2016-2017学年贵州省贵阳市高三(上)期末数学试卷(文科)
2016-2017学年贵州省贵阳市高一(上)期末数学试卷与解析word
2016-2017学年贵州省贵阳市高一(上)期末数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合A={0,1,2},B={2,3},则集合A∪B=()A.{1,2,3}B.{0,1,2,3}C.{2}D.{0,1,3}2.(4分)化简÷(b)(a>0,b>0)结果为()A.a B.b C.D.3.(4分)正弦函数f(x)=sinx图象的一条对称轴是()A.x=0 B.C.D.x=π4.(4分)下列函数中,既是偶函数又存在零点的是()A.f(x)=sinx B.f(x)=x2+1 C.f(x)=lnx D.f(x)=cosx5.(4分)设y1=log0.70.8,y2=log1.10.9,y3=1.10.9,则有()A.y3>y1>y2B.y2>y1>y3C.y1>y2>y3D.y1>y3>y26.(4分)已知正方形ABCD的边长为1,则•=()A.1 B.C.D.27.(4分)如果cos(π+A)=﹣,那么sin(+A)的值是()A.B.C.D.8.(4分)要得到函数y=sin(2x+)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位9.(4分)函数y=f(x)在区间上的简图如图所示,则函数y=f(x)的解析式可以是()A.f(x)=sin(2x+)B.f(x)=sin(2x﹣)C.f(x)=sin(x+)D.f(x)=sin(x﹣)10.(4分)对于函数f(x),如果存在非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,已知函数y=f (x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=x2,则y=f(x)与y=log5x的图象的交点个数为()A.3 B.4 C.5 D.6二、填空题(共5小题,每小题4分,满分20分)11.(4分)学校先举办了一次田径运动会,某班有8名同学参赛,又举办了一次球类运动会,该班有12名同学参赛,两次运动会都参赛的有3人.两次运动会中,这个班共有名同学参赛.12.(4分)溶液酸碱度是通过pH值刻画的,pH值的计算公式为pH=﹣lg[H+],其中[H+]表示溶液中氢离子的浓度,单位是摩尔/升,纯净水中氢离子的浓度为[H+]=10﹣7摩尔/升,则纯净水的pH=.13.(4分)已知,那么=.14.(4分)计算(lg2)2+lg2•lg50+lg25=.15.(4分)设A,B是非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合中B都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射,设f:x→是从集合A到集合B的一个映射.①若A={0,1,2},则A∩B=;②若B={1,2},则A ∩B=.三、解答题(共4小题,满分32分)16.(8分)已知向量=(1,0),=(1,1),=(﹣1,1).(Ⅰ)λ为何值时,+λ与垂直?(Ⅱ)若(m+n)∥,求的值.17.(8分)已知函数f(x)=x﹣.(Ⅰ)判断f(x)的奇偶性;(Ⅱ)用函数单调性的定义证明:f(x)在(0,+∞)上是增函数.18.(8分)已知函数f(x)=sin2+sin cos.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若x∈[,π],求f(x)的最大值与最小值.19.(8分)已知函数f(x)=1﹣(a>0且a≠1)是定义在R上的奇函数.(Ⅰ)求a的值;(Ⅱ)若关于x的方程|f(x)•(2x+1)|=m有1个实根,求实数m的取值范围.四、阅读与探究(共1小题,满分8分)20.(8分)阅读下面材料,尝试类比探究函数y=x2﹣的图象,写出图象特征,并根据你得到的结论,尝试猜测作出函数对应的图象.阅读材料:我国著名数学家华罗庚先生曾说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.我们来看一个应用函数的特征研究对应图象形状的例子.对于函数y=,我们可以通过表达式来研究它的图象和性质,如:(1)在函数y=中,由x≠0,可以推测出,对应的图象不经过y轴,即图象与y轴不相交;由y≠0,可以推测出,对应的图象不经过x轴,即图象与x轴不相交.(2)在函数y=中,当x>0时y>0;当x<0时y<0,可以推测出,对应的图象只能在第一、三象限;(3)在函数y=中,若x∈(0,+∞)则y>0,且当x逐渐增大时y逐渐减小,可以推测出,对应的图象越向右越靠近x轴;若x∈(﹣∞,0),则y<0,且当x逐渐减小时y逐渐增大,可以推测出,对应的图象越向左越靠近x轴;(4)由函数y=可知f(﹣x)=﹣f(x),即y=是奇函数,可以推测出,对应的图象关于原点对称.结合以上性质,逐步才想出函数y=对应的图象,如图所示,在这样的研究中,我们既用到了从特殊到一般的思想,由用到了分类讨论的思想,既进行了静态(特殊点)的研究,又进行了动态(趋势性)的思考.让我们享受数学研究的过程,传播研究数学的成果.2016-2017学年贵州省贵阳市高一(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合A={0,1,2},B={2,3},则集合A∪B=()A.{1,2,3}B.{0,1,2,3}C.{2}D.{0,1,3}【解答】解:∵集合A={0,1,2},B={2,3},则集合A∪B={0,1,2,3},故选:B.2.(4分)化简÷(b)(a>0,b>0)结果为()A.a B.b C.D.【解答】解:原式==a,故选:A3.(4分)正弦函数f(x)=sinx图象的一条对称轴是()A.x=0 B.C.D.x=π【解答】解:f(x)=sinx图象的一条对称轴为+kπ,k∈Z,∴当k=0时,函数的对称轴为,故选:C.4.(4分)下列函数中,既是偶函数又存在零点的是()A.f(x)=sinx B.f(x)=x2+1 C.f(x)=lnx D.f(x)=cosx【解答】解:对于A,是奇函数;对于B,是偶函数,不存在零点;对于C,非奇非偶函数;对于D,既是偶函数又存在零点.故选:D.5.(4分)设y1=log0.70.8,y2=log1.10.9,y3=1.10.9,则有()A.y3>y1>y2B.y2>y1>y3C.y1>y2>y3D.y1>y3>y2【解答】解:y1=log0.70.8∈(0,1);y2=log1.10.9<0;y3=1.10.9>1,可得y3>y1>y2.故选:A.6.(4分)已知正方形ABCD的边长为1,则•=()A.1 B.C.D.2【解答】解:.故选A.7.(4分)如果cos(π+A)=﹣,那么sin(+A)的值是()A.B.C.D.【解答】解:由题意可得:,根据诱导公式可得cosA=,所以=cosA=,故选B.8.(4分)要得到函数y=sin(2x+)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【解答】解:由于函数y=sin(2x+)=sin2(x+),∴将函数y=sin2x的图象向左平移个单位长度,可得函数y=sin(2x+)的图象,故选:B9.(4分)函数y=f(x)在区间上的简图如图所示,则函数y=f(x)的解析式可以是()A.f(x)=sin(2x+)B.f(x)=sin(2x﹣)C.f(x)=sin(x+)D.f(x)=sin(x﹣)【解答】解:由图象知A=1,∵=,∴T=π,∴ω=2,∴函数的解析式是y=sin(2x+φ)∵函数的图象过()∴0=sin(2×+φ)∴φ=kπ﹣,∴φ=﹣∴函数的解析式是y=sin(2x﹣)故选B.10.(4分)对于函数f(x),如果存在非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,已知函数y=f (x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=x2,则y=f(x)与y=log5x的图象的交点个数为()A.3 B.4 C.5 D.6【解答】解:∵函数y=f(x)(x∈R)满足f(x+2)=f(x),∴f(x)是周期为2的周期性函数,又x∈[﹣1,1]时,f(x)=x2.根据函数的周期性画出图形,如图,由图可得y=f(x)与y=log5x的图象有4个交点故选:B.二、填空题(共5小题,每小题4分,满分20分)11.(4分)学校先举办了一次田径运动会,某班有8名同学参赛,又举办了一次球类运动会,该班有12名同学参赛,两次运动会都参赛的有3人.两次运动会中,这个班共有17名同学参赛.【解答】解:设A={x|x是参加田径运动会比赛的学生},B={x|x是参加球类运动会比赛的学生},A∩B={x|x是两次运动会都参加比赛的学生},A∪B={x|x是参加所有比赛的学生}.因此card(A∪B)=card(A)+card(B)﹣card(A∩B)=8+12﹣3=17.故两次运动会中,这个班共有17名同学参赛.故答案为:17.12.(4分)溶液酸碱度是通过pH值刻画的,pH值的计算公式为pH=﹣lg[H+],其中[H+]表示溶液中氢离子的浓度,单位是摩尔/升,纯净水中氢离子的浓度为[H+]=10﹣7摩尔/升,则纯净水的pH=7.【解答】解:由题意可得:该溶液的PH值为﹣lg10﹣7=7故答案为:713.(4分)已知,那么=.【解答】解:因为,所以||=.故答案为.14.(4分)计算(lg2)2+lg2•lg50+lg25=2.【解答】解:原式=2 lg5+lg2•(1+lg5)+(lg2)2=2 lg5+lg2(1+lg5+lg2)=2 lg5+2 lg2=2;故答案为2.15.(4分)设A,B是非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合中B都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射,设f:x→是从集合A到集合B的一个映射.①若A={0,1,2},则A∩B={0,1} ;②若B={1,2},则A∩B={1}或∅.【解答】解:①根据题意,A={0,1,2},通过对应关系f:x→,B={0,1,},所以A∩B={0,1};②根据题意,B={1,2}时,过对应关系f:x→,得A={1}或{4}或{1,4};所以A∩B={1}或∅.故答案为:{0,1},{1}或∅.三、解答题(共4小题,满分32分)16.(8分)已知向量=(1,0),=(1,1),=(﹣1,1).(Ⅰ)λ为何值时,+λ与垂直?(Ⅱ)若(m+n)∥,求的值.【解答】解:(Ⅰ)∵向量=(1,0),=(1,1),=(﹣1,1).∴=(1+λ,λ),∵+λ与垂直,∴()•=1+λ+0=0,解得λ=﹣1,∴λ=1时,+λ与垂直.(Ⅱ)∵=(m,0)+(n,n)=(m+n,n),又(m+n)∥,∴(m+n)×1﹣(﹣1×n)=0,∴=﹣2.∴若(m+n)∥,则=﹣2.17.(8分)已知函数f(x)=x﹣.(Ⅰ)判断f(x)的奇偶性;(Ⅱ)用函数单调性的定义证明:f(x)在(0,+∞)上是增函数.【解答】解:(Ⅰ)函数f(x)=x﹣的定义域是D=(﹣∞,0)∪(0,+∞),任取x∈D,则﹣x∈D,且f(﹣x)=﹣x﹣=﹣(x﹣)=﹣f(x),∴f(x)是定义域上的奇函数;(Ⅱ)证明:设x1,x2∈(0,+∞),且x1<x2,则f(x1)﹣f(x2)=(x1﹣)﹣(x2﹣)=(x1﹣x2)+(﹣)=;∵0<x1<x2,∴x1x2>0,x1﹣x2<0,x1x2+1>0,∴<0,即f(x1)<f(x2),∴f(x)在(0,+∞)上是增函数.18.(8分)已知函数f(x)=sin2+sin cos.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若x∈[,π],求f(x)的最大值与最小值.【解答】解:(Ⅰ)函数f(x)=sin2+sin cos=+sinx=sinx﹣cosx+=sin(x﹣)+,由T==2π,知f(x)的最小正周期是2π;(Ⅱ)由f(x)=sin(x﹣)+,且x∈[,π],∴≤x﹣≤,∴≤sin(x﹣)≤1,∴1≤sin(x﹣)+≤,∴当x=时,f(x)取得最大值,x=π时,f(x)取得最小值1.19.(8分)已知函数f(x)=1﹣(a>0且a≠1)是定义在R上的奇函数.(Ⅰ)求a的值;(Ⅱ)若关于x的方程|f(x)•(2x+1)|=m有1个实根,求实数m的取值范围.【解答】解:(Ⅰ)∵f(x)=1﹣(a>0且a≠1)是定义在R上的奇函数,∴f(0)=0,即1﹣=0,∴a=2;(Ⅱ)设h(x)=|f(x)•(2x+1)|,g(x)=m,如图所示,m=0或m≥1,两函数图象有一个交点,∴关于x的方程|f(x)•(2x+1)|=m有1个实根时,实数m的取值范围是m=0或m≥1.四、阅读与探究(共1小题,满分8分)20.(8分)阅读下面材料,尝试类比探究函数y=x2﹣的图象,写出图象特征,并根据你得到的结论,尝试猜测作出函数对应的图象.阅读材料:我国著名数学家华罗庚先生曾说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.我们来看一个应用函数的特征研究对应图象形状的例子.对于函数y=,我们可以通过表达式来研究它的图象和性质,如:(1)在函数y=中,由x≠0,可以推测出,对应的图象不经过y轴,即图象与y轴不相交;由y≠0,可以推测出,对应的图象不经过x轴,即图象与x轴不相交.(2)在函数y=中,当x>0时y>0;当x<0时y<0,可以推测出,对应的图象只能在第一、三象限;(3)在函数y=中,若x∈(0,+∞)则y>0,且当x逐渐增大时y逐渐减小,可以推测出,对应的图象越向右越靠近x轴;若x∈(﹣∞,0),则y<0,且当x逐渐减小时y逐渐增大,可以推测出,对应的图象越向左越靠近x轴;(4)由函数y=可知f(﹣x)=﹣f(x),即y=是奇函数,可以推测出,对应的图象关于原点对称.结合以上性质,逐步才想出函数y=对应的图象,如图所示,在这样的研究中,我们既用到了从特殊到一般的思想,由用到了分类讨论的思想,既进行了静态(特殊点)的研究,又进行了动态(趋势性)的思考.让我们享受数学研究的过程,传播研究数学的成果.【解答】解:(1)在y=x2﹣中,x≠0,可以推测出:对应的图象不经过y轴,即与y轴不相交,(2)令y=0,即x2﹣=0,解得x=±1,可以推测出,对应的图象与x相交,交点坐标为(1,0)和(﹣1,0),(3)在y=x2﹣中,当0<x<1时,>1>x2,则y<0,当x>1时,<1<x2,则y>0,可以推测出:对应的图象在区间(0,1)上图象在x轴的下方,在区间(1,+∞)上图象在x轴的上方,(4)在y=x2﹣中,若x∈(0,+∞),则当x逐渐增大时逐渐减小,x2﹣,逐渐增大,即y逐渐增大,所以原函数在(0,+∞)是增函数,可以推测出:对应的图象越向右逐渐升高,是单调递增的趋势,(5)由函数y=x2﹣可知f(﹣x)=f(x),即函数为偶函数,可以推测出:对应的图象关于y轴对称赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。
贵州省贵阳市2017-2018学年高三上学期第一次模拟数学(文)试卷 Word版含解析
