2016-2017学年北京市东城区九上期末数学试卷

合集下载

东城2016-2017,初三数学一模答案

东城2016-2017,初三数学一模答案

北京市东城区2016-2017学年第二学期统一练习(一) 初三数学参考答案及评分标准 2017.5二、填空题(本题共18分,每小题3分)29题8分) 170112sin 60π)()2-︒+-解:原式=12- …………4分 1. …………5分 18. 解: 去分母得:3(x +1)>2(2x +2)﹣6, …………1分去括号得:3x +3>4x +4﹣6, …………2分 移项得:3x ﹣4x >4﹣6﹣3, …………3分 合并同类项得:﹣x >﹣5, 系数化为1得:x <5. …………4分 故不等式的正整数解有1,2,3,4这4个. …………5分19. 解: 224122x x x x x -+⎛⎫-÷- ⎪++⎝⎭ =22422x x x x x x -++⋅--+ =242x x x x ++-+ =4(2)x x +. …………3分∵ 22410x x +-=. ∴ 2122x x +=. …………4分 原式=8. …………5分20. 解:由题意可得:MN 是AC 的垂直平分线.F ECBAD则AD =DC .故∠C =∠DAC .…………2分 ∵ ∠C =30°, ∴ ∠DAC =30°. …………3分 ∵ ∠B =55°, ∴ ∠BAC =95°. …………4分 ∴ ∠BAD =∠BAC ﹣∠CAD =65°. …………5分21.解:(1)由题意可求:m =2,n =-1.将(2,3),B (-6,-1)带入y kx b =+,得32,16.k b k b =+⎧⎨-=-+⎩解得 1,22.k b ⎧=⎪⎨⎪=⎩∴ 直线的解析式为122y x =+. …………3分 (2)(-2,0)或(-6,0). …………5分22.解:设本场比赛中该运动员投中两分球x 个,三分球y 个. …………1分依题意有23633,11.x y x y ++=⎧⎨+=⎩. …………3分 解得6,5.x y =⎧⎨=⎩…………4分 答:设本场比赛中该运动员投中两分球6个,三分球5个. …………5分 23. 解:(1)证明:∵ 四边形ABCD 为平行四边形,∴ AB =CD ,∠F AD =∠AFB. 又∵ AF 平分∠BAD , ∴ ∠F AD =∠F AB . ∴ ∠AFB =∠F AB . ∴ AB =BF .∴ BF =CD . …………3分(2)解:由题意可证△ABF 为等边三角形,点E 是AF 的中点.在Rt △BEF 中,∠BF A =60°,BE=可求EF=2,BF=4.∴平行四边形ABCD的周长为12.…………5分24. 解:(1)…………4分(2)答案不唯一.…………5分25. 解:(1)证明:连接OD.∵OD=CD,∴∠ODC=∠OCD.∵AC为⊙O的直径,∴∠ADC=∠EDC=90°.∵点F为CE的中点,∴DF=CF.∴∠FDC=∠FCD.∴∠FDO=∠FCO.又∵AC⊥CE,∴∠FDO=∠FCO=90°.∴DF是⊙O的切线. …………2分(2)○1由DB平分∠ADC,AC为⊙O的直径,证明△ABC是等腰直角三角形;○2由AB=a,求出AC;○3由∠ACE=∠ADC=90°,∠CAE是公共角,证明△ACD∽△AEC,得到2AC AD AE=⋅;DE=. …………5分○4设DE为x,由AD∶DE=4∶1,求出1026.解:(1)○2.…………1分(2)它是一个轴对称图形;两组邻边分别相等;一组对角相等;一条对角线所在的直线垂直平分另一条对角线等等. …………3分已知:如图,在凹四边形ABCD中,AB=AD,BC=DC.求证:∠B=∠D.证明:连接AC.,60. ..AD DE ADE ADE ABC EAB DAC AB AC AE AD EAB DAC CD BE =∠=︒∴∴∠=∠==∴∴= ,△为等边三角形.△为等边三角形,,,△≌△EE∵AB=AD,CB=CD,AC=AC , ∴△ABC ≌△ADC.∴∠B =∠D. …………4分(3)燕尾四边形ABCD的面积为 …………5分 27.解:(1)对称轴方程:2(2)12(2)m x m -+=-=+. …………1分(2)①∵直线l 与抛物线只有一个公共点,∴23n m =-+. …………3分② 依题可知:当237m -+=-时,直线l 与新的图象恰好有三个公共点. ∴5m =. …………5分(3)抛物线2(2)2(2)5y m x m x m =+-+-+的顶点坐标是(1,23)m -+.依题可得 20,23 1.m m +>⎧⎨-+≥⎩解得2,1.m m >-⎧⎨≤⎩ ∴ m 的取值范围是21m -<≤. …………7分28.解:(1)30°; …………1分 (2)思路1:如图,连接AE .…………5分思路2:过点D 作DF ∥AB ,交AC 于F .EDCBA…………5分思路3:延长CB 至G ,使BG =CD.…………5分(3)k (BE +BD )=AC . …………7分 29.解:(1)E ,F ; …………2分 (2)①解:依题意A (0,2),M (32,0).可求得直线AM 的解析式为233+-=x y . 经验证E 在直线AM 上.因为OE =OA =2,∠MAO =60°, 所以△OAE 为等边三角形, 所以AE 边上的高长为3. 当点P 在AE 上时,3≤OP ≤2.所以当点P 在AE 上时,点P 都是等边△ABC 的中心关联点. 所以0≤m ≤3; …………4分=60.,=60..===60,.,..ABC AC BC BAC DF AB DFC CDF AF BD ADE ACB ABC DAF EDB AD DE ADF DEB DF BE CD ∴=∠︒∴∠︒∴∴=∠∠∠︒∴∠=∠=∴∴== △为等边三角形,,∥△为等边三角形.又△≌△=60.,.===60,.,.,==60..ABC AC BC BAC CD BG DG AC ADE ACB ABC DAF EDB AD DE ADC DEG CD EG BG C G BGE BE BG CD ∴=∠︒=∴=∠∠∠︒∴∠=∠=∴∴==∠∠︒∴∴== △为等边三角形,,又△≌△△为等边三角形.②﹣334≤b ≤2; …………6分 (3)t =25425-4或 …………8分。

2016-2017学年北京市东城区初三上学期期末数学试题.docx

2016-2017学年北京市东城区初三上学期期末数学试题.docx

北京市东城区2016—2017 学年第一学期期末统一测试初三数学2017.1学校班级姓名考号1.本试卷共8 页,共三道大题,29 道小题,满分120 分 . 考试时间120 分钟 .考2.在试卷上准确填写学校名称、班级、姓名和考号.生3.试题答案一律填涂或书写在答题卡上, 在试卷上作答无效.须4.在答题卡上选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.知5.考试结束,请将本试卷和答题卡一并交回.一、选择题(本题共30 分,每小题 3 分)下面各题均有四个选项,其中只有一个..是符合题意的.1.关于 x 的一元二次方程 x2 +4 x+ k=0 有两个相等的实数根,则 k 的值为A . k=4B . k=﹣ 4C . k ≥﹣ 4D . k≥42A .直线 x=1B.直线 x=﹣ 1C.直线 x=﹣ 2D.直线 x=23.剪纸是我国的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是A B C D4.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其试验次数分别为 10 次、 50 次、 100 次、 200 次,其中试验相对科学的是A .甲组B .乙组C .丙组D .丁组5.在平面直角坐标系中,将抛物线y x22x 1先向上平移3个单位长度,再向左平移 2 个单位长度,所得的抛物线的解析式是A .y( x 1)21B. y (x 3)21C.y(x 3)2 5 D. y ( x 1)226.已知点 A( 2, y1), B( 4, y2)都在反比例函数y k(k<0)的图象上,x则 y1, y 2的大小关系为A . y 1> y2B . y 1< y2C . y 1 =y 2 D.无法确定7.如图,在△ABC 中,∠ A=78 °, AB=4 , AC=6.将△ ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是...8.如图,圆锥的底面半径 r 为 6cm ,高 h 为 8cm ,则圆锥的侧面积为A . 30π cm2B . 48π cm2C. 60π cm2 D . 80π cm29.如图,⊙ O 是 Rt△ ABC 的外接圆,∠ ACB=90 °,∠ A=25 °,过点C 作⊙ O 的切线,交 AB 的延长线于点 D,则∠ D 的度数是A .25°B . 40°C. 50°D . 65°10.城市中“打车难”一直是人们关注的一个社会热点问题.近几年来,“互联网 +”战略与传统出租车行业深度融合,“优步”、“滴滴出行”等打车软件就是其中典型的应用. 名为“数据包络分析”(简称 DEA )的一种效率评价方法,可以很好地优化出租车资源配置.为了解出租车资源的“供需匹配”,北京、上海等城市对每天24 个时段的 DEA 值进行调查,调查发现,DEA值越大,说明匹配度越好 .在某一段时间内,北京的DEA值 y 与时刻 t 的关系近似满足函数关系 y ax2bx c(a,b,c是常数,且a 0),如图记录了3个时刻的数据,根据函数模型和所给数据,当“供需匹配”程度最好时,最接近的时刻t 是A. 4.8B. 5C. 5.2D. 5.5y1.10.870.43O 4 56t 二、填空题(本题共18 分,每小题 3 分)11.请你写出一个图象分别位于第二、四象限的反比例函数的解析式,这个解析式可以是.12.已知 m 是关于 x 的方程 x2﹣ 2x﹣ 3=0 的一个根,则2m2﹣4m=.13.二次函数 y x2 4x 2 的最小值为.14.天坛是古代帝王祭天的地方,其中最主要的建筑就是祈年殿.老师希望同学们利用所学过的知识测量祈年殿的高度,数学兴趣小组的同学们设计了如图所示的测量图形,并测出竹竿 AB 长 2 米,在太阳光下,它的影长BC 为 1.5 米,同一时刻,祈年殿的影长EF 约为 28.5 米.请你根据这些数据计算出祈年殿的高度DE 约为米.DAE F B C15.如图,在Rt△ABC中,ACB90 ,AC 2 3,以点C为圆心,CB的长为半径画弧,与 AB 边交于点 D ,将BD绕点 D 旋转 180°后点 B 与点 A 恰好重合,则图中阴影部分的面积为 .16.如图,已知菱形OABC 的顶点 O( 0,0),B( 2,2),菱形的对角线的交点 D 的坐标为;菱形 OABC 绕点 O 逆时针旋转,每秒旋转45°,从如图所示位置起,经过60 秒时,菱D 的坐标为 .y形的对角线的交点32B A1DC–3 –2 –1O123x–1–2三、解答题(本题共72分,第 17— 26 题,每小题 5 分,第 27,28 题各 7 分,第29 题 8分)17.解方程:2x24x 1 0.18. 如图,在△ ABC中, AD 是中线,∠ B= ∠ DAC ,若 BC =8 ,求 AC 的长 .ACB D19.如图, AB 是⊙ O 的直径,弦 CD ⊥ AB 于点 E ,若 AB =8, CD =6,求 BE 的长.20.如图,在平面直角坐标系中,O 为坐标原点, Rt △ ABO 的边 AB 垂直于 x 轴,垂足为点 B ,反比例函数 y 1k 1( x > 0)的图象经过 AO 的中点 C ,且与 AB 相交于点 D ,OB=4 ,xAB=3 .( 1)求反比例函数 y 1k 1( x >0)的解析式;x( 2)设经过 C , D 两点的一次函数解析式为y 2 k 2 x b ,求出其解析式,并根据图象直接写出在第一象限内,当y 2>y 1 时, x 的取值范围.21. 列方程或方程组解应用题:公园有一块正方形的空地, 后来从这块空地上划出部分区域栽种鲜花(如图阴影部分) ,原空地一边减少了 1m ,另一边减少了 2m ,剩余空地的面积为 20m 2 ,求原正方形空地2m的边长.20m 21m22.按照要求画图:(1)如图,在平面直角坐标系中,点A,B,C 的坐标分别为(﹣1,3),(﹣ 4,1),(﹣ 2,1),将△ ABC 绕原点 O 顺时针旋转90°得到△ A1B1C1,点 A,B, C 的对应点为点A1,B1, C1.画出旋转后的△ A1B1C1;(2)下列 3×3 网格都是由9 个相同小正方形组成,每个网格图中有 3 个小正方形已涂上阴影,请在余下的 6 个空白小正方形中,选取 1 个涂上阴影,使 4 个阴影小正方形组成一个中心对称图形(画出两种即可).23.甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.( 1)请用列表法或画树状图的方法,求两人抽取相同数字的概率;( 2)若两人抽取的数字和为2 的倍数,则甲获胜;若抽取的数字和为 5 的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.24.在平面直角坐标系xOy 中,对称轴为直线 x=1 的抛物线2y= -x +bx+c 与 x 轴交于点 A 和点B,与 y 轴交于点C,且点 B 的坐标为(﹣ 1, 0).(1)求抛物线的解析式;(2)点 D 的坐标为( 0,1),点 P 是抛物线上的动点,若△ PCD是以 CD 为底的等腰三角形,求点P 的坐标.25.如图, AB 是⊙ O 的直径, AC 是弦,∠ BAC 的平分线交⊙ O 于点 D ,过点 D 作 DE ⊥AC 交 AC 的延长线于点E,连接 BD.( 1 )求证: DE 是⊙ O 的切线;( 2)若BD 5,AD 4 5,求CE的长.DE226.问题探究:新定义:将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“等积线”,其“等积线”被该平面图形截得的线段叫做该平面图形的“等积线段”(例如圆的直径就是圆的“等积线段”).解决问题:A A AB DC B C B C图 2图 3图1已知在 Rt△ ABC 中,∠ BAC=90°, AB=AC= 22 .(1)如图 1,若 AD ⊥BC ,垂足为 D,则 AD 是△ ABC 的一条等积线段,求AD 的长;(2)在图 2 和图 3 中,分别画出一条等积线段,并求出它们的长度.(要求:使得图 1、图2 和图 3 中的等积线段的长度各不相等)27.在平面直角坐标系xOy 中,抛物线y mx22mx m 4 ( m 0 )与x轴交于A,B 两点(点 A 在点 B 左侧),与 y 轴交于点 C( 0,-3).( 1)求抛物线的解析式;( 2)在抛物线的对称轴上有一点P,使 PA+PC 的值最小,求点 P 的坐标;( 3)将抛物线在B, C 之间的部分记为图象G(包含B, C 两点),若直线 y= 5x+b 与图象 G 有公共点,请直接写出 b 的取值范围.28.点 P 是矩形 ABCD 对角线 AC 所在直线上的一个动点(点P 不与点 A,C 重合),分别过点 A, C 向直线 BP 作垂线,垂足分别为点E, F,点 O 为 AC 的中点.( 1)如图 1,当点 P 与点 O 重合时,请你判断OE 与 OF 的数量关系;( 2)当点 P 运动到如图 2 所示位置时,请你在图 2 中补全图形并通过证明判断(1)中的结论是否仍然成立;( 3)若点 P 在射线 OA 上运动,恰好使得∠OEF =30°时,猜想此时线段CF, AE,OE 之间有怎样的数量关系,直接写出结论不必证明.D CCDE(P )OOFPA B图 1A B图2D COA B备用图29.在平面直角坐标系xOy 中,有如下定义:若直线l 和图形 W 相交于两点,且这两点的距离不小于定值k,则称直线l 与图形 W 成“ k 相关”,此时称直线与图形W 的相关系数为 k.(1)若图形W 是由A2, 1 , B2,1 , C 2,1 , D 2, 1 顺次连线而成的矩形:○1 l1:y=x+2,l2:y=x+1,l3:y=-x-3 这三条直线中,与图形W 成“2 相关”的直线有________;○画出一条经过 0,1的直线,使得这条直线与W 成“ 5 相关”;2○3若存在直线与图形W 成“ 2 相关”,且该直线与直线y3x 平行,与y轴交于点Q,求点 Q 纵坐标y Q的取值范围;(2)若图形 W 为一个半径为 2 的圆,其圆心 K 位于 x 轴上 . 若直线y33 与图形x3W 成“ 3 相关”,请直接写出圆心K 的横坐标x K的取值范围 .备用图北京市城区2016-2017 学年第一学期期末一初三数学参考答案及分准2017.1一、(本共30 分,每小3分)号12345678910答案A B A D A B C C B C 二、填空(本共18 分,每小3分)号111213141516如:y 1答案不唯( 1,1);( -1,-1)答案x6-6383一,只要足 k<0即可三、解答(本共72 分,第 17— 26 ,每小 5 分,第 27 7分,第 287 分,第29 8 分)17.解方程:2x24x10解: x22x1.12x22x1 1 .⋯⋯⋯⋯2分32(x1)2.⋯⋯⋯⋯ 3 分2x16. 2∴x1 16, x216 2.218.解:∵∠ B = ∠ DAC ,∠ C=∠ C,∴△ ABC∽△ DAC .⋯⋯⋯⋯2分∴AC BC .CD AC∴ AC 2CD BC .⋯⋯⋯⋯3分∵ AD 是中,BC =8 ,∴ CD 4 .⋯⋯⋯⋯4分⋯⋯⋯⋯ 1 分⋯⋯⋯⋯ 5 分AC B D∴AC 4 2 .⋯⋯⋯⋯5 分1119. 解: 接 OC.⋯⋯⋯⋯ 1 分∵AB 是⊙ O 的直径,弦CD ⊥ AB 于点 E ,∴ 点 E 是 CD 的中点 .⋯⋯⋯⋯ 2 分在 Rt △ OCE 中, OE 2 CE 2 OC 2 ,∵ AB=8, CD=6 ,∴ 可求 OE7 . ⋯⋯⋯⋯ 4 分∴BE 47 .⋯⋯⋯⋯ 5 分20.( 1)由 意可求点C 的坐 (2,3) .⋯⋯⋯⋯ 1 分2y 13⋯⋯⋯⋯ 2 分∴ 反比例函数的解析式( x >0) .x( 2)可求出点 D 的坐 ( 4,3) .⋯⋯⋯⋯ 3 分4∴ 可求直 CD 的解析式y 2 - 3x 9 . ⋯⋯⋯⋯ 4 分8 4 当 2< x < 4 , y 2>y 1 . ⋯⋯⋯⋯ 5 分.21.解: 原正方形空地的xm .⋯⋯⋯⋯ 1 分根据 意,得 x 1 x 2 20 . ⋯⋯⋯⋯ 2 分解方程,得x 1 6, x 2 3(舍)⋯⋯⋯⋯ 4 分答:原正方形空地的6m . ⋯⋯⋯⋯5 分1222. 解:(1)旋 后的△A 1B 1C 1 如下 :B 1C 1A 1⋯⋯⋯⋯ 3 分(2)根据 意画 如下:符合其中的两种即可 .⋯⋯⋯⋯5 分23.解 : ( 1)所有可能出 的 果如 :从表格可以看出, 共有 9 种 果,每种 果出 的可能性相同,其中两人 抽取相同数字的 果有3 种,所以两人抽取相同数字的概率1; ⋯⋯⋯3 分3(2)不公平.从表格可以看出,两人抽取数字和 2 的倍数有 5 种,两人抽取数字和 5 的倍数有 3 种,所以甲 的概率 5,乙 的概率1 . ∵5> 1,939 3∴甲 的概率大,游 不公平.⋯⋯⋯⋯5 分1324.解:( 1)由题意可求点A 的坐标为( 3,0).将点 A(3,0)和点 B(-1,0)代入 y= - x2 +bx+c,0=-9+3b c,得0 1 b c.b 2,解得c 3.∴抛物的解析式 yx2 2x 3 .⋯⋯⋯⋯3分(2)可求出点 C 的坐( 0,3).由意可知足条件的点P 的坐2.∴x2 2x 3=2 .解得 x1 12, x2 1 2.∴点 P 的坐(12,2) 或(12,2).⋯⋯⋯⋯5分25.( 1)证明:连接 OD .∵OA=OD,∴ ∠ BAD =∠ODA .∵AD 平分∠BAC ,∴ ∠BAD=∠DAC .∴ ∠ODA=∠DAC.∴ OD∥ AE.∵DE⊥ AE,∴OD⊥DE .∴ DE 是⊙ O 的切.⋯⋯⋯⋯2分(2)解:∵ OB 是直径,∴∠ADB =90°.∴∠ADB =∠ E.又∵∠ BAD =∠DAC ,∴△ABD ∽△ ADE.14∴AB BD 5 .AD DE2∴AB 10 .由勾股定理可知BD 2 5 .接 DC ,∴BD DC 2 5.∵A,C ,D ,B 四点共 .∴∠DCE =∠ B.∴△ DCE∽△ ABD.∴AB BDDC .CE∴CE =2.⋯⋯⋯⋯5分26.解:( 1)在 Rt△ADC 中,∵AC2 2 , C =45°,∴AD2.⋯⋯⋯⋯ 1 分(2)符合意的形如下所示:AE AC 中点,BE10 .EB CGH ∥ BC,GH 2 2 .A⋯⋯⋯⋯ 5G H分B C15。

