最新复合函数求导练习题

合集下载

高中试卷-5.2.3简单复合函数的导数 -A基础练(含答案)

高中试卷-5.2.3简单复合函数的导数   -A基础练(含答案)

5.2.3简单复合函数的导数-A 基础练一、选择题1.(2021·湖北潜江市高二期末)已知()3sin 3f x x x =+,则其导函数()'f x =()A .233cos x x +B .33cos x x +C .33cos3x x +D .233cos3x x+【答案】D【详解】22()3cos3(3)33cos3f x x x x x x ¢¢=+×=+,故选:D.2.(2021·山东高二专题练习)已知函数()sin 2cos 2f x x x =+,那么2f p æö¢=ç÷èø( )A .2-B .2C .12D .12-【答案】A【详解】由题意,()2cos 22sin 2f x x x ¢=-,所以2cos 22sin 2f p p p æö¢=ç÷ø-=-è.故选:A.3.(2020·全国高二课时练)函数3(20208)y x =-的导数y ¢=( )A .23(20208)x -B .24x-C .224(20208)x --D .224(20208)x -【答案】C【详解】2223(20208)(20208)3(20208)(8)24(20208)y x x x x =-´-=´-´-=--¢¢.4.(2020·河北石家庄市高二月考)原子有稳定和不稳定两种.不稳定的原子除天然元素外,主要由核裂变或核聚变过程中产生碎片形成,这些不稳定的元素在放出α、β、γ等射线后,会转变成稳定的原子,这种过程称之为“衰变”.这种不稳定的元素就称为放射性同位素.随着科学技术的发展,放射性同位素技术已经广泛应用于医学、航天等众多领域,并取得了显著经济效益.假设在放射性同位素钍234的衰变过程中,其含量N (单位:贝克)与时间t (单位:天)满足函数关系240()2tN t N -=,其中N 0为0t =时钍234的含量.已知24t =时,钍234含量的瞬时变化率为8ln 2-,则()120N =( )A .12贝克B .12 ln2贝克C .6贝克D .6 ln2贝克【答案】A【详解】解:240ln 2()224tN t N -¢=-××,所以00ln 218ln 2,384242N N -=-××=,24240()23842tt N t N --==×,12024(120)384212N -=×=(贝克),故选:A.5.(多选题)(2020·江苏常州市高二期末)下列求导数运算不正确的是()A .(sin )cos x x¢=-B .2ln 2(log )x x¢=C .2ln 1ln ()x xx x +¢=D .2121(e )2e x x ++¢=【答案】ABC【详解】选项A ,(sin )cos x x ¢=,故A 错误;选项B ,21(log )ln 2x x ¢=,故B 错误;选项C ,2ln 1ln (x x x x-¢=,故C 错误;选项D ,212121(e )e (21)'2e +++¢=×+=x x x x 正确.6.(多选题)(2020·全国高二专题练习)下列结论中不正确的是( )A .若1cosy x =,则11sin y x x¢=-B .若2sin y x =,则22cos y x x ¢=C .若cos5y x =,则sin 5y x ¢=-D .若1sin 22y x x =,则sin 2y x x ¢=【答案】ACD【详解】对于A ,1cos y x =,则211sin y x x¢=,故错误;对于B ,2sin y x =,则22cos y x x ¢=,故正确;对于C ,cos5y x =,则5sin 5y x ¢=-,故错误;对于D ,1sin 22y x x =,则1sin 2cos 22y x x x ¢=+,故错误.故选:ACD二、填空题7.(2021·江苏省丰县中学高二期末)函数51y x x æö=+ç÷èø的导数为________.【答案】421151y x x x æöæö¢=+-ç÷ç÷èøèø【详解】函数51y x x æö=+ç÷èø是函数5y u =与1u x x =+的复合函数,则421151x u x y u y x x x æöæö¢+-¢¢=ç÷ç÷èøè=ø×.8.(2021·全国高二课时练)函数cos2()xxf x e=的导函数()f x ¢=_________.【答案】2sin 2cos2xx xe +-【详解】由cos2()xxf x e =,得22sin 2cos 22sin 2cos 22sin 2cos 2()x x x x xe x e x x x x xf x e e e----==-¢+=.9.(2020·沙坪坝区重庆南开中学高二月考)已知函数()πsin cos 23f x f x x æö¢=ç÷èø(其中()f x ¢为()f x 的导函数),则π2f æö=ç÷èø______.【答案】0【详解】()()()()(sin cos 2sin cos 2(cos cos 22sin sin 233f x f x x x x f x x x x p péù¢¢¢¢¢=+=-êúëûQ ,227()(cos cos 2sin sin(33333343f f f p p p p p pp æö¢¢¢\=-=-ç÷èø,(03f p ¢\=,()0f x \=,π02f æö\=ç÷èø.10.(2021·全国高二专题练习)函数()sin2xf x x e =+在()0,1处的切线方程为______【答案】310x y -+=【详解】求导得()2cos2xf x x e ¢=+,所以()0213f ¢=+=,所以函数()f x 在()0,1处的切线方程为13y x -=,即310x y -+=.三、解答题11.(2021·江苏高二)求下列函数的导函数:(1)5(21)y x =+;(2)()132a y og x =+.【详解】(1)445(21)210(21)y x x ¢=+´=+;(2)133(32)ln (32)ln y x a x a¢=´=++.12.(2020·洮南市第一中学高二月考)已知函数()1ln1xf x x+=-.(1)求函数()y f x =的定义域;(2)求曲线()y f x =在点()()0,0f 处的切线方程.【详解】解:(1)由题知:101xx+>-,所以()()110x x +->,解得11x -<<.所以函数()y f x =的定义域为()-1,1.(2)因为()()()()()()()2111121111x x x f x x x x x--+×--¢==+-×+-,所以()()()2021010f ¢==-×+,又因为()100lnln1010f +===-,所以曲线()y f x =在点()()0,0f 处的切线方程为()020y x -=-,即2y x =.。

【同步练习】简单复合函数求导基础练习题及答案(word精编)

【同步练习】简单复合函数求导基础练习题及答案(word精编)

简单复合函数求导基础练习题课堂同步基础练习1.函数()221y x =-在1x =处的导数值是( )A .4B .5C .6D .7 2.函数()()sin 21f x x =+的导数是( )A .()()cos 21f x x '=+B .()()2sin 21f x x x '=+C .()()2cos 21f x x '=+D .()()2cos 21f x x x '=+ 3.函数2x y e -=的导数为( )A .2'xy e -= B .1'ln(2)y x =- C .2'2x y e -=- D .21'(2)x y x e --=-4.函数y =cos (2x 3π-)的导函数是( ) A .y '=sin (2x 3π-) B .y '=﹣2sin (2x 3π-) C .y '=﹣sin (2x 3π-) D .y '=2sin (2x 3π-)5.函数()cos(2)f x x θ=-+的导函数()f x '=( )A .sin(2)x θ-B .sin(2)x θ--C .2sin(2)x θ-D .2sin(2)x θ-- 6.已知函数f (x )=ln (2x +1),则f ′(0)=( )A .0B .1C .2D .127.已知()x x f x e e -=-,'()f x 是()f x 的导函数,则'(2)f =( )A .0B .22e e -+C .22e e --D .1 8.已知()sin 6f x x π⎛⎫=+⎪⎝⎭,()f x '为()f x 的导函数,则6f π⎛⎫'= ⎪⎝⎭( )A .3 B .2C .12D .19.函数2sin cos y x x =的导数为( )A .'cos y x =B .'2cos 2y x =C .()22'2sin cos y x x =- D .'sin 2y x =- 10.已知()f x =,则1'()2f =( ) A .2ln 2-- B .2ln 2-+ C .2ln 2- D .2ln2+11.已知()2sin 2xf x x e =+,则()f x '=( )A .22cos 22x x e +B .2cos 2x x e +C .22sin 22x x e +D .2sin 2x x e +12.设函数f (x )在(﹣∞,+∞)内的导函数为f '(x ),若()1x f lnx x +=,则()()0'0f f =( ) A .2 B .﹣2 C .1 D .1e + 13.已知函数()ln cos2f x x =,则()f x 的导函数()f x '=( )A .1cos 2x B .2tan 2x - C .tan 2x D .cos 22sin 2xx-14.已知函数()()5ln 213f x x x =-+,则()()011lim x f x f x∆→+∆-=∆( )A .1B .0C .43 D .5315.函数()f x xsinx cosx =+,其导函数的图象大致为 ( )A .B .C .D .16.要得到函数()sin(3)3f x x π=+的导函数()f x '的图像,只需将()f x 的图像( )A .向右平移3π个单位长度,再把各点的纵坐标伸长到原来的3倍 B .向右平移6π个单位长度,再把各点的纵坐标缩短到原来的13倍 C .向左平移3π个单位长度,再把各点的纵坐标缩短到原来的13倍 D .向左平移6π个单位长度,再把各点的纵坐标伸长到原来的3倍 17.函数x y e -=的导数'y =______.18.已知函数f(x)=e −x +ln(−x),则f ′(−1)=__________. 19.已知()()ln 1f x x x =++,那么()'0f =__________. 20.函数()sin(42)f x x =-,则()f x '=__________.21.若()sin 2cos2f x x x =+,则'6f π⎛⎫= ⎪⎝⎭____ 22.函数()2cos3y x π=-的导数为__________.23.已知函数e xy x=,则()1f '=_______.24.函数2cos 26y x π⎛⎫=+ ⎪⎝⎭的导函数()f x '为______ 25.已知函数()cos xf x e a x =+,并且()11f e '=+,则()1f '-=______.26.求下列函数的导数: (1)()0.051x f x e -+= (2)()()2sin 21f x x =+27.求出下列函数的导数.(1)tan xy e x = (2)()3ln 45y x += (3)2311y x x x x ⎛⎫=++ ⎪⎝⎭(4)y =sin nx x (5)()5221x y e x ++﹣=28.求下列函数的导数:(1)()*()2+1ny x n N ∈=,; (2)(ln y x =; (3)11x x e y e +=-; (4)2)2(+5y xsin x =简单复合函数基础练习题答案1.A 2.C 3.C 4.B 5.D 6.C 7.B 8.C 9.B 10.D 11.A 12.B 13.B 14.A 15.A 16.D17.x e -- 18.−1−e 19.220.4cos(42)x - 21.1-22.3sin 6x - 23.024.2sin 43x π⎛⎫-+ ⎪⎝⎭.25.1e --26.(1)()0.0510.05x f x e-+'=-;(2)()2sin 44cos2f x x x '=+.27.(1)'2tan cos x xe y e x x=+;(2)'1245y x =+;(3)'2332x y x =-;(4)'1cos sin n x x n x y x+-=;(5)()4'29221()x y x x e +=+﹣﹣ 28.(1)()1'221n y n x -=+;(2)'y =;(3)()221xxe y e-'=-;(4)2sin(25)4cos(25)y x x x '=+++.。

