Stability of lithium ion conductor NASICON structure glass ceramic in acid and alkaline solution
液相辅助烧结LLTO基固体电解质的制备与表征
Advances in Condensed Matter Physics 凝聚态物理学进展, 2020, 9(1), 1-10Published Online February 2020 in Hans. /journal/cmphttps:///10.12677/cmp.2020.91001Preparation and Characterizationof LLTO-Based Solid Electrolytes byLiquid-Phase-Assisted SinteringYuxi Zhou, Yue Jiang, Yi Huang, Zhiwei Hu, Qingyuan Wang, Xiaohong Zhu*College of Materials Science and Engineering, Sichuan University, Chengdu SichuanReceived: Mar. 2nd, 2020; accepted: Mar. 16th, 2020; published: Mar. 23rd, 2020AbstractCompared with liquid electrolyte lithium-ion batteries, all-solid-state batteries have great poten-tial in improving safety and obtaining high performance. However, there are still many bottle-necks in the development of all-solid-state batteries. The insufficient room-temperature ionic conductivity (10−5~10−3 S/cm) when compared to those of conventional organic liquid electrolytes (10−2 S/cm), the difficulty in informing an effective electrode-electrolyte interface and insufficient fundamental understanding of the interfacial process after charge/discharge all hinder the prac-tical application of such devices. Lithium strontium titanate (Li3x La2/3-x TiO3, represented as LLTO) is a good kind of ionic conductor for all-solid-state batteries. Its bulk conductivity at room tem-perature can reach 10−3 S/cm when x = 0.10, which is close to the conductivity of organic liquid li-thium-ion conductor. In this work, LLTO solid electrolyte materials were synthesized at different temperatures and Li2CO3 was used as a liquid-phase sintering aid to improve the sintering beha-vior of LLTO and to enhance the ionic conductivity. The experimental results show that the opti-mum sintering temperature of Li0.33La0.57TiO3 is 1300˚C and the total conductivity at this tempera-ture is 2.29 × 10−5 S/cm. The addition of Li2CO3 has a positive effect on the electrical properties of LLTO. When 1.0 wt% Li2CO3 is added, the total conductivity of LLTO reaches 4.92 × 10−5 S/cm and2.89 × 10−5 S/cm at the sintering temperature of 1300 and 1200˚C, respectively, both of which aresignificantly higher than that of LLTO samples sintered at the same temperatures without the sin-tering aid.KeywordsAll-Solid-State Lithium-Ion Battery, Solid Electrolyte, LLTO, Sintering Aid液相辅助烧结LLTO基固体电解质的制备与表征周玉玺,江跃,黄毅,胡志伟,王青元,朱小红**通讯作者。
水系钠离子电池负极材料NaTi2_(PO4)3_的研究进展
第14卷第4期2023年8月有色金属科学与工程Nonferrous Metals Science and EngineeringVol.14,No.4Aug. 2023水系钠离子电池负极材料NaTi 2(PO 4)3的研究进展刘晓娟a ,b , 王春香a ,b , 吴永麟a ,b , 钟晓辉a ,b , 廖斯民a ,b, 李之锋*a(江西理工大学,a.材料冶金化学学部;b.江西省动力电池及材料重点实验室,江西 赣州 341000)摘要:近年来,水系钠离子电池由于原材料储量丰富、安全可靠、环境友好等优势在电化学储能系统中引起了愈加广泛的关注与研究。
在已报道的诸多水系钠离子电池负极材料中,具有超离子导体结构的NaTi 2(PO 4)3 (NTP )成为最具代表性的负极材料。
然而,由于NTP 固有的本征电子导电性差与不可逆的“溶解-沉淀”行为阻碍了其进一步实际应用。
本文综述了近几年来NTP 及其复合材料作为负极材料在水系钠离子电池中的研究进展,总结了NTP 改性的主要方法,包括表面修饰、尺寸形貌控制和掺杂取代,并对每种改性措施进行了详细论述。
最后对NTP 作为水系钠离子电池负极材料的应用前景进行了展望。
关键词:水系钠离子电池;NaTi 2(PO 4)3;负极材料;评述中图分类号:TM912.2;TG146.26 文献标志码:AResearch progress of NaTi 2(PO 4)3 anode materials for aqueoussodium-ion batteriesLIU Xiaojuan a, b , WANG Chunxiang a, b , WU Yonglin a, b , ZHONG Xiaohui a, b , LIAO Simin a, b , LI Zhifeng *a(a. Faculty of Materials Metallurgy and Chemistry ; b. Jiangxi Key Laboratory of Power Battery and Materials , Jiangxi University ofScience and Technology , Ganzhou 341000, Jiangxi , China )Abstract: In recent years, aqueous sodium-ion batteries have attracted increasing attention, and more and more research focuses on electrochemical energy storage systems due to their advantages of abundant raw materials, safety and reliability, and environmental friendliness. NaTi 2(PO 4)3 (NTP) with a superionic conductor structure has become the most representative anode material in many reported aqueous sodium-ion batteries. However, the inherent poor electronic conductivity and irreversible dissolution-precipitation behavior of NTP have hindered its further practical application. In this work, the research progress of NTP and its composites as anode materials in aqueous sodium-ion batteries in recent years were reviewed, and the main methods of NTP modification were summarized, including surface modification, size morphology control and doping substitution. Moreover, each modification method was also discussed in detail. Finally, the application prospects of NTP as anode materials for aqueous sodium-ion batteries are proposed.Keywords: aqueous sodium-ion batteries ; NaTi 2(PO 4)3;anode materials ; review 收稿日期:2022-07-22;修回日期:2022-11-19基金项目:国家自然科学基金资助项目(51874151)通信作者:李之锋(1979— ),副教授,主要从事新能源电池及其材料方面的研究。
Li_(2)MgSiO_(4)包覆LiCoO_(2)正极材料的高电压性能
Li 2 MgSiO 4包覆LiCoO 2正极材料的高电压性能申斌,刘万民*,秦牡兰,王伟刚(湖南工程学院材料与化工学院,湖南湘潭411100 )摘要:采用溶胶-凝胶法制备快离子导体硅酸镁锂(Li 2MgSiO 4)包覆的钴酸锂(LiCoO 2)正极材料,利用XRD 、SEM 和能量散射谱(EDS )等分析样品的晶体结构、形貌和元素组成。
Li 2MgSiO 4包覆未破坏LiCoO 2的层状结构,且包覆层分布均匀,使 电化学性能得到提升。
在2. 75~4. 55 V 充放电,包覆材料的0. 10 C 比容量为206. 3 mAh/g ;0. 50 C 循环50次的容量保持率为82. 8%,高于未包覆材料的34. 8% ;4. 00 C 放电比容量可达0. 10 C 时的64%。
关键词:锂离子电池;钴酸锂(LiCoO 2);硅酸镁锂(Li 2MgSiO 4);高电压;包覆中图分类号:TM912. 9 文献标志码:A 文章编号:1001-1579(2021)02-0178-05High voltage performance of Li 2MgSiO 4 coated LiCoO 2 as cathode materialSHEN Bin,LIU Wan-min * ,QIN Mu-lan,WANG Wei-gang( College of Materials and Chemical Engineering , Hunan Institute f Engineering ,Xiangtan , Hunan 411100, China )Abstract :The lithium cobalt oxide( LiCoO ^) cathode material coated with fast ion conductor material lithium magnesium silicate( Li 2 MgSiO 4 ) was prepared via sol-gel method. The crystal structure,morphology and element composition of prepared samples wereanalyzed by XRD,SEM and energy dispersive spectroscopy( EDS). The Li ^MgSiO 4 coating layer didn ' t damage the layered structureof LiCoO : and was evenly distributed , so that the electrochemical performance was improved. When charged-discharged in 2. 75 -4. 55 V,the specific capacity of the coated material was 206. 3 mAh/g at 0. 10 C,the capacity retention rate of 50 cycles at 0. 50 Cwas 82. 8% ,which was higher than the 34. 8% of the uncoated material, when discharged at 4. 00 C, it could deliver 64% of the specific capacity at 0. 10 C.Key words :Li-ion battery ; lithium ion cobalt oxide ( LiCoO ^) ; lithium magnesium silicate ( Li 2MgSiO 4 ) ; high voltage ;coating钻酸锂(LiCoO 2)正极材料的理论比容量有274 mAh/g, 但可逆充放电容量与工作电压相关[l ]o 充电上限电压越高,放岀的容量越多,但材料的结构和界面稳定性也会变差,对 应循环性能下降,因此,在实际应用中丄iCoO 材料的可用容量低于理论值。
EcoFlow RIVER 2 Max 迷你便携电源快速启始指南说明书
EcoFlow RIVER 2 Max Portable Power StationQuick Start GuideRead all safety tips, warning messages, terms of use, and disclaimers carefully. Refer to the terms of use and disclaimer at https://ecofl/pages/terms-of-use and stickers on the product before use. Users take full responsibility for all usage and operations. Familiarize yourself with the related regulations in your area. You are solely responsible for being aware of all relevant regulations and using EcoFlow products in a way that is compliant.Control, monitor and customize your portable power station from afar with the EcoFlow App. Download at: https:///us/support/download/index 1EcoFlow AppEcoFlow App2 1.Add device 4 3.Connect to the InternetInternet setupConnect3 2.Search with Bluetooth1. Product On When switched off, press the main power switch briefly to turn on the power.2. Product Off Press and hold the main power switch to turn off the product. When there is a charging input source, the product will not be the turn off.3. USB Output Port The USB outlet (USB-A output/USB-C output) can be used after making sure that the main power is on.4. 12V Car Output Port After ensuring that the main power is turned on, press the DC output switch briefly to use the 12V DC output port. Press the DC output switch briefly again to turn it off.5. AC Output Sockets After ensuring that the main power is turned on, press the AC output switch briefly to use the AC output port. Press the AC output switch briefly again to turn it off (Switching frequency: With AC power on, press and hold the AC power button for 10 seconds to switch the frequency, or use the APP to switch the frequency).6. APP Control When the main power is switched on, the Wi-Fi module and Bluetooth module are turned on by default. The user can connect the product to the app through Bluetooth. If you want to use the app from a long distance and you have a router, you may choose Wi-Fi for network distribution.Privacy PolicyBy using EcoFlow Products, Applications and Services, you consent to the EcoFlow T erm of Use and Privacy Policy, which you can access via the “About” section of the “User” page on the EcoFlow App or on the official EcoFlow website at https:///policy/terms-of-use and https:///policy/privacy-policy.For more information, Please go to EcoFlow Official Website to get the Complete Version of the User Manual.www.ecofl/pages/downloadIn compliance with laws and regulations, the company has the final right to interpret this document and all related documents of this product. If there is any update, revision or termination without notice, please visit EcoFlow official website for the latest product information.1. AC output switch2. Main power switch3. Power Indicator4. USB-A port emperature High T5. USB-C port6. LCD7. Car charger outlet (10A)8. DC5521 output port (3Ax2)9. DC output switch 10. AC output socket 11. X-Stream AC ChargingInput Port12. Solar/Car ChargingInput PortUSB-C ChargingFull Charge Time: in 6hrs100W MaxIf any alert occurs during the use of this product and the alert icon does not disappear after the product is restarted, please stop using the product immediately (do not attempt to charge or discharge).If the above information fails to resolve your problem, please contact customer servicefor further support.WARNING – When using this product, basic precautions should always be followed, including the following:1. Read all the instructions before using the product.2. Do not use the product near a heat source, such as a fire source or a heatingfurnace. Exposure to fire or temperature above 130°C (265°F) may causeexplosion.3. Avoid contact with any liquid. Do not immerse the product in water or get itwet. Do not use the product in rain or humid environments.4. Do not use the product in an environment with strong static electricity/magnetic fields.5. Do not disassemble the product in any way for repair or modification, and donot pierce the product with sharp objects. T ake it to a qualified service person when service or repair is required, Incorrect reassembly may result in a risk of fire or electric shock.6. Avoid using wires or other metal objects to inset any connector that mayresult in a short circuit.7. Do not use unofficial components or accessories that may result in a riskof fire, electric shock, or injury to persons. If you need to replace anycomponents or accessories, please visit official EcoFlow channels to check relevant information.8. When using the product, please strictly follow the operating environmenttemperature specified in this user manual. If the temperature is too high,it may result in a fire or explosion; if the temperature is too low, the product performance may be severely reduced, or the product may cease to work.9. Do not stack any heavy objects on the product.10. D o not lock the fan forcibly during use, product shall work in a well ventilatedarea and do not restrict ventilation in any way.11. Please avoid impact, falls, or severe vibrations when using the product. In caseof a severe external impact, turn off the power supply immediately and stop using the product. Ensure the product is well fastened during transportation to avoid vibrations and impacts.12. If you accidentally drop the product into water during use, please placeit in a safe open area, and stay away from it until it is completely dry. The dried product should not be used again, and should be properly disposed of according to the disposal guide in the user manual. If the product catches fire, we recommend that you use the fire extinguishers in the following order: water or water mist, sand, fire blanket, dry powder, and finally a carbondioxide fire extinguisher.13. Use a dry cloth to clean off dirt on the product ports.14. D o Not put into the Microwave.15. T o reduce the risk of injury, close supervision is necessary when the product isused near children.16. Do not put fingers or hands into the product.17. T o reduce risk of damage to the electric plug and cord, pull the plug ratherthan the cord when disconnecting the power pack.18. Do not operate the power pack with a damaged cord or plug, or a damagedoutput cable.19. T o reduce the risk of electric shock, unplug the power pack form the outletbefore attempting any instructed servicing.20. Have servicing performed by a qualified repair person using only identicalreplacement parts. This will ensure that the safety of the product ismaintained.21. Do not use a battery pack or appliance that is damaged or modified.Damaged or modified batteries may exhibit unpredictable behavior resulting in fire, explosion or risk of injury.ers not to place the product on the floor, or at a height less than 457 mm(18 inches) above the floor, during use in a repair facility.23. This product is not recommended for powering medical emergencyequipment related to personal safety, including but not limited to medical grade ventilators (hospital version CPAP: Continuous Positive AirwayPressure), artificial lungs (ECMO, Extracorporeal Membrane Please follow your doctor’s instructions and consult with the manufacturer for restrictions on the use of the equipment. If used for general medical equipment, please be sure to monitor the power status to ensure that the power does not run out.SAVE THESE INSTRUCTIONS1. This product must be grounded. When charging it should malfunction or breakdown, grounding provides a path of least resistance for electric current to reduce the risk of electric shock. This product is equipped with a power cord that has an equipment grounding conductor and a grounding plug. The plug must be plugged into an outlet that is properly installed and grounded in accordance with all local codes ordinances.2. Improper connection of the equipment grounding conductor is able to resultin a risk of electric shock. Check with a qualified electrician if you are in doubt as to whether the product is properly grounded. Do not modify the plugprovided with the product – if it will not fit the outlet, have a proper outlet installed by a qualified electrician.1. What battery does the product use?It uses high-quality lithium-ion battery.2. What devices can the product’s AC output port power?With 500W rated power and 1000W peak power, most consumer electronics.Before you use it, we recommend that you confirm the power of theappliances first and ensure the power sum of all loaded appliances is lower than the rated power.3. How long can the product charge my devices?The charging time is shown on the product’s LCD Screen, which can be used to estimate the charging time of most appliances with stable power usage. 