20162017北京市东城区初三数学一模试题及答案word版

20162017北京市东城区初三数学一模试题及答案word版

PNMF E DCBA北京市东城区2016—2017学年第二学期统一练习(一)初三数学2017.5一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.1.数据显示:2016年我国就业增长超出预期. 全年城镇新增就业 1 314万人,高校毕业生就业创业人数再创新高. 将数据 1 314用科学记数法表示应为A .31.31410B .41.31410C .213.1410D .40.1314102.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是A .a b<B .a b >-C .b a >D .2a >-3.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是A .12B .13C .14D .164.某健步走运动的爱好者用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是A .1.2,1.3 B .1.3,1.3 C .1.4,1.35D .1.4,1.35. 如图,AB ∥CD ,直线EF 分别交AB ,CD 于M ,N 两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB =75°,则∠PNM 等于A .15°B .25°C .30°D .45°6.下列哪个几何体,它的主视图、左视图、俯视图都相同AB CD7.我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化. 如图2,POEDCBA窗框的一部分所展示的图形是一个轴对称图形,其对称轴有A .1条B .2条C .3条D .4条8. 如图,点A ,B 的坐标为(2,0),(0,1),若将线段AB 平移至A 1B 1,则a+b 的值为A .2B .3C .4D .59. 某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了...5.5万元.这批电话手表至少有A .103块B .104块C .105块D .106块10.图1是某娱乐节目中一个游戏环节的录制现场,场地由等边△ADE 和正方形ABCD 组成,正方形ABCD两条对角线交于点O ,在AD 的中点P 处放置了一台主摄像机.游戏参与者行进的时间为x ,与主摄像机的距离为y ,若游戏参与者匀速行进,且表示y 与x 的函数关系式大致如图2所示,则游戏参与者的行进路线可能是图1图2 A. AODB. EACC. AEDD. EAB二、填空题(本题共18分,每小题3分)11.分解因式:22abab a =.12.请你写出一个二次函数,其图象满足条件:○1开口向上;○2与y 轴的交点坐标为(0,1). 此二次函数的解析式可以是.13. 若关于x 的一元二次方程x 2+2(k ﹣1)x+k 2﹣1=0有两个不相等的实数根,则k 的取值范围是.14. 一个多边形的内角和是外角和的2倍,则这个多边形的边数为.15. 北京市2012-2016年常住人口增量统计如图所示.根据统计图中提供的信息,预估2017年北京市常住人口增量约为万人次,你的预估理由是.16.下面是“以已知线段为直径作圆”的尺规作图过程.请回答:该作图的依据是.三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:11122sin 60(2π)()2.18. 解不等式122123x x >,并写出它的正整数解.19.先化简,再求值:224122x x xxx,其中22410xx .已知:线段AB.求作:以AB 为直径的⊙O. BA作法:如图,(1)分别以A ,B 为圆心,大于21AB 的长为半径作弧,两弧相交于点C ,D ;(2)作直线CD 交AB 于点O ;(3)以O 为圆心,OA 长为半径作圆. 则⊙O 即为所求作的.20.如图,在△ABC 中,∠B=55°,∠C=30°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,求∠BAD 的度数.21.如图,在平面直角坐标系xOy 中,直线0y kx b k 与双曲线6yx相交于点A (m ,3),B(-6,n),与x 轴交于点C .(1)求直线0y kx b k 的解析式;(2)若点P 在x 轴上,且32ACPBOC S S △△,求点P 的坐标(直接写出结果).22.列方程或方程组解应用题:在某场CBA 比赛中,某位运动员的技术统计如下表所示:技术上场时间出手投篮投中罚球得分篮板助攻个人总FECBAD(分钟)(次)(次)(分)(个)(次)得分(分)数据38271163433注:(1)表中出手投篮次数和投中次数均不包括罚球;(2)总得分=两分球得分+三分球得分+罚球得分.根据以上信息,求本场比赛中该运动员投中两分球和三分球各几个.23.如图,四边形ABCD 为平行四边形,∠BAD 的角平分线AF 交CD 于点E ,交BC 的延长线于点F .(1)求证:BF=CD ;(2)连接BE ,若BE ⊥AF ,∠BFA=60°,BE=23,求平行四边形ABCD 的周长.24.阅读下列材料:“共享单车”是指企业与政府合作,在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车共享的一种服务,是共享经济的一种新形态.共享单车的出现让更多的用户有了更好的代步选择.自行车也代替了一部分公共交通甚至打车的出行.Quest Mobile监测的M型与O型单车从2016年10月——2017年1月的月度用户使用情况如下表所示:根据以上材料解答下列问题:(1)仔细阅读上表,将O型单车总用户数用折线图表示出来,并在图中标明相应数据;(2)根据图表所提提供的数据,选择你所感兴趣的方面,写出一条你发现的结论.25. 如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DF.DCBADCBADCBA图1DCBA(1)求证:DF 是⊙O 的切线;(2)若DB 平分∠ADC ,AB=a ,AD ∶DE=4∶1,写出求DE 长的思路.FEOCBAD26. 在课外活动中,我们要研究一种凹四边形——燕尾四边形的性质.定义1:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形(如图1).(1)根据凹四边形的定义,下列四边形是凹四边形的是(填写序号);○1○2○3定义2:两组邻边分别相等的凹四边形叫做燕尾四边形(如图2).特别地,有三边相等的凹四边形不属于燕尾四边形.小洁根据学习平行四边形、菱形、矩形、正方形的经验,对燕尾四边形的性质进行了探究.下面是小洁的探究过程,请补充完整:(2)通过观察、测量、折叠等操作活动,写出两条对燕尾四边形性质的猜想,并选取其中的一条猜想加以证明;(3)如图2,在燕尾四边形ABCD 中,AB=AD =6,BC=DC =4,∠BCD =120°,求燕尾四边形ABCD 的面积(直接写出结果).27.二次函数2(2)2(2)5y m xm x m ,其中20m .(1)求该二次函数的对称轴方程;(2)过动点C(0, n)作直线l⊥y轴.①当直线l与抛物线只有一个公共点时, 求n与m的函数关系;②若抛物线与x轴有两个交点,将抛物线在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象. 当n=7时,直线l与新的图象恰好有三个公共点,求此时m的值;(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求m的取值范围.28. 在等腰△ABC中,(1)如图1,若△ABC为等边三角形,D为线段BC中点,线段AD关于直线AB的对称线段为线段AE,连接DE,则∠BDE的度数为___________;(2)若△ABC为等边三角形,点D为线段BC上一动点(不与B,C重合),连接AD并将线段AD绕点D逆时针旋转60°得到线段DE,连接BE.①根据题意在图2中补全图形;②小玉通过观察、验证,提出猜测:在点D运动的过程中,恒有CD=BE.经过与同学们的充分讨论,形成了几种证明的思路:思路1:要证明CD=BE,只需要连接AE,并证明△ADC≌△AEB;思路2:要证明CD=BE,只需要过点D作DF∥AB,交AC于F,证明△ADF≌△DEB;思路3:要证明CD=BE,只需要延长CB至点G,使得BG=CD,证明△ADC≌△DEG;……请参考以上思路,帮助小玉证明CD=BE.(只需要用一种方法证明即可)(3)小玉的发现启发了小明:如图3,若AB=AC=kBC,AD=kDE,且∠ADE=∠C,此时小明发现BE,BD,AC三者之间满足一定的的数量关系,这个数量关系是______________________.(直接给出结论无须证明)图1 图2 图329.设平面内一点到等边三角形中心的距离为d,等边三角形的内切圆半径为r,外接圆半径为R.对于一个点与等边三角形,给出如下定义:满足r ≤d ≤R 的点叫做等边三角形的中心关联点.在平面直角坐标系xOy 中,等边△ABC 的三个顶点的坐标分别为A(0,2),B (﹣3,﹣1),C(3,﹣1).(1)已知点D (2,2),E (3,1),F (21-,﹣1).在D ,E ,F 中,是等边△ABC 的中心关联点的是;(2)如图1,过点A 作直线交x 轴正半轴于M ,使∠AMO =30°.①若线段AM 上存在等边△ABC 的中心关联点P (m ,n ),求m 的取值范围;②将直线AM 向下平移得到直线y=kx+b ,当b 满足什么条件时,直线y=kx+b 上总存在...等边△ABC的中心关联点;(直接写出答案,不需过程)(3)如图2,点Q 为直线y=﹣1上一动点,⊙Q 的半径为21.当Q 从点(﹣4,﹣1)出发,以每秒1个单位的速度向右移动,运动时间为t 秒.是否存在某一时刻t ,使得⊙Q 上所有点都是等边△ABC 的中心关联点?如果存在,请直接写出所有符合题意的t的值;如果不存在,请说明理由.图1 图2北京市东城区2016-2017学年第二学期统一练习(一)初三数学参考答案及评分标准2017.5一、选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案 A CBD CBB AC A二、填空题(本题共18分,每小题3分)题号1112 131415 16答案2(-1)a b 答案不唯一如:21y x1k < 6答案不唯一,合理就行垂直平分线的判定;垂直平分线的定义和圆的定义三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:11122sin 60(2π)()2解:原式=23312…………4分=31.…………5分18. 解:去分母得:3(x+1)>2(2x+2)﹣6,…………1分去括号得:3x+3>4x+4﹣6,…………2分移项得:3x ﹣4x >4﹣6﹣3,…………3分合并同类项得:﹣x >﹣5,系数化为1得:x <5. …………4分故不等式的正整数解有1,2,3,4这4个.…………5分19. 解:224122x x x x x =22422x xxx x x =242x x x x =4(2)x x.…………3分∵22410x x .∴2122xx.…………4分原式=8. …………5分20. 解:由题意可得:MN 是AC 的垂直平分线.则AD=DC .故∠C=∠DAC .…………2分∵∠C=30°,F ECBAD∴∠DAC=30°.…………3分∵∠B=55°,∴∠BAC=95°.…………4分∴∠BAD =∠BAC ﹣∠CAD=65°.…………5分21.解:(1)由题意可求:m=2,n=-1.将(2,3),B(-6,-1)带入ykx b ,得32,16.k b kb 解得1,22.k b∴直线的解析式为122yx .…………3分(2)(-2,0)或(-6,0).…………5分22.解:设本场比赛中该运动员投中两分球x 个,三分球y 个.…………1分依题意有23633,11.x y xy .…………3分解得6,5.x y…………4分答:设本场比赛中该运动员投中两分球6个,三分球5个.…………5分23. 解:(1)证明:∵四边形ABCD 为平行四边形,∴AB=CD ,∠FAD=∠AFB. 又∵AF 平分∠BAD ,∴∠FAD=∠FAB. ∴∠AFB =∠FAB. ∴AB=BF.∴BF =CD. …………3分(2)解:由题意可证△ABF 为等边三角形,点E 是AF 的中点.在Rt △BEF 中,∠BFA=60°,BE=23,可求EF=2,BF=4.∴平行四边形ABCD的周长为12. …………5分24. 解:(1)…………4分(2)答案不唯一.…………5分25. 解:(1)证明:连接OD.∵OD=CD,∴∠ODC=∠OCD.∵AC为⊙O的直径,∴∠ADC=∠EDC=90°.∵点F为CE的中点,∴DF=CF.∴∠FDC=∠FCD.∴∠FDO=∠FCO.又∵AC⊥CE,∴∠FDO=∠FCO=90°.∴DF是⊙O的切线. …………2分(2)○1由DB平分∠ADC,AC为⊙O的直径,证明△ABC是等腰直角三角形;○2由AB=a,求出AC的长度为2a;○3由∠ACE=∠ADC=90°,∠CAE是公共角,证明△ACD∽△AEC,得到2AC AD AE;○4设DE为x,由AD∶DE=4∶1,求出1010DE a. …………5分26.解:(1)○2. …………1分(2)它是一个轴对称图形;两组邻边分别相等;一组对角相等;一条对角线所在的直线垂直平分另一条对角线等等. …………3分已知:如图,在凹四边形ABCD中,AB=AD,BC=DC.,60...AD DE ADEADE ABC EAB DAC ABAC AEAD EAB DAC CDBE ,△为等边三角形.△为等边三角形,,,△≌△EABCD求证:∠B=∠D. 证明:连接AC.∵AB=AD,CB=CD,AC=AC ,∴△ABC ≌△ADC. ∴∠B=∠D.…………4分(3)燕尾四边形ABCD 的面积为12243.…………5分27.解:(1)对称轴方程:2(2)12(2)m xm .…………1分(2)①∵直线l 与抛物线只有一个公共点,∴23nm .…………3分②依题可知:当237m 时,直线l 与新的图象恰好有三个公共点.∴5m.…………5分(3)抛物线2(2)2(2)5y m xm x m 的顶点坐标是(1,23)m .依题可得20,23 1.m m 解得2,1.mm ∴m 的取值范围是21m .…………7分28.解:(1)30°;…………1分(2)思路1:如图,连接AE.EDCBAFEAB CD G EAB CD …………5分思路2:过点D 作DF ∥AB ,交AC 于F.…………5分思路3:延长CB 至G ,使BG=CD.…………5分(3)k(BE+BD )=AC. …………7分29.解:(1)E,F; …………2分(2)①解:依题意A (0,2),M (32,0).可求得直线AM 的解析式为233xy.经验证E 在直线AM 上.因为OE=OA=2,∠MAO =60°,=60.,=60..===60,.,..ABC ACBC BAC DF AB DFC CDF AFBD ADE ACB ABC DAF EDB ADDE ADF DEB DFBECD △为等边三角形,,∥△为等边三角形.又△≌△=60.,.===60,.,.,==60..ABC AC BC BAC CD BG DG AC ADE ACB ABC DAF EDB ADDE ADC DEG CD EG BG C G BGE BEBGCD △为等边三角形,,又△≌△△为等边三角形.所以△OAE 为等边三角形,所以AE 边上的高长为3. 当点P 在AE 上时,3≤OP ≤2.所以当点P 在AE 上时,点P 都是等边△ABC 的中心关联点.所以0≤m ≤3;…………4分②﹣334≤b ≤2; …………6分(3)t=25425-4或…………8分。