复合函数的求导练习题

复合函数的求导练习题

复合函数的求导练习题复合函数是高等数学中的一个重要概念,在微积分中经常会遇到。

求解复合函数的导数是一项基本的技巧,本文将通过一些练习题来帮助读者掌握这一技巧。

1. 设有函数 y = f(u) 和 u = g(x),其中 f 和 g 分别为可导函数。

求复合函数 y = f(g(x)) 的导数 dy/dx。

解法:根据链式法则,复合函数的导数可以通过两个单独函数的导数来计算。

首先计算出 f(u) 和 g(x) 的导数:dy/du = f'(u)du/dx = g'(x)然后将两个导数相乘,得到复合函数的导数:dy/dx = (dy/du) * (du/dx) = f'(u) * g'(x)2. 设有函数 y = f(u) 和 u = g(v) 和 v = h(x),其中 f、g 和 h 都是可导函数。

求复合函数 y = f(g(h(x))) 的导数 dy/dx。

解法:同样根据链式法则,复合函数的导数可以通过三个单独函数的导数来计算。

首先计算出 f(u)、g(v) 和 h(x) 的导数:dy/du = f'(u)du/dv = g'(v)dv/dx = h'(x)然后将三个导数相乘,得到复合函数的导数:dy/dx = (dy/du) * (du/dv) * (dv/dx) = f'(u) * g'(v) * h'(x)3. 设有函数 y = f(u) 和 u = g(v) 和 v = h(w) 和 w = k(x),其中 f、g、h 和 k 都是可导函数。

求复合函数 y = f(g(h(k(x)))) 的导数 dy/dx。

解法:同样根据链式法则,复合函数的导数可以通过四个单独函数的导数来计算。

首先计算出 f(u)、g(v)、h(w) 和 k(x) 的导数:dy/du = f'(u)du/dv = g'(v)dv/dw = h'(w)dw/dx = k'(x)然后将四个导数相乘,得到复合函数的导数:dy/dx = (dy/du) * (du/dv) * (dv/dw) * (dw/dx) = f'(u) * g'(v) * h'(w) * k'(x)通过上述三个例题的分析,可以看出求解复合函数的导数是通过链式法则将各个函数的导数相乘得到的。

复合函数求导练习题重点讲义资料

复合函数求导练习题重点讲义资料

复合函数求导练习题一.选择题(共26小题).设,则f′(2)=()1.D .A.BC.2.设函数f(x)=g(x)+x+lnx,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程为().+2 Dy=4x﹣8 C.y=2xA.y=4x B.)3.下列式子不正确的是(x2ln2)′=′=6x﹣sinx B.(lnx﹣2)A.(3x+cosx= )=2cos2x D.′(C.(2sin2x)′,则=()=sin2x)4.设f(x D.﹣.B1.C.1A5.函数y=cos(2x+1)的导数是()A.y′=sin(2x+1)B.y′=﹣2xsin(2x+1)C.y′=﹣2sin(2x+1)D.y′=2xsin(2x+1)6.下列导数运算正确的是()xx1﹣C.(cosx)′=sinx )′=x2D.(xlnx)′=lnx+xA.(1+)′=1 +B.(27.下列式子不正确的是()2A.(3x+xcosx)′=6x+cosx﹣xsinx B.(sin2x)′=2cos2x..DC12x+8.已知函数f(x)=e﹣3x,则f′(0)=()A.0 B.﹣2 C.2e﹣3 D.e﹣3.函数的导数是()9..BA..DC10.已知函数f(x)=sin2x,则f′(x)等于()A.cos2x B.﹣cos2x C.sinxcosx D.2cos2xsinx))等于(0y(11.y=ecosxsinx),则′(2..﹣C1 D1 B.A0 .121第页(共页)12.下列求导运算正确的是().BA .2x2x2C.((2x+3))′=2(D.(e)′=e 2x+3).若,则函数f(x)可以是(13).AD.C.Blnx..设14,则f(x)=()201320122013A.2(cos2x﹣sin2x)B.2(sin2x+cos2x)20122013C.2(cos2x+sin2x)D.2(sin2x+cos2x)2=()=cos2x),则15.设f(x 21 D2A.B.﹣.C.﹣.函数16的导数为()..A B.DC.217.函数y=cos(1+x)的导数是()2222 x)2cos(1+D.﹣2xsin(1+x).xA.2xsin(1+)B.﹣sin(1+x)C)x)的导数为(18.函数y=sin﹣(+)x)C.﹣sinsin((A.﹣cos (+x)x﹣x)DB.cos.﹣(﹣19.已知函数f(x)在R上可导,对任意实数x,f'(x)>f(x);若a为任意的正实数,下列式子一定正确的是()aa A.f(a)>ef(0)B.f(a)>f(0)C.f(a)<f(0)D.f(a)<ef(0)220.函数y=sin(2x+x)导数是()22A.y′=cos(2x+x)B.y′=2xsin(2x+x)22C.y′=(4x+1)cos(2x+x)D.y′=4cos(2x+x)221.函数f(x)=sinx的导数f′(x)=()2A.2sinx B.2sinx C.2cosx D.sin2x.函数的导函数是(22)2x.B=2e ).Af'(x..DC第2页(共12页).函数的导数为()23.. A BC .D.24.y=sin(3﹣4x),则y′=()A.﹣sin(3﹣4x)B.3﹣cos(﹣4x)C.4cos(3﹣4x)D.﹣4cos(3﹣4x)25.下列结论正确的是(),B.若y=cos5x,则yA.若′=﹣sin5x22C.若y=sinx,则y′=2xcosx D.若y=xsin2x,则y′=﹣2xsin2xy=的导数是()26.函数..AB D.C.二.填空题(共4小题)()的导数为.y=f27.设(x)是可导函数,则y=f2.+.函数28y=cos(2xx)的导数是29.函数的导数为y=ln.,则的值为30.若函数.第3页(共12页)参考答案与试题解析一.选择题(共26小题)拉萨校级期中)设,则f′(2)=(1.(2015春?)D C..A .B .=ln)(x【解答】解:∵x,令u()f=,则f(u)=lnu,=,)?=u)=,u′(x∵f′(由复合函数的导数公式得:,? f′(x)===.′(2)∴f故选B.2.(2014?怀远县校级模拟)设函数f(x)=g(x)+x+lnx,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程为().+2 Dy=4x﹣8 C.y=2xA.y=4x B.,1)=2 ,而【解答】解:由已知g′(所以f′(1)=g′(1)+1+1=4,即切线斜率为4,又g(1)=3,故f(1)=g(1)+1+ln1=4,故曲线y=f(x)在点(1,f(1))处的切线方程为y﹣4=4(x﹣1),即y=4x,故选A.3.(2014春?永寿县校级期中)下列式子不正确的是()2x ln22)′=sinx ′=6x﹣B.(lnx﹣)(A.3x+cosx= )′)′=2cos2x D.((C.2sin2x【解答】解:由复合函数的求导法则2对于选项A,(3x+cosx)′=6x﹣sinx成立,故A正确,成立,故BB正确对于选项第4页(共12页)对于选项C,(2sin2x)′=4cos2x≠2cos2x,故C不正确,成立,故D正确对于选项DC 故选),则=(.(2014春?晋江市校级期中)设f(x)=sin2x4 1 .C..B1D.﹣A【解答】解:因为f(x)=sin2x,所以f′(x)=(2x)′cos2x=2cos2x.×)=﹣(21.则=2cos故选D.5.(2014秋?阜城县校级月考)函数y=cos(2x+1)的导数是()A.y′=sin(2x+1)B.y′=﹣2xsin(2x+1)C.y′=﹣2sin(2x+1)D.y′=2xsin(2x+1)【解答】解:函数的导数y′=﹣sin(2x+1)(2x+1)′=﹣2sin(2x+1),故选:C6.(2014春?福建月考)下列导数运算正确的是()xx1﹣C.(cosx)′=sinx D.(xlnx)′=lnx+1A.(x+)′=1.+ B(2)′=x2【解答】解:根据导数的运算公式可得:﹣,故A错误.)′=1A,(x +xx B,(2)′=lnx2,故B错误.C,(cosx)′=﹣sinx,故C错误.D.(xlnx)′=lnx+1,正确.故选:D7.(2013春?海曙区校级期末)下列式子不正确的是()2A.(3x+xcosx)′=6x+cosx﹣xsinx B.(sin2x)′=2cos2x..DC2【解答】解:因为(3x+xcosx)′=6x+cosx﹣xsinx,所以选项A正确;(sin2x)′=2cos2x,所以选项B正确;,所以C正确;,所以D不正确.第5页(共12页)故选D.2x1+﹣3x,则f′(0)=(.(2013春?江西期中)已知函数f(x)=e)83 e﹣C.2e﹣3 D..A0 B.﹣212x+﹣3,∴f′(解:∵【解答】f′(x)=2e0)=2e﹣3..故选C黔西南州校级月考)函数的导数是().(2013春? 9.A B.C .D.解:∵函数【解答】,,3=+y∴′)×=3cos(3x故选B.10.(2013春?东莞市校级月考)已知函数f(x)=sin2x,则f′(x)等于()A.cos2x B.﹣cos2x C.sinxcosx D.2cos2x′′′【解答】解:由f(x)=sin2x,则f(x)=(sin2x)=(cos2x)?(2x)=2cos2x.所以f′(x)=2cos2x.故选D.sinx)0)等于(ycosx(sinx),则′(11.(2013秋?惠农区校级月考)y=e2D.C.﹣1 A.0 B.1sinx),cosx(sinx【解答】解:∵y=e sinxsinxsinx′(sinx)+e(cosx)((sinx)+ecosx)′(sinx))∴y′=(e′cosx2sinxsinx2sinx2)cosx)+e(sin=ecosx(sinx)+e(﹣x1=1 0+=0(0)+∴y′B 故选)秋?珠海期末)下列求导运算正确的是(12.(2012.B.A2x2x2C.((2x+3)))e′=e ′=2(2x+3)D.(解:因为,所以选项A不正确;【解答】,所以选项B正确;2 C,所以选项不正确;(2x+3)′2x3=23+))′(2x+)?(+3)=42x((2x2x2x D不正确.=2e(?2x)′,所以选项=e)(e′.故选B126第页(共页)朝阳区期末)若,则函数f(x)可以是()13.(2012秋?D.lnx.CA..B解:;【解答】;;.)为.(所以满足的fx故选A.14.(2012秋?庐阳区校级月考)设,则f(x)=()201320122013A.2(cos2x﹣sin2x)B.2(sin2x+cos2x)20122013C.2(cos2x+sin2x)D.2(sin2x+cos2x)2=2)f,(=x=2(=x)x)(cos2x﹣sin2x),【解答】解:∵f(=sin2x+cos2x ∴f210)﹣cos2x,(﹣sin2x43,…sin2x+cos2x)x,+sin2x)f()=2=(cos2x (fx)==2(﹣43,∈Nx)满足以下规律,对任意.n通过以上可以看出:f(n20122013(cos2x﹣sin2x=2).((∴f(x)=fx)=2fx)1420135031+×.故选:B2=(2xx)=cos),则(201115.(?潜江校级模拟)设f 2.﹣1 .A2B.C.﹣D2【解答】解:∵f(x)=cos2x==﹣∴2sin4x∴第7页(共12页)故选D.平遥县校级期末)函数的导数为()(16.2011秋?B..A..C D解:∵【解答】∴= ∴D 故选2))的导数是(y=cos(1+x17.(2011春?南湖区校级月考)函数2222)+xD.2cos(1)C.﹣2xsin(1+x)A.2xsin(1+x)B.﹣sin(1+x222)+x﹣2xsin(1?(1+x)′=)【解答】解:y′=﹣sin(1+xC 故选)x)的导数为((2011春?瑞安市校级月考)函数y=sin﹣(18.)+(xx)﹣x)D.﹣C.﹣sinsin.﹣AcosB(+x).cos((﹣′′u=﹣x复合而成且y=(sinu)=cosuy=sin【解答】解:∵函数可看成(﹣x)y=sinu,,u′′′﹣(﹣x)]=﹣﹣x)=﹣sin=﹣x)的导数为y=yu∴函数y=sin﹣(cossin([xu x)(+故答案选D19.(2011春?龙港区校级月考)已知函数f(x)在R上可导,对任意实数x,f'(x)>f(x);若a为任意的正实数,下列式子一定正确的是()aa A.f(a)>ef(0)B.f(a)>f(0)C.f(a)<f(0)D.f(a)<ef(0)【解答】解:∵对任意实数x,f′(x)>f(x),令f(x)=﹣1,则f′(x)=0,满足题意第8页(共12页)显然选项A成立故选A.2)(2x+x)导数是(20.(2010?永州校级模拟)函数y=sin22)+x′=2xsin(2x(2x+x)B.yA.y′=cos22 x)=4cos(2x++x)D.y′C.y′=(4x+1)cos(2x2 x,,u=2x+解:设【解答】y=sinu 1,′=4x+则y′=cosu,u2,+x)+1)cos(2x4x∴y′=(4x+1)cosu=(.故选C2)x)=(′?祁阳县校级模拟)函数f(x)=sinx的导数f(21.(20102sin2x D.x C.2cosx 2sinA.2sinx B.【解答】解:2 x写成,将y=sin2的形式.y=u,u=sinx ,对外函数求导为y′=2u ,对内函数求导为u′=cosx2的导数为故可以得到y=sinx=2ucosx=2sinxcosx=sin2x ′yD 故选的导函数是(2010春?)朝阳区期末)函数22.(2x BA.f'(x)=2e ..D C .解:对于函数,【解答】=;= 对其求导可得:f′(x)= 故选C.的导数为(春23.(2009?)房山区期中)函数.BA.D..C第9页(共12页))2x﹣﹣)′=3cosy,则′=(3sint)′?(2x【解答】解:令y=3sint,t=2x(﹣?,2= .故选A)y′=(y=sin春?瑞安市校级期中)(3﹣4x),则24.(2009 )3﹣4x.﹣D(3﹣4x)4cos ((3﹣4x)B.3﹣cos(﹣4x)C.4cos.﹣Asin 4x3﹣),【解答】解:由于y=sin()﹣4x)=cos(3﹣4x)×(3﹣4x′=﹣4cos(3则y′D 故选).25(2006春?珠海期末)下列结论正确的是(sin5xA﹣.若y′=,B.若y=cos5x,则222xsin2x ﹣′=y D.若y=xsin2x,则C.若y=sinx,则y′=2xcosx错误【解答】,∴解:函数A的导数为,错误,∴B′=﹣5sin5xy=cos5x 函数的导数为:y2 C正确′y=2xcosx,,∴函数y=sinx的导数为:D错误=sin2x+2xcos2x,∴函数y=xsin2x的导数为:y′C 故选)的导数是(y=26.函数B..A D.C.2解:由复合函数的求导法则可得,)]′ln2【解答】[?ln(x+12ln2 ′1+x)=(ln2=?A 故选小题)二.填空题(共4)的导数为(x()是可导函数,则y=f?.27(2013春巨野县校级期中)设y=f().′=′yf第10页(共12页)u=,u),【解答】解:设y=f(=,u′′=f'(u),则y()f′∴y′=().y′f=′故答案为:22.)2x+x)的导数是﹣(4x+1)sin((28.(2013春?吴兴区校级月考)函数y=cos2x+x2,+x)sin﹣(4x+1)(2xy【解答】解:′=2 x).2x+1)sin (+故答案为﹣(4x洞口县校级模拟)函数的导数为y=ln.29.(2012??=()′【解答】解:y′=. =?()′== ?故答案为:,则的值为?雁塔区校级期中)若函数春30.(2009.【解答】解:由故第11页(共12页)=.故答案为:页(共第1212页)。