4. How can I know if the product is charging?When it’s charging, the remaining charging time will be shown on the LCD Screen. Meanwhile, the charging indicator icon begins to rotate with theremaining battery percentage and the input power shown on the right of the circle.5. Can I bring the product on a plane?No.General InfoOutput/Input PortsBattery InfoEnvironmental Operating Temperature1. Please use or store the product in an environment temperature between 20°Cto 30°C, away from water, heat, and other metal objects.2. For long-term storage, please recharge it to 60% every three months; Ifthe product is left idle for a long time with severely low battery, irreversible damages may be caused to the battery cell and the product service life will be shortened. The product will not be covered by the warranty if it is not charged or discharged for more than 6 months.3. For safety, please do not store the product in an environment temperaturehigher than 45°C or lower than -10°C for a long time.4. If the product has been idle for too long and the battery is severely low, it willenter a deep sleep protection mode. In such case, please charge the product before using it again.RIVER 2 Max AC Charging Cable Car Charging CableDC5521 Connection Cable Quick Start GuideThis device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:(1) This device may not cause harmful interference, and(2) This device must accept any interference received, including interference that may cause undesired operation.Warning: Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.NOTE: This equipment has been tested and found to comply with the limits fora Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.FCC Radiation Exposure Statement: This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.Users who use their universal solar panels with non-MC4 connector to power the equipment, please note: the solar panel should be in the voltage and current range (please find more information about the requirement in the User Guide). Connecting the wrong MC4 interface may damage the device. EcoFlow does not guarantee equipment failure caused by improper personal operation(For example, the open circuit voltage exceeds 60V).We recommend that you use the EcoFlow solar panels.Please confirm the positive and negative direction of your solar panel(as shown in the figure below).Please connect the positive pole of your solar panel to the MC4 Male head and the negative pole to the MC4 Female head(as shown in the figure below).MC4 Port213Connect your solar panel to the MC4 to XT60 solar panel charging cable Before connecting the solar panel, please make sure the positive pole of the solar panel connects to the MC4 Male head and negative pole to the MC4 Female head (as demonstrate in the figure below).Please connect the positive pole to the MC4 Male head and the negative pole to the MC4 Female head.MC4 Male connectorSolar Panel postive pole +Solar Panel negative pole -MC4 Female connectorEcoFlow RIVER 2 Max station électronique portableGuide de Prise en MainLisez attentivement tous les conseils de sécurité, messages d’avertissement, conditions d’utilisation et clauses de non-responsabilité. Veuillez vous référer aux conditions et clauses de non-responsabilité sur https://ecofl/pages/terms-of-use et les étiquettes sur le produit avant l’utilisation. Les utilisateurs assument l’entière responsabilité de l’utilisation et des opérations effectuées. Veuillez prendre connaissance des règles en vigueur dans votre région. Vous êtes seul responsable de connaître les règles en vigueur et d’utiliser les produits EcoFlow d’une manière conforme à ces règles.Contrôlez, surveillez et personnalisez votre centrale portable à distance avec l’application EcoFlow.T éléchargez-la à l’adresse suivante : https:///us/support/down-load/index1EcoFlow AppEcoFlow App2 1.Ajouter un dispositif3.Se connecter Ố l'Internet32.Recherche avec Bluetooth1. Produit surLorsqu’il est éteint, appuyez brièvement sur l’interrupteur principal d’alimentation pour mettre l’appareil sous tension.2. Product OffAppuyez sur l’interrupteur principal d’alimentation et maintenez-le enfoncé pour éteindre l’appareil. Lorsqu’il y a une source d’entrée de charge, le produit ne s’éteint pas.3. Port de sortie USBLa prise USB (sortie USB-A/USB-C) peut être utilisée après vérification que l’appareil est sous tension.4. Prise 12V allume-cigareAprès vérification que l’appareil est sous tension, appuyez brièvement sur l’interrupteur de sortie CC pour utiliser le port de sortie CC 12V. Appuyez à nouveau brièvement sur l’interrupteur de sortie CC pour l’éteindre.5. Prises de sortie CAAprès vous être assuré que l’appareil est sous tension, appuyezbrièvement sur l’interrupteur de sortie CA pour utiliser le port de sortie CA. Appuyez à nouveau brièvement sur l’interrupteur de sortie CA pour l’éteindre (Changement de fréquence : Avec l’alimentation CA sous tension, appuyez et maintenez le bouton d’alimentation CA pendant 10 secondes pour changer de fréquence, ou utilisez l’APP pour changer de fréquence).6. Contrôle depuis l’applicationLorsque l’alimentation principale est mise sous tension, le module Wi-Fi et le module Bluetooth sont activés par défaut. L’utilisateur peut connecter le produit à l’application via Bluetooth. Si vous souhaitez utiliser l’application à grande distance et que vous disposez d’un routeur, vous pouvez choisir le Wi-Fi pour la distribution du réseau.Politique de confidentialitéEn utilisant les produits, applications et services EcoFlow, vous acceptez lesconditions d’utilisation et la politique de confidentialité EcoFlow, auxquelles vous pouvez accéder via la section « A propos » de la page « Utilisateur » sur l’applica- tion EcoFlow ou sur le site Web officiel EcoFlow à l’adresse https :///policy/terms-of-use et https///policy/privacy-policy .Pour plus d’informations ou pour obtenir la version complète du manuel d’utilisation, veuillez consulter le site d’EcoFlow.www.ecofl/pages/downloadConformément aux lois et règlements en vigueur, l’entreprise a le droit final d’interpréter ce document et tous les documents associés à ce produit. En cas de mise à jour, de révision ou de résiliation sans préavis, veuillez consulter le site Web EcoFlow pour obtenir les dernières informations relatives aux produits.1. Interrupteur de sortie CA2. Interrupteur principal d’alimentation3. Voyant d’alimentation4. Port USB-A5. Port USB-C6. LCD7. Prise pour charger de voiture (10A)8. Port de sortie DC5521 (3Ax2)9. Interrupteur de sortie CC 10. Port de sortie CA11. Port d’entrée charge CA X-Stream12. Port d’entrée de charge solaire/de voiturePourcentage T AvertissementChargement par USB-C T emps de charge complète: 6h100W MaxSi une alerte se produit pendant l'utilisation de ce produit et que l'icône d'alerte ne disparaît pas après le redémarrage du produit, cessez immédiatement d'utiliser le produit (n'essayez pas de le charger ou de le décharger).Si les informations ci-dessus ne permettent toujours pas de résoudre votre problème,veuillez contacter notre service client pour obtenir de l’aide.AVERTISSEMENT - Lors de l’utilisation de ce produit, les précautions de base doivent toujours être respectées, notamment les suivantes :1. Lisez toutes les instructions avant d’utiliser le produit.2. N’utilisez pas le produit à proximité d’une source de chaleur, telle qu’unesource de fire ou un four de chauffage. L’exposition au feu ou à unetempérature supérieure à 130°C (265°F) peut provoquer une explosion.3. Évitez tout contact avec un liquide quelconque. Ne plongez pas le produitdans l’eau et ne le mouillez pas. N’utilisez pas le produit sous la pluie ou dans un environnement humide.4. N’utilisez pas le produit dans un environnement présentant une forteélectricité statique/des fields magnétiques.5. Ne démontez pas le produit de quelque façon que ce soit pour le réparer oule modifier, et ne percez pas le produit avec des objets pointus. Confiez-le à un technicien qualifié lorsqu’un entretien ou une réparation est nécessaire, Un remontage incorrect peut entraîner un risque d’incendie ou de choc électrique.6. Évitez d’utiliser des fils ou d’autres objets métalliques pour insérer unconnecteur, ce qui pourrait entraîner un court-circuit.7. N’utilisez pas de composants ou d’accessoires non officiels qui pourraiententraîner un risque d’incendie, de choc électrique ou de blessure. Si vous devez remplacer des composants ou des accessoires, veuillez consulter les canaux officiels d’EcoFlow pour vérifier les informations pertinentes.8. Lorsque vous utilisez le produit, veuillez respecter strictement latempérature de l’environnement de fonctionnement spécifiée dansce manuel d’utilisation. Si la température est trop élevée,elle peutentraîner une fire ou une explosion ; si la température est trop basse, les performances du produit peuvent être sévèrement réduites, ou le produit peut cesser de fonctionner.9. N’empilez pas d’objets lourds sur le produit.10. Ne pas bloquer le ventilateur de force pendant l’utilisation, le produit doitfonctionner dans une zone bien ventilée et ne pas restreindre la ventilation de quelque manière que ce soit.11. Veuillez éviter les chocs, les chutes ou les vibrations importanteslorsque vous utilisez le produit. En cas de choc externe violent, coupezimmédiatement l’alimentation électrique et cessez d’utiliser le produit.Assurez-vous que le produit est bien fixé pendant le transport afin d’éviter les vibrations et les impacts.12. Si vous faites tomber accidentellement le produit dans l’eau pendant sonutilisation, placez-le dans un endroit sûr et ouvert, et ne vous en approchez pas jusqu’à ce qu’il soit complètement sec. Le produit séché ne doit pas être réutilisé et doit être éliminé de manière appropriée conformément au guide d’élimination figurant dans le manuel d’utilisation. Si le produit prend fire, nous vous recommandons d’utiliser les extincteurs de fire dans l’ordre suivant : eau ou brouillard d’eau, sable, couverture de fire, poudre sèche, et finalement un extincteur de fire au dioxyde de carbone.13. Utilisez un chiffon sec pour nettoyer la saleté sur les ports du produit.14. Ne pas mettre dans le micro-ondes.15. Pour réduire le risque de blessure, une surveillance étroite est nécessairelorsque le produit est utilisé à proximité d’enfants.16. Ne pas mettre les doigts ou les mains dans le produit.17. Pour réduire le risque d’endommager la fiche et le cordon électriques,tirez sur la fiche plutôt que sur le cordon lorsque vous débranchez le bloc d’alimentation.18. Ne faites pas fonctionner le bloc d’alimentation avec un cordon ou une ficheendommagés, ou un câble de sortie endommagé.19. Pour réduire le risque d’électrocution, débranchez le bloc d’alimentation de laprise de courant avant d’entreprendre toute opération d’entretien.20. Faites effectuer l’entretien par un réparateur qualifié en utilisant uniquementdes pièces de rechange identiques. Cela permettra de garantir le maintien de la sécurité du produit.21. N’utilisez pas un bloc-piles ou un appareil endommagé ou modifié. Lesbatteries endommagées ou modifiées peuvent avoir un comportementimprévisible et provoquer un incendie, une explosion ou un risque de blessure.22. Les utilisateurs ne doivent pas placer le produit sur le sol, ou à une hauteurinférieure à 457 mm (18 pouces) au-dessus du sol, pendant son utilisation dans un atelier de réparation.23. Il n’est pas recommandé d’utiliser ce produit pour alimenter les équipementsmédicaux d’urgence liés à la sécurité des personnes, y compris, mais sans s’y limiter, la version hospitalière de la CPAP (pression positive continue des voies respiratoires), l’ECMO (oxygénation par membrane extracorporelle), etc.Veuillez suivre les instructions de votre médecin et consulter le fabricant pour connaître les restrictions d’utilisation de l’équipement.CONSERVEZ CES INSTRUCTIONS1. Ce produit doit être mis à la terre. Lorsque le produit est en cours dechargement, en cas de dysfonctionnement ou de panne, la mise à la terre fournit un chemin de moindre résistance pour le courant électrique afinde réduire le risque de choc électrique. Ce produit est équipé d’un cordon comportant un conducteur de mise à la terre de l’équipement et une fiche de mise à la terre. La fiche doit être branchée dans une prise de courantcorrectement installée et mise à la terre, conformément à tous les codes et ordonnances locaux.2. Une mauvaise connexion du conducteur de mise à la terre de l’équipementpeut entraîner un risque de choc électrique. Vérifiez auprès d’un électricien qualifié si vous avez un doute sur la mise à la terre correcte du produit. Ne modifiez pas la fiche fournie avec le produit - si elle ne convient pas à la prise, faites installer une prise appropriée par un électricien qualifié.1. Quel type de produit utilise cet appareil ?Ce produit utilise une batterie au lithium de phosphate de fer.2. Quels appareils le port de sortie CA est-il capable d’alimenter ?Avec une puissance nominale de 500 W et une puissance de crête de 1000 W, le port de sortie CA du produit peut alimenter la plupart des appareils ménagers.Avant de l’utiliser, nous vous recommandons de vérifier la puissance des appareils en premier lieu et de vous assurer que la puissance totale requise pour tous les appareils est inférieure à la puissance nominale.3. Pendant combien de temps le produit peut-il charger mes appareils?Le temps de charge est indiqué sur l’écran LCD du produit, qui put êtreutilisé pour estimer le temps de charge de la plupart des appareils avec une utilisation électrique stable.4. Comment puis-je savoir si l’appareil est en train de charger ?Quand il est en charge, le temps de charge restant s’affiche sur l’écran LCD.Pendant ce temps, l’icône de l’indicateur de charge commence à tourner en affichant le pourcentage de batterie restant et la puissance d’entrée seraindiquée à droite du cercle.5. Puis-je prendre ce produit avec moi dans l’avion?Non.Informations généralesPorts de sortie/Ports d’entréeInformations relatives à la batterieTempérature ambiante de fonctionnement1. Utilisez ou stockez le produit à une température comprise entre 68 °F et 86 °F(20 °C à 30 °C), à l’écart de toute source d’eau, de toute source de chaleur etde tout objet métallique.2. Pour un stockage à long terme, veuillez la recharger à 60 % tous les trois mois.Si le produit reste inutilisé pendant une longue période avec une batterietrès faible, des dommages irréversibles peuvent être causés à la cellule de la batterie et la durée de vie du produit sera réduite. Le produit ne sera pas couvert par la garantie s’il n’est pas chargé ou déchargé pendant plus de 6 mois.3. Pour des raisons de sécurité, ne stockez pas le produit à une températuresupérieure à 113 °F (45 °C) ou inférieure à 14 °F (-10 °C) pendant une longue période.4. Si le produit n’a pas été utilisé pendant trop longtemps et si le niveau debatterie est très faible, il passe en mode veille profonde. Dans ce cas, chargez le produit avant de l’utiliser à nouveau.RIVER 2 Max Câble de charge CA Câble de chargede voitureCâble de connexion DC5521Guide de Prise en MainEcoFlow RIVER 2 Max移動儲能站快速入門指南在使用前, 請閱讀本產品的使用用戶手冊, 以保證在完全理解後正確使用。