北京市北京市东城区2016届九年级上学期数学期末考试试卷及参考答案

北京市北京市东城区2016届九年级上学期数学期末考试试卷及参考答案
同,求该公司这两年盈利额的年平均增长率是多少?
20. 如图,在方格网中已知格点△ABC和点O.
(1) 画△A′B′C′,使它和△ABC关于点O成中心对称; (2) 请在方格网中标出所有的D 点,使以点A,O,C′,D为顶点的四边形是平行四边形. 21. 石头剪子布,又称“猜丁壳”,是一种起源于中国流传多年的猜拳游戏.游戏时的各方每次用一只手做“石头”、“剪刀” 、“布”三种手势中的一种,规定“石头”胜“剪刀”、“剪刀”胜“布”、“布”胜“石头” .两人游戏时,若出现相同手势,则不分胜负
取值范围.
26. 已知:在等边△ABC中, AB= ,D,E分别是AB,BC的中点(如图1).若将△BDE绕点B逆时针旋转,得
到△BD1E1 Байду номын сангаас 设旋转角为α(0°<α<180°),记射线CE1与AD1的交点为P.
(1) 判断△BDE的形状; (2) 在图2中补全图形, ①猜想在旋转过程中,线段CE1与AD1的数量关系并证明;



.②


.③

(1) 上述证明过程中,步骤①②③处的理由是什么?(写出两条即可) (2) 用三角形内角平分线定理解答:已知,△ABC中,AD是角平分线,AB=7cm,AC=4cm,BC=6cm,求BD的长

(3) 我们知道如果两个三角形的高相等,那么它们面积的比就等于底的比.请你通过研究△ABD和△ACD面积的比
(1) 求证:DF是⊙O的切线;
(2) 若
,半径OA=3,求AE的长.
23. 如图所示,某数学活动小组要测量山坡上的电线杆PQ的高度.他们采取的方法是:先在地面上的点A处测得杆顶 端点P的仰角是45°,再向前走到B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°,这时只需要测出AB的长度就 能通过计算求出电线杆PQ的高度.你同意他们的测量方案吗?若同意,画出计算时的图形,简要写出计算的思路,不用求

2016-2017学年北京市东城区初三二模数学试卷(含答案)

2016-2017学年北京市东城区初三二模数学试卷(含答案)

2017年北京市东城区九年级中考二模数学试卷一、选择题(本题共30分,每小题3分)1.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为440 000万人,将440 000用科学记数法表示为()A.64.410⨯B.54.410⨯C.44410⨯D.60.4410⨯2.下列运算正确的是()A.2a +3b=5ab B.a2•a3=a6C.(a2b)3=a6 b3D.(a+2)2=a2+43.有5张看上去无差别的卡片,上面分别写着0,π,18,1.333.背面朝上放在不透明的桌子上,若随机抽取1张,则取出的卡片上的数是无理数的概率是()A.15B.25C.35D.454.下列关于二次函数y=x2+2x+3的最值的描述正确的是()A.有最小值是2 B.有最小值是3C.有最大值是2 D.有最大值是35. 学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数(单位:分)及方差如表所示:如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是()A.甲B.乙C.丙D.丁6.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(- b,m),则点E的坐标是()A.(2,﹣3)B.(2,3)C.(3,2)D.(3,﹣2)7.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板一条直角边在同一条直线上,则∠1的度数为()A.75°B.65°C.45°D.30°8. 关于x 的一元二次方程x 2+ax ﹣1=0的根的情况是( ) A .没有实数根 B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根9. 图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能..围成正方体的位置是( )A .①B .②C .③D .④10. 如右图,点E 为菱形ABCD 的BC 边的中点,动点F 在对角线AC 上运动,连接BF ,EF .设AF =x ,△BEF 的周长为y ,那么能表示y 与x 的函数关系的大致图象是( )二、填空题(本题共18分,每小题3分) 11.若分式31x 在实数范围内有意义,则实数x 的取值范围是 . 12.请你写出一个多项式,含有字母a ,并能够在有理数范围内用平方差公式进行因式分解. 此多项式可以是 .13. 已知一次函数y 1=k 1x +5和y 2=k 2x +7,若k 1>0且k 2<0,则这两个一次函数的图象的交点在第 象限.14. 如图,⊙O 的半径为4,△ABC 是⊙O 的内接三角形,连接OB ,OC .若∠BAC 与∠BOC 互补,则弦BC 的长为 .15. 如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,竹条AB 的长为25cm ,贴纸部分的宽BD 为15cm ,若纸扇两面贴纸,则一面贴纸的面积为 cm 2. (结果保留π)16.小明在他家里的时钟上安装了一个电脑软件,他设定当钟声在n 点钟响起后,下一次则在(3n -1)小时后响起,例如钟声第一次在3点钟响起,那么第2次在(3318)⨯-=小时后,也就是11点响起;第3次在(311132)⨯-=小时后,即7点响起,以此类推……;现在第1次钟声响起时为2点钟,那么第3次响起时为_____点,第2017次响起时为_____点.(如图钟表,时间为12小时制)三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题8分,第29题7分)17.计算:02(π2017)4cos60-+--18. 解不等式组32211,52x x x x -⎧⎪++⎨⎪⎩≤,<并把解集在数轴上表示出来.19.小明化简 (21)(21)(5)x x x x +--+的过程如图. 请指出他化简过程中的错误,写出对应的序号,并写出正确的化简过程.20.如图,在Rt △ABC 中,∠C =90°. 以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D . 若CD =4,AB =15,求△ABD 的面积.21.如图,在平面直角坐标系中,OA ⊥OB ,AB ⊥x 轴于点C ,点A )在反比例函数(0)ky k x=≠的图象上.(1)求反比例函数(0)ky k x=≠的解析式和点B 的坐标; (2)若将△BOA 绕点B 按逆时针方向旋转 60º 得到△BDE (点O 与点D 是对应点),补全图形,直接写出点E 的坐标,并判断点E 是否在该反比例函数的图象上,说明理由.22.列方程或方程组解应用题:某校为美化校园,计划对一些区域进行绿化,安排了甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且两队在独立完成面积为400m 2区域的绿化时,甲队比乙队少用4天.求甲、乙两工程队每天能完成绿化的面积分别是多少m 2?23.如图,BD是△AB C的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,求GC的长.24. 某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费. 为更好地决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如下不完整的统计图(每组数据包括右端点但不包括左端点). 请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是__________________;(2)补全频数分布直方图;(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?25. 如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.26. 佳佳想探究一元三次方程32220x x x +--=的解的情况. 根据以往的学习经验,他想到了方程与函数的关系:一次函数(0)y kx b k =+≠的图象与x 轴交点的横坐标即为一次方程0(0)kx b k +=≠的解;二次函数2(0)y ax bx c a =++≠的图象与x 轴交点的横坐标即为一元二次方程20(0)ax bx c a ++=≠的解. 如:二次函数223y x x =--的图象与x 轴的交点为(1,0)-和(3,0),交点的横坐标-1和3即为方程2230x x --=的解.根据以上方程与函数的关系,如果我们知道函数3222y x x x =+--的图象与x 轴交点的横坐标,即可知道方程32220x x x +--=的解.佳佳为了解函数3222y x x x =+--的图象,通过描点法画出函数的图象:(1)直接写出m 的值,并画出函数图象;(2)根据表格和图象可知,方程的解有_____个,分别为__________________; (3)借助函数的图象,直接写出不等式3222x x x +>+的解集.27.在平面直角坐标系xOy 中,抛物线2221y x mx m m =-+--+.(1)当抛物线的顶点在x 轴上时,求该抛物线的解析式;(2)不论m 取何值时,抛物线的顶点始终在一条直线上,求该直线的解析式;(3)若有两点()1,0A -,()1,0B ,且该抛物线与线段AB 始终有交点,请直接写出m 的取值范围.28. 取一张正方形的纸片进行折叠,具体操作过程如下:第一步:如图1,先把正方形ABCD 对折,折痕为MN ;第二步:点G 在线段MD 上,将△GCD 沿GC 翻折,点D 恰好落在MN 上,记为点P ,连接BP .(1)判断△PBC 的形状,并说明理由;(2)作点C 关于直线AP 的对称点C ′,连PC′,D C′, ①在图2中补全图形,并求出∠APC′的度数; ②猜想∠PC′D 的度数,并加以证明.(温馨提示:当你遇到困难时,不妨连接A C′,C C′,研究图形中特殊的三角形)29.在平面直角坐标系xOy中,点P与点Q不重合.错误!未找到引用源。

2016-2017第一学期九年级数学期末试卷(含答案)

2016-2017第一学期九年级数学期末试卷(含答案)