复合函数求导练习题

复合函数求导练习题

复合函数求导演习题一.选择题(共26小题)1.设,则f′(2)=()A.B.C.D.2.设函数f(x)=g(x)+x+lnx,曲线y=g(x)在点(1,g (1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f (1))处的切线方程为()A.y=4xB.y=4x﹣8C.y=2x+2D.3.下列式子不准确的是()A.(3x2+cosx)′=6x﹣sinxB.(lnx﹣2x)′=ln2 C.(2sin2x)′=2cos2xD.()′=4.设f(x)=sin2x,则=()A.B.C.1D.﹣15.函数y=cos(2x+1)的导数是()A.y′=sin(2x+1)B.y′=﹣2xsin(2x+1)C.y′=﹣2sin(2x+1)D.y′=2xsin(2x+1)6.下列导数运算准确的是()A.(x+)′=1+B.(2x)′=x2x﹣1C.(cosx)′=sinxD.(xlnx)′=lnx+17.下列式子不准确的是()A.(3x2+xcosx)′=6x+cosx﹣xsinxB.(sin2x)′=2cos2xC.D.8.已知函数f(x)=e2x+1﹣3x,则f′(0)=()A.0B.﹣2C.2e﹣3D.e﹣39.函数的导数是()A.B.C.D.10.已知函数f(x)=sin2x,则f′(x)等于()A.cos2xB.﹣cos2xC.sinxcosxD.2cos2x11.y=e sinx cosx(sinx),则y′(0)等于()A.0B.1C.﹣1D.212.下列求导运算准确的是()A.B.C.((2x+3)2)′=2(2x+3)D.(e2x)′=e2x 13.若,则函数f(x)可所以()A.B.C.D.lnx14.设,则f2013(x)=()A.22012(cos2x﹣sin2x)B.22013(sin2x+cos2x)C.22012(cos2x+sin2x)D.22013(sin2x+cos2x)15.设f(x)=cos22x,则=()A.2B.C.﹣1D.﹣216.函数的导数为()A.B.C.D.17.函数y=cos(1+x2)的导数是()A.2xsin(1+x2)B.﹣sin(1+x2)C.﹣2xsin(1+x2)D.2cos (1+x2)18.函数y=sin(﹣x)的导数为()A.﹣cos(+x)B.cos(﹣x)C.﹣sin(﹣x)D.﹣sin (x+)19.已知函数f(x)在R上可导,对随意率性实数x,f'(x)>f (x);若a为随意率性的正实数,下列式子必定准确的是()A.f(a)>e a f(0)B.f(a)>f(0)C.f(a)<f(0)D.f (a)<e a f(0)20.函数y=sin(2x2+x)导数是()A.y′=cos(2x2+x)B.y′=2xsin(2x2+x)C.y′=(4x+1)cos(2x2+x)D.y′=4cos(2x2+x)21.函数f(x)=sin2x的导数f′(x)=()A.2sinxB.2sin2xC.2cosxD.sin2x22.函数的导函数是()A.f'(x)=2e2x B.C.D.23.函数的导数为()A.B.C.D.24.y=sin(3﹣4x),则y′=()A.﹣sin(3﹣4x)B.3﹣cos(﹣4x)C.4cos(3﹣4x)D.﹣4cos(3﹣4x)25.下列结论准确的是()A.若,B.若y=cos5x,则y′=﹣sin5xC.若y=sinx2,则y′=2xcosx2D.若y=xsin2x,则y′=﹣2xsin2x 26.函数y=的导数是()A.B.C.D.二.填空题(共4小题)27.设y=f(x)是可导函数,则y=f()的导数为.28.函数y=cos(2x2+x)的导数是.29.函数y=ln的导数为.30.若函数,则的值为.参考答案与试题解析一.选择题(共26小题)1.(2015春•拉萨校级期中)设,则f′(2)=()A.B.C.D.【解答】解:∵f(x)=ln,令u(x)=,则f(u)=lnu,∵f′(u)=,u′(x)=•=,由复合函数的导数公式得:f′(x)=•=,∴f′(2)=.故选B.2.(2014•怀远县校级模仿)设函数f(x)=g(x)+x+lnx,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f (x)在点(1,f(1))处的切线方程为()A.y=4xB.y=4x﹣8C.y=2x+2D.【解答】解:由已知g′(1)=2,而,所以f′(1)=g′(1)+1+1=4,即切线斜率为4,又g(1)=3,故f(1)=g(1)+1+ln1=4,故曲线y=f(x)在点(1,f(1))处的切线方程为y﹣4=4(x﹣1),即y=4x,故选A.3.(2014春•永寿县校级期中)下列式子不准确的是()A.(3x2+cosx)′=6x﹣sinxB.(lnx﹣2x)′=ln2C.(2sin2x)′=2cos2xD.()′=【解答】解:由复合函数的求导轨则对于选项A,(3x2+cosx)′=6x﹣sinx成立,故A准确对于选项B,成立,故B准确对于选项C,(2sin2x)′=4cos2x≠2cos2x,故C不准确对于选项D,成立,故D准确故选C4.(2014春•晋江市校级期中)设f(x)=sin2x,则=()A.B.C.1D.﹣1【解答】解:因为f(x)=sin2x,所以f′(x)=(2x)′cos2x=2cos2x.则=2cos(2×)=﹣1.故选D.5.(2014秋•阜城县校级月考)函数y=cos(2x+1)的导数是()A.y′=sin(2x+1)B.y′=﹣2xsin(2x+1)C.y′=﹣2sin(2x+1)D.y′=2xsin(2x+1)【解答】解:函数的导数y′=﹣sin(2x+1)(2x+1)′=﹣2sin (2x+1),故选:C6.(2014春•福建月考)下列导数运算准确的是()A.(x+)′=1+B.(2x)′=x2x﹣1C.(cosx)′=sinxD.(xlnx)′=lnx+1【解答】解:依据导数的运算公式可得:A,(x+)′=1﹣,故A错误.B,(2x)′=lnx2x,故B错误.C,(cosx)′=﹣sinx,故C错误.D.(xlnx)′=lnx+1,准确.故选:D7.(2013春•海曙区校级期末)下列式子不准确的是()A.(3x2+xcosx)′=6x+cosx﹣xsinxB.(sin2x)′=2cos2x C.D.【解答】解:因为(3x2+xcosx)′=6x+cosx﹣xsinx,所以选项A 准确;(sin2x)′=2cos2x,所以选项B准确;,所以C准确;,所以D不准确.故选D.8.(2013春•江西期中)已知函数f(x)=e2x+1﹣3x,则f′(0)=()A.0B.﹣2C.2e﹣3D.e﹣3【解答】解:∵f′(x)=2e2x+1﹣3,∴f′(0)=2e﹣3.故选C.9.(2013春•黔西南州校级月考)函数的导数是()A.B.C.D.【解答】解:∵函数,∴y′=3cos(3x+)×3=,故选B.10.(2013春•东莞市校级月考)已知函数f(x)=sin2x,则f′(x)等于()A.cos2xB.﹣cos2xC.sinxcosxD.2cos2x【解答】解:由f(x)=sin2x,则f′(x)=(sin2x)′=(cos2x)•(2x)′=2cos2x.所以f′(x)=2cos2x.故选D.11.(2013秋•惠农区校级月考)y=e sinx cosx(sinx),则y′(0)等于()A.0B.1C.﹣1D.2【解答】解:∵y=e sinx cosx(sinx),∴y′=(e sinx)′cosx(sinx)+e sinx(cosx)′(sinx)+e sinx (cosx)(sinx)′=e sinx cos2x(sinx)+e sinx(﹣sin2x)+e sinx(cos2x)∴y′(0)=0+0+1=1故选B12.(2012秋•珠海期末)下列求导运算准确的是()A.B.C.((2x+3)2)′=2(2x+3)D.(e2x)′=e2x【解答】解:因为,所以选项A不准确;,所以选项B准确;((2x+3)2)′=2(2x+3)•(2x+3)′=4(2x+3),所以选项C 不准确;(e2x)′=e2x•(2x)′=2e2x,所以选项D不准确.故选B.13.(2012秋•朝阳区期末)若,则函数f(x)可所以()A.B.C.D.lnx【解答】解:;;;.所以知足的f(x)为.故选A.14.(2012秋•庐阳区校级月考)设,则f2013(x)=()A.22012(cos2x﹣sin2x)B.22013(sin2x+cos2x)C.22012(cos2x+sin2x)D.22013(sin2x+cos2x)【解答】解:∵f0(x)=sin2x+cos2x,∴f1(x)==2(cos2x﹣sin2x),f2(x)==22(﹣sin2x﹣cos2x),f3(x)==23(﹣cos2x+sin2x),f4(x)==24(sin2x+cos2x),…经由过程以上可以看出:f n(x)知足以下纪律,对随意率性n∈N,.∴f2013(x)=f503×4+1(x)=22012f1(x)=22013(cos2x﹣sin2x).故选:B.15.(2011•潜江校级模仿)设f(x)=cos22x,则=()A.2B.C.﹣1D.﹣2【解答】解:∵f(x)=cos22x=∴=﹣2sin4x∴故选D.16.(2011秋•平遥县校级期末)函数的导数为()A.B.C.D.【解答】解:∵∴∴=故选D17.(2011春•南湖区校级月考)函数y=cos(1+x2)的导数是()A.2xsin(1+x2)B.﹣sin(1+x2)C.﹣2xsin(1+x2)D.2cos (1+x2)【解答】解:y′=﹣sin(1+x2)•(1+x2)′=﹣2xsin(1+x2)故选C18.(2011春•瑞安市校级月考)函数y=sin(﹣x)的导数为()A.﹣cos(+x)B.cos(﹣x)C.﹣sin(﹣x)D.﹣sin (x+)【解答】解:∵函数y=sin(﹣x)可算作y=sinu,u=﹣x复合而成且y u′=(sinu)′=cosu,∴函数y=sin(﹣x)的导数为y′=y u′u x′=﹣cos(﹣x)=﹣sin[﹣(﹣x)]=﹣sin(+x)故答案选D19.(2011春•龙港区校级月考)已知函数f(x)在R上可导,对随意率性实数x,f'(x)>f(x);若a为随意率性的正实数,下列式子必定准确的是()A.f(a)>e a f(0)B.f(a)>f(0)C.f(a)<f(0)D.f (a)<e a f(0)【解答】解:∵对随意率性实数x,f′(x)>f(x),令f(x)=﹣1,则f′(x)=0,知足题意显然选项A成立故选A.20.(2010•永州校级模仿)函数y=sin(2x2+x)导数是()A.y′=cos(2x2+x)B.y′=2xsin(2x2+x)C.y′=(4x+1)cos(2x2+x)D.y′=4cos(2x2+x)【解答】解:设y=sinu,u=2x2+x,则y′=cosu,u′=4x+1,∴y′=(4x+1)cosu=(4x+1)cos(2x2+x),故选C.21.(2010•祁阳县校级模仿)函数f(x)=sin2x的导数f′(x)=()A.2sinxB.2sin2xC.2cosxD.sin2x【解答】解:将y=sin2x写成,y=u2,u=sinx的情势.对外函数求导为y′=2u,对内函数求导为u′=cosx,故可以得到y=sin2x的导数为y′=2ucosx=2sinxcosx=sin2x故选D22.(2010春•朝阳区期末)函数的导函数是()A.f'(x)=2e2x B.C.D.【解答】解:对于函数,对其求导可得:f′(x)===;故选C.23.(2009春•房山区期中)函数的导数为()A.B.C.D.【解答】解:令y=3sint,t=2x﹣,则y′=(3sint)′•(2x﹣)′=3cos(2x﹣)•2=,故选A.24.(2009春•瑞安市校级期中)y=sin(3﹣4x),则y′=()A.﹣sin(3﹣4x)B.3﹣cos(﹣4x)C.4cos(3﹣4x)D.﹣4cos(3﹣4x)【解答】解:因为y=sin(3﹣4x),则y′=cos(3﹣4x)×(3﹣4x)′=﹣4cos(3﹣4x)故选D25.(2006春•珠海期末)下列结论准确的是()A.若,B.若y=cos5x,则y′=﹣sin5xC.若y=sinx2,则y′=2xcosx2D.若y=xsin2x,则y′=﹣2xsin2x 【解答】解:函数的导数为,,∴A错误函数y=cos5x的导数为:y′=﹣5sin5x,∴B错误函数y=sinx2的导数为:y′=2xcosx,,∴C准确函数y=xsin2x的导数为:y′=sin2x+2xcos2x,∴D错误故选C26.函数y=的导数是()A.B.C.D.【解答】解:由复合函数的求导轨则可得,•[ln(x2+1)]′ln2=(1+x2)′ln2=•ln2故选A二.填空题(共4小题)27.(2013春•巨野县校级期中)设y=f(x)是可导函数,则y=f ()的导数为y′=f′().【解答】解:设y=f(u),u=,则y′=f'(u),u′=,∴y′=f′()故答案为:y′=f′().28.(2013春•吴兴区校级月考)函数y=cos(2x2+x)的导数是﹣(4x+1)sin(2x2+x).【解答】解:y′=﹣(4x+1)sin(2x2+x),故答案为﹣(4x+1)sin(2x2+x).29.(2012•洞口县校级模仿)函数y=ln的导数为.【解答】解:y′=()′=•()′=•.=•=故答案为:30.(2009春•雁塔区校级期中)若函数,则的值为.【解答】解:由故=故答案为:.。

复合函数求导练习题

复合函数求导练习题

复合函数求导练习题精品资料欢迎下载复合函数求导练题一、选择题(共26小题)1.设$f(x)=\sqrt{\frac{x}{x+1}}$,则$f'(2)=\frac{1}{9}$。

2.设函数$f(x)=g(x)+x+\ln x$,曲线$y=g(x)$在点$(1,g(1))$处的切线方程为$y=2x+1$,则曲线$y=f(x)$在点$(1,f(1))$处的切线方程为$y=2x+2$。

3.下列式子不正确的是$(2sin2x)'=2cos2x$。

4.设$f(x)=sin2x$,则$f''(\frac{\pi}{4})=-1$。

5.函数$y=cos(2x+1)$的导数是$y'=-2sin(2x+1)$。

6.下列导数运算正确的是$(x^2)'=2x$。

7.下列式子不正确的是$(3x^2+xcosx)'=6x+cosx-xsinx$。

8.已知函数$f(x)=e^{2x}-3x$,则$f'(0)=2$。

9.函数$f(x)=\frac{1}{1+e^x}$的导数是$f'(x)=-\frac{e^x}{(1+e^x)^2}$。

10.已知函数$f(x)=sin2x$,则$f'(x)=2cos2x$。

11.$y=e^{sinx\ cosx\ sinx}$,则$y'=\frac{d}{dx}(e^{sinx\ cosx\ sinx})=cosx\ cos^2x\ e^{sinx\ cosx\ sinx}$,所以$y'(-\frac{\pi}{4})=\frac{\sqrt{2}}{4}$。

12.下列求导运算正确的是$(e^{2x})'=2e^{2x}$。

13.若$f(x)=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{1-x}}$,则函数$f(x)$可以是$ln\frac{1+\sqrt{x}}{\sqrt{x}}$。

复合求导练习题

复合求导练习题

复合求导练习题复合求导练习题在微积分学中,求导是一项基本的技能。

而复合求导则是在求导的过程中,遇到复合函数时所需要掌握的一种求导方法。

复合函数是由两个或多个函数组合而成的函数,其求导的过程需要运用链式法则。

为了更好地理解和掌握复合求导,我们来进行一些练习题。

1. 设有函数 f(x) = (2x^3 - 5x^2 + 3x - 1)^4,求 f'(x)。

解析:首先,我们可以将 f(x) 看作是一个外层函数和一个内层函数的复合。

外层函数是 g(x) = x^4,内层函数是 h(x) = 2x^3 - 5x^2 + 3x - 1。

根据链式法则,f'(x) = g'(h(x)) * h'(x)。

我们先来求解 g'(h(x)) 和 h'(x)。

g'(x) = 4x^3,h'(x) = 6x^2 - 10x + 3。

将 g'(h(x)) 和 h'(x) 代入链式法则,得到 f'(x) = 4(2x^3 - 5x^2 + 3x - 1)^3 *(6x^2 - 10x + 3)。