锂离子电池固态电解质制备及性能研究【开题报告】
开题报告应用化学锂离子电池固态电解质制备及性能研究一、选题的背景与意义锂无机固态电解质(ion conductor)又称锂快离子导体(super ion conductor),按其晶体结构分为晶态电解质和非晶态电解质。
晶态电解质又称导电陶瓷,目前已研究的有钙钛矿(ABO3)型结构锂离子电解质、NASICON型结构锂离子电解质、LISICON型结构锂离子电解质等;非晶态电解质又称玻璃态电解质,目前已研究的有氧化物玻璃态锂离子电解质、硫化物玻璃态锂离子电解质等[1-5]。
其导电机制是,锂无机固态电解质具有载流子,在导电过程中伴随着Li+的迁移,并且导电能力跟温度有密切关系。
图1.列举了部分重要的晶态和非晶态无机固态电解质的离子电导率[3]。
图1. 部分重要的晶态和非晶态无机固态电解质的离子电导率的Arrhenius曲线Fig. 1. Arrhenius plot of ionic conductivity of important crystalline and amorphous inorganic solidlithium ion conductor.NaA(PO)(A =Ge, Ti and Zr)发现于1968年。
这个结构被描述成AO6 NASICON晶体结构IV243正八面体和PO4正四面体组成的共价键结构[A2P3O12]-,形成3D相互联系通道和两种分布导电离子间隙位置(M·和M··)。
导电离子越过瓶颈从一个位置移动到另一个位置,瓶颈的大小取决于两种间隙位置(M·和M··)的骨架离子性质和载体浓度。
结果是,NASICON类型化合物的结构和电化学性质随着骨架组成的不同而变化。
比如,在化学通式为LiA’IV2-x A’’IV x(PO4)3的化合物,晶胞参数a 和LiGe(PO)。
通过三价阳离子(Al, Cr, Ga, Fe, c取决于A’IV和A’’IV阳离子大小。
Physical Chemistry of Solid State Electrolytes
Physical Chemistry of Solid StateElectrolytesSolid-state electrolytes (SSEs) have been studied extensively in recent years due to their potential to revolutionize energy storage technologies by enabling solid-state batteries with higher energy densities, longer cycle lives, and improved safety. Physical chemistry is an essential aspect of SSEs in understanding their fundamental properties and developing new materials with enhanced performances.Crystal Structures of SSEsThe crystal structure of SSEs is crucial for their ionic conduction properties. Most SSEs are composed of metal cations or non-metal anions arranged in a crystal lattice that forms a periodic network of voids or channels. The ionic conductivity of SSEs primarily depends on the accessibility of these channels for the movement of ions.For example, the lithium ion conductor Li10GeP2S12 (LGPS) features a tetragonal crystal structure composed of a three-dimensional network of corner-shared GeS4 tetrahedra. The large 12-coordinate Li+ ions occupy the large voids (12-fold coordination sites) between these tetrahedra, while the small 4-fold coordinated P5+ and S2- ions occupy the smaller voids (4-fold coordination sites), forming a disordered distribution pattern in the channels. This unique structure results in high lithium ion conductivity along the three crystallographic directions, achieving values up to 10^-3 S cm^-1 at room temperature.Defect Chemistry of SSEsThe presence of structural defects in SSEs can lead to enhanced ionic conductivity and electrochemical properties. Point defects (vacancies, interstitials) and line defects (dislocations, grain boundaries) can provide additional sites for charge carriers to move more easily through the material. These defects also affect the chemical stability andmechanical strength of SSEs, thus balancing the trade-off between ion conductivity and the electrolyte's structural integrity.For instance, the Li-ion conductor Li7La3Zr2O12 (LLZO) adopts a cubic garnet structure composed of alternating metal oxide layers and Li+ conducting channels. The presence of lithium and oxygen vacancies in the garnet structure can promote Li+ hopping between adjacent octahedral coordination sites, which is the rate-determining step of ionic conduction in LLZO. The introduction of excess lithium ions via Li2CO3 doping can further increase the ionic conductivity of LLZO by creating new lithium vacancies as well as enhancing the lithium-ion diffusivity.Interface Chemistry of SSEsThe interfacial behavior between the SSE and active electrode materials significantly impacts the battery's performance and stability. Understanding the interface chemistry can help design new SSE-electrode material combinations with enhanced electrochemical performance.For example, the Li-ion cathodes used in lithium-ion batteries usually feature a layered oxide structure, such as LiCoO2, which undergoes structural changes (e.g., structural phase transitions, oxygen loss) during cycling that can result in capacity fading and safety issues. The use of SSEs, such as LiPON (Li3.3PO3.8N0.2) or LLZO, as the electrolyte can suppress the side reactions and prevent the degradation of the electrode material. LiPON forms a thin, uniform, and dense interfacial layer between the cathode and electrolyte that blocks the diffusion of active species and protects the cathode from environmental degradation. LLZO, on the other hand, provides a greater degree of mechanical stability and electrochemical reliability due to its high chemical stability and compatibility with most electrodes.ConclusionThe physical chemistry of SSEs plays a critical role in determining their electrochemical properties and their interactions with other materials in energy storage devices such as batteries and supercapacitors. SSEs need to balance their ionicconductivity with thermal stability, mechanical integrity, and chemical compatibility to enable the development of solid-state batteries with better performance. Further studies on SSEs, including their crystal structures, defect chemistry, and interface chemistry, are necessary to improve the energy density, cycle life, and safety of SSE-based energy storage devices.。
焦磷酸锂 离子导体
焦磷酸锂离子导体英文回答:Lithium iron phosphate (LiFePO4) is a type of lithium-ion battery material that is commonly used as a cathode material in rechargeable batteries. It is known for itshigh thermal stability, long cycle life, and high energy density. LiFePO4 is also considered a safe alternative to other lithium-ion battery materials due to its low risk of thermal runaway and reduced likelihood of fire or explosion.LiFePO4 is an ionic conductor, meaning it allows the movement of lithium ions between the cathode and anode during battery charging and discharging. This ion movementis crucial for the battery's operation and performance. LiFePO4 has a three-dimensional tunnel structure that provides pathways for lithium ions to travel through. This structure allows for efficient ion diffusion, resulting in high ionic conductivity.One advantage of LiFePO4 as an ionic conductor is its ability to maintain its performance even at low temperatures. Unlike other lithium-ion battery materialsthat may experience decreased performance in cold environments, LiFePO4 retains its high ionic conductivity, allowing for reliable battery operation in a wide range of temperatures.In addition, LiFePO4 exhibits excellent stability, both electrochemical and thermal. It has a stable voltageplateau during charging and discharging, which leads to a more predictable and consistent performance. This stability is important for applications that require a steady power supply, such as electric vehicles.Furthermore, LiFePO4 is less prone to degradation and side reactions compared to other lithium-ion battery materials. This means that LiFePO4 batteries can have a longer cycle life and maintain their capacity for a longer period of time. This is particularly beneficial for applications that require frequent charging and discharging, such as portable electronic devices.To illustrate the advantages of LiFePO4 as an ionic conductor, let's consider the example of an electric vehicle. LiFePO4 batteries are commonly used in electric vehicles due to their high energy density, long cycle life, and safety features. The ionic conductivity of LiFePO4 ensures efficient charging and discharging of the battery, allowing the electric vehicle to travel long distances without frequent recharging. The stability of LiFePO4 also helps maintain a steady power supply, ensuring a smooth and reliable driving experience.中文回答:焦磷酸锂(LiFePO4)是一种常用于可充电电池正极材料的锂离子电池材料。
2023年6月全国甲卷英语错题重做二次开发学案-高三英语一轮复习
微阅读突破:错题重做2023年6月全国甲卷英语真题阅读根据学生测试的反映,学生易错阅读B篇细节题和阅读C篇和D篇推理判断题。
学生版B篇:本文是一篇记叙文,文章主要讲述了一位DIY高手Terri Boltonis的技能以及DIY项目可能会在女性群体中变成一种潮流趋势。
Terri, who now rents a house with friends in Wandsworth, South West London, says DIY also saves her from losing any deposit when a tenancy (租期) es to an end. She adds: “I’ve moved house many times and I always like to personalise my room and put up pictures. So, it’s been useful to know how to cover up holes and repaint a room to avoid any charges when I’ve moved out.”6. How did Terri avoid losing the deposit on the house she rented?A. By making it look like before.B. By furnishing it herself.C. By splitting the rent with a roommate.D. By cancelling the rental agreement.(2)分析下划线长难句子结构并翻译成中文。
So, it’s been useful to know how to cover up holes and repaint a room to avoid any charges when I’ve moved out.主干:___________________________________________________________________________________分析:________作形式主语,真正的主语是 _________________________;不定式 to know how to cover up holes and repaint a room作____________状语;when引导______________从句。
Analyzing the Properties of Conductive Polymers
Analyzing the Properties of ConductivePolymersConductive polymers are materials made up of long chains of repeating units. These materials have interesting properties, including electrical conductivity, which makes them useful in a variety of applications. In this article, we will discuss some of the key properties of conductive polymers and how they are used.One of the most important properties of conductive polymers is their electrical conductivity. This is what makes them useful for applications such as flexible electronics, batteries, and sensors. Conductive polymers can be used as conductive coatings or adhesives, and can be shaped into wires or other forms for use in electrical circuits.Another property of conductive polymers is their mechanical flexibility. Unlike traditional metal conductors, conductive polymers can be made into flexible materials that can be bent and shaped without breaking. This makes them useful in applications such as wearable electronics, where flexible materials are necessary.Conductive polymers also have the ability to be modified for specific applications. By changing the chemical makeup of the polymer, it is possible to tailor its properties to meet the needs of a given application. For example, conductive polymers can be made to have higher conductivity, better stability, or enhanced sensitivity to external stimuli such as temperature or light.One application of conductive polymers is in the field of energy storage. Batteries made with conductive polymers have higher energy density than traditional batteries, making them useful in applications such as electric vehicles and renewable energy systems. Conductive polymers can also be used in supercapacitors, which are devices that can store energy and release it quickly for use in applications such as powering electronics.Conductive polymers are also used in sensors. Conductive polymers can be made to sense different stimuli, such as pH, temperature, or light. By monitoring changes in conductivity, it is possible to detect changes in the environment. This makes conductive polymers useful in applications such as environmental monitoring and biomedical sensing.In addition to their practical applications, conductive polymers also have interesting properties at the molecular level. They are known for their ability to undergo doping, a process in which charge carriers are introduced into the polymer chain to enhance its conductivity. Doping can be achieved by exposing the polymer to an oxidizing or reducing agent, or by mixing the polymer with another material such as a metal or oxide.In conclusion, conductive polymers are an important class of materials with a wide range of applications. Their unique properties, including electrical conductivity, mechanical flexibility, and the ability to be modified for specific applications, make them useful in a variety of fields. As research in conductive polymers continues, it is likely that new applications and modifications to existing materials will be discovered.。
材料物理导论名词解释
Absorption coefficient 吸收常数:垂直于光束方向的水层元内单位厚度的吸收量Acceptor impurity 受主杂质:lll族杂质在Si、Ge中能够接受电子而产生导电空穴并形成负电中心acceptor ionization 受主电离:空穴挣脱受主杂质束缚的过程Antiferromagnetism 反铁磁性:材料中相邻原子或离子的磁矩作反向平行排列使得总磁矩为零的性质。
Birefringence 双折射:光入射到各向异性的晶体分解为两束光而沿不同方向折射的现象Conduction bands 导带:一部分被电子填充,另一部分能级空着的允带Crystallization 结晶:液态金属转变为固态金属形成晶体的过程Current density 电流密度:描述电路中某点电流强弱和流动方向的物理量currie temperature 居里温度:自发极化急剧消失的温度Diamagnetism 抗磁性:外加磁场使材料中电子轨道运动发生变化,感应出很小的磁矩且该磁矩与外磁场方向相反的性质Dielectric breakdown 介电体击穿:介电体在高电场下电流急剧增大,并在某一电场强度下完全丧失绝缘性能的现象dielectric loss 介电损耗:将电介质在电场作用下,单位时间内消耗的电能Dielectric medium 电介质:能够被电极化的介质Dipolar turning polarization 偶极子转向极化:极性介电体的分子偶极矩在外电场作用下,沿外施电场方向转向而产生宏观偶极矩的极化Disperse phase 分散相:被分散的物质Dispersion of refractive index 折射率的色散:材料的折射率m随入射光频率减小而减小的现象Donor impurity level 施主能级:将被施主杂质束缚的电子能量状态称施主能级Donor impurity 施主杂质:V族杂志在硅、锗中电力时,能够释放电子而产生导电导子并形成整点中心,称其位施主杂质或n型杂志donor ionization 施主电离:施主杂质释放电子的过程Electirical polarization 电子极化:电场作用下,构成原子外围的电子云相对原子核发生位移形成的极化Electrical field 电场:由电荷及变化磁场周围空间里存在的一种特殊物质Electrical resistivity 电阻率:某种材料制成的长1米、横截面积是1平方米的在常温下(20℃时)导线的电阻,叫做这种材料的电阻率。
科普实验-纽扣电池的组装
一、基础信息课题题目纽扣电池的组装科研导师姓名*** 手机*** 实验室地点*** E-mail *** 学科类型化学(√)地理()请在相应的学科后的括号内打“√”活动适合开展时间工作日()周末()节假日()均可(√)请在适合您的时间后的括号内打“√”二、活动内容1.课题研究目标:(1)结果CaCO3沉淀来探究共沉淀法的应用及意义。
(2)探索正极材料的制备过程以及温度对合成材料的影响。
(3)注意组装电池相关事项及学习纽扣电池的组装步骤。
(4)了解锂离子电池在生活中的应用及研究意义。
2.课题研究的主要操作形式或者步骤:称量、溶解、离心、研磨、组装3.实验试剂及器材:实验试剂及厂家:碳酸钠、醋酸锰、醋酸镍、氢氧化锂(国药化学试剂集团公司)组装锂电池所需要物品:锂片、电池壳、PVDF、炭黑(深圳科晶公司)实验器材:天平、磁力搅拌器、离心机、鼓风干燥箱、真空干燥箱、手套箱等4.具体过程:过程备注(问题、需改进内容等)(1)用共沉淀法合成正极材料(LiMn0.5Ni0.5O2)前驱体MnNi(CO3)2。
化学方称式:Mn(CH3COO-)2+ Ni(CH3COO-)2+Na2CO3= NiCO3+MnCO3+2CH3COONa根据上述化学方程式计算并称量所需要药品,将醋酸盐药品和碳酸钠药品分别溶解于去离子水中,将碳酸钠缓慢滴到酸酸盐溶液中观察现象。
离心并倒去上层清液,干燥。
(2) 将前驱体与锂盐混合灼烧(这一步只称量锂盐,灼烧过程做一些讲解。
将提前准备下的产物直接用于下步,)(3) 将正极材料与C、PVDF混合并溶解,涂片。
干燥,切片称量并计算,将正极片放入手套箱组装电池。
尽可能增加学生自己的动手操作机会。
5.数据收集:收集组装电池,讲解电池测试方法。
6.小结:(总结、科学方法、科学原理、技能、心得体会)(1)实验应该是以学生为主体进行的活动,所以本次实验交流成功让学生们参加到实验过程中,大家一起成功用共沉淀和固相的方法合成锂电池正极材料。
大学英语综合教程1课后答案
室温下为气体的非金属单质,是
那些分子量低的双原子分子和惰
性气体分子,这些分子间的作用
力极小。随着分子量的增加,我 们就会发现一种液体Br2和一种 固体I2,它们的蒸气压也表明它 们的分子间作用力较小。一些非 金属元素单质的某些性质见表2。
Diatomic Molecules
H2 N2 F2 O2 Cl2 Br2 I2
The larger atomic radii and more dense electron cloudes of elements of the third period and higher do not allow good parallel overlap of P orbitals necessary for a strong π bond .第三周期和更高周期元素的原子半径较大,电子云更密集,不允许p-轨道进行
anhydrite CaSO4, and barytes BaSO4·2H2O. Sulfur, in one form or another , is used in large quantities for making sulfuric acid , fertilizers ,insecticides , and paper.