贵州省贵阳市2017-2018学年高考数学一模试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合U={1,2,3,4},A={1,2},B={2,4},则∁U(A∪B)=( )A.{2} B.{3} C.{1,2,4} D.{1,4}2.已知为虚数单位,复数z=i(2﹣i),则|z|=( )A.B.C.1 D.33.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( )A.B.y=e﹣x C.y=lg|x| D.y=﹣x2+14.下列正确的是( )A.∃x0∈R,x02+2x0+3=0B.∀x∈N,x3>x2C.x>1是x2>1的充分不必要条件D.若a>b,则a2>b25.对任意实数k,直线y=kx+1与圆x2+y2=4的位置关系一定是( )A.相离B.相切C.相交且不过圆心D.相交且过圆心6.已知sin2α=,则cos2()=( )A.B.C.D.7.执行如图所示的程序框图,则输出的b=( )A.7 B.9 C.11 D.138.如图三棱锥V﹣ABC,V A⊥VC,AB⊥BC,∠V AC=∠ACB=30°,若侧面V AC⊥底面ABC,则其主视图与左视图面积之比为( )A.4:B.4:C.:D.:9.在等比数例{a n}中,2a4,a6,48成等差数列,且a3•a5=64,则{a n}的前8项和为( ) A.255 B.85 C.255或﹣85 D.255或8510.已知实数x,y满足不等式组,若目标函数z=y﹣ax去的最大值时的唯一最优解为(1,3),则实数a的取值范围为( )A.(1,+∞)B.[1,+∞)C.(0,1)D.(﹣∞,﹣1)11.已知抛物线C1:y=x2(p>0)的焦点与双曲线C2:﹣y2=1的右焦点的连线交C1于第一象限的点M,若C1在点M处的切线平行于C2的一条渐近线,则p=( ) A.B.C.D.12.定义域为R的函数f(x)对任意x都有f(x)=f(4﹣x),且其导函数f′(x)满足(x ﹣2)f′(x)>0,则当2<m<4时,有( )A.f(2)>f(2m)>f(log2m)B.f(log2m)>f(2m)>f(2)C.f(2m)>f(log2m)>f(2)D.f(2m)>>f(2)>f(log2m)二、填空题(本大题共4小题,每小题5分,共20分.)13.已知向量,夹角为45°,且||=1,||=3,则|2﹣|=__________.14.若S n是等差数列{a n}的前n项和,且S8﹣S3=20,则S11的值为__________.15.已知正四棱锥的侧棱与底面的边长都为3,则这个四棱锥的外接球的表面积为__________.16.欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为4cm的圆,中间有边长为1cm的正方形孔,若随机向铜钱上滴一滴油(油滴是直径为0.2cm 的球)正好落人孔中的概率是__________.三、解答题(解答应写出文字说明,证明过程或演算步骤,解答过程书写在答题纸的对应位置.)17.若向量=(sinωx,cosωx),b=(cosωx,cosωx),ω>0,x∈R,f(x)=a•b﹣,且f(x)的周期是π,设△ABC三个角A,B,C的对边分别为a,b,c(Ⅰ)求ω的值;(Ⅱ)若c=,f(C)=,sinB=3sinA,求a,b的值.18.某校研究性学习小组,为了分析2014年某小国的宏观经济形势,查阅了有关材料,得到了2013年和2014年1~5月CPI同比(即当年某月与前一年同月相比)的增长数据(见下表),但2014年3,4,5个月数据(分别为x,y,z)没有查到,有的同学清楚的记得2014年的5个CPI数据成等差数列(Ⅰ)求x,y,z的值和2014年1~5月该国CPI数据的方差(Ⅱ)一般认为,某月的CPI数据达到或超过3个百分点就已经通货膨胀,而达到或超过5个百分点为严重通货膨胀,先随机从2013年5个月和2014年5个月的数据中各抽取一个数据,求抽的数据的月份相同且2013年通货膨胀2014年严重通货膨胀的概率.该国2013年和2014年1~5月份的CPI数据(单位:百分点,1个百分点=1%)年份一月二月三月四月五月2013 2.7 2.4 2.8 3.1 3.92014 4.9 5.0 x y z19.如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,PA=PD=AD=2,点M在线段PC上,且PM=2MC,N为AD的中点(Ⅰ)求证:BC⊥平面PNB;(Ⅱ)若平面PAD⊥平面ABCD,求三棱锥P﹣NBM的体积.20.已知两点F1(﹣1,0)及F2(1,0),点P在以F1,F2为焦点的椭圆C上,且|PF1|+|PF2|=4.(Ⅰ)求椭圆C的方程(Ⅱ)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l,求四边形F1MNF2面积S的最大值.21.已知函数f(x)=﹣lnx,x∈[1,3](Ⅰ)求f(x)的最大值与最小值(Ⅱ)若任意x∈[1,3],t∈[0,2],有f(x)<4﹣at恒成立,求实数a的取值范围.四、选修4-1:几何证明选讲22.AB是⊙O的一条切线,切点为B,过⊙O外一点C作直线CE交⊙O于G,E,连接AE交⊙O于D,连接CD交⊙O于F,连接AC,FG,已知AC=AB(1)证明:AD•AE=AC2;(2)证明:FG∥AC.五、选修4-4:坐标系与参数方程23.在平面直角坐标系xoy中,以坐标原点为极点,以x轴的非负半轴为极轴,建立极坐标系,已知直线l的参数方程为(t为参数),圆C的极坐标方程是ρ=1.(1)求直线l与圆C的公共点个数;(2)在平面直角坐标系中,圆C经过伸缩变换得到曲线C′,设M(x,y)为曲线C′上一点,求4x2+xy+y2的最大值,并求相应点M的坐标.六、选修4-5:不等式选讲24.(Ⅰ)已知a和b是任意非零实数.证明:≥4;(Ⅱ)若不等式|2x+1|﹣|x+1|>k(x﹣1)﹣恒成立,求实数k的取值范围.贵州省贵阳市2015届高考数学一模试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合U={1,2,3,4},A={1,2},B={2,4},则∁U(A∪B)=( )A.{2} B.{3} C.{1,2,4} D.{1,4}考点:交、并、补集的混合运算.专题:集合.分析:根据并集的含义先求A∪B,注意2只能写一个,再根据补集的含义求解.解答:解:集合A∪B={1,2,4},则C U(A∪B)={3},故选B.点评:本题考查集合的基本运算,较简单.2.已知为虚数单位,复数z=i(2﹣i),则|z|=( )A.B.C.1 D.3考点:复数求模.专题:数系的扩充和复数.分析:利用复数的运算法则、模的计算公式即可得出.解答:解:复数z=i(2﹣i)=2i+1,则|z|=.故选:A.点评:本题考查了复数的运算法则、模的计算公式,属于基础题.3.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( )A.B.y=e﹣x C.y=lg|x| D.y=﹣x2+1考点:函数奇偶性的判断;函数单调性的判断与证明.专题:函数的性质及应用.分析:利用基本函数的奇偶性、单调性逐项判断即可.解答:解:A中,y=为奇函数,故排除A;B中,y=e﹣x为非奇非偶函数,故排除B;C中,y=lg|x|为偶函数,在x∈(0,1)时,单调递减,在x∈(1,+∞)时,单调递增,所以y=lg|x|在(0,+∞)上不单调,故排除C;D中,y=﹣x2+1的图象关于y轴对称,故为偶函数,且在(0,+∞)上单调递减,故选D.点评:本题考查函数的奇偶i性、单调性的判断证明,属基础题,定义是解决该类题目的基本方法,熟记基本函数的有关性质可简化问题的解决.4.下列正确的是( )A.∃x0∈R,x02+2x0+3=0B.∀x∈N,x3>x2C.x>1是x2>1的充分不必要条件D.若a>b,则a2>b2考点:特称;充要条件;全称.专题:计算题.分析:A和B选项按全称和特称的真假判断来看;C选项看从条件能否推出推结论,再看结论能否推出条件,从而做出最后的判断;D选项看从条件能否推出推结论.解答:解:A错,∵方程的根的判别式△=4﹣4×3<0,此方程没有实数解:B错,∵当x=1时,x3=x2;C对,∵x2>1⇔(x﹣1)(x﹣1)>0⇔x<﹣1或x>1∴x>1⇒x2>1成立,但x2>1⇒x>1不成立,∴x>1是x2>1的充分不必要条件;D错,∵若a>b,则a2﹣b2=(a+b)(a﹣b)不一定大于0.故选C.点评:本题主要考查了、条件、特称等的有关知识,与其它部分的知识联系密切,所以综合性较强.5.对任意实数k,直线y=kx+1与圆x2+y2=4的位置关系一定是( )A.相离B.相切C.相交且不过圆心D.相交且过圆心考点:直线与圆的位置关系.专题:计算题;直线与圆.分析:对任意的实数k,直线y=kx+1恒过点(0,1),且斜率存在,(0,1)在圆x2+y2=4内,故可得结论解答:解:对任意的实数k,直线y=kx+1恒过点(0,1),且斜率存在∵(0,1)在圆x2+y2=4内∴对任意的实数k,直线y=kx+1与圆x2+y2=4的位置关系一定是相交但直线不过圆心.故选:C.点评:本题考查直线与圆的位置关系,解题的关键是确定直线y=kx+1恒过点(0,1),且斜率存在.6.已知sin2α=,则cos2()=( )A.B.C.D.考点:二倍角的余弦;三角函数的化简求值.专题:三角函数的求值.分析:利用二倍角的余弦公式化简后,由诱导公式化简即可求值.解答:解:∵sin2α=,∴cos2()====.故选:B.点评:本题主要考查了二倍角的余弦公式,诱导公式的应用,属于基本知识的考查.7.执行如图所示的程序框图,则输出的b=( )A.7 B.9 C.11 D.13考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的a,b的值,当a=5时,不满足条件a≤4,退出循环,输出b的值为9.解答:解:模拟执行程序框图,可得a=1,b=1满足条件a≤4,b=3,a=2满足条件a≤4,b=5,a=3满足条件a≤4,b=7,a=4满足条件a≤4,b=9,a=5不满足条件a≤4,退出循环,输出b的值为9.故选:B.点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.8.如图三棱锥V﹣ABC,V A⊥VC,AB⊥BC,∠V AC=∠ACB=30°,若侧面V AC⊥底面ABC,则其主视图与左视图面积之比为( )A.4:B.4:C.:D.:考点:简单空间图形的三视图.专题:常规题型;空间位置关系与距离.分析:主视图为Rt△V AC,左视图为以△V AC中AC的高为一条直角边,△ABC中AC的高为另一条直角边的直角三角形.解答:解:主视图为Rt△V AC,左视图为以△V AC中AC的高VD为一条直角边,△ABC 中AC的高BE为另一条直角边的直角三角形.设AC=X,则V A=x,VC=,VD=x,BE=x,则S主视图:S左视图==4:.故选:A.点评:由直观图到三视图,要注意图形的变化和量的转化.属于基础题.9.在等比数例{a n}中,2a4,a6,48成等差数列,且a3•a5=64,则{a n}的前8项和为( ) A.255 B.85 C.255或﹣85 D.255或85考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:利用等比数列的性质求出a4,然后求出a6,求出公比,即可求解{a n}的前8项和.解答:解:在等比数例{a n}中,a3•a5=64,可得a42=64,解得a4=±8.当a4=8时,2a4,a6,48成等差数列,即16,a6,48成等差数列,可得a6=32.q2==4,解得q=±2,q=2时解得a1==1,q=﹣2时,q=﹣1q=2,a1=1时,S8===255.q=﹣2时解得a1=﹣1,S8===85.当a4=﹣8时,2a4,a6,48成等差数列,即﹣16,a6,48成等差数列,可得a6=16.q2=无解.故选:D.点评:本题考查等差数列以及等比数列的综合应用,考查计算能力.10.已知实数x,y满足不等式组,若目标函数z=y﹣ax去的最大值时的唯一最优解为(1,3),则实数a的取值范围为( )A.(1,+∞)B.[1,+∞)C.(0,1)D.(﹣∞,﹣1)考点:简单线性规划.专题:不等式的解法及应用.分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,由目标函数z=y﹣ax取得最大值时的唯一最优解为(1,3)可得a的取值范围.解答:解:由约束条件作出可行域如图,化目标函数z=y﹣ax为y=ax+z,联立,解得A(1,3),∵使目标函数z=y﹣ax取得最大值时的唯一最优解为(1,3),由图可知a>1,∴实数a的取值范围为(1,+∞).故选:A.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.11.已知抛物线C1:y=x2(p>0)的焦点与双曲线C2:﹣y2=1的右焦点的连线交C1于第一象限的点M,若C1在点M处的切线平行于C2的一条渐近线,则p=( ) A.B.C.D.考点:抛物线的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:由曲线方程求出抛物线与双曲线的焦点坐标,由两点式写出过两个焦点的直线方程,求出函数y=x2(p>0)在x取直线与抛物线交点M的横坐标时的导数值,由其等于双曲线渐近线的斜率得到交点横坐标与p的关系,把M点的坐标代入直线方程即可求得p的值.解答:解:由抛物线C1:y=x2(p>0)得x2=2py(p>0),所以抛物线的焦点坐标为F(0,).由﹣y2=1得a=,b=1,c=2.所以双曲线的右焦点为(2,0).则抛物线的焦点与双曲线的右焦点的连线所在直线方程为,即①.设该直线交抛物线于M(),则C1在点M处的切线的斜率为.由题意可知=,得x0=,代入M点得M(,)把M点代入①得:.解得p=.故选:D.点评:本题考查了双曲线的简单几何性质,考查了利用导数研究曲线上某点的切线方程,函数在曲线上某点处的切线的斜率等于函数在该点处的导数,是中档题.12.定义域为R的函数f(x)对任意x都有f(x)=f(4﹣x),且其导函数f′(x)满足(x ﹣2)f′(x)>0,则当2<m<4时,有( )A.f(2)>f(2m)>f(log2m) B.f(log2m)>f(2m)>f(2)C.f(2m)>f(log2m)>f(2) D.f(2m)>>f(2)>f(log2m)考点:利用导数研究函数的单调性.专题:导数的综合应用.分析:先根据条件求出函数的对称轴,再求出函数的单调区间,然后判定2、log2m、2m的大小关系,根据单调性比较f(2)、f(log2m)、f(2m)的大小即可.解答:解:∵函数f(x)对任意x都有f(x)=f(4﹣x),∴函数f(x)的对称轴为x=2∵导函数f′(x)满足(x﹣2)f′(x)>0,∴函数f(x)在(2,+∞)上单调递增,(﹣∞,2)上单调递减∵2<m<4∴2<log2m<2m∴f(2m)>f(log2m)>f(2).故选:C.点评:本题主要考查了导数的运算,以及奇偶函数图象的对称性和比较大小,同时考查了数形结合的思想,该题有一定的思维量,是中档题.二、填空题(本大题共4小题,每小题5分,共20分.)13.已知向量,夹角为45°,且||=1,||=3,则|2﹣|=.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据平面向量的数量积运算,求出模长即可.解答:解:根据题意,得;|2﹣|====.故答案为:.点评:本题考查了平面向量的数量积的应用问题,应用平面向量的数量积求出向量的模长,是计算题.14.若S n是等差数列{a n}的前n项和,且S8﹣S3=20,则S11的值为44.考点:等差数列的前n项和.专题:计算题;等差数列与等比数列.分析:由于S8﹣S3=a4+a5+a6+a7+a8,结合等差数列的性质a4+a8=a5+a7=2a6可求a6,由等差数列的求和公式,S11=,即可求解.解答:解:∵S8﹣S3=a4+a5+a6+a7+a8=20由等差数列的性质可得,5a6=20∴a6=4由等差数列的求和公式可得s11==11a6=44故答案为:44.点评:本题主要考查了等差数列的求和公式及等差数列的性质的简单应用,属于基础试题.15.已知正四棱锥的侧棱与底面的边长都为3,则这个四棱锥的外接球的表面积为36π.考点:球的体积和表面积.专题:空间位置关系与距离.分析:先画出图形,正四棱锥外接球的球心在它的底面的中心,然后根据勾股定理解出球的半径,最后根据球的表面积公式解之即可.解答:解:如图,设正四棱锥底面的中心为O,则在直角三角形ABC中,AC=×AB=6,∴AO=CO=3,在直角三角形PAO中,PO===3,∴正四棱锥的各个顶点到它的底面的中心的距离都为3,∴正四棱锥外接球的球心在它的底面的中心,且球半径r=3,球的表面积S=4πr2=36π故答案为:36π点评:本题主要考查球的表面积,球的内接体问题,考查计算能力和空间想象能力,属于中档题.16.欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为4cm的圆,中间有边长为1cm的正方形孔,若随机向铜钱上滴一滴油(油滴是直径为0.2cm的球)正好落人孔中的概率是.考点:几何概型.专题:计算题;概率与统计.分析:本题考查的知识点是几何概型的意义,关键是要求出铜钱面积的大小和中间正方形孔面积的大小,然后代入几何概型计算公式进行求解.解答:解:∵铜钱的面积S=π•(2﹣0.1)2,能够滴入油的图形为边长为1﹣2×=的正方形,面积,∴P=,故答案为:点评:几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.三、解答题(解答应写出文字说明,证明过程或演算步骤,解答过程书写在答题纸的对应位置.)17.若向量=(sinωx,cosωx),b=(cosωx,cosωx),ω>0,x∈R,f(x)=a•b﹣,且f(x)的周期是π,设△ABC三个角A,B,C的对边分别为a,b,c(Ⅰ)求ω的值;(Ⅱ)若c=,f(C)=,sinB=3sinA,求a,b的值.考点:余弦定理;平面向量数量积的运算;两角和与差的正弦函数.专题:三角函数的图像与性质;解三角形.分析:(Ⅰ)化简函数解析式可得f(x)=sin(2ωx+),由T===π即可解得ω.(Ⅱ)由f(C)=sin(2C+)=,可得C=,由余弦定理可得a2+b2﹣ab=7①,由已知及正弦定理可得:b=3a②,联立即可解得a,b的值.解答:解:(Ⅰ)f(x)=a•b﹣=sinωxcosωx+cos2ωx﹣=sin2ωx+cos2ωx=sin(2ωx+)由T===π解得:ω=1(Ⅱ)∵f(C)=sin(2C+)=,∴2C+=(舍去)或2C+=,∴C=由余弦定理可得:7=a2+b2﹣2abcos即有:a2+b2﹣ab=7①∵sinB=3sinA∴由正弦定理可得:b=3a②由①②即可解得:a=1,b=3点评:此题考查了正弦定理、余弦定理,平面向量数量积的运算以及特殊角的三角函数值的应用,考查了两角和与差的正弦函数公式的应用,熟练掌握公式及相关定理是解本题的关键,属于基本知识的考查.18.某校研究性学习小组,为了分析2014年某小国的宏观经济形势,查阅了有关材料,得到了2013年和2014年1~5月CPI同比(即当年某月与前一年同月相比)的增长数据(见下表),但2014年3,4,5个月数据(分别为x,y,z)没有查到,有的同学清楚的记得2014年的5个CPI数据成等差数列(Ⅰ)求x,y,z的值和2014年1~5月该国CPI数据的方差(Ⅱ)一般认为,某月的CPI数据达到或超过3个百分点就已经通货膨胀,而达到或超过5个百分点为严重通货膨胀,先随机从2013年5个月和2014年5个月的数据中各抽取一个数据,求抽的数据的月份相同且2013年通货膨胀2014年严重通货膨胀的概率.该国2013年和2014年1~5月份的CPI数据(单位:百分点,1个百分点=1%)年份一月二月三月四月五月2013 2.7 2.4 2.8 3.1 3.92014 4.9 5.0 x y z考点:古典概型及其概率计算公式;极差、方差与标准差.专题:概率与统计.