2016-2017学年度第一学期九年级数学期末检测试卷一、选择题(本大题8小题,每小题3分,共24分,请将下列各题中唯一正确的答案代号A 、B 、C 、D 填到本题后括号内)1. 民族图案是数学文化中的一块瑰宝,下列图案中,既不是中心对称图形也不是轴对称图形的是( )2.一元二次方程240+=x x 的解为( )A .4=xB .4=-xC .121,3=-=x xD .120,4==-x x 3.如果关于x 的一元二次方程ax 2+x ﹣1=0有实数根,则a 的取值范围是( ) A .14a >-B .14a ≥- C .14a ≥-且a ≠0 D .14a >且a ≠0 4.抛物线262y x x =-+的顶点坐标是( )A .(-3,7)B .(3,2)C .(3,-7)D .(6,2)5.如图,AB 是⊙O 的直径,C ,D 是⊙O 上一点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 的度数为( ) A .20° B .30° C .40° D . 50°6. 一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( ) A .49B .13C .16D .197.若反比例函数1232)12(---=k kx k y 的图象位于第二、四象限,则k 的值是( )A . 0B . 0或23 C . 0或23- D . 4 8. 已知面积为2的三角形ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示正确的是( )9.如图,Rt △ABC 的斜边AB 与量角器的直径恰好重合,B 点与0刻度线的一端重合,∠ABC=40°,射线CD 绕点C 转动,与量角器外沿交于点D ,若射线CD 将△ABC 分割出以BC 为边的等腰三角形,则点D 在量角器上对应的度数是( )A .40°B .80°或140°C .70°D .70°或80° 10.如图,已知△ABC 为等边三角形,AB =2,点D 为边AB 上一点,过点D 作DE∥AC,交BC 于点E ;过点E 作EF⊥DE,交AB 的延长线于点F.设AD =x ,△DEF 的面积为y ,则能大致反映y 与x函数关学校 班级 姓名 座位号系的图象是( )二、填空题(本题共4小题,每小题4分,共16分)11.某药品2013年的销售价为50元/盒,2015年降价为42元/盒,若平均每年降价百分率是x ,则可以列方程 ; 12.如图,在平面直角坐标系中,抛物线212y x =经过平移得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分的面积为__________;13.如图,在平面直角坐标系xOy 中,直线AB 经过点A(6,0)、B(0,6),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为= ;14. 如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是 .三、解答题(本大题2小题,每小题8分,共16分)15. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?16.设点A 的坐标为(x ,y ),其中横坐标x 可取﹣1、2,纵坐标y 可取﹣1、1、2. (1)求出点A 的坐标的所有等可能结果(用树状图或列表法求解); (2)试求点A 与点B (1,﹣1)关于原点对称的概率.四、(本大题2小题,每小题8分,共16分)17. 如图,正比例函数12y x =-与反比例函数2y 相交于点E (m ,2). (1)求反比例函数2y 的解析式.(2)观察图象直接写出当120y y >>时,x 的取值范围.18.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形.求点C 的坐标.五、(本大题2小题,每小题10分,共20分)19.如图所示,已知△ABC 的三个顶点的坐标分别为A (﹣2,3),B (﹣6,0),C (﹣1,0). (1)点A 关于原点O 对称的点的坐标为 ;(2)将△ABC 绕坐标原点O 逆时针旋转90°,画出图形并求A 点经过的路径长; (3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.20. 实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)的关系可近似地用二次函数2200400y x x =-+;1.5小时后(含1.5小时)y 与x 可近似地用反比例函数(0ky k x=>)刻画,如图.(1)喝酒后血液中酒精含量达到最大值?最大值是多少? (2)当x=5时,y=45,求k 的值;(3)按照国家规定,驾驶员血液中酒精含量大于或等于20毫克/百毫升时,属于“酒后驾驶”,不能驾车,假设某驾驶员晚上20:00在家喝了半斤低度白酒,第二天早上7:00能否驾车去上班?说明理由.六、本题12分21. 如图,△ABC 中,BE 是它的角平分线,∠C =90°,D 在AB 边上,以DB 为直径的半圆O 经过点E ,交BC 于点F .(1)求证:AC 是⊙O 的切线;(2)若∠A =30°,连接EF ,求证:EF ∥AB ;(3)在(2)的条件下,若AE =2,求图中阴影部分的面积.七、本题12分22. 操作:在△ABC 中,AC=BC=2,∠C =90°,将一块等腰三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交射线AC 、CB 于D 、E 两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:y (毫克/百毫升)455x (时)(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.八、本题14分23.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?2016-2017九年级数学参考答案一、选择题: 1-10:C D CCD D A C B A二、填空题11、250(1)42x -=; 12、4; 13、 14; 14、513三、解答题:15、解:设每件衬衫应降价x 元,可使商场每天盈利2100元.根据题意得(45﹣x )(20+4x )=2100, 化简得:2403000x x -+=…………………………..5分 解得x 1=10,x 2=30.因尽快减少库存,故x=30.(未作讨论的酌情扣1-2分) 答:每件衬衫应降价30元.…………………………..10分16、(1)列举所有等可能结果,画出树状图如下由上图可知,点A 的坐标的所有等可能结果为:(﹣1,﹣1)、(﹣1,1)、(﹣1,2)、(2,﹣1)、 (2,1)、(2,2),共有6种,…………………………6分 (2)点B (1,﹣1)关于原点对称点的坐标为(-1,1). ∴P (点A 与点B 关于原点对称)=16…………………………10分 四、17、解:(1)设反比例函数解析式为xky =2………………1分 ∵x y 21-=过点)2,(m E ∴122-==-m m ∴)2,1(-E …………4分∵xky =2过)2,1(-E ∴2-=k ∴反比例函数解析式为xy 22-=……………7分 (2)当x <-1时,120y y >>.………………………10分18. 解:过点M 作MF ⊥CD 于点F ,过点C 作CE ⊥x 轴于点E ,连接CM. 在Rt △CMF 中,CF =12CD =12OB =4,CM =12OA =5,∴MF =CM 2-CF 2=3.∴CE =MF =3.又EM =CF =4,OM =12OA =5,∴OE =OM -EM =1. ∴C(1,3).五、19、解:(1)点A 关于原点O 对称的点的坐标为(2,﹣3);…………………………..1分(2)△ABC 旋转后的△A ′B ′C ′如图所示,…………………………..4分 点A ′的对应点的坐标为(﹣3,﹣2); OA ′,即点A;…………..7分(3)若AB 是对角线,则点D (﹣7,3), 若BC 是对角线,则点D (﹣5,﹣3), 若AC 是对角线,则点D (3,3).…………………………..10分 20.解:(1)证明:连接OE.∵OB =OE ,∴∠BEO =∠EBO.∵BE 平分∠CBO ,∴∠EBO =∠CBE. ∴∠BEO =∠CBE.∴EO ∥BC.∵∠C =90°,∴∠AEO =∠C =90°. ∴AC 是⊙O 的切线.(2)证明:∵∠A =30°,∴∠ABC =60°. ∴∠OBE =∠FBE =30°.∴∠BEC =90°-∠FBE =60°. ∵∠CEF =∠FBE =30°,∴∠BEF =∠BEC -∠CEF =60°-30°=30°. ∴∠BEF =∠OBE.∴EF ∥AB. (3)连接OF.∵EF ∥AB ,BF ∥OE ,OB =OE ,∴四边形OBFE 是菱形. ∴S △EFB =S △EOF. ∴S 阴影=S 扇EOF.设圆的半径为r ,在Rt △AEO 中,AE =2,∠A =30°,∴r =OE =233.∴S 阴影=S 扇EOF =60π×(233)2360=2π9.六、21、解:(1)22200400200(1)200y x x x =-+=--+,∴饮酒后1小时血液中酒精含量达到最大值,最大值为200(毫克/百毫升)(2)k=225(3)不能驾车上班,理由:晚上20:00到第二天早上7:00共计11小时,把x=11代入22522511y y x ==得,>20,所以不能.七、22、解:(1)由图①可猜想PD=PE ,再在图②中构造全等三角形来说明.即PD=PE .y (毫克/百毫升)455x (时)理由如下:连接PC,因为△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=12∠ACB=45°.∴∠ACP=∠B=45°.又∵∠DPC+∠CPE=∠BPE+∠CPE,∴∠DPC=∠BPE.∴△PCD≌△PBE.∴PD=PE.(2)△PBE是等腰三角形,①当PE=PB时,此时点C与点E重合,CE=0;②当BP=BE时,E在线段BC上,;E在CB的延长线上,;③当EP=EB时,CE=1.八、23、解(1)由图象可知,300=a×302,解得a=,n=700,b×(30﹣90)2+700=300,解得b=﹣,∴y=,(2)由题意﹣(x﹣90)2+700=684,解得x=78,∴=15,∴15+30+(90﹣78)=57分钟所以,馆外游客最多等待57分钟.。

