A CNEMB D A B CED 当堂练习斜边中线判定:若三角性一边上的中线等于该边的一半,则这个三角形是直角三角形二、与中点有关的辅助线秘籍一:倍长中线解读:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的可以旋转等长度的线段,从而达到将条件进行转化的目的。

初一下数学《专题一:角平分线问题中辅助线探究》

初一下数学《专题一:角平分线问题中辅助线探究》

专题一:角平分线问题中辅助线探究一、作垂线——利用角平分线的性质构造相等线段例1:已知:∠AOB=90°,OM是∠AOB的平分线,将三角板的直角顶点P在射线OM上滑动,两直角边分别与OA、OB交于C、D.(1)PC和PD有怎样的数量关系是.(2)请你证明(1)得出的结论.二、利用角平分线+垂线构造轴对称全等知识准备:如图,已知△ABC中,AD平分∠BAC交BC于D,且AD⊥BC,求证:AB=AC.例2:如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长线于E.求证:BD=2CE.变式练习:如图,在△ABC中,AD平分∠BAC,CE⊥AD于E.求证:∠ACE=∠B+∠ECD.三、通过截长补短在角平分线问题中构造全等三角形例3:如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.变式练习:已知,如图,△ABC中,∠BAC=60°,AD平分∠BAC,AC=AB+BD,求∠B的度数.例4:如图,△ABC中,AB=2AC,AD平分∠BAC,且AD=BD.求证:CD⊥AC.四、一题多解例5:如图所示,已知∠B=∠C=90°,DM平分∠ADC,AM平分∠DAB,求证:M是BC的中点.课后作业:学号:姓名:一.选择题1.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.62.如图,△ABC的面积为8cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A.3cm2B.4cm2C.5cm2D.6cm2二.填空题3.如图,OP平分∠AOB,∠AOP=15°,PC∥OB,PD⊥OB于点D,PD=4,则PC等于.三.解答题4.如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=90,AB=18,BC=12,求DE的长.5.如图所示,△ABC的外角∠ACD的平分线CF与∠ABC的平分线BG相交于点O.求证:点O到三边AB,BC,AC的距离相等.6.如图所示,∠ABC=90°,AB=BC,AE是角平分线,CD⊥AE于D,可得CD=AE,请说明理由.7.已知在△ABC中,∠B=2∠C,∠BAC的平分线AD交BC边于点D.求证:AC=AB+BD.8.如图,∠BAC=60°,O是∠BAC平分线上的一点,点E、F分别在AB、AC上,若∠EOF=120°,求证:OE=OF.9.如图:已知AD∥BC,AP平分DAB∠,点P恰在DC上∠,PB平分ABC证明:①AP⊥BP;②点P到直线BCAD,的距离相等;③PCPD=;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级上第十二章 全等三角形
12.7 角平分线辅助线添加方法
教师: 学生: 时间:
教学目标:学会解平面几何题常用辅助线作法——题中有角平线的时。

重难点:根据平面几何题中有角平分线时——采用相对应的辅助作法。

知识回顾与新知识准备
【回顾要点】
角平分线的性质: 1、 2、 3、
【新知识】
角平分线辅助线添加1:角分线上点向角两边作垂线构全等
【知识要点】
角分线上点向角两边作垂线构全等:过角平分线上一点向角两边作垂线,利用角平分线上 的点到两边距离相等的性质来证明问题。

【典型例题】
【例1】如图,BD 是四边形ABCD 中∠ABC 的平分线,∠A +∠C =180°,求证:DA =CD
A B
C
D
1、如图,在四边形ABCD中,AC平分∠BAD,∠ADC+∠ABC=180度,CE⊥AD于E,猜想AD、AE、AB之间的数量关系,并证明你的猜想,
2、如图,已知∠B=∠C=90。

,DM平分∠ADC,AM平分∠DAB,探究线段BM与CM的关系,说明理由。

【例2】如图,△ABC中,AD是∠A的平分线,E、F分别为AB、AC上一点,且∠EDF+∠BAF=180°,求证:DE=DF.
举一反三:如图,在△ABC中,D为BC的中点,DE⊥BC,交∠BAC的平分线AE于E,EF⊥AB于F,EG⊥AC交AC的延长线于G,求证:BF=CG.
角平分线辅助线添加方法2------截取构全等
E
B
A
C
D
B
C
M
A
D
【知识要点】
截取构全等
如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD , 从而为我们证明线段、角相等创造了条件。

【典型例题】
【例1 方法2】如图,BD 是四边形ABCD 中∠ABC 的平分线,∠A +∠C =180°,求证:DA =CD
图1-1
O
A
B
D E
F
C
A B
C
D
举一反三:如图,已知△ABC 中,AB =AC ,∠A =100°,∠B 的平分线交AC 于D ,求证:AD +BD =BC
角平分线辅助线添加方法3------延长垂线段
【知识要点】
延长垂线段:题目中有垂直于角平分线的线段,
则延长该线段与角的另一边相交,构成等腰三角形。

【典型例题】
【例3】已知:如图,在Rt △ABC 中,AB =AC ,∠BAC =90°,BD 平分∠ABC ,CE ⊥BD 的延长线于E .
求证:BD =2CE .
举一反三:如图,已知△ABC 中,CE 平分∠ACB ,且AE ⊥CE ,∠AED +∠CAE =180度,求证:DE ∥BC
A
C
B D
A
C
D
E
B
【知识要点】
做平行线:以角分线上一点做角的另一边的平行线,构造等腰三角形
有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形。

或通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形。

如图4-1和图4-2所示。

【典型例题】
【例4】已知:如图,)(AC AB ABC ≠∆中,D 、E 在BC 上,且DE=EC ,过D 作DF ∥AB,交AE 于点F ,DF=AC.
求证:AE 平分BAC ∠.
你这堂课学到了什么?
图4-2
图4-1
C
A
B
C B
A
F
I
E D
H
G
A B
C
F
E
D
友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。

相关文档
最新文档