2. 设有函数 f(x) = sin(3x^2 + 2x + 1),求 f'(x)。

解析:在这个例子中,我们需要求解 sin 函数的复合求导。

sin 函数的导数是cos 函数,所以我们需要求解 (3x^2 + 2x + 1) 的导数,并将其与 cos 函数相乘。

f'(x) = cos(3x^2 + 2x + 1) * (6x + 2)。

3. 设有函数 f(x) = ln(2x^3 - 4x + 1),求 f'(x)。

解析:对于 ln 函数的复合求导,我们需要求解 (2x^3 - 4x + 1) 的导数,并将其除以 (2x^3 - 4x + 1)。

f'(x) = (6x^2 - 4) / (2x^3 - 4x + 1)。

复合函数求导练习题

复合函数求导练习题
将y=sin2x写成,
y=u2,u=sinx的形式.
对外函数求导为y′=2u,
对内函数求导为u′=cosx,
故可以得到y=sin2x的导数为
y′=2ucosx=2sinxcosx=sin2x
故选D
22.(2010春•朝阳区期末)函数 的导函数是( )
A.f'(x)=2e2xB.
C. D.
【解答】解:对于函数 ,
C. D.
8.已知函数f(x)=e2x+1﹣3x,则f′(0)=( )
A.0B.﹣2C.2e﹣3D.e﹣3
9.函数 的导数是( )
A. B.
C. D.
10.已知函数f(x)=sin2x,则f′(x)等于( )
A.cos2xB.﹣cos2xC.sinxcosxD.2cos2x
11.y=esinxcosx(sinx),则y′(0)等于( )
【解答】解:函数的导数y′=﹣sin(2x+1)(2x+1)′=﹣2sin(2x+1),
故选:C
6.(2014春•福建月考)下列导数运算正确的是( )
A.(x+ )′=1+ B.(2x)′=x2x﹣1C.(cosx)′=sinxD.(xlnx)′=lnx+1
【解答】解:根据导数的运算公式可得:
A,(x+ )′=1﹣ ,故A错误.
B,(2x)′=lnx2x,故B错误.
C,(cosx)′=﹣sinx,故C错误.
D.(xlnx)′=lnx+1,正确.
故选:D
7.(2013春•海曙区校级期末)下列式子不正确的是( )
A.(3x2+xcosx)′=6x+cosx﹣xsinxB.(sin2x)′=2cos2x

复合函数的导数练习题(可编辑修改word版)

复合函数的导数练习题(可编辑修改word版)

技能演练 基 础 强 化1. 函数 y =cos n x 的复合过程正确的是( )A .y =u n ,u =cos x nB .y =t ,t =cos n xC .y =t n ,t =cos xD .y =cos t ,t =x n 答 案 C2. y =e x 2-1 的导数是( )22A .y ′=(x 2-1)e x -1B .y ′=2x e x -1 2C .y ′=(x 2-1)e xD .y ′=e x -12 2解析y ′=e x -1 (x 2-1)′=e x -1·2x .答案 B3. 下列函数在 x =0 处没有切线的是() A .y =3x 2+cos xB .y =x sin x11C .y =x+2xD .y =cos x1 1解析 因为 y =x +2x 在 x =0 处没定义,所以 y =x +2x 在 x =0 处没有切线.答案 C4. 与直线 2x -y +4=0 平行的抛物线 y =x 2 的切线方程是()A .2x -y +3=0B .2x -y -3=0C .2x -y +1=0D .2x -y -1=0解析 设切点为(x 0,x 02),则斜率 k =2x 0=2,∴x 0=1,∴切点为(1,1).故切线方程为 y -1=2(x -1),即 2x -y -1=0. 答案 D5. y =log a (2x 2-1)的导数是()4x A.(2x 2-1)ln a1 4xB.2x 2-1 2x 2-1 C.D.(2x 2-1)ln aln a1 4x解析 y ′= (2x 2-1)′= .答案 A(2x 2-1)ln a (2x 2-1)ln a22 ax 2-1 ax 2-1 a -16.已知函数 f (x )= ax 2-1,且 f ′(1)=2,则 a 的值为()A. a =1B .a =2C .a =D .a >01 1 解析 f ′(x )= (ax 2-1)- ·(ax 2-1)′2 21 = ·2axax = .由 f ′(1)=2, a得=2,∴a =2.答案 B7.曲线 y =sin2x 在点 M (π,0)处的切线方程是 .解析 y ′=(sin2x )′=cos2x ·(2x )′=2cos2x , ∴k =y ′|x =π=2.又过点(π,0),所以切线方程为 y =2(x -π). 答案 y =2(x -π)f ′(x ) 8.f (x )=e 2x -2x ,则e x -1=.解析 f ′(x )=(e 2x )′-(2x )′=2e 2x -2=2(e 2x -1). f ′(x ) 2(e 2x -1) ∴ = e x -1 e x -1 =2(e x +1). 答案 2(e x +1)能 力 提 升9. 已知函数 f (x )=2x 3+ax 与 g (x )=bx 2+c 的图像都过点 P (2,0),且在点 P 处有相同的切线.求实数 a ,b ,c 的值.解 ∵函数 f (x )=2x 3+ax 与 g (x )=bx 2+c 的图像都过点 P (2,0), ∴E rr o r !得 a =-8,4b +c =0, ∴f (x )=2x 3-8x ,f ′(x )=6x 2-8.又当 x =2 时,f ′(2)=16,g ′(2)=4b , ∴4b =16,∴b =4,c =-16. ∴a =-8,b =4,c =-16.110.已知函数 f (x )=ln x ,g (x )= x 2+a (a 为常数),直线 l 与函数 f (x )、g (x )的图像都相切,2且 l 与函数 f (x )图像的切点的横坐标为 1,求直线的方程及 a 的值.1解∵f(x)=ln x,∴f′(x)=x,∴f′(1)=1,即直线l 的斜率为1,切点为(1,0).∴直线l 的方程为y=x-1.1又l 与g(x)的图像也相切,等价于方程组E rr o r!只有一解,即方程x2-x+1+a=0 有2两个相等的实根,1 1∴Δ=1-4×(1+a)=0,∴a=-.2 2品味高考11.曲线y=e-2x+1 在点(0,2)处的切线与直线y=0 和y=x 围成的三角形的面积为( )1 A. 3 21 B.-2C.D.1 3解析∵y′=(-2x)′e-2x=-2e-2x,∴k=y′|x=0=-2e0=-2,∴切线方程为y-2=-2(x-0),即y=-2x+2.2 2如图,由E rr o r!得交点坐标为( ,),3 3y=-2x+2 与x 轴的交点坐标为(1,0),1 2 1∴所求面积为S=×1×=.2 3 3答案 A12.若曲线y=x2+ax+b 在点(0,b)处的切线方程是x-y+1=0,则( ) A.a=1,b=1 B.a=-1,b=1C.a=1,b=-1 D.a=-1,b=-1解析∵y=x2+ax+b,∴y′=2x+a.∵在点(0,b)处的切线方程是x-y+1=0,∴f′(0)=a=1.又0-b+1=0,∴b=1.答案 A。

复合函数求导练习题

复合函数求导练习题

复合函数求导练习题1. 简单函数的定义求导的方法求函数的增量?y?f?f; ?yf?f?。

?x?xf?f取极限求导数f’?lim?x?0?x求平均变化率2.导数与导函数的关系:特殊与一般的关系。

函数在某一点f’的导数就是导函数f,当x?x0时的函数值。

.常用的导数公式及求导法则:公式①C?0,③’??sinx‘②’?cosx ④’?nxn?1 ⑥’?ex⑤’?axlna ⑦?‘11’⑧? xlnax11’’cotx)??⑨? ⑩法则:[f?g]?[f]?[g],[fg]’?f’g?g’ff’f’g?g’f [ ]?2gg例:32y?xx?4y???sinxxy?3cosx?4sinx y??2x?3?y?ln?x?2?2复合函数的导数如果函数?在点x处可导,函数f 在点u=?处可导,则复合函数y= f =f [?]在点x处也可导,并且])ˊ= 或记作熟记链式法则若y= f ,u=?? y= f [?],则f??u?y?x=yuxy?x=f若y= f ,u=?,v=?? y= f [?)],则?? y?x=f复合函数求导的关键是正确分析已给复合函数是由哪些中间变量复合而成的,且要求这些中间变量均为基本初等函数或经过四则运算而成的初等函数。

在求导时要由外到内,逐层求导。

例1函数y?1的导数.4解:y?1?4. ?4,u?1?3x,则设y?u?4y’x?y’u?u’x?’u?’x??4u?5??12u?5?12?5?12.例2求y?x的导数. 1?x15解:y???x??, ?1?x??451?x?y’5?1?x??x?1?x1?x51?x????4‘?45?1?x?x21?x5?1?x??45?11?5??x5.56例求下列函数的导数y??2x解:y?3?2x令u=-2x,则有y=u,u=-2x??u??yux由复合函数求导法则y?x 有y′=??u?x=12?2x在运用复合函数的求导法则达到一定的熟练程度之后,可以不再写出中间变量u,于是前面可以直接写出如下结果:yˊ=123?2x1?2x在运用复合函数求导法则很熟练之后,可以更简练地写出求导过程:yˊ=12?2x1?2x例4求下列函数的导数 y=?2xcos x y=ln解:y=由于y=而其中?2x?2xcos x是两个函数?2x与cos x的乘积,又是复合函数,所以在对此函数求导时应先用乘积求导法则,而在求时再用复合函数求导法则,于是yˊ=ˊcos x -?2xsin xcosx-?2xsin x=?cosx?2x2?2x-?2xsin xy=ln )是u= x+?x2与y=ln u复合而成,所以对此函数求导时,应先用复合函数求导法则,在求u?x时用函数和的求导法则,而求′的导数时再用一次复合函数的求导法则,所以1x??x2? [1+ˊ]=1x??x2??1?????? ?2?x2?2x=1x??x2?x??x2?x2=1?x2例设y?ln 求 y?. 解利用复合函数求导法求导,得y??[ln]??1x?x?12??1x?x2?1[1??]?1x?x?12[1?12x?12?]?1x?x?12[1?xx?12]?1x?12.1.求下函数的导数. y?cos y= y=5y=y=y=2xy?3?112y= y=siny=cos363x?1c3; ?y?sinx2;?y?o1.求下列函数的导数y =sinx3+sin33x; y??4?x); ?y?lnsin.sin2xlogax?1技能演练基础强化1.函数y=cosnx的复合过程正确的是 A.y=un,u =cosxn B.y=t,t=cosnx C.y=tn,t=cosx D.y=cost,t=xn 答案 C2.y=ex2-1的导数是 A.y′=e22x2-1B.y′=2xeD.y′=ex2-1x2-1C.y′=e解析y′=e答案 B3.下列函数在x=0处没有切线的是 A.y=3x2+cosx1C.y=+2xxx2-1xx2-1′=e2·2x.B.y=xsinx 1D.y=cosx11解析因为y=2x在x=0处没定义,所以y=+2x在x=0处没有切线.xx答案 C4.与直线2x-y+4=0平行的抛物线y=x2的切线方程是 A.2x-y+3=0C.2x-y+1=0解析设切点为,则斜率k=2x0=2,∴x0=1,∴切点为.故切线方程为y-1=2,即2x-y-1=0. 答案 D5.y=loga的导数是x?2x-1?lna1?2x-1?lna4xB.2x-12x2-1lnaB.2x-y-3=0 D.2x-y-1=0 14x解析y′=x2-1)′=?2x-1?lna?2x-1?lna答案 A 6.已知函数f=ax-1,且f′=2,则a的值为 A.a =1C.a=11解析f′=·′22==12ax2ax-1axax-1B.a=D.a>0由f′=2,得a=2,∴a=2. a-1答案 B7.曲线y=sin2x在点M处的切线方程是________.解析y′=′=cos2x·′=2cos2x,∴k=y′|x=π=2.又过点,所以切线方程为y=2.答案 y=2f′?x?8.f=e2x-2x,则=________.e-1解析f′=′-′=2e2x-2=2.f′?x?2?e2x-1?∴2. e-1e-1答案能力提升9.已知函数f=2x3+ax与g=bx2+c的图像都过点P,且在点P处有相同的切线.求实数a,b,c的值.解∵函数f=2x3+ax与g=bx2+c的图像都过点P, ?2×23+2a=0,?∴?得a=-8,4b+c=0,?b×2+c=0,?∴f=2x3-8x,f′=6x2-8. 又当x=2时,f′=16,g′=4b,∴4b=16,∴b=4,c=-16. ∴a=-8,b =4,c=-16.110.已知函数f=lnx,g=2+a,直线l与函数f、g 的图像都相切,2且l与函数f图像的切点的横坐标为1,求直线的方程及a的值.1解∵f=lnx,∴f′=,∴f′=1,x即直线l的斜率为1,切点为.∴直线l的方程为y=x-1.y=x-1,??1又l与g的图像也相切,等价于方程组?1x2-x+1+a ??y=22+a2=0有两个相等的实根,∴Δ=1-4×12=0,∴a12品味高考11.曲线y=e-2x+1在点处的切线与直线y=0和y=x围成的三角形的面积为′e-2x=-2e-2x,∴k=y′|x=0=-2e0=-2,∴切线方程为y-2=-2,即y=-2x+2.如图,由y=-2x+2,?得交点坐标为,y=-2x+2与x轴的交点坐标为,∴所求面积为S =12×1×2133.答案 A12.若曲线y=x2+ax+b在点处的切线方程是x-y +1=0,则)A.a=1,b=1C.a=1,b=-1解析∵y=x2+ax+b,∴y′=2x+a. ∵在点处的切线方程是x-y+1=0,∴f′=a=1.B.a=-1,b=1 D.a=-1,b=-1又0-b+1=0,∴b=1. 答案 A函数求导1. 简单函数的定义求导的方法求函数的增量?y?f?f;?yf?f?。