Sulfur, an important raw material in industrial chemistry, occurs as the free elements , as SO2 in volcanic regions , as H2S in mineral waters ,and
in a variety of sulfide ores such as iron pyrite FeS2 , zinc blende ZnS , galena PbS and such, and in common formations of gypsum CaSO4•2H2O,
Megger DLRO 10和DLRO 10X产品介绍说明书
DESCRIPTIONDLRO 10 and DLRO 10X set the standards for low resistance measurement, also known as the Megger ‘Ducter™’ test. History of ‘Ducter’ testingFor over 100 years t he ‘Duct er t est ’ has been used t o describe a simple test for measuring very low contact resistances and “Ducter”, which is still used as a trade mark, was the name originally given to t he low resist ance ohmmet er manufact ured by Megger. The name Ducter was registered by Megger in June 1908 and ‘Ducter’ has since become the industry standard.DLRO 10 and DLRO 10X are fully automatic instruments, selecting the most suitable test current up to 10 A d.c. to measure resistance from 0.1 μΩ to 2000 Ω, on one of seven ranges.F or users who desire more control over the measurement process, DLRO 10X uses a menu system controlled by a two-axis paddle to allow the user to manually select the maximum test current. DLRO 10X also adds real time download of results and on board storage for later download to a PC.Both instruments are built into a strong, lightweight case that is equally at home in the field or in the laboratory. Light enough to be worn around the neck, they are small enough to be taken into areas that were previously too small to access.DLRO 10 uses a large, bright 4 1/2 -digit LED display while DLRO 10X has a large, colour display. Normally, measurements are made withforward and reverse currents to cancel the effects of any standing voltages across the test sample.The average value is then displayed within 3 seconds, to a basic accuracy of 0.2%. DLRO 10X displays both forward and reverse measurements as well as the average of the two.DLRO 10X allows the user to set high and low pass limits, thereby enabling simple go-no-go testing.At the end of a test DLRO10X will store the test results, as well as any notes relevant to the test.To ensure customers are able to choose the best test leads to suit their application, the DLRO10 and DLRO10X may be purchased in one of two packages. The first option is supplied with a pair of duplex handspikes with 1.2 m (4 ft) leads, the second option is supplied without test leads to allow customers to order exactly the test leads they require from the accessory list.The instruments are supplied as standard with a Lithium Ion battery pack. The battery packs are interchange-able so that an exhausted battery may be recharged using the external charger supplied while testing continues using a spare pack. Although full charging will take 4 hours, a fast charge mode allows the battery to be 90% charged within 2 1/2 hours from a 12 volt battery or from a standard 120/230 V AC supply via the supplied charger. The battery pack contains its own battery state indicator, which allows the charge-state to be monitored, even without being connected to the instrument.In addition an optional mains / line power supply, the DLRO10LPU isDLRO 10 and DLRO 10XDigital MicrohmmeterDLRO 10 and DLRO 10XDigital Microhmmeter■NEW interchangeable test lead terminations■Auto current reversal cancels standing emfs ■Protected to 600 V■Automatically detects continuity in potential and current connections ■Multiple operating modes including fully automatic ■Alpha-numeric keypad for entering test notes (DLRO 10X)■User selectable high and low limits (DLRO 10X)■Printer output and memory (DLRO 10X)available. This enables the instruments to be directly powered from 90V to 264V, 50/60Hz ideal for repetitive testing applications such as manufacturing production line use.DLRO 10X is fitted with RS232 communications that will allow results to be downloaded in real time or stored for later retrieval.Up to 700 sets of results may be stored within DLRO 10X complete with notes containing up to 200 characters which may be added using the on board keypad. These results can also be downloaded to a PC.MEASUREMENT MODES:A variety of measurement modes are available. Since the introduction of V2.0 firmware, Normal, Auto, Continuous and Inductive mode are available on both the DLRO 10 and the DLRO 10X.DLRO 10 will display the average of the measurements achieved using forward and reverse current, while DLRO 10X displays both individual measurements and the average.Normal mode initiates a test by pressing the Test button on the instrument front panel after connecting the test leads. Continuity of all four connections is checked, forward and reverse currents are applied.Auto mode allows forward and reverse current measurements to be made and the average displayed simply by making contact with all four probes. This mode is ideal when working with the supplied handspikes. Each time the probes are removed and reconnected to the load another test will be performed without the need to press the test button on the instrument.Continuous mode allows repeated measurements to be made on the same sample. Simply connect the test leads and press the test button. The measurement is updated every 3 seconds until the circuit is broken.Inductive mode is intended for use when measuring inductive loads. When measuring inductive loads it is necessary to wait for the voltage to stabilise. This means that the measurement could take a few seconds or several minutes. The test leads are firmly connected to the item to be measured and the Test button is pressed. The instrument will pass a current through the sample and wait for the voltage to stabilise. If possible the current will be increased. This procedure will be repeated until the voltage detected falls into the range 15 mV to 200 mV. The instrument will then continue to take readings, which will gradually decrease to the true value as the voltage stabilises further. The operator decides when the result is stable and presses the test button to terminate the test. Measurement is made with forward current only.Unidirectional mode, on DLRO 10X only, applies a current in one direction only. This does not enable any standing emfs to be negated but speeds up the measurement process. Test starts automatically when probes are connected.APPLICATIONThe needs for accurate low resistance measurement are well known and very diverse. They range through Goods Receiving inspection of components to ground bonding and welded joints. Typical applications include, but are not limited to, making d.c. resistance measurements of:n Switch and contact breaker resistancen Busbar and cable jointsn Aircraft frame bonds and static control circuitsn Integrity of welded jointsn Inter-cell connections on battery systems up to 600 V peakn Quality control of resistive componentsn Transformer and motor winding resistancen Rail and pipe bondsn Metal alloys, welds and fuse resistancen Graphite electrodes and other compositesn Wire and cable resistancen Transmitter aerial and lightning conductor bonding FEATURES AND BENEFITSn Small, lightweight and portable - can be used in tight places, reduces the need for extra long leads and twoperson operation.n Four terminal resistance method shows the true resistance of the item under test.n Bright LED (DLRO 10) and colour display (DLRO 10X) displays are easily visible under all lighting conditionsand reduce human error.n Automatically applies forward and reverse currents which cancel out any standing voltages across the sample under test.n Checks for undue noise during measurement, reducing the possibility of recording the incorrect result.n Automatically detects continuity in P and C circuits, preventing erroneously high reading to be taken due tohigh resistance contact.n Battery module has a battery condition indicator allowing the user to check the state of spare batteries withoutconnecting to the instrument.n RS232 connector on the DLRO 10X allows downloading of results in real time or stored for later retrieval.NEW DUPLEX CONNECT TEST LEADS – NOW SUPPLIED AS STANDARDn Carry one lead set and swap terminations n Simple push and twist for a quick change n Lockable twist cap secures the leads n Extension leads availableThe Megger DLRO duplex connect four terminal test lead system is designed to provide the most cost effective and convenient way to provide the user with all off the test lead terminations and lead lengths required for the many different applications encountered in low resistance testing.At the centre of this unique test lead system is a bespoke connector allowing terminations such as kelvin clips or duplex test probes to be changed as required.SUPPLIED LEADSET OPTIONS:DLRO10 + NO LEADSET SUPPLIED = DLRO10-NLS, order code 1006-660DLRO10 + LEADSET SUPPLIED =DLRO10 + DH4-C, order code 1006-598DLRO10X + NO LEADSET SUPPLIED = DLRO10X-NLS, order code 1006-659DLRO10X + LEADSET SUPPLIED =DLRO10X + DH4-C, order code 1006-600OPTION MAINS / LINE POWER SUPPLY UNITThe DLRO10 and DLRO10X may be also powered from an optional mains / line power supply unit the DLRO10LPU. This unit is simply fitted to the instrument in place of the standard battery pack.When in use a red LED is illuminated when the instrument is powered from a mains / line power supplyThe DLRO10X is seen here fitted with the optional DLRO10LPU The DLRO10X will particularly benefit providing the ability to storetest results with memos whilst powered from a mains / line supply.Ideal for repetitive testing applications such as manufacturing production line useResistance rangesFull scale voltsTest currentFull Scale Resolution Accuracy*Resistive Inductive Resistive Inductive 1.9999 mΩ0.1 μΩ±0.2% ±0.2 μΩ20 mV n/a 10 A n/a 19.999 mΩ 1 μΩ±0.2% ±2 μΩ20 mV 20 mV 1 A 1A 199.99 mΩ10 μΩ±0.2% ±20 μΩ20 mV 200 mV 100 mA 1 A 1.9999 Ω100 μΩ±0.2% ±0.2 mΩ20 mV 200 mV 10 mA 100 mA 19.999 Ω 1 mΩ±0.2% ±2 mΩ20 mV 200 mV 1 mA 10 mA 199.99 Ω10 mΩ±0.2% ±20 mΩ20 mV 200 mV 100 μA 1 mA 1999.9 Ω100 mΩ±0.2% ±0.2 Ω200 mV200 mV100 μA100 μAOperating temperature range and humidity +5 °C to +45 °C (41 °F to 113 °F) at full accuracy -10 °C to +50 °C (14 °F to 122 °F)at reduced accuracy<90% RH @ 40 °C (104 °F) non-condensing Storage temperature range and humidity -30 °C to +70 °C (50 °F to 113 °F)<90% RH @ 40 °C (104 °F) non-condensing Temperature co-efficient <0.01% per °C, over range 5 °C to 40 °C (<0.0006% per °Ffrom 41 °F to 104 °F)Maximum altitude 2000m (6562 ft) to full safety specificationsSafety In accordance with IEC61010-1, CAT III 600 V - only when DH6 leads are used.EMC IP65 case closed, IP54 battery operationIn accordance with IEC61326-1(Heavy industrial)Dimensions 220 x 100 x 237 mm Weight2,6 kg including battery* The accuracy stated assumes forward and reverse measurements.Inductive mode or undirectional mode will introduce an undefined error if an external EMF is present.SPECIFICATIONSMeasurement mode DLRO 10:Manual, Auto,Continuous, InductiveDLRO 10X: Manual, Auto, Continuous, Inductive, Undirectional Measurement control DLRO 10:Fully Automatic DLRO 10X:Fully Automatic/Manual Measurement speed <3s for forward and reversecurrent and to display average Display Measurement : DLRO10: 4 1/2 digit seven segment LEDDLRO10X: Large colour display Range and safety: DLRO10 LED indications Test method Single cycle reversing d.c. ratiometric measurement -average result display.Test current accuracy ±10%Test current stability<10 ppm per secondLead resistance Maximum 100 mΩ total for 10 A operation irrespective of battery condition.Voltmeter input impedance>200 kΩNoise rejection Less than 1% ±20 digits additional error with 100 mV peak 50/60 Hz. on the potential leads.Warning will show if hum or noise exceeds this level.Data transfer DLRO10X: Real Time or from storage via RS232Data storage DLRO10X: 700 testsMemo field DLRO10X: Up to 200 characters per test via integral alphanumeric keypad Battery type 5.2 lithium ion rechargeable Battery life Typical 1300 x 10 Atests before recharge Battery charge time Via external 90 V - 260 V 50/60 Hz charger from 12 to 15 V dc supply Standard: 2.5 hours to 90% capacity,4 hours to fully charged Slow Charge: +10 °C to + 45 °C(50 °F to 113 °F)SALES OFFICE Megger Limited Archcliffe Road Dover CT17 9EN EnglandT +44 (0) 1304 502101 *******************DLRO10--DLRO10X_DS_en_V24ISO 9001The word ‘Megger’ is a registered trademarkDescription Order CodeDLRO10 + NO LEADSET SUPPLIED =DLRO10-NLS, 1006-660DLRO10 + LEADSET SUPPLIED =DLRO10 + DH4-C, 1006-598DLRO10X + NO LEADSET SUPPLIED =DLRO10X-NLS, 1006-659DLRO10X + LEADSET SUPPLIED =DLRO10X + DH4-C, 1006-600Included Accessories5.2 lithium ion battery module. 