分析:由公差d=5﹣4.9=0.1,能求出x=5.1,y=5.2,z=5.3,从而能求出2014年1~5月该国CPI数据的平均值,进而能求出2014年1~5月该国CPI数据的方差.(2)先随机从2013年5个月和2014年5个月的数据中各抽取一个数据,基本事件总数n=5×5=25,抽的数据的月份相同且2013年通货膨胀2014年严重通货膨胀,包含的基本事件个数m=2,由此能求出抽的数据的月份相同且2013年通货膨胀2014年严重通货膨胀的概率.解答:解:(1)∵2014年的5个CPI数据4.9,5.0,x,y,z成等差数列∴公差d=5﹣4.9=0.1,∴x=5.1,y=5.2,z=5.3,∴2014年1~5月该国CPI数据的平均值为:==5.1,S2=[(4.9﹣5.1)2+(5.0﹣5.1)2+(5.1﹣5.1)2+(5.2﹣5.1)2+(5.3﹣5.1)2]=0.02.(2)先随机从2013年5个月和2014年5个月的数据中各抽取一个数据,基本事件总数n=5×5=25,抽的数据的月份相同且2013年通货膨胀2014年严重通货膨胀,包含的基本事件个数m=2,∴抽的数据的月份相同且2013年通货膨胀2014年严重通货膨胀的概率P==.点评:本题考相数据的方差和概率的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.19.如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,PA=PD=AD=2,点M在线段PC上,且PM=2MC,N为AD的中点(Ⅰ)求证:BC⊥平面PNB;(Ⅱ)若平面PAD⊥平面ABCD,求三棱锥P﹣NBM的体积.考点:棱柱、棱锥、棱台的体积;直线与平面垂直的判定.专题:空间位置关系与距离.分析:(Ⅰ)先证明PN⊥AD,再证明BN⊥AD,即有AD⊥平面PNB,又AD∥BC,从而可证BC⊥平面PNB.(Ⅱ)可证PN⊥平面ABCD,PN⊥NB,由PA=PD=AD=2,可得PN=NA=,S△PNB=,又BC⊥平面PNB,PM=2MC,即可由V P﹣NBM=V M﹣PNB=V C﹣PNB可得三菱锥P﹣NBM的体积.解答:证明:(Ⅰ)∵PA=AD,N为AD的中点,∴PN⊥AD,又底面ABCD为菱形,∠BAD=60°,∴△ABD为等边三角形,又因为N为AD的中点,∴BN⊥AD,又PN∩BN=N∴AD⊥平面PNB,∵AD∥BC∴BC⊥平面PNB…6分(Ⅱ)解:∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PN⊥AD∴PN⊥平面ABCD,∴PN⊥NB,∵PA=PD=AD=2,∴PN=NA=,∴S△PNB=又BC⊥平面PNB,PM=2MC,∴V P﹣NBM=V M﹣PNB=V C﹣PNB==…12分点评:本题主要考查了直线与平面垂直的判定,三菱锥体积的求法,考查了空间想象能力和转化思想,属于中档题.20.已知两点F1(﹣1,0)及F2(1,0),点P在以F1,F2为焦点的椭圆C上,且|PF1|+|PF2|=4.(Ⅰ)求椭圆C的方程(Ⅱ)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l,求四边形F1MNF2面积S的最大值.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:直线与圆;圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.分析:(Ⅰ)运用椭圆的定义可得a=2,又c=1,再由a,b,c的关系,解得b,进而得到椭圆方程;(Ⅱ)将直线方程代入椭圆方程,运用判别式为0,讨论k≠0,k=0,运用直角梯形面积公式,结合基本不等式,即可得到最大值.解答:解:(Ⅰ)由椭圆定义可得2a=|PF1|+|PF2|=4.即a=2,又c=1,b==,则椭圆方程为+y2=1;(Ⅱ)将直线l的方程y=kx+m代入椭圆C的方程3x2+4y2=12中,得(4k2+3)x2+8kmx+4m2﹣12=0.由直线l与椭圆C仅有一个公共点知,△=64k2m2﹣4(4k2+3)(4m2﹣12)=0,化简得:m2=4k2+3.设d1=|F1M|=,d2=|F2N|=,当k≠0时,设直线l的倾斜角为θ,则|d1﹣d2|=|MN|•|tanθ|∴|MN|=||,S=||(d1+d2)=||===,∵m2=4k2+3,∴当k≠0时,|m|>,|m|+>+,S<2.当k=0时,四边形F1MNF2是矩形,S=2.所以四边形F1MNF2面积S的最大值为2.点评:本题主要考查椭圆的方程与性质、直线方程、直线与椭圆的位置关系次函数的单调性、基本不等式的性质等基础知识,考查运算能力、推理论证以及分析问题、解决问题的能力,考查化归与转化思想.21.已知函数f(x)=﹣lnx,x∈[1,3](Ⅰ)求f(x)的最大值与最小值(Ⅱ)若任意x∈[1,3],t∈[0,2],有f(x)<4﹣at恒成立,求实数a的取值范围.考点:利用导数求闭区间上函数的最值;函数恒成立问题.专题:函数的性质及应用;导数的综合应用.分析:(1)只需要求出函数在该区间上的极值、端点值,然后即可比较得到函数的最值;(2)问题转化为f(x)max<(4﹣at)min即可,然后借助于导数先研究函数的单调性研究最.解答:解:(1)因为函数,所以,令f′(x)=0得x=±2.因为x∈[1,3],所以当x∈[1,2]时,f′(x)<0,当x∈[2,3]时,f′(x)>0.故f(x)在(1,2)上递减,在(2,3)上递增.所以.又f(1)=,且f(1)﹣f(3)=ln3﹣1>0.所以f(1)>f(3).所以x=1时,f(x)max=,f(x)min=f(2)=.(2)由(1)知当x∈[1,3]时,,故对任意x∈[1,3],t∈[0,2],有f(x)<4﹣at恒成立,只需对于t∈[0,2],有<4﹣at恒成立,即恒成立.令g(t)=at,t∈[0,2].所以,解得.所以实数a的取值范围是.点评:本题考查了利用导数研究函数在连续的闭区间上的最值问题以及不等式恒成立问题的基本思路,属于常规题,难度不大.四、选修4-1:几何证明选讲22.AB是⊙O的一条切线,切点为B,过⊙O外一点C作直线CE交⊙O于G,E,连接AE交⊙O于D,连接CD交⊙O于F,连接AC,FG,已知AC=AB(1)证明:AD•AE=AC2;(2)证明:FG∥AC.考点:与圆有关的比例线段.专题:直线与圆.分析:(1)由切割线定理得AB2=AD•AE,由此能证明AC2=AD•AE.(2)由,∠EAC=∠DAC,得△ADC∽△ACE,从而得到∠EGF=∠ACE,由此能证明GF∥AC.解答:证明:(1)∵AB是⊙O的一条切线,AE为割线,∴AB2=AD•AE,又∵AB=AC,∴AC2=AD•AE.(2)由(1)得,∵∠EAC=∠DAC,∴△ADC∽△ACE,∴∠ADC=∠ACE,∵∠ADC=∠EGF,∴∠EGF=∠ACE,∴GF∥AC.点评:本题考查AD•AE=AC2的证明,考查两直线平行的证明,是中档题,解题时要注意切割线定理和相似三角形的性质的合理运用.五、选修4-4:坐标系与参数方程23.在平面直角坐标系xoy中,以坐标原点为极点,以x轴的非负半轴为极轴,建立极坐标系,已知直线l的参数方程为(t为参数),圆C的极坐标方程是ρ=1.(1)求直线l与圆C的公共点个数;(2)在平面直角坐标系中,圆C经过伸缩变换得到曲线C′,设M(x,y)为曲线C′上一点,求4x2+xy+y2的最大值,并求相应点M的坐标.考点:参数方程化成普通方程.专题:坐标系和参数方程.分析:(Ⅰ)把直线l的参数方程、圆C的极坐标方程化为普通方程,根据圆心到直线的距离d与圆半径r的关系,判定直线l与圆C的公共点个数;(Ⅱ)由圆C的参数方程求出曲线C′的参数方程,代入4x2+xy+y2中,求出4x2+xy+y2取得最大值时对应的M点的坐标.解答:解:(Ⅰ)直线l的参数方程(t为参数)化为普通方程是x﹣y﹣=0,圆C的极坐标方程ρ=1化为普通方程是x2+y2=1;∵圆心(0,0)到直线l的距离为d==1,等于圆的半径r,∴直线l与圆C的公共点的个数是1;(Ⅱ)圆C的参数方程是,(0≤θ<2π);∴曲线C′的参数方程是,(0≤θ<2π);∴4x2+xy+y2=4cos2θ+cosθ•2sinθ+4sin2θ=4+sin2θ;当θ=或θ=时,4x2+xy+y2取得最大值5,此时M的坐标为(,)或(﹣,﹣).点评:本题考查了参数方程与极坐标方程的应用问题,解题时可以把参数方程、极坐标方程化为普通方程,以便正确解答问题,是基础题.六、选修4-5:不等式选讲24.(Ⅰ)已知a和b是任意非零实数.证明:≥4;(Ⅱ)若不等式|2x+1|﹣|x+1|>k(x﹣1)﹣恒成立,求实数k的取值范围.考点:函数恒成立问题.专题:函数的性质及应用.分析:(Ⅰ)利用双绝对值不等式的性质|2a+b|+|2a﹣b|≥|2a+b+2a﹣b|=4|a|即可证得结论成立;(Ⅱ)构造函数h(x)=|2x+1|﹣|x+1|=,作出y=h(x)与过定点(1,﹣)的直线y=k(x﹣1)﹣的图象,数形结合即可求得实数k的取值范围.解答:证明:(Ⅰ)|2a+b|+|2a﹣b|≥|2a+b+2a﹣b|=4|a|∴.(Ⅱ)记h(x)=|2x+1|﹣|x+1|=若不等式|2x+1|﹣|x+1|>k(x﹣1)﹣恒成立,则函数h(x)的图象在直线y=k(x﹣1)﹣的上方,∵y=k(x﹣1)﹣经过定点(1,﹣),当x=﹣时,y=h(x)取得最小值﹣,显然,当y=k(x﹣1)﹣经过定点P(1,﹣)与M(﹣,﹣)时,k PM==,即k>;当y=k(x﹣1)﹣经过定点P(1,﹣)与直线y=x平行时,k得到最大值1,∴.点评:本题考查函数恒成立问题,着重考查绝对值不等式的性质,突出构造函数思想与数形结合思想的应用,考查转化思想与运算求解能力,属于难题.。
20162017学年贵州省贵阳市高一(上)期末数学试卷
2016-2017学年贵州省贵阳市高一(上)期末数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合A={0,1,2},B={2,3},则集合A∪B=()A.{1,2,3}B.{0,1,2,3}C.{2}D.{0,1,3}2.(4分)化简÷(b)(a>0,b>0)结果为()A.a B.b C.D.3.(4分)正弦函数f(x)=sinx图象的一条对称轴是()A.x=0 B.C.D.x=π4.(4分)下列函数中,既是偶函数又存在零点的是()A.f(x)=sinx B.f(x)=x2+1 C.f(x)=lnx D.f(x)=cosx5.(4分)设y1=log0.70.8,y2=log1.10.9,y3=1.10.9,则有()A.y3>y1>y2B.y2>y1>y3C.y1>y2>y3D.y1>y3>y26.(4分)已知正方形ABCD的边长为1,则•=()A.1 B.C.D.27.(4分)如果cos(π+A)=﹣,那么sin(+A)的值是()A.B.C.D.8.(4分)要得到函数y=sin(2x+)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位9.(4分)函数y=f(x)在区间上的简图如图所示,则函数y=f(x)的解析式可以是()A.f(x)=sin(2x+)B.f(x)=sin(2x﹣)C.f(x)=sin(x+)D.f(x)=sin(x﹣)10.(4分)对于函数f(x),如果存在非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,已知函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=x2,则y=f(x)与y=log5x的图象的交点个数为()A.3 B.4 C.5 D.6二、填空题(共5小题,每小题4分,满分20分)11.(4分)学校先举办了一次田径运动会,某班有8名同学参赛,又举办了一次球类运动会,该班有12名同学参赛,两次运动会都参赛的有3人.两次运动会中,这个班共有名同学参赛.12.(4分)溶液酸碱度是通过pH值刻画的,pH值的计算公式为pH=﹣lg[H+],其中[H+]表示溶液中氢离子的浓度,单位是摩尔/升,纯净水中氢离子的浓度为[H+]=10﹣7摩尔/升,则纯净水的pH=.13.(4分)已知,那么=.14.(4分)计算(lg2)2+lg2•lg50+lg25=.15.(4分)设A,B是非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合中B都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射,设f:x→是从集合A到集合B的一个映射.①若A={0,1,2},则A∩B=;②若B={1,2},则A ∩B=.三、解答题(共4小题,满分32分)16.(8分)已知向量=(1,0),=(1,1),=(﹣1,1).(Ⅰ)λ为何值时,+λ与垂直?(Ⅱ)若(m+n)∥,求的值.17.(8分)已知函数f(x)=x﹣.(Ⅰ)判断f(x)的奇偶性;(Ⅱ)用函数单调性的定义证明:f(x)在(0,+∞)上是增函数.18.(8分)已知函数f(x)=sin2+sin cos.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若x∈[,π],求f(x)的最大值与最小值.19.(8分)已知函数f(x)=1﹣(a>0且a≠1)是定义在R上的奇函数.(Ⅰ)求a的值;(Ⅱ)若关于x的方程|f(x)•(2x+1)|=m有1个实根,求实数m的取值范围.四、阅读与探究(共1小题,满分8分)20.(8分)阅读下面材料,尝试类比探究函数y=x2﹣的图象,写出图象特征,并根据你得到的结论,尝试猜测作出函数对应的图象.阅读材料:我国著名数学家华罗庚先生曾说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.我们来看一个应用函数的特征研究对应图象形状的例子.对于函数y=,我们可以通过表达式来研究它的图象和性质,如:(1)在函数y=中,由x≠0,可以推测出,对应的图象不经过y轴,即图象与y轴不相交;由y≠0,可以推测出,对应的图象不经过x轴,即图象与x轴不相交.(2)在函数y=中,当x>0时y>0;当x<0时y<0,可以推测出,对应的图象只能在第一、三象限;(3)在函数y=中,若x∈(0,+∞)则y>0,且当x逐渐增大时y逐渐减小,可以推测出,对应的图象越向右越靠近x轴;若x∈(﹣∞,0),则y<0,且当x逐渐减小时y逐渐增大,可以推测出,对应的图象越向左越靠近x轴;(4)由函数y=可知f(﹣x)=﹣f(x),即y=是奇函数,可以推测出,对应的图象关于原点对称.结合以上性质,逐步才想出函数y=对应的图象,如图所示,在这样的研究中,我们既用到了从特殊到一般的思想,由用到了分类讨论的思想,既进行了静态(特殊点)的研究,又进行了动态(趋势性)的思考.让我们享受数学研究的过程,传播研究数学的成果.2016-2017学年贵州省贵阳市高一(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合A={0,1,2},B={2,3},则集合A∪B=()A.{1,2,3}B.{0,1,2,3}C.{2}D.{0,1,3}【解答】解:∵集合A={0,1,2},B={2,3},则集合A∪B={0,1,2,3},故选:B.2.(4分)化简÷(b)(a>0,b>0)结果为()A.a B.b C.D.【解答】解:原式==a,故选:A3.(4分)正弦函数f(x)=sinx图象的一条对称轴是()A.x=0 B.C.D.x=π【解答】解:f(x)=sinx图象的一条对称轴为+kπ,k∈Z,∴当k=0时,函数的对称轴为,故选:C.4.(4分)下列函数中,既是偶函数又存在零点的是()A.f(x)=sinx B.f(x)=x2+1 C.f(x)=lnx D.f(x)=cosx【解答】解:对于A,是奇函数;对于B,是偶函数,不存在零点;对于C,非奇非偶函数;对于D,既是偶函数又存在零点.故选:D.5.(4分)设y1=log0.70.8,y2=log1.10.9,y3=1.10.9,则有()A.y3>y1>y2B.y2>y1>y3C.y1>y2>y3D.y1>y3>y2【解答】解:y1=,1);y2=;y3=,可得y3>y1>y2.故选:A.6.(4分)已知正方形ABCD的边长为1,则•=()A.1 B.C.D.2【解答】解:.故选A.7.(4分)如果cos(π+A)=﹣,那么sin(+A)的值是()A.B.C.D.【解答】解:由题意可得:,根据诱导公式可得cosA=,所以=cosA=,故选B.8.(4分)要得到函数y=sin(2x+)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【解答】解:由于函数y=sin(2x+)=sin2(x+),∴将函数y=sin2x的图象向左平移个单位长度,可得函数y=sin(2x+)的图象,故选:B9.(4分)函数y=f(x)在区间上的简图如图所示,则函数y=f(x)的解析式可以是()A.f(x)=sin(2x+)B.f(x)=sin(2x﹣)C.f(x)=sin(x+)D.f(x)=sin(x﹣)【解答】解:由图象知A=1,∵=,∴T=π,∴ω=2,∴函数的解析式是y=sin(2x+φ)∵函数的图象过()∴0=sin(2×+φ)∴φ=kπ﹣,∴φ=﹣∴函数的解析式是y=sin(2x﹣)故选B.10.(4分)对于函数f(x),如果存在非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,已知函数y=f (x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=x2,则y=f(x)与y=log5x的图象的交点个数为()A.3 B.4 C.5 D.6【解答】解:∵函数y=f(x)(x∈R)满足f(x+2)=f(x),∴f(x)是周期为2的周期性函数,又x∈[﹣1,1]时,f(x)=x2.