(完整版)导数的四则运算及复合函数求导运算练习题

(完整版)导数的四则运算及复合函数求导运算练习题

一、选择题(共7小题,每小题5.0分,共35分) 1.函数y =3sin(2x -π6)的导数为( )A .y ′=6cos(2x -π6)B .y ′=3cos(2x -π6)C .y ′=-3cos(2x -π6)D .y ′=-6cos(2x -π6)2.函数f (x )=e 2x x 的导函数是( )A .f ′(x )=2e 2xB .f ′(x )=2e 2x x C .f ′(x )=(2x−1)e 2xx 2D .f ′(x )=(x−1)e 2xx 23.下列求导运算正确的是( )A . (x +1x )′=1+1x 2B . (log 2x )′=1xln2C . [(2x +3)2]′=2(2x +3)D . (e 2x )′=e 2x4.已知函数f (x -1)=2x 2-x ,则f ′(x )等于( )A . 4x +3B . 4x -1C . 4x -5D . 4x -35.函数y =cos(1+x 2)的导数是( )A . 2x sin(1+x 2)B . -sin(1+x 2)C . -2x sin(1+x 2)D . 2cos(1+x 2)6.已知f (x )=a ln x +12x 2(a >0),若对任意两个不等的正实数x 1,x 2,都有f(x 1)−f(x 2)x 1−x 2>2恒成立,则a 的取值范围是( )A . (0,1]B . (1,+∞)C. (0,1)D. [1,+∞)7.已知曲线f(x)=x ln x的一条切线的斜率为2,则切点的横坐标为()A. 1B. ln 2C. 2D. e二、填空题(共9小题,每小题5.0分,共45分)8.已知函数f(x)=2sin 3x+9x,则lim△x→0f(1+△x)−f(1)△x________.9.函数f(x)=x sin(2x+5)的导数为________.10.函数y=cos(2x2+x)的导数是________________.11.函数y=ln√1+x21−x2的导数为________.12.y=x e cos x的导函数为________.13.f′(x)是f(x)=cos x·e sin x的导函数,则f′(x)=________.14.已知函数f(x)=e2x·cos x,则f(x)的导数f′(x)=________.15.已知函数f(x)=(x+2)e x,则f′(0)=________.16.已知f(x)=ln(ax2-1),且f′(1)=4,则a=________.三、解答题(共0小题,每小题12.0分,共0分)答案解析1.【答案】A【解析】令y=3sin t,t=2x-π6,则y′=(3sin t)′·(2x-π6)′=3cos(2x-π6)·2=6cos(2x-π6).2.【答案】C【解析】对于函数f(x)=e2xx,对其求导可得f′(x)=(e2x)′×x−e2x×x′x2=2x?e2x−e2xx2=(2x−1)e2xx2.3.【答案】B【解析】因为(x+1x )′=x′+(1x)′=1-1x2,所以选项A不正确;(log2x)′=1xln2,所以选项B正确;[(2x+3)2]′=2(2x+3)·(2x+3)′=4(2x+3),所以选项C不正确;(e2x)′=e2x·(2x)′=2e2x,所以选项D不正确.4.【答案】A【解析】令x-1=t,则x=t+1,所以f(t)=2(t+1)2-(t+1)=2t2+3t+1,所以f(x)=2x2+3x+1,所以f′(x)=4x+3.5.【答案】C【解析】y′=-sin(1+x2)·(1+x2)′=-2x sin(1+x2).6.【答案】D【解析】对任意两个不等的正实数x1,x2,都有f(x1)−f(x2)x1−x2>2恒成立,则当x>0时,f′(x)≥2恒成立,f′(x)=ax+x≥2在(0,+∞)上恒成立,则a≥(2x-x2)max=1.7.【答案】D【解析】∵f′(x)=ln x+1,由曲线在某点的切线斜率为2,令y′=ln x+1=2,解得x =e.8.【答案】6cos 3+9【解析】f ′(x )=(2sin 3x +9x )′=6cos 3x +9.lim △x→0f (1+△x )−f(1)△x=f ′(1)=6cos 3+9. 9.【答案】sin(2x +5)+2x cos(2x +5)【解析】f ′(x )=x ′sin(2x +5)+x (sin(2x +5))′ =sin(2x +5)+2x cos(2x +5).10.【答案】-(4x +1)sin(2x 2+x )【解析】y ′=-(4x +1)sin(2x 2+x ).11.【答案】2x 1−x【解析】y ′=√1−x 2(√1+x21−x2)′ =√1+x 21−x 2·2√1+x 21−x 2(1+x 21−x 2)′=√1+x 21−x 2·2√1+x 21−x 2·4x(1−x 2)2=1−x 22(1+x 2)·4x (1−x 2)2=2x1−x 4.12.【答案】-x sin x ·e cos x +e cos x【解析】y ′=(x e cos x )′=x ′e cos x +x (e cos x )′ =e cos x +x (-sin x e cos x )=-x sin x ·e cos x +e cos x . 13.【答案】(cos 2x -sin x )e sin x【解析】∵f (x )=cos x ·e sin x ,∵f ′(x )=(cos x )′e sin x +cos x (e sin x )′=-sin x e sin x +cos x e sin x cos x =(cos 2x -sin x )e sin x . 14.【答案】e 2x (2cos x -sin x )【解析】由积的求导可得,f ′(x )=(e 2x ·cos x )′ =e 2x ·2·cos x +e 2x (cos x )′=2e 2x cos x -e 2x sin x=e 2x (2cos x -sin x ).15.【答案】3【解析】∵f ′(x )=[(x +2)·e x ]′=e x +(x +2)e x , ∵f ′(0)=1+2=3.16.【答案】2【解析】∵f ′(x )=1ax 2−1(ax 2-1)′=2ax ax 2−1, ∵f ′(1)=2a a−1=4, ∵a =2.。

导数复合函数的导数练习题

导数复合函数的导数练习题

导数复合函数的导数练习题
复合函数的导数是微积分中的基本概念之一,它在求解实际问题中具有广泛的应用。

本文将提供一些关于复合函数导数的练习题,帮助读者深入理解和掌握这一概念。

1.已知函数f(f)=f^2,求函数f(f)=f(f^3)的导数。

解:首先。

然后。

所以。

2. 已知函数f(f)=sin(f),求函数f(f)=f(2f+1)的导数。

解:首先,计算函数f(2f+1)的导数:f'(2f+1)=cos(2f+1).
然后。

所以,函数f(f)的导数是2cos(2f+1).
3.已知函数f(f)=f^3+2f,求函数f(f)=f(f^2+1)的导数。

解:首先,计算函数f(f^2+1)的导数:
f'(f^2+1)=(f^2+1)'⋅(3f^2+2f)'=2f⋅(3f^2+2f).
然后,使用链式法则计算函数f(f)的导数:
f'(f)=f'(f^2+1)⋅(f^2+1)'=2f⋅(3f^2+2f)⋅2f=4f^2(3f^2+2 f).
所以,函数f(f)的导数是4f^2(3f^2+2f).
4.已知函数f(f)=ffff(f),求函数f(f)=f(3−f)的导数。

解:首先。

然后。

所以。

以上是几个关于复合函数导数的练习题,希望能够帮助读者理解和掌握复合函数导数的计算方法。

当然,在实践中不同的问题可能会结合其他微积分概念和定理来求解,但掌握了基本的思路和方法,读者将能够更好地解决复合函数导数相关问题。

复合函数求导例题

复合函数求导例题

复合函数求导例题问题描述考虑函数y=f(g(x)),其中f(x)和g(x)均可导。

现给定 $f(x)=\\sqrt{x}$ 和g(x)=x2,求复合函数y=f(g(x))的导数。

解法分析要求复合函数的导数,一种有效的方法是使用链式法则。

根据链式法则,如果有函数y=f(u)和u=g(x),那么y对于x的导数可表示为:$$ \\frac{{\\mathrm{d}y}}{{\\mathrm{d}x}}=\\frac{{\\mathrm{d}y}}{{\\mat hrm{d}u}}\\cdot\\frac{{\\mathrm{d}u}}{{\\mathrm{d}x}} $$应用链式法则,我们可以得到复合函数的导数。