6121-492DH4-C Duplex handspikes (2), one with indicator lights.1.5 m (Not NLS models) 1006-444Battery charger for operation from 115/230 V .50/60 Hz supply. 6280-333Cigar lighter adapter for battery charging. 6280-332User guide. 6172-473Warranty card. 6170-618Optional Accessories at extra costConnect test lead options – see data separate sheetDLROTestLeads_DS_en_V01Standard test lead option – see data separate sheetDLRO_TL_DS_en_V01Carrying case for DLRO10/10X andall standard accessories. 6380-138Carrying bag for cables 18313Calibration Shunt,10 Ω, current rating 1 mA. 249000Calibration Shunt, 1 Ω, current rating 10 mA. 249001Calibration Shunt, 100 mΩ current rating 1A. 249002Calibration Shunt, 10 mΩ current rating 10 A. 249003Certificate of Calibration for Shunts, NIST CERT-NISTDLRO10LPU-EU Mains power attachment -schuko plug 1003-172DLRO10LPU-UK Mains power attachment - UK plug 1003-093DLRO10LPU-US Mains power attachment - US plug 1003-171Replacement tips for DH4, DH5 and DH6 handspikes.Needle point 25940-012Serrated end 25940-014。
【文献综述】锂离子电池固态电解质制备及性能研究
文献综述化学锂离子电池固态电解质制备及性能研究锂离子电池具有工作电压高、能量密度高、功率密度高、循环寿命长、自放电率低、可快速充放电、无记忆效应、绿色环保无污染等绝对优点,是当今国际公认的理想化学电源,广泛应用于电子产品、交通工具、军事领域和储能方面[1-3]。
目前国内外锂离子二次电池大部分采用的是液态电解质,在生产使用过程中常常遇到一些问题:电解液生产过程中对水分要求十分严格,在电池生产装配过程中对空气湿度也有十分苛刻的要求[4];液态有机电解质可能泄露,部分电解质还对集流体有腐蚀作用,极大限制了锂离子电池向薄层化、小型化的发展趋势;在过高的温度下发生爆炸从而造成安全事故,无法应用在一些对安全性要求高的场合;此外,液态电解质锂离子电池普遍存在循环容量衰减问题,使用一段时间后由于电极活性物质在电解质中的溶解、反应而部分失效。
而全固态电池安全性高、基本没有循环容量衰减,固体电解质还起到了隔膜的作用,简化了电池的结构,可以向薄层化和小型化发展;此外,由于无需隔绝空气,也简化了生产过程中对设备的要求,电池的外形设计也更加方便、灵活[1-2, 5]。
全固态锂离子电池分两种[2, 6-10],一种是使用聚合物凝胶电解质;另一种是采用无机固态电解质。
聚合物锂离子电解质体系已开展的研究众多,按聚合物主体来分,主要有以下几类:聚醚系(主要为聚氧化乙烯,PEO)、聚丙烯腈(PAN)系、聚甲基丙烯酸酯(PMMA)系、聚偏氟乙烯(PVDF)系和其他类型。
尽管聚合物电解质的发展和应用,可以明显克服液态锂离子电池的一些缺点,避免电解液漏液,容易薄层化和小型化,但是仍存在一些问题亟待解决:比如常温下电导率偏低,与电极相容性差,机械强度仍有待提高。
此外,聚合物电解质制备工艺复杂、原料价格高导致聚合物电解质价格昂贵。
聚合物电解质可通过共聚、交联、形成微孔体系、纳米复合、添加增塑剂等来进行性能改进。
未来聚合物电解质的可能朝着两个方向发展:a)交联短链形成网状凝胶结构,增加导电性;b)添加粉末陶瓷,形成有机-无机复合结构,增加机械强度[2, 9-10]。
快离子导体隔膜的制备及在Cu-Zn可逆电池中的应用
CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2017年第36卷第1期·282·化工进展快离子导体隔膜的制备及在Cu-Zn可逆电池中的应用周贻森,梁姗姗,杨超,朱甜,张汉平(常州大学石油化工学院,江苏常州 213164)摘要:具有NASICON结构的锂离子快离子导体Li1.3Al0.3Ti1.7(PO4)3可以通过压片烧结制备成快离子导体隔膜。
以NH4H2PO4、Li2CO3、TiO2和Al2O3为原料,用固相法在900℃烧5h合成Li1.3Al0.3Ti1.7(PO4)3粉末,将其制备成锂离子快离子导体隔膜。
研究了压力、烧结温度和厚度对Li1.3Al0.3Ti1.7(PO4)3快离子导体隔膜离子电导率的影响,并采用X射线衍射、扫描电子显微镜和交流阻抗技术对材料粉末以及烧结片相组成、结构和离子导电性进行表征和测试分析。
隔膜的最优制备条件为压力10.0MPa,烧结温度900℃,厚度0.500mm。
将快离子导体隔膜用于Cu-Zn电池模型中,将正负电解液分开,使Li+能够自由地穿过,而其他离子不能通过,从而组装了可进行反复充放电的铜锌模型电池。
通过循环伏安测试证实Cu-Zn电池的可逆性,所得可充电Cu-Zn模型电池的电压范围为0.800~1.50V,进行100次循环后充电容量保持初始充电容量99%以上,具有长期循环稳定性。
关键词:电化学;膜;电解质;Cu-Zn电池中图分类号:O646 文献标志码:A 文章编号:1000–6613(2017)01–0282–07DOI:10.16085/j.issn.1000-6613.2017.01.035Preparation of a fast ion conducting membrane for rechargeable Cu-ZnbatteriesZHOU Yisen,LIANG Shanshan,YANG Chao,ZHU Tian,ZHANG Hangping (School of Petrochemical Engineering,Changzhou University,Changzhou 213164,Jiangsu,China)Abstract: Lithium fast ion conductor Li1.3Al0.3Ti1.7(PO4)3 with NASICON structure is prepared by solid state reactions using NH4H2PO4,Li2CO3,TiO2 and Al2O3 sintered at 900℃for 5h. The powders are then pressed into tablets and calcined to prepare separators for conducting lithium ions. The effects of pressure, sintering temperature and the thickness on the ionic conductivities are studied. The phases and features of the membrane are investigated by X-ray diffraction and scanning electron microscope, respectively. The ionic conductivities are measured by AC impedance spectra. Optimal conditions referenced to fabricate the membrane are as follows:the pressure is 10.0MPa;the sintering temperature is 900℃and the thickness is 0.500mm. The prepared membrane is employed to separate the cathode and the anode electrolytes apart,where lithium ions can freely pass through whereas other ions cannot.In this way we successfully assemble a rechargeable Cu-Zn battery. The working voltage of the resulting battery is 0.800—1.50V,and the charge capacity remains over 99% of its original capacity after 100 cycles,which shows a good cyclic stability.Key words: electrochemistry;membranes;electrolytes;Cu-Zn batteryCu-Zn电池早在1836年就已被英国的丹尼尔提出,这是一种将锌放置于硫酸锌溶液中作负极,将铜放置于硫酸铜溶液作正极,并用盐桥将两极电解液连接的原电池。
环片硬度对金基合金导电环摩擦磨损性能的影响
张淑敏, 曲强, 刘兰英, 肖杰, 向绍波, 刘雪鹏, 刘继奎. 环片硬度对金基合金导电环摩擦磨损性能的影响[J]. 摩擦学学报(中英文), 2024, 44(3): 358−367. ZHANG Shumin, QU Qiang, LIU Lanying, XIAO Jie, XIANG Shaobo, LIU Xuepeng, LIU Jikui.Effect of Ring Hardness on Friction and Wear Properties of Gold-Base Alloy Slip Rings[J]. Tribology, 2024, 44(3): 358−367. DOI: 10.16078/j.tribology.2022241环片硬度对金基合金导电环摩擦磨损性能的影响张淑敏*, 曲 强, 刘兰英, 肖 杰, 向绍波, 刘雪鹏, 刘继奎(北京控制工程研究所 精密转动和传动机构长寿命技术北京市重点实验室, 北京 100094)摘 要: 通过摩擦磨损试验、寿命试验和表界面分析方法研究了不同硬度的AuAgCu 合金环片与AuNi 合金刷丝在大气环境下的摩擦特性和磨损形貌特征. 结果表明,随着导电环环片硬度由200.4 HV 提高到243.6 HV ,摩擦系数显著降低,环片磨痕宽度有所减小;环片与刷丝接触部位均存在典型的黏着磨损形貌特征,刷丝磨损区域形貌不规则,但硬环的磨损区域呈现出明显的犁削状划痕形貌;硬度不同的环片与刷丝对摩产生的磨屑均为薄片状且无团聚,磨屑成分与环片金属材料成分一致. 此外,通过寿命试验前、后导电环环片和刷丝的质量分析可知,环片硬度的提高可显著降低导电环环片的磨损量. 可见,在一定范围内提高导电环环片硬度,可以获得较好的减摩抗磨效果,为后续电接触材料对偶摩擦副的配副提供了试验和理论依据.关键词: 金基合金; 硬度; 磨损; 表面形貌; 导电环中图分类号: TH117.1文献标志码: A文章编号: 1004-0595(2024)03–0358–10Effect of Ring Hardness on Friction and Wear Properties ofGold-Base Alloy Slip RingsZHANG Shumin *, QU Qiang, LIU Lanying, XIAO Jie, XIANG Shaobo, LIU Xuepeng, LIU Jikui(Beijing Key Laboratory of Long-Life Technology of Precise Rotation and Transmission Mechanisms,Beijing Institute of Control Engineering, Beijing 100094, China )Abstract : Gold-based alloy is one of the typical sliding electrical contact materials, with the advantages of better chemical stability, electrical and thermal conductivity and low contact resistance, and it is widely used in military industry and aerospace fields, such as solar panel drive mechanism, control moment gyroscope, antenna pointing mechanism and so on. With the rapid development of a new generation of military satellites, the demands for satellites with long life and high reliability indexes are increasing, which require higher requirements for the contact stability and wear resistance of aerospace electrical contact materials. Hardness is one of the important properties of materials.Improving the material hardness and reasonably matching the hardness value of friction pairs have a very important impact on tribological properties. The existed research results show that the addition of alloying elements, ion implantation or heat treatment can significantly improve the hardness, wear resistance and friction reduction of materials. However, there are few reports referred to the affect of materials hardness of gold-based alloy slip rings on tribological properties, especially the influence of ring hardness. In order to clarify the influence of ring hardness on itsReceived 24 October 2022, revised 2 January 2023, accepted 2 January 2023, available online 4 January 2023.*Corresponding author. E-mail: **********************.cn, Tel: +86-130********.This project was supported by the National Natural Science Foundation of China (52177140).国家自然科学基金项目(52177140)资助.第 44 卷 第 3 期摩擦学学报(中英文)Vol 44 No 32024 年 3 月TribologyMar, 2024service life and optimize the selection of the frictional material, the tribological properties of AuAgCu alloy rings and AuNi alloy brushes were studied at room temperature in the atmosphere in this paper. Firstly, the microstructures of two different hardness rings were observed by the metallographic microscope. The results indicated that the grain size of the hard ring was smaller, which was mainly due to the different rolling and heat treatment processes. The deformation of the hard ring increased during the rolling process, and a certain degree of recrystallization occurred in the work-hardening structure during heat treatment. The nanoindentation test also confirmed that with the increase of ring rolling deformation, the degree of lattice distortion could increase, and the hardness and elastic modulus of the material could also increase. Then, the friction and wear test results showed that as the hardness of the ring increased from 200.4 HV to 243.6 HV, the average friction coefficient significantly decreased from 0.019 to around 0.04, and the width of ring wear marks decreased, which was related to many factors such as material microstructure and properties, friction pair hardness matching and the surface state. The life test of rings with different hardness was conducted using a dedicated running in equipment, and the results showed that the contact areas of the ring and the brush wire had typical adhesive wear morphology, and the wear areas of the brush wire wer irregular. However, the obvious ploughing scratch morphology was obtained in the wear area of the hard ring. The wear debris produced by conductive slip rings with different ring hardness were flaky and had no agglomeration, and the composition of wear debris was consistent with that of ring metal material. In addition, through the mass analysis of rings and brushes before and after life test, it was known that the wear quality of the ring significantly decreased from 0.005 1 g to 0.003 g with the increase of the ring hardness. Reasonable matching of the hardness of friction pairs was very important for the slip ring to reduce wear. Therefore, better anti-friction and anti-wear effects could be obtained by increasing the ring hardness of gold-base alloy slip rings in a certain range, which provided the experimental and theoretical basis for the compatibility of electrical contact materials.Key words: gold-based alloy; hardness; wear; surface morphology; slip ring金及其合金是典型的滑动电接触材料,具有较好的化学稳定性、导电性和导热性以及接触电阻低等优点,广泛应用于军工和航空航天领域,如太阳帆板驱动机构、控制力矩陀螺和天线指向机构等[1-5]. 随着新一代军用卫星的飞速发展,长寿命、高可靠指标的卫星需求不断提升,这对宇航电接触材料的接触稳定性和耐磨性提出了更高的要求.硬度是材料的重要性能指标,提高材料硬度[6]以及合理匹配对偶摩擦副材料的硬度值对其摩擦磨损特性等具有十分重要的影响. 已有研究表明,采用添加合金元素[7-8]、离子注入[9-11]或热处理等[12]方法均可显著提高材料硬度、改善材料耐磨性并获得较好的减摩效果. Conte等[8]在AuCu 合金中添加了Sn和Pb 等合金元素,发现合金硬度显著提高,黏着磨损程度也相应减轻. Leech[9]在AuAgCu 合金中注入N2+,发现N2+的注入提高了AuAgCu 合金硬度,同时黏着磨损和材料转移现象大幅减轻. 高文等[11]在AuNi合金中注入In+使其表层晶粒细化,提高了材料表层的强度和硬度,改善了合金的耐磨性. 为了探明低轨卫星滑环(Au-Co 镀层环道/AuAgCu 合金触头)磨损寿命的影响因素,李长江等[13]通过正交试验分析发现提高镀金层硬度可以显著改善滑环摩擦磨损特性. 李晓栋等[14]采用磁控溅射在铜表面制备了光滑致密且硬度更高的Au薄膜,研究发现与电镀Au薄膜相比,磁控溅射Au薄膜的导电性、真空载流磨损率和接触电流噪音大幅改善. Furry[15]和曲强等[16]针对导电环电刷硬度进行了研究,发现刷丝硬度的增加能有效降低实际接触面积和磨损表面粗糙度,显著改善其摩擦系数和电接触性能. Antler[17]研究了金合金刷丝和滑环的失效机理,发现环、丝材料的硬度匹配对滑环失效行为影响显著. 陈鸿武等[18]通过在AgCuNi合金中添加稀土金属元素可改变合金硬度,并发现环、刷合理的硬度匹配有利于提高导电环使用寿命. 可见,导电环材料的硬度、对偶副合理的硬度匹配对其摩擦磨损性能具有十分重要的影响.