根据函数的周期性画出图形,如图,由图可得y=f(x)与y=log5x的图象有4个交点故选:B.二、填空题(共5小题,每小题4分,满分20分)11.(4分)学校先举办了一次田径运动会,某班有8名同学参赛,又举办了一次球类运动会,该班有12名同学参赛,两次运动会都参赛的有3人.两次运动会中,这个班共有17名同学参赛.【解答】解:设A={x|x是参加田径运动会比赛的学生},B={x|x是参加球类运动会比赛的学生},A∩B={x|x是两次运动会都参加比赛的学生},A∪B={x|x是参加所有比赛的学生}.因此card(A∪B)=card(A)+card(B)﹣card(A∩B)=8+12﹣3=17.故两次运动会中,这个班共有17名同学参赛.故答案为:17.12.(4分)溶液酸碱度是通过pH值刻画的,pH值的计算公式为pH=﹣lg[H+],其中[H+]表示溶液中氢离子的浓度,单位是摩尔/升,纯净水中氢离子的浓度为[H+]=10﹣7摩尔/升,则纯净水的pH=7.【解答】解:由题意可得:该溶液的PH值为﹣lg10﹣7=7故答案为:713.(4分)已知,那么=.【解答】解:因为,所以||=.故答案为.14.(4分)计算(lg2)2+lg2•lg50+lg25=2.【解答】解:原式=2 lg5+lg2•(1+lg5)+(lg2)2=2 lg5+lg2(1+lg5+lg2)=2 lg5+2 lg2=2;故答案为2.15.(4分)设A,B是非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合中B都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射,设f:x→是从集合A到集合B的一个映射.①若A={0,1,2},则A∩B={0,1} ;②若B={1,2},则A∩B={1}或∅.【解答】解:①根据题意,A={0,1,2},通过对应关系f:x→,B={0,1,},所以A∩B={0,1};②根据题意,B={1,2}时,过对应关系f:x→,得A={1}或{4}或{1,4};所以A∩B={1}或∅.故答案为:{0,1},{1}或∅.三、解答题(共4小题,满分32分)16.(8分)已知向量=(1,0),=(1,1),=(﹣1,1).(Ⅰ)λ为何值时,+λ与垂直?(Ⅱ)若(m+n)∥,求的值.【解答】解:(Ⅰ)∵向量=(1,0),=(1,1),=(﹣1,1).∴=(1+λ,λ),∵+λ与垂直,∴()•=1+λ+0=0,解得λ=﹣1,∴λ=1时,+λ与垂直.(Ⅱ)∵=(m,0)+(n,n)=(m+n,n),又(m+n)∥,∴(m+n)×1﹣(﹣1×n)=0,∴=﹣2.∴若(m+n)∥,则=﹣2.17.(8分)已知函数f(x)=x﹣.(Ⅰ)判断f(x)的奇偶性;(Ⅱ)用函数单调性的定义证明:f(x)在(0,+∞)上是增函数.【解答】解:(Ⅰ)函数f(x)=x﹣的定义域是D=(﹣∞,0)∪(0,+∞),任取x∈D,则﹣x∈D,且f(﹣x)=﹣x﹣=﹣(x﹣)=﹣f(x),∴f(x)是定义域上的奇函数;(Ⅱ)证明:设x1,x2∈(0,+∞),且x1<x2,则f(x1)﹣f(x2)=(x1﹣)﹣(x2﹣)=(x1﹣x2)+(﹣)=;∵0<x1<x2,∴x1x2>0,x1﹣x2<0,x1x2+1>0,∴<0,即f(x1)<f(x2),∴f(x)在(0,+∞)上是增函数.18.(8分)已知函数f(x)=sin2+sin cos.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若x∈[,π],求f(x)的最大值与最小值.【解答】解:(Ⅰ)函数f(x)=sin2+sin cos=+sinx=sinx﹣cosx+=sin(x﹣)+,由T==2π,知f(x)的最小正周期是2π;(Ⅱ)由f(x)=sin(x﹣)+,且x∈[,π],∴≤x﹣≤,∴≤sin(x﹣)≤1,∴1≤sin(x﹣)+≤,∴当x=时,f(x)取得最大值,x=π时,f(x)取得最小值1.19.(8分)已知函数f(x)=1﹣(a>0且a≠1)是定义在R上的奇函数.(Ⅰ)求a的值;(Ⅱ)若关于x的方程|f(x)•(2x+1)|=m有1个实根,求实数m的取值范围.【解答】解:(Ⅰ)∵f(x)=1﹣(a>0且a≠1)是定义在R上的奇函数,∴f(0)=0,即1﹣=0,∴a=2;(Ⅱ)设h(x)=|f(x)•(2x+1)|,g(x)=m,如图所示,m=0或m≥1,两函数图象有一个交点,∴关于x的方程|f(x)•(2x+1)|=m有1个实根时,实数m的取值范围是m=0或m≥1.四、阅读与探究(共1小题,满分8分)20.(8分)阅读下面材料,尝试类比探究函数y=x2﹣的图象,写出图象特征,并根据你得到的结论,尝试猜测作出函数对应的图象.阅读材料:我国著名数学家华罗庚先生曾说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.我们来看一个应用函数的特征研究对应图象形状的例子.对于函数y=,我们可以通过表达式来研究它的图象和性质,如:(1)在函数y=中,由x≠0,可以推测出,对应的图象不经过y轴,即图象与y轴不相交;由y≠0,可以推测出,对应的图象不经过x轴,即图象与x轴不相交.(2)在函数y=中,当x>0时y>0;当x<0时y<0,可以推测出,对应的图象只能在第一、三象限;(3)在函数y=中,若x∈(0,+∞)则y>0,且当x逐渐增大时y逐渐减小,可以推测出,对应的图象越向右越靠近x轴;若x∈(﹣∞,0),则y<0,且当x逐渐减小时y逐渐增大,可以推测出,对应的图象越向左越靠近x轴;百度文库- 让每个人平等地提升自我!(4)由函数y=可知f(﹣x )=﹣f(x),即y=是奇函数,可以推测出,对应的图象关于原点对称.结合以上性质,逐步才想出函数y=对应的图象,如图所示,在这样的研究中,我们既用到了从特殊到一般的思想,由用到了分类讨论的思想,既进行了静态(特殊点)的研究,又进行了动态(趋势性)的思考.让我们享受数学研究的过程,传播研究数学的成果.【解答】解:(1)在y=x2﹣中,x≠0,可以推测出:对应的图象不经过y轴,即与y轴不相交,(2)令y=0,即x2﹣=0,解得x=±1,可以推测出,对应的图象与x相交,交点坐标为(1,0)和(﹣1,0),(3)在y=x2﹣中,当0<x<1时,>1>x2,则y<0,当x>1时,<1<x2,则y>0,可以推测出:对应的图象在区间(0,1)上图象在x轴的下方,在区间(1,+∞)上图象在x 轴的上方,(4)在y=x2﹣中,若x∈(0,+∞),则当x逐渐增大时逐渐减小,x2﹣,逐渐增大,即y逐渐增大,所以原函数在(0,+∞)是增函数,可以推测出:对应的图象越向右逐渐升高,是单调递增的趋势,(5)由函数y=x2﹣可知f(﹣x)=f(x),即函数为偶函数,可以推测出:对应的图象关于y轴对称11。
贵州省数学高三上学期文数期末考试试卷(考试)
贵州省数学高三上学期文数期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)设全集U=Z,集合M={1,2},P={x|-2≤x≤2,x∈Z},则P∩(M)等于()A . {0}B . {1}C . {-2,-1,0}D . Ø2. (2分) (2016高三上·安徽期中) 已知复数z满足i﹣z=1+2i(其中i为虚数单位),则|z|=()A .B .C .D . 53. (2分) (2019高二上·吴起期中) 条件或,条件,p是q()条件A . 充分不必要B . 必要不充分C . 充要D . 既不充分也不必要4. (2分) (2018高二上·益阳期中) 已知等差数列前项和为,且,,则此数列中绝对值最小的项为A . 第5项B . 第6项C . 第7项D . 第8项5. (2分)(2018·武邑模拟) 知,,,则,,的大小关系为()A .B .C .D .6. (2分) (2016高一上·双鸭山期中) 已知定义在R上的奇函数f(x)满足f(x+2)=﹣f(x),则f(6)的值为()A . ﹣1B . 0C . 1D . 27. (2分)在中,已知, sinB=cosAsinC,, P为线段AB上的一点,且. ,则的最小值为()A .B .C .D .8. (2分) (2019高一下·玉溪月考) 化简()A .B .C .D .9. (2分)已知函数f(x)=Msin(ωx+φ)(ω>0,0<φ<)的部分图象如下图所示,其中A,B分别为函数f(x)图象的一个最高点和最低点,且A,B两点的横坐标分别为1,4,若• =0,则函数f(x)的一个单调减区间为()A . (﹣6,﹣3)B . (6,9)C . (7,10)D . (10,13)10. (2分)(2017·运城模拟) 点A,B,C,D在同一个球的球面上,AB=BC= ,∠ABC=90°,若四面体ABCD体积的最大值为3,则这个球的表面积为()A . 2πB . 4πC . 8πD . 16π11. (2分)已知数列,,,,,,则5是它的第()项.A . 19B . 20C . 21D . 2212. (2分)已知函数,,若函数有两个不同的零点,则实数b的取值为()A . 或B . 1或C . 1或D . 或二、填空题 (共4题;共5分)13. (1分)(2019·乌鲁木齐模拟) 在平面直角坐标系xOy中,若直线与曲线b,相切于点,则的值为________.14. (1分)(2019·黄冈模拟) 正中,在方向上的投影为,且 ,则________.15. (1分) (2017高三下·武威开学考) 已知正方体ABCD﹣A1B1C1D1中,E为C1D1的中点,则异面直线AE 与BC所成的角的余弦值为________.16. (2分)(2017·广安模拟) 若等比数列{an}的公比为2,且a3﹣a1=2 ,则 + +…+=________.三、解答题 (共7题;共65分)17. (10分) (2018高一下·唐山期末) 已知数列是等差数列,其前项和为,,,是等比数列,, .(1)求数列的通项公式;(2)求数列的前10项和 .18. (10分) (2018高三上·哈尔滨月考) 如图,四棱锥中,底面是边长为2的正方形,,且,为中点.(1)求证:平面;(2)求二面角的正弦值.19. (5分) (2019高三上·城关期中) 如图,在中,,点在边上,,为垂足.(1)若的面积为,求的长;(2)若,求角的大小.20. (10分) (2018高二下·台州期中) 如图,设为抛物线上不同的四点,且点关于轴对称,平行于该抛物线在点处的切线 .(1)求证:直线与直线的倾斜角互补;(2)若,且的面积为16,求直线的方程.21. (10分) (2018高二下·陆川月考) 如图,一矩形铁皮的长为8cm,宽为5cm,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长为多少时,盒子容积最大?22. (10分)(2018·广东模拟) 在直角坐标系中,曲线的参数方程为(为参数).是曲线上的动点,将线段绕点顺时针旋转得到线段,设点的轨迹为曲线.以坐标原点为极点,轴正半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)在(1)的条件下,若射线与曲线分别交于两点(除极点外),且有定点,求的面积.23. (10分)设实数x,y,z满足x+2y+3z=6,求x2+y2+z2的最小值,并求此时x,y,z的值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共65分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、22-1、22-2、23-1、。
2016-2017学年第一学期期末教学质量检查高三文科数学参考答案_最新修正版
2016-2017学年第一学期高三期末调研考试文科数学参考答案二、填空题(每小题5分,满分20分) 13. 4 14. 8 15. 16916.32 三、解答题: 17. 【解析】(1)设{}n a 的公差为d ,则由题意知()()()11112731032392a d a d a d a d ⎧++=+⎪⎨⨯+=⎪⎩ ……………2分 解得103d a =⎧⎨=⎩(舍去)或112d a =⎧⎨=⎩, ……………4分∴()2111n a n n =+-⨯=+ ……………6分 (2)∵()()111111212n n a a n n n n +==-++++, ……………8分 ∴12231111n n n T a a a a a a -=+++……………9分111111233512n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭. ……………10分 ()112222n n n =-=++ ……………12分18. 【解析】34)3033323738(51,6)108642(51=++++==++++=y t ……………1分980301033832637438251=⨯+⨯+⨯+⨯+⨯=∑=i ii yt ……………2分22010864222222512=++++=∑=i it……………3分1652201020980ˆ21221-=⨯--=⋅-⋅⋅-=∑∑==ni ini ii tn ty t n yt b……………4分406)1(34ˆˆ=⨯--=-=t b y a ……………5分所以y 关于t 的线性回归方程40ˆ+-=t y ……………6分 (2)由题意日销售额⎩⎨⎧∈≤≤+-+-∈<<+-+=N t t t t Nt t t t L ,3020),40)(100(,200),40)(20( ……………8分当N t t ∈<<,200,900)10(80020)40)(20(22+--=++-=+-+=t t t t t L 所以当10=t 时,900max =L (元) ……………10分当N t t ∈≤≤,3020,900)70(4000140)40)(100(22--=+-=+-+-=t t t t t L 所以当20=t 时,1600max =L (元) ……………11分 综上所述,估计当20=t 天时,A 商品日销售额最大值为1600元. ……………12分19. 【解析】(1)证:∵平面ACE ⊥平面ABCD ,且平面AC E 平面ABCD AC =, ∵AC AD ⊥,∴⊥AD 平面AEC ……………1分 ⊂CE 平面,∴CE AD ⊥, ……………2分又1AC AE EC ===,∴222AC AE CE =+,∴AE EC ⊥ ……………3分 AD BC BC EF //,//AD EF //∴即F E D A 、、、共面 ……………4分 又D AD AE = ,∴⊥CE 平面ADEF ……………5分 ADEF AF 面⊂AF CE ⊥∴ ……………6分 (2)设A C 的中点为G ,连接EG ,∵AE CE =,∴A EG C ⊥ ∵平面ACE ⊥平面ABCD ,且平面ACE 平面ABCD AC =, ∴EG ⊥平面ABCD ∵//,EF BC EF ⊄平面ABCD ,∴点F 到面ABCD 的距离等于点E 到面ABCD 的距离,即EG ……………7分3131=⋅==∴∆--EG S V V ACD ACD E ACD F ……………8分AD AD AC S ACD ⋅⋅=⋅=∆22121,2221==AC EG 312222131=⋅⋅⋅⋅=∴-AD V ACD F ,所以2=AD ……………9分2==∴AD BC ,121==BC EF ,222=+==EF AE FC FA ,所以2360sin 22210=⋅⋅=∆FAC S ……………10分设点D 到平面ACF 的距离为d ,则3131=⋅∆d S FAC , ……………11分即332=d 所以点D 到平面ACF 的距离332 ……………12分20.【解析】 【解法一】(1)设),(y x R ,圆4)3(:221=+-y x C ,圆心)0,3(1C , ……………1分),(y x =,),3(1y x C -= ……………2分由圆的性质可知,01=⋅C ……………3分得0)3(2=+-y x x ,即0322=-+x y x ……………4分联立⎪⎩⎪⎨⎧=+-+=-+056032222x y x x y x 解得35=x当直线l 经过圆1C 的圆心时,R 点得坐标为)0,3( ……………5分所求轨迹方程为0322=-+x y x ,其中335<<x ,轨迹为两段圆弧. ……………6分【解法二】(1)设直线kx y l =:,),(y x R ,),(),,(2211y x Q y x P , 联立⎩⎨⎧=+-+=05622x y x kxy ,整理得056)1(22=+-+x x k , ……………1分所以0)1(20362>+-=∆k ,解得552552<<-k , ……………2分 22122115,16k x x k x x +=+=+ ……………3分 所以⎪⎪⎩⎪⎪⎨⎧+=+=+=222113132k k y k x x x ,消去k 得:0322=-+x y x ……………4分当直线l 与圆1C 相切时,552±=k ,此时0253092=+-x x ,解得35=x 当直线l 经过圆1C 的圆心时,R 点得坐标为)0,3(【利用213k x +=和552552<<-k ,也可求出335≤<x 】 ……………5分所求轨迹方程为0322=-+x y x ,其中335≤<x 轨迹为一段圆弧. ……………6分(2)设),(),,(),,(),,(44332211y x D y x C y x B y x A因为=从而4213x x x x -=-,即4321x x x x +=+, ……………7分 因为2=m ,当直线l 的斜率不存在时,显然符合题意,l 的方程为2=x ……………8分 当直线l 的斜率存在时,设斜率为k ,则l 的方程为)2(-=x k y ,0≠k ,由⎩⎨⎧=-=xy x k y 2)2(得04)14(2222=++-k x k x k ,016)14(222>-+=∆k k 恒成立 由12,x x 是这个方程的两根,4,14212221=+=+x x k k x x ……………9分 由⎩⎨⎧=+-+-=056)2(22x y x x k y 得054)64()1(2222=+++-+k x k x k , 而34,x x 是这个方程的两根,22432243154,164kk x x k k x x ++=++=+, ……………10分 因为4321x x x x +=+,得=+2214k k 22164kk ++,解得12=k ,即1±=k ……………11分 所以l 的方程为2-=x y 或2+-=x y 或2=x ……………12分21.