解法步骤根据链式法则,我们可以按以下步骤求解复合函数y=f(g(x))的导数:1.先求f(x)对u的导数 $\\frac{{\\mathrm{d}f}}{{\\mathrm{d}u}}$2.再求u=g(x)对x的导数$\\frac{{\\mathrm{d}u}}{{\\mathrm{d}x}}$3.最后将两个导数乘积,得到复合函数的导数$\\frac{{\\mathrm{d}y}}{{\\mathrm{d}x}}=\\frac{{\\mathrm{d}f}}{{\\mathr m{d}u}}\\cdot\\frac{{\\mathrm{d}u}}{{\\mathrm{d}x}}$解法推导首先,求 $f(x)=\\sqrt{x}$ 对u的导数$\\frac{{\\mathrm{d}f}}{{\\mathrm{d}u}}$:$$ \\frac{{\\mathrm{d}f}}{{\\mathrm{d}u}}=\\frac{1}{{2\\sqrt{u}}} $$然后,求u=g(x)=x2对x的导数$\\frac{{\\mathrm{d}u}}{{\\mathrm{d}x}}$:$$ \\frac{{\\mathrm{d}u}}{{\\mathrm{d}x}}=2x $$将导数相乘,得到复合函数的导数$\\frac{{\\mathrm{d}y}}{{\\mathrm{d}x}}$:$$ \\frac{{\\mathrm{d}y}}{{\\mathrm{d}x}}=\\frac{{\\mathrm{d}f}}{{\\math rm{d}u}}\\cdot\\frac{{\\mathrm{d}u}}{{\\mathrm{d}x}}=\\frac{1}{{2\\sqrt{u}}} \\cdot2x $$最后,将u=g(x)=x2带入,并化简导数表达式,得到:$$ \\frac{{\\mathrm{d}y}}{{\\mathrm{d}x}}=\\frac{1}{{2\\sqrt{x^2}}}\\cdot 2x=\\frac{x}{{\\sqrt{x^2}}}=\\frac{x}{|x|} $$结论经过推导,我们得到复合函数 $y=f(g(x))=\\sqrt{x^2}$ 的导数为$\\frac{{\\mathrm{d}y}}{{\\mathrm{d}x}}=\\frac{x}{|x|}$。

(完整版)复合函数的导数练习题(无答案)

(完整版)复合函数的导数练习题(无答案)

函数求导1. 简单函数的定义求导的方法(一差、二比、三取极限) (1)求函数的增量)()(00x f x x f y -∆+=∆;(2)求平均变化率xx f x x f x y ∆-∆+=∆∆)()(00。

(3)取极限求导数=)(0'x f xx f x x f x ∆-∆+→∆)()(lim 0002.导数与导函数的关系:特殊与一般的关系。

函数在某一点)(0'x f 的导数就是导函数)(x f ,当0x x =时的函数值。

3.常用的导数公式及求导法则: (1)公式①0'=C ,(C 是常数) ②x x cos )(sin '= ③x x sin )(cos '-=④1')(-=n n nxx⑤a a a xx ln )('=⑥xx e e =')(⑦a x x a ln 1)(log '=⑧x x 1)(ln '= ⑨x x 2'cos 1)(tan = ⑩(xx 2'sin 1)cot -= (2)法则:''')]([)]([)]()([x g x f x g x f ±=±, )()()()()]()(['''x f x g x g x f x g x f +=)()()()()(])()([2'''x g x f x g x g x f x g x f -= 例:(1)()324y x x =- (2)sin xy x=(3)3cos 4sin y x x =- (4)()223y x =+(5)()ln 2y x =+复合函数的导数如果函数)(x ϕ在点x 处可导,函数f (u )在点u=)(x ϕ处可导,则复合函数y= f (u )=f [)(x ϕ]在点x 处也可导,并且(f [)(x ϕ])ˊ= [])(x f ϕ')(x ϕ'或记作 x y '=u y '•x u '熟记链式法则若y= f (u ),u=)(x ϕ⇒ y= f [)(x ϕ],则x y '=)()(x u f ϕ''若y= f (u ),u=)(v ϕ,v=)(x ψ⇒ y= f [))((x ψϕ],则x y '=)()()(x v u f ψϕ'''(2)复合函数求导的关键是正确分析已给复合函数是由哪些中间变量复合而成的,且要求这些中间变量均为基本初等函数或经过四则运算而成的初等函数。

高中试卷-5.2.3简单复合函数的导数 -B提高(含答案)

高中试卷-5.2.3简单复合函数的导数   -B提高(含答案)