目前,关于金基合金导电环材料硬度对其摩擦磨损性能的研究报道仍较少,有文献研究发现提高刷丝硬度可改善其耐磨性能,而针对环片硬度对导电环摩擦磨损性能影响的研究仍较少. 为了探明导电环环片硬度对其服役寿命的影响规律,优化导电环对偶摩擦副材料的选择,选取了AuAgCu合金环片和AuNi合金刷丝作为研究对象,研究了常温大气条件下环片硬度对金基合金导电环摩擦磨损性能的影响规律,为后续电接触材料对偶摩擦副的选型提供了试验和理论基础.1 试验部分1.1 试验材料及制备本试验中所用导电环片材料为AuAgCu合金,刷第 3 期张淑敏, 等: 环片硬度对金基合金导电环摩擦磨损性能的影响359丝为直径0.28 mm 的AuNi 合金丝. 为了研究环片材料硬度对导电环摩擦磨损性能的影响,本试验选取了2种不同硬度的AuAgCu 合金环片,即环片1为软环,环片2为硬环. 采用岛津全自动显微维氏硬度计(HMV-G31-FA)测试2种环片和刷丝的维氏硬度,每个样品测试3次并取平均值,具体硬度值列于表1中.表 1 合金环片和刷丝的维氏硬度值Table 1 Vickers hardness of alloy rings and brushPartRing 1Ring 2Brush Vickers hardness/HV0.2200.4243.6238.61.2 试验方法摩擦磨损试验:采用通用摩擦磨损试验机(UMT-IV ,Brucker)在大气环境下进行金合金材料的摩擦磨损试验,将AuNi 合金刷丝用工装弯折成直径5 mm 的圆弧,实现刷丝与金合金盘的接触,如图1(a)所示. 摩擦试验所施加的法向载荷为0.1 N ,试验设定的旋转半径为7 mm ,旋转速度为100 r/min ,对应的线速度约为73.27 mm/s ,试验运行2 h.导电环寿命试验:采用实验室自制圆柱环跑合设备在常温大气环境下对导电环的摩擦磨损性能进行测试,试验以100 r/min 的速度顺时针转动至2×106转,刷丝压力为0.1 N. 刷丝和环片的接触方式与导电环和刷丝的装配示意图如图1(b)所示.采用纳米压痕仪(TI 980 TriboIndenter, Brucker)对2种不同硬度的环片进行显微硬度和弹性模量表征.采用使用三维白光干涉仪(NeXView, Zygo)观察试验后刷丝和环片的磨损区域三维形及表面轮廓曲线. 采用场发射环境扫描电子显微镜(Hitachi SU-8010, SEM)观察刷丝和环片磨损表面形貌和磨屑形貌,并使用能谱仪(EDS)对摩损表面进行微区元素分析. 使用精密天平(XS204 200 g/0.1 mg)对寿命试验前、后环片和刷丝的质量进行称量.2 结果与讨论2.1 不同硬度环片材料的微观组织和显微硬度采用金相显微镜对2种不同硬度环片的显微组织进行观测,如图2所示. 由图2(a)可以看出,环片1的晶粒沿塑性加工方向呈现明显的伸长,获得了长约30~55 μm ,宽约7~10 μm 的排列整齐的柱状晶组织. 由于外加压应力的作用,环片1的晶粒出现了一定程度的破碎,即部分柱状晶中会包含多个破碎晶粒. 由图2(b)RingBrushFig. 1 (a) Schematic diagram of material level friction experiment and (b) schematic diagram of contactmode and assembly of slip ring图 1 (a)材料级摩擦试验原理图和(b)导电环接触方式与装配示意图13.3717.175.1317.7050 μm20 μm45.959.067.4437.4754.366.11Fig. 2 Metallographic structure of rings with different hardness: (a) ring 1; (b) ring 2图 2 不同硬度环片的金相组织:(a)环片1;(b)环片2360摩擦学学报(中英文)第 44 卷可以看出,环片2的晶粒长约10~20 μm ,宽约5~10 μm ,且沿轧制方向并无明显的排列取向. 与环片1相比,环片2的晶粒尺寸明显减少,这主要是由于二者的轧制和热处理工艺不同,环片2在轧制过程中加工变形量增大,在热处理过程中通过控制退火温度和时间,加工硬化态的组织会出现一定程度的再结晶,最终环片2获得了晶粒更加细小的组织结构.采用纳米压痕仪对2种不同硬度环片的显微硬度和弹性模量进行测试,结果如图3所示. 由图3可以看出,当压入深度在300 nm 以内时,环片的硬度和弹性模量均存在较大的波动,这可能是由于材料表层成分不均匀或存在氧化、污染层等;当压入深度大于300 nm 直到试验结束,环片的硬度和弹性模量基本保持不变,即为材料基体的测试结果. 由图3(a)显微硬度试验结果可知,环片1和环片2基体的平均显微硬度分别为1.85和2.13 GPa ,将其单位换算成维氏硬度约为171.31 HV 和197.24 HV (1 GPa=92.6 HV). 通过纳米压痕仪测得的显微硬度值比宏观维氏硬度值低,这主要是由于宏观硬度试验中面积值是根据卸载后压痕照片测量得到的,而纳米压痕试验中的面积值是由压入深度计算得到的,包含了弹性变形和塑性变形特征,因而同种材料的显微硬度值会低于宏观维氏硬度[19-20]. 由图3(b)弹性模量试验结果可知,环片1和环片2基体的弹性模量的平均值分别为96.52和105.59 GPa. 可见,提高环片硬度,其弹性模量也略有增加,这主要是由于2种环片的轧制和热处理工艺不同,环片2的冷轧变形量更大,晶格畸变程度增大,材料的硬度和弹性模量也会有所增加[21].1002003004005006007008001.501.752.002.252.50H a r d n e s s /G P aDepth/nm(a)1002003004005006007008006080100120140E l a s t i c m o d u l u s /G P aDepth/nm(b)Fig. 3 Changes of (a) microhardness and (b) elastic modulus with indentation depth图 3 (a)显微硬度和(b)弹性模量随压入深度的变化情况2.2 不同硬度环片材料的摩擦磨损特性图4所示为2种不同硬度环片与刷丝在大气条件下摩擦系数随时间的变化曲线. 由图4可以看出,硬度不同的AuAgCu 环片与AuNi 刷丝在大气条件下的摩擦系数有显著差异,环片1和环片2在稳定阶段的平均摩擦系数分别为0.19和0.04. 具体地,在摩擦试验初期,环片1的摩擦系数一直处于上升阶段,这主要是摩擦副材料的表面磨合阶段;当试验进行到2 000 s 以后,摩擦系数基本稳定在0.18~0.20之间. 环片2初始摩擦系数在0.03左右,整个试验过程中摩擦系数在0.03~0.05之间浮动. 根据上述摩擦试验结果可知,在试验参数相同的条件下,材料硬度对其摩擦系数有显著影响,即环片硬度的提高有利于摩擦系数的降低.采用光学显微镜、三维白光干涉仪和扫描电子显微镜对摩擦磨损试验后的环片形貌进行观测,如图5所示. 由图5可以看出,环片1和环片2在摩擦磨损试验后表面形貌差异较大,环片1表面磨损明显,磨痕宽度约为105.32 μm ,磨痕内为典型的凹痕和麻点等黏着磨损形貌特征;环片2表面磨损较轻微,磨痕宽度约为56.47 μm ,磨痕内为犁沟状形貌特征,表面砂纸磨抛的划痕依然清晰可见. 通过表面形貌分析可知,环片101Time/103 sF r i c t i o n c o e f f i c i e n t 20.250.300.200.150.100.050.0034567Ring 1Ring 2Fig. 4 Friction coefficients of ring and brush underatmospheric conditions图 4 环片与刷丝在大气条件下摩擦系数随时间的变化曲线第 3 期张淑敏, 等: 环片硬度对金基合金导电环摩擦磨损性能的影响361在与刷丝对摩过程中表面发生了严重的塑性变形,剪切主要发生在硬度较低的环片1表面,导致表面粗糙度显著增大;而环片2与刷丝的硬度相近,磨损形式主要以磨粒磨损为主. 通过摩擦磨损试验后环片表面形貌分析,并结合环片金相组织特征可知,环片2摩擦系数比环片1显著降低是多种因素耦合的结果. 摩擦副材料组织性能和摩擦副硬度匹配等的不同会导致摩擦过程中磨损形式的不同,磨痕表面状态和粗糙度也会不同,这些因素均会影响摩擦系数的大小.2.3 寿命试验后导电环表面形貌分析图6所示为导电环运行2×106转后环片和刷丝在光学显微镜放大150倍的表面形貌照片. 由图6(a)和(b)可0.2050.000(a)(b)105.3256.470.4100.6150.820Distance/mm0.2050.0000.4100.6150.820Distance/mmFig. 5 Optical micrographs, 3D morphologies micrographs and SEM micrographs of the rings after friction test:(a) ring 1; (b) ring 2图 5 摩擦试验后环片光学显微、白光干涉及SEM 的形貌照片:(a)环片1;(b)环片2Fig. 6 Optical microscope micrographs of rings and brushs: (a, c) slip ring 1; (b, d) slip ring 2图 6 试验后环片和刷丝放大150倍的光学显微镜照片:(a, c)导电环1;(b, d)导电环2362摩擦学学报(中英文)第 44 卷以看出,导电环1和导电环2的环片外圆柱面上机加工的刀纹形貌均清晰可见,在环片“V ”槽底部以及环片与刷丝接触部位均存在磨损痕迹. 环片磨损表面中心区域发生了严重的塑性变形,导致金属被挤向环片两侧,并呈现出鳞片状形貌特性,环片表面存在明显的黏着特征. 此外,与环片1相比,环片2磨损区域宽度有所减少. 由图6(c)和(d)可以看出,刷丝与环片接触部位均存在磨损痕迹,刷丝1和刷丝2的磨损形貌无明显的区别,刷丝2的磨损区域有所减小,但二者磨损区域形状均不规则,难以准确估算刷丝磨损体积,这可能是由于本试验中在装配过程中刷丝与环道对中存在一定的误差.采用三维白光干涉仪对导电环寿命试验后的环片和刷丝3D 形貌以及截面轮廓曲线进行了观测,如图7所示. 由图7可以看出,与刷丝1相比,刷丝2的磨损程度有所降低,且刷丝2磨损截面轮廓曲线更为平滑;环片1和环片2磨损区域横截面的宽度分别为390和320 μm ,环片2磨痕宽度有所减小. 可见,提高导电环环片硬度、缩小环片和刷丝之间的硬度差距,可以在一定程度上减小导电环环片的磨痕宽度,改善磨损区域的表面粗糙度,这有利于接触稳定性的提高.图8所示为2种不同硬度的环片磨损区域形貌照片及EDS 能谱图. 由图8(a)和(b)可以看出,环片1磨损区域存在明显的材料剥落,呈现出典型的黏着磨损形3006005001 000X :2489.259 μmX :2 486.815 μmX: 834.370 μmX :834.370 μmY :834.370 μm1 5002 0000200400600800200400600800300500 1 0001 5002 0002004006008000Y : 834.370 μm20040060080040z /μmz /μm 3020100−10160140120100806040020−20−40−60−80−100−120−140160140120100806040020−20−40−60−80−100−120−140−20−30−40−50−60−70302010−100−20−30−40−50−60−70Cross direction/μm−300−200−1000100P r o f i l e /μm5001 000 1 5002 000 2 500−35−30−25−20−15−10−50510P r o f i l e /μmLength direction/μmBrush 1 Brush 2(d)(e)(f)Fig. 7 3D morphology micrographs and cross-sectional profiles of wear scars after friction test:(a, c, e) slip ring 1; (b, d, f) slip ring 2图 7 试验后环片和刷丝白光干涉照片和轮廓图:(a, c, e)导电环1;(b, d, f)导电环2第 3 期张淑敏, 等: 环片硬度对金基合金导电环摩擦磨损性能的影响363貌特征;环片2磨损表面中心区域表面黏着磨损明显,但磨损区域两侧则呈现出明显的犁沟状划痕形貌. 根据EDS 能谱可以看出,环片1和环片2磨损区域的元素含量有所差别,这主要是环片硬度存在差异导致的.导电环1的环片硬度为200 HV ,刷丝硬度为238.6 HV ,在摩擦过程中低硬度的环片1易发生塑性变形,在黏着力的作用下易于向对偶刷丝1表面转移,因此环片1磨损区域的Au 、Ag 和Cu 元素质量分数更接近环片材料本身,且Ni 元素含量较低,如图8(c)中A 点EDS 能谱所示. 与导电环1相比,导电环2的环片硬度为243.6 HV ,刷丝硬度为238.6 HV ,该摩擦副配伍情况下刷丝硬度略低于环片硬度,因此在摩擦过程中低硬度的刷丝2会更易于向对偶环片2表面发生材料转移,这使得环片2磨损区域Au 和Ni 元素质量分数更高,如图8(d)中B 点EDS 能谱所示.图9所示为寿命试验后刷丝磨损区域形貌照片及EDS 能谱图. 由图9(a)和(c)可以看出,刷丝1磨损区域边缘存在明显的材料堆积和黏附,而刷丝2磨损表面相对光滑,材料黏附较少,且磨损表面出现犁沟状形貌. 在摩擦力的作用下硬度较高的环片不断刮擦刷丝2磨损表面,使得刷丝2表面呈现出犁削和黏着组成的复合磨损形式[5]. 如前所述,环片1硬度较低,在摩擦过程中环片1更易向刷丝1表面发生材料转移,可以观测到刷丝1表面Ag 和Cu 元素质量分数较高,甚至在磨损区域A 点未检测到Ni 元素的存在,如图9(e)所示. 与之相反,刷丝2表面存在材料转移,但由于环片2硬度略高于刷丝2,刷丝2表面材料转移和黏附较少,磨损表面能够检测到Ag 、Cu 和Ni 等元素,如图9(f)所示.2.4 寿命试验后导电环的磨屑形貌及磨损量分析在试验后导电环拆解过程中,发现磨屑会从环体轨道内掉出,磨屑为很细的金属粉末. 随后,我们对寿命试验结束后不同导电环的磨屑进行了显微形貌观测,如图10(a)和(b)所示. 可以看出,2种不同环片硬度的导电环在寿命试验结束后产生的磨屑颗粒呈现出明显的大小和形状不一的状态,但在整体上磨屑颗粒均为薄片状的金属磨屑.为了进一步明确2种导电环的磨屑成分,采用扫描电子显微镜和能谱仪对上述2种磨屑分别进行了观测,形貌照片及能谱图如图10所示. 由图10(c)和(d)可以看出,2种磨屑均为薄片状,且磨屑颗粒松散的堆积在一起,并没有出现明显的团聚现象. 根据EDS 能谱图可以看出,2种磨屑的成分均主要由Au 、Ag 、Cu 和O 等元素组成,这与导电环环片的金属材料成分一致.本文中旨在探讨导电环环片硬度改进对导电环200 μm 200 μmBA2043.03.568101214Energy/keVI n t e n s i t y /a .u .2.52.01.51.00.50.0243.03.568101214Energy/keVI n t e n s i t y /a .u .2.52.01.51.00.50.0AuPoint A(c)(d)Point BAuAgAgNi Ni AuAu Au Au CuC O CuC O Cu Cu Element Au Ag Cu O NiMass fraction/%60.428.45.94.11.1Element Au Ag Cu O NiMass fraction/%64.324.45.13.62.6Fig. 8 SEM micrographs and EDS energy spectrum of ring wear scars: (a, c) ring 1; (b, d) ring 2图 8 环片磨损区域形貌照片及EDS 能谱图:(a, c)环片1;(b, d)环片2364摩擦学学报(中英文)第 44 卷磨损性能的影响,为了衡量2种导电环的磨损量,有必要对寿命试验前、后导电环环片和刷丝的质量进行测量,具体数值列于表2中. 由表2可以看出,跑合2×106转后环片1的磨损量约为0.005 1 g ,环片2的磨损量约为0.003 g ,这表明与同种硬度的刷丝对摩,环片硬度提高可显著降低导电环环片的磨损量. 由表2还可以看出,刷丝1与刷丝2试验后的质量均略微有所增加,这主要由于在跑合过程中发生了材料转移,且导电环环片硬度越低,对偶摩擦副材料硬度值差距越大,跑合试验中材料转移越明显,寿命试验后刷丝增重越多.通过上述摩擦试验、磨损形貌照片及磨损量分析可知,在大气环境下提高导电环环片硬度,对偶摩擦副材料可以获得更低的摩擦系数和较好的减摩效果.当然,环片硬度也不应过高,否则会造成摩擦副材料电传输性能的下降,因此在一定范围内提高环片硬度,合理匹配摩擦副材料的硬度至关重要.3 结论通过摩擦磨损试验、寿命试验和表面分析表征,本文中研究了大气环境下环片硬度对金合金导电环摩擦磨损性能的影响规律,具体结论如下:a. 由摩擦磨损试验可知,随着导电环环片硬度的提高,摩擦系数显著降低,环片磨痕宽度有所减小,这与材料组织性能、摩擦副硬度匹配以及表面状态等多种因素相关.b. 导电环寿命试验后,2种不同硬度的环片与刷2468101214Energy/keVI n t e n s i t y /a .u .2.01.51.00.50.0C 243.068101214Energy/keVI n t e n s i t y /a .u .2.52.01.51.00.50.0AuPoint A(e)(f)Point BAuAgAgNi AuAuAu Au Cu O CuNi O Cu Cu Element Au Ag Cu O Mass fraction/%61.330.94.53.3Element Au Ag Cu Ni O Mass fraction/%67.224.53.43.31.7C ABFig. 9 SEM micrographs and EDS energy spectrum of brush wear scars: (a, c, e) brush 1, (b, d, f) brush 2图 9 刷丝磨损区域形貌照片及EDS 能谱图:(a, c, e)刷丝1,(b, d, f)刷丝2第 3 期张淑敏, 等: 环片硬度对金基合金导电环摩擦磨损性能的影响365丝接触部位均存在典型的黏着磨损形貌特征,但环片2的磨损区域还呈现出明显的犁沟状形貌;磨屑颗粒均为薄片状,松散的堆积并无明显的团聚现象,且成分均为Au 、Ag 、Cu 和O 等,这与环片金属成分相符.c. 在一定范围内提高环片硬度,可显著降低导电环环片的磨损量,对偶摩擦副可以获得更低的摩擦系数和较好的减摩抗磨效果. 合理匹配摩擦副材料的硬度对导电环降低磨损至关重要.参 考 文 献Li Chao. Choice of material and experiment on spaceborne disk slip-ring brush[J]. Electro-Mechanical Engineering, 2009, 25(3): 6–9 (in Chinese) [李超. 星载盘式滑环电刷材料的选择和试验[J]. 电子机械工程, 2009, 25(3): 6–9]. doi: 10.19659/j.issn.1008-5300.2009.03.002.[ 1 ]Ning Yuantao. Development and progress of gold and gold alloymaterials[J]. Precious Metals, 2007, 28(2): 57–64 (in Chinese) [宁远涛. Au 与Au 合金材料近年的发展与进步[J]. 贵金属, 2007, 28(2):57–64]. doi: 10.3969/j.issn.1004-0676.2007.02.013.[ 2 ]2468101214Energy/keVI n t e n s i t y /a .u .1.51.00.50.0C AuPoint A(e)(f)(a)(b)Point BAuAgAgAuAuAu Au CuO Cu OCu Cu Element Au Ag Cu O Mass fraction/%58.534.84.81.9Element Au Ag Cu O Mass fraction/%56.434.17.522468101214Energy/keVI n t e n s i t y /a .u .1.51.00.50.0C Fig. 10 Optical micrographs, SEM micrographs and EDS energy spectrum of wear debris:(a, c, e) wear debris 1; (b, d, f) wear debris 2图 10 寿命试验后磨屑的光学显微照片、SEM 形貌照片和EDS 能谱图:(a, c, e)磨屑1;(b, d, e)磨屑2表 2 寿命试验前、后环片与刷丝的质量Table 2 Mass of rings and brushes before andafter lifetime testParts Mass/gBefore test After test Wear loss Ring 1 1.633 1 1.628 00.005 1Ring 2 1.572 0 1.569 00.003Brush 1 1.023 8 1.024 5−0.000 7Brush 21.030 21.030 3−0.000 1366摩擦学学报(中英文)第 44 卷Zhang Lei, Xiao Jinkun, Zhou Kechao. Sliding wear behavior of silver–molybdenum disulfide composite[J]. Tribology Transactions,2012, 55(4): 473–480. doi: 10.1080/10402004.2012.671452.[ 3 ]Xie Xinlin, Zhang Lei, Xiao Jinkun, et al. Sliding electrical contact behavior of AuAgCu brush on Au plating[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(9): 3029–3036. doi:10.1016/S1003-6326(15)63930-9.[ 4 ]Xie Bohua, Ju Pengfei, Ji Li, et al. Research progress on tribology ofelectrical contact materials[J]. Tribology, 2019, 39(5): 656–668 (in Chinese) [谢博华, 鞠鹏飞, 吉利, 等. 电接触材料摩擦学研究进展[J]. 摩擦学学报, 2019, 39(5): 656–668]. doi: 10.16078/j.tribology.2019025.[ 5 ]Subramanian C. Some considerations towards the design of a wear resistant aluminium alloy[J]. Wear, 1992, 155(1): 193–205. doi: 10.1016/0043-1648(92)90118-R.[ 6 ]Braunovic M, Konchits V V, Myshkin N K. Electrical contacts:fundamentals, applications and technology[M]. Boca Raton: CRC Press, 2007.[ 7 ]Conte A A, Agarwala V S. An investigation of gold alloy slip ringcapsule wear failures[J]. Wear, 1989, 133(2): 355–371. doi: 10.1016/0043-1648(89)90047-1.[ 8 ]Leech P W. The triboligical properties of N 2+implanted AuAgCualloys and palladium in sliding contact with gold electroplate[C]//IEEE Transactions on Components Hybids and Manufacturing Technology, 1990, 13(2): 353-357. doi:10.1109/33.56186.[ 9 ]Williams J R, Clarke D R. Strengthening gold thin films withzirconia nanoparticles for MEMS electrical contacts[J]. Acta Materialia, 2008, 56(8): 1813–1819. doi: 10.1016/j.actamat.2007.12.038.[10]Gao Wen, He Anli, Tang Daokun, et al. Study on the relationship between wearability and microstructure of Au-based alloys[J].Tribology, 1997, 17(3): 199–205 (in Chinese) [高文, 何安莉, 汤道坤, 等. Au 基合金电位器材料耐磨特性与显微组织关系的研究[J].摩擦学学报, 1997, 17(3): 199–205]. doi: 10.3321/j.issn:1004-0595.1997.03.002.[11]Misra A, Finnie I. Correlations between two-body and three-body abrasion and erosion of metals[J]. Wear, 1981, 68(1): 33–39. doi:10.1016/0043-1648(81)90017-X.[12]Li Changjiang, Li Chenzheng, Zhang Tao, et al. Study on the factorsaffecting wear life of the slip ring of LEO satellite[J]. Aerospace[13]Shanghai, 2019, 36(S2): 79–83 (in Chinese) [李长江, 李臣政, 张涛,等. 