【解析】(1))22(2)2()(m x e e m x e x f xxx-+=+-=' ………………1分),1()(+∞-在x f 上单调递增0)(≥'∴x f 在),1(+∞-上恒成立 ………………2分即0)22(≥-+m x e x在),1(+∞-上恒成立)1(22022->+≤≥-+∴x x m m x 即 ………………3分 22+=x y 在),1(+∞-上递增0≤∴m ………………4分(2))22(2)2()(m x e e m x e x f xx x -+=+-='依题有1)0(='f 即1=m ………………5分 a ax x e x h x +--=∴)12()(存在唯一的整数0x 使得0)(0<x h ,0)1()12()(0000<---=x a x e x h x所以)1()12(000-<-x a x e x,显然10=x 不满足不等式 ………………6分当1>x 时,1)12(-->x x e a x ,令1)12()(--=x x e x h x ,22)1()32()(--='x x x e x h x 0)32()(22=-='x x e x h x ,解得23,0==x x ………………7分又25)3(,3)2(32e h e h ==,存在唯一的整数0x 使得0)(0<x h ,所以25332e a e ≤< ………………9分当1<x 时,1)12(--<x x e a x ,令1)12()(--=x x e x h x ,22)1()32()(--='x x x e x h x 0)32()(22=-='x x e x h x ,解得23,0==x x ………………10分又eh 2)1(=-,1)0(=h ,存在唯一的整数0x 使得0)(0<x h ,所以123<≤a e 综上实数a 的取值范围为]25,3()1,23[32e e e ………………12分 (2)【解法二】存在唯一的整数0x 使得0)(0<x h ,即存在唯一的整数使得0x ,)()(00x g x f <,即)1()12(000-<-x a x e x考察函数)12()(-=x e x f x ,)12()(+='x e x f x,0)(='x f 解得21-=x由(1)可知24,1e a a ><或 ………………7分 因为存在唯一的整数使得0x 满足)()(00x g x f <,由函数图象可知 所以⎩⎨⎧-≤->)1()1()0()0(f g f g 或⎩⎨⎧≤>)3()3()2()2(f g f g ………………10分解得:123<≤a e或25332e a e ≤< 综上:实数a 的取值范围为]25,3()1,23[32e e e ………………12分22. 【解析】(Ⅰ)∵曲线C 的参数方程为⎪⎩⎪⎨⎧+=+=ααsin 51cos 52y x (α为参数)∴曲线C 的普通方程为()()51222=-+-y x …………2分将⎩⎨⎧==θρθρsin cos y x 代入并化简得:θθρsin 2cos 4+=即曲线C 的极坐标方程为θθρsin 2cos 4+=. …………5分 (Ⅱ)解法一:在极坐标系中,θθρsin 2cos 4+=:C∴由⎪⎩⎪⎨⎧+==θθρπθsin 2cos 46得到132+=OA …………7分同理32+=OB . ………… 9分 又∵6π=∠AOB∴4358sin 21+=∠⋅=∆AOB OB OA S AOB . 即AOB ∆的面积为4358+. …………10分 解法二::在平面直角坐标系中,C :()()51222=-+-y x x y l 331=:,x y l 32=: ∴由()()⎪⎩⎪⎨⎧=-+-=5123322y x x y 得⎪⎪⎭⎫ ⎝⎛++2132,236A …………6分 ∴132+=OA …………7分同理⎪⎪⎭⎫⎝⎛++2332,232B …………8分 ∴132+=OA ,32+=OB …………9分 又∵6π=∠AOB∴4358sin 21+=∠⋅=∆AOB OB OA S AOB 即AOB ∆的面积为4358+. …………10分 23. 【解析】(1)22,3()|1||3|4,3122,1x x f x x x x x x --<-⎧⎪=-++=-≤≤⎨⎪+>⎩, ………………1分 当3x <-时,由228x --≥,解得5-≤x ; ………………2分 当31x -≤≤时,()4f x =,()8f x ∴≥无解; ………………3分 当1x >时,由228x +≥,解得3x ≥. ………………4分………………5分(2 所以min 4f x = ………………7分又不等式a a x f 3)(2-<的解集不是空集,所以432>-a a , ………………9分 所以14-<>a a 或即实数a 的取值范围是),4()1,(+∞--∞ ………………10分。
2016-2017学年第一学期期末教学质量检查高三文科数学参考答案
2016-2017学年第一学期高三期末调研考试文科数学参考答案二、填空题(每小题5分,满分20分) 13. 4 14. 8 15. 16916.32 三、解答题: 17. 【解析】(1)设{}n a 的公差为d ,则由题意知()()()11112731032392a d a d a d a d ⎧++=+⎪⎨⨯+=⎪⎩……………2分 解得103d a =⎧⎨=⎩(舍去)或112d a =⎧⎨=⎩, ……………4分∴()2111n a n n =+-⨯=+……………6分(2)∵()()111111212n n a a n n n n +==-++++, ……………8分 ∴12231111n n n T a a a a a a -=+++……………9分111111233512n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭. ……………10分()112222n n n =-=++ ……………12分18. 【解析】34)3033323738(51,6)108642(51=++++==++++=y t ……………1分980301033832637438251=⨯+⨯+⨯+⨯+⨯=∑=i ii yt ……………2分22010864222222512=++++=∑=i it……………3分1652201020980ˆ21221-=⨯--=⋅-⋅⋅-=∑∑==n i i ni ii tn t yt n yt b……………4分 406)1(34ˆˆ=⨯--=-=t b y a……………5分 所以y 关于t 的线性回归方程40ˆ+-=t y……………6分 (2)由题意日销售额⎩⎨⎧∈≤≤+-+-∈<<+-+=Nt t t t Nt t t t L ,3020),40)(100(,200),40)(20(……………8分当N t t ∈<<,200,900)10(80020)40)(20(22+--=++-=+-+=t t t t t L 所以当10=t 时,900max =L (元) ……………10分当N t t ∈≤≤,3020,900)70(4000140)40)(100(22--=+-=+-+-=t t t t t L 所以当20=t 时,1600max =L (元) ……………11分 综上所述,估计当20=t 天时,A 商品日销售额最大值为1600元. ……………12分19. 【解析】(1)证:∵平面ACE ⊥平面ABCD ,且平面AC E 平面ABCD AC =, ∵AC AD ⊥,∴⊥AD 平面AEC ……………1分 ⊂CE 平面AEC ,∴CE AD ⊥, ……………2分又1AC AE EC ===,∴222AC AE CE =+,∴AE EC ⊥ ……………3分 AD BC BC EF //,//AD EF //∴即F E D A 、、、共面……………4分又D AD AE = ,∴⊥CE 平面ADEF ……………5分 ADEF AF 面⊂AF CE ⊥∴……………6分(2)设A C 的中点为G ,连接EG ,∵AE CE =,∴A EG C ⊥ ∵平面ACE ⊥平面ABCD ,且平面ACE 平面ABCD AC =, ∴EG ⊥平面ABCD ∵//,EF BC EF ⊄平面ABCD ,∴点F 到面ABCD 的距离等于点E 到面ABCD 的距离,即EG ……………7分3131=⋅==∴∆--EG S V V ACD ACD E ACD F ……………8分AD AD AC S ACD ⋅⋅=⋅=∆22121,2221==AC EG 312222131=⋅⋅⋅⋅=∴-AD V ACD F ,所以2=AD ……………9分2==∴AD BC ,121==BC EF ,222=+==EF AE FC FA ,所以2360sin 22210=⋅⋅=∆FAC S ……………10分设点D 到平面ACF 的距离为d ,则3131=⋅∆d S FAC ,……………11分 即332=d 所以点D 到平面ACF 的距离332 ……………12分20.【解析】 【解法一】(1)设),(y x R ,圆4)3(:221=+-y x C ,圆心)0,3(1C , ……………1分),(y x =,),3(1y x C -= ……………2分由圆的性质可知,01=⋅R C OR ……………3分得0)3(2=+-y x x ,即0322=-+x y x ……………4分联立⎪⎩⎪⎨⎧=+-+=-+056032222x y x x y x 解得35=x当直线l 经过圆1C 的圆心时,R 点得坐标为)0,3(……………5分所求轨迹方程为0322=-+x y x ,其中335<<x ,轨迹为两段圆弧. ……………6分【解法二】(1)设直线kx y l =:,),(y x R ,),(),,(2211y x Q y x P ,联立⎩⎨⎧=+-+=05622x y x kx y ,整理得056)1(22=+-+x x k , ……………1分 所以0)1(20362>+-=∆k ,解得552552<<-k , ……………2分 22122115,16k x x k x x +=+=+……………3分 所以⎪⎪⎩⎪⎪⎨⎧+=+=+=222113132k k y k x x x ,消去k 得:0322=-+x y x ……………4分当直线l 与圆1C 相切时,552±=k ,此时0253092=+-x x ,解得35=x当直线l 经过圆1C 的圆心时,R 点得坐标为)0,3(【利用213kx +=和552552<<-k ,也可求出335≤<x 】……………5分 所求轨迹方程为0322=-+x y x ,其中335≤<x 轨迹为一段圆弧. ……………6分(2)设),(),,(),,(),,(44332211y x D y x C y x B y x A因为=从而4213x x x x -=-,即4321x x x x +=+, ……………7分 因为2=m ,当直线l 的斜率不存在时,显然符合题意,l 的方程为2=x ……………8分当直线l 的斜率存在时,设斜率为k ,则l 的方程为)2(-=x k y ,0≠k , 由⎩⎨⎧=-=xy x k y 2)2(得04)14(2222=++-k x k x k ,016)14(222>-+=∆k k 恒成立由12,x x 是这个方程的两根,4,14212221=+=+x x kk x x ……………9分 由⎩⎨⎧=+-+-=056)2(22x y x x k y 得054)64()1(2222=+++-+k x k x k , 而34,x x 是这个方程的两根,22432243154,164kk x x k k x x ++=++=+, ……………10分 因为4321x x x x +=+,得=+2214k k 22164kk ++,解得12=k ,即1±=k ……………11分 所以l 的方程为2-=x y 或2+-=x y 或2=x ……………12分21.【解析】(1))22(2)2()(m x e e m x e x f xxx-+=+-=' ………………1分),1()(+∞-在x f 上单调递增0)(≥'∴x f 在),1(+∞-上恒成立………………2分即0)22(≥-+m x e x在),1(+∞-上恒成立)1(22022->+≤≥-+∴x x m m x 即………………3分 22+=x y 在),1(+∞-上递增 0≤∴m ………………4分(2))22(2)2()(m x e e m x e x f xx x -+=+-=' 依题有1)0(='f 即1=m ………………5分 a ax x e x h x +--=∴)12()(存在唯一的整数0x 使得0)(0<x h ,0)1()12()(0000<---=x a x e x h x所以)1()12(000-<-x a x e x,显然10=x 不满足不等式 ………………6分当1>x 时,1)12(-->x x e a x ,令1)12()(--=x x e x h x ,22)1()32()(--='x x x e x h x 0)32()(22=-='x x e x h x ,解得23,0==x x ………………7分又25)3(,3)2(32e h e h ==,存在唯一的整数0x 使得0)(0<x h ,所以25332e a e ≤<………………9分当1<x 时,1)12(--<x x e a x ,令1)12()(--=x x e x h x ,22)1()32()(--='x x x e x h x0)32()(22=-='x x e x h x ,解得23,0==x x ………………10分又eh 2)1(=-,1)0(=h ,存在唯一的整数0x 使得0)(0<x h ,所以123<≤a e综上实数a 的取值范围为]25,3()1,23[32e e e ………………12分 (2)【解法二】存在唯一的整数0x 使得0)(0<x h ,即存在唯一的整数使得0x ,)()(00x g x f <,即)1()12(000-<-x a x e x考察函数)12()(-=x e x f x ,)12()(+='x e x f x,0)(='x f 解得21-=x由(1)可知24,1e a a ><或………………7分因为存在唯一的整数使得0x 满足)()(00x g x f <,由函数图象可知所以⎩⎨⎧-≤->)1()1()0()0(f g f g 或⎩⎨⎧≤>)3()3()2()2(f g f g ………………10分解得:123<≤a e或25332e a e ≤< 综上:实数a 的取值范围为]25,3()1,23[32e e e ………………12分22. 【解析】(Ⅰ)∵曲线的参数方程为(为参数) ∴曲线的普通方程为…………2分 将代入并化简得:即曲线的极坐标方程为. …………5分 (Ⅱ)解法一:在极坐标系中, ∴由得到…………7分同理. ………… 9分 又∵ ∴.即的面积为. …………10分 解法二::在平面直角坐标系中, :,∴由得…………6分 ∴…………7分 同理…………8分 ∴,…………9分 又∵ ∴即的面积为. …………10分 23. 【解析】(1)22,3()|1||3|4,3122,1x x f x x x x x x --<-⎧⎪=-++=-≤≤⎨⎪+>⎩, ………………1分 当3x <-时,由228x --≥,解得5-≤x ; ………………2分当31x -≤≤时,()4f x =,()8f x ∴≥无解; ………………3分 当1x >时,由228x +≥,解得3x ≥. ………………4分………………5分 (2 所以min 4f x = ………………7分又不等式a a x f 3)(2-<的解集不是空集,所以432>-a a , ………………9分 所以14-<>a a 或即实数a 的取值范围是),4()1,(+∞--∞ ………………10分。
贵阳市普通高中2016-2017贵阳市高一数学期末检测题
贵阳市普通中学2016-2017学年度第一学期期末监测考试试卷第1页,共2页绝密★启用前贵阳市普通中学2016-2017学年度第一学期期末监测考试试卷高一数学试卷试卷满分:100分 考试时长:120分钟考生须知:1.本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分。
2. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
3. 考生答题时,将答案写在专用答题卡上。
选择题答案请用2B 铅笔将答题卡上对应题目的答案涂黑;非选择题答案请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内规范作答,凡是答题不规范一律无效。
4. 测试范围:必修1,必修4。
5. 考试结束后,将答题卡交回,并保存好试卷。
一、选择题(本题10小题,每小题4分,共40分。