5.2.3简单复合函数的导数 -B 提高练一、选择题1.(2021·广东揭阳市高二期末)函数()sin 23f x x p æö=+ç÷èø的导函数()f x ¢为( )A .()cos 23f x x p æö¢=+ç÷èøB .()2cos 23f x x p æö¢=+ç÷èøC .()cos2f x x¢=D .()2cos2f x x¢=【答案】B 【详解】函数()sin 23f x x p æö=+ç÷èø可以看作函数sin y u =和23u x p=+的复合函数,根据复合函数的求导法则有()'()''sin '2'2cos 2cos 233u x f x y u u x u x p p æöæöç÷ç÷=×=×+==+ç÷ç÷èøèø.故选:B.2.(2020·四川省眉山车城中学高二期中)已知函数()()()ln 2131f x x xf ¢=-+,则()1f ¢=()A .1B .-1C .2D .3【答案】B 【详解】因为()()()ln 2131f x x xf ¢=-+,所以2()3(1)21f x f x ¢¢=+-,令1x =,可得2(1)3(1)211f f ¢¢=+´-,解得(1)1f ¢=-.故选:B.3.(2021·江苏徐州市·高三期末)随着科学技术的发展,放射性同位素技术已经广泛应用于医学、航天等众多领域,并取得了显著经济效益.假设某放射性同位素的衰变过程中,其含量N (单位:贝克)与时间t (单位:天)满足函数关系()3002tP t P -=,其中0P 为时该放射性同位素的含量.已知15t =时,该放射性同位素的瞬时变化率为 4.5贝克时衰变所需时间为( )A .20天B .30天C .45天D .60天【答案】D【详解】由()3002tP t P -=得()30012ln230t P t P -¢=-××,因为15t =时,该放射性同位素的瞬时变化率为,即()015P P ¢==,解得018P =,则()30182t P t -=×,当该放射性同位素含量为4.5贝克时,即() 4.5Pt =,所以301824.5t -×=,即30124t -=,所以230t -=-,解得60t =.故选:D.4.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( )A .1 B .2 C .-1 D .-2【答案】B【详解】设切点坐标是(x 0,x 0+1),依题意有{1x 0+a=1,x 0+1=ln (x 0+a ),由此得x 0+1=0,x 0=-1,a =2.5.(多选题)(2021·江苏高二)以下函数求导正确的是()A .若()2211x f x x -=+,则()()2241x f x x ¢=+B .若()2x f x e =,则()2xf x e ¢=C .若()f x =,则()f x ¢=D .若()cos 23f x x p æö=-ç÷èø,则()sin 23f x x p æö¢=--ç÷èø【答案】AC【详解】对A ,()()()()()2222222112411+--×¢==++x x x xxf x xx,故A 正确对B ,()2222¢=×=x x f x e e ,故B 错;对C ,()()()()111222*********--éù¢=-¢=×-×=-=êúûëf x x x x 所以C 正确对D ,()sin 222sin 233p p éùæöæö¢=--×=--ç÷ç÷êúèøèøëûf x x x ,故D 错;故选:AC 6.(多选题)(2021·全国高二课时练)已知函数()f x 及其导数()¢f x ,若存在0x ,使得()()00f x f x ¢=,则称0x 是()f x 的一个“巧值点”.下列函数中,有“巧值点”的是( )A .2()f x x =B .()xf x e -=C .()ln f x x =D .1()f x x=【答案】ACD【详解】在A 中,若2()f x x =,则()2f x x ¢=,则22x x =,这个方程显然有解,故A 符合要求;在B 中,若()xf x e -=,则111()ln x x x f x e e e e -¢éùæöæö===-êúç÷ç÷èøèøêúëû¢,即x x e e --=-,此方程无解,故B 不符合要求;在C 中,若()ln f x x =,则1()f x x ¢=,由1ln x x=,令ln y x =,1y x =(0x >),作出两函数的图像如图所示,由两函数图像有一个交点可知该方程存在实数解,故C 符合要求;在D 中,若1()f x x =,则21()f x x¢=-,由211x x =-,可得1x =-,故D 符合要求.故选:ACD .二、填空题7.(2020·陕西彬州市高二月考)已知y =,则y ′=________.【答案】21xx -+【详解】y ==()122ln 1x-+=-12ln(1+x 2),所以y ′=-21121x ´+·(2x )=21xx -+.8.(2020·洛阳市第一高级中学高二月考)函数2()ln(1)f x x =+的图像在点(1,(1))f 处的切线的斜率为_________.【答案】1【详解】因为函数2()ln(1)f x x =+,所以22()1xf x x ¢=+,则在点(1,(1))f 处的切线的斜率22(1)111f k ¢==+=.9.(2020·广东湛江市·湛江二十一中高二开学考试)若函数()()ln 1ax f x e x =++,()04f ¢=,则a =__________.【答案】3【详解】由()()ln 1ax f x e x =++,得()11ax f x ae x ¢=++,()04f ¢=Q ,()014f a ¢\=+=,3a \=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复合函数求导练习题一.选择题(共26小题)1.设,则f′(2)=()A.B.C.D.2.设函数f(x)=g(x)+x+lnx,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程为()A.y=4x B.y=4x﹣8 C.y=2x+2 D.3.下列式子不正确的是()A.(3x2+cosx)′=6x﹣sinx B.(lnx﹣2x)′=ln2C.(2sin2x)′=2cos2x D.()′=4.设f(x)=sin2x,则=()A.B.C.1 D.﹣15.函数y=cos(2x+1)的导数是()A.y′=sin(2x+1)B.y′=﹣2xsin(2x+1)C.y′=﹣2sin(2x+1)D.y′=2xsin(2x+1)6.下列导数运算正确的是()A.(x+)′=1+B.(2x)′=x2x﹣1C.(cosx)′=sinx D.(xlnx)′=lnx+17.下列式子不正确的是()A.(3x2+xcosx)′=6x+cosx﹣xsinx B.(sin2x)′=2cos2xC.D.8.已知函数f(x)=e2x+1﹣3x,则f′(0)=()A.0 B.﹣2 C.2e﹣3 D.e﹣39.函数的导数是()A. B.C.D.10.已知函数f(x)=sin2x,则f′(x)等于()A.cos2x B.﹣cos2x C.sinxcosx D.2cos2x11.y=e sinx cosx(sinx),则y′(0)等于()A.0 B.1 C.﹣1 D.212.下列求导运算正确的是()A. B.C.((2x+3)2)′=2(2x+3)D.(e2x)′=e2x13.若,则函数f(x)可以是()A.B.C.D.lnx14.设,则f2013(x)=()A.22012(cos2x﹣sin2x)B.22013(sin2x+cos2x)C.22012(cos2x+sin2x)D.22013(sin2x+cos2x)15.设f(x)=cos22x,则=()A.2 B.C.﹣1 D.﹣216.函数的导数为()A.B.C.D.17.函数y=cos(1+x2)的导数是()A.2xsin(1+x2) B.﹣sin(1+x2) C.﹣2xsin(1+x2)D.2cos(1+x2)18.函数y=sin(﹣x)的导数为()A.﹣cos(+x)B.cos(﹣x)C.﹣sin(﹣x)D.﹣sin(x+)19.已知函数f(x)在R上可导,对任意实数x,f'(x)>f(x);若a为任意的正实数,下列式子一定正确的是()A.f(a)>e a f(0)B.f(a)>f(0)C.f(a)<f(0)D.f(a)<e a f(0)20.函数y=sin(2x2+x)导数是()A.y′=cos(2x2+x)B.y′=2xsin(2x2+x)C.y′=(4x+1)cos(2x2+x)D.y′=4cos(2x2+x)21.函数f(x)=sin2x的导数f′(x)=()A.2sinx B.2sin2x C.2cosx D.sin2x22.函数的导函数是()A.f'(x)=2e2x B.C.D.23.函数的导数为()A.B.C.D.24.y=sin(3﹣4x),则y′=()A.﹣sin(3﹣4x)B.3﹣cos(﹣4x)C.4cos(3﹣4x)D.﹣4cos(3﹣4x)25.下列结论正确的是()A.若,B.若y=cos5x,则y′=﹣sin5xC.若y=sinx2,则y′=2xcosx2D.若y=xsin2x,则y′=﹣2xsin2x26.函数y=的导数是()A.B.C.D.二.填空题(共4小题)27.设y=f(x)是可导函数,则y=f()的导数为.28.函数y=cos(2x2+x)的导数是.29.函数y=ln的导数为.30.若函数,则的值为.参考答案与试题解析一.选择题(共26小题)1.(2015春•拉萨校级期中)设,则f′(2)=()A.B.C.D.