北京市东城区2017届九年级上期末考试数学试题含答案.doc

北京市东城区2017届九年级上期末考试数学试题含答案.doc

北京市东城区2017届九年级上期末考试数学试题含答案初三数学2017.1学校班级姓名考号【一】选择题〔此题共30分,每题3分〕下面各题均有四个选项,其中只有一个..是符合题意旳、 1、关于x 旳一元二次方程x 2+4x +k =0有两个相等旳实数根,那么k 旳值为 A 、k =4B 、k =﹣4C 、k ≥﹣4D 、k ≥42、抛物线y =x 2+2x +3旳对称轴是A 、直线x =1B 、直线x =﹣1C 、直线x =﹣2D 、直线x =23、剪纸是我国旳非物质文化遗产之一,以下剪纸作品中是中心对称图形旳是ABCD4、在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币旳方法估算正面朝上旳概率,其试验次数分别为10次、50次、100次、200次,其中试验相对科学旳是A 、甲组B 、乙组C 、丙组D 、丁组 5、在平面直角坐标系中,将抛物线221y x x =--先向上平移3个单位长度,再向左平移2个单位长度,所得旳抛物线旳【解析】式是 A 、2(1)1y x =++B 、2(3)1y x =-+ C 、2(3)5y x =--D 、2(1)2y x =++6、点A 〔2,y 1〕,B 〔4,y 2〕都在反比例函数ky x=〔k <0〕旳图象上,那么y 1,y 2旳大小关系为A 、y 1>y 2B 、y 1<y 2C 、y 1=y 2D 、无法确定7、如图,在△ABC 中,∠A =78°,AB =4,AC =6.将△ABC 沿图示中旳虚线剪开,剪下旳阴影三角形与原三角形不相似...旳是ytO 4560.430.871.18.如图,圆锥旳底面半径r 为6cm ,高h 为8cm ,那么圆锥旳侧面积为 A 、30πcm 2B 、48πcm2C 、60πcm 2D 、80πcm 29.如图,⊙O 是Rt △ABC 旳外接圆,∠ACB =90°,∠A =25°,过点C 作⊙O 旳切线,交AB 旳延长线于点D ,那么∠D 旳度数是 A 、25°B 、40° C 、50°D 、65°10.都市中“打车难”一直是人们关注旳一个社会热点问题.近几年来,“互联网+”战略与传统出租车行业深度融合,“优步”、“滴滴出行”等打车软件确实是其中典型旳应用.名为“数据包络分析”〔简称DEA 〕旳一种效率评价方法,能够专门好地优化出租车资源配置.为了解出租车资源旳“供需匹配”,北京、上海等都市对每天24个时段旳DEA 值进行调查,调查发觉,DEA 值越大,说明匹配度越好.在某一段时刻内,北京旳DEA 值y 与时刻t 旳关系近似满足函数关系c bx ax y ++=2〔a ,b ,c 是常数,且0a ≠〕,如图记录了3个时刻旳数据,依照函数模型和所给数据,当“供需匹配”程度最好时,最接近旳时刻t 是A.4.8B.5C.5.2D.5.5【二】填空题〔此题共18分,每题3分〕11、请你写出一个图象分别位于第【二】四象限旳反比例函数旳【解析】式,那个【解析】式能够是、12、m 是关于x 旳方程x 2﹣2x ﹣3=0旳一个根,那么2m 2﹣4m =、 13.二次函数242y x x =--旳最小值为、14.天坛是古代帝王祭天旳地点,其中最要紧旳建筑确实是祈年殿、老师希望同学们利用所学过旳知识测量祈年殿旳高度,数学兴趣小组旳同学们设计了如下图旳测量图形,并测出竹竿AB 长2米,在太阳光下,它旳影长BC 为1.5米,同一时刻,祈年殿旳影长EF 约为28.5米、请你依照这些数据计算出祈年殿旳高度DE 约为米、y15、如图,在Rt ABC △中,90ACB ∠=,23AC =,以点C 为圆心,CB 旳长为半径画弧,与AB 边交于点D ,将BD 绕点D 旋转°180后点B 与点A 恰好重合,那么图中阴影部分旳面积为.16、如图,菱形OABC 旳顶点O 〔0,0〕,B 〔2,2〕,菱形旳对角线旳交点D 旳坐标为;菱形OABC 绕点O 逆时针旋转,每秒旋转45°,从如下图位置起,通过60秒时,菱形旳对角线旳交点D 旳坐标为.【三】解答题〔此题共72分,第17—26题,每题5分,第27题7分,第28题7分,第29题8分〕17、解方程:22410x x --=.18.如图,在△ABC 中,AD 是中线,∠B =∠DAC ,假设BC =8,求AC 旳长. 19、如图,AB 是⊙O 旳直径,弦CD ⊥AB 于点E ,假设AB =8,CD =6,求BE 旳长、20、如图,在平面直角坐标系中,O 为坐标原点,Rt △ABO 旳边AB 垂直于x 轴,垂足为点B ,反比例函数11k y x=〔x >0〕旳图象通过AO 旳中点C ,且与AB 相交于点D ,OB =4,AB =3、 〔1〕求反比例函数11ky x=〔x >0〕旳【解析】式;〔2〕设通过C ,D 两点旳一次函数【解析】式为22y k x b =+,求出其【解析】式,并依照图象直截了当写出在第一象限内,当21y y >时,x 旳取值范围、21、列方程或方程组解应用题:公园有一块正方形旳空地,后来从这块空地上划出部分区域栽种鲜花〔如图阴影部分〕,原空地一边减少了1m ,另一边减少了2m ,剩余空地旳面积为20m 2,求原正方形空地旳边长、E F DB CADBCA xy –1–2–3123–1–2123C DBO A20m 22m1m22、按照要求画图:〔1〕如图,在平面直角坐标系中,点A ,B ,C 旳坐标分别为〔﹣1,3〕,〔﹣4,1〕,〔﹣2,1〕,将△ABC 绕原点O 顺时针旋转90°得到△A 1B 1C 1,点A ,B ,C 旳对应点为点A 1,B 1,C 1、画出旋转后旳△A 1B 1C 1;〔2〕以下3×3网格差不多上由9个相同小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下旳6个空白小正方形中,选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形〔画出两种即可〕、23、甲、乙两人进行摸牌游戏、现有三张形状大小完全相同旳牌,正面分别标有数字2,3,5、将三张牌背面朝上,洗匀后放在桌子上、甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张、〔1〕请用列表法或画树状图旳方法,求两人抽取相同数字旳概率;〔2〕假设两人抽取旳数字和为2旳倍数,那么甲获胜;假设抽取旳数字和为5旳倍数,那么乙获胜、那个游戏公平吗?请用概率旳知识加以解释、24.在平面直角坐标系xOy 中,对称轴为直线x =1旳抛物线y =-x 2+bx +c 与x 轴交于点A 和点B ,与y轴交于点C ,且点B 旳坐标为〔﹣1,0〕、 〔1〕求抛物线旳【解析】式;〔2〕点D 旳坐标为〔0,1〕,点P 是抛物线上旳动点,假设△PCD是以CD 为底旳等腰三角形,求点P 旳坐标、25.如图,AB 是⊙O 旳直径,AC 是弦,∠BAC 旳平分线交⊙O 于点D ,过点D 作DE ⊥AC 交AC 旳延长线于点E ,连接BD 、 〔1〕求证:DE 是⊙O 旳切线; 〔2〕假设52BD DE =,45AD =,求CE 旳长、 26.问题探究:新定义:将一个平面图形分为面积相等旳两个部分旳直线叫做该平面图形旳“等积线”,其“等积线”被该平面图形截得旳线段叫做该平面图形旳“等积线段”〔例如圆旳直径确实是圆旳“等积线段”〕、 解决问题:在Rt △ABC 中,∠BAC =90°,AB =AC =22、〔1〕如图1,假设AD ⊥BC ,垂足为D ,那么AD 是△ABC 旳一条等积线段,求AD 旳长; 〔2〕在图2和图3中,分别画出一条等积线段,并求出它们旳长度、〔要求:使得图1、图2和图3中旳等积线段旳长度各不相等〕 27、在平面直角坐标系xO y 中,抛物线224y mx mx m =-+-〔0m ≠〕与x 轴交于A ,B 两点〔点A 在点B 左侧〕,与y 轴交于点C 〔0,-3〕、〔1〕求抛物线旳【解析】式;〔2〕在抛物线旳对称轴上有一点P ,使PA+PC 旳值最小,求点P 旳坐标;〔3〕将抛物线在B ,C 之间旳部分记为图象G 〔包含B ,C 两点〕,假设直线y=5x+b 与图象G 有公共点,请直截了当写出b 旳取值范围、28.点P 是矩形ABCD 对角线AC 所在直线上旳一个动点〔点P 不与点A ,C 重合〕,分别过点A ,C 向直线BP 作垂线,垂足分别为点E ,F ,点O 为AC 旳中点、〔1〕如图1,当点P 与点O 重合时,请你推断OE 与OF 旳数量关系;〔2〕当点P 运动到如图2所示位置时,请你在图2中补全图形并通过证明推断〔1〕中旳结论是否仍然成立;〔3〕假设点P 在射线OA 上运动,恰好使得∠OEF =30°时,猜想现在线段CF ,AE ,OE 之间有如何样旳数量关系,直截了当写出结论不必证明、29、在平面直角坐标系xOy 中,有如下定义:假设直线l 和图形W 相交于两点,且这两点旳距离不小于定值k ,那么称直线l 与图形W 成“k 相关”,现在称直线与图形W 旳相关系数为k .(1)假设图形W 是由()12--,A ,()1,2-B ,()12,C ,()12-,D 顺次连线而成旳矩形: ○1l 1:y =x +2,l 2:y =x +1,l 3:y =-x -3这三条直线中,与图形W 成“2相关”旳直线有﹏﹏﹏﹏﹏﹏﹏﹏;○2画出一条通过()10,旳直线,使得这条直线与W 成“5相关”; ○3假设存在直线与图形W 成“2相关”,且该直线与直线3y x =平行,与y 轴交于点Q ,求点Q 纵坐标Q y 旳取值范围;(2)假设图形W 为一个半径为2旳圆,其圆心K 位于x 轴上.假设直线333+=x y 与图形W 成“3相关”,请直截了当写出圆心K 旳横坐标K x 旳取值范围.备用图北京市东城区2016-2017学年第一学期期末统一测试 初三数学参考【答案】及评分标准2017.1【一】选择题〔此题共30分,每题3分〕 题号 1 2 3 4 5 6 7 8 9 10 【答案】 ABADABCCBC【二】填空题〔此题共18分,每题3分〕题号11121314 1516【答案】 如:1y x =-【答案】不唯一,只要满足k<0即可6 -6383〔1,1〕;〔-1,-1〕【三】解答题〔此题共72分,第17—26题,每题5分,第27题7分,第28题7分,第29题8分〕 17、解方程:22410x x --=解:2122x x -=.…………1分 212112x x -+=+.…………2分23(1)2x -=.…………3分 612x =±. ∴12661,122x x =+=-.…………5分 18.解:∵∠B =∠DAC ,∠C =∠C ,∴△ABC ∽△DAC .…………2分∴AC BCCD AC=. ∴2AC CD BC =⋅、…………3分 ∵AD 是中线,BC =8, ∴4CD =.…………4分 ∴42AC =.…………5分19.解:连接OC .…………1分∵AB 是⊙O 旳直径,弦CD ⊥AB 于点E , ∴点E 是CD 旳中点.…………2分在Rt △OCE 中,222OE CE OC +=, ∵AB =8,CD =6, ∴可求7OE =.…………4分∴47BE =-.…………5分20.〔1〕由题意可求点C 旳坐标为〔2,32〕.…………1分 ∴反比例函数旳【解析】式为13y x=〔x >0〕.…………2分〔2〕可求出点D 旳坐标为〔4,34〕.…………3分∴可求直线CD 旳【解析】式239-84y x =+.…………4分当2<x <4时,21y y >.…………5分.21、解:设原正方形空地旳边长为x m 、…………1分依照题意,得()()1220x x --=、…………2分DBCA解方程,得126,3(x x ==-舍)…………4分 答:原正方形空地旳边长为6m 、…………5分22、解:〔1〕旋转后旳△A 1B 1C 1如下图:C 1B 1A 1…………3分〔2〕依照题意画图如下: 符合其中旳两种即可、…………5分23、解:〔1〕所有可能出现旳结果如图:从表格能够看出,总共有9种结果,每种结果出现旳可能性相同,其中两人抽取相同数字旳结果有3种,因此两人抽取相同数字旳概率为13;………3分 〔2〕不公平、从表格能够看出,两人抽取数字和为2旳倍数有5种,两人抽取数字和为5旳倍数有3种,因此甲获胜旳概率为59,乙获胜旳概率为13、 ∵59>13, ∴甲获胜旳概率大,游戏不公平、…………5分24.解:〔1〕由题意可求点A 旳坐标为〔3,0〕、将点A 〔3,0〕和点B 〔-1,0〕代入y =-x 2+bx +c ,得0=-9+3,01.b c b c +⎧⎨=--+⎩解得2,3.b c =⎧⎨=⎩∴抛物线旳【解析】式223y x x =-++、…………3分 〔2〕可求出点C 旳坐标为〔0,3〕、由题意可知满足条件旳点P 旳纵坐标为2、∴223=2x x -++、 解得1212,1 2.x x =+=-∴点P 旳坐标为(12,2)+或(12,2)-、…………5分25. 〔1〕证明:连接OD 、∵OA =OD ,∴∠BAD =∠ODA 、 ∵AD 平分∠BAC , ∴∠BAD =∠DAC 、 ∴∠ODA =∠DAC 、∴OD ∥AE 、∵DE ⊥AE , ∴OD ⊥DE 、∴DE 是⊙O 旳切线、…………2分〔2〕解:∵OB 是直径,∴∠ADB =90°、 ∴∠ADB =∠E 、又∵∠BAD =∠DAC ,∴△ABD ∽△ADE 、 ∴52AB BD AD DE ==、∴10AB =、由勾股定理可知25BD =、连接DC ,∴25BD DC ==、 ∵A ,C ,D ,B 四点共圆.∴∠DCE =∠B.∴△DCE ∽△ABD 、 ∴AB BDDC CE=. ∴CE =2.…………5分26.解:〔1〕在Rt △ADC 中,ECBA∵22AC =,=45C ∠°, ∴2AD =、…………1分〔2〕符合题意旳图形如下所示:为AC 中点,10BE =.EGH ∥BC ,22GH =.…………5分27.解:〔1〕由题意可得,43m -=-.1.m ∴=∴抛物线旳【解析】式为:223y x x =--.…………2分〔2〕点A 关于抛物线旳对称轴对称旳点是B ,连接BC 交对称轴于点P ,那么点P 确实是使得PA+PC 旳值最小旳点.可求直线BC 旳【解析】式为3y x =-.∴点P 旳坐标为〔1,-2〕.…………5分〔3〕符合题意旳b 旳取值范围是-15≤b ≤-3.…………7分28.解:〔1〕OE =OF .…………1分〔2〕补全图形如右图.…………2分OE =OF 仍然成立.…………3分 证明:延长EO 交CF 于点G . ∵AE ⊥BP ,CF ⊥BP , ∴AE ∥CF .∴∠EAO=∠GCO.又∵点O 为AC 旳中点, ∴AO =CO.∵∠AOE=∠COG , ∴△AOE ≌△COG. ∴OE =OF.…………5分〔3〕CF OE AE =+或CF OE AE =-.…………7分 29.解:〔1〕①1l 和2l .…………2分②符合题意旳直线如下图所示.…………4分夹在直线a 和b 或c 和d 之间旳〔含直线a ,b ,c ,d 〕差不多上符合题意旳. ○3设符合题意旳直线旳【解析】式为3.y x b =+由题意可知符合题意旳临界直线分别通过点〔-1,1〕,〔1,-1〕. 分别代入可求出1213,13b b =+=--. ∴131 3.Q y --≤≤+…………6分〔2〕3737.K x --≤≤-+…………8分。

2016-2017年九年级数学上《旋转》期末复习专题练习及答案

2016-2017年九年级数学上《旋转》期末复习专题练习及答案
第 9 页 共 13 页
37.在锐角△ABC 中,AB=4,BC=5,∠ACB=45°,将△ABC 绕点 B 按逆时针方向旋转,得到△A1BC1. (1)如图 1,当点 C1 在线段 CA 的延长线上时,求∠CC1A1 的度数; (2)如图 2,连接 AA1,CC1.若△ABA1 的面积为 4,求△CBC1 的面积; (3)如图 3,点 E 为线段 AB 中点,点 P 是线段 AC 上的动点,在△ABC 绕点 B 按逆时针方向旋转过程中,点 P 的 对应点是点 P1,求线段 EP1 长度的最大值与最小值.
32.如图,在平面直角坐标系中,Rt△ABC 的三个顶点分别是 A(﹣3,2),B(0,4),C(0,2). (1)将△ABC 以点 C 为旋转中心旋转 180°,画出旋转后对应的△A1B1C;平移△ABC,若点 A 的对应点 A2 的坐
标为(0,﹣4),画出平移后对应的△A2B2C2; (2)若将△A1B1C 绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标; (3)在 x 轴上有一点 P,使得 PA+PB 的值最小,请直接写出点 P 的坐标.
则△O1BO2 的面积为
.
25.将七个边长都为 1 的正方形如图所示摆放,点 A1、A2、A3、A4、A5、A6 分别是六个正方形的中心,则这七个正
方形重叠形成的重叠部分的面积是

第 4 页 共 13 页
26.△ABC 在直角坐标系中的位置如图⑥所示, 点 P 为边 AC 上一点,且 P( a ,b ),现将△ABC 绕点(-1 ,0 ) 逆时针旋转 180°,那么点 P 的对应点 P′的坐标为
34.如图 1,正方形 ABCD 与正方形 AEFG 的边 AB、AE(AB<AE)在一条直线上,正方形 AEFG 以点 A 为旋转中心逆 时针旋转,设旋转角为α.在旋转过程中,两个正方形只有点 A 重合,其它顶点均不重合,连接 BE、DG. (1)当正方形 AEFG 旋转至如图 2 所示的位置时,求证:BE=DG; (2)当点 C 在直线 BE 上时,连接 FC,直接写出∠FCD 的度数; (3)如图 3,如果α=45°,AB=2,AE= ,求点 G 到 BE 的距离.