) 1.若集合{}2,1,0=A ,集合{}3.2=B ,则集合=B A ( )A .{}3,2,1B .{}3,2,1,0C .{}2D .{}3,1,02.化简()0,0412121213>>⎪⎪⎭⎫⎝⎛÷⎪⎪⎭⎫ ⎝⎛b a b a b a 的结果为( ) A .aB .bC .b aD .ab3.正弦函数()x x f sin =图象的一条对称轴是( )A .0x =B .4x π=C .2x π=D .x π=4.下列函数中既是偶函数又存在零点的是( )A .()x x f sin =B .()12+=x x fC .()x x f ln =D .()x x f cos =5.设8.0log 7.01=y ,9.0log 1.12=y ,9.031.1=y ,则( )A .213y y y >>B .312y y y >>C .321y y y >>D .231y y y >>6.若正方形ABCD 的边长为1,则=⋅( )A .1B .22C .2D .2 7.若()21cos -=+A π,则⎪⎭⎫⎝⎛+A 2sin π的值是( ) A .21-B .21 C .23-D .23 8.要得到函数⎪⎭⎫⎝⎛+=32sin πx y 的图象,只需将函数x y 2sin =的图象( ) A .向左平移3π个单位 B .向左平移6π个单位 C .向右平移3π个单位D .向右平移6π个单位9.函数()x f y =在区间⎥⎦⎤⎢⎣⎡-ππ,2上的简图如图所示,则函数()x f y =的解析式可以是( ) A .()⎪⎭⎫⎝⎛+=32sin πx x fB .()⎪⎭⎫ ⎝⎛-=322sin πx x f C .()⎪⎭⎫⎝⎛+=3sin πx x f D .()⎪⎭⎫ ⎝⎛-=32sin πx x f 10.对于函数()x f ,若存在非零常数T 使得当x 取定义域内的每一个值时都有()()x f Tx f =+,则函数()x f 叫做周期函数,已知函数()()R x x f y ∈=满足()()x f xf =+2,且[]1,1-∈x 时,()2x x f =,则()x f y =与x y 5log =的图象的交点个数为( ) A .3个B .4个C .5个D .6个二、填空题(本题5小题,每小题4分,共20分。
2016年贵州省高考数学试卷(文科)(全国新课标ⅲ)
2016年贵州省高考数学试卷(文科)(全国新课标Ⅲ)一、选择题(共12小题,每小题5分,满分60分)B=()1.(5分)设集合A={0,2,4,6,8,10},B={4,8},则∁AA.{4,8} B.{0,2,6} C.{0,2,6,10} D.{0,2,4,6,8,10} 2.(5分)若z=4+3i,则=()A.1 B.﹣1 C.+i D.﹣i3.(5分)已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120°4.(5分)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是()A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个5.(5分)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是()A.B.C.D.6.(5分)若tanθ=,则cos2θ=()A. B. C.D.7.(5分)已知a=,b=,c=,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b8.(5分)执行如图程序框图,如果输入的a=4,b=6,那么输出的n=()A.3 B.4 C.5 D.69.(5分)在△ABC中,B=,BC边上的高等于BC,则sinA=()A.B.C. D.10.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36B.54+18C.90 D.8111.(5分)在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4π B.C.6π D.12.(5分)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设x,y满足约束条件,则z=2x+3y﹣5的最小值为.14.(5分)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.15.(5分)已知直线l:x﹣y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点.则|CD|= .16.(5分)已知f(x)为偶函数,当x≤0时,f(x)=e﹣x﹣1﹣x,则曲线y=f(x)在点(1,2)处的切线方程是.三、解答题(共5小题,满分60分)17.(12分)已知各项都为正数的数列{an }满足a1=1,an2﹣(2an+1﹣1)an﹣2an+1=0.(1)求a2,a3;(2)求{an}的通项公式.18.(12分)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1﹣7分别对应年份2008﹣2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:yi =9.32,tiyi=40.17,=0.55,≈2.646.参考公式:相关系数r=,回归方程=+t中斜率和截距的最小二乘估计公式分别为:=,=﹣.19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(Ⅰ)证明MN∥平面PAB;(Ⅱ)求四面体N﹣BCM的体积.20.(12分)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.21.(12分)设函数f(x)=lnx﹣x+1.(1)讨论f(x)的单调性;(2)证明当x∈(1,+∞)时,1<<x;(3)设c>1,证明当x∈(0,1)时,1+(c﹣1)x>c x.请考生在第22-24题中任选一题做答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点.(1)若∠PFB=2∠PCD,求∠PCD的大小;(2)若EC的垂直平分线与FD的垂直平分线交于点G,证明:OG⊥CD.23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.24.已知函数f(x)=|2x﹣a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.2016年贵州省高考数学试卷(文科)(全国新课标Ⅲ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.C.2.D.3.A4.D5.C.6.D.7.A8.B.9.D10.B.11.B12.解答】解:由题意可设F(﹣c,0),A(﹣a,0),B(a,0),令x=﹣c,代入椭圆方程可得y=±b=±,可得P(﹣c,±),设直线AE的方程为y=k(x+a),令x=﹣c,可得M(﹣c,k(a﹣c)),令x=0,可得E(0,ka),设OE的中点为H,可得H(0,),由B,H,M三点共线,可得kBH =kBM,即为=,化简可得=,即为a=3c,可得e==.故选:A.二、填空题(共4小题,每小题5分,满分20分)13.解答】解:由约束条件作出可行域如图,联立,解得,即A(﹣1,﹣1).化目标函数z=2x+3y﹣5为.由图可知,当直线过A时,直线在y轴上的截距最小,z有最小值为2×(﹣1)+3×(﹣1)﹣5=﹣10.故答案为:﹣10.14.解答】解:∵y=sinx﹣cosx=2sin(x﹣),令f(x)=2sinx,则f(x﹣φ)=2in(x﹣φ)(φ>0),依题意可得2sin(x﹣φ)=2sin(x﹣),故﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ+(k∈Z),=,当k=0时,正数φmin故答案为:.15.解答】解:由题意,圆心到直线的距离d==3,∴|AB|=2=2,∵直线l:x﹣y+6=0∴直线l的倾斜角为30°,∵过A,B分别作l的垂线与x轴交于C,D两点,∴|CD|==4.故答案为:4.16.解答】解:已知f(x)为偶函数,当x≤0时,f(x)=e﹣x﹣1﹣x,设x>0,则﹣x<0,∴f(x)=f(﹣x)=e x﹣1+x,则f′(x)=e x﹣1+1,f′(1)=e0+1=2.∴曲线y=f(x)在点(1,2)处的切线方程是y﹣2=2(x﹣1).即y=2x.故答案为:y=2x.三、解答题(共5小题,满分60分)17.解答】解:(1)根据题意,an 2﹣(2an+1﹣1)an﹣2an+1=0,当n=1时,有a12﹣(2a2﹣1)a1﹣2a2=0,而a1=1,则有1﹣(2a2﹣1)﹣2a2=0,解可得a2=,当n=2时,有a22﹣(2a3﹣1)a2﹣2a3=0,又由a2=,解可得a3=,故a2=,a3=;(2)根据题意,an 2﹣(2an+1﹣1)an﹣2an+1=0,变形可得(an ﹣2an+1)(an+1)=0,即有an =2an+1或an=﹣1,又由数列{an}各项都为正数,则有an =2an+1,故数列{an }是首项为a1=1,公比为的等比数列,则an=1×()n﹣1=n﹣1,故an=n﹣1.18.解答】解:(1)由折线图看出,y与t之间存在较强的正相关关系,理由如下:∵r==≈≈≈0.993,∵0.993>0.75,故y与t之间存在较强的正相关关系;(2)==≈≈0.103,=﹣≈1.331﹣0.103×4≈0.92,∴y关于t的回归方程=0.10t+0.92,2016年对应的t值为9,故=0.10×9+0.92=1.82,预测2016年我国生活垃圾无害化处理量为1.82亿吨..19.解答】证明:(Ⅰ)取BC中点E,连结EN,EM,∵N为PC的中点,∴NE是△PBC的中位线∴NE∥PB,又∵AD∥BC,∴BE∥AD,∵AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,∴BE=BC=AM=2,∴四边形ABEM是平行四边形,∴EM∥AB,∴平面NEM∥平面PAB,∵MN⊂平面NEM,∴MN∥平面PAB.解:(Ⅱ)取AC中点F,连结NF,∵NF是△PAC的中位线,∴NF∥PA,NF==2,又∵PA⊥面ABCD,∴NF⊥面ABCD,如图,延长BC至G,使得CG=AM,连结GM,∵AM CG,∴四边形AGCM是平行四边形,∴AC=MG=3,又∵ME=3,EC=CG=2,∴△MEG的高h=,∴S===2,△BCM∴四面体N﹣BCM的体积VN﹣BCM===.20.解答】(Ⅰ)证明:连接RF,PF,由AP=AF,BQ=BF及AP∥BQ,得∠AFP+∠BFQ=90°,∴∠PFQ=90°,∵R是PQ的中点,∴RF=RP=RQ,∴△PAR≌△FAR,∴∠PAR=∠FAR,∠PRA=∠FRA,∵∠BQF+∠BFQ=180°﹣∠QBF=∠PAF=2∠PAR,∴∠FQB=∠PAR,∴∠PRA=∠PQF,∴AR∥FQ.(Ⅱ)设A(x1,y1),B(x2,y2),F(,0),准线为 x=﹣,S△PQF =|PQ|=|y1﹣y2|,设直线AB与x轴交点为N,∴S△ABF =|FN||y1﹣y2|,∵△PQF的面积是△ABF的面积的两倍,∴2|FN|=1,∴xN=1,即N(1,0).设AB中点为M(x,y),由得=2(x1﹣x2),又=,∴=,即y2=x﹣1.∴AB中点轨迹方程为y2=x﹣1.21.解答】解:(1)函数f(x)=lnx﹣x+1的导数为f′(x)=﹣1,由f′(x)>0,可得0<x<1;由f′(x)<0,可得x>1.即有f(x)的增区间为(0,1);减区间为(1,+∞);(2)证明:当x∈(1,+∞)时,1<<x,即为lnx<x﹣1<xlnx.由(1)可得f(x)=lnx﹣x+1在(1,+∞)递减,可得f(x)<f(1)=0,即有lnx<x﹣1;设F(x)=xlnx﹣x+1,x>1,F′(x)=1+lnx﹣1=lnx,当x>1时,F′(x)>0,可得F(x)递增,即有F(x)>F(1)=0,即有xlnx>x﹣1,则原不等式成立;(3)证明:设G(x)=1+(c﹣1)x﹣c x,G′(x)=c﹣1﹣c x lnc,可令G′(x)=0,可得c x=,由c>1,x∈(0,1),可得1<c x<c,即1<<c,由(1)可得f(x)的增区间为(0,1),可得c x=恰有一解,设为x=x0是G(x)的最大值点,且0<x<1,由G(0)=G(1)=0,且G(x)在(0,x0)递增,在(x,1)递减,可得G(x0)=1+(c﹣1)x﹣c x0>0成立,则c>1,当x∈(0,1)时,1+(c﹣1)x>c x.请考生在第22-24题中任选一题做答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.解答】(1)解:连接PB,BC,设∠PEB=∠1,∠PCB=∠2,∠ABC=∠3,∠PBA=∠4,∠PAB=∠5,由⊙O中的中点为P,可得∠4=∠5,在△EBC中,∠1=∠2+∠3,又∠D=∠3+∠4,∠2=∠5,即有∠2=∠4,则∠D=∠1,则四点E,C,D,F共圆,可得∠EFD+∠PCD=180°,由∠PFB=∠EFD=2∠PCD,即有3∠PCD=180°,可得∠PCD=60°;(2)证明:由C,D,E,F共圆,由EC的垂直平分线与FD的垂直平分线交于点G可得G为圆心,即有GC=GD,则G在CD的中垂线,又CD为圆G的弦,则OG⊥CD.[选修4-4:坐标系与参数方程]的参数方程为(α为参数),23.解答】解:(1)曲线C1移项后两边平方可得+y2=cos2α+sin2α=1,:+y2=1;即有椭圆C1曲线C的极坐标方程为ρsin(θ+)=2,2即有ρ(sinθ+cosθ)=2,由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0,的直角坐标方程为直线x+y﹣4=0;即有C2(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t2﹣3=0,由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,解得t=±2,显然t=﹣2时,|PQ|取得最小值,即有|PQ|==,此时4x2﹣12x+9=0,解得x=,即为P(,).另解:设P(cosα,sinα),由P到直线的距离为d==,当sin(α+)=1时,|PQ|的最小值为,此时可取α=,即有P(,).[选修4-5:不等式选讲]24.解答】解:(1)当a=2时,f(x)=|2x﹣2|+2,∵f(x)≤6,∴|2x﹣2|+2≤6,|2x﹣2|≤4,|x﹣1|≤2,∴﹣2≤x﹣1≤2,解得﹣1≤x≤3,∴不等式f(x)≤6的解集为{x|﹣1≤x≤3}.(2)∵g(x)=|2x﹣1|,∴f(x)+g(x)=|2x﹣1|+|2x﹣a|+a≥3,2|x﹣|+2|x﹣|+a≥3,|x﹣|+|x﹣|≥,当a≥3时,成立,当a<3时,|x﹣|+|x﹣|≥|a﹣1|≥>0,∴(a﹣1)2≥(3﹣a)2,解得2≤a<3,∴a的取值范围是[2,+∞).。
高三数学(文科)参考答案
贵阳市普通高中2016届高三年级第一学期期末监测考试试卷数学(文科)参考答案一㊁选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个选项是符合题目要求的㊂题 号123456789101112答 案DACCDABDBCAB二㊁填空题:本大题共4小题,每小题5分㊂13.014.1+122+132+ +1n 2+1(n +1)2<2n +1n +115.直角三角形16.(-3,-1]∪[7,9)三㊁解答题:本大题共6小题,共70分,解答应写出文字说明㊁证明过程或演算步骤㊂17.解:(Ⅰ)∵a 5=a 1+4d =-3,S 10=10a 1+45d =-40 解得 a 1=5,d =-2.∴a n =-2n +76分…………………………………………………………………………(Ⅱ)依题意 b n =a 2n =-2×2n +7=-2n +1+7故T n =-(22+23+ +2n +1)+7n=-22-2n +1×21-2+7n =4+7n -2n +212分……………………………………18.解:(Ⅰ)学生甲的平均成绩x 甲=68+76+79+86+88+956=82,学生乙的平均成绩x 乙=71+75+82+84+86+946=82,又s 2甲=16[(68-82)2+(76-82)2+(79-82)2+(86-82)2+(88-82)2+(95-82)2]=77,s 2乙=16[(71-82)2+(75-82)2+(82-82)2+(84-82)2+(86-82)2+(94-82)2]=1673则x 甲=x 乙,s 2甲>s 2乙,说明甲㊁乙的平均水平一样,但乙的方差小,即乙发挥更稳定,故可选择学生乙参加知识竞赛;6分……………………………………………………………(Ⅱ)从甲的6次模拟测试成绩中随机选择2个,共有以下15种情况:(68,76)㊁(68,79)㊁(68,86)㊁(68,88)㊁(68,95)㊁(76,79)㊁(76,86)㊁(76,88)㊁(76,95)㊁(79,86)㊁(79,88)㊁(79,95)㊁(86,88)㊁(86,95)㊁(88,95).其中选出的成绩中至少有一个超过87分的有9种情况,故选出的成绩中至少有一个超过87分的概率为p =915=35.12分………………………………………………………19.(Ⅰ)证明:设O 为AC 中点,连接OS ,OD,∵SA =SC , ∴OS ⊥AC ,∵DA =DC , ∴DO ⊥AC ,又∵OS ,OD ⊂平面SOD ,且OS ∩DO =O ,∴AC ⊥平面SOD ,又∵SD ⊂平面SOD ,∴AC ⊥SD 6分………………………………………………………………………………(Ⅱ)解:∵在△ASC 中,SA =SC ,∠ASC =π3,O 为AC 中点,∴△ASC 为正三角形,且AC =2,OS =3,∵在△ADC 中,DA 2+DC 2=4=AC 2,O 为AC 中点,∴∠ADC =π2,且OD =1∵在△SOD 中,OS 2+OD 2=SD 2,∴△SOD 为Rt △,且∠SOD =π2,∴SO ⊥OD又∵SO ⊥AC 且AC ∩OD =O ∴SO ⊥平面ABCD ∴V B -SAD =V S -BAD =13㊃S △BAD ㊃SO =13×12㊃AD ㊃CD ㊃SO =13×12×2×2×3=3312分………………………………………………………………………………………20.