低轨卫星滑环磨损寿命影响因素研究[J]. 上海航天, 2019,36(S2): 79–83]. doi: 10.19328/ki.1006-1630.2019.S.013.Li Xiaodong, Ji Li, Ju Pengfei, et al. Preparation and vacuumcurrent-carrying tribological behavior of Au film by magnetron sputtering[J]. Tribology, 2022, 42(2): 283–293 (in Chinese) [李晓栋, 吉利, 鞠鹏飞, 等. 磁控溅射法制备Au 薄膜及真空载流摩擦学行为研究[J]. 摩擦学学报, 2022, 42(2): 283–293]. doi: 10.16078/j.tribology.2021030.[14]Furey M J. Metallic contact and friction between sliding surfaces[J].ASLETransactions,1961,4(1):1–11.doi:10.1080/05698196108972414.[15]Qu Qiang, Zhou Xiong, Luo Bo, et al. Effect of brush hardness onelectrical contact and tribological behavior of Au 9Ni against Au 35Ag 5Cu disc[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24(4): 321–328 (in Chinese) [曲强, 周雄, 罗博,等. 刷丝硬度对Au 9Ni/Au 35Ag 5Cu 对偶电接触及摩擦磨损行为的影响[J]. 粉末冶金材料科学与工程, 2019, 24(4): 321–328]. doi: 10.3969/j.issn.1673-0224.2019.04.004.[16]Antler M. Processes of metal transfer and wear[J]. Wear, 1964, 7(2):181–203. doi: 10.1016/0043-1648(64)90053-5.[17]Chen Hongwu, Wang Cong, Zheng Donghui, et al. Influence ofelectrical contact materials on life and reliability of conductive slip ring[J]. Information Recording Materials, 2021, 22(8): 18–21 (in Chinese) [陈鸿武, 汪聪, 郑东辉, 等. 电接触材料对导电滑环寿命和可靠性的影响[J]. 信息记录材料, 2021, 22(8): 18–21].[18]Adaskin A M, Sapronov I Y. Correlation of the macrohardness andmicrohardness[J]. Russian Engineering Research, 2019, 39(6):530–535. doi: 10.3103/s1068798x19060030.[19]Wang Qingshan. Research of method on revising micro-vickershardness to macro-vickers hardness[J]. Physical Testing and Chemical Analysis Parta (Physical Testing), 2003, 39(5): 246–249(in Chinese) [王庆山. 显微维氏硬度换算至宏观维氏硬度的方法探讨[J]. 理化检验-物理分册, 2003, 39(5): 246–249].[20]Xiong Weihao, Liu Jinwen. Influence of trace element alloying andthermomechanical treatment on elastic modulus of Cu based alloy[J]. Journal of Huazhong University of Science and Technology, 1998, 26(S1): 18–20 (in Chinese) [熊惟皓, 刘锦文. 合金化与形变热处理对铜合金弹性模量的影响[J]. 华中理工大学学报, 1998, 26(S1): 18–20].[21]第 3 期张淑敏, 等: 环片硬度对金基合金导电环摩擦磨损性能的影响367。
LiBH4基固态电解质材料的制备及其锂传导性能研究
摘要摘要LiBH4基固态电解质由于质量轻、晶界阻抗低、离子选择性好、对Li稳定性好以及优异的机械性能,近年来引起了人们广泛的研究。
尽管LiBH4在高温下(>110 ºC)展现出高于1×10-3S cm-1的离子电导率,但其温度降到室温时会转变成低离子电导的正交相,限制了其在全固态电池中的实际应用。
为了提高氢化物基固态电解质的室温离子电导率同时保持其优异的稳定性,本文采用了第二相吸收、界面效应以及阴阳离子引入三种手段对其进行改性,并系统地研究了复合样品的成分、结构、形貌和电化学性能,同时也揭示了其性能改善机理。
通过机械球磨的方式,成功引入了NH3·BH3(AB)第二相中性分子,制备出了(LiBH4)2·AB和LiBH4·AB两种产物,系统研究了其成分、结构及电化学性能。
AB的引入明显改善了LiBH4的电解质性能,在18 ºC时,LiBH4·AB离子电导率即达到2×10-4 S cm-1,30 ºC时达到1×10-3 S cm-1。
两种复合材料中电子电导率十分微弱,离子迁移数达到0.999。
LiBH4·AB极限电流密度达到3.0 mA cm-2,表现十分优异。
AIMD计算表明AB的引入削弱了[BH4]-基团对Li+扩散的阻碍作用,使得LiBH4·AB的Li扩散激活能仅为0.12 eV,同时(LiBH4)2·AB的激活能为0.25 eV,展现出优异的快离子电导特性。
同时AB的引入还提供了大量有利Li空位,促进了锂离子的扩散。
通过机械化学的方法成功制备出LiLa(BH4)3Cl / SiO2复合材料。
系统的研究了其成分、结构、形貌以及电化学性能。
结果表明复合电解质不仅具有优异的离子电导性同时其对Li稳定得到显著改善。
LiLa(BH4)3Cl@ 25 wt% SiO2样品在35 ºC具有1.18×10-4S cm-1的离子电导率,并且其激活能仅为0.47 eV,同时电化学窗口达到7 V,锂离子迁移数为0.9999。
单离子聚合物快离子导体
物 理 化 学 学 报Acta Phys. -Chim. Sin. 2023, 39 (8), 2205012 (1 of 10)Received: May 6, 2022; Revised: May 26, 2022; Accepted: May 27, 2022; Published online: June 9, 2022. *Correspondingauthors.Emails:********************.cn(Y.S.);*******************.cn(L.C.).This project was supported by the National Key Research and Development Program of China (2021YFB3800300) and the National Natural Science Foundation of China (21733012, 22179143).国家重点研究发展项目(2021YFB3800300)和国家自然科学基金(21733012, 22179143)资助© Editorial office of Acta Physico-Chimica Sinica[Article] doi: 10.3866/PKU.WHXB202205012 A Single-Ion Polymer Superionic ConductorGuoyong Xue 1,2, Jing Li 2, Junchao Chen 3, Daiqian Chen 2, Chenji Hu 2,3, Lingfei Tang 1,2, Bowen Chen 1,2, Ruowei Yi 2, Yanbin Shen 1,2,*, Liwei Chen 2,3,*1 School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.2 i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science,Suzhou 215123, Jiangsu Province, China.3School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, China.Abstract: All-solid-state batteries (ASSBs) have been considered a promising candidate for the next-generation electrochemical energy storage because of their high theoretical energy density and inherent safety. Lithium superionic conductors with high lithium-ion transference number and good processability are imperative for the development of practical ASSBs. However, the lithium superionic conductors currently available are predominantly limited to hard ceramics. Practical lithium superionic conductors employing flexible polymers areyet to be realized. The rigid and brittle nature of inorganic ceramic electrolytes limits their application in high-performance ASSBs. In this study, we demonstrate a novel design of a ternary random copolymer single-ion superionic conductor (SISC) through the radical polymerization of three different organic monomers that uses an anion-trapping borate ester as a crosslinking agent to copolymerize with vinylene carbonate and methyl vinyl sulfone. The proposed SISC contains abundant solvation sites for lithium-ion transport and anion receptors to immobilize the corresponding anions. Furthermore, the copolymerization of the three different monomers results in a low crystallinity and low glass transition temperature, which facilitates superior chain segment motion and results in a small activation energy for lithium-ion transport. The ionic conductivity and lithium-ion transference number of the SISC are 1.29 mS·cm −1 and 0.94 at room temperature, respectively. The SISC exhibits versatile processability and favorable Young’s modulus (3.4 ± 0.4 GPa). The proposed SISC can be integrated into ASSBs through in situ polymerization, which facilitates the formation of suitable electrode/electrolyte contacts. Solid-state symmetric Li||Li cells employing in situ polymerized SISCs show excellent lithium stripping/plating reversibility for more than 1000 h at a current density of 0.25 mA·cm −2. This indicates that the interface between the SISC and lithium metal anode is electrochemically stable. The ASSBs that employ in situ polymerized SISCs coupled with a lithium metal anode and various cathodes, including LiFePO 4, LiCoO 2, and sulfurized polyacrylonitrile (SPAN), exhibit acceptable electrochemical stability, including high rate performance and good cyclability. In particular, the Li||LiFePO 4 ASSBs retained ~ 70% of the discharge capacity when the charge/discharge rate was increased from 1 to 8C . They also demonstrate long-term cycling stability (> 700 cycles at 0.5C rate) at room temperature. A capacity retention of 90% was achieved even at a high rate of 2C after 300 cycles at room temperature. Furthermore, the SISCs have been applied to Li||LiFePO 4 pouch cells and exhibit exceptional flexibility and safety. This work provides a novel design principle for the fabrication of polymer-based superionic conductors and is valuable for the development of practical ambient-temperature ASSBs.Key Words: All-solid-state lithium metal battery; Solid polymer electrolyte; Superionic conductor;Single-ion conductor; In situ polymerization; Rate performance单离子聚合物快离子导体薛国勇1,2,李静2,陈俊超3,陈代前2,胡晨吉2,3,唐凌飞1,2,陈博文1,2,易若玮2,沈炎宾1,2,*,陈立桅2,3,*1中国科学技术大学纳米技术与纳米仿生学院,合肥 2300262中国科学院苏州纳米技术与纳米仿生研究所,创新实验室卓越纳米科学中心,江苏苏州 2151233上海交通大学化学化工学院,上海 200240摘要:具有高锂离子迁移数和良好可加工性能的锂快离子导体对于全固态电池的发展非常重要。
基于多物理场全固态锂电池特性仿真研究
LiO
是阴极反应中的中间放电产物之一,普2
通的锂空气电池不够稳定。
LiO
2
多的过电位[9,10]。
降低过电位意味着更低的充电电压,从而使电池更加高效等。
文献[11]通过使用合适的石。
通过铱纳米颗粒还原氧化石墨烯来制造电池2
持续 40 个循环,容量限制为 1
外,与之前由于阴极而降级的电池相比,阴极中未发现降解迹象。
经过 40 个循环后观察到锂转化为 LiOH。
作者观察到了这一点通过更换新的锂阳极,
其中,ε 为孔隙度,
时间,N
l
是物质 l 的摩尔通量,耗率。
电荷守恒方程定义如式(5)。
3.3 放电曲线影响因素分析
储能完全输出电压急剧下降以获得更高的放电率,如图 3 所示,其原因是较高电流的内部损耗,数值较高。
3.4 正负极电压损失情况分析
在浓度过高的情况下电压变化大,如图 4 所示。
其原因是与充电完全的电池的大的初始平衡电压降相比,平衡电位朝向放电结束的电压平台。
在放电期间,电解质电压降和正电极反应的过电位也
图 1 各种放电率下放电结束时的电解质浓度图 2 各种放电速率下放电结束时正极中固体锂的浓度分布图 3 各种放电率的放电曲线(电池电压与时间)
图 4 浓度过高情况下的电压变化
集成电路应用 第36卷第12期(总第315期)2019年12月 5。
单离子固态聚合物锂离子电解质膜的研究
单离子固态聚合物锂离子电解质膜的研究崔尧;尹雷;余晴春;蒋峰景【摘要】Novel single-ion solid-state polymer lithium-ion electrolyte membranes were prepared by blending lithiated perfluorinated sulfonic with polyethylene glycol dimetyl ether [PEGDE, CH3O(CH2CH2O) CH3, =3-8] in various molar ratios of ethylene oxide unite to Li+ (EO/Li+). The fundamental properties of thermal stability, mechanical strength, micro-morphology and electrochemical performance were studied. The TGA test shows that the polymer electrolyte membranes are thermal y stable up to 250℃and the maximum tensile strength is up to 4.25 MPa. At aEO/Li+ratio of 20, high ionic conductivities of 4.26×10-4 and 2.16×10-5S/cm are obtained at 100 and 40℃,respectively. The solid polymer menbrane exhibits single lithium-ion conductor behavior with Li+>0.9. It’s hopeful that the prepared electrolyte membranes would be used in mid and high temperature lithium-ion battery.%将锂化后的Nafion树脂与聚乙二醇二甲醚按不同比例共混涂膜,制备得到新的固态单一离子聚合物锂离子电解质膜,并对该电解质膜的热化学稳定性,机械强度,微观形貌以及电化学性能等进行了测试和分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Stability of lithium ion conductor NASICON structure glass ceramic in acid and alkaline aqueous solutionKun He ⁎,Chengkui Zu,Yanhang Wang,Bin Han,Xianyin Yin,Huifeng Zhao,Yonghua Liu,Jiang ChenInstitute of Quartz and Special Glasses,China Building Materials Academy,Beijing 100024,Chinaa b s t r a c ta r t i c l e i n f o Article history:Received 25August 2013Received in revised form 5November 2013Accepted 6November 2013Available online xxxx Keywords:Glass ceramic Solid electrolyte Lithium/air battery Alkaline solutionThe stability of lithium ion conducting glass ceramic Li 1.5Al 0.5Ge 1.5(PO 4)3in different aqueous solutions was analyzed with X-ray diffraction (XRD),scanning electron microscopy (SEM)and impedance analysis methods.The XRD results showed that LAGP glass ceramic decomposed into impurity phase Li 3PO 4after being immersed in LiOH alkaline aqueous solution for 6months.The results of impedance analysis indicated that the conductivity of glass ceramic immersed in 0.1M LiOH alkaline aqueous solution at room temperature for 6months obviously decreased.However,no conductivity change was observed for samples that were immersed in 1.0M LiOH solution and saturated LiCl-HAc-H 2O and LiCl-LiOH-H 2O solutions.This result clearly indicates that Li 1.5Al 0.5Ge 1.5(PO 4)3glass ceramic has excellent stability in saturated LiCl-HAc-H 2O and LiCl-LiOH-H 2O solutions,suggesting that it is a promising solid electrolyte and electrode protective layer for practical application in lithium/water battery.