12.2016-2017学年第一学期初三数学期末试题答案 - 西城

12.2016-2017学年第一学期初三数学期末试题答案 - 西城

北京市西城区2016— 2017学年度第一学期期末试卷九年级数学参考答案及评分标准2017.1一、选择题(本题共30分,每小题3分)(2)作图的依据:线段垂直平分线上的点与线段两个端点的距离相等;不在同一直线上的三个点确定一个圆.三、解答题(本题共72分,第17﹣26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式=4×··············································· 4分············································································· 5分18.(1)证明:∵等边△ABC,∴∠BAC=60°,AB=AC.∵线段AD绕点A顺时针旋转60°,得到线段AE,∴∠DAE=60°,AE=AD.∴∠BAD+∠EAB=∠BAD+∠DAC.∴∠EAB =∠DAC.∴△EAB≌△DAC.∴∠AEB =∠ADC. ····························································· 3分(2)解:∵∠DAE =60°,AE =AD ,∴△EAD 为等边三角形. ∴∠AED =60°,又∵∠AEB =∠ADC =105°.∴∠BED =45°. ·······································19.解:(1)y =x 2+4x +3=x 2+4x +22-22+3=(x +2)2-1 ··········································································· 2分(2)列表:·················································(3)答案不唯一,如:当x <-2时,y 随x 的增大而减小,当x >-2时,y 随x 的增大而增大.······················································································· 5分20.(1)证明:∵CE=CD ,∴∠CDE =∠CED . ∴∠ADB =∠CEA . ∵∠DAC =∠B ,∴△ABD ∽△CAE . ····························· 3分(2)解:由(1)△ABD ∽△CAE ,∴BDAB =. ∵BD =2, ∴ ············································································· 5分 21.解:设剪掉的正方形纸片的边长为x cm . ················································ 1分由题意,得(30-2x )(20-2x )=264.··················································· 3分 整理,得x 2-25x + 84=0.解方程,得14x =,221x =(不符合题意,舍去). ······································· 4分答:剪掉的正方形的边长为4cm . ·························································· 5分 22.解:(1)本题答案不唯一,如:以AB 所在直线为x 轴,以抛物线的对称轴为y 轴建立平面直角坐标系xOy ,如图所示.∴A (-4,0),B (4,0),C (0,6).设这条抛物线的表达式为(4)(4)y a x x =-+.∵抛物线经过点C , ∴-16a =6. ∴38a =-.∴抛物线的表达式为2368y x =-+(-4≤x ≤4). ·························· 4分 (2)当x =1时,458y =. ∵4.4+0.5=4.9<458, ∴这辆货车能安全通过这条隧道. ··········································· 5分23.(1)证明:连接OC ,∵AB 是⊙O 的直径,∴∠ACB =90°,即∠1+∠3=90°. ∵OA =OC , ∴∠1=∠2.∵∠DCB =∠BAC =∠1. ∴∠DCB +∠3=90°. ∴OC ⊥DF .∴DF 是⊙O 的切线. ·························································· 2分(2)解:在Rt △OCD 中,OC =3,sinD=35. ∴OD =5,AD =8. ∵弧CE=弧CB , ∴∠2=∠4. ∴∠1=∠4.∴OC ∥AF . ∴△DOC ∽△DAF .∴OC ODAF AD=. ∴245AF =. ··········································································· 5分24.本题答案不唯一,如:(1)测量工具有:简单测角仪,测量尺等; ····(2)设CD 需要测量的几何量如下:①在点A ,点B 处用测角仪测出仰角α,β;②测出A ,B 两点之间的距离s ; ···········(3)求解思路如下:a .设CD 的高度为x m .在Rt △DBC 中,由∠DBC =β,可得tan xBC β=; 同理,在Rt △DAC 中,由∠DBC =α,可得tan xAC α=; b .由AB =AC –BC 得tan tan x x s αβ=-,x 可求. ························· 5分 25.(1)证明:∵直径DE ⊥AB 于点F ,∴AF =BF .∴AM =BM . ······································································· 2分(2)连接AO ,BO ,如图.由(1)可得 AM =BM , ∵AM ⊥BM ,∴∠MAF =∠MBF =45°. ∴∠CMN =∠BMF =45°. ∵AO =BO ,DE ⊥AB , ∴∠AOF =∠BOF AOB . ∵∠N =15°,∴∠ACM =∠CMN +∠N =60°.即∠ACB =60°.∵∠ACB AOB . ∴∠AOF =∠ACB =60°. ∵DE =8, ∴AO =4.在Rt △AOF 中,由sin AFAOB AO∠=,得AF=在Rt △AMF 中,AM =BM=. 在Rt △ACM 中,由tan AMACM CM∠=,得CM= ∴BC =CM + BM=······················································ 5分26.解:(1)补全表格如下:······················································································· 3分(2)解:设一元二次方程()22340m x m x m -+-=对应的二次函数为:()2234y x m x m =-+-,∵一元二次方程()22340mx m x +--=有一个负实根,一个正实根, 且负实根大于-1, ∴240(1)(23)(1)40m m m -<⎧⎨--+⋅-->⎩解得02m <<.∴m 的取值范围是02m <<. ··············································· 5分27.解:(1)抛物线y = -x 2+mx +n 的对称轴为直线x =-3,AB =4. ∴ 点A (-5,0),点B (-1,0).∴抛物线的表达式为y = -(x + 5) ( x + 1)∴y = -x 2 -6x -5. ······································································· 2分 (2)依题意,设平移后的抛物线表达式为:y = -x 2+bx .∴抛物线的对称轴为直线2bx =,抛物线与x 正半轴交于点C (b ,0). ∴b > 0.∵△OCP 是等腰直角三角形,∴点P 的坐标(2b ,2b ). ∴ 2()()222b b b b =-+.解得 b = 2.∴点P 的坐标(1,1). ··························································· 5分(3)当m =4时,抛物线表达式为:y = -x 2+4x +n .∴抛物线的对称轴为直线x =2.∵点M (x 1,,y 1)和N (x 2,,y 2)在抛物线上,且x 1< 2 ,x 2>2,∴点M 在直线x =2的左侧,点N 在直线x =2的右侧. ∵x 1+ x 2> 4, ∴2-x 1<x 2- 2.∴点P 到直线x =2的距离比点M 到直线x =2的距离比点N 到直线x =2的距离近,如图所示.∴y 1>y 2. ························································································· 7分 28.解:(1)证明:在Rt △ABC 中,∵CD 是斜边AB 上的中线. ∴CD =21AB . 在△ABF 中,点M ,N 分别是边AF ,BF 的中点, ∴MN =21AB ,∴CD = MN . ································································· 2分(2)答:CN 与EN 的数量关系CN = EN ,CN 与EN 的位置关系CN ⊥EN . ········································ 3分 证明:连接EM ,DN ,如图.与(1)同理可得CD = MN ,EM = DN .在Rt △ABC 中,CD 是斜边AB 边上的中线,∴CD ⊥AB .在△ABF 中,同理可证EM ⊥AF . ∴∠EMF =∠CDB = 90︒.∵D ,M ,N 分别为边AB ,AF ,BF 的中点, ∴DN ∥AF ,MN ∥AB .∴∠FMN =∠MND ,∠BDN =∠MND . ∴∠FMN =∠BDN .∴∠EMF +∠FMN =∠CDB +∠BCN . ∴∠EMN =∠NDC . ∴△EMN ≌△DNC . ∴CN = EN ,∠1 =∠2. ∵∠1 +∠3 +∠EMN = 10︒, ∴∠2 +∠3 +∠FMN = 90︒.∴∠2 +∠3 +∠DNM = 90︒,即∠CNE = 90︒.∴CN ⊥EN . ································································ 5分(3)EN 的最大值为22b a +,最小值为22ba -. ································· 7分 29.解:(1)①90︒,60︒. ········································································ 2分②本题答案不唯一,如:B (0,2).·············································· 3分(2)解:①∵直线l : y =kx +b (k >0)经过点D (1-,0),∴(1)0k b -+=.∴b k =-.∴直线l: y kx k=+-.对于⊙C外的点P,点P关于⊙C的“视角”为60°,则点P在以C为圆心,2为半径的圆上.又直线l关于⊙C的“视角”为60°,此时,点P是直线l上与圆心C的距离最短的点.∴CP⊥直线l.则直线l是以C为圆心,2为半径的圆的一条切线,如图所示.作CH⊥x轴于点H,∴点H的坐标为(1,0),∴DH =∴∠CDH=30°,∠PDH=60°,可求得点P的坐标(1,3).进而求得k ······················································································· 6分(3)圆心C的横坐标x C的取值范围是1133Cx-+<<.······················································································· 8分。

数学2016-2017学年度第一学期期末考试试题

数学2016-2017学年度第一学期期末考试试题

2016-2017学年度第一学期期末考试试题一、细心选一选.(每小题3分,共30分)1.在下列各式的计算中,正确的是 ( ).A .5x 3·(-2x 2)=-10x 5B .4m 2n-5mn 2 = -m 2nC .(-a)3÷(-a) =-a 2D .3a+2b=5ab2.点M 1(a-1,5)和M 2(2,b-1)关于x 轴对称,则a,b 的值分别为( ).A .3,-2B .-3,2C .4,-3D .3,-4 3.下列图案是轴对称图形的有 ( ).A. 1个 B .2个 C .3个 D .4个4.下列说法正确的是( ).A .等腰三角形任意一边的高、中线、角平分线互相重合B .顶角相等的两个等腰三角形全等C .等腰三角形的一边不可以是另一边的两倍D .等腰三角形的两底角相等5.如图所示,下列图中具有稳定性的是( ).6.下列各组线段中,能组成三角形的是( ).A . a=2,b=3,c=8B .a=7,b=6,c=13C . a=12,b=14,c=18D .a=4,b=5,c=67.下列多项式中,能直接用完全平方公式因式分解的是( ).A. x 2+2xy- y 2B. -x 2+2xy+ y 2C. x 2+xy+ y 2D. 42x -xy+y 28.在△ABC 和△DEF 中,给出下列四组条件:(1) AB=DE, BC=EF, AC=DF(2) AB=DE, ∠B=∠E, BC=EF (3)∠B=∠E , BC=EF, ∠C=∠FDC B A(4) AB=DE, AC=DF, ∠B=∠E 其中能使△ABC ≌△DEF 的条件共有 ( ).A.1组B.2组C.3组D.4组9.已知 a=833, b=1625, c=3219, 则有( ).A .a <b <cB .c <b <aC .c <a <bD .a <c <b10.如图,在直角△ABC 中,∠ACB=90°,∠A 的平分线交BC 于D .过C 点作CG ⊥AB 于G, 交AD 于E, 过D 点作DF ⊥AB 于F.下列结论:(1)∠CED=∠CDE (2)∠ADF=2∠FDB (3)CE=DF (4)△AEC 的面积与△AEG 的面积比等于AC:AG其中正确的结论是( ).A .(1)(3)(4)B .(2)(3)C .(2) (3)(4)D .(1)(2)(3)(4)二、耐心填一填.(每小题3分,共30分)11.实验表明,人体内某种细胞的形状可近似地看作球体,它的直径约为0.00000156m ,这个数用科学记数法表示为__________ m. 12. 如果把分式yx x+2中的x 和y 都扩大5倍,那么分式的值 . 13.已知ab=1,m =a +11+b+11 ,则m 2016的值是 . 14.如果一个多边形的边数增加一条,其内角和变为1260°,那么这个多 边形为 边形.15.如图,若△ACD 的周长为19cm , DE为AB 边的垂直平分线,则 AC+BC= cm.16.若(x-1)0-2(3x-6)-2有意义,则x 的取值范围是 .17.如图,在直角△ABC 中,∠BAC=90°,AD ⊥BC 于D ,将AB 边沿AD 折叠, 发现B 的对应点E 正好在AC 的垂 直平分线上,则∠C= .18.如图,在△ABC 中,∠A=50°,点D 、E 分别在AB ,AC 上,EF 平分∠CED ,DF 平分∠BDE ,则 ∠F = .19.已知等腰△ABC ,AB=AC,现将△ABC 折叠,使A 、B 两点重合,折痕所在的直 线与直线AC 的夹角为40°,则∠B 的 度数为 .E DCBAGFEDCBAF EDC BA EDCBA20.如图,在△ABC 中,AB=AC,点D 在AB 上,过点D 作DE ⊥AC 于E ,在BC 上取一点F , 且点F 在DE 的垂直平分线上,连接DF , 若∠C=2∠BFD ,BD=5,CE=11,则BC 的 长为 . 三、用心答一答.(60分) 21.(9分)(1) 分解因式: 8xy+ (2x-y)2(2)先化简,再求值:(a+b)2- b(2a+b)- 4b ,其中a=-2, b=-43;(3)先化简,再求值:(4482+-+x x x -x -21)÷xx x 232-+,其中 x=-222.(6分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长为1,点A 、点B 和点C 在小正方形的顶点上, 请在图1、图2中各画一个四边形,满足以下要求:(1)在图1中画出以A 、B 、C 和D 为顶点的四边形,此四边形为轴 对称图形,并画出一条直线将此四边形分割为两个等腰三角形;(2)在图2中画出以A 、B 、C 和E 为顶点的四边形,此四边形为 轴对称图形,并画出此四边形的对称轴; (3)两个轴对称图形不全等.FEDCB A图1图223.(9分)已知关于x 的方程21++x x - 1-x x = )(+1-)2(x x a的解是正数, 求a 的取值范围.24.(6分) 如图,△ABC 与△ABD 都是等边三角形,点E 、F 分别在BC ,AC 上,BE=CF,AE 与BF 交于点G.(1)求∠AGB 的度数;(2)连接DG,求证:DG=AG+BG.25.(10分)百姓果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完;由于水果畅销,第二次购买时,每千克进价比第一次提高10%,用1452元所购买的数量比第一次多20kg ,以每千克9元出售100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果. (1)求第一次水果的进价是每千克多少元?(2)该果品店在这次销售中,总体是盈利还是亏损?盈利或亏损了多少元?G F E DC B A26.(10分)(1)已知3x =4y =5z ,求yx y z 5332+-的值.(2)已知6122---x x x =2+x A +3-x B,其中A 、B 为常数, 求2A+5B 的值.(3)已知 x+y+z ≠0,a 、b 、c 均不为0,且zy x+=a, x z y +=b , yx z +=c 求证:a a +1+b b +1+cc +1=127.(10分)如图1,AD//BC,AB ⊥BC 于B ,∠DCB=75°,以CD 为边的等边△DCE 的另一顶点E在线段AB 上.(1)求∠ADE 的度数; (2)求证:AB=BC ;(3)如图2,若F 为线段CD 上一点,∠FBC=30°,求DF:FC 的值.D图1E CBA D图2FE CBA。