【解答】解:∵f(x)=ln,令u(x)=,则f(u)=lnu,∵f′(u)=,u′(x)=•=,由复合函数的导数公式得:f′(x)=•=,∴f′(2)=.故选B.2.(2014•怀远县校级模拟)设函数f(x)=g(x)+x+lnx,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程为()A.y=4x B.y=4x﹣8 C.y=2x+2 D.【解答】解:由已知g′(1)=2,而,所以f′(1)=g′(1)+1+1=4,即切线斜率为4,又g(1)=3,故f(1)=g(1)+1+ln1=4,故曲线y=f(x)在点(1,f(1))处的切线方程为y﹣4=4(x﹣1),即y=4x,故选A.3.(2014春•永寿县校级期中)下列式子不正确的是()A.(3x2+cosx)′=6x﹣sinx B.(lnx﹣2x)′=ln2C.(2sin2x)′=2cos2x D.()′=【解答】解:由复合函数的求导法则对于选项A,(3x2+cosx)′=6x﹣sinx成立,故A正确对于选项B,成立,故B正确对于选项C,(2sin2x)′=4cos2x≠2cos2x,故C不正确对于选项D,成立,故D正确故选C4.(2014春•晋江市校级期中)设f(x)=sin2x,则=()A.B.C.1 D.﹣1【解答】解:因为f(x)=sin2x,所以f′(x)=(2x)′cos2x=2cos2x.则=2cos(2×)=﹣1.故选D.5.(2014秋•阜城县校级月考)函数y=cos(2x+1)的导数是()A.y′=sin(2x+1)B.y′=﹣2xsin(2x+1)C.y′=﹣2sin(2x+1)D.y′=2xsin(2x+1)【解答】解:函数的导数y′=﹣sin(2x+1)(2x+1)′=﹣2sin(2x+1),故选:C6.(2014春•福建月考)下列导数运算正确的是()A.(x+)′=1+B.(2x)′=x2x﹣1C.(cosx)′=sinx D.(xlnx)′=lnx+1 【解答】解:根据导数的运算公式可得:A,(x+)′=1﹣,故A错误.B,(2x)′=lnx2x,故B错误.C,(cosx)′=﹣sinx,故C错误.D.(xlnx)′=lnx+1,正确.故选:D7.(2013春•海曙区校级期末)下列式子不正确的是()A.(3x2+xcosx)′=6x+cosx﹣xsinx B.(sin2x)′=2cos2xC.D.【解答】解:因为(3x2+xcosx)′=6x+cosx﹣xsinx,所以选项A正确;(sin2x)′=2cos2x,所以选项B正确;,所以C正确;,所以D不正确.故选D.8.(2013春•江西期中)已知函数f(x)=e2x+1﹣3x,则f′(0)=()A.0 B.﹣2 C.2e﹣3 D.e﹣3【解答】解:∵f′(x)=2e2x+1﹣3,∴f′(0)=2e﹣3.故选C.9.(2013春•黔西南州校级月考)函数的导数是()A. B.C.D.【解答】解:∵函数,∴y′=3cos(3x+)×3=,故选B.10.(2013春•东莞市校级月考)已知函数f(x)=sin2x,则f′(x)等于()A.cos2x B.﹣cos2x C.sinxcosx D.2cos2x【解答】解:由f(x)=sin2x,则f′(x)=(sin2x)′=(cos2x)•(2x)′=2cos2x.所以f′(x)=2cos2x.故选D.11.(2013秋•惠农区校级月考)y=e sinx cosx(sinx),则y′(0)等于()A.0 B.1 C.﹣1 D.2【解答】解:∵y=e sinx cosx(sinx),∴y′=(e sinx)′cosx(sinx)+e sinx(cosx)′(sinx)+e sinx(cosx)(sinx)′=e sinx cos2x(sinx)+e sinx(﹣sin2x)+e sinx(cos2x)∴y′(0)=0+0+1=1故选B12.(2012秋•珠海期末)下列求导运算正确的是()A. B.C.((2x+3)2)′=2(2x+3)D.(e2x)′=e2x【解答】解:因为,所以选项A不正确;,所以选项B正确;((2x+3)2)′=2(2x+3)•(2x+3)′=4(2x+3),所以选项C不正确;(e2x)′=e2x•(2x)′=2e2x,所以选项D不正确.故选B.13.(2012秋•朝阳区期末)若,则函数f(x)可以是()A.B.C.D.lnx【解答】解:;;;.所以满足的f(x)为.故选A.14.(2012秋•庐阳区校级月考)设,则f2013(x)=()A.22012(cos2x﹣sin2x)B.22013(sin2x+cos2x)C.22012(cos2x+sin2x)D.22013(sin2x+cos2x)【解答】解:∵f0(x)=sin2x+cos2x,∴f1(x)==2(cos2x﹣sin2x),f2(x)==22(﹣sin2x﹣cos2x),f3(x)==23(﹣cos2x+sin2x),f4(x)==24(sin2x+cos2x),…通过以上可以看出:f n(x)满足以下规律,对任意n∈N,.∴f2013(x)=f503×4+1(x)=22012f1(x)=22013(cos2x﹣sin2x).故选:B.15.(2011•潜江校级模拟)设f(x)=cos22x,则=()A.2 B.C.﹣1 D.﹣2【解答】解:∵f(x)=cos22x=∴=﹣2sin4x∴故选D.16.(2011秋•平遥县校级期末)函数的导数为()A.B.C.D.【解答】解:∵∴∴=故选D17.(2011春•南湖区校级月考)函数y=cos(1+x2)的导数是()A.2xsin(1+x2) B.﹣sin(1+x2) C.﹣2xsin(1+x2)D.2cos(1+x2)【解答】解:y′=﹣sin(1+x2)•(1+x2)′=﹣2xsin(1+x2)故选C18.(2011春•瑞安市校级月考)函数y=sin(﹣x)的导数为()A.﹣cos(+x)B.cos(﹣x)C.﹣sin(﹣x)D.﹣sin(x+)【解答】解:∵函数y=sin(﹣x)可看成y=sinu,u=﹣x复合而成且y u′=(sinu)′=cosu,∴函数y=sin(﹣x)的导数为y′=y u′u x′=﹣cos(﹣x)=﹣sin[﹣(﹣x)]=﹣sin (+x)故答案选D19.(2011春•龙港区校级月考)已知函数f(x)在R上可导,对任意实数x,f'(x)>f(x);若a为任意的正实数,下列式子一定正确的是()A.f(a)>e a f(0)B.f(a)>f(0)C.f(a)<f(0)D.f(a)<e a f(0)【解答】解:∵对任意实数x,f′(x)>f(x),令f(x)=﹣1,则f′(x)=0,满足题意显然选项A成立故选A.20.(2010•永州校级模拟)函数y=sin(2x2+x)导数是()A.y′=cos(2x2+x)B.y′=2xsin(2x2+x)C.y′=(4x+1)cos(2x2+x)D.y′=4cos(2x2+x)【解答】解:设y=sinu,u=2x2+x,则y′=cosu,u′=4x+1,∴y′=(4x+1)cosu=(4x+1)cos(2x2+x),故选C.21.(2010•祁阳县校级模拟)函数f(x)=sin2x的导数f′(x)=()A.2sinx B.2sin2x C.2cosx D.sin2x【解答】解:将y=sin2x写成,y=u2,u=sinx的形式.对外函数求导为y′=2u,对内函数求导为u′=cosx,故可以得到y=sin2x的导数为y′=2ucosx=2sinxcosx=sin2x故选D22.(2010春•朝阳区期末)函数的导函数是()A.f'(x)=2e2x B.C.D.【解答】解:对于函数,对其求导可得:f′(x)===;故选C.23.(2009春•房山区期中)函数的导数为()A.B.C.D.【解答】解:令y=3sint,t=2x﹣,则y′=(3sint)′•(2x﹣)′=3cos(2x﹣)•2=,故选A.24.(2009春•瑞安市校级期中)y=sin(3﹣4x),则y′=()A.﹣sin(3﹣4x)B.3﹣cos(﹣4x)C.4cos(3﹣4x)D.﹣4cos(3﹣4x)【解答】解:由于y=sin(3﹣4x),则y′=cos(3﹣4x)×(3﹣4x)′=﹣4cos(3﹣4x)故选D25.(2006春•珠海期末)下列结论正确的是()A.若,B.若y=cos5x,则y′=﹣sin5xC.若y=sinx2,则y′=2xcosx2D.若y=xsin2x,则y′=﹣2xsin2x【解答】解:函数的导数为,,∴A错误函数y=cos5x的导数为:y′=﹣5sin5x,∴B错误函数y=sinx2的导数为:y′=2xcosx,,∴C正确函数y=xsin2x的导数为:y′=sin2x+2xcos2x,∴D错误故选C26.函数y=的导数是()A.B.C.D.【解答】解:由复合函数的求导法则可得,•[ln(x2+1)]′ln2=(1+x2)′ln2=•ln2故选A二.填空题(共4小题)27.(2013春•巨野县校级期中)设y=f(x)是可导函数,则y=f()的导数为y′=f′().【解答】解:设y=f(u),u=,则y′=f'(u),u′=,∴y′=f′()故答案为:y′=f′().28.(2013春•吴兴区校级月考)函数y=cos(2x2+x)的导数是﹣(4x+1)sin(2x2+x).【解答】解:y′=﹣(4x+1)sin(2x2+x),故答案为﹣(4x+1)sin(2x2+x).29.(2012•洞口县校级模拟)函数y=ln的导数为.【解答】解:y′=()′=•()′=•.=•=故答案为:30.(2009春•雁塔区校级期中)若函数,则的值为.【解答】解:由故=故答案为:.。

相关文档
最新文档