解:(Ⅰ)设椭圆的半焦距长为c ,则由题设有:c a =63a -c ìîíïïïï=3-2解得:a =3,c =2, ∴b 2=1,故所求椭圆方程为y 23+x 2=16分…………………………………………………………(Ⅱ)由已知可得以AB 为直径的圆与x 轴有公共点.设A (x 1,y 1),B (x 2,y 2),AB 中点M (x 0,y 0)直线l :y =kx +2代入y 23+x 2=1得(3+k 2)x 2+4kx +1=0,△=12k 2-12∴x 0=x 1+x 22=-2k 3+k 2,y 0=kx 0+2=63+k 2,|AB |=1+k212k 2-123+k 2=23k 4-13+k 2∴△=12k 2-12>063+k2≤12|AB ìîíïïï|解得:k 4≥13,即k ≥413或k ≤-41312分………………………………………………21.解:(Ⅰ)当k =1时 f (x )=2ln x -(x -1)2-2(x -1)=2ln x -x 2+1,(x >0)∴f′(x )=2x -2x =2(1+x )(1-x )x,令f′(x )>0得0<x <1,令f′(x )=0得x =1,令f′(x )<0得x >1,∴f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,当x =1时f (x )取得极大值f (1)=0;6分……………………………(Ⅱ)由(Ⅰ)知,若k =1,当x >1时,f (x )<f (x )极大值=0,即不存在x 0>1,当x ∈(1,x 0)时,恒有f (x )>0;若k >1,当x >1时,f (x )=2ln x -(x -1)2-2k (x -1)<2ln x -(x -1)2-2(x -1)<0,即不存在x 0>1,当x ∈(1,x 0)时,恒有f (x )>0;若k <1,f (x )=2ln x -(x -1)2-2k (x -1),∴f′(x )=2x -2x +2-2k =2x(-x 2+(1-k )x +1),令f′(x )=0,即-x 2+(1-k )x +1=0,解得x 1=k -1+(1-k )2+4-2=1-k -(1-k )2+42<0,x 2=k -1-(1-k )2+4-2=1-k +(1-k )2+42>1∴当0<x <x 2时 f′(x )>0,即f (x )在(0,x 2)上是单调增函数,∴f (x )在(1,x 2)上是单调增函数,且f (1)=0,∴存在x 0=x 2,使得x ∈(1,x 0)时,恒有f (x )>f (1)=0;综上,k 的取值范围是(-∞,1).12分……………………………………22.(Ⅰ)证明:EF ∥BC ⇒∠DEF =∠ECB ∠BCD =∠}BAD⇒∠DEF ⇒∠BAD⇒△DEF ∽△EFA 5分………………………………………………(Ⅱ)解:△EFA ∽△EFD ⇒FE 2=FD ㊃FA又因为FG 为切线,则FG 2=FD ㊃FA ,所以EF =FG =110分……………………………23.(Ⅰ)证明:依题意|OA |=4cos φ,|OB |=4cos(φ+π4),|OC |=4cos(φ-π4),则|OB |+|OC |=4cos(φ+π4)+4cos(φ-π4)=22(cos φ-sin φ)+22(cos φ+sin φ)=42cos φ=2|OA |5分………………………(Ⅱ)解:当φ=π12时,B ㊁C 两点的极坐标分别为(2,π3),(23,-π6),化为直角坐标为B (1,3),C (3,-3),所以经过点B ㊁C 的直线方程为y -3=-3(x -1),而C 2是经过点(m ,0)且倾斜角为α的直线,故m =2,α=2π310分………………………………………………………………………24.解:(Ⅰ)当x ≤-1时,f (x )=3+x ≤2;当-1<x <1时,f (x )=-1-3x <2;当x ≥1时,f (x )=-x -3≤-4.故当x =-1时,f (x )取得最大值m =2.5分……………………………………………(Ⅱ)a 2+2b 2+c 2=(a 2+b 2)+(b 2+c 2)≥2ab +2bc =2(ab +bc ),当且仅当a =b =c =22时,等号成立.此时,ab +bc 取得最大值1.10分…………………………………………………………。
贵州省贵阳市高三上学期期末数学试卷(文科)
贵州省贵阳市高三上学期期末数学试卷(文科)姓名:________ 班级:________ 成绩:________一、选择题。
(共12题;共24分)1. (2分)复数z=(i是虚数单位)的共轭复数在复平面内对应的点是()A . (1,1)B . (1,﹣1)C . (﹣1,1)D . (﹣1,﹣1)2. (2分) (2017高三上·会宁期末) 若集合M={y|y= },N={x|y= },那么M∩N=()A . (0,+∞)B . (1,+∞)C . [1,+∞)D . [0,+∞)3. (2分)已知,则的值为()A .B .C .D .4. (2分) (2016高一上·绵阳期末) 设函数f(x)= ,则f(f(2))=()A .B . 16C .D . 45. (2分)(2017·抚顺模拟) 当双曲线M:﹣ =1(﹣2≤m<0)的焦距取得最小值时,双曲线M的渐近线方程为()A . y=± xB . y=± xC . y=±2xD . y=± x6. (2分)在空间中,可以确定一个平面的条件是()A . 一条直线B . 不共线的三个点C . 任意的三个点D . 两条直线7. (2分)(2017·唐山模拟) 执行如图程序框图,若输出y=4,则输入的x为()A . ﹣3或﹣2或1B . ﹣2C . ﹣2或1D . 18. (2分) (2017高三上·四川月考) 已知函数(,),其图像与直线相邻两个交点的距离为,若对于任意的恒成立,则的取值范围是()A .B .C .D .9. (2分)设变量满足约束条件则的最大值为()A . 0B . 2C . 4D . 610. (2分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是()A . 9B .C . 18D . 2711. (2分)(2017·甘肃模拟) 若函数f(x)=2x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)内不是单调函数,则实数k的取值范围是()A .B .C .D .12. (2分)(2017高一下·东丰期末) 在中,三个内角A,B,C的对边分别是则b等于()A . 4B .C . 6D .二、填空题 (共4题;共4分)13. (1分)若向量 =(1,﹣2),向量 =(x,1),且⊥ ,则x=________.14. (1分) (2017高一下·泰州期中) △ABC的内角A、B、C的对边分别为a,b,c,ab=60,面积S△ABC=15,△ABC外接圆半径为,则c=________.15. (1分)从边长为1的正方形的中心和顶点这五个点中,随机(等可能)取两点,则该两点间的距离为的概率是________.16. (1分)如果圆(x﹣a)2+(y﹣a)2=8上总存在两个点到原点的距离为,则实数a的取值范围是________三、解答题。
贵州省数学高三上学期文数期末考试试卷(模拟)
贵州省数学高三上学期文数期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2016高三上·虎林期中) 集合A={x|ln(x﹣l)>0},B={x|x2≤9},则A∩B=()A . (2,3)B . [2,3)C . (2,3]D . [2,3]2. (2分)(2017·湖北模拟) 若复数z=1+i,为z的共轭复数,则z• =()A . 0B . 2C .D . 2i3. (2分) (2020高二上·林芝期末) 命题“对任意,都有”的否定为()A . 存在,都有B . 对任意,使得C . 存在,使得D . 不存在,使得4. (2分) (2017高三上·襄阳期中) 点G为△ABC的重心(三边中线的交点).设,则等于()A .B .C .D .5. (2分)(2018·重庆模拟) 的内角的对边分别为,若,且,则的面积的最大值是()A .B .C .D . 46. (2分) (2017高二下·资阳期末) 袋中装有编号分别为1,2,3,…,2n的2n(n∈N*)个小球,现将袋中的小球分给A,B,C三个盒子,每次从袋中任意取出两个小球,将其中一个放入A盒子,如果这个小球的编号是奇数,就将另一个放入B盒子,否则就放入C盒子,重复上述操作,直到所有小球都被放入盒中,则下列说法一定正确的是()A . B盒中编号为奇数的小球与C盒中编号为偶数的小球一样多B . B盒中编号为偶数的小球不多于C盒中编号为偶数的小球C . B盒中编号为偶数的小球与C盒中编号为奇数的小球一样多D . B盒中编号为奇数的小球多于C盒中编号为奇数的小球7. (2分) (2018高二上·云南期中) 把化为二进制数为()A .B .C .D .8. (2分) (2019高三上·牡丹江月考) 函数的图象大致为()A .B .C .D .9. (2分) (2018高二上·宁阳期中) 抛物线的焦点到双曲线的渐近线的距离是()A .B .C . 1D .10. (2分)(2017·山东模拟) 定义运算: =a1a4﹣a2a3 ,将函数f(x)= (ω>0)的图象向左平移个单位,所得图象对应的函数为偶函数,则ω的最小值是()A .B .C .D .11. (2分) (2019高二上·拉萨期中) 在等比数列中, ,前项和为 ,若数列也是等比数列,则等于()A .B .C .D .12. (2分)(2018·南宁模拟) 已知正三棱柱(上下底面是等边三角形,且侧棱垂直于底面的三棱柱)的高为2,它的6个顶点都在体积为的球的球面上,则该正三棱柱底面三角形边长为()A .B .C . 3D .二、填空题 (共4题;共5分)13. (2分)(2018·南充模拟) 若变量,满足约束条件则的最大值是________.14. (1分) (2018高三上·嘉兴期末) 各项均为实数的等比数列,若,,则 ________,公比 ________.15. (1分)以C(4,﹣6)为圆心,半径等于3的圆的方程为________16. (1分) (2016高三上·吉安期中) 直线l过抛物线C:y2=2px(p>0)的焦点F且与C相交于A,B两点,且AB的中点M的坐标为(3,2),则抛物线C的方程为________三、解答题 (共7题;共70分)17. (10分) (2019高三上·黑龙江月考) 已知函数.(Ⅰ)求的最小正周期;(Ⅱ)当时恒成立,求的取值范围.18. (10分)(2019·黄冈模拟) 中国人旅游有个特点:喜欢在旅游区购买当地的名优土特产,黄冈市有很多名优土特产,黄冈市的蕲春县就有闻名于世的“蕲春四宝” 蕲竹、蕲艾、蕲蛇、蕲龟,由于医圣李时珍出生在蕲春县,很多人慕名而来,回家时顺带买点“蕲春四宝”,通过随机询问60名不同性别的游客在购买“蕲春四宝”时是否在来蕲春县之前就知道“蕲春四宝”,得到如下列联表:男女总计事先知道“蕲春四宝”8n q事先不知道“蕲春四m436宝”总计40p t附:(1)写出列联表中各字母代表的数字;(2)由以上列联表判断,能否在犯错误的概率不超过的前提下认为购买“蕲春四宝”和是否“事先知道蕲春四宝有关系”?(3)现从这60名游客中用分层抽样的方法抽取15名游客进行问卷调查,再从抽取的女游客中,随机选出2人给予小礼品,求有2名女游客是事先知道“蕲春四宝”的概率?19. (10分) (2018高二上·万州期中) 如图,在四棱锥中,,且90°.(1)求证:;(2)若,四棱锥的体积为9,求四棱锥的侧面积20. (10分) (2020高二上·淮阴期末) 已知平面上的三点、、 .(1)求以、为焦点且过点的椭圆的标准方程;(2)设点、、关于直线的对称点分别为、、,求以、为焦点且过点的双曲线的标准方程.21. (10分) (2018高二上·白城月考) 已知函数 .(1)设,试讨论单调性;(2)设,当时,任意,存在,使,求实数的取值范围.22. (10分)(2018·沈阳模拟) 在直角坐标系xOy中,曲线的参数方程为为参数,,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)动点P,Q分别在曲线,上运动,求两点P,Q之间的最短距离23. (10分) (2018高三上·长沙月考) 已知a、b、c均为正数,函数的最小值为1.(Ⅰ)求的最小值;(Ⅱ)求证:.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共70分)17-1、18-1、18-2、18-3、19-1、19-2、答案:略20-1、20-2、答案:略21-1、答案:略21-2、答案:略22-1、22-2、23-1、第11 页共11 页。
贵州贵阳一中、凯里一中联考2016-2017学年高三上学期适应性数学试卷(文科) 含解析
2016-2017学年贵州省贵阳一中、凯里一中联考高三(上)适应性数学试卷(文科)(1)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知P={y|y=cosθ,θ∈R},Q={x|x2+(1﹣)x﹣=0},则P∩Q=()A.∅B.{0}C.{﹣1} D.2.曲线y=3x﹣lnx在点(1,3)处的切线方程为()A.y=﹣2x﹣1 B.y=﹣2x+5 C.y=2x+1 D.y=2x﹣13.角α的终边过点(﹣2,4),则cosα=()A.B.C.D.4.设点O在△ABC的内部,且有+2+3=,则△AOB的面积与△ABC的面积之比为( )A.B. C. D.5.已知一等差数列的前三项和为94,后三项和为116,各项和为280,则此数列的项数n为()A.5 B.6 C.7 D.86.已知l为平面α内的一条直线,α,β表示两个不同的平面,则“α⊥β”是“l⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.一个空间几何体的三视图如图所示,其体积为( )A.16 B.32 C.48 D.968.已知圆C的圆心为y=x2的焦点,且与直线4x+3y+2=0相切,则圆C的方程为( )A.B.C.(x﹣1)2+y2=1 D.x2+(y﹣1)2=19.某校新生分班,现有A,B,C三个不同的班,两名关系不错的甲和乙同学会被分到这三个班,每个同学分到各班的可能性相同,则这两名同学被分到同一个班的概率为( )A.B. C. D.10.已知i为虚数单位,a为实数,复数=在复平面上对应的点在y轴上,则a为()A.﹣3 B.C. D.311.以双曲线﹣=1(a>0,b>0)中心O(坐标原点)为圆心,焦矩为直径的圆与双曲线交于M点(第一象限),F1、F2分别为双曲线的左、右焦点,过点M作x轴垂线,垂足恰为OF2的中点,则双曲线的离心率为()A.﹣1 B.C.+1 D.212.函数f(x)是自变量不为零的偶函数,且f(x)=log2x(x>0),g(x)=,若存在实数n使得f(m)=g(n),则实数m的取值范围是()A.[﹣2,2]B.∪ C.∪D.(﹣∞,﹣2]∪[2,+∞)二、填空题(本大题共4小题,每小题5分,共20分,将答案填在机读卡上相应的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年贵州省贵阳市高三(上)期末数学试卷(文科)一.选择题1.设P={x|x<1},Q={x|x2<1},则()A.P⊆Q B.Q⊆P C.P⊆∁R Q D.Q⊆∁R P【答案】B【分值】5分【解析】由Q中不等式解得:﹣1<x<1,即Q={x|﹣1<x<1},∴∁R Q={x|x≤﹣1或x≥1},∵P={x|x<1},∴Q⊆P,【解题思路】求出Q中不等式的解集确定出Q,利用子集与补集的定义判断【考查方向】本题主要考查了子集与补集运算【易错点】子集与补集的运算2.复数(i﹣1﹣i)3的虚部为()A.8i B.﹣8i C.8D.﹣8【答案】C【分值】5分【解析】∵(i﹣1﹣i)3=,∴复数(i﹣1﹣i)3的虚部为8【解题思路】利用复数代数形式的乘除运算得答案【考查方向】本题主要考查了复数的乘除运算,虚数的概念【易错点】复数的乘除运算3.等差数列{a n}的前n项和为S n,且a3+a9=16,则S11=()A.88B.48C.96D.176【答案】A【分值】5分【解析】∵等差数列{a n}中,a3+a9=16,∴S11===88【解题思路】利用等差数列的性质、等差数列的前n项和公式计算【考查方向】本题主要考查了等差数列的性质,等差数列的前n项和公式【易错点】等差数列的性质的运用4.已知,则()A.c>a>b B.b>a>c C.b>a>c D.a>c>b【答案】D【分值】5分【解析】解:∵=,0<log41<log43.6<log44=1,,y=5x是增函数,∴a>c>b.【解题思路】化为同底的指数,利用对数函数、指数函数的单调性判断【考查方向】本题主要考查了比较数的大小对数函数、指数函数的单调性【易错点】对数函数、指数函数的单调性5.设向量=(1,x﹣1),=(x+1,3),则“x=2”是“∥”的()A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件【答案】A【分值】5分【解析】依题意,∥⇔3﹣(x﹣1)(x+1)=0⇔x=±2,所以“x=2”是“∥”的充分但不必要条件【解题思路】利用向量共线的充要条件求出的充要条件,利用充要条件的定义判断出“x=2”是的充分但不必要条件【考查方向】本题主要考查了向量共线及充要条件的判定【易错点】充要条件的判定6.已知角θ的始边与x轴的非负半轴重合,终边过点M(﹣3,4),则cos2θ的值为()A.B.C.D.