2016--2017学年度上学期期末九年级数学试题及答案

2016--2017学年度上学期期末九年级数学试题及答案

2016--2017学年度上学期期末九年级数学试题及答案2016-2017学年度上学期期末考试九年级数学试题 2017.01注意事项:1.答题前,请先将⾃⼰的姓名、考场、考号在卷⾸的相应位置填写清楚;2.选择题答案涂在答题卡上,⾮选择题⽤蓝⾊、⿊⾊钢笔或圆珠笔直接写在试卷上.第Ⅰ卷(选择题共42分)⼀、选择题(本⼤题共14⼩题,每⼩题3分,共42分)在每⼩题所给出的四个选项中,只有⼀项是符合题⽬要求的. 1.⽅程x x 22=的根是 A .2 B .0C .2或0D .⽆解 2.若反⽐例函数的图象过点(2,1),则这个函数的图象⼀定过点A .(-2,-1)B .(1,-2)C .(-2,1)D .(2,-1)3. 如图,点A 为α∠边上任意⼀点,作BC AC ⊥于点C ,AB CD ⊥于点D ,下列⽤线段⽐表⽰αsin 的值,错误..的是 A. BCCDB.AB AC C.AC AD D. ACCD4. 如图,AD ∥BE ∥CF ,直线a ,b 与这三条平⾏线分别交于点A ,B ,C 和点D ,E ,F ,若AB=2,AC =6,DE =1.5,则DF 的长为 A .7.5B .6C .4.5D .35.如图,四边形 A BCD 是⊙O 的内接四边形,若∠BOD =88°,则∠BCD 的度数是 A .88°B .92°C .106°D .136°6. 在Rt △ABC 中,∠C =90°,34tan =A ,若AC =6cm ,则BC 的长度为 A .8cmB .7cmC .6cmD .5cm7. 已知⼆次函数)0()3(2≠-+=a b x a y 有最⼤值1,则该函数图象的顶点坐标为 A.)1,3(--B.)(1,3-C.)1,3(D.)1,3(-8. 从n 个苹果和4个雪梨中,任选1个,若选中苹果的概率是53,则n 的值是 A .8B .6C .4D .2(第3题图)(第4题图)(第5题图)9. 已知反⽐例函数xy 5-=,则下列结论不正确...的是 A .图象必经过点)5,1(-, B .图象的两个分⽀分布在第⼆、四象限 C .y 随x 的增⼤⽽增⼤D .若x >1,则5-<y <010. 直⾓三⾓形纸⽚的两直⾓边长分别为6,8,现将△ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则cos ∠CBE 的值是A .724B .37C .247 D .252411. 如图,已知⼀块圆⼼⾓为270°的扇形铁⽪,⽤它作⼀个圆锥形的烟囱帽(接缝忽略不计),圆锥底⾯圆的直径是60cm ,则这块扇形铁⽪的半径是 A .40cm B .50cm C .60cm D .80cm12.如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,AE =6,则tan ∠BDE 的值是 A .34B .43C .21D .1:213.如图,△ABC 中,AD 是中线,BC =4,∠B =∠DAC ,则线段AC 的长为 A .22B .2C .3D .3214. 如图所⽰,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (2-,0)、B (1,0),直线x =21-与此抛物线交于点C ,与x 轴交于点M ,在直线上取点D ,使MD =MC ,连接AC ,BC ,AD ,BD ,某同学根据图象写出下列结论:①0=-b a ;②当x <21-时,y 随x 增⼤⽽增⼤;③四边形ACBD 是菱形;④c b a +-39>0.你认为其中正确的是 A .②③④B .①②③C .①③④D .①②③④(第13题图)(第14题图)第II 卷⾮选择题(共78分)15.若两个相似三⾓形的⾯积⽐为1∶4,则这两个相似三⾓形的周长⽐是. 16. 若n(其中0≠n)是关于x 的⽅程022=++n mx x 的根,则m +n 的值为 . 17.如图,⼤圆半径为6,⼩圆半径为3,在如图所⽰的圆形区域中,随机撒⼀把⾖⼦,多次重复这个实验,若把“⾖⼦落在⼩圆区域A中”记作事件W ,请估计事件W 的概率 P (W )的值.19. 如图,在直⾓坐标系中,直线221-=x y 与坐标轴交于A ,B 两点,与双曲线)0(2>=x xky 交于点C ,过点C 作CD ⊥x 轴,垂⾜为D ,且OA =AD ,则以下结论:①当x >0时,1y 随x 的增⼤⽽增⼤,2y 随x 的增⼤⽽减⼩;②4=k ;③当0<x <2时,y 1<y 2;④如图,当x=4时,EF =5.其中结论正确的有____________.(填序号)三、解答题(本⼤题共7⼩题,共63分) 20.(本题满分5分)计算:2cos30sin 45tan 601cos 60?+?--?.21.(本题满分8分)解⽅程:(1))1(212+=-x x ;(2)05422=--x x .22. (本题满分8分)如图,⼀楼房AB 后有⼀假⼭,⼭坡斜⾯CD 与⽔平⾯夹⾓为30°,坡⾯上点E 处有⼀亭⼦,测得假⼭坡脚C 与楼房⽔平距离BC =10⽶,与亭⼦距离CE =20⽶,⼩丽从楼房顶测得点E 的俯⾓为45°.求楼房AB 的⾼(结果保留根号).(第22题图)30°如图,AB 是⊙O 的直径,CD 与⊙O相切于点C ,与AB 的延长线交于点D ,DE ⊥AD 且与AC 的延长线交于点E .(1)求证:DC =DE ;(2)若tan ∠CAB =21,AB =3,求BD 的长.(第23题图)如图,在平⾯直⾓坐标系中,⼀次函数的图象与反⽐例函数的图象交于第⼆、四象限内的A ,B 两点,与x 轴交于点C ,与y 轴交于点D ,点B 的坐标是(m ,﹣4),连接AO ,AO =5,sin ∠AOC =35.(1)求反⽐例函数的解析式;(2)连接OB ,求△AOB 的⾯积.(第24题图)25.(本题满分11分)如图,已知抛物线c bx x y ++=2经过A (1-,0)、B (3,0)两点,点C 是抛物线与y 轴的交点.(1)求抛物线的解析式和顶点坐标;(2)当0<x <3时,求y 的取值范围;(3)在抛物线的对称轴上是否存在点M ,使△BCM 是等腰三⾓形,若存在请直接写出点M 坐标,若不存在请说明理由.(第25题图)26.(本题满分12分)如图1,将两个完全相同的三⾓形纸⽚ABC 和DEC 重合放置,其中∠C =90°,∠B =∠E =30°.(1)操作发现如图2,固定△ABC ,使△DE C 绕点C 旋转,当点D 恰好落在AB 边上时,填空:①线段DE 与AC 的位置..关系是_________;②设△BDC 的⾯积为1S ,△AEC 的⾯积为2S ,则1S 与2S 的数量关系是____________.(2)猜想论证当△DEC 绕点C 旋转到图3所⽰的位置时,⼩明猜想(1)中S 1与S 2的数量关系仍然成⽴,并尝试分别作出了△BDC 和△AEC 中BC 、CE 边上的⾼,请你证明⼩明的猜想.(3)拓展探究已知∠ABC =60°,点D 是其⾓平分线上⼀点,BD =CD =4,DE //AB 交BC 于点E (如图4).若在射线BA 上存在点F ,使BD E DCF S S ??=,请直接写出相应的BF 的长.A (D )B (E )C 图1 图2图42016-2017学年度上学期期末考试九年级数学参考答案 2017-1注意:解答题只给出⼀种解法,考⽣若有其他正确解法应参照本标准给分. ⼀、选择题(每⼩题3分,共42分)1-~5 CADCD 6~10BABCD 11~14 ACAB ⼆、填空题(每⼩题3分共15分) 15.2:1 16. 2- 17.4118. 8 19.①②③④三、解答题(本⼤题共7⼩题,共63分)20. 解:原式=21(1)()222÷-+2分 124分 =12……5分21. (8分)解:(1)将原⽅程变形为:0)1(2)1)(1(=+--+x x x ……………….1分∴0)21)(1(=--+x x ∴x +1=0或x ﹣3=0,……………………….3分∴x 1=﹣1,x 2=3;……………………………………………………….4分(2)∵2x 2﹣4x ﹣5=0,∴a =2,b =﹣4,c =﹣5,∴b 2﹣4ac =16+40=56,∴4564242±=-±-=a ac b b x ,…………………….3分∴2141,214121-=+=x x .…………………………………..4分 22.(8分)解:过点E 作EF ⊥BC 于点F .在Rt △CEF 中,CE =20,∠ECF =30°∴EF =10 …………2分 CF =3 EF =103(⽶) ………4分过点E 作EH ⊥AB 于点H .则HE =BF ,BH=EF .在Rt △AHE 中,∠HAE =45°,∴AH =HE ,⼜∵BC =10⽶,∴HE =(10+103)⽶, ………6分∴AB =AH +BH =10+103+10=20+103(⽶) ………………………7分答:楼房AB 的⾼为(20+103)⽶.………………………8分23. (9分)(1)证明:如图,连接OC .…………………1分∵CD 与⊙O 相切于点C ,∴∠OCD =90°. ………………………2分∴∠1+∠2=90°.∵ED ⊥AD ,∴∠EDA =90°,∴∠A +∠E =90°. …………………3分∵OC =OA ,∴∠A =∠2.(2)解:设BD =x ,则AD =AB +BD =3+x ,OD =OB +BD =1.5+x . ………5分在Rt △AED 中,∵tan ∠CAB =21=AD DE ,∴DE =21AD =21(3+x ). ………6分由(1)得DC =DE =21(3+x ). ……………7分在Rt △OCD 中,222OD CD OC =+,∴222)5.1()3(215.1x x +=??++. …………8分解得11=x ,32-=x (不合题意,舍去). ∴BD =1. ……………9分24.(10分)解:(1)过点A 作AE ⊥x 轴于点E ,如图所⽰.∵AE ⊥x 轴,∴∠AEO =90°.在Rt △AEO 中,AO =5,sin ∠AOC =35,∴AE =AO ?sin ∠AOC =3,OE ,………2分∴点A 的坐标为(﹣4,3). ……………………3分设反⽐例函数解析式为k y x =.∵点A (﹣4,3)在反⽐例函数ky x=的图象上,∴3=4k -,解得k =﹣12.∴反⽐例函数解析式为y =﹣12x. …………………5分(2)∵点B (m ,﹣4)在反⽐例函数y =﹣12x的图象上,∴﹣4=﹣12m,解得m =3,∴点B 的坐标为(3,﹣4).…………………………6分设直线AB 的解析式为y =ax +b ,将点A (﹣4,3)、点B (3,﹣4)代⼊y =ax +b 中,得34,43,a b a b =-+??-=+? 解得1,1.a b =-??=-? ∴⼀次函数解析式为y =﹣x ﹣1.…………8分令⼀次函数y =﹣x ﹣1中y =0,则0=﹣x ﹣1,解得x =﹣1,即点C 的坐标为(﹣1,0). S △AOB =12OC ?(y A ﹣y B )=12×1×[3﹣(﹣4)]=72. ……………10分25.(10分)解:(1)把A (﹣1,0)、B (3,0)分别代⼊y =x 2+bx +c 中,得:=++=+-03901c b c b ,解得:-=-=32c b ,∴抛物线的解析式为y =x 2﹣2x ﹣3. (3)分∵y =x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴顶点坐标为(1,﹣4).…………………4分(2)由图可得当0<x <3时,﹣4≤y <0;…………….5分(3)存在……………….6分①当BC BM =时,141=m ,142-=m ;②当CM =CB 时,1733+-=m ,1734--=m ;③当BM =CM 时,(1,1-).所以点M 的坐标为(1,14)或(1,14-)或(1,173+-)或(1,173--)或(1,1-).………………….11分26.(12分)解:(1)①DE ∥AC ;………………2分②S 1=S 2;………………4分(2)如图,∵△DEC 是由△ABC 绕点C 旋转得到,∴BC =CE ,AC =CD ,∵∠ACN +∠BCN =90°,∠DCM +∠BCN =180°-90°=90°,∴∠ACN =∠DCM ,在△AC N 和△DCM 中,??=?=∠=∠∠=∠CD AC N CMD DCN ACN 90∴△ACN ≌△DCM (AAS),…………………6分∴AN =DM ,∴△BD C 的⾯积和△AEC 的⾯积相等(等底等⾼的三⾓形的⾯积相等),即S 1=S 2;…………………7分如图,过点D 作1DF ∥BE ,易求四边形1BEDF 是菱形,所以BE =1DF ,且BE 、1DF 上的⾼相等,此时 BDE D CF S S ??=1…………………8分过点D 作BD DF ⊥2,∵∠ABC =60°,1DF ∥BE ,∴?=∠6021F DF ,=∠=∠=∠30211ABC DBE DB F ,∴?=∠6021DF F ,∴21F DF ?是等边三⾓形,∴1DF =2DF ,∵BD =CD ,∠ABC =60°,点D 是⾓平分线上⼀点,∴∠CDF 1=180°-30°=150°,∠CDF 2=360°-150°-60°=150°,∴∠CDF 1=∠CDF 2,在△CDF 1和△CDF 2中,=∠=∠=CD CD CDF CDF DF DF 2121,∴△CDF 1≌△CDF 2(SAS),∴点F 2也是所求的点,……………10分∵∠ABC =60°,点D 是⾓平分线上⼀点,DE ∥AB ,DF 1∥BE ,易证1BEDF 是菱形,连接EF 1,则BD EF ⊥1,垂⾜为O ,在1BOF Rt ?中,BO =21BD =2,?=∠301BO F ,∴=30cos 1BF BO,∴33423230cos 1==?=BO BF ………………11分. 在Rt BD F 2中,=30cos 2BF BD ,∴33823430cos 2==?=BD BF ,故BF 的长为334或338.…………………12分。

2016-2017年九年级上数学期末试题及答案

2016-2017年九年级上数学期末试题及答案

2016-2017年九年级上数学期末试题及答案2016-2017学年度第一学期期末考试初三年级数学试卷一、选择题(10×3分=30分)1、下列图形中,既是中心对称图形又是轴对称图形的是(。

)2、将函数y=-3x^2+1的图象向右平移2个单位得到的新图象的函数解析式为(。

)A。

y=-3(x-2)^2+1B。

y=-3(x+2)^2+1C。

y=-3x^2+2D。

y=-3x^2-23、如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为(。

)A.40°B.30°C.45°D.50°4、方程x^2-9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12B.12或15C.15D.无法确定5、如图,有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上,从中任意抽取一张是数字3的概率是(。

)A、1/4B、1/6C、2/3D、1/36、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是(。

)A.4B.5C.6D.37、如果矩形的面积为6,那么它的长y与宽x间的函数关系用图像表示(。

)8、如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A 按顺时针方向旋转到△ABC1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于(。

)A.55°B.70°C.125°D.145°9、一次函数y=ax+b与二次函数y=ax^2+bx+c在同一坐标系中的图像可能是(。

)A.B.C.D.10、如图,已知正方形ABCD的边长为2,P为BC的中点,连接AP并延长交BD于点E,则PE的长度为(。

)A。

2B。

1C。

√2D。

1/√2二、填空题(8×4分=32分)11、方程x^2=x的解是(。

)12、正六边形的边长为10cm,那么它的边心距等于(。

2016-2017学年北京市通州区初三第一学期期末数学试题(WORD版含答案)

2016-2017学年北京市通州区初三第一学期期末数学试题(WORD版含答案)

初三数学期末学业水平质量检测一、选择题(本题共30分,每小题3分)第1—10题均有四个选项,符合题意的选项只有..一个. 1.已知b a 32=,则ba的值为( ) A .32B .23 C .52D .25 2.函数xy 1=中自变量x 的取值范围是( ) A .1≠xB .0≠xC .0>xD .全体实数3.下列图形中有可能与图(1)相似的是( )A .B .C .D . 图(1)4.如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,则sin B 的值为( )A .34 B .43C .53D.545.如图,A ,B ,C ,D 是⊙O 上的四个点,AD //BC .那么»AB 与»CD 的数量关系是( ) A .»AB =»CD B .»AB >»CD C .»AB <»CDD .无法确定BC6.如图,图象对应的函数表达式为( )A .x y 5=B .xy 2=C .x y 1-=D .xy 2-=7.在抛物线2)1(2--=x y 上的一个点是( ) A .(2,3)B .(-2,3)C .(1,-5)D .(0,-2)8.如图,某学校数学课外活动小组的同学们,为了测量一个小湖泊两岸的两棵树A 和B 之间的距离,在垂直AB 的方向AC 上确定点C ,如果测得AC =75米,∠ACB =55°,那么A 和B 之间的距离是( )米 A .︒⋅55sin 75B .︒⋅55cos 75C .︒⋅55tan 75D .︒55tan 759.在平面直角坐标系xOy 中,二次函数bx ax y +=2的图象经过点A ,B ,C ,则对系数a 和b 判断正确的是( ) A .0,0>>b a B .0,0<<b aC .0,0<>b aD .0,0><b a10.如图,在⊙O 中,直径AB ⊥CD 于点E ,AB =8,BE =1.5,将»AD 沿着AD 对折,对折之后的弧称为M ,则点O 与M 所在圆的位置关系为( ) A .点在圆上 B .点在圆内 C .点在圆外D .无法确定二、填空题(本题共18分,每小题3分) 11.计算:cos60°=_______.12.把二次函数322+-=x x y 化成k h x a y +-=2)(的形式为__________________. 13.如图,A ,B ,C ,D 分别是∠α边上的四个点,且CA ,DB 均垂直于∠α的一条边,如果CA =AB =2,BD =3,那么tan α=_______.yxO BC A –1 –2 –3 –4y12 3 4 –1 –2 –3 –4 12 3 4xOBCDO E A14.如图,在△ABC 中,点O 是△ABC 的内心,∠BOC =118°,∠A =_______°. 15.二次函数2312--=x x y 的图象如图所示,那么关于x 的方程02312=--x x 的近似解为___________(精确到0.1).13题图 14题图 15题图16.数学课上,老师介绍了利用尺规确定残缺纸片圆心的方法.小华对数学老师说:“我可以用拆叠纸片的方法确定圆心”.小华的作法如下:第一步:如图1,将残缺的纸片对折,使»AB 的端点A 与端点B 重合,得到图2; 第二步:将图2继续对折,使»CB的端点C 与端点B 重合,得到图3; 第三步:将对折后的图3打开如图4,两条折痕所在直线的交点即为圆心O .老师肯定了他的作法.那么他确定圆心的依据是 .B(A )(C )(A )图1 图3三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程. 17.计算:︒-︒+︒60sin 45cos 30tan 32.错误!未找到引用源。