©2013Elsevier B.V.All rights reserved.1.IntroductionDuring the past few years,much attention has been paid on lithium/water and lithium/air batteries,because they have stood a good chance in achieving better discharge capacities than conventional batteries owing to the fact that they use lithium metal as the anode [1,2].Lithium/water battery has great potential use especially in high-discharge-capacity power supplies for the long term operation of deep sea applications.The theoretical capacity of lithium/air battery is about 5.8–11.4kWh/kg.The solid electrolyte is one of the most important components that control the properties of lithium/water secondary battery.In the past decades,lots of investigations have been carried out on Li-analogs of NASICON structured lithium ion conductor with the general formula of LiGe 2(PO 4)3,because it is particularly stable against Li metal and can be used as the solid electrolyte and the protective layer for the lithium metal electrode [3–12].Though the stability of Li 1+x +y Ti 2−x Al x P 3−y Si y O 12in acid solu-tions had been reported [13],the stability of Li 1.5Al 0.5Ge 1.5(PO 4)3(denoted as LAGP)glass ceramic specimens soaked in aqueous solution of Li salt and LiOH alkaline aqueous solutions is scarcely understood up to now.Therefore,in the present work,we investigated the stability of the LAGP glass ceramic specimens that were soaked in different types of aqueous solutions (such as saturated LiCl-HAc-H 2O solutions,saturated LiCl-LiOH-H 2O solutions and various concentrations of LiOH solution)with XRD,SEM and AC impedance measurement.2.Experiment proceduresStoichiometric amounts of Li 2CO 3,Al 2O 3,GeO 2and NH 4H 2PO 4were used as the starting materials to prepare Li 1.5Al 0.5Ge 1.5(PO 4)3glass ceramic by a conventional solid solution method.10%excess Li 2CO 3was employed to compensate the loss of lithium during the meltingSolid State Ionics 254(2014)78–81⁎Corresponding author.Tel./fax:+860165723301.E-mail address:cbmahekun@ (K.He).Fig.1.XRD pro files of LAGP specimens immersed in various aqueous solutions at room temperature for 6months:(a)the pristine plate,(b)the specimen immersed in saturated LiCl-HAc-H 2O,(c)the specimen immersed in saturated LiCl-LiOH-H 2O,(d)the specimen immersed in 1.0M LiOH,and (e)the LAGP plate immersed in 0.1M LiOH.0167-2738/$–see front matter ©2013Elsevier B.V.All rights reserved./10.1016/j.ssi.2013.11.011Contents lists available at ScienceDirectSolid State Ionicsj o ur n a l h o m e p a g e :w ww.e l s e v i e r.c om /l o c a t e /s s iprocess.The powders were weighed,mixed and milled in a high energy milling machine for 60min.Then they were transferred to an electric furnace and heated to 700°C in an alumina crucible for 2h in order to decompose ammonia,carbon dioxide and water vapor out from the starting materials.Finally,the powders were melted at 1350°C for 2h and poured onto preheated stainless steel plates.The cast glass sheets were annealed at 470°C for 2h to release the thermal stresses and then cooled down to room temperature.To obtain the glass ceramic specimens,the annealed glass sheets were crystallized at 825°C for 6h with a heating rate of 5°C/min.Crystalline phases were identi fied by X-ray diffraction (XRD)analy-sis at room temperature using Cu-K αradiation.The microstructures of the crystalline phases were observed by means of field emission scan-ning electron microscopy (SEM,JSM-5510LV,Japan)on fractured surfaces.The ionic conductivities were determined using impedance spectroscopy (Solartron2016impedance analyzer)in the frequencyrange of 0.1–106Hz,with a voltage amplitude of 5mV.After polishing,platinum was sputtered onto the two parallel faces of the specimens in order to ensure the necessary electrical contacts.The platinum coated specimens were assembled into a cell using stainless steel blocking electrodes in a cell fixture.3.Results and discussion 3.1.Phase analysis of glass ceramicThe XRD patterns for the LAGP glass ceramic specimens immersed in various aqueous solutions for 6months at room temperature are shown in Fig.1.The NASICON structure phase of LiGe 2(PO 4)3(JCPDS card 80-1923)was found to be the major crystalline phase in all LAGP glass ceramic specimens.As shown in this figure,no change in the XRD patterns were observed in saturated LiCl-HAc-H 2O and LiCl-LiOH-H 2OFig.2.SEM photographs of LAGP specimens immersed in various aqueous solutions at room temperature for 6months:(a)the pristine plate,(b)the specimen immersed in saturated LiCl-HAc-H 2O,(c)the specimen immersed in saturated LiCl-LiOH-H 2O,(d)the specimen immersed in 1.0M LiOH,and (e)the specimen immersed in 0.1M LiOH.79K.He et al./Solid State Ionics 254(2014)78–81solutions,compared to the pristine LAGP plate.Interestingly,the Li 3PO 4phase (JCPDS card 87-0039)was observed for LAGP specimens im-mersed in 0.1M and 1.0M LiOH aqueous solutions at room temper-ature for 6months (cf.,Fig.1(d)and (e)),indicating that LAGP glass ceramics were unstable in LiOH alkaline aqueous solutions.Besides,the diffraction intensity of Li 3PO 4phase from specimen immersed in 0.1M LiOH aqueous solution was much higher than that immersed in 1.0M LiOH aqueous solution.This is relevant information from a prac-tical standpoint for the glass ceramics in lithium/water batteries,be-cause strong alkaline solutions cannot be used as electrolytes at the water electrode.The stability of the LAGP glass ceramic plates immersed in various aqueous solutions was also con firmed from the SEM observations.Fig.2shows the SEM images of the LAGP specimens immersed in saturated LiCl-HAc-H 2O,saturated LiCl-LiOH-H 2O,and 1.0M LiOH solutions at room temperature for 6months.No signi ficant surface morphology change can be observed in LAGP specimens after being immersed in saturated LiCl-HAc-H 2O and LiCl-LiOH-H 2O solutions,compared to the surface of pristine LAGP plate.However,obvious surface morphology change is observed in the specimen immersed in 0.1M LiOH aqueous solution at room temperature for 6months (cf.,Fig.2(d)).The surface of the sample is corroded seriously and rhombohedral crystal grains are observed clearly.The morphology change may be due to the dissolution of the decomposition reaction of crystalline phases and residual glass phase of LAGP specimens immersed in alkaline solutions,which is supported by XRD investi-gations (cf.,Fig.1).It is known that the glass phase of glass ceramic is more easily corroded than the crystal phases when the samples are immersed in strong alkaline solution.The room temperature complex impedance plots for LAGP speci-mens immersed in various aqueous solutions for different times at room temperature are shown in Fig.3.As can be seen,there is only one depressed semicircle and oblique line observed for all specimens.The depressed semicircle represents the grain boundary resistance while the intercept of the semicircle on the real axis at high frequency (low x value of abscissa axis)represents the bulk resistance.In addition,the appearance of a low frequency oblique line in the case of ionic blocking electrodes is an indication of the ionic nature of the NASICON structure material [14].Accordingly,the total resistance of the specimen is obtained from the right intercept of the semicircle with the real axis in the plots,while the total conductivity (σt )of LAGP glass ceramic is calculated by σt =H /(S·R t ),where H is the sample's thickness and S is the sample's surface area [15].In Fig.3(a)and (b),the complex impedance plots of the pristine LAGP plates are compared with the LAGP specimens immersed in the saturated LiCl-HAc-H 2O and LiCl-LiOH-H 2O solutions at room tempera-ture for 7days,60days and 180days,respectively.The impedance pro-files of LAGP specimens immersed in the saturated LiCl-HAc-H 2O and LiCl-LiOH-H 2O solutions almost show no change except that the grain boundary resistances slightly fluctuate.In the same way,Fig.3(c)and (d)show the LAGP specimens immersed in 1.0and 0.1M LiOH alkaline aqueous solutions for different times.The grain boundary resistance of LAGP plates slightly increases after being immersed in 1.0M LiOH alka-line aqueous solution for 6months.Especially,it should be noted that the grain boundary resistances of LAGP plates immersed in 0.1M LiOH alkaline aqueous solution sharply increase with immerse times (cf.,Fig.3(d)),attributing to the resistance of decomposition product such as impurity phase Li 3(PO 4)3segregatedplex impedance plots at room temperature of the LAGP specimens immersed in (a)saturated LiCl-HAc-H 2O,(b)saturated LiCl-LiOH-H 2O,(c)1.0M LiOH,and (d)0.1M LiOH aqueous solutions for different times.80K.He et al./Solid State Ionics 254(2014)78–81from LAGP glass ceramic.Moreover,these resistance changes may be due to the significant loss of lithium ions in the major conducting phase LiGe2(PO4)3.The results indicate that the stability of LAGP plates not at all depends on the pH value of alkaline solution,which is a little different from the result reported by Shimonishi[13,16].From the complex impedance plots of Fig.3,the room temperature conductivities of LAGP plates immersed in various aqueous solutions for different times are summarized in Table1.The conductivity of LAGP plates shows no significant change after being immersed in these aqueous solutions for different times,except that in0.1M LiOH alkaline aqueous solution for several months.Though both of the samples in0.1M and1.0M LiOH alkaline aqueous solutions contain Li3PO4impure phase according to XRD patterns(cf.,Fig.1),the conduc-tivity of sample immersed in1.0M LiOH aqueous solution is much higher than that immersed in0.1M LiOH aqueous solution.This is prob-ably because there are more Li+in1.0M LiOH aqueous solution,which are greatly beneficial to the conduction of lithium ions.In other worlds, the decreasing effect of conductivity from Li3PO4impure phase plays a less important role than the increasing effect of conductivity from Li+ that dissociated from1.0M LiOH alkaline aqueous solution.Hence,it can be concluded that the LAGP glass ceramics could be used not only as the solid electrolyte but also as the protective layer of lithium metal electrode for lithium/water batteries with saturated LiCl-HAc-H2O and LiCl-LiOH-H2O aqueous solutions.However,the activation energy of conduction Ea,the bulk conductivity and the grain boundary conductiv-ity of LAGP specimens are not analyzed in the present study,which needs more work in the next phase of our work.4.ConclusionsThe lithium ion conducting glass ceramic Li1.5Al0.5Ge1.5(PO4)3,which was immersed in LiOH alkaline aqueous solution for6months,partly decomposed into impurity phase Li3PO4.However,the glass ceramics were excellently stable in saturated LiCl-HAc-H2O and LiCl-LiOH-H2O aqueous solutions.On the basis of the above results,it can be concluded that Li1.5Al0.5Ge1.5(PO4)3glass ceramics are promising solid electrolytes and electrode protective layers for practical application in lithium/water batteries.References[1]S.J.Visco,E.Nimon,L.C.De Jonghe,Encyclopedia of electrochemical power sources,Secondary Batteries—Metal–Air Systems|Lithium–Air2009.376.[2]K.M.Abraham,Z.Jiang,J.Electrochem.Soc.143(1996)1.[3]H.Aono,N.Imanaka,G.-Y.Adachi,Acc.Chem.Res.27(1994)265–270.[4]V.Thangadurai,A.K.Shukla,J.Gopalakrishnan,J.Mater.Chem.9(1999)739–741.[5] C.J.Leo,G.V.Subbarao,B.V.R.Chowdari,J.Mater.Chem.12(2002)1848–1853.[6]H.Aono,E.Sugimoto,Y.Sadaoka,Bull.Chem.Soc.Jpn.65(1992)2200–2204.[7] B.V.R.Chowdari,G.V.Subba Rao,G.Y.H.Lee,Solid State Ionics136–137(2000)1067–1075.[8]X.X.Xu,Z.Y.Wen,X.W.Wu,et al.,J.Am.Ceram.Soc.90(2007)2802–2806.[9]J.S.Thokchom,N.Gupta,B.Kumar,J.Electrochem.Soc.155(2008)A915–A920.[10] C.R.Mariappan,C.Yada,F.Rosciano,et al.,J.Power Sources196(2011)6456–6464.[11]T.Zhang,N.Imanishi,S.Hasegawa,et al.,Solid-State Lett.12(2009)A132.[12]S.J.Visco,E.Nomon,B.Katz,et al.,Abstract#53,The12th International Meeting onLithium Batteries,Nara,Japan,2004.[13]Y.Shimonishi,T.Zhang,P.Johnson,J.Power Sources195(2010)6187–6191.[14]X.Xu,Z.Wen,X.Wu,et al.,Solid State Ionics171(2004)207–213.[15] C.J.Leo,B.V.R.Chowdari,G.V.Subba Rao,Mater.Res.Bull.37(2002)1419–1430.[16]Y.Shimonishi,T.Zhang,N.Imanishi,et al.,J.Power Sources196(2011)5128–5132.Table1Electrical conductivities of the LAGP plates immersed in various aqueous solutions for different times.Immersed aqueous solutions Conductivities at room temperature(×10−4S cm−1)Just after For7days For60days For180daysSaturated LiCl+LiOH solution 2.592 2.514 2.601 2.496 Saturated LiAC+HAc solution 2.621 2.515 2.423 2.6201.0M LiOH alkaline solution2.736 2.760 2.838 2.4630.1M LiOH alkaline solution 3.432 3.3820.6070.55181K.He et al./Solid State Ionics254(2014)78–81。