【答案】A【分值】5分【解析】∵角θ的终边经过点P(﹣3,4),∴x=﹣3,y=4,r=|OP|=5,∴sinθ==,则cos2θ=1﹣2sin2θ=﹣【解题思路】由三角函数的定义,求出sinθ,利用二倍角公式计算【考查方向】本题主要考查了三角函数的定义,二倍角公式【易错点】三角函数的定义7.一个几何体的三视图如图所示,其中正视图是边长为2的等边三角形,俯视图为正六边形,则该几何体的体积是()A.B.1C.2D.【答案】D【分值】5分【解析】由三视图可知几何体是正六棱锥,底面边长为1,侧棱长为2,该几何体的体积:=【解题思路】由三视图知该几何体是正六棱锥,用体积公式求解【考查方向】本题主要考查了三视图、体积公式【易错点】三视图与实物图之间的关系8.双曲线的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点(2,1)在“右”区域内,则双曲线离心率e的取值范围是()A.B.C.D.【答案】B【分值】5分【解析】解:双曲线的一条渐近线方程为:y=x,∵点(2,1)在“右”区域内,∴×2>1,即,∴e==>,则双曲线离心率e的取值范围是(,+∞)【解题思路】先求出双曲线的一条渐近线方程,再由点在“右”区域内,得出不等式,求得出双曲线离心率的取值范围【考查方向】本题主要考查了双曲线的简单性质、不等式(组)与平面区域的关系【易错点】不等式(组)与平面区域的关系9.三棱锥P﹣ABC的四个顶点都在体积为的球的表面上,底面ABC所在的小圆面积为16π,则该三棱锥的高的最大值为()A.4B.6C.8D.10【答案】C【分值】5分【解析】设球的半径为R,由球的体积公式得:πR3=,∴R=5.又设小圆半径为r,则πr2=16π,∴r=4.显然,当三棱锥的高过球心O时,取得最大值;由OO1==3,所以高PO1=PO+OO1=5+3=8【解题思路】由球的体积求得球的半径;由小圆面积求得小圆的半径;三棱锥高的最大值应过球心,求出解答【考查方向】本题主要考查了的体积求半径,由圆的面积求半径,勾股定理【易错点】几何体的性质10.已知的最小正周期为π,若其图象向左平移个单位后关于y轴对称,则()A.B.C.D.【答案】D【分值】5分【解析】∵函数的周期是π,∴=π,∴ω=2,∵函数的图象向左平移个单位后得到y=sin(2x++φ)的图象关于y轴对称,∴+φ=kπ+,k∈Z.∵|φ|<,解得φ=﹣.∴ω=2,φ=﹣.【解题思路】利用函数的周期求出ω,然后根据函数的平移法则求出函数的图象平移后的函数,然后由已知的图象关于Y轴对称,求出φ【考查方向】本题主要考查了y=Asin(ωx+ϕ)的图象和性质【易错点】三角函数的左右平移x上的变化量11.正项等比数列{a n}中,存在两项a m、a n使得=4a1,且a6=a5+2a4,则的最小值是()A.B.2C.D.【答案】A【分值】5分【解析】在等比数列中,∵a6=a5+2a4,∴,即q2﹣q﹣2=0,解得q=2或q=﹣1(舍去),∵=4a 1,∴,即2m+n﹣2=16=24,∴m+n﹣2=4,即m+n=6,∴,∴=()=,当且仅当,即n=2m时取等号【解题思路】由a 6=a5+2a4,求出公比q,由=4a1,确定m,n的关系,然后利用基本不等式即可求出则的最小值【考查方向】本题主要考查了等比数列的运算性质以及基本不等式的应用【易错点】基本不等式成立的条件12.已知函数,若|f(x)|≥ax﹣1恒成立,则实数a的取值范围是()A.(﹣∞,﹣6] B.[﹣6,0] C.(﹣∞,﹣1] D.[﹣1,0]【答案】B【分值】5分【解析】由题意,|f(x)|≥ax﹣1恒成立,等价于y=ax﹣1始终在y=|f(x)|的下方,即直线夹在与y=|﹣x2+4x|=x2﹣4x(x≤0)相切的直线,和y=﹣1之间,所以转化为求切线斜率.由,可得x2﹣(4+a)x+1=0①,令△=(4+a)2﹣4=0,解得a=﹣6或a=﹣2,a=﹣6时,x=﹣1成立;a=﹣2时,x=1不成立,∴实数a的取值范围是[﹣6,0].【解题思路】|f(x)|≥ax﹣1恒成立,等价于y=ax﹣1图像始终在y=|f(x)|图像的下方,即直线夹在与y=|﹣x2+4x|=x2﹣4x(x≤0)相切的直线,和y=﹣1之间,所以转化为求切线斜率.【考查方向】本题主要考查了分段函数,恒成立问题【易错点】将不等式转化为图像问题二.填空题13.某高校有正教授120人,副教授100人,讲师80人,助教60人,现用分层抽样的方法从以上所有老师中抽取一个容量为n的样本,已知从讲师中抽取人数为16人,那么n= .【答案】72【分值】5分【解析】每个个体被抽到的概率为=,则n=(120+100+80+60)×=72【解题思路】先求出每个个体被抽到的概率,用总体数量乘以每个个体被抽到的概率就等于容量n的值【考查方向】本题主要考查了分层抽样【易错点】分层抽样的比例14.辗转相除法,又名欧几里得算法,乃求两个正整数之最大公因子的算法.它是已知最古老的算法,在中国则可以追溯至东汉出现的《九章算术》,图中的程序框图所表述的算法就是欧几里得辗转相除法,若输入a=5280,b=12155,则输出的b= .【答案】55【分值】5分【解析】解:a=5280,b=12155,a除以b的余数是1595,此时a=5280,b=1595,a除以b的余数是495,此时a=1595,b=495,a除以b的余数是110,此时a=495,b=110,a除以b的余数是55,此时a=110,b=55,a除以b的余数是0,退出程序,输出结果为55【解题思路】列举,当判断框条件成立时,循环结束【考查方向】本题主要考查了程序框图中的循环结构【易错点】循环结构条件成立的判断15.过抛物线y2=4x的焦点且倾斜角为60°的直线被圆截得的弦长是.【分值】5分【解析】∵抛物线y2=4x的焦点F(1,0),∴过抛物线y2=4x的焦点且倾斜角为60°的直线方程为:y=tan60°(x﹣1),即,∵圆的圆心(2,﹣2),半径r=4,∴圆心(2,﹣2)到直线的距离:d==,∴弦长L=2=2=【解题思路】由抛物线的焦点坐标求出直线方程,再求出圆的圆心的半径,利用点到直线的距离公式求出圆心到直线的距离,由此能求出弦长【考查方向】本题主要考查了直线与圆相交的弦长的求法【易错点】圆的弦长的求法16.若点P(a,b)在函数y=﹣x2+3lnx的图象上,点Q(c,d)在函数y=x+2的图象上,则|PQ|的最小值为.【答案】【分值】5分【解析】设直线y=x+m与曲线y=﹣x2+3lnx相切于P(x0,y0),由函数y=﹣x2+3lnx,∴y′=﹣2x+,令﹣2x0+=1,又x0>0,解得x0=1.∴y0=﹣1+3ln1=﹣1,可得切点P(1,﹣1).代入﹣1=1+m,解得m=﹣2.可得与直线y=x+2平行且与曲线y=﹣x2+3lnx相切的直线y=x﹣2.而两条平行线y=x+2与y=x﹣2的距离d=2【解题思路】由几何意义知,最小值为与直线y=x+2平行且与曲线y=﹣x2+3lnx相切的切点到直线的距离【考查方向】本题主要考查了导数的几何意义、切线的方程【易错点】导数的几何意义三.解答题17.在△ABC中,内角A、B、C的对边长分别为a,b,c,若b2+c2﹣a2=bc(1)求角A的大小;【答案】60°【分值】4分【解析】因为b2+c2﹣a2=bc,所以cosA==,由0°<A<180°得A=60°【考查方向】本题主要考查了余弦定理【易错点】余弦定理【解题思路】由余弦定理求出cosA的值,由角的范围求出A (2)若,求BC边上的中线AM的最大值.【答案】3 2【分值】6分【解析】在ABC中,A=60°,a=,由余弦定理得,a2=b2+c2﹣2bccosA,化简得,b2+c2﹣bc=3,则b2+c2=bc+3,且b2+c2=bc+3≥2bc,得bc≤3,(当且仅当b=c时取等号)在ABC中,cosB=,在ABM中,M是BC的中点,由余弦定理得,AM2=AB2+BM2﹣2•AB•BM•cosB=c2+﹣2•c••===,则AM≤,所以中线AM的最大值是【考查方向】本题主要考查了余弦定理,以及基本不等式求最值【易错点】基本不等式求最值【解题思路】在ABC中用余弦定理表示出a2,化简后得b2+c2=bc+3,由基本不等式得bc≤3,由余弦定理表示出cosB,在ABM中由余弦定理表示出AM2,化简后可求出AM的最大值18.2016年3月31日贵州省第十二届人民代表大会常务委员会第二十一次会议通过的《贵州省人口与计划生育条例》全面开放二孩政策.为了了解人们对于贵州省新颁布的“生育二孩放开”政策的热度,现在某市进行调查,对[5,65]岁的人群随机抽取了n人,得到如下统计表和各年龄段抽取人数频率分布直方图:(1)求n,p的值;【答案】n=50;p=0.5【分值】5分【解析】(1)[5,15)年龄段抽取的人数为=5,频率为0.010×10=0.1,∴n==50,第二组的频率为0.2,人数为10,则p==0.5【考查方向】本题主要考查了频率分布直方图,概率的计算【易错点】频率分布直方图【解题思路】求出样本容量,第二组的频率为0.2,人数为10,即可求出概率(2)根据以上统计数据填下面2×2列联表,并根据列联表的独立性检验,能否有99%的把握认为以45岁为分界点对“生育二孩放开”政策的支持度有关系?参考数据:【答案】没有99%的把握认为以45岁为分界点对“生育二孩放开”政策的支持度有关系【分值】5分【解析】根据以上统计数据填2×2列联表,求出K2,与临界值比较,即可得出结论.【解答】解:(1)[5,15)年龄段抽取的人数为=5,频率为0.010×10=0.1,∴n ==50,第二组的频率为0.2,人数为10,则p ==0.5;(2)2×2列联表如下计算K2=≈6.27<7.635,因此没有99%的把握认为以45岁为分界点对“生育二孩放开”政策的支持度有关系【考查方向】本题主要考查了独立性检验的应用问题【易错点】独立性检验的应用问题【解题思路】根据统计数据填2×2列联表,求出K2,与临界值比较,即可得出结论19.如图所示,该几何体是一个由直三棱柱ADE﹣BCF和一个正四棱锥P﹣ABCD组合而成,AD⊥AF,AE=AD=2(1)证明:平面P AD⊥平面ABFE;【答案】详见解析【分值】6分【解析】证明:(1)直三棱柱ADE﹣BCF中,∵AB⊥平面ADE,∴AB⊥AD,又AD⊥AF,∴AD⊥平面ABFE,AD⊂平面P AD,∴平面P AD⊥平面ABFE….(6分)【考查方向】本题主要考查了线面垂直的性质与判定,面面垂直的判定【易错点】面面垂直的判断【解题思路】证明AD⊥平面ABFE,再证明平面P AD⊥平面ABFE(2)若正四棱锥P﹣ABCD的体积是三棱锥P﹣ABF体积的4倍,求正四棱锥P﹣ABCD的高.【答案】2【分值】6分【解析】解:(2)连结BD与AC交于点O,连结PO,∵正四棱锥P﹣ABCD,∴PO⊥平面ABCD,又∵直三棱柱ADE﹣BCF,∴AB⊥AE,且有AD⊥平面ABEF,∴AD⊥AE,∴AE⊥平面ABCD,则PO∥AE,∵AE⊂平面ABEF,∴PO∥平面ABEF,则P到平面ABEF的距离等于O到平面ABEF的距离,又∵O为BD中点,∴O到平面ABEF的距离为=1,∴P到平面ABF的距离为d=1,∴=,设正四棱锥P﹣ABCD的高为h,∵正四棱锥P﹣ABCD的体积是三棱锥P﹣ABF体积的4倍,∴=4V P﹣ABF=,解得h=2,∴正四棱锥P﹣ABCD的高为2【考查方向】本题主要考查了正四棱棱的高的求解【易错点】P到平面ABEF的距离转化为O到平面ABEF的距离【解题思路】连结BD与AC交于点O,连结PO,推导出P到平面ABEF的距离等于O到平面ABEF的距离,从而P到平面ABF的距离为d=1,由此能求出正四棱锥P﹣ABCD的高20.设椭圆C1的中心和抛物线C2的顶点均为原点O,C1、C2的焦点均在x轴上,在C1、C2上各取两个点,将其坐标记录于表格中:(1)求C1、C2的标准方程;【答案】C2的方程为:y2=4x;C1的方程为:【分值】6分【解析】解:(1)设椭圆C1的方程为:(a>b>0),抛物线C2的方程为:y2=2px(p≠0),从已知中所给四点的坐标可得:点(﹣2,0)一定在椭圆上,∴(4,﹣4),(3,﹣2)两点一定在抛物线上,∴2p=4,即抛物线C2的方程为:y2=4x,把点(﹣2,0)(),代入椭圆C1的方程为:(a>b>0),得:a2=4,b2=3,∴椭圆C1的方程为:.【考查方向】本题主要考查了椭圆方程的求法和抛物线方程的求法【易错点】椭圆方程和抛物线方程的求法【解题思路】设椭圆C1的方程为:(a>b>0),抛物线C2的方程为:y2=2px(p≠0),从已知中所给四点的坐标可得:点(﹣2,0)一定在椭圆上,(4,﹣4),(3,﹣2)点一定在抛物线上,解方程可得答案(2)过C2的焦点F作斜率为k的直线l,与C2交于A、B两点,若l与C1交于C、D两点,若,求直线l的方程【答案】直线l的方程为:y =或y =【分值】6分【解析】(2)∵抛物线C2:y2=4x的焦点F(1,0),设l:x=ty+1(t≠0),联立方程组消元得:y2﹣4ty﹣4=0,∴△=16t2+16>0,|AB |==4(t2+1);联立方程组得(3t2+4)y2+6ty﹣9=0,∴△=36t2+36(3t2+4)>0,|CD|=;由=,解得t=±故直线l的方程为:y=或y=.【考查方向】本题主要考查了直线方程的求法,直线与圆锥曲线相交弦长问题【易错点】直线与圆锥曲线相交弦长问题【解题思路】设直线方程与抛物线联立方程组解决弦长问题21.已知函数(1)求f(x)的单调区间;【答案】增区间为(0,1),减区间为(1,+∞)【分值】3分【解析】解:(1)函数的导数为f′(x)=﹣=,x>0,当x>1时,f′(x)<0,f(x)递减;当0<x<1时,f′(x)>0,f(x)递增.则f(x)的增区间为(0,1),减区间为(1,+∞)【考查方向】本题主要考查了利用导数求函数的单调区间【易错点】用导数求函数的单调区间注意定义域【解题思路】求出f(x)的导数,解导数大于0,得增区间;解导数小于0,得减区间,(2)求函数f(x)在上的最大值和最小值;【答案】最大值0,最小值为2﹣e【分值】4分【解析】由(1)可得f(x)在x=1处取得极大值,且为最大值0,又f()=1﹣e﹣ln=2﹣e,f(e)=1﹣﹣lne=﹣,2﹣e<﹣,可得f(x)的最小值为2﹣e【考查方向】本题主要考查了利用导数求函数的最值【易错点】导数求函数的最值【解题思路】由(1)可得f(x)的最大值,再计算端点处的函数值,比较,可得最小值(3)求证:.【答案】详见解析【分值】5分【解析】证明:要证,即证lne2﹣lnx≤1+,即为2﹣lnx≤1+,即有1﹣lnx﹣≤0.设g(x)=1﹣lnx﹣,g′(x)=﹣+=,当x>1时,f′(x)<0,f(x)递减;当0<x<1时,f′(x)>0,f(x)递增.可得g(x)在x=1处取得极大值,且为最大值0.可得g(x)≤0,即有1﹣lnx﹣≤0.故原不等式成立【考查方向】本题主要考查了利用导数构造函数证明不等式【易错点】构造函数【解题思路】运用分析法证明,转化为证明1﹣lnx﹣≤0.设g(x)=1﹣lnx﹣,求出导数和单调区间,可得极值,也为最值,即可得证22.在直角坐标系xOy中,曲线C1的参数方程为(其中t为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ(1)求曲线C1的普通方程和C2的直角坐标方程;【答案】C1的普通方程为:(x﹣4)2+(y﹣5)2=9;C2的直角坐标方程为:x2+y2=2y【分值】5分【解析】解:(1)由曲线C1的参数方程为(其中t为参数),可得曲线C1的普通方程为:(x﹣4)2+(y﹣5)2=9,由曲线C2的极坐标方程为ρ=2sinθ,即ρ2=2ρsinθ,将ρ2=x2+y2,y=ρsinθ代入得:C2的直角坐标方程为:x2+y2=2y,配方为x2+(y﹣1)2=1.【考查方向】本题主要考查了极坐标与直角坐标方程的互化、参数方程化为普通方程【易错点】极坐标与直角坐标方程的互化、参数方程化为普通方程【解题思路】曲线C1的参数方程为(其中t为参数),消去参数t可得普通方程.曲线C2的极坐标方程为ρ=2sinθ,即ρ2=2ρsinθ,利用ρ2=x2+y2,y=ρsinθ,即可化为直角坐标方程(2)若A、B分别为曲线C1,C2上的动点,求当|AB|取最小值时△AOB的面积.【答案】2【分值】5分【解析】(2)解:当A,B,C1,C2四点共线,且A,B在线段C1C2上时,|AB|取最小值,由(1)得:C1(4,5),C2(0,1),∴=1,故直线C1C2的方程为:x﹣y+1=0,∴点O到直线C1C2的距离d==,又∵|AB|=|C1C2|﹣1﹣3=4﹣4,故△AOB的面积S=2﹣【考查方向】本题主要考查了三角形面积公式、点到直线的距离公式【易错点】三角形面积公式【解题思路】当A,B,C1,C2四点共线,且A,B在线段C1C2上时,|AB|取最小值,求出|AB|长,及原点到直线的距离,可得此时△AOB的面积23.已知|x+2|+|6﹣x|≥k恒成立(1)求实数k的最大值;【答案】8【分值】5分【解析】解:(1)|x+2|+|6﹣x|≥k恒成立;设g(x)=|x+2|+|6﹣x|,则g(x)min≥k.又|x+2|+|6﹣x|≥|(x+2)+(6﹣x)|=8,当且仅当﹣2≤x≤6时,g(x)min=8所以k≤8.即实数k的最大值为8,【考查方向】本题主要考查了绝对值不等式的性质【易错点】绝对值不等式的性质【解题思路】由|x+2|+|6﹣x|≥m恒成立,设函数g(x)=||x+2|+|6﹣x||,利用绝对值不等式的性质求出其最小值(2)若实数k的最大值为n,正数a,b满足,求7a+4b的最小值.【答案】9 4【分值】5分【解析】(2)由(1)可知,n=8,∴,即,有由于a,b均为正数,所以7a+4b=(7a+4b)•()=[(5a+b)+(2a+3b)]•()=[5+]≥(5+4)=,所以4a+3b的最小值是.【考查方向】本题主要考查了基本不等式求最值【易错点】基本不等式求最值【解题思路】由(1)知n=8,变形,利用基本不等式的性质求出最小值。