【精品】2017.5东城区初三一模数学试题及答案

【精品】2017.5东城区初三一模数学试题及答案
北京市东城区 2016— 2017 学年第二学期统一练习(一)
初三数学
2017.5
一、选择题(本题共 30 分,每小题 3 分)下面各题均有四个选项,其中只有一个 ..是符合题意的.
1.数据显示: 2016 年我国就业增长超出预期 . 全年城镇新增就业 1 314 万人,高校毕业生就业创业人数再
创新高 . 将数据 1 314 用科学记数法表示应为
步数这组数据中,众数和中位数分别是
A .1.2, 1.3
B .1.3, 1.3
C.1.4, 1.35
D .1.4, 1.3
E
A
M
B
5. 如图, AB∥ CD,直线 EF 分别交 AB,CD 于 M ,N 两点,将一个含有 45°角的
直角三角尺按如图所示的方式摆放,若∠ EMB=75°,则∠ PNM 等于
2
3
19 .先化简,再求值:
12 x
x 2 x 4 ,其中 2 x2 4x 1 0 . x2 x2
1
20.如图,在△ ABC 中,∠ B=55 °,∠ C= 30°,分别以点 A 和点 C 为圆心, 大于 AC
2
的长为半径画弧, 两弧相交于点 M ,N,作直线 MN ,交 BC 于点 D ,连接 AD ,
A . 1.314 103
B. 1.314 104 C. 13.14 102
2.实数 a, b 在数轴上的对应点的位置如图所示,则正确的结论是
D . 0.1314 10 4
A. a < b
B. a>- b
C. b> a
D. a>- 2
3.在 一 个 布 口 袋 里 装 有 白 、红 、黑 三 种 颜 色 的 小 球 ,它 们 除 颜 色 外 没 有 任 何 区 别 ,其 中 白

北京市东城区2017届九年级上期末考试数学试题含答案

北京市东城区2017届九年级上期末考试数学试题含答案

0.43 O
456
t
型和所给数据,当“供需匹配”程度最好时,最接
近的时刻 t 是
A. 4.8
B. 5
C. 5.2
D. 5.5
二、填空题(本题共 18分,每小题 3 分)
三、解答题(本题共 72分,第 17—26题,每小题 5 分,第 27题 7 分,第 28题 7 分,第 29题 8 分)
17.解方程: 2x2 4x 1 0 .
线于点 D,则∠D 的度数是
A.25°
B.40°
C.50°
D.65°
10. 城市中“打车难”一直是人们关注的一个社会热点问题.近几年来,“互联网+”战略与传统出租车
行业深度融合,“优步”、“滴滴出行”等打车软件
就是其中典型的应用. 名为“数据包络分析”(简
y
称 DEA)的一种效率评价方法,可以很好地优
D. y (x 1)2 2
6.已 知 点
A( 2, y1), B( 4, y 2) 都 在 反 比 例 函 数
y

k x
( k< 0) 的 图 象 上 , 则
y1, y2 的 大 小 关 系 为
A. y1> y2
B. y1< y2
C. y =y
D. 无 法 确 定
12
7.如图,在△ABC 中,∠A=78°,AB=4,AC=6. 将△ABC 沿图示中的虚线剪
化出租车资源配置.为了解出租车资源的“供需匹
配”,北京、上海等城市对每天 24 个时段的
1.1
DEA 值进行调查,调查发现, DEA 值越大, 0.87
说明匹配度越好.在某一段时间内,北京的 DEA
值 y 与时刻 t 的关系近似满足函数关系

2017.1 东城初三上 数学期末答案(1)

2017.1 东城初三上 数学期末答案(1)

,x2 =

18. 【答案】4√2 .
19. 【答案】4 − √7 .
20. 【答案】(1)反比例函数y1 =

3 x


(x > 0)

x+ 9 4
(2)一次函数解析式为y2 = −
3 8
,当2 < x < 4 时,y2 > y1 .
21. 【答案】原正方形空地的边长为6m .
22. 【答案】(1)画图见解析. (2)画图见解析.
(答案不唯一)
12. 【答案】6
13. 【答案】−6



14. 【答案】38
15. 【答案】√3
16. 【答案】1.(1, 1) 2.(−1, −1)
三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)
2 + √6 2 2 − √6 2
17. 【答案】x1 =
l1
和l 2 .
2 画图见解析. 3
−1 − √3 ⩽ yQ ⩽ 1 + √3

(2)−3 − √7 ⩽ xK ⩽ −3 + √7 .



23. 【答案】(1) .
3
1
(2)该游戏不公平.
24. 【答案】(1)解析式为y = −x2 + 2x + 3 . (2)P (1 + √2, 2) 或P (1 − √2, 2) .
25. 【答案】(1)证明见解析. (2)C E = 2 .
26. 【答案】(1)AD = 2 . (2)画图见解析,BE = √10 ,GH
2016~2017学年北京东城区初三上学期期末数学试卷
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年北京市东城区九上期末数学试卷一、选择题(共10小题;共50分)1. 关于的一元二次方程有两个相等的实数根,则A. B. C. D.2. 抛物线的对称轴是A. 直线B. 直线C. 直线D. 直线3. 剪纸是我国的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是A. B.C. D.4. 在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为次、次、次、次,其中实验相对科学的是A. 甲组B. 乙组C. 丙组D. 丁组5. 在平面直角坐标系中,将抛物线先向上平移个单位长度,再向左平移个单位长度,所得的抛物线的解析式是A. B.C. D.6. 已知点,都在反比例函数的图象上,则,的大小关系为A. B. C. D. 无法确定7. 如图,中,,, .将沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是A. B.C. D.8. 如图所示,圆锥的底面半径为,高为,则圆锥的侧面积为A. B. C. D.9. 如图,是的外接圆,,,过点作的切线,交的延长线于点,则的度数是A. B. C. D.10. 城市中“打车难”一直是人们关注的一个社会热点问题.近几年来,“互联网”战略与传统出租车行业深度融合,“优步”、“滴滴出行”等打车软件就是其中典型的应用.名为“数据包络分析”(简称)的一种效率评价方法,可以很好地优化出租车资源配置.为了解出租车资源的“供需匹配”,北京、上海等城市对每天个时段的值进行调查,调查发现,值越大,说明匹配度越好.在某一段时间内,北京的值与时刻的关系近似满足函数关系(,,是常数,且),如图记录了个时刻的数据,根据函数模型和所给数据,当“供需匹配”程度最好时,最接近的时刻是A. B. C. D.二、填空题(共6小题;共30分)11. 请你写出一个图象分别位于第二、四象限的反比例函数的解析式,这个解析式可以是.12. 已知是关于的方程的一个根,则.13. 二次函数的最小值为.14. 天坛是古代帝王祭天的地方,其中最主要的建筑就是祈年殿.老师希望同学们利用所学过的知识测量祈年殿的高度,数学兴趣小组的同学们设计了如图所示的测量图形,并测出竹竿长米,在太阳光下,它的影长为米,同一时刻,祈年殿的影长约为米.请你根据这些数据计算出祈年殿的高度约为米.15. 如图,在中,,,以点为圆心,的长为半径画弧,与边交于点,将绕点旋转后点与点恰好重合,则图中阴影部分的面积为.16. 如图,已知菱形的顶点,,菱形的对角线的交点的坐标为;菱形绕点逆时针旋转,每秒旋转,从如图所示位置起,经过秒时,菱形的对角线的交点的坐标为.三、解答题(共13小题;共169分)17. 解方程:(用配方法).18. 如图,在中,是中线,,若,求的长.19. 如图,是的直径,弦于点,若,,求的长.20. 如图,在平面直角坐标系中,为坐标原点,的边垂直于轴,垂足为点,反比例函数()的图象经过的中点,且与相交于点,,.(1)求反比例函数()的解析式;(2)设经过,两点的一次函数解析式为,求出其解析式,并根据图象直接写出在第一象限内,当时,的取值范围.21. 列方程或方程组解应用题:公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图阴影部分),原空地一边减少了,另一边减少了,剩余空地的面积为,求原正方形空地的边长.22. 按照要求画图:(1)如图甲,在平面直角坐标系中,点,,的坐标分别为,将绕原点顺时针旋转得到,点,,的对应点为点,,.画出旋转后的;(2)如图乙,下列网格都是由个相同小正方形组成,每个网格图中有个小正方形已涂上阴影,请在余下的个空白小正方形中,选取个涂上阴影,使个阴影小正方形组成一个中心对称图形(画出两种即可).23. 甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字,,.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为的倍数,则甲获胜;若抽取的数字和为的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.24. 在平面直角坐标系中,对称轴为直线的抛物线与轴交于点和点,与轴交于点,且点的坐标为.(1)求抛物线的解析式;(2)点的坐标为,点是抛物线上的动点,若是以为底的等腰三角形,求点的坐标.25. 如图,是的直径,是弦,的平分线交于点,过点作交的延长线于点,连接.(1)求证:是的切线;(2)若,,求的长.26. 问题探究:新定义:将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“等积线”,其“等积线”被该平面图形截得的线段叫做该平面图形的“等积线段”(例如圆的直径就是圆的“等积线段”).解决问题:已知在中,,.(1)如图,若,垂足为,则是的一条等积线段,求的长;(2)在图和图中,分别画出一条等积线段,并求出它们的长度.(要求:使得图,图和图中的等积线段的长度各不相等)27. 在平面直角坐标系中,抛物线与轴交于,两点(点在点左侧),与轴交于点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点,使的值最小,求点的坐标;(3)将抛物线在,之间的部分记为图象(包含,两点),若直线与图象有公共点,请直接写出的取值范围.28. 点是矩形对角线所在直线上的一个动点(点不与点,重合),分别过点,向直线作垂线,垂足分别为点,,点为的中点.(1)如图,当点与点重合时,请你判断与的数量关系;(2)当点运动到如图所示位置时,请你在图中补全图形并通过证明判断()中的结论是否仍然成立;(3)若点在射线上运动,恰好使得时,猜想此时线段,,之间有怎样的数量关系,直接写出结论不必证明.29. 在平面直角坐标系中,有如下定义:若直线和图形相交于两点,且这两点的距离不小于定值,则称直线与图形成“相关”,此时称直线与图形的相关系数为.(1)若图形是由,,,顺次连线而成的矩形:①,,这三条直线中,与图形成“相关”的直线有;②画出一条经过的直线,使得这条直线与成“相关”;③若存在直线与图形成“相关”,且该直线与直线平行,与轴交于点,求点纵坐标的取值范围;(2)若图形为一个半径为的圆,其圆心位于轴上.若直线与图形成“相关”,请直接写出圆心的横坐标的取值范围.答案第一部分1. A2. B3. A4. D5. A6. B7. C8. C 【解析】圆锥的底面半径为,圆锥的底面圆周长为.圆锥的侧面展开图扇形的弧长为.,,圆锥的母线长为.圆锥的侧面展开图扇形的半径.圆锥的侧面积为.9. B 【解析】如图,连接,由,可求得的度数;由是的切线,可得,继而求得答案.10. C第二部分11. (答案不唯一)12.【解析】是关于的方程的一个根,,,则.14.【解析】由旋转可知,,,,,是等边三角形,,,阴影部分的面积.16.第三部分17.解得18. ,,,,,是的中线,,,.19. 如图,连接.弦于点,,.在中,,,,,.20. (1),,点在第一象限,点的坐标为,点为线段的中点,点的坐标为,点在反比例函数()的图象上,,反比例函数的解析式为().(2)当时,,点的坐标为.将,代入,得:解得:一次函数解析式为.观察函数图象(如图)可知:当时,一次函数图象在反比例函数图象的上方,当时,的取值范围为.21. 设原正方形空地的边长为,根据题意,得解方程,得答:原正方形空地的边长为.22. (1)如图甲所示:旋转后的即为所求.(2)如图乙所示:答案不唯一.23. (1)所有可能出现的结果如图:方法一:列表法【解析】方法二:树状图法:甲乙所有可能出现的结果从上面的表格(或树状图)可以看出,总共有种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有种,所以.(2)不公平.从上面的表格(或树状图)可以看出,两人抽取数字和为的倍数有种,两人抽取数字和为的倍数有种,所以;.,所以甲获胜的概率大,游戏不公平.24. (1)由题意可求点的坐标为.将点和点代入,得解得抛物线的解析式为.(2)如图,点的坐标为,点,满足条件的点的纵坐标为..解得,.点的坐标为或.25. (1)连接.如图.,.平分,...,.是的切线;(2)是的直径,..又,...由勾股定理可知.连接,如图..,,,四点共圆.....26. (1)在中,,,,点为线段的中点,,;(2)符合题意的图形如图和图所示:如图,当是的一条等积线段时,在中,,,是的一条等积线段,点为的中点,,;如图,当是的一条等积线段时,此时,则的面积等于面积的一半,在中,,,的面积为:,的面积是,设,则,得,.27. (1)由题意可得,,所以.所以抛物线的解析式为:.(2)如图,点关于抛物线的对称轴对称的点是,连接交对称轴于点,则点就是使得的值最小的点.由,得对称轴是直线,由,,得直线的解析式为,当时,,所以点的坐标为.(3)符合题意的的取值范围是.28. (1).理由:四边形是矩形,,,,,在和中,..(2)补全图形如图,仍然成立.证明:延长交于点,,,,,又点为的中点,,在和中,,,中,,.(3)或.29. (1)①和②符合题意的直线如图中所示.夹在直线和或和之间的(含直线,,,)都是符合题意的.③如图中,设符合题意的直线的解析式为,由题意可知符合题意的临界直线分别经过点,.分别代入可求出,,.(2)当时,直线与图形成“相关”.。

相关文档
最新文档